TWI324607B - - Google Patents

Download PDF

Info

Publication number
TWI324607B
TWI324607B TW91121856A TW91121856A TWI324607B TW I324607 B TWI324607 B TW I324607B TW 91121856 A TW91121856 A TW 91121856A TW 91121856 A TW91121856 A TW 91121856A TW I324607 B TWI324607 B TW I324607B
Authority
TW
Taiwan
Prior art keywords
sugar chain
mixture
aspartate
sugar
derivative
Prior art date
Application number
TW91121856A
Other languages
Chinese (zh)
Inventor
Kajihara Yasuhiro
Original Assignee
Otsuka Chemical Co Ltd
Kajihara Yasuhiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Kajihara Yasuhiro filed Critical Otsuka Chemical Co Ltd
Priority to TW91121856A priority Critical patent/TWI324607B/zh
Application granted granted Critical
Publication of TWI324607B publication Critical patent/TWI324607B/zh

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

0) 0)1324607 玫、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 技術領域 本發明係有關於一種糖鏈天門冬醯胺衍生物之製造方 法及糖鏈天門冬醯胺衍生物。 背景技術 過去,以糖水解酵素將糖鏈分解而使其成為衍生物之 技術,係利用於糖鏈的構造解析等,數毫克規模的分析研 究上。然而,由於無法大量地獲得各個的糖鏈衍生物,因 此在克規模的研究技術上,其進展相當遲緩。所以,欲將 糖鏈的衍生物應用於可製造藥品的合成研究上,是相當困 難的。 另一方面,已知由蛋黃可大量地得到糖胜肽 (Biochimica et Biophysica Acta 1335 (1997) p 23〜32)。但 是,有關圖1所示之化合物1以及該化合物1中分枝糖鏈一 邊的非還原端之唾液酸及半乳糖等有缺失之一系列化合 物,則尚未有成功的例子顯示可大量得到經蕗基曱氧羰基 (Fmoc)化的糖鏈衍生物。又,已有例子由人類血液中的蛋 白質等少量分離出幾種的糖鏈,但若將該糖鏈使用於藥品 的製造上時,該藥品將有混雜對人體有害之愛滋病毒及肝 炎病毒等之危險性,因此欲將該糖鏈應用於藥品上,在技 術上仍存在有問題。 再者,欲在分枝型糖鏈中,製造出該分枝部分的構造 均相同之糖鏈,已有相當多的製造例子存在。其過去技術 中,有三種方法。第一種方法,係由天然存在之糖蛋白質 1324607 (2) 發明說明纗Μ 分離純化出天門冬醯胺鍵結的複合型糖鏈。其代表例,如 T. Tamura, et al. Anal. Biochem., 1 994, 2 1 6, p 3 3 5-344 > V. H. Thomas, et al. Carbohydr. Res., 1998,306, p 3 8 7-400 > K. G. Rice, et al., Biochemistry, 1 993, 32, p 7264-7270等記載之方法。這些方法中的優點,就是無須 合成糖鏈。但是,其亦有幾個缺點。舉例來說,前述糖蛋 白質衍生之糖鏈,可能會得到在非還原末端部分糖殘基有 幾個發生隨機缺失之混合物的情形,該混合物中所含有之 • 糖鏈,由於其物理、化學性質極類似,因此想要將各個糖 鏈分離將是非常困難的事情,實質上也就不可能大量地獲 得單一的糖鏈。又,為獲得較大量的(糖鏈)之故,亦有例 子由人血中的蛋白質(由纖維蛋白原之分離:C.H.Hokke. et al, Carbohydr. Res., 3 0 5 (1997),p 463-468,由人血清 鐵傳遞蛋白之分離:M.Mizunoetal.,J.Am.Chem.Soc., 1999, 121, p 284-290)來分離糖鏈。如前所述,人血中的 蛋白質上,有可能混入愛滋病毒或肝炎病毒,因此必須很 • 慎重地進行該步驟。所以,欲將所得到之糖鏈,以及其衍 生物利用於醫藥品開發上就很困難。又,即使可以大量地 得到糖鏈,受限於其構造,也並沒有例子有實質上獲得具 多種類構造的糖鏈及其衍生物。 在 K · G. Ri c e, et al., B i 〇 c hemi s tr y, 1 993, 32, p 7264-7270 ,或者 Rice, et al., Neogly coconjugate,0) 0) 1324607 Rose, invention description (invention description should be stated: the technical field, prior art, content, embodiment and schematic description of the invention) TECHNICAL FIELD The present invention relates to a sugar chain aspartate derivative A method for producing a substance and a sugar chain aspartame derivative. Background Art In the past, a technique in which a sugar hydrolyzate is decomposed into a derivative by a sugar hydrolyzing enzyme is used for analysis of a structure of a sugar chain, and is analyzed on a milligram scale. However, since the individual sugar chain derivatives cannot be obtained in a large amount, the progress in the gram scale research technique is rather slow. Therefore, it is quite difficult to apply a derivative of a sugar chain to a synthetic study of a manufacturable drug. On the other hand, it is known that a glycopeptide can be obtained in a large amount from egg yolk (Biochimica et Biophysica Acta 1335 (1997) p 23 to 32). However, regarding the compound 1 shown in Fig. 1 and the sialic acid and galactose having a non-reducing end on the side of the branched sugar chain in the compound 1, there is no successful example showing that a large amount of warp can be obtained. An oxycarbonyl (Fmoc)-derived sugar chain derivative. Further, there have been cases in which a few sugar chains are separated from a small amount of protein in human blood, but if the sugar chain is used in the manufacture of a drug, the drug will have an HIV virus and a hepatitis virus which are harmful to the human body. The danger is equal, so there is still a technical problem in applying this sugar chain to medicines. Further, in the branched type sugar chain, a sugar chain having the same structure of the branched portion is produced, and a considerable number of manufacturing examples exist. There are three methods in its past technology. The first method consists of a naturally occurring glycoprotein 1324607 (2) Description of the invention 分离 Separation and purification of the aspartate-linked complex sugar chain. Representative examples thereof are, for example, T. Tamura, et al. Anal. Biochem., 1 994, 2 1 6, p 3 3 5-344 > VH Thomas, et al. Carbohydr. Res., 1998, 306, p 3 8 7-400 > KG Rice, et al., Biochemistry, 1 993, 32, p 7264-7270, etc. The advantage of these methods is that there is no need to synthesize sugar chains. However, it also has several shortcomings. For example, the aforementioned glycoprotein-derived sugar chain may result in a mixture of several randomly occurring sugar residues in the non-reducing terminal moiety, the sugar chain contained in the mixture, due to its physical and chemical properties. Very similar, so it is very difficult to separate individual sugar chains, and it is virtually impossible to obtain a single sugar chain in large quantities. Also, in order to obtain a larger amount (sugar chain), there are also examples of proteins in human blood (separation by fibrinogen: CHHokke. et al, Carbohydr. Res., 305 (1997), p 463-468, isolation of human serum iron transfer protein: M. Mizuno et al., J. Am. Chem. Soc., 1999, 121, p 284-290) to separate sugar chains. As mentioned earlier, proteins in human blood may be contaminated with HIV or hepatitis viruses, so this step must be done with great care. Therefore, it is difficult to use the obtained sugar chain and its derivatives for the development of pharmaceuticals. Further, even if the sugar chain can be obtained in a large amount, it is not limited to the structure, and there are no examples of substantially obtaining a sugar chain having a variety of structures and derivatives thereof. At K · G. Ri c e, et al., B i 〇 c hemi s tr y, 1 993, 32, p 7264-7270 , or Rice, et al., Neogly coconjugate,

Academic Press, 1 994,ISBN 0- 12-4405 85- 1 p 286-32 1 中 ,係使用糖水解酵素由糖鏈的非還原末端除去糖殘基,但 1324607 (3) [SeSem] 由於無法大量獲得作為原料的單一構造之糖類,因此只停 留在分析規模的層次上。E. Meinjohanns (J. Chem. Soc. Perkin Transl,1998, p 549-560)等人,在由牛胎球蛋白( 由牛衍生之糖蛋白質)得到圖5所示之化合物56後,經由圖 3所示之化合物3 3,合成了圖1所示之化合物1 0。為得到最 初原料的化合物5 6之故,則利用聯胺分解反應。此聯胺具 有高毒性,所得到之糖鏈的衍生物若使用於醫藥品時,就 會有微量聯胺混入造成安全性問題之可能性。又,未鍵結 有唾液酸之化合物5 6、3 3及1 0之糖鏈的衍生物,也祇能少 量獲得而已。 第二個方法,係以化學合成糖鏈之方法。現在,以化 學合成法組合單糖時,如J. Seifert et al. Angew Chem Int. Ed. 2000, 39, p 531-534所報告之例子,可構築至約10個 糖單位左右。此方法之優點,是理論上可得到所有的糖鏈 衍生物。但是,由於其步驟上十分繁雜,就有無法大量合 成之缺點。又,即使要將鍵結有1 0個左右糖殘基之糖鏈合 成至數毫克,也需要將近一年的時間。到目前為止,雖有 關於化學合成數個糖鏈之例子,但其許多均僅停留在能夠 合成數毫克的標的物糖鏈之階段。 第三個方法,係以組合酵素反應及化學反應來合成糖 類之方法。其代表例,如 Carlo Unverzagt, Angew Chem Int. Ed. 1996, 35,p 2350-2353所報告者。此方法係以化學合 成構築到某程度的糖鏈之後,再以酵素反應將糖殘基附加 於糖鏈之上,從而加長糖鏈之方法。但是,在加長糖鏈鎖 1324607Academic Press, 1 994, ISBN 0- 12-4405 85- 1 p 286-32 1 , using sugar hydrolyzing enzymes to remove sugar residues from the non-reducing ends of sugar chains, but 1324607 (3) [SeSem] A single structured sugar is obtained as a raw material, and therefore only stays at the level of analysis scale. E. Meinjohanns (J. Chem. Soc. Perkin Transl, 1998, p 549-560) et al., after obtaining compound 56 shown in Figure 5 from bovine fetuin (a glycoprotein derived from cattle), via Figure 3 The compound 10 shown in Figure 1 was synthesized as the compound 3 3 shown. In order to obtain the compound 56 of the initial starting material, the hydrazine decomposition reaction is utilized. This hydrazine has high toxicity, and when the derivative of the obtained sugar chain is used in a pharmaceutical product, there is a possibility that a trace amount of hydrazine may be mixed to cause a safety problem. Further, derivatives of the sugar chain of the compounds 5-6, 3 3 and 10 which are not bonded with sialic acid can be obtained only in a small amount. The second method is a method of chemically synthesizing sugar chains. Now, when the monosaccharide is combined by chemical synthesis, as exemplified by J. Seifert et al. Angew Chem Int. Ed. 2000, 39, p 531-534, it can be constructed to about 10 sugar units. The advantage of this method is that all sugar chain derivatives are theoretically available. However, due to the complexity of the steps, there is a disadvantage that it cannot be synthesized in large quantities. Further, even if it is necessary to synthesize a sugar chain having 10 or so sugar residues to a few milligrams, it takes almost a year. So far, although there are some examples of chemically synthesizing several sugar chains, many of them only stay at the stage of being able to synthesize several milligrams of the target sugar chain. The third method is a method of synthesizing a saccharide by combining an enzyme reaction and a chemical reaction. Representative examples thereof are reported by Carlo Unverzagt, Angew Chem Int. Ed. 1996, 35, p 2350-2353. This method is a method in which a sugar chain is constructed by chemical synthesis and then a sugar residue is attached to the sugar chain by an enzyme reaction to lengthen the sugar chain. However, in the long sugar chain lock 1324607

(4) ISSiSSS 使用之酵素因為有基質特異性的緣故,能夠導入至糖鏈的 糖種類便有所限制。又’化學合成的步驟數目上繁多,也 造成了大量合成的困難,從而僅能得到少量的最終產物。 又,C. H. Lin (Bioorganic & Medicinal Chemistry, 1 995,p 1625-1630)等人’使用M_ Koketsu等人所報告之方法(j(4) The enzymes used in ISSiSSS are limited in their ability to be introduced into the sugar chain due to matrix specificity. Moreover, the number of chemical synthesis steps is numerous, which also causes a large amount of synthesis difficulties, so that only a small amount of final product can be obtained. Further, C. H. Lin (Bioorganic & Medicinal Chemistry, 1 995, p 1625-1630) et al. use the method reported by M_Koketsu et al.

Carbohydrate Chemistry, 1 9 9 5, 1 4 (6), ρ 83 3-84 1 ),從卵 黃得到唾液酸基寡糖胜肽,然後,再使用糖水解酵素、糖 轉移酵素,而改變了糖鏈的非還原末端部分的構造0該論 ® 文中之圖,所記載之糖鏈,係在非還原末端部分上僅有1 個天門冬醯胺(Asn)殘基。但是,若根據J. Carbohydrate Chemistry,1 995,14 (6),ρ 83 3-84 1 所報告之方法,仍然是 得到混合物,其糖鏈之非還原末端上除天門冬醯胺以外, 還鍵結有離胺酸等幾個胺基酸(平均而言,鍵結有2.5個胺 基酸)。因此,並無法得到單一化合物型態之糖類衍生物 ,又,其亦沒有教示可大量得到各個衍生物,而關於該各 個衍生物之化合物中,其分枝型糖鏈之分枝糖鏈的糖殘基 _ 係隨機缺失的情形。在C.H. Lin等人的論文中,並沒有證 據顯示有得到單一生成物之糖鏈胜肽。Y. Ichikawa在 Gly copeptide and Related Compounds (Marcel Dekker, Inc·, 1997, ISBN 0-8247-953 卜 8, p. 79-205)中敘述,將三 分枝型的複合型糖鏈由末端開始,依次以糖水解酵素處理 時,就可以由糖鏈的非還原末端起將糖鏈依次除去,而得 到各種糖鍵之衍生物。然而,其並未提及要如何將個別的 糖鏈加以分離,又,其合成亦只有均勻分枝者而已。因此 -10- 1324607 (5) ,即使依據該方法,關於其分枝型糖鏈之分枝糖鏈的糖殘 基係隨機缺失的化合物,一般咸認仍無法就個別的衍生物 大量地獲得。 發明之開示Carbohydrate Chemistry, 1 9 9 5, 1 4 (6), ρ 83 3-84 1 ), the sialyl oligosaccharide peptide is obtained from the egg yolk, and then the sugar hydrolyzate and the sugar transfer enzyme are used, and the sugar chain is changed. The structure of the non-reducing end portion is shown in the figure. The sugar chain described has only one aspartate (Asn) residue on the non-reducing end portion. However, according to the method reported by J. Carbohydrate Chemistry, 1 995, 14 (6), ρ 83 3-84 1 , a mixture is still obtained, and the non-reducing end of the sugar chain has a bond other than aspartame. There are several amino acids such as lysine (on average, 2.5 amino acids are bonded). Therefore, it is not possible to obtain a single compound type saccharide derivative, and it is not taught that a large amount of each derivative can be obtained, and among the compounds of the respective derivatives, the sugar of the branched sugar chain of the branched sugar chain Residue _ is a case of random deletion. In the paper by C. H. Lin et al., there is no evidence that a single-product glycopeptide is obtained. Y. Ichikawa is described in Gly copeptide and Related Compounds (Marcel Dekker, Inc., 1997, ISBN 0-8247-953, 8, p. 79-205), starting with a tribranched complex sugar chain from the end, When the sugar hydrolyzing enzyme is sequentially treated, the sugar chain can be sequentially removed from the non-reducing end of the sugar chain to obtain various sugar bond derivatives. However, it does not mention how to separate individual sugar chains, and the synthesis is only uniform. Therefore, -10- 1324607 (5), even according to this method, a compound in which a sugar residue of a branched sugar chain of a branched sugar chain is randomly deleted is generally not available in a large amount for individual derivatives. Invention

本發明,係可將醫藥品開發等領域上十分有用的各種 經分離之糖鏈天門冬醯胺衍生物,以相較於過去的方法非 常容易而大量地取得。又,本發明之目的,係提供一糖鏈 天門冬醯胺的製造方法及糖鏈的製造方法,並經由製造糖 鏈天門冬醯胺衍生物的步驟,而可在取得糖鏈天門冬醯胺 衍生物的同時,以相較於過去的方法,非常容易而大量地 取得各種有用的經分離之糖鏈天門冬醯胺及糖鏈。進一步 ,本發明之目的,係提供一新穎的糖鏈天門冬醯胺衍生物 、糖鏈天門冬醯胺及糖鏈。 亦即,本發明係有關於 (1) 一種由糖鏈天門冬醯胺衍生的糖鏈天門冬醯胺衍生物 之製造方法,其包含:According to the present invention, various isolated sugar chain aspartate derivatives which are very useful in the field of pharmaceutical development can be obtained in a large amount in comparison with the conventional methods. Further, an object of the present invention is to provide a method for producing a sugar chain aspartame and a method for producing a sugar chain, and to obtain a sugar chain aspartate by a step of producing a sugar chain aspartate derivative At the same time as the derivatives, various useful isolated sugar chain aspartames and sugar chains are obtained very easily and in large quantities compared to the conventional methods. Further, it is an object of the present invention to provide a novel sugar chain aspartame derivative, a sugar chain aspartate and a sugar chain. That is, the present invention relates to (1) a method for producing a sugar chain aspartame derivative derived from a sugar chain aspartame, which comprises:

(a) 得到糖鏈天門冬醯胺衍生物混合物之步驟,其係於含 有包含1種或2種以上糖鏈天門冬醯胺之混合物的該糖鏈 天門冬醯胺上,導入脂溶性的保護基;以及 (b) 分離各糖鏈天門冬醯胺衍生物之步驟,其係將該糖鏈 天門冬醯胺衍生物混合物或該糖鏈天門冬醯胺衍生物混 合物所包含之糖鏈天門冬醯胺衍生物,進行水解得到一混 合物,再將其供注於色層分析; (2)如前述(1)所記載之糖鏈天門冬醯胺衍生物之製造方 -11 - 1324607(a) a step of obtaining a mixture of sugar chain aspartate derivatives, which is introduced into the sugar chain aspartate containing a mixture of one or more sugar chain aspartame, and is introduced into fat-soluble protection And (b) a step of isolating each of the sugar chain aspartate derivatives, which is a sugar chain aspartate contained in the sugar chain aspartate derivative mixture or the sugar chain aspartate derivative mixture a guanamine derivative, which is hydrolyzed to obtain a mixture, which is then subjected to color layer analysis; (2) A manufacturer of the sugar chain aspartate derivative as described in the above (1) - 11 - 1324607

(6) i發明說明績頁I 法,其進一步包含: (b·)使用糖水解酵素水解步驟(b)所分離之糖鏈天門冬醯 胺衍生物之步驟; (3)如前述(1)或(2)所記載之糖鏈天門冬醯胺衍生物之製 造方法,其中,該包含1種或2種以上糖鏈天門冬醯胺之混 合物,係含有(6) i invention description sheet method, which further comprises: (b) a step of using a glycolytic enzyme hydrolysis step (b) to separate the sugar chain aspartate derivative; (3) as described above (1) Or a method for producing a sugar chain aspartame derivative according to the above aspect, wherein the mixture comprising one or more sugar chain aspartame is contained

-12- 1324607 ⑺-12- 1324607 (7)

Smurnm^i 及/或在該化合物上有缺失1個以上糖殘基之化合物者; (4) 如前述(1)〜(3)中任一者所記載之糖鏈天門冬醯胺衍生 物之製造方法,其_,該脂溶性的保護基係苐基曱氧羰 (Fmoc)基;Smurnm^i and/or a compound having a sugar residue as described in any one of the above (1) to (3). a manufacturing method, wherein the fat-soluble protective group is a mercapto oxime oxycarbonyl (Fmoc) group;

(5) 如前述(1)〜(3)中任一者所記載之糖鏈天門冬醯胺衍生 物之製造方法,其中,該步驟(a)係在包含有在非還原末 端上具有唾液酸殘基的1種或2種以上之糖鏈天門冬醯胺 的混合物中所含有的該糖鏈天門冬醯胺上,導入Fmoc基 ,同時在唾液酸殘基上導入苄基,而製得糖鏈天門冬醯胺 衍生物混合物之步驟; (6) —種糖鏈天門冬醯胺之製造方法,其包含: (a) 得到糖鏈天門冬醯胺衍生物混合物之步驟,其係於含 有包含1種或2種以上糖鏈天門冬醯胺之混合物的該糖鏈 天門冬醯胺上,導入脂溶性的保護基;(5) The method for producing a sugar chain aspartame derivative according to any one of the above (1), wherein the step (a) includes sialic acid at a non-reducing end A sugar chain aspartate contained in a mixture of one or more sugar chain aspartames of a residue is introduced into an Fmoc group, and a benzyl group is introduced into a sialic acid residue to obtain a sugar. (6) A method for producing a sugar chain aspartame, which comprises: (a) a step of obtaining a mixture of sugar chain aspartame derivatives, which comprises a fat-soluble protecting group is introduced onto the sugar chain aspartate of a mixture of one or more sugar chain aspartame;

(b) 分離各糖鏈天門冬醯胺衍生物之步驟,其係將該糖鏈 天門冬醯胺衍生物混合物或該糖鏈天門冬醯胺衍生物混 合物所包含之糖鏈天門冬醯胺衍生物,進行水解得到一混 合物,再將其供注於色層分析;以及 (c) 獲得糖鏈天門冬醯胺之步驟,其係將步驟(b)所分離之 糖鏈天門冬醯胺衍生物的保護基,加以除去; (7)如前述(6)所記載之糖鏈天門冬醯胺之製造方法,其進 一步包含: (b')使用糖水解酵素水解步驟(b)所分離之糖鏈天門冬醯 胺衍生物之步驟;及/或 -13- 1324607 _ (8) 明說明績頁 (c’)步驟,亦即,將(c)所得到之糖鏈天門冬醯胺,使用糖 水解酵素,進行水解之步驟 (8)如前述(6)或(7)所記載之糖鏈天門冬醯胺之製造方法 ,其中,該包含1種或2種以上糖鏈天門冬醯胺之混合物, 係含有(b) a step of isolating each of the sugar chain aspartate derivatives, which is derived from the sugar chain aspartate derivative mixture or the sugar chain aspartate derivative contained in the sugar chain aspartate derivative mixture a step of hydrolyzing to obtain a mixture, which is then subjected to chromatograph analysis; and (c) a step of obtaining a sugar chain aspartate which is a sugar chain aspartate derivative isolated in step (b) (7) The method for producing a sugar chain aspartame according to the above (6), which further comprises: (b') using a sugar hydrolyzate to hydrolyze the sugar chain separated in the step (b) Steps of aspartame derivatives; and/or -13- 1324607 _ (8) Explain the procedure (c'), that is, the sugar chain aspartate obtained in (c), using glycol hydrolysis The method for producing a sugar chain aspartame described in the above (6) or (7), which comprises a mixture of one or more sugar chain aspartame, Contains

-14- 1324607 (9) 丨發明說日Μΐ: 及/或在該化合物上有缺失1個以上糖殘基之化合物者; (9) 如前述(6)〜(8)中任一者所記載之糖鏈天門冬醯胺之製 造方法,其中,該脂溶性的保護基係Fmoc基;-14- 1324607 (9) 丨 invention said that: and / or a compound having one or more sugar residues in the compound; (9) as described in any one of the above (6) to (8) a method for producing a sugar chain aspartame, wherein the fat-soluble protecting group is a Fmoc group;

(10) 如前述(6)〜(8)中任一者所記載之糖鏈天門冬醯胺之 製造方法,其中,該步驟(a)係在包含有在非還原末端上 具有唾液酸殘基的1種或2種以上之糖鏈天門冬醯胺的混 合物中所含有的該糖鏈天門冬醯胺上,導入Fmoc基,同 時在唾液酸殘基上導入芊基,而製得糖鏈天門冬醯胺衍生 物混合物之步驟; (11) 一種糖鏈之製造方法,其包含: (a) 得到糖鏈天門冬醯胺衍生物混合物之步驟,其係於含 有包含1種或2種以上糖鏈天門冬醯胺之混合物的該糖鏈 天門冬醯胺上,再導入脂溶性的保護基;(10) The method for producing a sugar chain aspartame described in any one of the above (6), wherein the step (a) includes a sialic acid residue on the non-reducing end. a sugar chain aspartate contained in a mixture of one or more sugar chain aspartame, which is introduced into a Fmoc group, and a thiol group is introduced on the sialic acid residue to obtain a sugar chain A step of producing a glycoside derivative mixture; (11) A method for producing a sugar chain, comprising: (a) a step of obtaining a mixture of sugar chain aspartame derivatives, which comprises containing one or more sugars a sugar-soluble protective group is added to the sugar chain aspartate of a mixture of aspartame;

(b) 分離各糖鏈天門冬醯胺衍生物之步驟,其係將該糖鏈 天門冬醯胺衍生物混合物或該糖鏈天門冬醯胺衍生物混 合物所包含之糖鏈天門冬醯胺衍生物,進行水解得到一混 合物,再將其供注於色層分析; (c) 獲得糖鏈天門冬醯胺之步驟,其係除去步驟(b)所分離 之糖鏈天門冬醯胺衍生物的保護基;以及 (d) 獲得糖鏈之步驟,其係除去步驟(c)所得到之糖鏈天門 冬醯胺的天門冬醯胺殘基; (12)如前述(11)所記載之糖鏈之製造方法,其進一步包含: (b')使用糖水解酵素水解步驟(b)所分離之糖鏈天門冬醯 胺衍生物之步驟;及/或 -15- 1324607 _ (10) 明說明h (C·)步驟,亦即,將(C)所得到之糖鏈天門冬醯胺,使用糖 水解酵素,進行水解之步驟;及/或 (dj步驟,亦即,將(d)所得到之糖鏈,使用糖水解酵素, 進行水解之步驟; (13)如前述(11)或(12)所記載之糖鏈之製造方法,其中,(b) a step of isolating each of the sugar chain aspartate derivatives, which is derived from the sugar chain aspartate derivative mixture or the sugar chain aspartate derivative contained in the sugar chain aspartate derivative mixture Hydrolyzed to obtain a mixture, which is then subjected to chromatograph analysis; (c) a step of obtaining a sugar chain aspartate which is obtained by removing the sugar chain aspartate derivative isolated in step (b) a protecting group; and (d) a step of obtaining a sugar chain, wherein the aspartic acid residue of the sugar chain aspartate obtained in the step (c) is removed; (12) the sugar chain as described in the above (11) The manufacturing method further comprising: (b') a step of hydrolyzing the sugar chain aspartate derivative separated by the step (b); and/or -15 - 1324607 _ (10) The step C), that is, the step of hydrolyzing the sugar chain aspartate obtained by (C) using glycolytic enzyme; and/or (dj step, that is, the sugar obtained by (d) a chain, a step of hydrolyzing using a sugar hydrolyzing enzyme; (13) a method of producing a sugar chain as described in the above (11) or (12) The method, which,

-16- 1324607 (11) 頁 及/或在該化合物上有缺失1個以上糖殘基之化合物者; (14) 如前述(11)〜(13)中任一者所記載之糖鏈之製造方法 ,其中,該脂溶性的保護基係F m 〇 c基; (15) 如前述(11)~(13)中任一者所記載之糖鏈之製造方法 ,其中,該步驟(a)係在包含有在非還原末端上具有唾液-16- 1324607 (11) Pages and/or a compound having one or more sugar residues in the compound; (14) The production of a sugar chain as described in any one of the above (11) to (13) The method for producing a sugar chain according to any one of the above (11), wherein the step (a) is a method for producing a sugar chain according to any one of the above (11) to (13) Containing saliva on the non-reducing end

酸殘基的1種或2種以上之糖鏈天門冬醯胺的混合物中所 含有的該糖鏈天門冬醯胺上,導入Fmoc基,同時在唾液 酸殘基上導入苄基,而製得糖鏈天門冬醯胺衍生物混合物 之步驟; (1 6) —種糖鏈天門冬醯胺衍生物,其係具有一般式: R 1The oligosaccharide group is added to the sugar chain aspartate contained in a mixture of one or more sugar chain aspartames of an acid residue, and a benzyl group is introduced into the sialic acid residue to obtain a benzyl group. a step of a mixture of sugar chain aspartame derivatives; (1 6) a sugar chain aspartate derivative having the general formula: R 1

(式中,R1及R2為Η、(where R1 and R2 are Η,

> -17· 1324607 (12)> -17· 1324607 (12)

j發明說明績頁j invention description page

其可為相同或相異,但,It can be the same or different, however,

R1及R2同時為 φ 之情況除外); (1 7) —種糖鏈天門冬醯胺衍生物,其係具有一般式:(except when R1 and R2 are both φ); (1 7) - a sugar chain aspartame derivative, which has the general formula:

R XR X

RY (式中,Rx及RY中,其一者為 1324607RY (in the formula, Rx and RY, one of them is 1324607

OHOH

• 19· 1324607 (14) 丨發明說明績頁 (18)—種糖鏈天門冬醯胺,其係具有一般式• 19· 1324607 (14) 丨Inventive Notes (18)—A sugar chain aspartate, which has a general formula

,其可為相同或相異,但,R3及R4同時為 •20- 1324607 (15) I發明說明R1, which may be the same or different, but R3 and R4 are simultaneously • 20-1324607 (15) I invention description R1

之情況除外);以及 (19)一種糖鏈,其係具有一般式:In addition to the case); and (19) a sugar chain, which has the general formula:

-21 1324607 (16)-21 1324607 (16)

-22- 1324607 (17)-22- 1324607 (17)

,或者R5或R6之一者為Η,, or one of R5 or R6 is Η,

同時另一者為 之情況除外)。At the same time, the other is except for the case).

附圖之簡單說明 圖1係表示本發明所得到之糖鏈天門冬醯胺衍生物的 一群體之構造。 圖2係表示本發明所得到之糖鏈天門冬醯胺衍生物的 一群體之構造。 圖3係表示本發明所得到之糖鏈天門冬醯胺的一群體 之構造。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the construction of a population of the sugar chain aspartate derivatives obtained by the present invention. Fig. 2 is a view showing the structure of a group of the sugar chain aspartate derivatives obtained by the present invention. Fig. 3 is a view showing the structure of a population of the sugar chain aspartate obtained by the present invention.

圖4係表示本發明所得到之糖鏈天門冬醯胺的一群體 之構造。 圖5係表示本發明所得到之糖鏈的一群體之構造。 圖6係表示本發明所得到之糖鏈的一群體之構造。 圖7係表示本發明所得到之糖鏈天門冬醯胺衍生物的 製造方法中步驟之一個例子。 圖8係表示使用各種糖水解酵素進行之糖鏈天門冬醯 胺衍生物的變換步驟之一個例子。 圖9係表示使用各種糖水解酵素進行之糖鏈天門冬醯 胺衍生物的變換步驟之一個例子。 -23 - 1324607 _ (18) 陋麵兩礙] 圖10係表示使用各種糖水解酵素進行之糖鏈天門冬醯 胺衍生物的變換步驟之一個例子。 圖11係表示使用各種糖水解酵素進行之糖鏈天門冬醯 胺衍生物的變換步驟之一個例子。 圖12係表示由糖鏈天門冬醯胺衍生物除去保護基 (Fmoc基)之步驟以及由糖鏈天門冬醯胺除去天門冬醯胺 殘基之步驟之一例。 實施本發明之最佳型態Fig. 4 is a view showing the structure of a population of the sugar chain aspartate obtained by the present invention. Figure 5 is a diagram showing the construction of a population of sugar chains obtained by the present invention. Figure 6 is a diagram showing the construction of a population of sugar chains obtained by the present invention. Fig. 7 is a view showing an example of the steps in the method for producing the sugar chain aspartame derivative obtained by the present invention. Fig. 8 is a view showing an example of a conversion step of a sugar chain aspartame derivative using various sugar hydrolyzing enzymes. Fig. 9 is a view showing an example of a conversion step of a sugar chain aspartame derivative using various sugar hydrolyzing enzymes. -23 - 1324607 _ (18) 陋 两 ] ] ] ] 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 。 Fig. 11 is a view showing an example of a conversion step of a sugar chain aspartame derivative using various sugar hydrolyzing enzymes. Fig. 12 is a view showing an example of a step of removing a protecting group (Fmoc group) from a sugar chain aspartate derivative and a step of removing an aspartic acid residue from a sugar chain aspartame. Best mode for carrying out the invention

本發明的糖鏈天門冬醯胺衍生物之製造方法,舉例來 說,其一個大的特徵在於,由天然的糖蛋白質衍生之糖鏈 天門冬醯胺,理想為由天門冬醯胺鍵結型糖鏈,所得到之 糖鏈天門冬醯胺的混合物中,其所含有的該糖鏈天門冬醯 胺上,將脂溶性的保護基導入(鍵結)於其中,於得到糖鏈 天門冬醯胺衍生物之混合物後,由該混合物分離出各糖鏈 天門冬醯胺衍生物。又,在本說明書中,所謂的「糖鏈天 門冬醯胺」係指天門冬醯胺鍵結狀態之糖鏈而言。又,所 謂的「天門冬醯胺鍵結型糖鏈」,係指在蛋白質的聚胜肽 中之天門冬醯胺(Asn)的酸胺基上,還原末端所存在的N-乙醯葡糖胺係N-糖甞鍵結之糖鏈群,並以 Man(pi-4)GlcNac為母核之糖鏈群。所謂的「糖鏈天門冬 醯胺衍生物」,係指天門冬醯胺殘基上鍵結有脂溶性的保 護基狀態之糖鏈天門冬醯胺而言。又,化合物的構造式中 ,「AcHN」係表示乙醯胺。 如前所述,由天然的糖蛋白質衍生之糖鏈,係非還原 -24- 1324607 (19) 末端的糖殘基有隨機缺失之糖鏈混合物。本發明者們,令 人驚異地,發現在天然的糖蛋白質衍生之糖類,具體來說 是在糖鏈天門冬醯胺的混合物中所包含之該糖鏈天門冬 醯胺上,藉由導入脂溶性的保護基,可將導入有該保護基 之糖鏈天門冬醯胺衍生物的混合物,以習知之色層分析法 輕易地分離出各個糖鏈天門冬醯胺衍生物。藉此,就可以 個別地大量製備具有各種構造之糖鏈天門冬醯胺衍生物 。舉例來說,過去很難分離的,圖1所示之化合物2及6或 圖2所示之化合物3及7之類似構造的糖鏈天門冬醯胺衍生 物群體,就可以分離了,亦就可個別地將這些化合物各個 、容易地大量加以製備。又,以所得到之糖鏈天門冬醯胺 衍生物作為基礎,舉例來說,藉由使糖水解酵素依次作用 而除去糖殘基,就可以進一步合成各種糖鏈天門冬醯胺衍 生物。 如此,藉由在糖鏈天門冬醯胺上導入脂溶性的保護基 ,而使其成為衍生物,就可將個別的糖鏈天門冬醯胺衍生 物進行分離,而且,由於導入脂溶性的保護基,糖鏈天門 冬醯胺衍生物之全體的脂溶性就提高了,舉例來說,其與 十分適合使用之逆相系管柱的相互作用可明顯地提高,其 結果,就可以更敏稅地反映出糖鏈構造之差別,從而可分 離出個別的糖鏈天門冬醯胺衍生物。舉例來說,本發明中 適合使用之脂溶性保護基的Fmoc基,其脂溶性就非常高 。亦即Fmoc基的苐基骨架,在其中心的五員環上,有二 個苯環鍵結而形成非常高度脂溶性質之構造,舉例來說, -25- 1324607 1¾說明ill (20) 其與逆相系管柱之一的ODS管柱的十八基會產生非常強 的相互作用,因此就可以將類似構造的糖鏈天門冬醯胺衍 生物加以分離。 進一步,根據本發明,如後所述,藉由除去所獲得之 糖鏈天門冬醯胺衍生物的保護基,就可以得到各種的糖鏈 天門冬醯胺,又,藉由將所得到之糖鏈天門冬醯胺的天門 冬醯胺殘基除去,亦就可以容易且大量地得到各種糖類。 本發明的糖鏈天門冬醯胺衍生物之製造方法,具體言 (a) 得到糖鏈天門冬醯胺衍生物混合物之步驟,其係於含 有包含1種或2種以上糖鏈天門冬醯胺之混合物的該糖鏈 天門冬醯胺上,導入脂溶性的保護基;以及 (b) 分離各糖鏈天門冬醯胺衍生物之步驟,其係將該糖鏈 天門冬醯胺衍生物混合物或該糖鏈天門冬醯胺衍生物混 合物所包含之糖鏈天門冬醯胺衍生物,進行水解得到一混 合物,再將其供注於色層分析。The method for producing a sugar chain aspartame derivative of the present invention, for example, is characterized in that a sugar chain aspartate which is derived from a natural sugar protein is desirably bonded by aspartate a sugar chain, a mixture of the obtained sugar chain aspartame, which is introduced into the sugar chain aspartate, and a fat-soluble protective group is introduced (bonded) thereto to obtain a sugar chain aspartate. After the mixture of amine derivatives, each sugar chain aspartate derivative is isolated from the mixture. Further, in the present specification, the term "sugar chain aspartate" refers to a sugar chain in which the aspartic acid is bonded. In addition, the so-called "aspartate-bonded sugar chain" refers to the N-acetylglucoside present at the reducing end of the acid amine group of Asparagine (Asn) in the protein's polypeptide. An amine N-glycoside-bonded sugar chain group and a sugar chain group having Man(pi-4)GlcNac as a mother nucleus. The so-called "glycosyl aspartate guanamine derivative" refers to a sugar chain aspartame which is bonded to a fat-soluble protective group on the aspartame residue. Further, in the structural formula of the compound, "AcHN" means acetamide. As described above, the sugar chain derived from the natural glycoprotein is a non-reducing sugar residue at the end of the -24-1324607 (19) having a randomly deleted sugar chain mixture. The present inventors have surprisingly found that the natural glycoprotein-derived saccharide, specifically the oligosaccharide aspartate contained in a mixture of sugar chain aspartame, is introduced by introducing a lipid. The soluble protecting group can easily separate the individual sugar chain aspartate derivatives by a conventional chromatography method using a mixture of the sugar chain aspartate derivatives into which the protecting group is introduced. Thereby, it is possible to individually prepare a large amount of a sugar chain aspartame derivative having various structures. For example, in the past, it is difficult to isolate, and the groups of compounds 2 and 6 shown in Fig. 1 or the similarly constructed sugar chain aspartate derivatives of compounds 3 and 7 shown in Fig. 2 can be separated, and These compounds can be individually and easily prepared in large quantities. Further, based on the obtained sugar chain aspartate derivative, for example, by repeating the action of the sugar hydrolyzing enzyme to remove the sugar residue, various sugar chain asparagine derivatives can be further synthesized. Thus, by introducing a fat-soluble protective group into the sugar chain aspartate to form a derivative, the individual sugar chain aspartate derivatives can be separated, and the fat-soluble protection is introduced. The fat solubility of the entire sugar chain aspartate derivative is improved. For example, the interaction with the inverse phase column which is very suitable for use can be remarkably improved, and as a result, the tax can be more sensitive. The difference reflects the structure of the sugar chain, so that individual sugar chain aspartate derivatives can be isolated. For example, the Fmoc group of a fat-soluble protecting group suitable for use in the present invention has a very high fat solubility. That is, the Fmoc-based fluorenyl skeleton has two benzene ring bonds at its central five-membered ring to form a very highly fat-soluble structure, for example, -25-13324607 13⁄4 illustrates ill (20) The octadecyl group of the ODS column, which is one of the reverse phase column, produces a very strong interaction, so that a similarly constructed sugar chain aspartate derivative can be separated. Further, according to the present invention, as described later, by removing the protective group of the obtained sugar chain aspartate derivative, various sugar chain asparagine can be obtained, and, by the obtained sugar The removal of the asparagine residue of the aspartame can also easily and in large quantities obtain various sugars. The method for producing a sugar chain aspartame derivative of the present invention, specifically, (a) a step of obtaining a mixture of sugar chain aspartame derivatives, which comprises containing one or more sugar chain aspartame a mixture of the sugar chain aspartate, introducing a fat-soluble protecting group; and (b) a step of isolating each sugar chain aspartate derivative, which is a mixture of the sugar chain aspartame derivative or The sugar chain aspartate derivative contained in the sugar chain aspartate derivative mixture is hydrolyzed to obtain a mixture, which is then subjected to chromatography analysis.

在(a)步驟所使用之包含1種或2種以上的糖鏈天門冬醯 胺之混合物,其只要是含有天門冬醯胺鍵結狀態之糖鏈1 種或2種以上者即可,並無特別之限制。舉例來說,亦可 為一混合物,其包含含有天門冬醯胺1個或數個鍵結之糖 鏈的1種或2種以上。在其中,若特別從容易取得的觀點來 看時,則以包含還原末端上鍵結有天門冬醯胺之糖鏈1種 或2種以上的混合物為理想。又,本說明書中,所謂的 「糖鏈」,係指鍵結有任意的單糖2種以上者。 -26- 1324607 (21) 嗣ϋa mixture containing one or more kinds of sugar chain aspartame used in the step (a), as long as it is one or more sugar chains containing an aspartame-bonded state, and There are no special restrictions. For example, it may be a mixture containing one or more kinds of one or more linked sugar chains containing asparagine. In particular, when it is particularly preferable from the viewpoint of easy availability, it is preferred to contain one or a mixture of two or more kinds of sugar chains in which aspartic acid is bonded to the reducing end. In the present specification, the term "sugar chain" means two or more types of arbitrary monosaccharides. -26- 1324607 (21) 嗣ϋ

這種糖鏈天門冬醯胺之混合物,可以習知之方法,理 想者為天然之原料(例如乳汁、由牛衍生之胎球蛋白或蛋 衍生之糖蛋白質及/或糖胜肽的混合物)來獲得,該混合物 中,舉例來說,可以添加蛋白質分解酵素(例如「普羅」 酵素(和光純藥公司製)、「阿克契」酵素-Ε(科研製藥公司 製),以及一般的羧基胜肽酵素、胺基胜肽酵素等酵素) ,於習知之反應條件下進行反應,切斷胜肽部分,就可作 為該反應後之反應液,或者再由該反應液將糖鏈天門冬醯 胺以外之成分,以習知的方法(例如凝膠過濾管柱、離子 交換管柱等各種色層分析法、以及高速液體色層分析 (HPLC)純化法)除去,便可以得到。基於製作之容易性的 觀點,係以使用習知之由蛋衍生的糖胜肽[B i 〇 c h i m i c a e t Biophysica Acta 1 335 (1997) p 23-32 ;粗純化 SGP(該混合 物含有蛋黃中的蛋白質、無機鹽等,且糖胜肽的含量 1 0〜8 0重量%左右)],而製成前述混合物者為理想。This mixture of sugar chain aspartame can be obtained by a known method, and is preferably obtained from a natural raw material such as milk, bovine-derived fetuin or egg-derived glycoprotein and/or glycopeptide. In the mixture, for example, a proteolytic enzyme (for example, "Pro" enzyme (manufactured by Wako Pure Chemical Co., Ltd.), "Akchi" enzyme-Ε (manufactured by Scientific Research Co., Ltd.), and a general carboxyl peptide enzyme can be added. An enzyme such as an amino-based peptide enzyme, which is subjected to a reaction under a conventional reaction condition, and which cuts off the peptide portion, can be used as a reaction liquid after the reaction, or a reaction chain other than the sugar chain aspartame. The components can be obtained by a known method (for example, a gel filtration column, an ion exchange column, and the like, and various high-performance liquid chromatography (HPLC) purification methods). Based on the easiness of production, a conventionally derived egg-derived glycopeptide [B i 〇chimicaet Biophysica Acta 1 335 (1997) p 23-32; crude purified SGP (the mixture contains protein and inorganic in egg yolk) It is desirable that the salt or the like is present and the content of the glycopeptide is from about 10 to about 80% by weight.

又,基於有效地獲得具有期望的糖鏈構造之糖鏈天門 冬醯胺衍生物的觀點,理想者係以進一步將該混合物所含 有的糖鏈天門冬醯胺進行水解,並事先將一部分的糖殘基 予以切斷者為佳。又,該切斷之程度,只要至少可在保有 本說明書提及之「糖鏈」的構造範圍内即可,並無特別之 限制。如此所得到之混合物,舉例來說,一混合物含有圖 3所示之化合物24及/或在該化合物中缺失1個以上的糖殘 基之化合物者便是。又,這種情況下,該糖殘基有缺失之 化合物,基於保持本說明書所提及「糖鏈」的構造之觀點 -27- 1324607 _ (22) 明 ,係以糖殘基缺失9個為其上限。 舉例來說,圖3所示之化合物2 5及2 9,可將含有化合物 2 4之糖鏈天門冬醯胺之混合物(以下,稱為化合物2 4混合 物),根據以下所示,以酸水解,而有效率地得到該混合 物,甚至,亦可以有效率地得到相對應之糖鏈天門冬醯胺 衍生物,亦即圖1所示之化合物2及6。 舉例來說,可對化合物2 4混合物適量加入0.1規定程度 之酸水溶液,並於4〜1 0 0 °C下進行反應。此時,一方面以 • 薄層色層分析法(例如使用矽凝膠60F254(默克公司製), 以及作為展開溶劑之醋酸乙酯:甲醇:水=4 : 4 : 3 )來追 蹤該水解反應之進行,並於化合物2 5及2 9可得到最多之處 使反應停止。舉例來說,可在2 5 °C的條件下反應5 ~ 1 0小 時左右,或於1 00 °C的條件下反應數分鐘程度,再使反應 停止即可。理想者,可於7 0 °C進行反應,反應開始後,於 3 5分鐘使反應停止並迅速冰浴。又,反應可藉由中和反應 液來使其停止。又,前述酸並無特別之限制,,例如可使 • 用鹽酸、硫酸、硝酸、三氟醋酸等無機酸及有機酸、陽離 子交換樹脂、不溶性的固體試劑等。 同樣地,由化合物24亦可以很有效率地在前述混合物 中得到化合物3 3。舉例來說,可對化合物2 4混合物適量加 入前述酸水溶液,理想者於8 0 °C下進行反應,反應開始後 ,理想係於6 0分鐘使反應停止。 又,亦可以酵素來進行水解。此時所用之酵素,係以 糖水解酵素為適合,而内(endo)型或外(exo)型任一者之反 -28 - 1324607 (23) I發明說6續頁 應形式的酵素皆可使用。舉例來說,與前述相同,由化合 物24得到化合物25及化合物29時,可使用具有將唾液酸由 末端切斷之唾液酸水解酵素。這種酵素並無特別之限制, 只要具有該活性,不論市售的酵素、新穎的分離酵素、遺 傳工程上製作之酵素皆可。酵素反應只要根據習知之條件 即可,此時,可與前述相同,以薄層色層分析來追縱反應 之進行,並於化合物2 5及2 9可得到最多之處使反應停止即 "5J- 〇Further, based on the viewpoint of efficiently obtaining a sugar chain aspartame derivative having a desired sugar chain structure, it is desirable to further hydrolyze the sugar chain aspartate contained in the mixture, and to partially deposit a sugar in advance. It is preferred that the residue is cleaved. Further, the degree of the cutting is not particularly limited as long as it can be at least within the structural range of the "sugar chain" mentioned in the specification. The mixture thus obtained, for example, a mixture containing the compound 24 shown in Fig. 3 and/or a compound having one or more sugar residues in the compound is used. Further, in this case, the sugar residue has a compound which is deleted, and based on the viewpoint of maintaining the structure of the "sugar chain" mentioned in the present specification, -27- 1324607 _ (22), the sugar residue is deleted by 9 Its upper limit. For example, the compound 2 5 and 2 9 shown in FIG. 3 may be a mixture of a sugar chain aspartame containing a compound 24 (hereinafter referred to as a mixture of compounds 24), which is hydrolyzed by acid as shown below. The mixture can be efficiently obtained, and even the corresponding sugar chain aspartate derivative, that is, the compounds 2 and 6 shown in Fig. 1, can be obtained efficiently. For example, an appropriate amount of 0.1 aqueous acid solution may be added to the compound 24 mixture in an appropriate amount, and the reaction is carried out at 4 to 100 °C. At this time, on the one hand, the thin layer chromatography method (for example, using ruthenium gel 60F254 (manufactured by Merck), and ethyl acetate as a developing solvent: methanol: water = 4:4:3) is used to trace the hydrolysis. The reaction proceeds and the reaction is stopped at the maximum of the compounds 2 5 and 29. For example, it can be reacted at 25 ° C for about 5 to 10 hours, or at a temperature of 100 ° C for several minutes, and then the reaction is stopped. Ideally, the reaction can be carried out at 70 ° C. After the start of the reaction, the reaction is stopped at 35 minutes and rapidly ice-bathed. Further, the reaction can be stopped by neutralizing the reaction solution. Further, the acid is not particularly limited, and for example, an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid or trifluoroacetic acid, an organic acid, a cation exchange resin, or an insoluble solid reagent may be used. Similarly, compound 33 can be obtained from compound 24 in a very efficient manner from compound 24. For example, an appropriate amount of the aqueous acid solution may be added to the mixture of the compound 24, and it is preferred to carry out the reaction at 80 ° C. After the start of the reaction, the reaction is preferably stopped at 60 minutes. Further, it is also possible to carry out hydrolysis by an enzyme. The enzyme used at this time is suitable for glycolytic enzymes, and the endo type or exo type is either -28 - 1324607 (23) I. use. For example, in the same manner as described above, when the compound 25 and the compound 29 are obtained from the compound 24, a sialic acid hydrolyzing enzyme having a sialic acid cut off from the end can be used. The enzyme is not particularly limited as long as it has such activity, regardless of a commercially available enzyme, a novel isolated enzyme, or an enzyme produced on a genetically engineered product. The enzyme reaction can be carried out according to the conventional conditions. In this case, the reaction can be carried out by thin layer chromatography as in the above, and the reaction can be stopped at the maximum of the compounds 2 5 and 29, that is, " 5J- 〇

使用含有上述所得到之糖鏈天門冬醯胺的混合物,並 於其上導入脂溶性之保護基。該保護基並無特別之限制, 舉例來說,可使用Fmoc基及第三丁基氧羰(Boc)基、芊基 、烯丙基、烯丙氧碳酸酯基、乙醯基等的碳酸酯系或醯胺 系的保護基等。基於所得到的糖鏈天門冬醯胺衍生物可馬 上使用於期望的糖胜肽合成上之觀點,該保護基係以 Fmoc基及Boc基為理想,而Fmoc基則更為理想。Fmoc基A mixture containing the above-obtained sugar chain asparagine was used, and a fat-soluble protecting group was introduced thereon. The protecting group is not particularly limited, and for example, a carbonate of a Fmoc group and a tributyloxycarbonyl (Boc) group, a mercapto group, an allyl group, an allyloxy carbonate group, an ethyl fluorenyl group or the like can be used. A protecting group or a amide-based protecting group. Based on the obtained sugar chain aspartate derivative, it can be used for the synthesis of a desired glycopeptide, which is preferably an Fmoc group and a Boc group, and an Fmoc group is more preferable. Fmoc base

係於烯丙基等較為酸性之條件下,不安定的糖存在於糖鏈 上時,特別有效。又,保護基之導入方法可根據習知方法 (例如可參照 Protecting groups in Organic Chemistry, JohnIt is particularly effective when the unstable sugar is present on the sugar chain under conditions such as allyl group which is relatively acidic. Further, the method of introducing the protecting group can be carried out according to a conventional method (for example, refer to Protecting groups in Organic Chemistry, John).

Wiley & Sons INC., New York 1991,ISBN 0-47 1 -62301-6) 即可。 舉例來說,使用Fmoc基時,可對於含有糖键天門冬酿 胺之混合物加入適量丙酮之後,再進一步加入第基甲基 -N-琥珀酸基碳酸酯及碳酸氫鈉進行溶解,藉由在25 °C進 行Fmoc基與天門冬醯胺殘基之鍵結反應,而可將Fmoc* •29- 1324607 (24) ^明說明il; 導入於該糖鏈天門冬醯胺殘基上。 根據以上之步驟,就可以得到導入有脂溶性保護基之 糖鏈天門冬醯胺衍生物的混合物。 然後,在步驟(b)中將糖鏈天門冬醢胺衍生物混合物, 於習知之色層分析,特別是分取型的色層分析中,分離出 各種糖鏈天門冬醯胺衍生物。又,在此步驟中,前述步驟 (a)所得到之糖鏈天門冬醢胺衍生物混合物,其係可直接 使用。但基於有效率地得到具有期望糖鏈構造之糖鏈天門 Φ 冬醯胺衍生物的觀點,可進一步將該混合物中所含之糖鏈 天門冬醯胺衍生物進行水解,而將一部分糖殘基事先切斷 ,並使用該得到之糖鏈天門冬醯胺衍生物的混合物。又, 糖殘基切斷之程度可與前述相同。且,水解亦可與前述相 同。 舉例來說,若係化合物3及7時,而要從化合物2及6的 混合物中將其等分離出來時,可將該混合物供注於使用半 乳糖水解之水解處理(程序)中,所得到之混合物再以 • HPLC就可進一步容易地分離出化合物3及7,同時並可大 量地得到各種單一化合物型態之化合物。 各糖鏈天門冬醯胺衍生物以色層分析法所進行之分離 ,可利用適當、習知的色層分析法,單獨或複數地加以組 合來進行。 舉例來說,可將所得到之糖鏈天門冬醯胺衍生物混合 物以凝膠過濾管柱色層分析法純化後,再使用HPLC進行 純化。在HPLC中所使用之管柱係以逆相系之管柱為理想 •30· 1324607 (25) 。舉例來說,O D S、苯基系、腈系及陰離子系的管柱,具 體言之,如法瑪西亞公司製之Mono Q管柱、雅朵洛公司 製之雅朵洛微珠管柱等。分離條件等只要參照適當、習知 之條件調整即可。根據以上之步驟,就可由糖鏈天門冬醯 胺衍生物混合物得到期望的各個糖鏈天門冬醯胺衍生物 。在圖7中所表示者,即本發明之糖鏈天門冬醯胺衍生物 的製造方法中之步驟的一個例子。Wiley & Sons INC., New York 1991, ISBN 0-47 1 -62301-6). For example, when an Fmoc group is used, an appropriate amount of acetone may be added to a mixture containing a sugar-bonded aspartame, and then further added with a methyl group of N-succinic acid carbonate and sodium hydrogencarbonate for dissolution. The bonding reaction of the Fmoc group with the asparagine residue is carried out at 25 ° C, and Fmoc* • 29-1324607 (24) can be described as il; introduced into the sugar chain aspartate residue. According to the above procedure, a mixture of a sugar chain aspartate derivative into which a fat-soluble protective group is introduced can be obtained. Then, in the step (b), the sugar chain aspartame derivative mixture is separated into various sugar chain aspartame derivatives in a conventional color layer analysis, particularly a color separation layer analysis. Further, in this step, the sugar chain aspartate derivative mixture obtained in the above step (a) can be used as it is. However, based on the viewpoint of efficiently obtaining a sugar chain guanamine oxime derivative having a desired sugar chain structure, the sugar chain aspartate derivative contained in the mixture may be further hydrolyzed to form a part of the sugar residue. The mixture was cut off in advance and a mixture of the obtained sugar chain aspartate derivatives was used. Further, the degree of cleavage of the sugar residue can be the same as described above. Further, the hydrolysis can be the same as described above. For example, when the compounds 3 and 7 are isolated from the mixture of the compounds 2 and 6, the mixture may be administered to a hydrolysis treatment (procedure) using galactose hydrolysis. Further, the mixture can be further separated into the compounds 3 and 7 by HPLC, and various compounds of a single compound type can be obtained in a large amount. Separation of each sugar chain aspartame derivative by a chromatography method can be carried out by a combination of individual or plural layers by an appropriate and conventional chromatography method. For example, the obtained sugar chain aspartate derivative mixture can be purified by gel filtration column chromatography and purified by HPLC. The column used in HPLC is ideal for reverse phase column • 30· 1324607 (25). For example, O D S, phenyl, nitrile and anionic columns are known, such as the Mono Q column made by Pharmacia, and the Yadolo microbead column made by the company. The separation conditions and the like may be adjusted by referring to appropriate and conventional conditions. According to the above procedure, the desired individual sugar chain aspartate derivatives can be obtained from a mixture of sugar chain aspartame derivatives. An example of the steps in the method for producing the sugar chain aspartame derivative of the present invention is shown in Fig. 7.

進一步,藉由將步驟(b)所分離之糖鏈天門冬醯胺衍生 物進行水解,就可以有效率地得到具有期望糖鏈構造之糖 鏈天門冬醯胺衍生物[步驟(b')]。舉例來說,在糖鏈天門 冬醯胺衍生物的分離階段,限制混合物中所含之糖鏈天門 冬醯胺衍生物的種類,就可大略地分離糖鏈天門冬醯胺衍 生物,然後再水解,舉例來說,藉由使用糖水解酵素進行 水解,就可以有效率地得到具有期望糖鏈構造之糖鏈天門 冬醯胺衍生物。又,水解亦可與前述相同地進行。但特別 言之,基於更有效率地得到具有期望糖鏈構造之糖鏈天門 冬醯胺衍生物的觀點,糖殘基的切斷方式係使用明確的糖 水解酵素進行水解者為理想。 舉例來說,除去半乳糖殘基的化合物2及6的化合物3及 7,其變換(步驟)(圖8)可將化合物2及6溶解於緩衝液(舉 例來說,磷酸緩衝溶液、醋酸緩衝溶液、良好緩衝溶液 等)中,根據習知之條件使用半乳糖水解酵素,進行半乳 糖殘基的切斷反應而得到。又,化合物2及6,其即使是包 含混合物型態,亦可以個別地進行分離。在此反應所使用 -31 - 1324607 (26) 之半乳糖水解酵素,係以使用市售的習知外(Exo-)型酵素 為理想。又,其只要是具有同樣的活性者,可為剛被分離 之酵素,亦可為遺傳工程上所製作者。再者,與前述相同 ,可將反應後所得到之反應液(糖殘基被切斷之糖鏈天門 冬醯胺衍生物的混合物)供注於色層分析中,再得到各糖 鏈天門冬醯胺衍生物亦可。舉例來說,係以HPLC (ODS 管柱,展開溶劑為5 0 m Μ醋酸錢水溶液:乙腈=8 2 : 1 5 ) 進行分離為理想。Further, by hydrolyzing the sugar chain aspartate derivative isolated in the step (b), the sugar chain aspartate derivative having the desired sugar chain structure can be efficiently obtained [step (b')] . For example, in the separation stage of the sugar chain aspartame derivative, the type of the sugar chain aspartate derivative contained in the mixture is restricted, and the sugar chain aspartate derivative can be roughly separated, and then Hydrolysis, for example, by hydrolysis using a glycohydrolyzing enzyme, can efficiently obtain a sugar chain aspartate derivative having a desired sugar chain structure. Further, the hydrolysis can be carried out in the same manner as described above. In particular, in view of the fact that a sugar chain aspartame derivative having a desired sugar chain structure is more efficiently obtained, it is preferred that the sugar residue is cleaved by using a clear sugar hydrolyzing enzyme. For example, compounds 3 and 7 of compounds 2 and 6 which remove galactose residues are converted (step) (Fig. 8). Compounds 2 and 6 can be dissolved in a buffer (for example, phosphate buffer solution, acetate buffer) In a solution, a good buffer solution, or the like, a galactose hydrolase is used according to a conventional condition, and a galactose residue is cleaved. Further, the compounds 2 and 6 can be separated individually even if they contain a mixture type. The galactose hydrolyzing enzyme of -31 - 1324607 (26) used in this reaction is preferably a commercially available Exo-type enzyme. Further, as long as it has the same activity, it may be an enzyme that has just been isolated, and may be a genetically engineered one. Further, in the same manner as described above, the reaction liquid obtained after the reaction (a mixture of the sugar chain aspartate derivatives in which the sugar residue is cleaved) can be supplied to the chromatographic analysis, and the sugar chain aspartate can be obtained. Amidoxime derivatives are also acceptable. For example, it is desirable to carry out the separation by HPLC (ODS column, developing solvent: 50 m aqueous solution of acetic acid: acetonitrile = 8 2 : 15).

除去Ν-乙醯葡糖胺殘基的化合物3及7的化合物4及8, 其變換(步驟)(圖8)可將化合物3及7溶解於緩衝液(舉例來 說,磷酸緩衝溶液、醋酸緩衝溶液、良好緩衝溶液等)中 ,根據習知之條件使用Ν-乙醯葡糖胺水解酵素,進行Ν-乙醯葡糖胺殘基的切斷反應而得到。又,亦可使用Ν -乙 醯己糖胺水解酵素。又,化合物3及7,其即使是包含混合 物型態,亦可以個別地進行分離。在此反應所使用之各酵 素,係以使用市售的習知外(Exo-)型酵素為理想。又,其 只要是具有同樣的活性者,可為剛被分離之酵素,亦可為 遺傳工程上所製作者。再者,與前述相同,可將反應後所 得到之反應液(糖殘基被切斷之糖鏈天門冬醯胺衍生物的 混合物)供注於色層分析中,再得到各糖鏈天門冬醯胺衍 生物亦可。舉例來說,係以HPLC (ODS管柱,展開溶劑為 5 0 m Μ醋酸銨水溶液:乙腈=6 5 : 3 5或5 0 m Μ醋酸銨水溶 液:乙腈= 82: 15)進行分離為理想。 除去甘露醣殘基的化合物4及8的化合物5及9,其變換 -32- (27) (步驟)(圖8)可將化合物4及8溶解 ”衝溶液、醋酸缓衝溶液、良好=:舉例來說,墙 習知之條件使用甘露醣水解酵素,進:液等)中’根掮 反廊而, 叮甘路醣殘基的切斷 應而得到。又,化合物4及8,其即 ,亦π ^ 1之疋包含混合物型態 以個別地進行分離。在此反應所使用之…水解 又’其只要是具有同 亦可為遺傳工程上 素酵素’係以使用市售的習知外(Εχ〇〇型酵素為理想。 ’队乃两择&畔I , —戶斤製作纟。再者,與前述相同,可將 應後所得到之反應液(糖殘基被切斷之糖鏈天門冬醯胺 生物的混合物)供注於色層分析中,再得到各糖鏈天門 其只要是具有同樣的活性者,可為剛被分離之酵素, 醯胺衍生物亦可。舉例來說,係以H p l C ( 0 D S管柱,展開 溶劑可適當地混合使用為1 0-200 mM醋酸銨等緩衝溶液 與乙腈’或以乙酵、甲醇、丁醇或丙醇等具脂溶性的水溶 性有機溶劑。在此舉例則為,5 0 m Μ醋酸銨:乙腈=8 2 :1 8作為展開溶劍)進行分離為理想。 除去半乳糖殘基的化合物ίο的化合物11,其變換(步驟)Compounds 3 and 7 of compounds 3 and 7 are removed by a ruthenium-acetamidine glucosamine residue, and the conversion (step) (Fig. 8) can dissolve compounds 3 and 7 in a buffer (for example, phosphate buffer solution, acetic acid) In a buffer solution, a good buffer solution, or the like, ruthenium-acetamidine glucosamine hydrolase is used according to a conventional condition, and a cleavage reaction of a hydrazine-acetamidine glucosamine residue is carried out. Further, Ν-acetylhexosamine hydrolyzing enzyme can also be used. Further, the compounds 3 and 7 can be separated individually even if they contain a mixed form. Each of the enzymes used in the reaction is preferably a commercially available Exo-type enzyme. Further, as long as it has the same activity, it can be an enzyme that has just been isolated, and can also be produced by genetic engineering. Further, in the same manner as described above, the reaction liquid obtained after the reaction (a mixture of the sugar chain aspartate derivatives in which the sugar residue is cleaved) can be supplied to the chromatographic analysis, and the sugar chain aspartate can be obtained. Amidoxime derivatives are also acceptable. For example, it is desirable to carry out the separation by HPLC (ODS column, developing solvent: 50 m aqueous ammonium acetate solution: acetonitrile = 6 5 : 3 5 or 50 m aqueous ammonium acetate solution: acetonitrile = 82: 15). Compounds 5 and 9 of compounds 4 and 8 with mannose residues removed, which are converted to -32-(27) (step) (Fig. 8). Compounds 4 and 8 can be dissolved in "flush solution, acetic acid buffer solution, good =: For example, the conditions of the wall are known to use the mannose hydrolyzing enzyme, the liquid, etc., and the cleavage of the glucosinolate residue is obtained. Further, the compounds 4 and 8, which are Also, π ^ 1 contains the mixture type to be separated individually. The hydrolysis used in the reaction is as long as it is the same as the genetically engineered enzymes to use commercially available ( The scorpion-type enzyme is ideal. 'The team is the two choices & I, - 户 纟 纟 纟 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再 再A mixture of aspartame organisms is added to the chromatographic analysis, and each sugar chain is obtained as long as it has the same activity, and may be an enzyme that has just been isolated, and a guanamine derivative may also be used. For example, H pl C (0 DS column, the solvent can be appropriately mixed and used as 10-200 mM ammonium acetate, etc. A solution of lytic acid and acetonitrile or a water-soluble organic solvent such as ethyl alcohol, methanol, butanol or propanol. In this case, 5 0 m Μ ammonium acetate: acetonitrile = 8 2 : 1 8 Sword) is ideal for separation. Compound ίο, which removes the galactose residue, is converted (step)

(圖9)可將化合物1 〇溶解於緩衝液(舉例來說,磷酸緩衝溶 液、醋酸緩衝溶液、良好緩衝溶液等)中,根據習知之條 件使用半乳糖水解酵素’進行半乳糖殘基的切斷反應而得 到。反應後所得到之反應液(糖殘基被切斷之糖鏈天門冬 酿胺衍生物的混合物)中,糖鏈天門冬醯胺衍生物的分離 ’舉例來說’係以HPLC(ODS管柱,展開溶劑為50 mM醋 酸銨水溶液:乙腈= 85: 15)進行分離為理想。 又’可進一步將化合物11使用任意的糖水解酵素,進 • 33- (28) 行水解,而 說,化入變換成各種的糖鏈天Γ1冬醯胺衍生物(舉例來 合物“、U及13等)。 除去Κί ^ 換(步驟Κθ酿葡糖胺殘基的化合物11的化合物12,其變 酸緩衝溶^9)可將化合物U溶解於緩衝液(舉例來說,峨 習知之條件、肖酸緩衝溶液、良好緩衝溶液等)中,根據 糖胺殘基的使用1乙酿葡糖胺水解酵素,進行Ν-乙酿葡 殘基被0斷切斷反應而得到。反應後所得到之反應液(糖 天門冬隱胺Ϊ糖鍵天門冬酿胺衍生物的混合物)中,糖鏈(Fig. 9) Compound 1 can be dissolved in a buffer (for example, a phosphate buffer solution, an acetic acid buffer solution, a good buffer solution, etc.), and galactose hydrolyzate is used to perform galactose residue digestion according to a conventional condition. Obtained by the reaction. In the reaction solution obtained after the reaction (mixture of sugar chain aspartame amine derivative in which the sugar residue is cleaved), the separation of the sugar chain aspartate derivative is exemplified by HPLC (ODS column) It is desirable to carry out the separation in a solvent of 50 mM aqueous ammonium acetate: acetonitrile = 85: 15). Further, Compound 11 can be further hydrolyzed using any of the sugar hydrolyzing enzymes, and is converted into various sugar chain scorpio 1 stilbenamine derivatives (for example, "," And 13, etc.. Removal of Κί ^ (Step 12 化合物 化合物 glucosamine residue compound 11 compound 12, which is acid-buffered to dissolve 9) can dissolve compound U in a buffer (for example, a conventional condition) In a viscous acid buffer, a good buffer solution, etc., according to the use of a sugar amine residue, the glucosamine hydrolase is obtained, and the ruthenium-ethyl ruthenium residue is cleaved by a 0-cut reaction. a reaction chain (a mixture of a sugar aspartame, a sugar chain, a mixture of aspartic amine derivatives), a sugar chain

管枝,展門生物之分離舉例來說,係以HPLC (0DS 進行分離1溶劑為50 mM醋酸銨水溶液:乙腈=85: u) 為理想。 除去甘靈 (圖9)可將化鱗殘基的化合物12的化合物13,其變換(步驟) 液、雖酸緩合物12溶解於緩衝液(舉例來說,鱗酸緩衝溶 件使用甘露ϋ溶液、良好缓衝溶液等)中,根據習知之條 到。反應後所:,酵素’進行甘露醣殘基的切斷反應而得 醯胺衍生物Μ 之反應液(糖殘基被切斷之糖鏈天門冬 生物的混合物)中,各糖 離,舉例來說,作山 、醞胺何生物之分 展開溶劑為50二 體管柱色層分析⑽S管柱, 瓜吲冷d马50 醋酸 想。 文錄.乙骑m)進行分離為理 化合物3及7變換為化入 吓蔣仆人物3及7,々 ° 及19 ’其變換(步驟)(圖J〇) 可將化合物3及7溶解於緩衝液(舉例來 ) 使用唾液 、醋酸鍰衝溶液、良好緩 綾衝冷液 液酸水解酵素,進、,,)尹,根據習知之條件 、仃液駿殘基的切斷反應而得到 -34· 1324607 (29) 丨[j明—說miFor the separation of pipe branches and exhibiting organisms, for example, HPLC (0DS separation 1 solvent 50 mM ammonium acetate aqueous solution: acetonitrile = 85: u) is preferred. In addition to the glycan (Fig. 9), the compound 13 of the compound 12 of the scaly residue can be converted, and the conversion step (step) solution, although the acid-reducing compound 12 is dissolved in the buffer (for example, the glycerin buffer solution is used for the nectar In solution, good buffer solution, etc., according to the conventional article. After the reaction: the enzyme 'cuts the mannose residue to obtain a reaction solution of the guanamine derivative ( (a mixture of sugar chain aspartic organisms in which the sugar residue is cleaved), and each sugar is separated, for example. Said, as a mountain, amidoxime and a living organism, the solvent is 50 two-body column chromatography analysis (10) S column, melon cold d horse 50 acetic acid.文录. B ride m) to separate the chemical compounds 3 and 7 into the sinister servants 3 and 7, 々 ° and 19 'the transformation (step) (Figure J 〇) can dissolve compounds 3 and 7 Buffer (for example) using saliva, acetic acid buffer solution, good buffering cold liquid acid hydrolysis enzyme, into,,,,, Yin, according to the conditions of the known, sputum residue residue of the reaction -34 · 1324607 (29) 丨[j Ming-saymi

。又,化合物3及7,其即使是包含混合物型態,亦可以個 別地進行分離。在此反應所使用之唾液酸水解酵素,係以 使用市售的外(Exo-)型酵素為理想。又,其只要是具有同 樣的活性者,可為剛被分離之酵素,亦可為遺傳工程上所 製作者。再者,與前述相同,可將反應後所得到之反應液 (糖殘基被切斷之糖鏈天門冬醯胺衍生物的混合物)供注 於色層分析中,再得到各糖鏈天門冬醯胺衍生物亦可。舉 例來說,係以高速液體管柱色層分析(ODS管柱,展開溶 劑為5 0 mM醋酸銨水溶液:乙腈=8 5 : 1 5 )進行分離為理 想0. Further, the compounds 3 and 7 can be separated individually even if they contain a mixture type. The sialic acid hydrolyzing enzyme used in this reaction is preferably a commercially available exo-type enzyme. Further, as long as it has the same activity, it may be an enzyme that has just been isolated, and may be an author of genetic engineering. Further, in the same manner as described above, the reaction liquid obtained after the reaction (a mixture of the sugar chain aspartate derivatives in which the sugar residue is cleaved) can be supplied to the chromatographic analysis, and the sugar chain aspartate can be obtained. Amidoxime derivatives are also acceptable. For example, high-speed liquid column chromatography (ODS column, developing solvent is 50 mM ammonium acetate aqueous solution: acetonitrile = 8 5 : 15) for separation.

除去N-乙醯葡糖胺殘基的化合物14及19的化合物15及 20,其變換(步驟)(圖10)可將化合物14及19溶解於緩衝液 (舉例來說,填酸緩衝溶液、醋酸缓衝溶液、良好緩衝溶 液等)中,根據習知之條件使用N-乙醯葡糖胺水解酵素, 進行N -乙醯葡糖胺殘基的切斷反應而得到。反應後所得 到之反應液(糖殘基被切斷之糖鏈天門冬醯胺衍生物的混 合物)中,各糖鏈天門冬醯胺衍生物係以高速液體管柱色 層分析(〇 D S管柱,展開溶劑為5 0 m Μ醋酸敍水溶液:乙 腈= 82: 18)進行分離為理想。 除去甘露醣殘基的化合物15及20的化合物16及21,其 變換(步驟)(圖10)可將化合物15及20溶解於緩衝液(舉例 來說,磷酸緩衝溶液、醋酸緩衝溶液、良好緩衝溶液等) 中,與前述相同,可根據習知之條件使用甘露醣水解酵素 ,進行甘露醣殘基的切斷反應而得到。反應後所得到之反 -35 - 1324607 _ (30) 明說明續貴 應液(糖殘基被切斷之糖鏈天門冬醯胺衍生物的混合物) 中,各糖鏈天門冬醯胺衍生物係以高速液體色層分析 (ODS管柱,展開溶劑為50 mM醋酸銨水溶液:乙腈=82 :1 8)進行分離為理想。 除去半乳糖殘基的化合物1 6及2 1的化合物1 7及2 2,其 變換(步驟)(圖1 1)可將化合物1 6及2 1溶解於緩衝液(舉例 來說,磷酸緩衝溶液、醋酸緩衝溶液、良好緩衝溶液等) 中,根據習知之條件使用半乳糖水解酵素,進行半乳糖殘 # 基的切斷反應而得到。反應後所得到之反應液(糖殘基被 切斷之糖鏈天門冬醯胺衍生物的混合物)中,各糖鏈天門 冬醯胺衍生物的分離,舉例來說,係以高速液體色層分析 (Ο D S管柱,展開溶劑為5 0 m Μ醋酸銨水溶液:乙腈=8 5 :1 5 )進行分離為理想。 除去Ν-乙醯葡糖胺殘基的化合物17及22的化合物18及 23,其變換(步驟)(圖11)可將化合物17及22溶解於缓衝液( 舉例來說,磷酸緩衝溶液、醋酸緩衝溶液、良好緩衝溶液 • 等)中,與前述相同,根據習知之條件使用Ν-乙醯葡糖胺 水解酵素,進行Ν -乙醯葡糖胺殘基的切斷反應而得到。 反應後所得到之反應液(糖殘基被切斷之糖鏈天門冬醯胺 衍生物的混合物)中,各糖鏈天門冬醯胺衍生物,舉例來 說,係以高速液體管柱色層分析(〇 D S管柱,展開溶劑為 5 0 m Μ醋酸銨水溶液:乙腈=8 2 : 1 8)進行分離為理想。 如此,在得到各糖鏈天門冬醯胺衍生物之後,可進一 步使用各種糖水解酵素等,將該衍生物水解,並藉由除去 -36- 1324607 (31) 糖鏈非還原末端的糖殘基,舉例來說,而各自以單一化合 物之型態,得到糖鏈末端的分枝構造為不均勻的各種糖鏈 天門冬醯胺衍生物。又,可使用各種糖水解酵素,藉由改 變水解之順序及其種類,就可製造出更多種類的糖鏈天門 冬醯胺衍生物。 根據過去的方法,欲以分析規模得到具有極限糖鏈構 造之糖鏈天門冬醯胺衍生物時,必須花費極大的時間及費 用,但若根據本發明,不需要特別的裝置及試劑,只要使 用慣用的凝膠過濾管柱、HPLC管柱,以及至少3種的糖水 解酵素(例如,牛乳糖水解酶、甘露糖水解酶、N -乙醯葡 萄糖胺水解酶)等,便可以二週左右的時間,製作得到一 克左右具有期望糖鏈構造的糖鏈天門冬醯胺衍生物。 根據以下的步驟,舉例來說,保護基若為F m 〇 c基時, 可以很有效率地製得具有下述一般式的糖鏈天門冬醯胺 衍生物。 1Compounds 15 and 19 of compounds 14 and 19 from which N-acetylglucosamine residues are removed are converted (step) (Fig. 10). Compounds 14 and 19 can be dissolved in a buffer (for example, an acid buffer solution, In an acetic acid buffer solution, a good buffer solution or the like, N-acetylglucosamine hydrolase is used according to a conventional condition, and a N-acetylglucosamine residue is subjected to a cleavage reaction. In the reaction solution obtained after the reaction (mixture of sugar chain aspartate derivatives in which the sugar residue is cleaved), each sugar chain aspartate derivative is analyzed by a high-speed liquid column chromatography layer (〇DS tube) Column, the developing solvent is 50 m Μ acetic acid aqueous solution: acetonitrile = 82: 18) Separation is ideal. The compounds 15 and 20 of the compounds 15 and 20 from which the mannose residue is removed are converted (step) (Fig. 10). The compounds 15 and 20 can be dissolved in a buffer (for example, a phosphate buffer solution, an acetic acid buffer solution, a good buffer). In the solution or the like, in the same manner as described above, a mannose hydrolyzing enzyme can be used according to a conventional condition, and a mannose residue can be obtained by a cleavage reaction of a mannose residue. The anti-35 - 1324607 _ (30) obtained after the reaction is described in the continuation of the noble liquid (a mixture of the sugar chain aspartate derivatives of the sugar residue cleaved), each sugar chain aspartame derivative It is desirable to carry out the separation by high-speed liquid chromatography (ODS column, developing solvent: 50 mM aqueous ammonium acetate: acetonitrile = 82:18). Compounds 16 and 2, which remove galactose residues, are converted (steps) (Fig. 11). Compounds 16 and 21 can be dissolved in a buffer (for example, a phosphate buffer solution). In the acetic acid buffer solution, a good buffer solution, or the like, a galactose hydrolyzate is used according to a conventional condition, and a galactose residue is subjected to a cleavage reaction. In the reaction solution obtained after the reaction (mixture of sugar chain aspartate derivatives in which the sugar residue is cleaved), the separation of each sugar chain aspartate derivative is, for example, a high-speed liquid chromatography layer. It is desirable to carry out the separation (Ο DS column, developing a solvent of 50 m Μ ammonium acetate aqueous solution: acetonitrile = 8 5 : 1 5 ) for separation. Compounds 17 and 23 of compounds 17 and 22, which have been removed from the oxime-acetylglucosamine residue, are converted (step) (Fig. 11). Compounds 17 and 22 can be dissolved in a buffer (for example, phosphate buffer solution, acetic acid) In the buffer solution, the good buffer solution, and the like, in the same manner as described above, ruthenium-acetamidine glucosamine hydrolase was used according to a conventional condition, and a cleavage reaction of hydrazine-acetamidine glucosamine residue was carried out. In the reaction solution obtained after the reaction (mixture of sugar chain aspartate derivatives in which the sugar residue is cleaved), each sugar chain aspartate derivative, for example, is a high-speed liquid column color layer. It is desirable to carry out the separation (〇DS column, developing solvent: 50 m aqueous ammonium acetate solution: acetonitrile = 8 2 : 18). Thus, after obtaining each sugar chain aspartate derivative, various sugar hydrolyzing enzymes and the like can be further used to hydrolyze the derivative, and the sugar residue of the non-reducing end of the sugar chain can be removed by removing -36-1324607 (31) For example, each of the forms of the single compound gives a variety of sugar chain aspartate derivatives having a branched structure at the end of the sugar chain. Further, various kinds of sugar hydrolyzing enzymes can be used, and by changing the order of hydrolysis and the kind thereof, more kinds of sugar chain aspartame derivatives can be produced. According to the past method, when it is desired to obtain a sugar chain aspartate derivative having a limiting sugar chain structure on an analytical scale, it takes a lot of time and expense, but according to the present invention, no special apparatus and reagents are required, as long as it is used. Conventional gel filtration column, HPLC column, and at least three kinds of glycolytic enzymes (for example, nougat hydrolase, mannose hydrolase, N-acetylglucosamine hydrolase), etc., can be about two weeks At the time, one gram of a sugar chain aspartate derivative having a desired sugar chain structure was produced. According to the following procedure, for example, when the protecting group is an F m 〇 c group, a sugar chain aspartate derivative having the following general formula can be efficiently produced. 1

RR

As n-Fm〇 cAs n-Fm〇 c

r°〇H r-Ο»r°〇H r-Ο»

ί ΑϋΗΛ AcHH ID 2 (式中,R1及R2為H、 -37- 1324607 _ (32) 月說 ϋί ΑϋΗΛ AcHH ID 2 (where R1 and R2 are H, -37- 1324607 _ (32) Months say ϋ

時除外)。 這種糖鏈天門冬醯胺衍生物,具體言之,例如有圖1及 圖2所示之各化合物。其中,特別是化合物1、化合物2〜9 、1 1〜2 3、7 0及7 1,係由本發明所首次製得者。本發明 (之範圍)係包含該化合物。 又,本發明之糖鏈天門冬醯胺衍生物的製造方法,其 理想態樣係提供一糖鏈天門冬醯胺衍生物的製造方法,其 -38- 1324607Except when). Such a sugar chain aspartate derivative, specifically, for example, each compound shown in Fig. 1 and Fig. 2 . Among them, in particular, Compound 1, Compounds 2 to 9, 1 1 to 2 3, 70 and VII are produced by the present invention for the first time. The scope of the invention includes the compound. Further, in the method for producing a sugar chain aspartame derivative of the present invention, an ideal aspect is to provide a method for producing a sugar chain aspartame derivative, which is -38 to 1324607

(33) 隱 SUB(33) Hidden SUB

步驟(a)係使用一含有在非還原末端具有唾液酸殘基之1 種或2種以上的糖鏈天門冬醯胺之混合物,在該混合物所 含有之糖鏈天門冬醯胺上導入Fmoc基,同時將苄基導入 唾液酸殘基上,而得到糖鏈天門冬醯胺衍生物混合物之步 驟。根據這種製造方法,就可以大量地更有效率地獲得各 種型式的糖鏈天門冬醯胺衍生物。舉例來說,可以提高圖 1所示的化合物2及6的分離效率,並有效率地進行該二化 合物之製造。亦即,由化合物2及6的混合物直接明確地進 行二化合物之分離,在效率上是十分不利的,但在本態樣 中,若在二化合物的唾液酸殘基上導入芊基,並將以下的 化合物7 6及7 7的混合物,Step (a) is a mixture of one or more sugar chain aspartame containing a sialic acid residue at a non-reducing end, and introducing a Fmoc group to the sugar chain aspartate contained in the mixture. At the same time, a step of introducing a benzyl group into a sialic acid residue to obtain a mixture of sugar chain aspartate derivatives is obtained. According to this production method, various types of sugar chain aspartate derivatives can be obtained in a large amount more efficiently. For example, the separation efficiency of the compounds 2 and 6 shown in Fig. 1 can be improved, and the production of the di compound can be carried out efficiently. That is, the separation of the two compounds directly and clearly from the mixture of the compounds 2 and 6 is very disadvantageous in efficiency, but in this aspect, if a thiol group is introduced on the sialic acid residue of the di compound, the following a mixture of compounds 7 6 and 7 7 ,

-39- 1324607 (34)-39- 1324607 (34)

-40- 1324607 (35) 發明說明績頁-40- 1324607 (35) Description of the Invention

-41 - 1324607 _ (36) 明通] 加入前述步驟(b)中時,由於化合物76及77的分離可以 . 比較地容易進行之故,可將兩化合物分離,然後再將苄基 根據後述之方法使其脫離時,便可由化合物2及6的混合物 中,有效率地將二化合物分離而得到。 化合物2及6的分離為相當困難,但在其等的唾液酸殘 ' 基上導入芊基而得到之化合物7 6及7 7的分離卻係容易者 ,乃因在唾液酸殘基的羧基上導入高脂溶性的芊基,並藉 由與HPLC(高速液體色層分析)的逆相管柱間的疏水性相 • 互作用,而被進一步提高(分離效率)的緣故。因此,推測 在分離步驟(b)上,因與適當使用的逆相系管柱間的相互 作用被明顯地提昇,結果造成更敏銳地反映糖鏈構造之差 別,而可以分離出二化合物。 關於含有在非還原末端具有1種或2種以上的唾液酸殘 基之糖鏈天門冬醯胺的混合物,只要是含有具有這種構造 的糖鏈天門冬醯胺1種或2種以上的混合物者即可,並無特 別之限制。基於易於獲得之觀點,係以含有在非還原末端 • 具有唾液酸殘基,而還原末端則鍵結有天門冬醯胺的糖鏈 1種或2種以上的混合物為理想。該混合物,係以含有前述 圖3所示之化合物2 4及/或該化合物中缺失1個以上的糖殘 基之化合物者為理想。 又,基於更有效率地獲得具有期望糖鏈構造之糖鏈天 門冬醯胺衍生物的觀點,係以實施前述步驟(b ’)者為理 想。 又,本態樣中,係可各自地製得糖鏈天門冬醯胺衍生 -42- 1324607 (37) [1¾^¾¾¾ 物導入有字基及Fmoc基者,以及只有導入Fmoc基者。 關於芊基導入糖鏈天門冬醯胺的唾液酸殘基,只要根 據習知之方法(例如參照Protecting groups in Organic Chemistry, John Wiley & Sons INC., New York 1991, ISBN 0-47 1-6230 1 -6)^ ^ 0 根據以上的少驟’舉例來說,可以有效率地得到具有 下述一般式:-41 - 1324607 _ (36) Mingtong] When the above step (b) is added, the separation of the compounds 76 and 77 can be carried out relatively easily, and the two compounds can be separated, and then the benzyl group can be further described below. When it is detached, it can be obtained by efficiently separating the two compounds from the mixture of the compounds 2 and 6. The separation of the compounds 2 and 6 is quite difficult, but the separation of the compounds 7 6 and 7 7 obtained by introducing a thiol group to the sialic acid residue group is easy, because the carboxyl group of the sialic acid residue is The introduction of a high-fat-soluble sulfhydryl group is further enhanced (separation efficiency) by interaction with the hydrophobic phase interaction between the reverse phase column of HPLC (High Speed Liquid Chromatography). Therefore, it is presumed that in the separation step (b), the interaction between the column and the column which is appropriately used is remarkably enhanced, and as a result, the difference between the sugar chain structures is more acutely reflected, and the two compounds can be separated. The mixture containing the sugar chain aspartate having one or two or more kinds of sialic acid residues at the non-reducing end is one or a mixture of two or more kinds of the sugar chain aspartame having such a structure. Yes, there are no special restrictions. From the viewpoint of easy availability, it is preferred to contain one or a mixture of two or more sugar chains having a sialic acid residue at the non-reducing end and an aspartic amine at the reducing end. The mixture is preferably one containing the compound 24 shown in Fig. 3 and/or a compound having one or more sugar residues in the compound. Further, from the viewpoint of more efficiently obtaining a sugar chain aspartate derivative having a desired sugar chain structure, it is desirable to carry out the above step (b'). Further, in this aspect, the sugar chain aspartate derivative -42-1324607 (37) [13⁄4^3⁄43⁄43⁄4 is introduced into the group having the word group and the Fmoc group, and only the Fmoc group is introduced. Regarding the sialic acid residue of the thiol-introduced sugar chain aspartate, as long as it is according to a conventional method (for example, refer to Protecting groups in Organic Chemistry, John Wiley & Sons INC., New York 1991, ISBN 0-47 1-6230 1 -6)^ ^ 0 According to the above few steps, for example, the following general formula can be obtained efficiently:

RY (式中,Rx及K/係一者為RY (where Rx and K/ are one)

,另一者為Η、 •43- 1324607 _ (38)The other is Η, • 43-1324607 _ (38)

•或卷l 同時又導入有芊基及Fmoc基之糖鏈天門冬醯胺衍生物 。這種糖鏈天門冬醯胺衍生物,具體言之,有前述化合物 76及77,以及以下的化合物78: -44- 1324607• Or volume l is also introduced with a thiol and Fmoc-based sugar chain aspartate derivative. Such a sugar chain aspartate derivative, specifically, the aforementioned compounds 76 and 77, and the following compound 78: -44- 1324607

(39) S 明 MSS(39) S Ming MSS

·45· 1324607 (40) 明說明續頁 。根據本態樣所獲得之糖鏈天門冬醯胺衍生物,可直接使 用於糖胜肽的固相合成。存在於該糖鏈天門冬醯胺衍生物 的唾液酸殘基上之羧基,由於可藉由苄基而受到保護之故 ,相較於沒有導入芊基之糖鏈天門冬醯胺衍生物,其優點 就是在糖胜肽的固相合成上,不會有該羧基所參與之副反 應,且可很有效率地得到期望之糖胜肽。 又,本發明係提供一糖鏈天門冬醯胺的製造方法,其 可大量地得到各種分離的糖鏈天門冬醯胺。該方法所包含 • 之步驟,係根據前述糖鏈天門冬醯胺衍生物的製造方法, 而繼續的糖鏈天門冬醯胺衍生物的製造步驟,進一步,再 由所得到之糖鏈天門冬醯胺衍生物除去保護基的步驟。 亦即,本發明的糖鏈天門冬醯胺之製造方法,係包含 (a) 得到糖鏈天門冬醯胺衍生物混合物之步驟,其係於含 有包含1種或2種以上糖鏈天門冬醯胺之混合物的該糖鏈 天門冬醯胺上,導入脂溶性的保護基; (b) 分離各糖鏈天門冬醯胺衍生物之步驟,其係將該糖鏈 # 天門冬醯胺衍生物混合物或該糖鏈天門冬醯胺衍生物混 合物所包含之糖鏈天門冬醯胺衍生物,進行水解得到一混 合物,再將其供注於色層分析;以及 (c) 獲得糖鏈天門冬醯胺之步驟,其係將步驟(b)所分離之 糖鏈天門冬醯胺衍生物的保護基,加以除去。 步驟(a)及步驟(b),係與前述糖鏈天門冬醯胺衍生物之 製造方法相同,所使用之包含1種或2種以上糖鏈天門冬醯 胺之混合物,以及脂溶性的保護基,亦與前述相同。 -46- 1324607 (41) I發明說明ϋ·45· 1324607 (40) Explain the continuation page. The sugar chain aspartate derivative obtained according to this aspect can be directly used for solid phase synthesis of a glycopeptide. a carboxyl group present on the sialic acid residue of the sugar chain aspartate derivative, which is protected by a benzyl group, compared to a sugar chain aspartame derivative having no mercapto group introduced therein The advantage is that in the solid phase synthesis of the glycopeptide, there is no side reaction in which the carboxyl group participates, and the desired glycopeptide can be obtained efficiently. Further, the present invention provides a process for producing a sugar chain aspartame which can obtain a large amount of various isolated sugar chain aspartame. The method includes the steps of: the step of producing the sugar chain aspartame derivative according to the method for producing the sugar chain aspartame derivative, and further, the obtained sugar chain aspartame The step of removing the protecting group from the amine derivative. That is, the method for producing a sugar chain aspartame of the present invention comprises the step of (a) obtaining a mixture of sugar chain aspartame derivatives, which comprises containing one or more sugar chain aspartames. a sugar-soluble protective group is introduced onto the sugar chain aspartate of a mixture of amines; (b) a step of isolating each sugar chain aspartate derivative, which is a mixture of the sugar chain #aspartame derivative Or a sugar chain aspartate derivative contained in the sugar chain aspartate derivative mixture, hydrolyzed to obtain a mixture, which is then subjected to chromatographic analysis; and (c) obtaining a sugar chain aspartate The step of removing the protecting group of the sugar chain aspartate derivative isolated in the step (b). The step (a) and the step (b) are the same as the method for producing the aforementioned sugar chain aspartate derivative, and the mixture containing one or more kinds of sugar chain aspartame is used, and the fat-soluble protection is used. The base is also the same as described above. -46- 1324607 (41) I invention descriptionϋ

步驟(c)中,由糖鏈天門冬醯胺衍生物將保護基除去之 方法,可根據習知者進行即可(舉例來說,參照Protecting groups in Organic Chemistry, John Wiley & Sons INC., New York 1991,ISBN 0-471-62301-6)。舉例來說,保護 基若為Fmoc基時,如圖12所示之模式者,可在N,N-二曱 基曱醯胺(DMF)中,於糖鏈天門冬醯胺衍生物上加入嗎啉 以進行反應,便可以除去Fmoc基。又,Boc基亦可藉由弱 酸反應而加以除去。除去保護基後,可根據期望,以例如 凝膠過濾管柱、使用離子交換管柱等之各種層析法,以 及Η P L C分離方法來進行純化,而得到糖鏈天門冬醯胺亦 "5J" 〇 又,與前述糖鏈天門冬醯胺衍生物的製造方法相同, 本發明之糖鏈天門冬醯胺之製造方法的理想態樣,係提供 一糖鏈天門冬醯胺衍生物的製造方法,其步驟(a)係使用 一含有在非還原末端具有唾液酸殘基之1種或2種以上的 糖鏈天門冬醯胺之混合物,在該混合物所含有之糖鏈天門 冬酿胺上導入Fmoc基,同時將芊基導入唾液酸殘基上, ® 而得到糖鏈天門冬醯胺衍生物混合物之步驟。在此態樣中 ,步驟(c)除了除去Fmoc基外,更除去芊基。芊基之除去 ,只要根據習知方法進行即可(舉例來說,參照Protecting groups in Organic Chemistry, John Wiley & Sons INC.,In the step (c), the method of removing the protective group from the sugar chain aspartate derivative can be carried out according to a conventional one (for example, refer to Protecting groups in Organic Chemistry, John Wiley & Sons INC., New York 1991, ISBN 0-471-62301-6). For example, if the protecting group is an Fmoc group, as shown in Figure 12, can it be added to the sugar chain aspartate derivative in N,N-dimercaptodecylamine (DMF)? The morpholine is reacted to remove the Fmoc group. Further, the Boc group can also be removed by a weak acid reaction. After the protective group is removed, it can be purified by various chromatographic methods such as a gel filtration column, an ion exchange column, and the like, and a pyridine PLC separation method, as desired, to obtain a sugar chain aspartate also "5J&quot Further, in the same manner as the method for producing the sugar chain aspartate derivative, the method for producing a sugar chain aspartame of the present invention provides a method for producing a sugar chain aspartame derivative. And the step (a) is carried out by using a mixture of one or more sugar chain aspartame containing a sialic acid residue at a non-reducing end, and introducing the sugar chain asparagine in the mixture. The Fmoc group is a step in which a thiol group is introduced into a sialic acid residue to obtain a mixture of sugar chain aspartate derivatives. In this aspect, step (c) removes the thiol group in addition to the Fmoc group. The removal of the thiol group can be carried out according to a conventional method (for example, refer to Protecting groups in Organic Chemistry, John Wiley & Sons INC.,

New York 1 99 1,ISBN 0-47 卜623 (Π-6)。 進一步,基於有效率地得到具有期望糖鏈構造之糖鏈 天門冬醯胺,理想者係將步驟(b)所分離之糖鏈天門冬醯 -47- 1324607 _ (42) 胺衍生物進行水解,及/或將步驟(c)所得到之糖鏈天門冬 醯胺進行水解。又,水解亦可與前述同樣地進行。基於更 有效率地獲得具有期望糖鏈構造之糖鏈天門冬醯胺的觀 點,係以使用糖水解酵素來進行水解者[步驟(b')及/或步 驟(c’)]為更理想。 根據以上的步驟,舉例來說,可以有效率地獲得具有 下述一般式的糖鏈天門冬醯胺:New York 1 99 1, ISBN 0-47 Bu 623 (Π-6). Further, based on the efficient obtaining of the sugar chain aspartate having the desired sugar chain structure, it is desirable to hydrolyze the sugar chain aspartate-47- 1324607 _ (42) amine derivative isolated in the step (b). And/or hydrolyzing the sugar chain aspartate obtained in step (c). Further, the hydrolysis can be carried out in the same manner as described above. The viewpoint of obtaining the sugar chain aspartate having a desired sugar chain structure more efficiently is preferably carried out by using a glycolysis enzyme for the hydrolysis [step (b') and/or step (c')]. According to the above steps, for example, a sugar chain aspartate having the following general formula can be efficiently obtained:

Asn (式中,R3及R4為ΗAsn (where R3 and R4 are Η

•48· 1324607 (43)•48· 1324607 (43)

之情況除外)。 這種糖鏈天門冬醯胺,具體而言,例如有圖3及圖4所 示之各化合物。其中,特別是化合物25〜32、34〜46、72 及7 3,皆係本發明所首次製造者。本發明之範圍包含該等 化合物。 進一步,本發明係提供糖鏈的製造方法,其可大量地 獲得各種分離之糖鏈。該方法除了依據前述糖鏈天門冬醯 胺之製造方法外,在糖鏈天門冬醯胺的製造步驟之後,進 一步,還包含由所得到之糖鏈天門冬醯胺除去糖鏈天門冬 醯胺殘基之步驟。 亦即,本發明之糖鏈的製造方法係包含: -49- 1324607 _ (44) (a) 得到糖鏈天門冬醯胺衍生物混合物之步驟,其係於含 有包含1種或2種以上糖鏈天門冬醯胺之混合物的該糖鏈 天門冬醯胺上,導入脂溶性的保護基; (b) 分離各糖鏈天門冬醯胺衍生物之步驟,其係將該糖鏈 天門冬醯胺衍生物混合物或該糖鏈天門冬醯胺衍生物混 合物所包含之糖鏈天門冬醯胺衍生物,進行水解得到一混 合物,再將其供注於色層分析; (c) 獲得糖鏈天門冬醯胺之步驟,其係將步驟(b)所分離之 # 糖鏈天門冬醯胺衍生物的保護基,加以除去;以及 (d) 獲得糖鏈之步驟,其係將步驟(c)所得到之糖鏈天門冬 醯胺的天門冬醯胺殘基,加以除去。 步驟(a)〜(c),係與前述糖鏈天門冬醯胺衍生物之製造 方法相同,所使用之包含1種或2種以上糖鏈天門冬醯胺之 混合物,以及脂溶性的保護基,亦與前述相同。 又,本發明的糖鏈之製造方法中,其理想態樣,係提 供一糖鏈天門冬醯胺的製造方法,其步驟(a)係使用一含 • 有在非還原末端具有唾液酸殘基之1種或2種以上的糖鏈 天門冬醯胺之混合物,在該混合物所含有之糖鏈天門冬醯 胺上導入Fmoc基,同時將芊基導入唾液酸殘基上,而得 到糖鏈天門冬醯胺衍生物混合物之步驟。在此態樣中,步 驟(c)除了除去Fmoc基外,更除去字基。革基之除去,只 要根據前述方法進行即可。 步驟(d)中,由糖鏈天門冬醯胺除去天門冬醯胺殘基, 可根據習知之方法進行即可。舉例來說,如圖1 2所示之模 -50- 1324607 (45) 「―月續頁 式者,可將糖鏈天門冬醯胺與無水聯胺反應之後,藉由乙 醯化除去天門冬醯胺殘基,便可以得到糖鏈。又,將糖鏈 天門冬醯胺以鹼性水溶液加熱還流之後,亦可藉由乙醯化 除去天門冬醯胺殘基而得到糖鏈。在除去天門冬醯胺殘基 後,可根據期望以適當、習知之方法,例如凝膠過濾管柱 、使用離子交換樹脂等之各種色層分析法,以及HPLC分 離等方法,來進行純化。Except in the case of). Such a sugar chain aspartate, specifically, for example, each compound shown in Fig. 3 and Fig. 4 . Among them, in particular, compounds 25 to 32, 34 to 46, 72 and 73 are the first manufacturers of the present invention. The scope of the invention encompasses such compounds. Further, the present invention provides a method for producing a sugar chain which can obtain a large number of separated sugar chains in a large amount. The method further comprises, in addition to the method for producing the sugar chain aspartame, after the step of producing the sugar chain aspartame, further comprising removing the sugar chain aspartate residue from the obtained sugar chain aspartate. The basis of the steps. That is, the method for producing a sugar chain of the present invention comprises: -49- 1324607 _ (44) (a) a step of obtaining a mixture of sugar chain aspartame derivatives, which comprises containing one or more sugars a sugar-soluble protective group is introduced on the sugar chain aspartate of a mixture of aspartame; (b) a step of isolating each sugar chain aspartate derivative, which is the sugar chain aspartate a derivative of the derivative or a sugar chain aspartate derivative contained in the mixture of the sugar chain aspartate derivative, which is hydrolyzed to obtain a mixture, which is then subjected to chromatographic analysis; (c) obtaining a sugar chain aspartate a step of removing guanamine, which is a step of removing the protecting group of the #glycan aspartate derivative isolated in the step (b); and (d) obtaining a sugar chain, which is obtained by the step (c) The aspartate residue of the sugar chain aspartate is removed. Steps (a) to (c) are the same as the method for producing the aforementioned sugar chain aspartate derivative, and a mixture containing one or more kinds of sugar chain aspartate and a fat-soluble protective group are used. , also the same as before. Further, in the method for producing a sugar chain of the present invention, it is preferred to provide a method for producing a sugar chain aspartame, wherein the step (a) is carried out using a sialic acid residue at a non-reducing end. a mixture of one or more sugar chain aspartame, introducing a Fmoc group to the sugar chain aspartate contained in the mixture, and introducing a thiol group to the sialic acid residue to obtain a sugar chain The step of the mixture of the benzamine derivative. In this aspect, step (c) removes the word base in addition to the Fmoc group. The removal of the leather base can be carried out according to the aforementioned method. In the step (d), the aspartame residue is removed from the sugar chain aspartame, and it can be carried out according to a conventional method. For example, as shown in Figure 12, the model-50- 1324607 (45) "-------------------------------------------------------------------------------------------------------- A sugar chain can be obtained by a guanamine residue. Further, after the sugar chain aspartate is heated and refluxed with an aqueous alkaline solution, the sugar chain can be obtained by removing the aspartate residue by acetylation. After the glycidyl residue is purified, it can be purified by a suitable and conventional method such as a gel filtration column, various color layer analysis methods using an ion exchange resin, and the like, and HPLC separation.

進一步,與前述相同,基於有效率地獲得期望糖鏈構 造之糖鏈的觀點,係以將步驟(b)所分離之糖鏈天門冬醯 胺衍生物水解,及/或將步驟(c)所得到之糖鏈天門冬醯胺 水解,及/或將步驟(d)所得到之糖鏈水解者,較為理想。 又,水解可與前述同樣地進行。基於更有效率地獲得具有 期望糖鏈構造之糖鏈的觀點,係以使用糖水解酵素來進行 水解者[步驟(b')及/或步驟(c')及/或步驟(d’)]為更理想。 根據以上的步驟,舉例來說,可以有效率地獲得具有 下述一般式的糖鏈:Further, in the same manner as described above, based on the viewpoint of efficiently obtaining a sugar chain of a desired sugar chain structure, the sugar chain aspartate derivative separated in the step (b) is hydrolyzed, and/or the step (c) is used. It is preferred that the obtained sugar chain aspartate is hydrolyzed and/or the sugar chain obtained in the step (d) is hydrolyzed. Further, the hydrolysis can be carried out in the same manner as described above. The viewpoint of obtaining a sugar chain having a desired sugar chain structure more efficiently by using a glycolysis enzyme for hydrolysis [step (b') and/or step (c') and/or step (d')] For the better. According to the above steps, for example, a sugar chain having the following general formula can be efficiently obtained:

(式中,R5及R6為Η、 -51 - 1324607 _ (46) [發明說明薄Γ頁(wherein, R5 and R6 are Η, -51 - 1324607 _ (46) [Inventive description page

•52· 1324607 發明說明績頁 (47)•52· 1324607 Description of the Invention (47)

之情況除外)。 這種糖鏈天門冬醯胺,具體而言,例如有圖5及圖6所 示之各化合物。其中,特別是化合物48~5 5、57〜69、74 及7 5,皆係本發明所首次製造者。本發明之範圍包含該等 化合物。 如此地,根據本發明,便可大量地以價格,有效率地 · 製得具有期望糖鏈構造之糖鏈天門冬醯胺衍生物、糖鏈天 門冬醯胺及糖鏈(以下,亦有將三者合併稱為糖鏈之情 形)。 這種糖鏈在醫藥品開發等領域上非常有用。舉例來說 ,其應用例之一有癌症的疫苗。已知細胞若發生癌化情形 時,會有體内所無之糖鏈的發生。又,已知若以化學合成 該糖鏈,並作成疫苗投與至個體時,將可控制癌症的增殖 情形。由此,只要能根據本發明製造期望之糖鏈時,就可 -53- 1324607 _ (48) [S說明縝頁 能以有效疫苗之合成來進行癌症的治療。又,亦可將本發 明所得之糖鏈,進一步地利用化學反應及糖轉移酵素反應 等組合,使其與新的糖殘基結合成為衍生物,而合成新穎 的疫苗。 又,舉例來說,紅血球生成素(EPO)可藉其紅血球增殖 能力,而作為貧血的治療藥品,但此ΕΡ Ο若未鍵結糖鏈時 ,已知將不具有活性。如此地,由於蛋白質藉由糖鏈之鍵 結可表現其生理活性之故,舉例來說,可在無法鍵結糖鏈 • 之大腸菌表現系中,僅大量地製作蛋白質,然後再將具有 期望糖鏈構造、且由本發明所製造之糠鏈導入時,就可以 賦予其生理活性之表現,又,藉由在任意的蛋白質上,導 入具有各種糖鏈構造、且由本發明所製造之糖鏈時,就可 以合成具有新穎生理活性的新穎糖蛋白質。 又,存在於天然的糖蛋白質上之糖鏈,可藉由與本發 明所製造之糖鏈取代,而賦予其新穎的生理活性。將糖蛋 白質所具有的糖鏈取代成本發明所得到之糖鏈,舉例來說 •,有 P. Sears and C. Η. Wong, Science, 200 1, vol 291, p 2 3 44 - 2 3 5 0所記載之方法。亦即,將糖蛋白質以/3 -N-乙醯 葡糖胺酵素(Endo-H)處理,就可造成蛋白質表面的天門冬 醯胺殘基上,僅鍵結一個N -乙醯葡糖胺殘基之狀態。然 後,再使用/5 -N-乙醯葡糖胺酵素(Endo-M),就可將本發 明所得到之糖鏈天門冬醯胺(舉例來說,圖3及圖4之各化 合物)中的期望糖鏈,鍵結至前述的N-乙醯葡糖胺殘基上 。又,若將N-乙醯葡糖胺鍵結至tRNA上,利用大腸菌等 -54- 1324607 (49) 發明說明縝頁 的表現系合成具有N -乙醯葡糖胺之糖蛋白質後,亦可以 使用Endo-M ’而將本發明所獲得之糖鏈天門冬醯胺中期 望的糖鏈導入。 又’現在在將糖蛋白質作為治療藥使用時,其問題是 所被投與之糖蛋白質的代謝速度太快。此乃是在糖蛋白質 的糖鏈末端所存在之唾液酸’若在生體内一被除去時,該 糖蛋白質馬上會被肝臟所代謝所致。因此,投與某程度的 量之該糖蛋白質是有必要的。基此,根據本發明,將糖鏈 末端很難除去之唾液酸重新地重組至糖鏈上,在對象蛋白鲁 質上利用Endo-M將該糖鏈導入時,就有可能降低所投與 之糖蛋白質的量。 以下,茲以實施例具體地說明本發明,但本發明並不 限於這些實施例。各化合物之構造式及編號係表示於圖 1〜圖6中。又,iH-NMR的資料,其測定之條件,在實施例 1~7是30°C下HOD為4.8 ppm,在實施例8〜45是30。(:下丙酮 的甲基訊號為2.225 ppm’且HOD為4.718 ppm。又,關於 Fmoc基被除去之化合物,則是於測定溶劑中共存有50 mM # 的碳酸氫銨下所測定得到者。 實施例1 化合物2 4之合成 將從蛋得到之粗純化S G P (唾液酸基糖胜肽)2.6克’溶解 於Tris·鹽酸•氯化鈣緩衝溶液(TRIZMA BASE 0.〇5莫爾/ 升、氯化鈣0_01莫爾/升、pH 7.5)100毫升中。在其上加入 疊氮化納58毫克(772 μηιοί)及肌動蛋白酵素-E 526毫克 (科研製藥公司製),於37°C下靜置。65小時後,再加入263 -55- 1324607 _ (50) 1¾¾¾¾¾ 毫克之肌動蛋白酵素-E,又再於37 °C下靜置24小時。將此 . 溶液冷凍乾燥之後,將殘餘物質以凝膠過濾管柱層析 (SephadexG-25,2.5φχ1πι,展開溶劑為水,流速為1.0 毫升/分)純化二次,而得到如圖3所示,1.3克(555 μηιοί) 的目的化合物24。該SGP所含之糖鏈構造,係表示如下。Except in the case of). Such a sugar chain aspartame is specifically, for example, each compound shown in Fig. 5 and Fig. 6. Among them, in particular, compounds 48 to 5 5, 57 to 69, 74 and 7 5 are the first manufacturers of the present invention. The scope of the invention encompasses such compounds. As described above, according to the present invention, a sugar chain aspartame derivative, a sugar chain aspartate, and a sugar chain having a desired sugar chain structure can be efficiently produced at a high cost (hereinafter, there will be The merger of the three is called the sugar chain). This sugar chain is very useful in fields such as pharmaceutical development. For example, one of its application examples is a vaccine for cancer. It is known that if a cell becomes cancerous, it will have a sugar chain that is not present in the body. Further, it is known that when the sugar chain is chemically synthesized and administered as a vaccine to an individual, the proliferation of cancer can be controlled. Thus, as long as the desired sugar chain can be produced according to the present invention, it is possible to treat cancer with the synthesis of an effective vaccine by using -53- 1324607 _ (48) [S. Further, a novel vaccine can be synthesized by combining a sugar chain obtained by the present invention with a chemical reaction and a sugar transferase reaction to form a derivative with a new sugar residue. Further, for example, erythropoietin (EPO) can be used as a therapeutic drug for anemia by virtue of its red blood cell proliferation ability, but it is known that it is not active if it is not bonded to a sugar chain. In this way, since the protein can express its physiological activity by the linkage of the sugar chain, for example, in the coliform expression system in which the sugar chain cannot be bonded, only a large amount of protein is produced, and then the desired sugar is obtained. When the chain structure is introduced and the oxime chain produced by the present invention is introduced, the physiological activity can be expressed, and when a sugar chain having various sugar chain structures and produced by the present invention is introduced into any protein, It is possible to synthesize novel glycoproteins having novel physiological activities. Further, the sugar chain present on the natural glycoprotein can be imparted with novel physiological activity by being substituted with the sugar chain produced by the present invention. The sugar chain possessed by the glycoprotein is substituted for the sugar chain obtained by the invention, for example, P. Sears and C. Η. Wong, Science, 200 1, vol 291, p 2 3 44 - 2 3 5 0 The method described. That is, when the glycoprotein is treated with /3 -N-acetylglucosaminase (Endo-H), it can cause an N-acetylglucosamine on the surface of the aspartic acid residue on the protein surface. The state of the residue. Then, using the /5-N-acetylglucosamine enzyme (Endo-M), the sugar chain aspartate (for example, each compound of FIG. 3 and FIG. 4) obtained by the present invention can be used. The desired sugar chain is bonded to the aforementioned N-acetylglucosamine residue. Further, if N-acetyl glucosamine is bonded to the tRNA, it is also possible to use a coliform such as -54-1324607 (49) to explain that the expression of the ruthenium is synthesized by synthesizing a glycoprotein having N-acetyl glucosamine. The desired sugar chain in the sugar chain aspartate obtained by the present invention is introduced using Endo-M'. Further, when glycoprotein is used as a therapeutic drug, the problem is that the metabolism of the glycoprotein to be administered is too fast. This is because the sialic acid present at the end of the sugar chain of the glycoprotein is immediately metabolized by the liver when it is removed in the living body. Therefore, it is necessary to administer a certain amount of the glycoprotein. Therefore, according to the present invention, the sialic acid which is difficult to remove at the end of the sugar chain is recombined into the sugar chain, and when the sugar chain is introduced by Endo-M on the target protein, it is possible to reduce the administered sugar. The amount of glycoprotein. Hereinafter, the invention will be specifically described by way of examples, but the invention is not limited to the examples. The structural formulae and numbering of each compound are shown in Figs. 1 to 6 . Further, the conditions of the iH-NMR measurement were as follows: in Examples 1 to 7, the HOD was 4.8 ppm at 30 ° C, and 30 in Examples 8 to 45. (The methyl group of the acetone is 2.225 ppm' and the HOD is 4.718 ppm. Further, the compound obtained by removing the Fmoc group is obtained by measuring 50 mM # of ammonium hydrogencarbonate coexisting in the measurement solvent. Example 1 Synthesis of Compound 2 4 The crude purified SGP (sialyl glycopeptide) from the egg was dissolved in Tris·hydrochloric acid•calcium chloride buffer solution (TRIZMA BASE 0.〇5mol/liter, chlorine) Calcium 0_01 Mohr / liter, pH 7.5) 100 ml. Add sodium azide 58 mg (772 μηιοί) and actinase-E 526 mg (manufactured by Scientific Research Co., Ltd.) at 37 ° C After standing for 65 hours, add 263 -55 - 1324607 _ (50) 13⁄43⁄43⁄43⁄4⁄4 mg of actin-E, and then stand at 37 ° C for 24 hours. This solution will freeze after drying. The substance was purified twice by gel filtration column chromatography (Sephadex G-25, 2.5 φ χ 1 π, developing solvent water, flow rate: 1.0 ml/min) to obtain the target compound of 1.3 g (555 μηιοί) as shown in Fig. 3. 24. The sugar chain structure contained in the SGP is as follows.

-56- 1324607 (51) I發扭1¾明纊頁-56- 1324607 (51) I twisted 13⁄4 alum page

又,所得到之化合物24,其物理性質係如下所示。 'H-NMR (D2〇, 30°C ) 5.15 (1H, s, Man4-H,); 5.06 (1H, d, GlcNAcl-H,), 4.95 •57· 1324607 (52) (1H, s, Man4'-H1), 4.82 (1H, s, Man3-Hi), 4.69 (1H, d, GUNAC2-HO, 4.67 (2H, d, GlcNAc5, S'-HO,4.53 (2H, d, Gal6, 6'-H,)5 4.3 4 ( 1 H, d, Man 3),4.2 7 (1 H,d,Further, the physical properties of the obtained Compound 24 are as follows. 'H-NMR (D2〇, 30°C) 5.15 (1H, s, Man4-H,); 5.06 (1H, d, GlcNAcl-H,), 4.95 •57· 1324607 (52) (1H, s, Man4 '-H1), 4.82 (1H, s, Man3-Hi), 4.69 (1H, d, GUNAC2-HO, 4.67 (2H, d, GlcNAc5, S'-HO, 4.53 (2H, d, Gal6, 6'- H,)5 4.3 4 ( 1 H, d, Man 3), 4.2 7 (1 H,d,

Man4'-H2)5 4.19 (1H, d, Man4-H2), 3.03 (1H, dd, Asn-β CH), 3.00 (1H, dd, Asn-β CH), 2.76 (2H, dd, NeuAc7, 7'-H3eq), 2.15 (18H, sx6, -Ac), 1.79 (2H, dd, NeuAc7, 7'-H3ax) 實施例2 化合物1、2、6及1 0之合成 將實施例1所得到之化合物24 (609毫克,261 μηιοί)溶 解於水20.7毫升中,進一步加入0.1規定鹽酸丨3.8毫升。將 此溶液在70。(:下加熱35分鐘後迅速冷卻,加入飽和碳酸氫 鈉使成為pH 7。將其冷凍乾燥之後,殘留物質以凝膠過濾 層析管柱(SephadexG-25,2.5φχ lm,展開溶劑為水, 流速為1 · 0毫升/分)進行純化,而得到如圖3所示,5 3 4毫 克的化合物2 4、化合物2 5、2 9及化合物3 3之混合物。不要 將該四成分各自分離,而進行下列步驟。Man4'-H2)5 4.19 (1H, d, Man4-H2), 3.03 (1H, dd, Asn-β CH), 3.00 (1H, dd, Asn-β CH), 2.76 (2H, dd, NeuAc7, 7 '-H3eq), 2.15 (18H, sx6, -Ac), 1.79 (2H, dd, NeuAc7, 7'-H3ax) Example 2 Synthesis of Compounds 1, 2, 6 and 10 The compound obtained in Example 1 24 (609 mg, 261 μηιοί) was dissolved in 20.7 ml of water, and further 3.8 ml of 0.1 guanidine hydrochloride was added. This solution was taken at 70. (: After heating for 35 minutes, it was rapidly cooled, and saturated sodium hydrogencarbonate was added to make pH 7. After lyophilization, the residue was subjected to a gel filtration chromatography column (Sephadex G-25, 2.5 φ lm, developing solvent as water, Purification was carried out at a flow rate of 1.0 ml/min. to obtain a mixture of 5 34 mg of compound 24, compound 2 5, 2 9 and compound 3 as shown in Fig. 3. Do not separate the four components, And proceed to the following steps.

又,所得到之糖鏈混合物,其物理性質係如下所示。 ]H-NMR (D20, 30°C ) 5.13 (s, Man4-H,), 5.12 (s, Man4-H〇, 5.01 (d, GlcNAcl-H〇, 4.94 (s, Man4'-H,), 4.93 (s, Man4'-H,), 4.82 (s,Further, the physical properties of the obtained sugar chain mixture are as follows. H-NMR (D20, 30 ° C) 5.13 (s, Man4-H,), 5.12 (s, Man4-H〇, 5.01 (d, GlcNAcl-H〇, 4.94 (s, Man4'-H,), 4.93 (s, Man4'-H,), 4.82 (s,

Man3-H!), 4.60 (d, GlcNAc2-H,), 4.58 (d, GlcNAc5, 5'-Hi), 4.47 (dd, Gal6, 6'-H,), 4.44 (d, Gal6, ό'-ΗΟ, 4.24 (d5 Man3-H2), 4.19 (d, Man4'-H2), 4.11 (d, Man4-H2), 2.97 (bdd, Asn-β CH), 2.72 (dd, NeuAc7-H3eq, NeuAc7-H3eq), -58- 1324607 (53) 發明說明續頁 2.64 (bdd,Asn-β CH), 2.15 (Sx5,-Ac), 1.79 (dd,Man3-H!), 4.60 (d, GlcNAc2-H,), 4.58 (d, GlcNAc5, 5'-Hi), 4.47 (dd, Gal6, 6'-H,), 4.44 (d, Gal6, ό'- ΗΟ, 4.24 (d5 Man3-H2), 4.19 (d, Man4'-H2), 4.11 (d, Man4-H2), 2.97 (bdd, Asn-β CH), 2.72 (dd, NeuAc7-H3eq, NeuAc7-H3eq ), -58- 1324607 (53) Description of the Invention Page 2.64 (bdd, Asn-β CH), 2.15 (Sx5,-Ac), 1.79 (dd,

NeuAc7-H3ax, NeuAc7'-H3ax) 將得到之糖鏈混合物4 2 9毫克溶解於丙酮i 6.3毫升及水 11_2毫升中。在其上加入9 -氟苐基曱基-N·玻珀酸基妓酸 酯(155.7毫克,461.7 μπιοί)及碳酸氫鈉(80.4毫克,957 μιηοΐ),於室溫下攪拌二小時。將該溶液以蒸發器除去丙 酮’再將殘餘的溶液以凝膠過遽層析管柱(SephadexG-25 ,2.5 φ X 1 m,展開溶劑為水,流速為1 . 〇毫升/分)進行純 化,而得到如圖1所示,3 0 9毫克的化合物2、6及化合物1 〇 之混合物。將該混合物以HPLC (ODS管柱,展開溶劑為50 mM醋酸銨水溶液:乙腈= 65: 35,2.0 φ X 25 cm,流速 為3毫升/分)進行純化,其分別之溶離時間為,化合物1為 5 1分鐘後;化合物2及6之混合物為6 7分鐘後;化合物1 0 為9 3分鐘後。將其各自分取並進行冷凍乾燥後,以凝膠過 滤層析管柱(Sephadex G-25,2.5 φ X 30 cm,展開溶劑為 水,流速為1.0毫升/分)進行純化,而得到目的之化合物2 及6混合物1 5 0毫克。 又,所得到之化合物1 ’其物理性質係如下所示。 'H-NMR (D20, 30°C ) 7.99 (2H, d, Fmoc), 7.79 (2H, d, Fmoc), 7.55 (4H, m, Fmoc), 5.15 (1H, s, Man4-Hi). 5.06 (1H, d, GlcNAcl-Hi), 4.95 (1H, s, Man4'-H,), 4.82 (1H, s, ManS-HO, 4.69 (1H, d, GlcNAc2-H!), 4.67 (2H, d, GlcNAc5, 5'-H,), 4.53 (2H, d, Gal6, 6'-H,), 4.34 (1H, d, Man3-H2), 4.27 (1H, d, -59- 1324607 (54) 1¾¾¾¾NeuAc7-H3ax, NeuAc7'-H3ax) The obtained sugar chain mixture 4 2 9 mg was dissolved in acetone 6.3 ml and water 11-2 ml. 9-Fluoroindenyl-N-boroic acid decanoate (155.7 mg, 461.7 μπιοί) and sodium hydrogencarbonate (80.4 mg, 957 μηηοΐ) were added thereto, and stirred at room temperature for two hours. The solution was purged with acetone in an evaporator. The residual solution was purified by gel filtration through a column (Sephadex G-25, 2.5 φ X 1 m, developing solvent water, flow rate 1. 〇 ml/min). And a mixture of 3,9 mg of the compound 2, 6 and the compound 1 was obtained as shown in FIG. The mixture was purified by HPLC (ODS column, developing solvent: 50 mM aqueous solution of ammonium acetate: acetonitrile = 65: 35, 2.0 φ X 25 cm, flow rate: 3 ml/min), respectively, and the dissolution time was respectively, Compound 1 After 5 minutes, the mixture of compounds 2 and 6 was after 6 7 minutes; compound 10 was after 9 3 minutes. The fractions were separated and lyophilized, and then purified by a gel filtration chromatography column (Sephadex G-25, 2.5 φ X 30 cm, developing solvent water, flow rate: 1.0 ml/min) to obtain the purpose. Compounds 2 and 6 were mixed with 150 mg. Further, the physical properties of the obtained compound 1' are as follows. 'H-NMR (D20, 30 ° C) 7.99 (2H, d, Fmoc), 7.79 (2H, d, Fmoc), 7.55 (4H, m, Fmoc), 5.15 (1H, s, Man4-Hi). 5.06 (1H, d, GlcNAcl-Hi), 4.95 (1H, s, Man4'-H,), 4.82 (1H, s, ManS-HO, 4.69 (1H, d, GlcNAc2-H!), 4.67 (2H, d , GlcNAc5, 5'-H,), 4.53 (2H, d, Gal6, 6'-H,), 4.34 (1H, d, Man3-H2), 4.27 (1H, d, -59- 1324607 (54) 13⁄43⁄43⁄43⁄4

Man4'-H2), 4.19 (1H, d, Man4-H2), 3.03 (1H, bdd, Asn-β CH), 3.00 (1H, bdd, Asn-β CH), 2.76 (2H, dd, NeuAc7, 7'-H3eq), 2.15 (18H, Sx6, -Ac), 1.79 (2H, dd, NeuAc7, 7'-H3ax) ; HRMS C】〇3H154N8Na066 [M + Na + ]理論值 2581.8838,實測值2581.8821° 又,所得到之化合物2及6,其物理性質係如下所示。 *H-NMR (D2〇, 30°C )Man4'-H2), 4.19 (1H, d, Man4-H2), 3.03 (1H, bdd, Asn-β CH), 3.00 (1H, bdd, Asn-β CH), 2.76 (2H, dd, NeuAc7, 7 '-H3eq), 2.15 (18H, Sx6, -Ac), 1.79 (2H, dd, NeuAc7, 7'-H3ax) ; HRMS C] 〇3H154N8Na066 [M + Na + ] Theoretical value 2581.8838, found 2581.8821° The physical properties of the obtained Compounds 2 and 6 are as follows. *H-NMR (D2〇, 30°C)

7.99 (d, Fmoc), 7.79 (d, Fmoc), 7.55 (m, Fmoc), 5.14 (s, Man4-H,), 5.12 (s, Man4-H), 5.00 (d, GlcNAcl-H,), 4.94 (s, Man4'-H,), 4.93 (s, Man4'-H1), 4.82 (s, ManS-Hj), 4.60 (d, GlcNAc2-H,), 4.58 (d, GlcNAc5s 5'-H,), 4.46 (dd, Gal6, ό'-ΗΟ, 4.44 (d, Gal6, ό'-ΗΟ,4.24 (d, Man3-H2), 4.19 (d, Man4'-H2), 4.11 (d, Man4-H2), 2.97 (bdd, Asn-β CH), 2.72 (dd, NeuAc7-H3eq, NeuAc7-H3eq), 2.64 (bdd, Asn-β CH), 2.15 (Sx5, -Ac), 1.79 (dd, NeuAc7-H3ax,7.99 (d, Fmoc), 7.79 (d, Fmoc), 7.55 (m, Fmoc), 5.14 (s, Man4-H,), 5.12 (s, Man4-H), 5.00 (d, GlcNAcl-H,), 4.94 (s, Man4'-H,), 4.93 (s, Man4'-H1), 4.82 (s, ManS-Hj), 4.60 (d, GlcNAc2-H,), 4.58 (d, GlcNAc5s 5'-H, ), 4.46 (dd, Gal6, ό'-ΗΟ, 4.44 (d, Gal6, ό'-ΗΟ, 4.24 (d, Man3-H2), 4.19 (d, Man4'-H2), 4.11 (d, Man4-H2 ), 2.97 (bdd, Asn-β CH), 2.72 (dd, NeuAc7-H3eq, NeuAc7-H3eq), 2.64 (bdd, Asn-β CH), 2.15 (Sx5, -Ac), 1.79 (dd, NeuAc7-H3ax ,

NeuAc7'-H3ax) 又,所得到之化合物1 0,其物理性質係如下所示。 'H-NMR (D20, 30°C ) 7·99 (2H, d,Fmoc), 7.79 (2H,d, Fmoc), 7.55 (4H, m, Fmoc), 5.12 (1H, s, Man4-H,), 5.06 (1H, d, GlcNAcl-H,), 4.93 (1H, s, Man4'-H,)5 4.82 ( 1 H, s, Man3-Hi), 4.69 (1H, d, GlcNAc2-H,), 4.67 (2H, d, GlcNAc5, 5'-H,), 4.53 (2H, d, Gal6, 6'-H,), 4.34 (1H, d, Man3-H2), 4,27 (1H, d, Man4'-H2), 4.19 (1H, d, Man4-H2), 3.03 (1H, bdd, Asn-β -60· 1324607 (55) I發明說明績頁 CH), 3.00 (1H, bdd, Asn-β CH), 2.15 (12H, s&gt;&lt;45 -Ac); HRMS C81H12〇N6Na05〇 [M + Na + ]理論值 1999.6930,實測值 1999.6939° 實施例3 化合物3及7之合成 將實施例2所得到之化合物2及6的混合物(2 2 4毫克,9 7 μιηοΐ)及牛血清白蛋白24宅克’;谷解於HEPES緩衝溶液(50 mM,pH 6.0) 22毫升中’進一步再加入由DiPloc〇ccus pneumoniae衍生的点-半乳糖酵素(1.35U)。將g亥溶液於37 。(:下靜置15小時後,冷凍乾燥。殘留物質再以HpLC (ODS 管柱,2.0 φ X 2 5 cm,展開溶劑為5 〇 mM醋酸銨水溶液: 乙腈=8 5 : 1 5,流速為3毫升/分)進行純化’其分別之溶 離時間為,圖2所示之化合物3為129分鐘後;化合物7為134 分鐘後。將其各自分取拉進行冷凍乾燥後’再以HPLC (ODS管柱,2.0 φ X 25 cm,展開溶劑為最初15分鐘為水 ,16分鐘至30分鐘為水:乙腈(容量比卜10: 〇至85: 15 ,31分鐘至45分鐘為水:乙腊=85: 15至80: 20的梯度, 流速為3.0毫升/分)進行脫鹽處理,而得到目的之化合物3 為8 1毫克,化合物7則為7 5毫克。 又’所得到之化合物3 ’其物理性質係如下所示。 'H-NMR (D20, 30°C ) 7-99 (2H, d, Fmoc), 7.79 (2HS d, Fmoc), 7.55 (4H, m, Fmoc), 5.15 (1H, S, Man4-Hi), 5.06 (1H, d, GlcNAcl-H]), 4.95 (1H,s, Man4'-Hi),4.82 (1H,s, Man3-H!),4.69 (1H, d, G1cNAc2-H,)5 4.67 (2H, d, GlcNAc5, 5'-H,), 4.53 (1H, 1324607 _ (56) i發明說明_資1 d, Gal6'-H,)5 4.3 4 ( 1 H, d, M an 3-H 2),4 · 2 7 (1 H, d,NeuAc7'-H3ax) Further, the obtained compound 10 has the following physical properties. 'H-NMR (D20, 30 ° C) 7·99 (2H, d, Fmoc), 7.79 (2H, d, Fmoc), 7.55 (4H, m, Fmoc), 5.12 (1H, s, Man4-H, ), 5.06 (1H, d, GlcNAcl-H,), 4.93 (1H, s, Man4'-H,)5 4.82 ( 1 H, s, Man3-Hi), 4.69 (1H, d, GlcNAc2-H,) , 4.67 (2H, d, GlcNAc5, 5'-H,), 4.53 (2H, d, Gal6, 6'-H,), 4.34 (1H, d, Man3-H2), 4,27 (1H, d, Man4'-H2), 4.19 (1H, d, Man4-H2), 3.03 (1H, bdd, Asn-β -60· 1324607 (55) I invention description page CH), 3.00 (1H, bdd, Asn-β CH), 2.15 (12H, s&gt;&lt;45-Ac); HRMS C81H12 〇N6Na05 〇 [M + Na + ] calc. 1999.6930, found </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> Example 3 Synthesis of Compounds 3 and 7 a mixture of compounds 2 and 6 (2 2 4 mg, 9 7 μιηοΐ) and bovine serum albumin 24 housek'; trough in HEPES buffer solution (50 mM, pH 6.0) in 22 ml 'further added again by DiPloc〇 Ccus pneumoniae-derived point-galactosidase (1.35 U). Place ghai solution at 37. (: After standing for 15 hours, freeze-dry. The residual material was again HpLC (ODS column, 2.0 φ X 2 5 cm, developing solvent was 5 mM mM ammonium acetate aqueous solution: acetonitrile = 8 5 : 15 5, flow rate was 3 Purification was carried out in dl/min. The dissolution time was as follows: Compound 3 shown in Figure 2 was 129 minutes later; Compound 7 was after 134 minutes. Each of them was subjected to lyophilization and then to HPLC (ODS tube). Column, 2.0 φ X 25 cm, developing solvent for the first 15 minutes as water, 16 minutes to 30 minutes for water: acetonitrile (capacity ratio 10: 〇 to 85: 15, 31 minutes to 45 minutes for water: acetonitrile = 85 : a gradient of 15 to 80: 20, a flow rate of 3.0 ml/min), desalting, and the desired compound 3 was 81 mg, and the compound 7 was 75 mg. The physical property of the obtained compound 3 The system is as follows: 'H-NMR (D20, 30 ° C) 7-99 (2H, d, Fmoc), 7.79 (2HS d, Fmoc), 7.55 (4H, m, Fmoc), 5.15 (1H, S, Man4-Hi), 5.06 (1H, d, GlcNAcl-H)), 4.95 (1H, s, Man4'-Hi), 4.82 (1H, s, Man3-H!), 4.69 (1H, d, G1cNAc2-H ,)5 4.67 (2H, d, GlcNAc5, 5'-H,), 4.53 (1H, 1324607 _ (56) i invention description _ 1 d, Gal6'-H,) 5 4.3 4 ( 1 H, d, M an 3-H 2), 4 · 2 7 (1 H, d,

Man4'-H2), 4.19 (1H, d, Man4-H2), 2.97 (1H, bdd,Man4'-H2), 4.19 (1H, d, Man4-H2), 2.97 (1H, bdd,

Asn-PCH), 2.76 (1H, dd5 NeuAc7'-H3eq)s 2.61 (1H, bdd, Asn-β CH), 2.15 (15H, sx5, -Ac), 1.79 (1H, dd,Asn-PCH), 2.76 (1H, dd5 NeuAc7'-H3eq)s 2.61 (1H, bdd, Asn-β CH), 2.15 (15H, sx5, -Ac), 1.79 (1H, dd,

NeuAc7'-H3ax); HRMS C86H127N7Na053 [M + Na + ]理論值 2128.7356,實測值2128.7363。 又,所得到之化合物7,其物理性質係如下所示。 'H-NMR (D2〇, 30°C ) • 7.99 (2H,d,Fmoc),7.79 (2H,d,Fmoc),7.55 (4H,m,</ RTI> <RTI ID=0.0></RTI> </ RTI> </ RTI> <RTI ID=0.0></RTI> </ RTI> </ RTI> <RTIgt; Further, the physical properties of the obtained Compound 7 are as follows. 'H-NMR (D2〇, 30°C) • 7.99 (2H,d,Fmoc), 7.79 (2H,d,Fmoc),7.55 (4H,m,

Fmoc),5.15 (1H,S, 5.06 (1H, d,GlcNAcl-D, 4.95 (1H, s, Man4'-H1), 4.82 (1H, s, Man3-H,), 4.69 (1H, d, GlcNAc2-Kh), 4·67 (2H, d,GlcNAc5,5’-!!】),4.53 (1H, d, Gal6-Hi), 4.34 (1H, d, Man3-H2), 4.27 (1H, d5Fmoc), 5.15 (1H, S, 5.06 (1H, d, GlcNAcl-D, 4.95 (1H, s, Man4'-H1), 4.82 (1H, s, Man3-H,), 4.69 (1H, d, GlcNAc2 -Kh), 4·67 (2H, d, GlcNAc5, 5'-!!), 4.53 (1H, d, Gal6-Hi), 4.34 (1H, d, Man3-H2), 4.27 (1H, d5

Man4'-H2), 4.19 (1H, d, Man4-H2), 2.97 (1H, bdd,Man4'-H2), 4.19 (1H, d, Man4-H2), 2.97 (1H, bdd,

Asn-pCH), 2.76 (1H,dd, NeuAc7-H3eq),2.60 (ih,bdd, Asn-PCH), 2.15 (1 5H, sx5, -Ac), 1 . 7 9 (1 h, d d, # NeuAc7-H3ax) ; HRMS C86H125N7Na3〇53 [M + Na + ]理論值 2172.6995 ,實測值2172.7084 。 實施例4 化合物4及8之合成 將實施例3所得到之化合物3及7的混合物(90毫克,47.3 μιηοΐ)不各自分離,與牛血清白蛋白8毫克,一同溶解於 HEPES緩衝溶液(SOmM’pH6·0)8.1毫升中’進一步再加 入由牛腎衍生的冷-葡糖胺酵素(西格瑪亞德利奇公司製) 2.8 8U。將該溶液於37°C下靜置18小時後’冷凍乾燥◊殘 •62- (57) (57)1324607 一 w綱賴 留物質再以HPLC (ODS管杈,2 50 mM醋酸銨水溶液:甲醇&gt; 4 25 Cm展開溶劑為 進行純化,其分別之溶離時間為 &quot;IL速為3毫升/分) 分鐘後;化合物8為1 2 7分鐘後。 物4為1 1 7 乾燥後,再以HPLC (ODS管杈,'各自刀取並進行冷凍 為最初1 5分鐘為水,16分鐘至 ^ 2 5 em,展開溶劑 〇分鐘為水:乙赌=10· 〇 至85:15,31分鐘至45分鐘為^ 10-0 .乙猜=8 5 : 1 5 至 8 0 . 2 0 的梯度,流速為3毫升/分)進料、 '20 脫鹽處理,而得到目的之 化合物4為4 0毫克,化合物8則a 、J馬3 7毫克。 又’所得到之化合物4,其队 、物理性質係如下所示。 !H-NMR (D2〇, 30°C ) 8.01 (2H, d, Fmoc), 7.80 (2H a r 、 d, Fmoc), 7.56 (4H, m, Fmoc), 5.22 (1H,s, Manm!),5 〇8 (1H, d, GlcNAcl Hi), 4.94 (1H, s,Manr-H!),4.84 (1H,s,ManS-H。,4.69 (1H, d, GlcNAc2-Hi), 4.67 (1H, d, GlcNAcS-Hj), 4.55 (1H, d, Gal6-Hi), 4.33 (1H, dd, Man3-H2), 4.20 (1H, dd, Man4-H2), 4.15 (1H, dds Man4'-H2), 2.97 (1H, bdd, Asn-β CH), 2.76 (2H, dd, NeuAc7, 7'-Η3ες), 2.62 (1H, bdd, Asn-β CH), 2.15 (12H, sx4,-Ac), 1.79 (2H, dd,NeuAc7, 7'-H3ax) ; HRMS C78H1]4N6NaO48 [M + Na + ]理論值 1 925.65 62 ’ 實測值 1925. 6 5 3 9 ° 又,所得到之化合物8,其物理性質係如下所示e 'H-NMR (D2〇, 30°c ) 7.99 (2H, d, Fmoc), 7.79 (2H, d, Fmoc), 7.55 (4H, m, -63 - 1324607 (58)Asn-pCH), 2.76 (1H, dd, NeuAc7-H3eq), 2.60 (ih, bdd, Asn-PCH), 2.15 (1 5H, sx5, -Ac), 1. 7 9 (1 h, dd, # NeuAc7 HRMS C86H125N7Na3 〇 53 [M + Na + ] calc. 2172.6995, found 2172.7084. Example 4 Synthesis of Compounds 4 and 8 A mixture of Compounds 3 and 7 obtained in Example 3 (90 mg, 47.3 μιηοΐ) was not separately isolated and dissolved in HEPES buffer solution (SOmM' together with 8 mg of bovine serum albumin. In a pH of 6.1 ml, 2.8 8 U was further added to the cold-glucosamine enzyme (manufactured by Sigma-Delci) derived from bovine kidney. The solution was allowed to stand at 37 ° C for 18 hours, then 'freeze-dried • • 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 &gt; 4 25 Cm development solvent for purification, the respective dissolution time is &quot;IL speed of 3 ml / min) minutes; compound 8 after 127 minutes. After the material 4 is 1 1 7 dry, and then HPLC (ODS tube 杈, 'each knife is taken and frozen for the first 15 minutes for water, 16 minutes to ^ 2 5 em, the solvent is developed 〇 minutes for water: B gambling = 10· 〇 to 85:15, 31 minutes to 45 minutes is ^ 10-0. B guess = 8 5 : 1 5 to 8 0 . 2 0 gradient, flow rate is 3 ml / min) feed, '20 desalination The target compound 4 was obtained as 40 mg, and the compound 8 was a and J horse was 37 mg. Further, the obtained compound 4 has the following team and physical properties as shown below. !H-NMR (D2〇, 30°C) 8.01 (2H, d, Fmoc), 7.80 (2H ar , d, Fmoc), 7.56 (4H, m, Fmoc), 5.22 (1H, s, Manm!), 5 〇8 (1H, d, GlcNAcl Hi), 4.94 (1H, s, Manr-H!), 4.84 (1H, s, ManS-H., 4.69 (1H, d, GlcNAc2-Hi), 4.67 (1H, d, GlcNAcS-Hj), 4.55 (1H, d, Gal6-Hi), 4.33 (1H, dd, Man3-H2), 4.20 (1H, dd, Man4-H2), 4.15 (1H, dds Man4'-H2) , 2.97 (1H, bdd, Asn-β CH), 2.76 (2H, dd, NeuAc7, 7'-Η3ες), 2.62 (1H, bdd, Asn-β CH), 2.15 (12H, sx4,-Ac), 1.79 (2H, dd, NeuAc7, 7'-H3ax); HRMS C78H1]4N6NaO48 [M + Na + ] Theory 1 925.65 62 ' Measured value 1925. 6 5 3 9 ° Further, the obtained compound 8, physical properties e 'H-NMR (D2〇, 30°c) 7.99 (2H, d, Fmoc), 7.79 (2H, d, Fmoc), 7.55 (4H, m, -63 - 1324607 (58)

Fmoc), 5.15 (1H, S, Man4-H,), 5.06 (1H, d5 GlcNAcl-HO, 4.95 (1H, s, Man4'-Hi), 4.82 (1H, s, Man3-H,), 4.69 (1H, d, G1cNAc2-H,)5 4.67 (2H, d, GlcNAc5, S'-H,), 4.53 (2H, d, Gal6, ό'-ΗΟ, 4.34 (1H? d, Man3-H2); 4.27 (1H, d, Man4'-H2), 2.97 (1H, bdd, Asn-β CH2), 2.76 (1H, dd, NeuAc7'-H3eq), 2.61 (1H, bdd, Asn-β CH2), 2.15 (12H, s^4, _Ac),1.79 (1H,dd,NeuAc7'-H3ax); HRMS C78H114N6Na048 [M + Na + ]理論值 1 925.65 62,實測值 1 925.6 5 3 3。 •實施例5化合物5之合成 將實施例4所得到之化合物4 (30毫克,473 μηιοί)與牛 血清白蛋白3毫克,溶解於HEPES緩衝溶液(50 mM,pH 6.0) 6毫升中,進一步再加入由Jack豆衍生的α-甘露糖苷酵素 1 0U。將該溶液於3 7 °C下靜置2 1小時後,冷凍乾燥。再以 HPLC(ODS管柱’ 2.0&lt;()x25cm,展開溶劑為最初15分鐘 為水,16分鐘至30分鐘為水:乙腈= 10: 〇至85: 15,31 分鐘至45分鐘為水:乙腈= 85: 15至80: 20之梯度,流速 ® 為3毫升/分)進行純化,而得到目的之圖1所示的化合物5 為20毫克。 又,所得到之化合物5,其物理性質係如下所示。 !H-NMR (D20, 30°C ) 8.01 (2H, d, Fmoc), 7.80 (2H, d, Fmoc), 7.56 (4H, m, Fmoc), 5.00 (1H, d, GlcNAcl-H,), 4.95 (1H, s5 Man4'-H,), 4.84 (1H, s, Man3-H!), 4.67 (1H, d, GlcNAc2-H,), 4.56 (1H, d, G1CNAC5-H,), 4.44 (1H, d, Gal6-H,)5 4.11 (1H, dd, -64· 1324607 (59)Fmoc), 5.15 (1H, S, Man4-H,), 5.06 (1H, d5 GlcNAcl-HO, 4.95 (1H, s, Man4'-Hi), 4.82 (1H, s, Man3-H,), 4.69 ( 1H, d, G1cNAc2-H,)5 4.67 (2H, d, GlcNAc5, S'-H,), 4.53 (2H, d, Gal6, ό'-ΗΟ, 4.34 (1H? d, Man3-H2); 4.27 (1H, d, Man4'-H2), 2.97 (1H, bdd, Asn-β CH2), 2.76 (1H, dd, NeuAc7'-H3eq), 2.61 (1H, bdd, Asn-β CH2), 2.15 (12H , s^4, _Ac), 1.79 (1H, dd, NeuAc7'-H3ax); HRMS C78H114N6Na048 [M + Na + ] Theory 1 925.65 62, found 1 925.6 5 3 3 • Synthesis of Example 5 Compound 5 Compound 4 obtained in Example 4 (30 mg, 473 μηιοί) and 3 mg of bovine serum albumin were dissolved in 6 ml of HEPES buffer solution (50 mM, pH 6.0), and further added with α-derived from Jack bean. Mannosidase 10 U. The solution was allowed to stand at 37 ° C for 21 hours, then lyophilized, and then HPLC (ODS column '2.0 &lt; () x 25 cm, developing solvent for the first 15 minutes for water, 16 Minutes to 30 minutes for water: acetonitrile = 10: 〇 to 85: 15, 31 minutes to 45 minutes for water: acetonitrile = 85: 15 to 80: 20 gradient, flow rate ® 3 ml/min) Purification, and the compound 5 shown in Fig. 1 was obtained as 20 mg. Further, the obtained compound 5 had the following physical properties: !H-NMR (D20, 30 ° C) 8.01 (2H, d, Fmoc), 7.80 (2H, d, Fmoc), 7.56 (4H, m, Fmoc), 5.00 (1H, d, GlcNAcl-H,), 4.95 (1H, s5 Man4'-H,), 4.84 (1H, s , Man3-H!), 4.67 (1H, d, GlcNAc2-H,), 4.56 (1H, d, G1CNAC5-H,), 4.44 (1H, d, Gal6-H,)5 4.11 (1H, dd, - 64· 1324607 (59)

Man4丨-Η2),4.07 (1Η,dd,Man3-H2),2.97 (1Η, bdd,Asn-β CH), 2.76 (1H, dd, NeuAc7'-H3eq), 2.62 (1H, bdd, Asn-β CH), 2.15 (12H, sx4, -Ac), 1.79 (2H, dd, NeuAc7'-H3ax) ;HRMS C72H1()4N6Na043 [M + Na + ]理論值 1763.6034,實測 值 1763.6074 。 實施例6 化合物9之合成 將實施例4所得到之化合物8 (40毫克,630 μπιοί)與牛 血清白蛋白5毫克,溶解於HEPES緩衝溶液(50 mM,pH6.0) 7_8毫升中,進一步再加入由Jack豆衍生的α -甘露糖甞酵 素3 8U。將該溶液於37°C下靜置63小時後,冷凍乾燥。再 以HPLC (ODS管柱,2.0 φ X 25 cm,展開溶劑為最初15 分鐘為水,16分鐘至30分鐘為水:乙腈=1〇: 〇至85: 15 ,31分鐘至45分鐘為水:乙腈= 85: 15至80: 20之梯度, 流速為3毫升/分)進行純化,而得到目的之化合物9為3 0毫 克。 又’所得到之化合物9,其物理性質係如下所示。 'H-NMR (D20, 30°C ) 8.01 (2H, d, Fmoc), 7.80 (2H, d, Fmoc), 7.56 (4H, m, Fmoc), 5.23 (1H, s, Man4-Hi), 5.08 (1H, d5 GlcNAcl-H,), 4.53 (1H, d, Gal6-Hi), 4.32 (1H, dd, Man3-H2), 4.28 (1H, dd, Man4-H2)5 2.8 1 (1H, bdd, Asn-β CH), 2.76 (1H, dd, NeuAc7-H3eq), 2.59 (1H, bdd, Asn-β CH), 2.13 (12H, Sx4, -Ac), 1.80 (1H,dd,NeuAc7H3ax) ; HRMS C72H104N6NaO43 [M + Na + ]理論值 1 763.6034,實測值 1 763.604 1。 -65- 1324607 (60) 1½明諕明 實施例7 Fmoc基之脫保護(化合物33之合成) 將實施例2所得到之化合物1 〇 (1 〇 . 5毫克,5 · 2 7 μ m 〇 1) 溶解於5 0 %嗎啉/N,N -二曱基亞諷溶液1.4毫升中,於室溫 •氬氣環境下,使其反應二小時。在該溶液上加入甲笨3 毫升,再置入35 °C下之蒸發器中。重複該步驟三次,以 ' 除去反應溶劑。將殘留物質以凝膠過濾層析管柱 (SephadexG-25,2.5 φχ 30 cm,展開溶劑為水,流速為 1 · 0毫升/分)進行純化,而得到如圖3所示,7毫克的化合 籲物33(產率為76%) »又,所得到之化合物構造’基於 1 Η-NMR光譜分析與實施例2所得之化合物33 —致的緣故 ,確認係化合物3 3。 所得到之化合物3 3,其物理性質係如下所示。 ^-NMR (30°C ) δ 5.12 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.7 Hz,Man4丨-Η2), 4.07 (1Η, dd, Man3-H2), 2.97 (1Η, bdd, Asn-β CH), 2.76 (1H, dd, NeuAc7'-H3eq), 2.62 (1H, bdd, Asn-β CH), 2.15 (12H, sx4, -Ac), 1.79 (2H, dd, NeuAc7'-H3ax); HRMS C72H1() 4N6Na043 [M + Na + ] Theory 1763.6034, found 1763.6074. Example 6 Synthesis of Compound 9 Compound 8 (40 mg, 630 μπιοί) obtained in Example 4 and 5 mg of bovine serum albumin were dissolved in 7-8 ml of HEPES buffer solution (50 mM, pH 6.0), and further Add 3 8 U of α-mannose chymase derived from Jack Bean. The solution was allowed to stand at 37 ° C for 63 hours and then lyophilized. Further HPLC (ODS column, 2.0 φ X 25 cm, solvent for the first 15 minutes for water, 16 minutes to 30 minutes for water: acetonitrile = 1 〇: 〇 to 85: 15 , 31 minutes to 45 minutes for water: The acetonitrile = 85: 15 to 80: 20 gradient, flow rate of 3 ml / min) was purified to give the desired compound 9 as 30 mg. Further, the obtained compound 9 has the following physical properties. 'H-NMR (D20, 30°C) 8.01 (2H, d, Fmoc), 7.80 (2H, d, Fmoc), 7.56 (4H, m, Fmoc), 5.23 (1H, s, Man4-Hi), 5.08 (1H, d5 GlcNAcl-H,), 4.53 (1H, d, Gal6-Hi), 4.32 (1H, dd, Man3-H2), 4.28 (1H, dd, Man4-H2)5 2.8 1 (1H, bdd, Asn-β CH), 2.76 (1H, dd, NeuAc7-H3eq), 2.59 (1H, bdd, Asn-β CH), 2.13 (12H, Sx4, -Ac), 1.80 (1H, dd, NeuAc7H3ax) ; HRMS C72H104N6NaO43 [M + Na + ] theoretical 1 763.6034, found 1 763.604 1. -65- 1324607 (60) 11⁄2 明明明 Example 7 Fmoc-based deprotection (synthesis of compound 33) The compound 1 obtained in Example 2 〇 (1 〇. 5 mg, 5 · 2 7 μm 〇1 Dissolved in 150 ml of 50% morpholine/N,N-dimercaptoacetate solution and allowed to react for two hours at room temperature under argon. To the solution was added 3 ml of a solution and placed in an evaporator at 35 °C. This step was repeated three times to 'removal of the reaction solvent. The residue was purified by a gel filtration chromatography column (Sephadex G-25, 2.5 φ χ 30 cm, developing solvent water, flow rate of 1.0 mL/min) to obtain a compound of 7 mg as shown in FIG. The compound 33 (yield: 76%) was again obtained based on the 1 Η-NMR spectrum analysis and the compound 33 obtained in Example 2, and the compound 3 3 was confirmed. The physical properties of the obtained compound 3 3 are shown below. ^-NMR (30°C) δ 5.12 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.7 Hz,

GlcNAcl-H-1), 4.92 (s, 1H, Man4'-H-1), 4.76 (s, 1H,GlcNAcl-H-1), 4.92 (s, 1H, Man4'-H-1), 4.76 (s, 1H,

Man3-H-1), 4.62 (d, 1H, J = 8.0 Hz, GlcNAc2-H-1), 4.58 (d, • 2H, J = 7.8 Hz, GlcNAc5, 5'-H-l), 4.47 (d, 2H, J = 7.9 Hz,Man3-H-1), 4.62 (d, 1H, J = 8.0 Hz, GlcNAc2-H-1), 4.58 (d, • 2H, J = 7.8 Hz, GlcNAc5, 5'-Hl), 4.47 (d, 2H , J = 7.9 Hz,

Gal6, 6'-H-l), 4.24 (bd, 1H, Man3-H-2), 4.19 (bdd, 1H, J = 3.2 Hz, 1.4 Hz, Man4'-H-2), 4.12 (bdd, 1H, J = 3.2 Hz, 1.4 Hz, Man4-H-2), 2.93 (dd, 1H, J = 4.5 Hz, 17.0 Hz, Asn-β CH), 2.93 (dd, 1H, J-6.8 Hz, 17.0 Hz, Asn-β CH), 2.08 (s, 3H, Ac), 2.05 (s,6H,Ac χ 2 ),2 · 0 1 (s,3H, Ac) -66- 1324607 (61) 月績頁 實施例8 化合物1 4之合成 將化合物3 (28毫克’ 21.3 μηι〇ι)與牛血清白蛋白1〇毫 克,一同溶解於HEPES緩衝溶液(5〇mM,ρΗ5·0,454(iL) 中,進一步再加入神經胺酸酵素(西格瑪亞德利奇公司製 ’由Viblio Cholerae ’ 198 mU)。將該溶液於37t:下靜置 2 0小時後,以Η P L C分析確認反應已經終了。將反應溶液 以 HPLC (YMC 包裝管柱 D-ODS-5 S-5 120Α ODS No. 202 0 1 78 ’ 20 X 250 mm ’展開溶劑為50 mM醋酸銨水溶液 :乙腈= 80: 20,流速為4毫升/分)進行純化。更進一步 ’以ODS管柱(科思摩基75Cig-〇PN,15 X 100 mm,最初 以50宅升H2〇溶離’再以25%乙赌溶離)進行脫鹽,而得到 目的之化合物1 4 (1 7毫克,產率7 0 %) ^所得到之化合物1 4 其物理性質係如下所示。 *H-NMR (30°C ) δ 7.91 (d5 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, Fmoc), 7.51 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.12 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.5 Hz, GlcNAcl-H-1), 4.92 (s, 1H, Man4'-H-1), 4.76 (s, 1H,Gal6, 6'-Hl), 4.24 (bd, 1H, Man3-H-2), 4.19 (bdd, 1H, J = 3.2 Hz, 1.4 Hz, Man4'-H-2), 4.12 (bdd, 1H, J = 3.2 Hz, 1.4 Hz, Man4-H-2), 2.93 (dd, 1H, J = 4.5 Hz, 17.0 Hz, Asn-β CH), 2.93 (dd, 1H, J-6.8 Hz, 17.0 Hz, Asn- β CH), 2.08 (s, 3H, Ac), 2.05 (s,6H,Ac χ 2 ),2 · 0 1 (s,3H, Ac) -66- 1324607 (61) Monthly Results Page 8 Compound 1 Synthesis of 4 Compound 3 (28 mg ' 21.3 μηι〇ι) and 1 mg of bovine serum albumin were dissolved in HEPES buffer solution (5 mM, ρΗ5·0, 454 (iL), and further added with neuroamine Acid enzyme (made by Viglio Cholerae '198 mU). After the solution was allowed to stand at 37 t: 20 hours, the reaction was confirmed by ΗPLC analysis. The reaction solution was packaged in HPLC (YMC). Column D-ODS-5 S-5 120Α ODS No. 202 0 1 78 ' 20 X 250 mm 'Expansion solvent is 50 mM aqueous ammonium acetate: acetonitrile = 80: 20, flow rate 4 ml / min) for purification. Further 'with ODS column (Cosmoki 75Cig-〇PN, 15 X 100 mm, initially dissolved in 50 liters of H2 '' again Desalting was carried out by 25% hexanes, and the desired compound 1 4 (17 mg, yield 70%) was obtained. The obtained compound 14 was obtained as follows. *H-NMR (30 ° C) ) δ 7.91 (d5 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, Fmoc), 7.51 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.12 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.5 Hz, GlcNAcl-H-1), 4.92 (s, 1H, Man4'-H-1 ), 4.76 (s, 1H,

Man3-H-1), 4.58 (d, 1H, J = 8.0 Hz, GlcNAc2-H-1), 4.55 (d, 1H, J = 8.4 Hz, GlcNAc5'-H-1 ), 4.47 (d, 1H, J = 7.8 Hz,Man3-H-1), 4.58 (d, 1H, J = 8.0 Hz, GlcNAc2-H-1), 4.55 (d, 1H, J = 8.4 Hz, GlcNAc5'-H-1), 4.47 (d, 1H, J = 7.8 Hz,

Gal6'-H-1), 4.34 (t, 1H, Fmoc), 4.24 (bd, 1H, J=1.9 Hz, Man3-H-2), 4.18 (bdd, 1H, J=1.4 Hz, 3.3 Hz, Man4-H-2), 4.11 (bdd, 1H, J=1.4 Hz, 3.5 Hz, Man4'-H-2), 2.72 (bdd, 1H, J = 3.0 Hz, 15.7 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 8.7 -67- 1324607 (62) 1¾ 明諕Gal6'-H-1), 4.34 (t, 1H, Fmoc), 4.24 (bd, 1H, J=1.9 Hz, Man3-H-2), 4.18 (bdd, 1H, J=1.4 Hz, 3.3 Hz, Man4 -H-2), 4.11 (bdd, 1H, J=1.4 Hz, 3.5 Hz, Man4'-H-2), 2.72 (bdd, 1H, J = 3.0 Hz, 15.7 Hz, Asn-β CH), 2.52 ( Bdd, 1H, J = 8.7 -67- 1324607 (62) 13⁄4 明諕

Hz, 15.7 Hz, Asn-β CH), 2.06, 2.05, 2.04, 1.89 (each s, each 3H, Ac); HRMS CwH!, 〇N6Na045 [M + Na + ]理論值 1837.6402,實測值 1837.6471 ° 實施例9 化合物1 9之合成 將化合物7 (20毫克,9.4 μιηοΐ)與牛血清白蛋白1.6毫克 ,一同溶解於 HEPES 缓衝溶液(50 mM,pH 5.0,323 pL) 中,進一步再加入神經胺酸酵素(西格瑪亞德利奇公司製Hz, 15.7 Hz, Asn-β CH), 2.06, 2.05, 2.04, 1.89 (each s, each 3H, Ac); HRMS CwH!, 〇N6Na045 [M + Na + ] Theoretical value 1837.6402, found 1837.6471 ° Example 9 Synthesis of Compound 1 9 Compound 7 (20 mg, 9.4 μιηοΐ) and bovine serum albumin 1.6 mg were dissolved in HEPES buffer solution (50 mM, pH 5.0, 323 pL), and further added with ceramide (Sigma-based company

’由 Viblio Cholerae’ 141 mU)。將該溶液於 37。(:下靜置 • 1 8小時後’以HPLC分析確認反應已經終了。然後,以HPLC (YMC包裝管柱 D-ODS-5 S-5 120A ODS No. 2020178,20 X 250mm’展開溶劑為50mM醋酸銨水溶液:乙腈=8〇: 2〇 ’流速為4毫升/分)進行純化。更進一步,以〇ds管柱(科 思摩基75Ci8-OPN’ 15 x100 mm,最初以50毫升H20溶離 ,再以2 5 %乙腈溶離)進行脫鹽,而得到目的之化合物i 9 (1 3毫克,產率7 6 %)。所得到之化合物,由於其1 η - NM R 之結果與標準品一致之故,而確認其構造。 鲁實施例1 0 化合物1 5之合成 將化合物4 (45毫克,24 μπιοί)與牛也清白蛋白1.7毫克 ,一同溶解於 HEPES 緩衝溶液(50 mM,pH 5.0,820 pL) 中’進一步再加入神經胺酸酵素(西格瑪亞德利奇公司製 ,由 Viblio Cholerae’ 134 mU)。將該溶液於 37。(:下靜置 1 4小時後,以Η P L C分析確認反應已經終了。然後,將反 應溶液以 HPLC (YMC包裝管柱D-ODS-5 S-5 120Α ODS No 2020 1 78 ’ 20 X 250 mm,展開溶劑為50 mM醋酸銨水溶液 -68- 1324607 (63) 發明說明績頁」 :乙腈= 80: 20,流速為4毫升/分)進行純化。更進一步 ’以ODS管柱(科思摩基75Ci8_〇pN,15 X 1〇〇 mm ’最初 以50毫升Ηπ溶離,再以25%乙腈溶離)進行脫鹽’而得到 目的之化合物15 (28毫克,產率74 %)。所得到之化合物15 其物理性質係如下所示。 •H-NMR (30°C ) δ 7.92 (d,2H,J = 7.5 Hz, Fmoc), 7_71 (d,2H,J-7_5 Hz,'by Viblio Cholerae' 141 mU). This solution was at 37. (: After standing = 1 8 hours later) The reaction was confirmed by HPLC analysis. Then, HPLC (YMC packaging column D-ODS-5 S-5 120A ODS No. 2020178, 20 X 250mm' developing solvent was 50 mM Ammonium acetate aqueous solution: acetonitrile = 8 〇: 2 〇 'flow rate 4 ml / min) for purification. Further, 〇ds column (Cosmoki 75Ci8-OPN' 15 x 100 mm, initially dissolved in 50 ml H20, Desalting with 25% acetonitrile to obtain the desired compound i 9 (13 mg, yield 76%). The obtained compound was consistent with the standard because of the result of 1 η - NM R The structure was confirmed. Lu Example 1 0 Synthesis of Compound 1 5 Compound 4 (45 mg, 24 μπιοί) and bovine albumin 1.7 mg were dissolved together in HEPES buffer solution (50 mM, pH 5.0, 820 pL) In the 'further addition of neuraminidase (made by Sigma-Delci, Viblio Cholerae' 134 mU). The solution was allowed to stand at 37. After standing for 14 hours, the reaction was confirmed by ΗPLC analysis. Then, the reaction solution was HPLC (YMC packaging column D-ODS-5 S-5 120Α ODS No 2020 1 78 ' 20 X 250 mm, developing solvent is 50 mM ammonium acetate aqueous solution -68-1324607 (63) Description of the invention: acetonitrile = 80: 20, flow rate 4 ml / min) for purification. Further, 'the salt of the ODS column (Cosmoki 75Ci8_〇pN, 15 X 1〇〇mm 'dissolved initially in 50 ml Ηπ, then dissolved in 25% acetonitrile) to obtain the desired compound 15 (28 mg, Yield 74%) The physical properties of the obtained compound 15 are as follows: H-NMR (30 ° C) δ 7.92 (d, 2H, J = 7.5 Hz, Fmoc), 7_71 (d, 2H, J -7_5 Hz,

Fmoc), 7.51 (dd, 2H, J = 7.5 Hz, Fmoc), 7.44 (dd, 2H, J = 7.5 Hz, Fmoc), 5.10 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.5 Hz, GlcNAcl-H-1), 4.92 (s, 1H, Man4'-H-1), 4.76 (s, 1H,Fmoc), 7.51 (dd, 2H, J = 7.5 Hz, Fmoc), 7.44 (dd, 2H, J = 7.5 Hz, Fmoc), 5.10 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.5 Hz, GlcNAcl-H-1), 4.92 (s, 1H, Man4'-H-1), 4.76 (s, 1H,

Man3-H-1), 4.58 (ds 2H, GlcNAc2, 5'-H-l), 4.47 (d, 1H, J = 8.0 Hz, Gal6'-H-1), 4.35 (t, 1H, Fmoc), 4.24 (bd, 1H, J=1.9 Hz, Man3-H-2), 4.11 (bs, 1H, =Man4'-H-2), 4.07 (bs, 1H, Man4-H-2), 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 8.7 Hz, 15.5 Hz, Asn-β CH), 2.06, 2.04, 1.89 (each s,each 3H, Ac) ; HRMS C67H97N5NaO40 [M + Na + ]理 論值 1634.5608,實測值 1634.5564 實施例1 1 化合物7 0之合成Man3-H-1), 4.58 (ds 2H, GlcNAc2, 5'-Hl), 4.47 (d, 1H, J = 8.0 Hz, Gal6'-H-1), 4.35 (t, 1H, Fmoc), 4.24 ( Bd, 1H, J=1.9 Hz, Man3-H-2), 4.11 (bs, 1H, =Man4'-H-2), 4.07 (bs, 1H, Man4-H-2), 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 8.7 Hz, 15.5 Hz, Asn-β CH), 2.06, 2.04, 1.89 (each s,each 3H, Ac) ; HRMS C67H97N5NaO40 [M + Na + ] theoretical value 1634.5608, found 1634.5564 Example 1 1 Synthesis of compound 7 0

將化合物15 (11毫克,6.8 μηιοί)與牛血清白蛋白1.5毫 克,一同溶解於HEPES緩衝溶液(50mM,ρΗ5.0,269 μΙ〇 中,進一步再加入石-半乳糖酵素(生化學工業公司製,由 Jack豆,1 1 pL,275 mU)。將該溶液於37°C下靜置14小時 後,以HPLC分析確認反應已經終了。將反應溶液以HPLCCompound 15 (11 mg, 6.8 μηιοί) and 1.5 mg of bovine serum albumin were dissolved in HEPES buffer solution (50 mM, ρΗ5.0, 269 μΙ〇, and further added with stone-galactose enzyme (manufactured by Biochemical Co., Ltd.) From Jack Bean, 1 1 pL, 275 mU). After the solution was allowed to stand at 37 ° C for 14 hours, it was confirmed by HPLC analysis that the reaction was completed. The reaction solution was subjected to HPLC.

(YMC 包裝管柱 D-ODS-5 S-5 120AODSN〇. 2020178,20 X -69- 1324607 (64) ϋϋϋκΐ 2 5 0 m m,展開溶劑為5 0 m Μ醋酸敍水溶液:乙腈=8 Ο : 2 〇 ,流速為4毫升/分)進行純化。更進一步,以〇DS管柱(科 思摩基75C丨8-OPN,15 x100 mm,最初以50毫升H20溶離 ,再以2 5 %乙腈溶離)進行脫鹽,而得到目的之化合物7 〇 (6 · 3毫克,產率6 4 %)。所得到之化合物其物理性質係如下 所示。 ^-NMR (30°C )(YMC packaging column D-ODS-5 S-5 120AODSN〇. 2020178,20 X -69- 1324607 (64) ϋϋϋκΐ 2 5 0 mm, developing solvent is 50 m Μ acetic acid aqueous solution: acetonitrile = 8 Ο : 2 Purine was carried out at a flow rate of 4 ml/min. Further, desalting was carried out with a 〇DS column (Cosmoki 75C丨8-OPN, 15 x 100 mm, initially dissolved in 50 ml of H20, and then dissolved in 25% acetonitrile) to obtain the desired compound 7 〇 (6) · 3 mg, yield 64%). The physical properties of the obtained compound are shown below. ^-NMR (30 ° C)

δ 7.91 (d, 2H, J = 7.5 Hz, Fmoc), 7.70 (d, 2H, J = 7.5 Hz, Fmoc), 7.50 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.10 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.5 Hz, GlcNAcl-H-1), 4.9 1 (s, 1H, Man4'-H-1), 4.76 (s, 1H,δ 7.91 (d, 2H, J = 7.5 Hz, Fmoc), 7.70 (d, 2H, J = 7.5 Hz, Fmoc), 7.50 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.10 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.5 Hz, GlcNAcl-H-1), 4.9 1 (s, 1H, Man4'-H- 1), 4.76 (s, 1H,

Man3-H-1), 4.55 (d, 2H, GlcNAc2, 5'-H-l), 4.32 (t, 1H, Fmoc), 4.24 (bs, 1H, Man3-H-2), 4.10 (bs, 1H, Man4-H-2), 4.06 (bs, 1H, J=1.3 Hz, Man4'-H-2), 2.72 (bd, 1H, J=14.0 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 9.5 Hz, 14.8 Hz, Asn-β CH), 2.06, 2.05, 1.89 (each s, each 3H, Ac) ; MS (Fab) C61H88N5035 [M + H + ]理論值 1450.5,實測值 1450 4 實施例1 2 化合物2 0之合成 將化合物8 (47毫克’ 25 μπιοί)與牛血清白蛋白ip毫克 ’一同溶解於 HEPES緩衝溶液(50 mM,pH 5.0,840 μΙ〇 中,進一步再加入神經胺酸酵素(西格瑪亞德利奇公司製 ,由Viblio Cholerae,369 mU)。將該溶液於37。〇下靜置 3 7小時後’以Η P L C分析確s忍反應已經终了。將反應溶液 冷凍乾燥,再以HPLC(YMC包裝管柱D-odsj s_5 ι2〇Α -70- 1324607 ODS No· 2020178 ’ 20 X 250 mm ’ 展開溶劑為 50 mM 醋酸 銨水溶液:乙腈=8 0 : 2 0,流速為4毫升/分)進行純化。 更進一步’以ODS官柱(科思摩基75Ci8〇pN,15 X i〇〇nim ’最初以5 0毫升Η2 Ο溶離,再以2 5 %乙腈溶離)進行脫鹽, 而得到目的之化合物2 0 (2 6毫克,產率6 5 %)。所得到之化 合物其物理性質係如下所示。 'H-NMR (30°c ) δ 7.92 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J-7.5 Hz,Man3-H-1), 4.55 (d, 2H, GlcNAc2, 5'-Hl), 4.32 (t, 1H, Fmoc), 4.24 (bs, 1H, Man3-H-2), 4.10 (bs, 1H, Man4 -H-2), 4.06 (bs, 1H, J=1.3 Hz, Man4'-H-2), 2.72 (bd, 1H, J=14.0 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 9.5 Hz, 14.8 Hz, Asn-β CH), 2.06, 2.05, 1.89 (each s, each 3H, Ac) ; MS (Fab) C61H88N5035 [M + H + ] Theoretical value 1450.5, found 1450 4 Example 1 2 Synthesis of Compound 20 Compound 8 (47 mg '25 μπιοί) was dissolved in HEPES buffer solution (50 mM, pH 5.0, 840 μΙ〇) with further addition of ceramide (Sigma) Made by Yadlich, Viblio Cholerae, 369 mU). The solution was allowed to stand at 37. After standing for 37 hours, the reaction was confirmed by PLC analysis. The reaction solution was freeze-dried and then HPLC. (YMC packaging column D-odsj s_5 ι2〇Α -70- 1324607 ODS No· 2020178 ' 20 X 250 mm ' Developing solvent is 50 mM ammonium acetate aqueous solution: acetonitrile = 8 0 : 2 0, flow rate 4 ml / min) Purification. Further 'to ODS official column (Cosmoki 75Ci8〇p N,15 X i〇〇nim 'is initially dissolved in 50 ml of Η2 Ο, and then dissolved in 25% acetonitrile) to obtain the desired compound 2 0 (26 mg, yield 65 %). The physical properties of the compound are as follows: 'H-NMR (30 ° C ) δ 7.92 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J-7.5 Hz,

Fmoc),7.51 (dd, 2H,J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5Fmoc), 7.51 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5

Hz, Fmoc), 5.12 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.4 Hz, GlcNAcl-H-1), 4.91 (s, 1H, Man4'-H-1), 4.77 (s, 1H,Hz, Fmoc), 5.12 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.4 Hz, GlcNAcl-H-1), 4.91 (s, 1H, Man4'-H-1), 4.77 (s, 1H,

Man3-H-1), 4.57 (bd, 2H, GlcNAc2, 5'-H-l), 4.46 (d, 1H, J = 7.5 Hz, Gal6'-H-1), 4.34 (t, 3H, Fmoc), 4.24 (bs, 1H, Man4'-H-2), 4.19 (bs, 1H, Man4-H-2), 2.72 (bd, 1HSMan3-H-1), 4.57 (bd, 2H, GlcNAc2, 5'-Hl), 4.46 (d, 1H, J = 7.5 Hz, Gal6'-H-1), 4.34 (t, 3H, Fmoc), 4.24 (bs, 1H, Man4'-H-2), 4.19 (bs, 1H, Man4-H-2), 2.72 (bd, 1HS

J=15.5 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 9.2 Hz, 15.5 Hz, Asn-β CH), 2.06, 2.05, 1.89 (each s, each 3H, Ac) ; HRMS C67H97N5Na04。[M + Na + ]理論值 1 634.5608 ,實測值 1634.5644 實施例1 3 化合物7 1之合成J = 15.5 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 9.2 Hz, 15.5 Hz, Asn-β CH), 2.06, 2.05, 1.89 (each s, each 3H, Ac) ; HRMS C67H97N5Na04. [M + Na + ] theoretical 1 634.5608 , found 1634.5644 Example 1 3 Synthesis of Compound 7 1

將化合物20 (12毫克,7.4 μιηοΐ)與牛血清白蛋白1.0毫 克,一同溶解於HEPES缓衝溶液(50mM,ρΗ5.0,330 μΙ〇 中,進一步再加入召-半乳糖酵素(生化學工業公司製,由 Jack豆,12 μί,297 mU)。將該溶液於37。(:下靜置46小時 後’以HPLC分析確認反應已經終了。將反應溶液以HPLC -71 · 1324607 (66) ** 1 &quot; 1 ... (YMC 包裝管柱 D-ODS-5 S-5 120AODS No. 2020178,20 χ 250 mm,展開溶劑為50 mM醋酸銨水溶液:乙腈= 80: 20 ’流速為4毫升/分)進行純化。更進一步,以ODS管柱(科 思摩基75C18-OPN,15 x100mm,最初以50毫升H2〇溶離 ,再以2 5 %乙腈溶離)進行脫鹽,而得到目的之化合物7 1 (6.6毫克,產率61%)。所得到之化合物其物理性質係如下 所示。 *Η-ΝΜΚ (30°C ) • δ 7.90 (d,2H,J = 7.5 Hz,Fmoc), 7.70 (d, 2H, J = 7.5 Hz, Fmoc), 7.49 (dd, 2H, J = 7.5 Hz, Fmoc), 7.42 (dd, 2H, J = 7.5 Hz, Fmoc), 5.11 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.4 Hz, GlcNAcl-1 H-1), 4.91 (s,1 Η, Man4'-H- 1),4.7 6 (s, 1 H, Man3-H-1), 4.55 (d, 2H, GlcNAc2, 5-H-l), 4.31 (b, 1H, Fmoc), 4.24 (bs, 1H, Man3-H-2), 4.18 (bs, 1H, Man4-H-2), 3.97 (dd, 1H, J=1.8 Hz, 3.3 Hz, Man4'-H-2), 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 8.0 Hz, 15.5 Hz, ♦ Asn-β CH), 2.06, 2.05, 1.88 (each s, each 3H, Ac) ; MS (Fab) C61H88N5035 [M + H + ]理論值 1 450.5,實測值 1 450.3 實施例1 4 化合物1 6之合成 將化合物5 (32毫克,18·4 μηιοί)與牛血清白蛋白2.5毫 克,一同溶解於HEPES緩衝溶液(50mM,pH 5.0,713 μ!〇 中,進一步再加入神經胺酸酵素(西格瑪亞德利奇公司製 ,由Viblio Cholerae ’ 134 mU)。將該溶液於37°C下靜置 1 7小時後’以HPLC分析確認反應已經終了。將反應溶液 -72- 1324607 (67) ΜϋΜ£ 再以 HPLC (YMC 包裝管柱 D-ODS-5 S-5 120A ODS No. 2020178’ 20 x 250 mm,展開溶劑為50 mM醋酸銨水溶液 :乙腈=8 0 : 2 0,流速為4毫升/分)進行純化。更進一步 ,以ODS管柱(科思摩基75C丨8-OPN,15 X 100 mm,最初 以5 0毫升H20溶離,再以2 5 %乙腈溶離)進行脫鹽,而得到 目的之化合物1 6 (1 3毫克,產率5 2 %)。所得到之化合物其 物理性質係如下所示。 'H-NMR (30°C ) δ 7.92 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, Fmoc), 7.51 (dd, 2H, J = 7.5 Hz, Fmoc), 7.44 (dd, 2H, J = 7.5 Hz, Fmoc), 5.00 (d, 1H, J = 9.9 Hz, G1 cNAc 1 -H-1 ), 4.92 (s, 1H, Man4'-H-1), 4.75 (s, 1H, Man3-H-1), 4.58 (d, 2H, J = 7.5 Hz, GlcNAc2, 5'-H-l), 4.47 (d, 1H, J = 7.8 Hz,Compound 20 (12 mg, 7.4 μιηοΐ) and bovine serum albumin 1.0 mg were dissolved in HEPES buffer solution (50 mM, ρΗ5.0, 330 μΙ〇, and further added to CAM-galactosidase (Biochemical Industry Co., Ltd.) The system was made up of Jack Bean, 12 μί, 297 mU. The solution was taken at 37. (: After standing for 46 hours, the reaction was confirmed by HPLC analysis. The reaction solution was HPLC-71 · 1324607 (66) ** 1 &quot; 1 ... (YMC packaging column D-ODS-5 S-5 120AODS No. 2020178, 20 χ 250 mm, developing solvent 50 mM ammonium acetate aqueous solution: acetonitrile = 80: 20 'flow rate 4 ml / Purification. Further, desalting was carried out with an ODS column (Cosmoki 75C18-OPN, 15 x 100 mm, initially dissolved in 50 ml of H 2 ,, and then dissolved in 25% acetonitrile) to obtain the desired compound 7 1 (6.6 mg, yield 61%) The physical properties of the obtained compound are as follows: *Η-ΝΜΚ (30 ° C) • δ 7.90 (d, 2H, J = 7.5 Hz, Fmoc), 7.70 (d , 2H, J = 7.5 Hz, Fmoc), 7.49 (dd, 2H, J = 7.5 Hz, Fmoc), 7.42 (dd, 2H, J = 7.5 Hz, Fmoc), 5.11 (s, 1H, Man4-H-1 ), 4 .99 (d, 1H, J = 9.4 Hz, GlcNAcl-1 H-1), 4.91 (s,1 Η, Man4'-H- 1), 4.7 6 (s, 1 H, Man3-H-1), 4.55 (d, 2H, GlcNAc2, 5-Hl), 4.31 (b, 1H, Fmoc), 4.24 (bs, 1H, Man3-H-2), 4.18 (bs, 1H, Man4-H-2), 3.97 ( Dd, 1H, J=1.8 Hz, 3.3 Hz, Man4'-H-2), 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 8.0 Hz, 15.5 Hz ♦ Asn-β CH), 2.06, 2.05, 1.88 (each s, each 3H, Ac) ; MS (Fab) C61H88N5035 [M + H + ] Theoretical value 1 450.5, found 1 450.3 Example 1 4 Compound 1 6 Synthesis Compound 5 (32 mg, 18·4 μηιοί) and bovine serum albumin 2.5 mg were dissolved in HEPES buffer solution (50 mM, pH 5.0, 713 μ! ,, and further added with ceramide) (Sigma) Made by Delich, by Viblio Cholerae ' 134 mU). After the solution was allowed to stand at 37 ° C for 17 hours, it was confirmed by HPLC analysis that the reaction was completed. The reaction solution-72-1324607 (67) was further purified by HPLC (YMC packaging column D-ODS-5 S-5 120A ODS No. 2020178' 20 x 250 mm, developing solvent 50 mM ammonium acetate aqueous solution: acetonitrile = Purification was carried out at 8 0 : 2 0 at a flow rate of 4 ml/min. Further, desalting was carried out with an ODS column (Cosmoki 75C丨8-OPN, 15 X 100 mm, initially dissolved in 50 ml of H20, and then dissolved in 25 % acetonitrile) to obtain the desired compound 16 ( 1 3 mg, yield 52%). The physical properties of the obtained compound are as follows. 'H-NMR (30°C) δ 7.92 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, Fmoc), 7.51 (dd, 2H, J = 7.5 Hz, Fmoc ), 7.44 (dd, 2H, J = 7.5 Hz, Fmoc), 5.00 (d, 1H, J = 9.9 Hz, G1 cNAc 1 -H-1 ), 4.92 (s, 1H, Man4'-H-1), 4.75 (s, 1H, Man3-H-1), 4.58 (d, 2H, J = 7.5 Hz, GlcNAc2, 5'-Hl), 4.47 (d, 1H, J = 7.8 Hz,

Gal6'-H-1), 4.34 (t, 1H, Fmoc), 4.10 (bd, 1H, Man3-H-2), 4.07 (bs, 1H, Man4'-H-2), 2.72 (bdd5 1H, J=15.5 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 9.2 Hz, 15.5 Hz, Asn-β CH), 2.07, 2.05, 1.89 (each s, each 3H, Ac) ; MS (Fab) C61H88N5035 [M + H + ]理論值 1450.5,實測值 1450.3。 實施例1 5 化合物1 7之合成Gal6'-H-1), 4.34 (t, 1H, Fmoc), 4.10 (bd, 1H, Man3-H-2), 4.07 (bs, 1H, Man4'-H-2), 2.72 (bdd5 1H, J =15.5 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 9.2 Hz, 15.5 Hz, Asn-β CH), 2.07, 2.05, 1.89 (each s, each 3H, Ac) ; MS (Fab) C61H88N5035 [M+H+] Theory 1450.5, found 1450.3. Example 1 Synthesis of Compound 1 7

將化合物16 (9毫克’ 6.2 μιηοΐ)與牛血清白蛋白ι·6毫克 ,一同溶解於 HEPES 缓衝溶液(50 mM,pH 5.0,613 μΙ〇 中,進一步再加入/3 -半乳糖酵素(生化學工業公司製,由 Jack豆,186 mU)。將該溶液於37 °C下靜置32小時後,以 HPLC分析確認反應已經終了。將反應溶液以HPLC (YMC -73 - 1324607 (68) 包裝管柱 D-ODS-5 S-5 120A ODS No. 2020178,20 χ 250 mm,展開溶劑為50 mM醋酸銨水溶液:乙腈=80 : 2〇, 流速為4毫升/分)進行純化。更進一步,以OD S管柱(科思 摩基75C18-OPN,15 χ 100 mm,最初以50毫升H2〇溶離, 再以2 5 %乙腈溶離)進行脫鹽,而得到目的之化合物i 7 (5.4毫克,產率68%)。所得到之化合物其物理性質係如不 所示。 】H-NMR (30〇C )Compound 16 (9 mg ' 6.2 μιηοΐ) and bovine serum albumin ι·6 mg were dissolved in HEPES buffer solution (50 mM, pH 5.0, 613 μΙ〇, and further added with /3 -galactosidase (raw) Made by Chemical Industry Co., Ltd., 186 mU by Jack Bean. After the solution was allowed to stand at 37 ° C for 32 hours, it was confirmed by HPLC analysis that the reaction was completed. The reaction solution was packed in HPLC (YMC -73 - 1324607 (68)) Column D-ODS-5 S-5 120A ODS No. 2020178, 20 χ 250 mm, developing solvent 50 mM aqueous ammonium acetate: acetonitrile = 80: 2 Torr, flow rate 4 ml / min) for further purification. Desalting with an OD S column (Cosmoki 75C18-OPN, 15 χ 100 mm, initially dissolved in 50 ml of H 2 ,, and then dissolved in 25% acetonitrile) to obtain the desired compound i 7 (5.4 mg, produced) The rate is 68%. The physical properties of the obtained compound are not shown. 】H-NMR (30〇C)

δ 7.8 9 ( d,2 Η,J = 7 · 5 Η z,F m o c ) , 7.6 8 ( d, 2 Η,J = 7 · 5 Η z, F m o c), 7 · 4 9 (d d, 2 H,J = 7 · 5 H z,F m o c),7 · 4 2 (d d,2 H,J = 7.5 Hz, Fmoc),4.99 (d, 1H, J = 9.7 Hz, GlcNAcl-H-1), 4.91 (s, 1H, Man4'-H-1), 4.55 (d, 1H, J = 8.1 Hz, GlcNAc2, 5'-H-l), 4.09, 4.07 (s, 1H, Man4'-H-2, Man3-H-2), 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.56 (bdd, 1H, J = 8.1 Hz, 15.5 Hz, Asn-β CH), 2.07, 2.05, 1.89 (each s, each 3H, Ac) ; MS (Fab)理論值 C55H77N5Na03。[M + Na + ]理論值 13 10.5,實測 值 1310.2 實施例1 6 化合物1 8之合成 將化合物17 (3.4毫克,2.6 μιηοΐ)與牛血清白蛋白1.1毫 克,一同溶解於HEPES緩衝溶液(50 mM,pH 5.0,257 μΙ&gt;) 中,進一步再加入Ν -乙醯基-冷-D -葡糖胺酵素(西格瑪亞 德利奇公司製,由Jack豆,144 mU)。將該溶液於37°C下 靜置24小時後,以HPLC分析確認反應已經終了。將反應 溶液以 HPLC (YMC 包裝管柱 D-ODS-5 S,5 120A ODS No. -74- 1324607 (69) 發明說明緬頁 2020 1 78,20 X 250 mm,展開溶劑為5〇 mM醋酸銨水溶液 :乙腈=80 : 20,流速為4毫升/分)進行純化。更進一步 ,以ODS管柱(科思摩基75C18-OPN,I5 x 100 mm ’最初 以5 0毫升Η 2 Ο溶離,再以2 5 %乙腈溶離)進行脫鹽’而得到 目的之化合物1 8 (2 · 1毫克,產率7 5 %)。所得到之化合物 其物理性質係如下所示。 ^-NMR (30°C ) δ 7.91 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, Fmoc), 7.51 (dd, 2H, J = 7.5 Hz, 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, 7.5 Hz, Fmoc), 5.00 (d5 1H, J = 9.7 Hz, GlcNAc 1-H-1), 4.91 (d, 1HS J=1.6 Hz, Man4'-H-1), 4.76 (s, 1HS Man3-H-1), 4.58 (d, 1H, J = 7.8 Hz, GlcNAc2-H-1), 4.34 (t, 1H, Fmoc), 4.07 (d, 1H, J = 2.7 Hz, Man4'-H-2), 3.97 (dd, 1H, J=1.6 Hz, 3.7 Hz, Man3-H-2), 2.72 (bdd, 1H, J = 3.2 Hz, 15.1 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 8.9 Hz, 15.1 Hz, Asn-β CH), 2.07,1.89 (each s,each 3H,Ac) ; MS (Fab) C47H65N4025 [M + Na + ]理論值 1085.4,實測值 1 085.3 實施例1 7 化合物2 1之合成 將化合物9 (28毫克,16 μιηοΐ)與牛血清白蛋白ι7毫克 ’一同溶解於HEPES緩衝溶液(50 mM,ρΗ 5 〇,624 μΐ^ 中’進一步再加入神經胺酸酵素(西格瑪亞德利奇公司製 ’由Vib丨io Cholerae’ Η7 mU)。將該溶液於37。〇下靜置 17小時後,以HPLC分析確認反應已經终了。然後,將反 應溶液以 HPLC (YMC 包裝管柱 D-0Ds_5 s_5 12QA 〇DS Nq&gt; -75· 1324607δ 7.8 9 ( d,2 Η, J = 7 · 5 Η z, F moc ) , 7.6 8 ( d, 2 Η, J = 7 · 5 Η z, F moc), 7 · 4 9 (dd, 2 H , J = 7 · 5 H z, F moc), 7 · 4 2 (dd, 2 H, J = 7.5 Hz, Fmoc), 4.99 (d, 1H, J = 9.7 Hz, GlcNAcl-H-1), 4.91 (s, 1H, Man4'-H-1), 4.55 (d, 1H, J = 8.1 Hz, GlcNAc2, 5'-Hl), 4.09, 4.07 (s, 1H, Man4'-H-2, Man3-H -2), 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.56 (bdd, 1H, J = 8.1 Hz, 15.5 Hz, Asn-β CH), 2.07, 2.05, 1.89 (each s, Each 3H, Ac) ; MS (Fab) calcd for C55H77N5Na03. [M + Na + ] Theoretical value 13 10.5, found 1310.2 Example 1 Synthesis of Compound 1 8 Compound 17 (3.4 mg, 2.6 μιηοΐ) and bovine serum albumin 1.1 mg were dissolved together in HEPES buffer solution (50 mM) Further, Ν-acetamido-cold-D-glucosamine enzyme (manufactured by Sigma Delich, manufactured by Jack Bean, 144 mU) was further added to pH 5.0, 257 μΙ&gt;). After the solution was allowed to stand at 37 ° C for 24 hours, it was confirmed by HPLC analysis that the reaction was completed. The reaction solution was subjected to HPLC (YMC packaging column D-ODS-5 S, 5 120A ODS No. -74-1324607 (69). The invention page was 2020 1 78, 20 X 250 mm, and the developing solvent was 5 mM ammonium acetate. The aqueous solution was washed with acetonitrile = 80:20 at a flow rate of 4 ml/min. Further, the ODS column (Cosmoki 75C18-OPN, I5 x 100 mm 'is initially dissolved in 50 ml Η 2 ,, and then eluted with 25% acetonitrile) to obtain the desired compound 1 8 ( 2 · 1 mg, yield 7 5 %). The physical properties of the obtained compound are shown below. ^-NMR (30°C) δ 7.91 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, Fmoc), 7.51 (dd, 2H, J = 7.5 Hz, 7.5 Hz , Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, 7.5 Hz, Fmoc), 5.00 (d5 1H, J = 9.7 Hz, GlcNAc 1-H-1), 4.91 (d, 1HS J=1.6 Hz, Man4 '-H-1), 4.76 (s, 1HS Man3-H-1), 4.58 (d, 1H, J = 7.8 Hz, GlcNAc2-H-1), 4.34 (t, 1H, Fmoc), 4.07 (d, 1H, J = 2.7 Hz, Man4'-H-2), 3.97 (dd, 1H, J=1.6 Hz, 3.7 Hz, Man3-H-2), 2.72 (bdd, 1H, J = 3.2 Hz, 15.1 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 8.9 Hz, 15.1 Hz, Asn-β CH), 2.07, 1.89 (each s, each 3H, Ac) ; MS (Fab) C47H65N4025 [M + Na + ] Theoretical value 1085.4, found 1 085.3 Example 1 7 Synthesis of compound 2 1 Compound 9 (28 mg, 16 μιηοΐ) was dissolved in HEPES buffer solution together with bovine serum albumin ι 7 mg (50 mM, ρΗ 5 〇, 624 In the μΐ^, a further addition of a neuraminidase (made by Vig丨io Cholerae' Η7 mU) was carried out. The solution was allowed to stand at 37°C for 17 hours, and the reaction was confirmed by HPLC analysis. End. Then, will react Solution to HPLC (YMC packed column D-0Ds_5 s_5 12QA 〇DS Nq &gt; -75 · 1324607

(70) [MSH 2020178,20x250mm,展開溶劑為50mM醋酸銨水溶液 :乙赌= 80: 20,流速為4毫升/分)進行純化。更進一步 ,以ODS管柱(科思摩基75CI8-OPN,15 X 100 mm,最初 以5 0毫升Η 2 Ο溶離,再以2 5 %乙腈溶離)進行脫鹽,而得到 目的之化合物2 1 (1 4 · 6毫克,產率6 8 %)。所得到之化合物 其物理性質係如下所示。 *H-NMR (30°C ) δ 7.92 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, • Fmoc), 7.50 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.12 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.5 Hz, GlcNAcl-lH-1), 4.77 (s, 1H, Man 3-H -1 ),4 · 5 7 (d,2 H, J = 7.2 Hz, GlcNAc2-H-l), 4.46 (d, 1H, J = 7.8 Hz,(70) [MSH 2020178, 20 x 250 mm, developing solvent: 50 mM aqueous solution of ammonium acetate: B gambling = 80:20, flow rate 4 ml/min) was purified. Further, desalting was carried out with an ODS column (Cosmoki 75CI8-OPN, 15 X 100 mm, initially dissolved in 50 ml Η 2 ,, and then dissolved in 25 % acetonitrile) to obtain the desired compound 2 1 ( 1 4 · 6 mg, yield 68%). The physical properties of the obtained compound are shown below. *H-NMR (30°C) δ 7.92 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, • Fmoc), 7.50 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.12 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.5 Hz, GlcNAcl-lH-1), 4.77 ( s, 1H, Man 3-H -1 ), 4 · 5 7 (d, 2 H, J = 7.2 Hz, GlcNAc2-Hl), 4.46 (d, 1H, J = 7.8 Hz,

Gal6-H-1), 4.34 (t, 1H, Fmoc), 4.22 (bd, 1H, J = 2.7 Hz, Man3-H-2)s 4.19 (b, 1H, Man4-H-2), 2.72 (bdd, 1H, J=15.5 Hz, Asn-β CH), 2.52 (bdd5 1H, J = 9.8 Hz, 15.5 Hz, Asn-β CH), 2.05 (s, 6H, Acx2), 1.89 (s, 3H, Ac); MS (Fab) ® C61H88N5035 [M + H + ]理論值 1 45 0.5,實測值 1 450.3 實施例1 8 化合物2 2之合成 將化合物21 (1’0毫克,6.9 μιηοΐ)與牛血清白蛋白1.6毫 克,一同溶解於HEPES緩衝溶液(50mM,ρΗ5.0,672 μΙ〇 中,進一步再加入yS -半乳糖酵素(生化學工業公司製,由 Jack豆,205 mU)。將該溶液於37°C下靜置20小時後,以 HPLC分析破認反應已經终了。將反應溶液以HPLC (YMC 包裝管柱 D-ODS-5 S-5 120A ODS No. 2020178,20 X 250 •76- 1324607 (71) m m,展開溶劑為5 〇 m Μ醋酸録水溶液:乙腊=8 0 : 2 0 ’ 流速為4毫升/分)進行純化。更進一步’以0 D s管柱(科思 摩基75Ci8-〇PN,15 X 100 mm,最初以50毫升H20溶離, 再以2 5 %乙腈溶離)進行脫鹽’而得到目的之化合物2 2 (5 · 6毫克’產率6 4 %)。所得到之化合物其物理性質係如下 所示。 •H-NMR (30°C ) δ 7.87 (d, 2H, J = 7.5 Hz, Fmoc), 7.67 (d, 2H, J = 7.5 Hz, Fmoc), 7.48 (dd, 2H, J = 7.5 Hz, Fmoc), 7.41 (dd, 2H, J = 7.5 Hz, Fmoc), 5.12 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.7 Hz, GlcNAcl-H-1), 4.76 (s5 1H, Man3-H-1), 4,55 (d, 2H, J = 8.6 Hz, GlcNAc2, 5-H-l), 4.26 (t, 1H, Fmoc), 4.22 (d, 1H, J = 2.2 Hz, Man3-H-2), 4.18 (bdd, 1H, J=1.3 Hz, 3.3 Hz, Man4-H-2), 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.54 (bdd, 1H, J = 9.5 Hz, 15.5 Hz, Asn-β CH), 2.05 (s, 6H, Acx2), 1.88 (s, 3H, Ac) » MS (Fab) C55H78N5O3Q [M + H + ] 理論值1288.5,實測值1288.3 實施例1 9 化合物2 3之合成 將化合物22 (3.6毫克,2.8 μιηοΐ)與牛血清白蛋白1 2毫 克,一同溶解於HEPES緩衝溶液(50mM,ρΗ5.〇,277 μΙ;) 中,進一步再加入Ν -乙醯基- /3-D -葡糖胺酵素(西格瑪亞 德利奇公司製’由Jack豆,1 9 5 mU)。將該溶液於37 下 靜置24小時後’以HPLC分析確認反應已經終了。將反腐 溶液以 HPLC (YMC 包裝管柱 D-ODS-5 S-5 120A 〇DS No -77- 1324607 (72) I發明說明績頁 2020 178,20 χ 2 5 0 mm,展開溶劑為50 mM醋酸銨水溶液 :乙腈=8 0 : 2 0,流速為4毫升/分)進行純化。更進一步 ,以ODS管柱(科思摩基75C18-OPN,15 X 100 mm,最初 以50毫升H20溶離,再以25%乙腈溶離)進行脫鹽,而得到 目的之化合物23 (2.3毫克,產率7 7%)。所得到之化合物 其物理性質係如下所示。 ^-NMR (30°C )Gal6-H-1), 4.34 (t, 1H, Fmoc), 4.22 (bd, 1H, J = 2.7 Hz, Man3-H-2)s 4.19 (b, 1H, Man4-H-2), 2.72 (bdd , 1H, J=15.5 Hz, Asn-β CH), 2.52 (bdd5 1H, J = 9.8 Hz, 15.5 Hz, Asn-β CH), 2.05 (s, 6H, Acx2), 1.89 (s, 3H, Ac) MS (Fab) ® C61H88N5035 [M + H + ] Theoretical value 1 45 0.5, found 1 450.3 Example 1 8 Synthesis of compound 2 2 Compound 21 (1'0 mg, 6.9 μιηοΐ) and bovine serum albumin 1.6 The mg was dissolved in HEPES buffer solution (50 mM, pH Η 5.0, 672 μΙ〇, and further added with yS-galactosidase (manufactured by Biochemical Industries, Ltd., from Jack Bean, 205 mU). The solution was at 37 ° C. After standing for 20 hours, the completion of the reaction was confirmed by HPLC analysis. The reaction solution was subjected to HPLC (YMC packaging column D-ODS-5 S-5 120A ODS No. 2020178, 20 X 250 • 76-1324607 (71) Mm, the developing solvent is 5 〇m Μ acetic acid recording aqueous solution: acetonitrile = 8 0 : 2 0 'flow rate 4 ml / min) for purification. Further 'with 0 D s column (Cosmoji 75Ci8-〇PN , 15 X 100 mm, initially dissolved in 50 ml of H20, then dissolved in 25% acetonitrile) Desalting to give the desired compound 2 2 (5 · 6 mg 'yield 64%). The physical properties of the obtained compound are as follows: H-NMR (30 ° C) δ 7.87 (d, 2H, J = 7.5 Hz, Fmoc), 7.67 (d, 2H, J = 7.5 Hz, Fmoc), 7.48 (dd, 2H, J = 7.5 Hz, Fmoc), 7.41 (dd, 2H, J = 7.5 Hz, Fmoc), 5.12 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.7 Hz, GlcNAcl-H-1), 4.76 (s5 1H, Man3-H-1), 4,55 (d, 2H , J = 8.6 Hz, GlcNAc2, 5-Hl), 4.26 (t, 1H, Fmoc), 4.22 (d, 1H, J = 2.2 Hz, Man3-H-2), 4.18 (bdd, 1H, J=1.3 Hz , 3.3 Hz, Man4-H-2), 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.54 (bdd, 1H, J = 9.5 Hz, 15.5 Hz, Asn-β CH), 2.05 ( s, 6H, Acx2), 1.88 (s, 3H, Ac) » MS (Fab) C55H78N5O3Q [M + H + ] Theoretical value 1288.5, found 1288.3 Example 1 9 Compound 2 Synthesis of compound 22 (3.6 mg, 2.8 μιηοΐ) and bovine serum albumin 12 mg were dissolved in HEPES buffer solution (50 mM, ρΗ5.〇, 277 μΙ;), and further Ν-acetyl-/3-D-glucosamine enzyme ( Sigma Delich Company's 'by Jack Bean, 1 9 5 mU). After the solution was allowed to stand at 37 for 24 hours, it was confirmed by HPLC analysis that the reaction was completed. The anti-corrosion solution was developed by HPLC (YMC packaging column D-ODS-5 S-5 120A 〇DS No -77-1324607 (72) I description page 2020 178,20 χ 250 mm, developing solvent 50 mM acetic acid The aqueous ammonium solution: acetonitrile = 80:20, flow rate 4 ml/min) was purified. Further, desalting was carried out with an ODS column (Cosmoki 75C18-OPN, 15 X 100 mm, initially dissolved in 50 ml of H20 and then dissolved in 25% acetonitrile) to obtain the desired compound 23 (2.3 mg, yield 7 7%). The physical properties of the obtained compound are shown below. ^-NMR (30 ° C)

δ 7.91 (d, 2H, J = 7.5 Hz, Fmoc), 7.70 (d, 2H, J = 7.5 Hz, Fmoc), 7.50 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.11 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.7 Hz, GlcNAcl-H-1), 4.77 (s, 1H, Man3-H-1), 4.57 (d, 1H, J = 6.5 Hz, GlcNAc-H-1), 4.33 (t, 1H, Fmoc), 4.22 (d, 1H, J = 3.0 Hz, Man3-H-2), 4.07 (bdd, 1H, J = 2.1 Hz, Man4-H-2), 2.72 (bdd, 1H, J=15.5 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 8.9 Hz, 15.5 Hz, Asn-β CH), 2.05, 1.89 (each s, each 3H, Ac) ; MS (Fab) C47H65N4025 [M + H + ]理論值 1085.4,實測值 1 085.3 實施例20 化合物1 1之合成 將化合物10 (123毫克,62 μιηοΐ)與牛血清白蛋白1.1毫 克’一同溶解於HEPES緩衝溶液(50mM,pH5.0,2.5mL) 中,進一步再加入/5-半乳糖酵素(生化學工業公司製,由 Jack豆,24 pL,612 mU)。將該溶液於37 X:下靜置61小時 後’以HPLC分析確認反應已經終了。將反應溶液冷凍乾 燥,再以 HPLC (YMC 包裝管柱 D-ODS-5 S-5 120AODS No. 2020178,20 X 2.5 0mm,展開溶劑為50mM醋酸銨水溶液 -78- 1324607 (73) [5¾明癀寅 :乙腈=8 0 : 2 ο,流速為3 . 5毫升/分)進行純化。更進一 步,以ODS管柱(科思摩基75C丨8-OPN,15 X 100 mm,最 初以5 0毫升Η 2 〇溶離,再以2 5 %乙腈溶離)進行脫鹽,而得 到目的之化合物1 i (7 1毫克,產率70%)。所得到之化合物 其物理性質係如下所示。 JH-NMR (30°C ) δ 7.91 (d,2H, J = 7.5 Hz,Fmoc),7.71 (d,2H, J = 7.5 Hz, Fmoc), 7.50 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.11 (s, 1H, Man4-H-1), 4.99 (1H, d, J = 9.9 Hz, GlcNAcl-H-1 ), 4.91 (s, 1 Η, Man4' -H-1 ),4 · 7 6 (s, 1 H,δ 7.91 (d, 2H, J = 7.5 Hz, Fmoc), 7.70 (d, 2H, J = 7.5 Hz, Fmoc), 7.50 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.11 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.7 Hz, GlcNAcl-H-1), 4.77 (s, 1H, Man3-H-1) , 4.57 (d, 1H, J = 6.5 Hz, GlcNAc-H-1), 4.33 (t, 1H, Fmoc), 4.22 (d, 1H, J = 3.0 Hz, Man3-H-2), 4.07 (bdd, 1H, J = 2.1 Hz, Man4-H-2), 2.72 (bdd, 1H, J=15.5 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 8.9 Hz, 15.5 Hz, Asn-β CH) , 2.05, 1.89 (each s, each 3H, Ac); MS (Fab) C47H65N4025 [M + H + ] calc. 1085.4, found 1 085.3 Example 20 Synthesis of Compound 1 Compound 10 (123 mg, 62 μιηοΐ ) dissolved in HEPES buffer solution (50 mM, pH 5.0, 2.5 mL) together with bovine serum albumin 1.1 mg, and further added with /5-galactosidase (manufactured by Biochemical Industries, Inc., by Jack Bean, 24 pL, 612 mU). After the solution was allowed to stand at 37 X: for 61 hours, it was confirmed by HPLC analysis that the reaction was completed. The reaction solution was freeze-dried, and then HPLC (YMC packaging column D-ODS-5 S-5 120AODS No. 2020178, 20 X 2.5 0 mm, developing solvent 50 mM ammonium acetate aqueous solution -78-1324607 (73) [53⁄4 明癀寅: Acetonitrile = 8 0 : 2 ο, flow rate of 3.5 ml / min) for purification. Further, the ODS column (Cosmoki 75C丨8-OPN, 15 X 100 mm, initially dissolved in 50 ml Η 2 ,, and then dissolved in 25% acetonitrile) is desalted to obtain the desired compound 1 i (7 1 mg, yield 70%). The physical properties of the obtained compound are shown below. JH-NMR (30°C) δ 7.91 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, Fmoc), 7.50 (dd, 2H, J = 7.5 Hz, Fmoc) , 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.11 (s, 1H, Man4-H-1), 4.99 (1H, d, J = 9.9 Hz, GlcNAcl-H-1 ), 4.91 (s, 1 Η, Man4' -H-1 ), 4 · 7 6 (s, 1 H,

Man3-H-1), 4.55 (d, 2H, J-8.6 Hz, GlcNAc2, 5-H-l), 4.34 (t, 1H, Fmoc), 4.24 (s, 1H, Man3-H-2), 4.18 (s, 1H,Man3-H-1), 4.55 (d, 2H, J-8.6 Hz, GlcNAc2, 5-Hl), 4.34 (t, 1H, Fmoc), 4.24 (s, 1H, Man3-H-2), 4.18 (s , 1H,

Man4-H-2), 4.10 (s, 1H, Man4'-H-2), 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.51 (bdd, 1H, J = 9.0 Hz, 15.5 Hz, Asn-β CH), 2.06 (s, 3H, Ac), 2.05 (s, 6H, Ac&gt;&lt;2), 1.88 (s, 3H, Ac) ;HRMS C69H10〇N6NaO4Q [M + Na + ]理論值 1675.5873,實測 值 1675.5841 實施例2 1 化合物1 2之合成 將化合物11 (50毫克,30 gmol)與牛血清白蛋白2〇毫克 ’一同溶解於 HEPES 緩衝溶液(5〇 mM’ pH 5.0,920 μ!〇 中,進一步再加入Ν-乙醯基-冷_D-葡糖胺酵素(西格瑪亞 德利奇公司製,由Jack豆,2.1U)。將該溶液於371下靜 置4 8小時後,以HPLC分析確認反應已經終了。將反應溶 液以 HPLC (YMC 包裝管杈 D-ODS-5 S-5 120A ODS No. -79- 1324607 _ (74) 2020 1 78,20 χ 250 mm,展開溶劑為50 mM醋酸銨水溶液 :乙腈=80 : 20,流速為4毫升/分)進行純化,再冷凍乾 燥。將該殘留物質以ODS管柱(科思摩基75C丨8-OPN,15x 1 00 mm,最初以5 0毫升Η2 Ο溶離,再以2 5 %乙腈溶離)進 行脫鹽,而得到目的之化合物12 (25毫克,產率66%)。所 得到之化合物其物理性質係如下所示。 !H-NMR (30°c )Man4-H-2), 4.10 (s, 1H, Man4'-H-2), 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.51 (bdd, 1H, J = 9.0 Hz, 15.5 Hz, Asn-β CH), 2.06 (s, 3H, Ac), 2.05 (s, 6H, Ac&gt;&lt;2), 1.88 (s, 3H, Ac); HRMS C69H10〇N6NaO4Q [M + Na + ] Value 1675.5873, found 1675.5841 Example 2 1 Synthesis of Compound 1 2 Compound 11 (50 mg, 30 gmol) was dissolved in HEPES buffer solution with 5 mM mg of bovine serum albumin (5 mM 'pH 5.0, 920 μ In addition, Ν-acetamido-cold_D-glucosamine enzyme (manufactured by Sigma-Delci, from Jack Bean, 2.1 U) was further added. The solution was allowed to stand at 371 for 48 hours. The reaction was confirmed by HPLC analysis. The reaction solution was developed by HPLC (YMC packaging tube D-ODS-5 S-5 120A ODS No. -79- 1324607 _ (74) 2020 1 78, 20 χ 250 mm, developing solvent Purified by 50 mM aqueous ammonium acetate solution: acetonitrile = 80:20, flow rate of 4 ml/min., and then lyophilized. The residue was taken as an ODS column (Cosmoki 75C 丨 8-OPN, 15 x 100 mm). , initially dissolved in 50 ml Η2 Ο, and then dissolved in 25% acetonitrile) Desalting gave the desired compound 12 (25 mg, yield 66%). The physical properties of the obtained compound are as follows: !H-NMR (30 °c)

δ 7.91 (d, 2H, J = 7.5 Hz, Fmoc), 7.70 (d, 2H, J = 7.5 Hz, Fmoc), 7.50 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.10 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.7 Hz, GlcNAcl-H-1), 4.91 (bd, 1H, J=1.6 Hz, Man4'-H-1), 4.77 (s,1H, Man3_H-l),4_58〜4.52 (b, 1H, GlcNac2-H-l). 4.33 (t, 1H, Fmoc), 4.24 (bs, 1H, Man3-H-2), 4.06 (dd 1H, J=1.6 Hz, 3.2 Hz, Man4-H-2), 3.97 (dd, 1H, 3=1.6 Hz, 3.5 Hz, Man4'-H-2), 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.53 (bdd, 1H, J = 9.0 Hz, 15.5 Hz, Asn-β CH), 2.05, 1.88 (each s, each 3 H, Ac) 實施例2 2 化合物1 3之合成 將化合物12(10毫克,11 μηι〇ι)與牛血清白蛋白〇9毫克 ,溶解於 HEPES缓衝溶液(50 mM,pH 5.0,440 μ!〇 中, 進一步再加入由α ·甘露糖钻酵素(西格瑪亞德利奇公司 製,由Jack豆,30 μί,3.2U)將該溶液於37。(:下靜置2 1小 時後’以HPLC分析確認反應已經終了。再以hplC (YMC 包裝管柱 D-ODS-5 S-5 120A ODS No. 2020178, 20 χ 250 mm -80- 1324607δ 7.91 (d, 2H, J = 7.5 Hz, Fmoc), 7.70 (d, 2H, J = 7.5 Hz, Fmoc), 7.50 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 5.10 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.7 Hz, GlcNAcl-H-1), 4.91 (bd, 1H, J=1.6 Hz, Man4 '-H-1), 4.77 (s,1H, Man3_H-l), 4_58~4.52 (b, 1H, GlcNac2-Hl). 4.33 (t, 1H, Fmoc), 4.24 (bs, 1H, Man3-H- 2), 4.06 (dd 1H, J=1.6 Hz, 3.2 Hz, Man4-H-2), 3.97 (dd, 1H, 3=1.6 Hz, 3.5 Hz, Man4'-H-2), 2.72 (bd, 1H , J = 15.5 Hz, Asn-β CH), 2.53 (bdd, 1H, J = 9.0 Hz, 15.5 Hz, Asn-β CH), 2.05, 1.88 (each s, each 3 H, Ac) Example 2 2 Compound Synthesis of 1 3 Compound 12 (10 mg, 11 μηι〇ι) and bovine serum albumin 〇 9 mg were dissolved in HEPES buffer solution (50 mM, pH 5.0, 440 μ! ,, further added by α · The mannose enzyme (manufactured by Sigma Bean, 30 μί, 3.2 U) was used to 37. (: After standing for 21 hours), it was confirmed by HPLC analysis that the reaction was complete. Then hplC (YMC packaging column D-ODS-5 S-5 120A ODS No. 2020178, 20 χ 250 mm -80- 132 4607

(75) SiMSiM ,展開溶劑為5 0 m M醋酸録水溶液:乙腈=8 0 : 2 Ο,流速 為4毫升/分)進行純化。再將其以〇D S管柱(科思摩基 75C18-OPN,15 x100mm,最初以50毫升H20溶離,再以 2 5 %乙腈溶離)進行脫鹽,而得到目的之化合物1 3 (3毫克 ,產率43%)。所得到之化合物其物理性質係如下所示。 ]H-NMR (30°C ) δ 7.92 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, Fmoc), 7.51 (dd, 2H, J = 7.5 Hz, Fmoc), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 4.99 (d, 1H, J = 9.5 Hz, G1 cNAc 1 -H-1), 4.76 (s, 1H, Man3-H-1), 4.57 (1H, G1 cN Ac 2 - H - 1), 4.06 (d, 1H, J = 3.2 Hz, Man3-H-2)5 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.52 (bdd, 1H, J = 8.3 Hz, 15.5 Hz, Asn-β CH), 2.05, 1.89 (each s, each 3 H, Ac) (糖鏈天門冬醯胺酸衍生物之Fmoc基的脫保護) 以下,在全部的糖鏈天門冬醯胺衍生物上,以下列順 序進行Fmoc基的脫保護。首先,對於每糖鏈天門冬醯胺 Fm〇c體1 μηι〇ΐ,加入240 μΙ的N,N-二甲基甲醯胺及160 μΐ^ 的嗎啉,並使其於室溫、氬氣環境下進行反應。以TLC (展開溶劑為1 Μ醋酸銨:異丙醇=8 : 5)確認反應終了之 後,以冰水使其冷卻。在其上加入反應溶液1 〇倍量之二甲 鍵’攪拌1 5分鐘之後,過濾該析出之沉澱物。所得到之殘 凌溶解於水中,並於35。◦使其氣化。再加入3毫升之二曱 笨’重複三次前述蒸發氣化之步驟。將殘留物於逆相管柱 層拚(科思摩基75C18-OPN,15 x100mm,展開溶劑為水) 1324607 _(75) SiMSiM was developed by purifying the solvent to a 50 mL aqueous solution of acetic acid: acetonitrile = 8 0: 2 Torr, at a flow rate of 4 ml/min. It was desalted by a 〇DS column (Cosmoki 75C18-OPN, 15 x 100mm, initially dissolved in 50 ml of H20 and then dissolved in 25% acetonitrile) to obtain the desired compound 13 (3 mg, produced). Rate 43%). The physical properties of the obtained compound are as follows. H-NMR (30 ° C) δ 7.92 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, Fmoc), 7.51 (dd, 2H, J = 7.5 Hz, Fmoc ), 7.43 (dd, 2H, J = 7.5 Hz, Fmoc), 4.99 (d, 1H, J = 9.5 Hz, G1 cNAc 1 -H-1), 4.76 (s, 1H, Man3-H-1), 4.57 (1H, G1 cN Ac 2 - H - 1), 4.06 (d, 1H, J = 3.2 Hz, Man3-H-2)5 2.72 (bd, 1H, J=15.5 Hz, Asn-β CH), 2.52 ( Bdd, 1H, J = 8.3 Hz, 15.5 Hz, Asn-β CH), 2.05, 1.89 (each s, each 3 H, Ac) (deprotection of the Fmoc group of the sugar chain aspartic acid derivative) Deprotection of the Fmoc group was carried out on the entire sugar chain aspartate derivative in the following order. First, for each sugar chain aspartame Fm〇c 1 μηι〇ΐ, 240 μM of N,N-dimethylformamide and 160 μM of morpholine were added and allowed to stand at room temperature with argon. The reaction is carried out under the environment. After confirming the completion of the reaction by TLC (developing solvent: 1% ammonium acetate: isopropyl alcohol = 8:5), it was cooled with ice water. After the reaction solution was added with 1 〇 amount of the dimethyl bond, the mixture was stirred for 15 minutes, and the precipitate was filtered. The resulting residue was dissolved in water at 35. Let it vaporize. The addition of 3 ml of bismuth was repeated three times for the aforementioned evaporation vaporization step. The residue is placed on the reverse phase column (Cosmoki 75C18-OPN, 15 x 100mm, the solvent is water) 1324607 _

(76) I 赛雜 iiH 中進行純化。 . 實施例2 3 化合物3 3之合成 將化合物10 (10.5毫克,5.3 μιτιοί)以上述之步驟,進行 反應7小時,得到目的之化合物33 (7毫克,產率76%)。所 得到之化合物並以1H-NMR確認與標準品一致。 實施例24 化合物26之合成 將化合物3 (8.0毫克,3.8 μιηοΐ)以上述之步驟,進行反 應21小時,得到目的之化合物26 (6.3毫克,產率88%)。 ® 所得到之化合物其物理性質係如下所示。 'H-NMR (30°C ) 5 5.13 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.9 Hz,Purification was carried out in (76) I 赛 iiH. Example 2 Synthesis of Compound 3 3 Compound 10 (10.5 mg, 5.3 μιτιοί) was reacted for 7 hours in the above-mentioned procedure to give the objective compound 33 (7 mg, yield 76%). The obtained compound was confirmed to be consistent with the standard by 1H-NMR. Example 24 Synthesis of Compound 26 Compound 3 (8.0 mg, 3.8 μηηοΐ) was reacted for 21 hours to give the objective compound 26 (6.3 mg, yield 88%). The physical properties of the compounds obtained are as follows. 'H-NMR (30 ° C) 5 5.13 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.9 Hz,

GlcNAcl-H-1), 4.95 (s, 1H, Man4'-H-1), 4.78 (s, 1H,GlcNAcl-H-1), 4.95 (s, 1H, Man4'-H-1), 4.78 (s, 1H,

Man3-H-1), 4.62 (2H, GlcNAc2, 5'-H-l), 4.56 (d, 1H, J = 8.1 Hz, GlcNAc5-H-1), 4.52 (d, 1H, J = 7.8 Hz, Gal6' -H-l), 4.25 (bs, 1H, Man3-H-2), 4.19 (bs, 1H, Man4'-H-2), 4.12 (bs3 1H, Man4-H-2), 2.94 (dd, 1H, J = 4.5 Hz, 17.0 Hz, Φ Asn-β CH), 2.85 (dd, 1H, J = 6.8 Hz, 17.0 Hz, Asn-β CH), 2.68 (dd, 1H, J = 4.6 Hz, 12.4 Hz, Neu A c 7 ' - H - 3 e q), 2.08, 2.07, 2.06, 2.04, 2.02 (each s, each 3H, Ac), 1.72 (dd, 1H, J=12.1 Hz, 12.1 Hz, NeuAc7'-H-3 ax) ; MS (Fab) C7 丨Hn8N7051 [y + H + ]理論值 1 884.7,實測值 1 884.5 實施例25 化合物27之合成 將化合物4 (11.0毫克,5.8 μιηοΐ)以上述之步驟,進行 反應2 3小時,得到目的之化合物2 7 ( 8 · 5毫克,產率8 8 %) -82- 1324607 (77) 。所得到之化合物,其物理性質係如下所示。 !H-NMR (30°c ) δ 5.11 (s, 1H, Man4-H-1), 5.08 (d, 1H, J = 9.7 Hz, GlcNAcl-H-1), 4.95 (s, 1H, Man4'-H-1), 4.78 (s, 1H,Man3-H-1), 4.62 (2H, GlcNAc2, 5'-Hl), 4.56 (d, 1H, J = 8.1 Hz, GlcNAc5-H-1), 4.52 (d, 1H, J = 7.8 Hz, Gal6' -Hl), 4.25 (bs, 1H, Man3-H-2), 4.19 (bs, 1H, Man4'-H-2), 4.12 (bs3 1H, Man4-H-2), 2.94 (dd, 1H, J = 4.5 Hz, 17.0 Hz, Φ Asn-β CH), 2.85 (dd, 1H, J = 6.8 Hz, 17.0 Hz, Asn-β CH), 2.68 (dd, 1H, J = 4.6 Hz, 12.4 Hz, Neu A c 7 ' - H - 3 eq), 2.08, 2.07, 2.06, 2.04, 2.02 (each s, each 3H, Ac), 1.72 (dd, 1H, J=12.1 Hz, 12.1 Hz, NeuAc7'-H-3 ax ; MS (Fab) C7 丨Hn8N7051 [y + H + ] Theory 1 884.7, found 1 884.5 Example 25 Synthesis of Compound 27 Compound 4 (11.0 mg, 5.8 μιηοΐ) was reacted in the above procedure. The compound of interest 2 7 (8.5 mg, yield 8 8 %) -82 - 1324607 (77) was obtained. The physical properties of the obtained compound are as follows. !H-NMR (30°c) δ 5.11 (s, 1H, Man4-H-1), 5.08 (d, 1H, J = 9.7 Hz, GlcNAcl-H-1), 4.95 (s, 1H, Man4'- H-1), 4.78 (s, 1H,

Man3-H-1), 4.62 (d, 2H, GlcNAc2, 5'-H-l), 4.45 (d, 1H, J = 7.6 Hz, Gal6'-H-1), 4.26 (bd, 1H, Man3-H-2), 4.12 (bd, 1H, Man4'-H-2), 4.08 (bdd, 1H, J=1.6 Hz, 3.3 Hz, Man4-H-2), 2.94 (dd, 1H, J = 4.0 Hz, 17.2 Hz, Asn-β CH), 2.85 (dd, 1H, J = 7.2 Hz, 17.2 Hz, Asn-β CH), 2.68 (dd, 1H, J = 4.1 Hz, 12.1 Hz, NeuAc7'-H-3eq), 2.09, 2.07, 2.04, 2.02 (each s, each 3H, Ac), 1.72 (dd, 1H, J=12.1 Hz, 12.1 Hz,Man3-H-1), 4.62 (d, 2H, GlcNAc2, 5'-Hl), 4.45 (d, 1H, J = 7.6 Hz, Gal6'-H-1), 4.26 (bd, 1H, Man3-H- 2), 4.12 (bd, 1H, Man4'-H-2), 4.08 (bdd, 1H, J=1.6 Hz, 3.3 Hz, Man4-H-2), 2.94 (dd, 1H, J = 4.0 Hz, 17.2 Hz, Asn-β CH), 2.85 (dd, 1H, J = 7.2 Hz, 17.2 Hz, Asn-β CH), 2.68 (dd, 1H, J = 4.1 Hz, 12.1 Hz, NeuAc7'-H-3eq), 2.09, 2.07, 2.04, 2.02 (each s, each 3H, Ac), 1.72 (dd, 1H, J=12.1 Hz, 12.1 Hz,

NeuAc7'-H-3ax) ; MS (Fab) C63H104N6Na〇46 [M + Na + ]理論 值 1 7 0 3 · 6,實測值 1 7 0 3 · 1 實施例2 6 化合物2 8之合成NeuAc7'-H-3ax) ; MS (Fab) C63H104N6Na〇46 [M + Na + ] Theory 1 7 0 3 · 6, Measured 1 7 0 3 · 1 Example 2 6 Synthesis of Compound 2 8

將化合物5 (7.0毫克,4.0 μιηοΐ)以上述之步驟,進行反 應21小時,得到目的之化合物28 (5.3毫克,產率87%)。 所得到之化合物其物理性質係如下所示。 !H-NMR (30°c ) 5 5.07 (d, 1H, J = 9.4 Hz, GlcNAcl-H-1),4.94 (s,1H,Compound 5 (7.0 mg, 4.0 μιηοΐ) was reacted for 21 hours to give the title compound 28 (5.3 mg, yield 87%). The physical properties of the obtained compound are as follows. !H-NMR (30°c) 5 5.07 (d, 1H, J = 9.4 Hz, GlcNAcl-H-1), 4.94 (s, 1H,

Man4'-H-1), 4.76 (s, 1H, Man3-H-1), 4.61, 4.59 (each d, each 1H, GlcNAc2, 5'-H-1), 4.44 (d, 1H, J = 7.8 Hz,Man4'-H-1), 4.76 (s, 1H, Man3-H-1), 4.61, 4.59 (each d, each 1H, GlcNAc2, 5'-H-1), 4.44 (d, 1H, J = 7.8 Hz,

Gal6'-H-1), 4.10, 4.07 (each 1H, Man4', 3-H-2), 2.93 (dd, 1H, J = 4.6 Hz, 17.5 Hz, Asn-β CH), 2.85 (dd, 1H, J = 7.0 Hz, 17.5 Hz, Asn-β CH), 2.67 (dd, 1H, J = 4.6 Hz, 12.2 Hz, -83- 1324607 _ (78) 1¾明漏顧Gal6'-H-1), 4.10, 4.07 (each 1H, Man4', 3-H-2), 2.93 (dd, 1H, J = 4.6 Hz, 17.5 Hz, Asn-β CH), 2.85 (dd, 1H , J = 7.0 Hz, 17.5 Hz, Asn-β CH), 2.67 (dd, 1H, J = 4.6 Hz, 12.2 Hz, -83- 1324607 _ (78) 13⁄4

NeuAc7'-H-3eq), 2.08, 2.06, 2.02, 2.01 (each s, each 3H, Ac), 1.71 (2H, dd, J=12.2 Hz, 12.2 Hz, N e u A c 7' - H - 3 ax); MS (Fab) C57H94N6Na04〗 [M + Na + ]理論值 1 54 1 .5,實測值 154 1.3 實施例2 7 化合物3 0之合成 將化合物7 (13.9毫克,6.6 μιηοΐ)以上述之步驟,進行 反應7小時,得到目的之化合物3 0 (8.0毫克,產率6 4 % )。 所得到之化合物其物理性質係如下所示。 籲丨 H-NMR (30。(:) δ 5.13 (s, 1Η, Man4-H-1), 5.06 (d, 1H, J = 9.9 Hz, GlcNAcl-H- 1), 4.9 1 (s, 1H, Man4'-H-1), 4.77 (s, 1H,NeuAc7'-H-3eq), 2.08, 2.06, 2.02, 2.01 (each s, each 3H, Ac), 1.71 (2H, dd, J=12.2 Hz, 12.2 Hz, N eu A c 7' - H - 3 ax MS (Fab) C57H94N6Na04 [M + Na + ] calcd. 1 54 1 .5, found 154 1.3 Example 2 7 Synthesis of Compound 3 Compound 7 (13.9 mg, 6.6 μιηοΐ) The reaction was carried out for 7 hours to obtain the objective compound 30 (8.0 mg, yield 46%). The physical properties of the obtained compound are as follows.丨H-NMR (30.(:) δ 5.13 (s, 1Η, Man4-H-1), 5.06 (d, 1H, J = 9.9 Hz, GlcNAcl-H-1), 4.9 1 (s, 1H, Man4'-H-1), 4.77 (s, 1H,

Man3-H-1), 4.61, 4.60 (each d, each 1H, J = 8.0 Hz, GlcNAc2, 5-H-l), 4.55 (d, 1H, J = 8.4 Hz, G1 cN A c 5 ' - H - 1 ), 4.44 (d, 1H, J = 8.0 Hz, Gal6-H-1),4.24 (bd, 1H, Man3-H-2), 4.19 (bdd, 1H, J=1.3 Hz, 3.2 Hz, Man4'-H-2), 4.10 (bdd, 1H, J=1.4 Hz, 3.2 Hz, Man4-H-2), 2.90 (dd, 1H, • J = 4.5 Hz,16.7 Hz, Asn-β CH),2.80 (dd,1H,J = 7.5 Hz, 16.7 Hz, Asn-β CH), 2.66 (dd, 1H, J = 4.6 Hz, 12.4 Hz, NeuAc7-H-3eq), 2.07, 2.06, 2.05, 2.02,2.0 1 (each s, each 3H, Ac), 1.71 (dd, 1H, J=12.4 Hz, 12.4 Hz, N e u A c 7 - H - 3 a x) ;MS (Fab) C71H117N7Na051 [M + Na + ]理論值 1 906.7,實測 值 1906.1 實施例2 8 化合物3 1之合成 將化合物8 (8.0毫克,4.2 μιηοΐ)以上述之步驟,進行反 •84- 1324607 (79) 1¾¾¾¾¾^ 應12小時,得到目的之化合物31 (6.0毫克,產率86%)。 所得到之化合物其物理性質係如下所示。 'H-NMR (30°C ) δ 5.12 (s, 1H, Man4-H-1), 5.06 (d, 1H, J = 9.5 Hz,Man3-H-1), 4.61, 4.60 (each d, each 1H, J = 8.0 Hz, GlcNAc2, 5-Hl), 4.55 (d, 1H, J = 8.4 Hz, G1 cN A c 5 ' - H - 1 ), 4.44 (d, 1H, J = 8.0 Hz, Gal6-H-1), 4.24 (bd, 1H, Man3-H-2), 4.19 (bdd, 1H, J=1.3 Hz, 3.2 Hz, Man4'- H-2), 4.10 (bdd, 1H, J=1.4 Hz, 3.2 Hz, Man4-H-2), 2.90 (dd, 1H, • J = 4.5 Hz, 16.7 Hz, Asn-β CH), 2.80 (dd ,1H,J = 7.5 Hz, 16.7 Hz, Asn-β CH), 2.66 (dd, 1H, J = 4.6 Hz, 12.4 Hz, NeuAc7-H-3eq), 2.07, 2.06, 2.05, 2.02, 2.0 1 (each s, each 3H, Ac), 1.71 (dd, 1H, J = 12.4 Hz, 12.4 Hz, N eu A c 7 - H - 3 ax) ; MS (Fab) C71H117N7Na051 [M + Na + ] theoretical value 1 906.7, Found 1906.1 Example 2 Synthesis of Compound 3 1 Compound 8 (8.0 mg, 4.2 μηηοΐ) was subjected to the above procedure, and the compound was subjected to the above-mentioned procedure for 12 hours to obtain the objective compound 31 (6.0 mg). , yield 86%). The physical properties of the obtained compound are as follows. 'H-NMR (30°C) δ 5.12 (s, 1H, Man4-H-1), 5.06 (d, 1H, J = 9.5 Hz,

GlcNAcl-H-1), 4.91 (s, 1 H,Man4,-H-1 ),4 · 7 7 ( s,1H, Man3-H-1), 4.61, 4.59 (each, d, each 1H, GlcNAc2, 5-H-l), 4.43 (d, 1H, J = 8.0 Hz, Gal6-H-1), 4.24 (bd, 1H,GlcNAcl-H-1), 4.91 (s, 1 H, Man4, -H-1 ), 4 · 7 7 ( s, 1H, Man3-H-1), 4.61, 4.59 (each, d, each 1H, GlcNAc2 , 5-Hl), 4.43 (d, 1H, J = 8.0 Hz, Gal6-H-1), 4.24 (bd, 1H,

Man3-H-2), 4.18 (bdd, 1H, Man4'-H-2), 2.91 (bd, 1H, J=17.0 Hz, Asn-β CH), 2.81 (dd, 1H, J = 6.5 Hz, 17.0 Hz, Asn-β CH), 2.66 (dd, 1H, J = 4.6 Hz, 12.6 Hz, NeuAc7-H-3eq), 2.06, 2.06, 2.02, 2.00 (each s, each 3H, Ac), 1.70 (dd, 1H, J-12.6 Hz, 12.6 Hz, NeuAc7-H-3 ax) ; MS (Fab) C63H 丨。4N6Na046 [M + Na + ]理論值 1 703.6,實測值 1 703.0 實施例2 9 化合物3 2之合成 將化合物9 (7.7毫克,4.4 μιηοΐ)以上述之步驟,進行反 應2 3小時,得到目的之化合物3 2 (5 · 2毫克,產率7 8 % )。 所得到之化合物其物理性質係如下所示。 !H-NMR (30°C ) δ 5.14 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.4 Hz,Man3-H-2), 4.18 (bdd, 1H, Man4'-H-2), 2.91 (bd, 1H, J=17.0 Hz, Asn-β CH), 2.81 (dd, 1H, J = 6.5 Hz, 17.0 Hz, Asn-β CH), 2.66 (dd, 1H, J = 4.6 Hz, 12.6 Hz, NeuAc7-H-3eq), 2.06, 2.06, 2.02, 2.00 (each s, each 3H, Ac), 1.70 (dd, 1H, J-12.6 Hz, 12.6 Hz, NeuAc7-H-3 ax) ; MS (Fab) C63H 丨. 4N6Na046 [M + Na + ] Theoretical value 1 703.6, found 1 703.0 Example 2 9 Synthesis of compound 3 2 Compound 9 (7.7 mg, 4.4 μηηοΐ) was reacted in the above procedure for 23 hours to obtain the compound of interest. 3 2 (5 · 2 mg, yield 7 8 %). The physical properties of the obtained compound are as follows. !H-NMR (30°C) δ 5.14 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.4 Hz,

GlcNAcl-H-1), 4.78 (s, 1H, Man3-H-1), 4.61, 4.60 (each, d, each 1 H, G1 cN A c 2 , 5 - H -1), 4 _ 4 4 (d, 1 H, J= 8.0 H z,GlcNAcl-H-1), 4.78 (s, 1H, Man3-H-1), 4.61, 4.60 (each, d, each 1 H, G1 cN A c 2 , 5 - H -1), 4 _ 4 4 ( d, 1 H, J= 8.0 H z,

Gal6-H-1), 4.23 (d, 1H, J = 3.0 Hz, Man3-H-2), 4.19 (bdd, 1H, J=1.3 Hz, 2.9 Hz, Man4-H-2), 2.92 (dd, 1H, J = 4.1 Hz, 17.2 Hz, Asn-β CH), 2.83 (dd, 1H, J = 7.5 Hz, 12.7 Hz, • 85 - 1324607 (80) 1¾¾¾¾Gal6-H-1), 4.23 (d, 1H, J = 3.0 Hz, Man3-H-2), 4.19 (bdd, 1H, J=1.3 Hz, 2.9 Hz, Man4-H-2), 2.92 (dd, 1H, J = 4.1 Hz, 17.2 Hz, Asn-β CH), 2.83 (dd, 1H, J = 7.5 Hz, 12.7 Hz, • 85 - 1324607 (80) 13⁄43⁄43⁄43⁄4

Asn-β CH), 2.67 (dd, 1H, J = 4.6 Hz, 12.7 Hz, NeuAc7 -H-3eq), 2.06 (s, 6H, Acx2), 2.03, 2.01 (each s, each 3H, Ac), 1.71 (dd, 1H, J=12.7 Hz, 12.7 Hz, Neu Ac7-H-3 ax); MS (Fab) C57H94N6Na04丨[M + Na + ]理論值 1 54 1 .5,實測值 1541.2 實施例3 0 化合物3 7之合成 將化合物14 (9.1毫克,5.0 μιηοΐ)以上述之步驟,進行 反應13小時,得到目的之化合物37 (6.5毫克,產率77%) # 。所得到之化合物其物理性質係如下所示。 JH-NMR (30°C ) δ 5.11 (s, 1H, Man4-H-1), 5.06 (d, 1H, J = 9.5 Hz,Asn-β CH), 2.67 (dd, 1H, J = 4.6 Hz, 12.7 Hz, NeuAc7 -H-3eq), 2.06 (s, 6H, Acx2), 2.03, 2.01 (each s, each 3H, Ac), 1.71 (dd, 1H, J = 12.7 Hz, 12.7 Hz, Neu Ac7-H-3 ax); MS (Fab) C57H94N6Na04 丨 [M + Na + ] Theory 1 54 1 .5, found 1541.2 Example 3 0 Compound Synthesis of 3 7 The compound 14 (9.1 mg, 5.0 μιηοΐ) was reacted for 13 hours to give the objective compound 37 (6.5 mg, yield 77%) #. The physical properties of the obtained compound are as follows. JH-NMR (30°C) δ 5.11 (s, 1H, Man4-H-1), 5.06 (d, 1H, J = 9.5 Hz,

GlcNAcl-H-1), 4.92 (s,1 H,Man4,-H-1 ), 4 · 7 5 (s,1H,GlcNAcl-H-1), 4.92 (s,1 H,Man4,-H-1 ), 4 · 7 5 (s,1H,

Man3-H-1), 4.6 1, 4.57, 4.5 5 (each d, each 1H, J = 7.5 Hz, GlcNAc2, 5, 5'-H-l), 4.46 (d, 1H, J = 7.3 Hz, Gal6'-H-1), 4.23 (bs, 1H, Man3-H-2), 4.18 (bs, 1H, Man4'-H-2), 4.10 (bs, 1H, Man4-H-2), 2.87 (dd, 1H, J = 4.8 Hz, 17.0 Hz, 籲 Asn-β CH), 2.76 (dd, 1H, J = 7.2 Hz, 17.0 Hz, Asn-β CH), 2.07 (s, 3H, Ac), 2.04 (s, 6H, Acx2), 2.00 (s, 3H, Ac); MS (Fab) C6〇Hi〇0N6Na043 [M + Na + ]理論值 161 5.6,實測值 1615.0 實施例3 1 化合物4 2之合成 將化合物19 (9.8毫克,5.4 μιηοΐ)以上述之步驟,進行 反應13小時,得到目的之化合物42 (8.0毫克,產率88%) 。所得到之化合物其物理性質係如下所示。 •86- 1324607 (81)Man3-H-1), 4.6 1, 4.57, 4.5 5 (each d, each 1H, J = 7.5 Hz, GlcNAc2, 5, 5'-Hl), 4.46 (d, 1H, J = 7.3 Hz, Gal6'- H-1), 4.23 (bs, 1H, Man3-H-2), 4.18 (bs, 1H, Man4'-H-2), 4.10 (bs, 1H, Man4-H-2), 2.87 (dd, 1H , J = 4.8 Hz, 17.0 Hz, Asn-β CH), 2.76 (dd, 1H, J = 7.2 Hz, 17.0 Hz, Asn-β CH), 2.07 (s, 3H, Ac), 2.04 (s, 6H , Acx2), 2.00 (s, 3H, Ac); MS (Fab) C6〇Hi〇0N6Na043 [M + Na + ] Theory 161 5.6, found 1615.0 Example 3 1 Synthesis of Compound 4 2 Compound 19 (9.8 </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; The physical properties of the obtained compound are as follows. •86- 1324607 (81)

SSIS !H-NMR (30°C ) δ 5.11 (s, 1H,Man4-H-1), 5.06 (d, 1H, J = 9.5 Hz,SSIS !H-NMR (30 ° C ) δ 5.11 (s, 1H, Man4-H-1), 5.06 (d, 1H, J = 9.5 Hz,

GlcNAcl-H-1), 4.91 (s,1H, Man4,-H-1 ),4.76 (s,1H,GlcNAcl-H-1), 4.91 (s,1H, Man4,-H-1 ), 4.76 (s,1H,

Man3-H-1),4.60,4.57, 4.5 5 (each d,each 1H, GlcNAc2,5, 5'-H-l), 4.46 (d, 1H, J = 7.8 Hz, Gal6-H-1), 4.28 (s, 1H, Man3-H-2), 4.18 (s, 1H, Man4'-H-2), 4.10 (s, 1H,Man3-H-1), 4.60, 4.57, 4.5 5 (each d,each 1H, GlcNAc2,5, 5'-Hl), 4.46 (d, 1H, J = 7.8 Hz, Gal6-H-1), 4.28 ( s, 1H, Man3-H-2), 4.18 (s, 1H, Man4'-H-2), 4.10 (s, 1H,

Man4-H-2), 2.88 (dd, 1H, J = 4.0 Hz, 16.6 Hz, Asn-β CH), 2.77 (dd,1H,J = 7.5 Hz,16.6 Hz, Asn-β CH), 2.07 (s,3H, Ac), 2.04 (s, 6H, Acx2), 2.00 (s, 3H, Ac) ; MS (Fab) C60H1()1N6O43 [M + H + ]理論值 1 5 93.6,實測值 1 5 93.8 實施例3 2 化合物3 8之合成 將化合物15 (5.1毫克,3.2 μπιοί)以上述之步驟,進行 反應1 1小時,得到目的之化合物3 8 (4.0毫克,產率9 1 %) 。所得到之化合物其物理性質係如下所示。 'H-NMR (30°C ) δ 5.10 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.4 Hz,Man4-H-2), 2.88 (dd, 1H, J = 4.0 Hz, 16.6 Hz, Asn-β CH), 2.77 (dd, 1H, J = 7.5 Hz, 16.6 Hz, Asn-β CH), 2.07 (s , 3H, Ac), 2.04 (s, 6H, Acx2), 2.00 (s, 3H, Ac) ; MS (Fab) C60H1()1N6O43 [M + H + ] Theoretical value 1 5 93.6, measured value 1 5 93.8 Example 3 2 Synthesis of Compound 3 8 Compound 15 (5.1 mg, 3.2 μπιοί) was reacted in the above-mentioned procedure for 1 hour to give the objective compound 38 (4.0 mg, yield: 91%). The physical properties of the obtained compound are as follows. 'H-NMR (30°C) δ 5.10 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.4 Hz,

GlcNAcl-H-1), 4.92 (s, 1H, Man4'-H-1), 4.76 (s, 1H,GlcNAcl-H-1), 4.92 (s, 1H, Man4'-H-1), 4.76 (s, 1H,

Man3-H-1), 4.61, 4.57 (each d, each 1H, J = 7.8 Hz,Man3-H-1), 4.61, 4.57 (each d, each 1H, J = 7.8 Hz,

GlcNAc2, 5'-H-l), 4.47 (d5 1H, J-7.8 Hz, Gal6' H-l), 4.24 (d, 1H, J = 2.3 Hz, Man3-H-2), 4.10, 4.06 (each bd, each 1H, Man4'5 4-H-2), 2.90 (dd5 1H, 3 = 4.2 Hz, 16.8 Hz, Asn-β CH), 2.81 (dd, 1H, J = 7.3 Hz, 16.8 Hz, Asn-β CH), 2.07, 2.04, 2.01 (each s,each 3 H, Ac) ; MS (Fab) C 52Η88Ν5038 [M + H + ]理論值 1 390.5,實測值 1 390.1 -87- 1324607 (82) 丨發明 實施例33 化合物72之合成 將化合物70 (4.0毫克,2.8 μηιοί)以上述之步驟,進行 反應1 3小時,得到目的之化合物7 2 (2 · 9毫克,產率8 5 %) 。所得到之化合物其物理性質係如下所示。 ^-NMR (30°C ) δ 5.09 (s, 1H, Man4-H-1), 5.06 (d, 1H, J = 9.8 Hz, GlcNAcl -H-l), 4.91 (s, 1H, Man4'-H-l)s 4.76 (s, 1H, Man3-H-1), 4.61, 4.54 (each d, each 1H, GlcNAc2, 5-H-l), 4.24 (s, 1H, • Man3-H-2), 4.10, 4.06 (each bs, each 1H, Man4, 4'-H-2), 2.87 (dd, 1H, J-17.2 Hz, Asn-β CH), 2.76 (dd, 1H, J = 6.5 Hz, 17.2 Hz, Asn-β CH), 2.07, 2.04, 2.00 (each s, each 3H, Ac); MS (Fab) C46H78N5O33 [M + H + ]理論值 1228.5,實測 值 1 228.3 實施例3 4 化合物4 3之合成 將化合物20 (5.4毫克,3.3 μηιοί)以上述之步驟,進行 反應1 1小時,得到目的之化合物43 (4.1毫克,產率87%) Φ 。所得到之化合物其物理性質係如下所示。 ^-NMR (30°C ) δ 5.11 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9,5 Hz,GlcNAc2, 5'-Hl), 4.47 (d5 1H, J-7.8 Hz, Gal6' Hl), 4.24 (d, 1H, J = 2.3 Hz, Man3-H-2), 4.10, 4.06 (each bd, each 1H , Man4'5 4-H-2), 2.90 (dd5 1H, 3 = 4.2 Hz, 16.8 Hz, Asn-β CH), 2.81 (dd, 1H, J = 7.3 Hz, 16.8 Hz, Asn-β CH), 2.07, 2.04, 2.01 (each s,each 3 H, Ac) ; MS (Fab) C 52Η88Ν5038 [M + H + ] Theory 1 390.5, found 1 390.1 -87 - 1324607 (82) 丨Inventive Example 33 Compound Synthesis of 72 Compound 70 (4.0 mg, 2.8 μηιοί) was reacted in the above-mentioned procedure for 13 hours to give the desired compound 7 2 (2·9 mg, yield: 85 %). The physical properties of the obtained compound are as follows. ^-NMR (30°C) δ 5.09 (s, 1H, Man4-H-1), 5.06 (d, 1H, J = 9.8 Hz, GlcNAcl -Hl), 4.91 (s, 1H, Man4'-Hl)s 4.76 (s, 1H, Man3-H-1), 4.61, 4.54 (each d, each 1H, GlcNAc2, 5-Hl), 4.24 (s, 1H, • Man3-H-2), 4.10, 4.06 (each bs , each 1H, Man4, 4'-H-2), 2.87 (dd, 1H, J-17.2 Hz, Asn-β CH), 2.76 (dd, 1H, J = 6.5 Hz, 17.2 Hz, Asn-β CH) , MS7 (Fab) C46H78N5O33 [M + H + ], , 3.3 μηιοί) In the above procedure, the reaction was carried out for 1 hour to obtain the objective compound 43 (4.1 mg, yield 87%) Φ. The physical properties of the obtained compound are as follows. ^-NMR (30°C) δ 5.11 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9,5 Hz,

GlcNAcl-H-1), 4.91 (s, 1H, Man4'-H-1), 4.77 (s, 1H,GlcNAcl-H-1), 4.91 (s, 1H, Man4'-H-1), 4.77 (s, 1H,

Man3-H-1), 4.61, 4.57 (each d, each 1H, GlcNAc2, 5-H-l), 4.46 (d, 1H, Gal6-H-1), 4.24 (s, 1H, Man3-H-2), 4.18 (bs, 1H, Man4-H-2), 2.90 (dd, 1H, J = 4.0 Hz, 17.0 Hz, Asn-β CH), 2.80 (dd, 1H, J = 7.3 Hz, 17.0 Hz, Asn-β CH), 2.07, -88 - 1324607 (83) 2.04,2.01 (each s,each 3H,Ac) ; MS (Fab) C52H88N5038 [M + H + ]理論值 1390.5,實測值 1390.2 實施例3 5 化合物7 3之合成 將化合物71 (4.0毫克,2.8 μπιοί)以上述之步驟,進行 反應1 3小時’得到目的之化合物7 3 (2 · 9毫克,產率8 5 %) 。所得到之化合物其物理性質係如下所示。 'H-NMR (30°C ) δ 5.11 (s, 1H, Man4-H-1), 5.06 (d, 1H,J = 9.9 Hz,Man3-H-1), 4.61, 4.57 (each d, each 1H, GlcNAc2, 5-Hl), 4.46 (d, 1H, Gal6-H-1), 4.24 (s, 1H, Man3-H-2), 4.18 (bs, 1H, Man4-H-2), 2.90 (dd, 1H, J = 4.0 Hz, 17.0 Hz, Asn-β CH), 2.80 (dd, 1H, J = 7.3 Hz, 17.0 Hz, Asn-β CH), 2.07, -88 - 1324607 (83) 2.04, 2.01 (each s, each 3H, Ac); MS (Fab) C52H88N5038 [M + H + ] Theory 1390.5, found 1390.2 Example 3 5 Compound 7 3 The compound 71 (4.0 mg, 2.8 μπιοί) was subjected to the above-mentioned procedure, and the reaction was carried out for 13 hours to obtain the objective compound 7 3 (2·9 mg, yield: 85 %). The physical properties of the obtained compound are as follows. 'H-NMR (30°C) δ 5.11 (s, 1H, Man4-H-1), 5.06 (d, 1H, J = 9.9 Hz,

GlcNAcl-H-1), 4.91 (s, 1H, Man4'-H-1), 4.77 (s, 1H, Man3 -H-l), 4.60, 4.54 (each d, each 1H, J = 7.9 Hz, GlcNAc2, 5-H-l), 4.24 (s, 1H, Man3-H-2), 4.18 (dd, 1H, J=1.6 Hz, 1.6 Hz, Man4-H-2), 3.96 (1H, dd, J=1.6 Hz, 1.6 Hz,GlcNAcl-H-1), 4.91 (s, 1H, Man4'-H-1), 4.77 (s, 1H, Man3 -Hl), 4.60, 4.54 (each d, each 1H, J = 7.9 Hz, GlcNAc2, 5 -Hl), 4.24 (s, 1H, Man3-H-2), 4.18 (dd, 1H, J=1.6 Hz, 1.6 Hz, Man4-H-2), 3.96 (1H, dd, J=1.6 Hz, 1.6 Hz,

Man4-H-2), 2.88 (dd, 1H, J-4.3 Hz, 16.8 Hz, Asn-β CH), 2.77 (dd, 1H, J = 7.2 Hz, 16.8 Hz, Asn-β CH), 2.06, 2.04 2.00 (each s, each 3H, Ac) ; MS (Fab) C46H78N5033 [M + H + ] 理論值1 2 2 8 · 5,實測值1 2 2 8.3 實施例3 6 化合物3 9之合成 將化合物16 (2.2毫克,1.5 μηιοί)以上述之步驟,進行 反應7小時,得到目的之化合物3 9 (1 . 6毫克,產率8 4 %)。 所得到之化合物其物理性質係如下所示。 *H-NMR (30eC ) δ 5.07 (s, 1 Η,J = 9.7 Hz,GlcN Ac 1-Η-1),4 · 92 (s, 1 H, Man4'-H-1), 4.75 (s, 1H, Man3-H- 1 ), 4,62, 4.5 8 (each d, each 1H, GlcNAc2, 5-H-l), 4.09, 4.08 (each s, each 1H, -89- 1324607 _ (84) 發明設明績M jMan4-H-2), 2.88 (dd, 1H, J-4.3 Hz, 16.8 Hz, Asn-β CH), 2.77 (dd, 1H, J = 7.2 Hz, 16.8 Hz, Asn-β CH), 2.06, 2.04 2.00 (each s, each 3H, Ac) ; MS (Fab) C46H78N5033 [M + H + ] Theoretical value 1 2 2 8 · 5, found 1 2 2 8.3 Example 3 6 Synthesis of compound 3 9 Compound 16 ( 2.2 mg, 1.5 μηιοί) In the above procedure, the reaction was carried out for 7 hours to give the desired compound 3 9 (1.6 mg, yield: 84%). The physical properties of the obtained compound are as follows. *H-NMR (30eC) δ 5.07 (s, 1 Η, J = 9.7 Hz, GlcN Ac 1-Η-1), 4 · 92 (s, 1 H, Man4'-H-1), 4.75 (s, 1H, Man3-H- 1 ), 4,62, 4.5 8 (each d, each 1H, GlcNAc2, 5-Hl), 4.09, 4.08 (each s, each 1H, -89- 1324607 _ (84) M j

Man3, 4'-H-2), 2.91 (dd, 1H, J = 4.1 Hz, 16.9 Hz, Asn-β CH), 2.81 (dd, 1H, J = 6.8 Hz, 16.9 Hz, Asn-β CH), 2.08, 2.04,2.01 (each s,each 3H, Ac); MS (Fab) C46H77N5Na033 [M + Na + ]理論值 1 250.4,實測值 1 25 0.3 實施例3 7 化合物4 0之合成 將化合物17 (1.5毫克,1.2 μηιοί)以上述之步驟,進行 反應1 4小時,得到目的之化合物4 0 (1 · 1毫克,產率8 9 % ) 。所得到之化合物其物理性質係如下所示。 • ]H-NMR (30°C ) δ 5.07 (d, 1H, J = 9.5 Hz, G1 cN A c 1 - H -1), 4.91 (s, 1 H,Man3, 4'-H-2), 2.91 (dd, 1H, J = 4.1 Hz, 16.9 Hz, Asn-β CH), 2.81 (dd, 1H, J = 6.8 Hz, 16.9 Hz, Asn-β CH), 2.08, 2.04, 2.01 (each s, each 3H, Ac); MS (Fab) C46H77N5Na033 [M + Na + ] Theory 1 250.4, found 1 25 0.3 Example 3 7 Synthesis of compound 40 Compound 17 (1.5 In the above procedure, the reaction was carried out for 14 hours to obtain the objective compound 40 (1·1 mg, yield: 9%). The physical properties of the obtained compound are as follows. • ]H-NMR (30°C) δ 5.07 (d, 1H, J = 9.5 Hz, G1 cN A c 1 - H -1), 4.91 (s, 1 H,

Man4'-H-1), 4.76 (s, 1H, Man3-H- 1), 4.62, 4.55 (each d, each 1H, GlcNAc2, 5-H-l),4.10, 4.07 (each s, each, 1H, Man4's 3-H-2), 2.89 (dd, 1H, J = 3.7 Hz, 17.0 Hz, Asn-β CH), 2.79 (dd, 1H, J = 7.0 Hz, 17.0 Hz, Asn-β CH), 2.07, 2.05, 2.01 (each, s, each 3H, Ac) ; MS (Fab) C4〇H67N5Na028 [M + Na + ]理論值 1088.4,實測值 1 088_2 _實施例3 8 化合物4 1之合成 將化合物18 (1.3毫克,1.2 μηιοί)以上述之步驟,進行 反應1 4小時,得到目的之化合物4 1 (0 · 8毫克,產率8 0 % ) 。所得到之化合物其物理性質係如下所示。 'H-NMR (30°C ) δ 5.07 (d, 1H, J = 9.5 Hz, GlcNAcl-H-1), 4.91 (s, 1H,Man4'-H-1), 4.76 (s, 1H, Man3-H- 1), 4.62, 4.55 (each d, each 1H, GlcNAc2, 5-Hl), 4.10, 4.07 (each s, each, 1H, Man4's 3-H-2), 2.89 (dd, 1H, J = 3.7 Hz, 17.0 Hz, Asn-β CH), 2.79 (dd, 1H, J = 7.0 Hz, 17.0 Hz, Asn-β CH), 2.07, 2.05 , 2.01 (each, s, each 3H, Ac); MS (Fab) C4〇H67N5Na028 [M + Na + ] Theory 1088.4, found 1 088_2 _ Example 3 8 Synthesis of Compound 4 1 Compound 18 (1.3 mg , 1.2 μηιοί) In the above procedure, the reaction was carried out for 14 hours to obtain the objective compound 4 1 (0·8 mg, yield 80%). The physical properties of the obtained compound are as follows. 'H-NMR (30 ° C) δ 5.07 (d, 1H, J = 9.5 Hz, GlcNAcl-H-1), 4.91 (s, 1H,

Man4'-H-1), 4.76 (s,1H,Man3-H-1), 4.62 (d, 1H, J = 7.8 Hz, GlcNAc2-H-1), 4.08 (d, 1H, J = 2.9 Hz, Man3-H-2), *90- 1324607 i發明說明績頁 (85)Man4'-H-1), 4.76 (s,1H,Man3-H-1), 4.62 (d, 1H, J = 7.8 Hz, GlcNAc2-H-1), 4.08 (d, 1H, J = 2.9 Hz, Man3-H-2), *90- 1324607 i Invention Description (85)

2.92 (dd5 1H, J = 3.9 Hz, 17.3 Hz, Asn-β CH), 2.83 (dd, 1H, J = 7.0 Hz, 17.3 Hz, Asn-β CH), 2.07, 2.01 (each s, each 3H2.92 (dd5 1H, J = 3.9 Hz, 17.3 Hz, Asn-β CH), 2.83 (dd, 1H, J = 7.0 Hz, 17.3 Hz, Asn-β CH), 2.07, 2.01 (each s, each 3H

Ac) ; MS (Fab) C32H55N4〇27 [M + H + ]理論值 863.3,實測值 863.2 實施例3 9 化合物4 4之合成 將化合物21 (2.3毫克,1.6 μιηοΐ)以上述之步驟’進行 反應7小時,得到目的之化合物4 4 ( 1.6毫克’產率8 4 %)。 所得到之化合物,其物理性質係如下所示。Ac); MS (Fab) C32H55N4 〇27 [M + H + ] calc. 863.3, found 863.2 Example 3 9 Synthesis of Compound 4 4 Compound 21 (2.3 mg, 1.6 μιηοΐ) was reacted in the above step ' The objective compound 4 4 (1.6 mg 'yield 84%) was obtained in an hour. The physical properties of the obtained compound are as follows.

]H-NMR (30°C ) δ 5.11 (s, 1H,Man4-H-1),5.06 (d, 1H,J = 9.8 Hz,H-NMR (30 ° C) δ 5.11 (s, 1H, Man4-H-1), 5.06 (d, 1H, J = 9.8 Hz,

GlcNAcl-H-1), 4.77 (s, 1H, Man3-H-1), 4.61, 4.57 (each d, each 1H, GlcNAc2, 5-H-l), 4.46 (d, 1H, J = 7.8 Hz,GlcNAcl-H-1), 4.77 (s, 1H, Man3-H-1), 4.61, 4.57 (each d, each 1H, GlcNAc2, 5-H-l), 4.46 (d, 1H, J = 7.8 Hz,

Gal-H-1), 4.22, 4.18 (each bs, each 1H, Man3, 4-H-2), 2.91 (dd, 1H, J = 4.1 Hz, 17.3 Hz, Asn-β CH), 2.82 (dd, 1H, J = 7.0 Hz, 17.3 Hz, Asn-β CH), 2.05, 2.04, 2.0 1 (each s,Gal-H-1), 4.22, 4.18 (each bs, each 1H, Man3, 4-H-2), 2.91 (dd, 1H, J = 4.1 Hz, 17.3 Hz, Asn-β CH), 2.82 (dd, 1H, J = 7.0 Hz, 17.3 Hz, Asn-β CH), 2.05, 2.04, 2.0 1 (each s,

each 3H, Ac) ; MS (Fab) C46H78N5033 [M + H + ]理論值 1228.5 ,實測值1 2 2 8.3 實施例4 0 化合物4 5之合成 將化合物22 (1.6毫克,1.3 μηιοί)以上述之步驟,進行 反應14小時,得到目的之化合物45 (1.1毫克,產率85%) 。所得到之化合物其物理性質係如下所示。 'H-NMR (30°C ) δ 5.12 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.7 Hz, GlcNAcl -H-l), 4.77 (s, 1H, Man3-H-1), 4.61, 4.54 (each d, each -91 - 1324607 _ (86) 明績頁: 1H, GlcNAc2, 5-H-l), 4.22 (d, 1H, J = 2.5 Hz, Man3-H-2), 4.18 (dd, 1H, J=1.4 Hz, 3.0 Hz, Man4'-H-2), 2.89 (dd, 1H, J = 4.3 Hz, 16.9 Hz, Asn-β CH), 2.78 (dd, 1H, J = 7.5 Hz, 16.9 Hz,Asn-β CH), 2.06, 2.05, 2.0 1 (each s,each 3H, Ac) ;MS (Fab) C40H67N5N马028 [M + Na + ]理論值 1 088.4,實測 值 1 0 8 8.3。 實施例4 1 化合物4 6之合成 將化合物23 (1.6毫克,1.5 μιηοΐ)以上述之步驟,進行 • 反應14小時,得到目的之化合物46 (1 . 1毫克,6.4 μπιοί ,產率8 5 。所得到之化合物其物理性質係如下所示。 *H-NMR (30°C ) δ 5.10 (s, 1H, Man4-H-1), 5.06 (d, 1H, J = 9.5 Hz, GlcNAcl -H-l), 4.77 (s, 1H, Man3-H-1), 4.61 (d, 1H, J = 7.3 Hz, GlcNAc2-H-l), 4.22 (d, 1H, J-2.4 Hz, Man3-H-2), 4.07 (dd, 1H, J=1.6 Hz, 3.0 Hz, Man4'-H-2), 2.90 (dd, 1H, J = 4.3 Hz, 17.0 Hz, Asn-β CH), 2.80 (dd, 1H, J = 7.0 Hz, • 17.2 Hz, Asn-β CH), 2.05,2.0 1 (each s,each 3H, Ac); MS (Fab) C32H55N4023 [M + H + ]理論值 863.3,實測值 863.3 實施例4 2 化合物3 4之合成 將化合物11 (12.4毫克,7.5 μπιοί)以上述之步驟,進行 反應1 1小時,得到目的之化合物34 (9.2毫克,產率86%) 。所得到之化合物其物理性質係如下所示。 'H-NMR (30°c ) δ 5.11 (s, 1H, Man4-H-1), 5.07 (d, 1H, J=10.0 Hz, -92- 1324607 (87)Each 3H, Ac) ; MS (Fab) C46H78N5033 [M + H + ] </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; The reaction was carried out for 14 hours to obtain the objective compound 45 (1.1 mg, yield: 85%). The physical properties of the obtained compound are as follows. 'H-NMR (30°C) δ 5.12 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.7 Hz, GlcNAcl -Hl), 4.77 (s, 1H, Man3-H-1 ), 4.61, 4.54 (each d, each -91 - 1324607 _ (86) Performance page: 1H, GlcNAc2, 5-Hl), 4.22 (d, 1H, J = 2.5 Hz, Man3-H-2), 4.18 ( Dd, 1H, J=1.4 Hz, 3.0 Hz, Man4'-H-2), 2.89 (dd, 1H, J = 4.3 Hz, 16.9 Hz, Asn-β CH), 2.78 (dd, 1H, J = 7.5 Hz , 16.9 Hz, Asn-β CH), 2.06, 2.05, 2.0 1 (each s,each 3H, Ac) ;MS (Fab) C40H67N5N horse 028 [M + Na + ] theoretical value 1 088.4, measured 1 0 8 8.3 . Example 4 1 Synthesis of Compound 4 6 Compound 23 (1.6 mg, 1.5 μιηοΐ) was subjected to the above-mentioned procedure to carry out a reaction for 14 hours to obtain the objective compound 46 (1.1 mg, 6.4 μπιοί, yield 8 5 . The physical properties of the obtained compound are shown below. *H-NMR (30 ° C) δ 5.10 (s, 1H, Man4-H-1), 5.06 (d, 1H, J = 9.5 Hz, GlcNAcl -Hl), 4.77 (s, 1H, Man3-H-1), 4.61 (d, 1H, J = 7.3 Hz, GlcNAc2-Hl), 4.22 (d, 1H, J-2.4 Hz, Man3-H-2), 4.07 (dd , 1H, J=1.6 Hz, 3.0 Hz, Man4'-H-2), 2.90 (dd, 1H, J = 4.3 Hz, 17.0 Hz, Asn-β CH), 2.80 (dd, 1H, J = 7.0 Hz, • 17.2 Hz, Asn-β CH), 2.05, 2.0 1 (each s, each 3H, Ac); MS (Fab) C32H55N4023 [M + H + ] Theory 863.3, found 863.3 Example 4 2 Compound 3 4 Synthesis Compound 11 (12.4 mg, 7.5 μπιοί) was reacted for 1 hour in the above-mentioned procedure to give the objective compound 34 (9.2 mg, yield 86%). The physical properties of the obtained compound are as follows. H-NMR (30°c) δ 5.11 (s, 1H, Man4-H-1), 5.07 (d, 1H, J=10.0 Hz, -92- 1324607 (87)

GlcNAcl-H-1), 4.91 (s, 1H, Man4'-H-1), 4.77 (s, 1H,GlcNAcl-H-1), 4.91 (s, 1H, Man4'-H-1), 4.77 (s, 1H,

Man3-H-1), 4.61 (d, 1H, J = 6.8 Hz, GlcNAc2-H-1), 4.55 (d, 2H, GlcNAc5, 5'-H-l), 4.24 (bs, 1 H, Man 3 - H· 2),4.1 8 (b s, 1H, Man4,-H-2), 4.10 (bs, 1H, Man4-H-2), 2.80 (dd, 1H, J = 3.8 Hz, 15.6 Hz, Asn-β CH), 2.63 (dd, 1H, J = 8.2 Hz, 15.6 Hz, Asn-β CH), 2.07 (s, 3H, Ac), 2.05 (s, 6H, Acx2), 2.01 (s,3H,Ac) ; MS (Fab) C54H90N6NaO38 [M + Na + ]理論 值 1453.5,實測值 1453.2 實施例43 化合物35之合成 將化合物12 (12.0毫克,8.4 μιηοΐ)以上述之步驟,進行 反應1 1小時,得到目的之化合物3 5 (7.0毫克,產率8 1 %) 。所得到之化合物其物理性質係如下所示。 !H-NMR (30°C ) δ 5.10 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.7 Hz,Man3-H-1), 4.61 (d, 1H, J = 6.8 Hz, GlcNAc2-H-1), 4.55 (d, 2H, GlcNAc5, 5'-Hl), 4.24 (bs, 1 H, Man 3 - H · 2), 4.1 8 (bs, 1H, Man4, -H-2), 4.10 (bs, 1H, Man4-H-2), 2.80 (dd, 1H, J = 3.8 Hz, 15.6 Hz, Asn-β CH ), 2.63 (dd, 1H, J = 8.2 Hz, 15.6 Hz, Asn-β CH), 2.07 (s, 3H, Ac), 2.05 (s, 6H, Acx2), 2.01 (s, 3H, Ac) ; MS (Fab) C54H90N6NaO38 [M + Na + ] </ </RTI> </RTI> </RTI> </RTI> </RTI> </RTI> </RTI> </RTI> </RTI> </RTI> </RTI> 5 (7.0 mg, yield 81%). The physical properties of the obtained compound are as follows. !H-NMR (30°C) δ 5.10 (s, 1H, Man4-H-1), 5.07 (d, 1H, J = 9.7 Hz,

GlcNAcl-H-1),4.91 (s, 1 H, Man4,-H-1 ),4 · 7 8 ( s,1H,GlcNAcl-H-1), 4.91 (s, 1 H, Man4, -H-1 ), 4 · 7 8 ( s, 1H,

Man3-H-1), 4.61 (d, 1H, J = 8.0 Hz, GlcNAc2-H-1), 4.25 (bs, 1H,Man3-H-2), 4.06 (bs, 1H,Man4,-H-2),3.97 (bs, 1H,Man4-H-2),2.79 (dd,1H,J = 5.0 Hz, 17.0 Hz,Asn-β CH), 2.61 (dd, 1H, J = 7.3 Hz, 17.0 Hz, Asn-β CH), 2.07, 2.01 (each s,each 3H,Ac) ; MS (Fab) C38H65N4028 [M + H + ] 理論值1 0 2 5.4,實測值1 0 2 5.2 實施例44 化合物76、77之合成及分離 將化合物2、6 (5.0毫克’ 2.2 μηιοί)溶解於220 pL之水 t,加入22 mM的碳酸铯水溶液100 pL,調整pH為7.0。 -93- 1324607 (88) 1¾¾¾¾ 將該溶液冷;東乾燥,在乾燥後之固形物上加入N,N -二甲 基亞颯430 μί’再加入66 μηιοί之芊基溴化物/N,N•二曱 基亞礙溶液20 pL。於氬氣的環境下將此溶液加以授拌。 48小時後,以TLC(展開溶劑為1NI NH4OAc :異丙醇=2 : 1)確認原料消失之後,加入4 _ 4毫升之二乙醚使化合物沉 澱。過濾該沉澱之糖鏈,將殘餘的糖鏈溶解於水中,冷凍 乾燥。分取該冷凍乾燥後之殘留物,以HPLC (YMC包裝 管柱 D-ODS-5 S-5 120A ODS No. 2020 1 7 8,20 X 250 mm ,展開溶劑為5 0 m Μ醋酸敍水溶液:乙腈=7 8 : 2 2 ’流速 為4.0毫升/分)進行純化時,分別於8 8分鐘後溶離出化合 物77’以及91分鐘後溶離出化合物76。將其各自分取’再 進一步進行ODS管柱(科思摩基75Ci8-〇PN,15 X 100 mm ’最初以50毫升H2〇溶離,再以25%乙腈溶離)進行脫鹽, 而得到目的之1 · 6毫克的化合物7 6,以及1 · 8毫克的化合物 7 7。所得到之化合物其物理性質係如下所示。 化合物76之數據 ♦ JH-NMR (30°C ) δ 7.92 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, Fmoc), 7.5 3 -7.40 (m, 9H, Fmoc, -CH2-Ph_), 5.38 (d5 1H, J=12.1 Hz, -CH”Ph). 5.3 1 (d, 1H, J=12.1 Hz, -CH,-Ph). 5.12 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.5 Hz, GlcNAcl -H-l), 4.92 (s, 1H, Μαη4·-Η-1), 4.76 (s, 1H, Man3-H-1), 4.58 (m, 3H, GlcNAc2, 5, 5'-H-l), 4.47 (d, 1H, J = 7.9 Hz, Gal6'-H-1), 4.33 (d, 1H, J = 7.9 Hz, Gal6-H-1), 4.24 (bss •94- 1324607 ~ 'r..r ·. Τ7.Ϊ-/-.Τ; ». .-.11 ,·ι&gt;τ,-τ.&quot;ίΛ.ι-*ϊ.:.·1 (89) I發确說明續頁 1HS Man3-H-2), 4.19 (bs, 1H, Man4'-H-2), 4.11 (bs, 1H, Man4-H-2), 2.72 (bd, 1H, Asn-β CH), 2.68 (dd, 1H, J = 4.6 Hz, 12.7 Hz, NeuAc7-H-3eq), 2.52 (dd, 1H, J-8.7 Hz, 15.0 Hz, Asn-β CH), 2.0 7,2.04, 2.03 , 2 · 02, 1.89 (each s, each 3H, Ac), 1.84 (dd, 1H, J=12.7 Hz, 12.7 Hz, NeuAc7-H3ax) ;MS (Fab) C99H143N17Na038 [M + H + ]理論值 23 80.8,實測 值 23 80.0。Man3-H-1), 4.61 (d, 1H, J = 8.0 Hz, GlcNAc2-H-1), 4.25 (bs, 1H, Man3-H-2), 4.06 (bs, 1H, Man4, -H-2 ), 3.97 (bs, 1H, Man4-H-2), 2.79 (dd, 1H, J = 5.0 Hz, 17.0 Hz, Asn-β CH), 2.61 (dd, 1H, J = 7.3 Hz, 17.0 Hz, Asn -β CH), 2.07, 2.01 (each s,each 3H,Ac) ; MS (Fab) C38H65N4028 [M + H + ] Theoretical value 1 0 2 5.4, found 1 0 2 5.2 Example 44 Compound 76, 77 Synthesis and Separation Compounds 2 and 6 (5.0 mg '2.2 μηιοί) were dissolved in 220 pL of water t, and a 22 mM aqueous solution of cesium carbonate was added to 100 pL to adjust the pH to 7.0. -93- 1324607 (88) 13⁄43⁄43⁄43⁄4 Cool the solution; dry to the east, add N,N-dimethyl fluorene 430 μί' to the solid after drying and add 66 μηιοί thiol bromide/N,N• Diterpenoids solution 20 pL. This solution was mixed under an argon atmosphere. After 48 hours, after confirming disappearance of the starting material by TLC (developing solvent: 1NI NH4OAc: isopropyl alcohol = 2:1), 4 - 4 ml of diethyl ether was added to precipitate the compound. The precipitated sugar chain was filtered, and the residual sugar chain was dissolved in water and lyophilized. The lyophilized residue was separated and purified by HPLC (YMC packaging column D-ODS-5 S-5 120A ODS No. 2020 1 7 8, 20 X 250 mm, developing solvent: 50 m Μ acetic acid aqueous solution: When acetonitrile = 7 8 : 2 2 'flow rate: 4.0 ml/min.), when purification was carried out, compound 77' was dissolved after 8 8 minutes and 91 minutes after dissolution of compound 76. The respective ODS column (Cosmoki 75Ci8-〇PN, 15 X 100 mm 'dissolved initially in 50 ml of H2 ,, and then dissolved in 25% acetonitrile) was desalted to obtain the purpose 1 · 6 mg of compound 7 6, and 1 · 8 mg of compound 7 7. The physical properties of the obtained compound are as follows. Data for Compound 76 ♦ JH-NMR (30°C) δ 7.92 (d, 2H, J = 7.5 Hz, Fmoc), 7.71 (d, 2H, J = 7.5 Hz, Fmoc), 7.5 3 -7.40 (m, 9H , Fmoc, -CH2-Ph_), 5.38 (d5 1H, J=12.1 Hz, -CH"Ph). 5.3 1 (d, 1H, J=12.1 Hz, -CH,-Ph). 5.12 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.5 Hz, GlcNAcl -Hl), 4.92 (s, 1H, Μαη4·-Η-1), 4.76 (s, 1H, Man3-H-1), 4.58 (m, 3H, GlcNAc2, 5, 5'-Hl), 4.47 (d, 1H, J = 7.9 Hz, Gal6'-H-1), 4.33 (d, 1H, J = 7.9 Hz, Gal6-H- 1), 4.24 (bss •94- 1324607 ~ 'r..r ·. Τ7.Ϊ-/-.Τ; »..-.11 ,·ι&gt;τ,-τ.&quot;ίΛ.ι-*ϊ .:.1 (89) I issued a statement on page 1HS Man3-H-2), 4.19 (bs, 1H, Man4'-H-2), 4.11 (bs, 1H, Man4-H-2), 2.72 (bd, 1H, Asn-β CH), 2.68 (dd, 1H, J = 4.6 Hz, 12.7 Hz, NeuAc7-H-3eq), 2.52 (dd, 1H, J-8.7 Hz, 15.0 Hz, Asn-β CH ), 2.0 7,2.04, 2.03 , 2 · 02, 1.89 (each s, each 3H, Ac), 1.84 (dd, 1H, J=12.7 Hz, 12.7 Hz, NeuAc7-H3ax) ;MS (Fab) C99H143N17Na038 [M + H + ] Theoretical value 23 80.8, found 23 80.0.

化合物7 7之數據 ^-NMR (30°C ) δ 7.9 1 (d,2H, J = 7.5 Hz, Fmoc),7.7 1 (d, 2H, J = 7.5 Hz, Fmoc), 7.53-7.41 (m, 9H, Fmoc, -CH,-Ph), 5.37 (d, 1H, J=12.1 Hz, -CH.-Ph). 5.31 (d, 1H, J=12.1 Hz, -CH?-Ph). 5.12 (s, 1H, Man4-H-1), 4.99 (d, 1H, J = 9.8 Hz,The data of the compound 7 7 ^-NMR (30 ° C) δ 7.9 1 (d, 2H, J = 7.5 Hz, Fmoc), 7.7 1 (d, 2H, J = 7.5 Hz, Fmoc), 7.53-7.41 (m, 9H, Fmoc, -CH,-Ph), 5.37 (d, 1H, J=12.1 Hz, -CH.-Ph). 5.31 (d, 1H, J=12.1 Hz, -CH?-Ph). 5.12 (s , 1H, Man4-H-1), 4.99 (d, 1H, J = 9.8 Hz,

GlcNAcl-H-1), 4.93 (s, 1H, Man4'-H-1), 4.76 (s, 1H,GlcNAcl-H-1), 4.93 (s, 1H, Man4'-H-1), 4.76 (s, 1H,

Man3-H-1), 4.58 (m, 3H, GlcNAc2, 5, 5'-H-l), 4.46 (1H, d, J = 7.8 Hz, GaI6-H-l), 4.33 (d, 1H, J-7.8 Hz, Gal6'-H-1), 4.24 (bs, 1H, Man3-H-2), 4.19 (bs, 1H, Man4'-H-2), 4.1 1 (bs, 1H, Man4-H-2), 2.72 (bd, 1H, Asn-β CH), 2.68 (dd, 1H, J = 4.8 Hz, 13.0 Hz, NeuAc7-H-3eq), 2.52 (bdd, 1H, J = 9.7 Hz, 14.1 Hz, Asn-β CH), 2.06, 2.05, 2.04, 2.02, 2.02, 1.89 (each s5 each 3H, Ac), 1 .84 (dd, 1H, J=13.0 Hz, 13.0 Hz, NeuAc7-H-3ax) ; MS (Fab) C99HM3N7Na058 [M + H + ]理 論值2380.8,實測值2380.5。 -95- (90) 1324607 MMm: 實施例4 5 化合物7 8之合成 在4。(:下將化合物1 (20毫克)的冷水溶液供注於冷卻之Man3-H-1), 4.58 (m, 3H, GlcNAc2, 5, 5'-Hl), 4.46 (1H, d, J = 7.8 Hz, GaI6-Hl), 4.33 (d, 1H, J-7.8 Hz, Gal6'-H-1), 4.24 (bs, 1H, Man3-H-2), 4.19 (bs, 1H, Man4'-H-2), 4.1 1 (bs, 1H, Man4-H-2), 2.72 (bd, 1H, Asn-β CH), 2.68 (dd, 1H, J = 4.8 Hz, 13.0 Hz, NeuAc7-H-3eq), 2.52 (bdd, 1H, J = 9.7 Hz, 14.1 Hz, Asn-β CH ), 2.06, 2.05, 2.04, 2.02, 2.02, 1.89 (each s5 each 3H, Ac), 1.84 (dd, 1H, J=13.0 Hz, 13.0 Hz, NeuAc7-H-3ax) ; MS (Fab) C99HM3N7Na058 [M + H + ] theoretical 2380.8, found 2380.5. -95- (90) 1324607 MMm: Example 4 5 Synthesis of Compound 7 8 At 4. (: A cold aqueous solution of Compound 1 (20 mg) was added to the cooling

Dowex-5 0Wx8 (H’)管柱(φ ο」cm x 5 cm)中,再將溶離之 水溶液冷凍乾燥。所得到之冷凍乾燥物溶解於4&lt;t的冷水 中,在其上加入ChCOs水溶液(2.5毫克n毫升),調整 值為5 ~ 6 ’然後再將6玄水溶液冷床乾燥。將冷;東乾燥後之 Fmoc-二唾液酸基糖鏈試劑溶解於Dry DMF (1 .3毫升)中, 加入芊基溴化物(5 . 1 μ 1 ),並於氬氣環境下室溫授拌* $小 •時。以TLC確認反應終了之後,將反應溶液冷卻至〇 〇c, 加入1 0毫升之二乙ϋ,以析出目的物質。將其以濾紙進行 過濾。在殘餘的目的物上加入蒸餾水以使其溶解於液體中 ,再繼續進行減壓濃縮。將所得到之殘渣供注於〇 D S管柱 中(φ 1.6 cm X 14 cm,溶離液:h2O—40o/〇 MeOH水溶液) ,得到純化之化合物7 8 (1 8 · 2毫克,產率8 5 %)。所得到之 化合物7 8其物理性質係如下所示。 ^-NMR (30°C ) ® 7.90 (d, 2H, Fmoc), 7.70 (d, 2H, Fmoc), 7.53 -7.40 (m, 9H,In a Dowex-5 0Wx8 (H') column (φ ο" cm x 5 cm), the dissolved aqueous solution was freeze-dried. The obtained lyophilizate was dissolved in 4 liters of cold water, and an aqueous ChCOs solution (2.5 mg n ml) was added thereto, and the adjusted value was 5 to 6 Å, and then the 6 aqueous solution was dried in a cold bed. The cold-dried Fmoc-disialyl sugar chain reagent was dissolved in Dry DMF (1.3 ml), added with decyl bromide (5.1 μl), and allowed to stand at room temperature under argon atmosphere. Mix * $ small • hour. After confirming the completion of the reaction by TLC, the reaction solution was cooled to 〇 〇c, and 10 ml of diethyl hydrazine was added to precipitate a substance of interest. Filter it with filter paper. Distilled water was added to the residual object to dissolve it in the liquid, and then the concentration was continued under reduced pressure. The obtained residue was poured into a 〇DS column (φ 1.6 cm X 14 cm, an eluent: h2O-40o/〇 MeOH aqueous solution) to obtain a purified compound 7 8 (1 8 · 2 mg, yield 8 5 %). The physical properties of the obtained compound 7.8 are as follows. ^-NMR (30 ° C) ® 7.90 (d, 2H, Fmoc), 7.70 (d, 2H, Fmoc), 7.53 -7.40 (m, 9H,

Bn, Fmoc), 5.36 (d, 2H, J=11.6 Hz, CH2), 5.30 (d, 2H, J=11.6 Hz, CH2), 5.12 (s, 1H, Man4-H,), 4.99 (d, 1H, J = 9.7 Hz, GlcNAcl-HO, 4.93 (s, 1H, Man4'-H,), 4.75 (s, 1H, Man3-H,), 4,57 (m, 3H, GlcNAc2-Hi, GlcNAc5, 4.32 (d, 2H, Gal6,6'-Hj),4.24 (d, 1 Η,M an 3 - H 2 ),4.1 8 ( d, 1H, Man4'-H2), 4.10 (1H, d, Man4-H2), 2.72 (bd, 1H, Asn-β CH), 2.67 (dd, 2H, NeuAc7, 7'-H3eq)5 2.51 (bdd, 1H, •96· 1324607 (91) 發明說明績頁Bn, Fmoc), 5.36 (d, 2H, J=11.6 Hz, CH2), 5.30 (d, 2H, J=11.6 Hz, CH2), 5.12 (s, 1H, Man4-H,), 4.99 (d, 1H , J = 9.7 Hz, GlcNAcl-HO, 4.93 (s, 1H, Man4'-H,), 4.75 (s, 1H, Man3-H,), 4,57 (m, 3H, GlcNAc2-Hi, GlcNAc5, 4.32 (d, 2H, Gal6,6'-Hj), 4.24 (d, 1 Η,M an 3 - H 2 ),4.1 8 ( d, 1H, Man4'-H2), 4.10 (1H, d, Man4-H2 ), 2.72 (bd, 1H, Asn-β CH), 2.67 (dd, 2H, NeuAc7, 7'-H3eq)5 2.51 (bdd, 1H, •96· 1324607 (91)

Asn-β C Η), 2.06 (s, 3 Η, Ac), 2.03, 2.01 (each s, each 6H, Ac χ2),1.89 (s, 3H, Ac), 1.83 (2H, dd, J= 12.2, 12.2 Hz, NeuAc7, 7.-H3ax) ; HRMS C117H165N8Na2066 [M + Na + ]理論 值 2783.9597,實測值2783.9501 產業上可利用性 根據本發明,可非常容易、大量地製得具有期望糖鏈 構造的各種糖鏈類。因此,可期待將其利用於癌症、發炎 病症、流行性感冒等治療藥之上。其中特別者,根據本發 明所製得之糖鏈天門冬醯胺衍生物、及糖鏈天門冬醯胺, 其不會有步驟中混入毒性成分之危險,而具有安全性之優 -97-Asn-β C Η), 2.06 (s, 3 Η, Ac), 2.03, 2.01 (each s, each 6H, Ac χ2), 1.89 (s, 3H, Ac), 1.83 (2H, dd, J= 12.2, 12.2 Hz, NeuAc7, 7.-H3ax); HRMS C117H165N8Na2066 [M + Na + ] Theoretical value 2783.9597, measured value 2783.9501 Industrial Applicability According to the present invention, various kinds of desired sugar chain structures can be produced very easily and in large quantities. Sugar chain. Therefore, it can be expected to be utilized for therapeutic drugs such as cancer, inflammatory diseases, and influenza. Among them, the sugar chain aspartame derivative and the sugar chain aspartame produced according to the present invention have no risk of mixing toxic components in the step, and have excellent safety -97-

Claims (1)

13246071324607 公告本丨 ' 第091121856號專利申請案 中文申請專利範圍替換本(99年1月) 拾、申請專利範圍 1. 一種由糖鏈天門冬醯胺衍生的糖鏈天門冬醯胺衍生物 之製造方法,其包含: (a) 得到糖鏈天門冬醯胺衍生物混合物之步驟,其係 於包含1種或2種以上糖鏈天門冬醯胺之混合物所包含 之該糖鏈天門冬醯胺上,導入苐基甲氧羰(Fmoc)基及 第三丁基氧羰(Boc)基;以及 (b) 分離各糖鏈天門冬醯胺衍生物之步驟,其係將該 糖鏈天門冬醯胺衍生物混合物或該糖鏈天門冬醯胺衍 生物混合物所包含之糖鏈天門冬醯胺衍生物,進行水 解得到一混合物,再將其供注於色層分析。 2. 如申請專利範圍第1項所記載之糖鏈天門冬醯胺衍生 物之製造方法,其進一步包含: (b')使用糖水解酵素水解步驟(b)所分離之糖鏈天門 冬醯胺衍生物之步驟。 3. 如申請專利範圍第1項或第2項所記載之糠鏈天門冬醯 胺衍生物之製造方法,其中,該包含1種或2種以上糖 鏈天門冬醯胺之混合物,係含有下列化合物及/或在下 列化合物上有缺失1個以上糖殘基之化合物: 80874-990129.DOC I3246Q7 _ ’ IWSiS範 SSk XAnnouncement 丨 ' 091121856 Patent Application Chinese Patent Application Scope Replacement (January 99) Pickup, Patent Scope 1. A method for producing a sugar chain aspartate derivative derived from a sugar chain aspartame And comprising: (a) a step of obtaining a mixture of sugar chain aspartame derivatives, which is attached to the sugar chain aspartate contained in a mixture of one or more sugar chain aspartame, Introducing a mercaptomethoxycarbonyl (Fmoc) group and a third butyloxycarbonyl (Boc) group; and (b) a step of isolating each of the sugar chain aspartate derivatives, which is derived from the sugar chain aspartate The sugar chain aspartate derivative contained in the mixture of the mixture or the sugar chain aspartate derivative is hydrolyzed to obtain a mixture, which is then subjected to chromatography analysis. 2. The method for producing a sugar chain aspartame derivative according to the first aspect of the invention, further comprising: (b') using a sugar hydrolysate hydrolysis step (b) to separate the sugar chain aspartate The step of the derivative. 3. The method for producing an indole chain aspartame derivative according to the first or second aspect of the invention, wherein the mixture comprising one or more sugar chain aspartames comprises the following Compounds and/or compounds having more than one sugar residue deleted on the following compounds: 80874-990129.DOC I3246Q7 _ ' IWSiS Van SSk X 3 4.如申請專利範圍第1項〜第3項中任一項所記載之糖鏈 天門冬醯胺衍生物之製造方法,其中,該步驟(a)係在 包含有在非還原末端上具有唾液酸殘基的1種或2種以 80874-990129.DOC 1324607 SiliSaiM 上之糖鏈天門冬醯胺的混合物中所含有的該糖鏈天門 冬醯胺上,導入Fmoc基,同時在唾液酸殘基上導入苄 基,而製得糖鏈天門冬醯胺衍生物混合物。 5. —種糖鏈天門冬醯胺之製造方法,其包含: (a) 得到糖鏈天門冬醯胺衍生物混合物之步驟,其係 於包含1種或2種以上糖鏈天門冬醯胺之混合物所含有 之該糖鏈天門冬醯胺上,導入苐基曱氧羰(Fmoc)基及 第三丁基氧羰(Boc)基; (b) 分離各糖鏈天門冬醯胺衍生物之步驟,其係將該 糖鏈天門冬醯胺衍生物混合物或該糖鏈天門冬醯胺衍 生物混合物所包含之糖鏈天門冬醯胺衍生物,進行水 解得到一混合物,再將其供注於色層分析;以及 (c) 獲得糖鏈天門冬醯胺之步驟,其係去除步驟(b) 所分離之糖鏈天門冬醯胺衍生物的保護基。 6. 如申請專利範圍第5項所記載之糖鏈天門冬醯胺之製 造方法,其進一步包含: (b1)使用糖水解酵素水解步驟(b)所分離之糖鏈天門 冬醯胺衍生物之步驟;及/或 (c1)使用糖水解酵素水解步驟(c)所得到之糖鏈天門 冬醯胺之步驟。 7. 如申請專利範圍第5項或第6項所記載之糖鏈天門冬醯 胺之製造方法,其中,該包含1種或2種以上糖鏈天門 冬醯胺之混合物,係含有下列化合物及/或在下列化合 物上有缺失1個以上糖殘基之化合物: 80874-990129.DOC 1324607 一 ’ 井請專圍滅ϊ SThe method for producing a sugar chain aspartame derivative according to any one of claims 1 to 3, wherein the step (a) is carried out on the non-reducing end One or two kinds of sialic acid residues are introduced into the Fmoc group on the sugar chain aspartate contained in a mixture of sugar chain aspartame in 80874-990129.DOC 1324607 SiliSaiM, and at the same time, in the sialic acid residue A benzyl group is introduced into the group to prepare a mixture of sugar chain aspartame derivatives. A method for producing a sugar chain aspartame, which comprises: (a) a step of obtaining a mixture of sugar chain aspartame derivatives, which comprises one or more sugar chain aspartame a step of introducing the thiol oxycarbonyl (Fmoc) group and the third butyl oxycarbonyl (Boc) group to the sugar chain aspartate contained in the mixture; (b) the step of isolating each sugar chain aspartate derivative Is a mixture of the sugar chain aspartate derivative mixture or the sugar chain aspartate derivative contained in the sugar chain aspartate derivative mixture, to obtain a mixture, and then to be used for coloring a layer analysis; and (c) a step of obtaining a sugar chain aspartate which removes the protecting group of the sugar chain aspartate derivative isolated in the step (b). 6. The method for producing a sugar chain aspartame described in claim 5, further comprising: (b1) using a sugar chain aspartate derivative isolated by the hydrolysis hydrolyzing enzyme hydrolysis step (b) And/or (c1) the step of hydrolyzing the sugar chain asparagine obtained in the step (c) using a glycolytic enzyme. 7. The method for producing a sugar chain aspartame according to the fifth or sixth aspect of the invention, wherein the mixture comprising one or more sugar chain aspartames comprises the following compounds and / or compounds with more than one sugar residue on the following compounds: 80874-990129.DOC 1324607 A 'well please specialize in killing ϊ S 3 〇 8.如申請專利範圍第5項〜第7項中任一項所記載之糖鏈 天門冬醯胺之製造方法,其中,該步驟(a)係在包含有 在非還原末端上具有唾液酸殘基的1種或2種以上之糖 80874-990129.DOC 1324607 申請專利範圍績頁 鏈天門冬醯胺的混合物中所含有的該糖鏈天門冬醯胺 上,導入Fmoc基,同時在唾液酸殘基上導入;基,而 製得糖鏈天門冬醯胺衍生物混合物。 9. 一種糖鏈之製造方法,其包含: (a) 得到糖鏈天門冬醯胺衍生物混合物之步驟,其係 於包含1種或2種以上糖鏈天門冬醯胺之混合物所含 有之該糖鏈天門冬醯胺上,導入苐基曱氧羰(Fmoc) 基及第三丁基氧羰(Bo c)基; (b) 分離各糖鏈天門冬醯胺衍生物之步驟,其係將該 糖鏈天門冬醯胺衍生物混合物或該糖鏈天門冬醯胺衍 生物混合物所包含之糖鏈天門冬醯胺衍生物,進行水 解得到一混合物,再將其供注於色層分析; (c) 獲得糖鏈天門冬醯胺之步驟,其係除去步驟(b) 所分離之糖鏈天門冬醯胺衍生物的保護基;以及 (d) 獲得糖鏈之步驟,其係除去步驟(c)所得到之糖鏈 天門冬醯胺的天門冬醯胺殘基。 10. 如申請專利範圍第9項所記載之糖鏈之製造方法,其進 一步包含: (b')使用糖水解酵素水解步驟(b)所分離之糖鏈天門 冬醯胺衍生物之步驟;及/或 (c')使用糖水解酵素水解步驟(c)所得到之糖鏈天門 冬醯胺之步驟;及/或 (d')使用糖水解酵素水解步驟(d)所得到之糖鏈之步 驟。 11. 如申請專利範圍第9項或第10項所記載之糖鏈之製造 80874-990129.DOC 1324607 方法,其中,該包含1種或2種以上糖鏈天門冬醯胺之 混合物,係含有下列化合物及/或在下列化合物上有缺 失1個以上糖殘基之化合物:The method for producing a sugar chain aspartame described in any one of the items 5 to 7 wherein the step (a) includes saliva on the non-reducing end. One or more sugars of acid residues 80874-990129.DOC 1324607 The sugar chain aspartate contained in the mixture of the patent application range of asparagine is introduced into the Fmoc group while being in saliva. A mixture of the sugar chain aspartate derivative is prepared by introducing an acid residue onto the base. A method for producing a sugar chain, comprising: (a) a step of obtaining a mixture of sugar chain aspartame derivatives, which is contained in a mixture comprising one or more sugar chain aspartame a sugar chain aspartate, a mercapto oxime oxycarbonyl (Fmoc) group and a third butyl oxycarbonyl (Bo c) group; (b) a step of isolating each sugar chain aspartate derivative, which is The sugar chain aspartate derivative mixture or the sugar chain aspartate derivative contained in the sugar chain aspartate derivative mixture is hydrolyzed to obtain a mixture, which is then subjected to chromatograph analysis; c) a step of obtaining a sugar chain aspartate, which is a step of removing the protecting group of the sugar chain aspartate derivative isolated in the step (b); and (d) a step of obtaining a sugar chain, which is a removal step (c) The aspartate residue of the obtained sugar chain aspartate. 10. The method for producing a sugar chain according to claim 9, further comprising: (b) a step of hydrolyzing the sugar chain aspartate derivative separated by the step (b); and / or (c') a step of hydrolyzing the sugar chain asparagine obtained by the step (c) using a glycolytic enzyme; and/or (d') using the sugar hydrolyzing enzyme to hydrolyze the sugar chain obtained in the step (d) . 11. The method of manufacturing a sugar chain according to claim 9 or claim 10, wherein the mixture comprising one or more sugar chain aspartame contains the following Compounds and/or compounds having one or more sugar residues deleted on the following compounds: 80874-990129.DOC 1324607 項 申請專利範圍續頁 鏈末醯 糖原冬 之還門 載非天 記在鏈 所有糖 項含之 一 包上 任在以 中係種 ) )-項 a IX 1 驟 第步 .該的 , 基 第中殘 圍其酸 範,液 利法唾 專方有 請造具 申製上 如之端 或 • E 種 亥 =° 的 。 物 物生 酸合衍 有液混胺 含唾物醯 所在生冬 中時衍門 物同胺天 合,醯鏈1 混Cλ冬糖R \ο^ 的 〇 門種 胺Fm天一 冬 0J F 天 糖 基 芊 入 導 上 基 殘 入鏈 導糖 , 得 上 製 胺而 醯, 式 般 - 有 具 係 其80874-990129.DOC 1324607 Scope of application for patent continuation of the end of the chain 醯 醯 醯 冬 冬 冬 冬 载 载 载 载 载 载 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 第 第 第 第 第 第 第 第 第 第 第 第 第In this case, the base of the syllabary is surrounded by its acidity, and the liquefaction method has a prescription for the application of the product or the E. The substance is mixed with acid and has a liquid mixed amine containing salivation. In the middle of winter, the derivative is the same as the amine, and the chain 1 is mixed with Cλ winter sugar R \ο^. The sugar-based indole is introduced into the chain-conducting sugar, and the amine is obtained, and the formula is as follows. (式中,Asn為天門冬醯胺,R1及R2可為相同或相異 而為Η、(wherein, Asn is aspartame, and R1 and R2 may be the same or different and 80874-990129.DOC 132460.780874-990129.DOC 132460.7 ίϋ專利範圍續頁1ϋ ϋ Patent Range Continued Page 1 之情況除外)。 14. 一種糖鏈天門冬醯胺衍生物,其係具有一般式: RxExcept in the case of). 14. A sugar chain aspartame derivative having the general formula: Rx RY (式中,Rx及RY中,其一者為RY (where Rx and RY are one of 80874-990129.DOC 132460780874-990129.DOC 1324607 OHOH 或 )。 15. —種糖鏈天門冬醯胺,其係具有一般式: 80874-990129.DOC 9· 1324607Or ). 15. A sugar chain aspartame, which has the general formula: 80874-990129.DOC 9· 1324607 (式中 而為. ,Asn為天門冬醯胺,R3及R4可為相同或相異, ,但(wherein, Asn is aspartame, R3 and R4 may be the same or different, but 80874-990129.DOC -10- 1324607 為Η或80874-990129.DOC -10- 1324607 for Η or ί申請專利範圍績頁 之情況;及(3)R3為Η、且R4為 16. —種糖鏈 之情況除外)。 其係具有一般式ί the case of applying for a patent coverage; and (3) R3 is Η, and R4 is 16. except for the case of a sugar chain). General (式中,R5及R6可為相同或相異,而為Η、(where R5 and R6 may be the same or different, but Η, 80874-990129.DOC -11 - 132460780874-990129.DOC -11 - 1324607 ,但,(1)R5及R6相同之情況;(2)R5及R6中,其一者為, but (1) R5 and R6 are the same; (2) R5 and R6, one of which is NHAcNHAc 80874-990l29.DOC -12-80874-990l29.DOC -12-
TW91121856A 2002-09-24 2002-09-24 TWI324607B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91121856A TWI324607B (en) 2002-09-24 2002-09-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91121856A TWI324607B (en) 2002-09-24 2002-09-24

Publications (1)

Publication Number Publication Date
TWI324607B true TWI324607B (en) 2010-05-11

Family

ID=45074185

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91121856A TWI324607B (en) 2002-09-24 2002-09-24

Country Status (1)

Country Link
TW (1) TWI324607B (en)

Similar Documents

Publication Publication Date Title
JP4323139B2 (en) Process for producing sugar chain asparagine derivatives
KR100736510B1 (en) Sugar chain asparagine derivatives, sugar chain asparagine, sugar chain, and processes for producing these
AU2004209371B2 (en) Process for producing sugar chain asparagine derivative
JPH05507487A (en) Oligosaccharide-protein complex and method for producing the same
AU2003292641B2 (en) Three-branched sugar-chain asparagine derivatives, the sugar-chain asparagines, the sugar chains, and processes for producing these
WO2004058789A9 (en) Sugar-chain asparagine derivatives and processes for the preparation thereof
TWI324607B (en)
AU2006203198B2 (en) Sugar chain asparagine derivative
TW200804429A (en) Process for the preparation of sugar-chain compound
JP2949509B2 (en) Sialyl lactose
JPH0625275A (en) Glycolipid obtained by transglycosidation reaction
JPH1135594A (en) Mucin type saccharide chain synthetic intermediate
JP2006022191A (en) Three-branched sugar chain asparagine derivative, the sugar chain asparagine, the sugar chain and their preparation methods
JPH10248590A (en) Production of glycosyl asparagine derivative
JPH0984596A (en) Production of galactopyranosylmoranolines
JPH08259586A (en) Production of nalpha-protected-nbeta-glycosylasparagine having free sugar hydroxyl group

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees