TWI324423B - Laser system - Google Patents

Laser system Download PDF

Info

Publication number
TWI324423B
TWI324423B TW95140194A TW95140194A TWI324423B TW I324423 B TWI324423 B TW I324423B TW 95140194 A TW95140194 A TW 95140194A TW 95140194 A TW95140194 A TW 95140194A TW I324423 B TWI324423 B TW I324423B
Authority
TW
Taiwan
Prior art keywords
laser
pulse
output
seed
length
Prior art date
Application number
TW95140194A
Other languages
Chinese (zh)
Other versions
TW200737625A (en
Inventor
Alexander I Ershov
William N Partlo
Daniel J W Brown
Igor V Fomenkov
Robert A Bergstedt
Richard L Sandstrom
Ivan Lalovic
Original Assignee
Cymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cymer Inc filed Critical Cymer Inc
Publication of TW200737625A publication Critical patent/TW200737625A/en
Application granted granted Critical
Publication of TWI324423B publication Critical patent/TWI324423B/en

Links

Landscapes

  • Lasers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

1324423 九、發明說明: 【智^明冷屬之^技_術·領域》】 發明領域 本文揭示之主旨係有關用於D U V光源之高功率氣體放 5電雷射系統,該系統例如係用於積體電路微影術,或用於 其它雷射處理用途’諸如低溫複晶矽處理(「LTPS」)之雷 射退火,例如可用於細光束循序橫向固化(rtbSLS」)。 相關申請案之交互參照 本案請求美國專利申請案第11/584,792號,申請曰2006 10年10月20日,名稱「雷射系統」之優先權;該案為下列美 國專利申請案之連續部分,各案申請日皆為2006年9月14 曰:第11/521,904號申請案,名稱「雷射系統」,代理人檔 號2005-0103-02 ;以及第11/522,052號申請案,名稱「雷射 系統」,代理人檔號2005-0104-01 ;以及第11/521,833號申請 15案’名稱「雷射系統」,代理人檔號2005-0105-01 ;以及第 11/521,860號申請案,名稱「雷射系統」,代理人檔號 2006-0007-01 ;以及第11/521,834號申請案,名稱「雷射系 統」’代理人檔號2006-0012-02 ;以及第11/521,906號申請 案’申請日2006年9月14日,名稱「雷射系統」,代理人檔 2〇 號2006-0013-01 ;以及第11/521,858號申請案,名稱「雷射 系統」,代理人檔號2006-0018-01 ;以及第11/521,835號申請 案,名稱「雷射系統」’代理人檔號2006-0020-01 ;以及第 11/521,905號申請案’名稱「雷射系統」,代理人檔號 2006-0071 -01;該等申請案及本案請求下列美國臨時專利申 5 請案之優先權:第60/732,688號申請案,申請日2005年11 月1日,名稱「200瓦氣體放電準分子或分子氟多腔雷射」, 代理人檔號2005-0094-01 ;以及第60/814,293號申請案,申 請曰2006年6月16日,名稱「200瓦DUV氣體放電雷射系 5 統」,代理人檔號2005-0103-01 ;以及第60/814,424號申請 案,申請曰2006年6月16曰,名稱「長壽MO於ΜΟΡΟ組態 雷射系統」,代理人擋號2006-0012-01,各案揭示以引用方 式併入此處。本案亦係關於前述共同審查中且共同提出申 請之專利申請案中所引述之申請案,所述及之各申請案之 10 内容也以引用方式併入此處。 t先前技術3 發明背景 深紫外光(DUV)光源,諸如於積體電路微影術製造程 序所使用的DUV光源幾乎已經絕對屬於準分子氣體放電雷 15 射之範圍,特別為於約248奈米之KrF準分子雷射,接著於 198奈米之ArF雷射至90年代的早期已經進入生產;也曾經 提示於約157奈米的分子氟F2雷射,但尚未付諸生產。 為了達成於固定波長及固定NA之解析度降低(亦即 193奈米XLA 165於ΧΤ:1400具有ΝΑ=0.93),必須將kl最佳 2〇化,此處kl表示影響解析度的處理程序相依性因素。 基於雷列氏(Rayleigh’s)方程式,對今日的乾ΑγΙ7工具, 只有使用解析度增強技術(RET’s)才能夠達成技藝界現況之 高數值孔徑ArF微影術之較小解析度。RET是一種於扣製造 中維持積極演進成為更小尺寸的具有成本效益的方式, RET逐漸整合入微影術製造的解決之道。 此等處理程序相關的解析度增強努力(降低叫的重點 係集中在使用諸如於雙重光|的相移或圖案分裂等方法之 標線片設計。雜此等方法可改良成像,但也絲著缺點, 包括產出量的耗損,因此當對一項應用用途將kl最佳化 時,進一步改良解析度的唯—方式係返回波長或NA。 浸沒式光刻術係對45奈米進行,波長恆定於193奈米, 導入水允許NA咼達1.35,如此鬆弛匕要求直到需要於32奈 米處理為止。 由於於此種光源之DUV波長製造商首次問市準分子雷 射光源處於恆壓之下,不僅縮短波長,同時也增加由此種 光源的主要客戶亦即步進器/掃描器製造商(今日包括日本 的佳能公司(Canon)及日光公司(Nic〇n)及荷蘭的ASML公司) 藉步進器和掃描器所進行的製造程序中傳輸給晶圓的平均 功率。 此項對波長不斷變小的要求係來自於積體電路製造商 客戶的需求’要求步進器/掃描器製造設備可於積體電路晶 圓上印刷不斷縮小的臨界維度。經由需要更高產出量或晶 圓上光阻需要更高曝光劑量、或二者,驅動更高功率的需 求。 此種於所謂的「摩爾定律」(M〇〇re,s iaw)有關積體電 路月b力的進展,順著此進展道路一路前進 ,如此每單位面 積的電晶體數目’基本上也隨著臨界維度的愈來愈縮小, 造成多項有待光源製造商來解決的嚴重問題。特別係推向 光源的193奈米波長結果導致數項挑戰。 來自193奈米雷射系統之較低波長光子具有比先前Krf;i 24 8奈米光源更高的能量,對光源製造商以及今日掃描器製 迈商皆構成問題。於光源及掃描器接收此等較高能量光子 區’特別於每單位面積之高能密度要求由目前為單窗/透鏡 材料所組成’射‘3受此等具有光學麵力的光子經歷任 何合理的經濟時間週期,亦即該材料為CaF。此種掃描器中 二單材料透鏡要求掃描器製造商,例如需要得自於雷射 光源系統的實質單色光,來避免於透鏡的色差。 要求的頻寬愈來愈小(愈來愈更要求單色光),需要有愈 來愈精密敏感的線窄化單元,例如含有標準具或 化光學it件。老式單腔雷射統有此種料化單柄壽命 短的問題’原因在於許多進人線窄化單⑽光於線窄:程 =中耗損,輸出的頻寬愈窄,則要求的耗損愈大。如此, 需要輸送不斷增高的脈衝驗人線窄化單元來 ,得一給定的脈衝能。如此,例如先前利用的單腔^雷射 …统可具有約5毫焦耳之雷射輸出脈衝,而線窄化單元 合理的成本效益的使用壽命。 一 元源、製造商的第 β§從 .阿成1尔使用ArF光源來解決此等議 逐漸窄㈣㈣和較高⑽平均料,來提高脈 I:主要為每個脈衝有相等脈衝能。如此,透過約 脈衝,脈衝重複以每秒數百個脈衝增高純Hz。如 此維持每脈衝的光學損害低,但隨著脈衝重複率的增^ 增加於線窄化單元以及它處的雷射光學元件的總曝光量。 此外,更高脈衝重複率對光源製造商造成其它問題,主要 電極降級速率增加,需要於_有更快速 n%速率’例如f要更多風扇馬達功率,造成腔及風 扇馬達及轴承總成熱量的增高,結果導致雷射腔更 平均時間縮短。 β較高脈衝重複率也料光源製造商所必須解決的問 題,例如出現於磁性切換脈衝電源供應器,其時間及元件 壽命又到較同熱負載的負面影響’例如出現於脈衝式電源 供應系統巾的磁性切換元件於較高脈衝重複率時。’、 光源製造商所必須解決的困難更增加積體電路持續需 要於其它雷射脈衝參數做改良,例如光束㈣及光束發散 及脈衝對脈衝安定性要求,例如對頻寬的要求以及掃描器 來自於觸發信號的能量及時間等要求。對於此種本質之雷 射輸出及操作參數之各項控制能力可能受到下列因素的負 面影響:包括脈衝能需求增高及脈衝重複率較高中之任 者或二者,以及下列因素的變化,諸如工作週期(操作期間 雷射發射時間之百分比)、由掃描器所選定的脈衝能、雷射 腔中的F2耗盡速率等。 舉例言之,申請人之受讓人的產品ELS 6010#全球第 -種可變248奈米krF準分子單腔雷射系統,於⑽年代的晚 期問市,然後刖進至半導體製造商的13〇奈米可應用的先進 光學效能。隨後也提供於全寬半最大(FWHM)之約〇 5 ^以及 約1.4 pm (95%能量積分)之高度線窄化頻寬,如此讓光刻術 步進器及掃描器可使用具有數值孔徑>〇75的透鏡來達成 王像效月b ELS-6010可支援更高產出速率,例如高達2贴2 8毫焦耳脈衝能給2〇瓦平均功率運作,犯.刪也輸送改良 劑里女定性於晶圓’用來獲得更佳的CD控制與更高能率。 ELS 6010也提供精密能量控制,來減少衰減的需求,最佳 5化脈衝的使用,以及延長雷射消耗品的使用壽命。於波長 安定模組中對信號處理元件改良將可提供更快速的增加獲 得以及更可靠的波長安定性。 ELS 6XXX模型接著為後來的模型,由本發明人的受讓 人稱作為ELS 7000,可解決半導體產業對於次丨3〇設計節點 10的更加積極的要求。亦屬KrF 248奈米波長準分子單腔雷射 系統,傳輸又更緊密受限的頻寬於較高功率,俾便縮小半 導體微影術的CD幾何,進一步改良產出量,與降低操作成 本。ELS 7000也可用於ArF 193奈米波長版本。藉由將脈衝 重複率由2.5kHz提南至4kHz ’可傳輸更大量平均功率。7〇 1〇 15可増加改良線窄化性能(選擇頻寬)及波長安定性,例如確保 更佳焦距控制、最佳化曝光程度、及改良半導體電路之臨 界維度(「CD」)控制。於氣體注入演繹法則也可達成改良, 例如於曝光序列期間’將小量精密量之氣體注入雷射室 中’來提供優異的能量安定性。ELS-7000係針對於248奈米 曝光工具上滿足次0.13微米元件等南度體積產品的需求。 提供4kHz、7.5毫焦耳、30瓦光學輸出,加上與6〇 1〇相等的 超低頻寬效能與高速波長控制,ELS-7000也可降低雷射耗 材的成本。 ELS 7000之後於約2001年申請人的受讓人的Els 7010 10 型號接著問市,進一步積極解決半導體產業對次100奈米設 計節點的效能及成本要求^ ELS-7010也是4-kHz氟化氪 (KrF,248奈米)準分子光源,解決半導體產業對於次丨00奈 米設計節點之微影術上的需求。ELS-7010提供KrF光源之功 率和頻寬效能參數增高,更進一步降低耗材(C〇C)的成本。 ELS-7010對各種主要耗材模組的期望壽命提供5〇%至1〇〇〇/〇 改良’同時增加功率,進一步縮小頻寬。ELS 7010為4kHz、 10毫焦耳 ' 40瓦(FWHM)0.35 pm及(E95%) 1.2pm單腔雷射 系統。 另一種隨後問市且可能更加擴展單腔準分子雷射技術 的幅員的系統為申請人的受讓人之奈石(Nan〇lith) 7〇〇〇1324423 IX. DESCRIPTION OF THE INVENTION: [Technical Fields] [Technical Fields] The subject matter disclosed herein relates to a high power gas discharge 5 electric laser system for a DUV light source, for example, for use in a system Integrated circuit lithography, or for other laser processing applications such as low temperature polysilicon processing ("LTPS") laser annealing, for example, for fine beam sequential lateral curing (rtbSLS). The related application is hereby incorporated by reference in its entirety to U.S. Patent Application Serial No. 11/584,792, filed on Oct. 20, 2006, the priority of the name "Laser System"; this case is a continuation of the following U.S. patent applications, The filing date of each case is September 14th, 2006: Application No. 11/521,904, the name "Laser System", the agent file number 2005-0103-02; and the application No. 11/522,052, the name "Ray" "shooting system", agent file number 2005-0104-01; and application number 11/521,833 15 case 'name "laser system", agent file number 2005-0105-01; and 11/521,860 Application, name "Laser System", agent file number 2006-0007-01; and application No. 11/521,834, name "laser system" 'agent file number 2006-0012-02; and 11th Application No. /521,906 'Application Date September 14, 2006, the name "Laser System", Agent File 2 No. 2006-0013-01; and Application No. 11/521,858, the name "Laser System", Agent file number 2006-0018-01; and application No. 11/521,835, name "laser system" 'agent file number 2 006-0020-01; and application No. 11/521,905 'name 'Laser System', agent file number 2006-0071 -01; these applications and the case request the following US provisional patent application 5 priority : Application No. 60/732,688, application date: November 1, 2005, the name "200 watt gas discharge excimer or molecular fluorine multi-cavity laser", agent file number 2005-0094-01; and 60/814, 293 Application No., application dated June 16, 2006, the name "200 watt DUV gas discharge laser system 5 system", agent file number 2005-0103-01; and application No. 60/814, 424, application 曰 2006 June 16 曰, the name "longevity MO Yu ΜΟΡΟ configuration laser system", agent block number 2006-0012-01, each case is hereby incorporated by reference. The present application is also directed to the application cited in the above-mentioned co-examination and the patent application filed concurrently, the content of each of which is incorporated herein by reference. BACKGROUND OF THE INVENTION 3. A deep ultraviolet (DUV) light source, such as the DUV source used in the integrated circuit lithography manufacturing process, is almost absolutely within the range of excimer gas discharge ray 15, especially for about 248 nm. The KrF excimer laser, which was then in production at the 198 nm ArF laser, entered production in the early 1990s; it was also suggested to have a molecular fluorine F2 laser of about 157 nm, but it has not yet been put into production. In order to achieve a reduction in the resolution of the fixed wavelength and the fixed NA (ie 193 nm XLA 165 at ΧΤ: 1400 has ΝΑ = 0.93), kl must be optimally 2, where kl represents the processing program that affects the resolution. Sex factor. Based on the Rayleigh's equation, for today's Cognac γΙ7 tools, only the resolution enhancement technique (RET’s) is used to achieve the smaller resolution of the high numerical aperture ArF lithography in the art world. RET is a cost-effective way to maintain a positive evolution into a smaller size in the manufacture of buckles, and RET is gradually integrated into the solution of lithography manufacturing. The resolution enhancement efforts associated with such processing (the focus of the reduction is on reticle design using methods such as phase shifting or pattern splitting of dual light | etc. Miscellaneous methods can improve imaging, but also Disadvantages, including the loss of throughput, so when kl is optimized for an application, the only way to further improve resolution is to return wavelength or NA. Immersion lithography is performed on 45 nm, wavelength Constant at 193 nm, the introduction of water allows NA咼 up to 1.35, so it is required to be slurried until it needs to be processed at 32 nm. Since the DUV wavelength manufacturer of this source first asked the market excimer laser source under constant pressure Not only shortened the wavelength, but also increased by the main customers of this kind of light source, namely the stepper/scanner manufacturer (today including Japan's Canon and Nikko (Nic〇n) and the Netherlands' ASML) The average power delivered to the wafer during the manufacturing process performed by the stepper and scanner. This requirement for ever-decreasing wavelengths is a requirement from integrated circuit manufacturer customers. / Scanner manufacturing equipment can print ever-shrinking critical dimensions on integrated circuit wafers. Drive higher power requirements by requiring higher throughput or higher exposure doses on wafers. This kind of progress in the so-called "Moore's Law" (M〇〇re, s iaw) on the monthly b-force of the integrated circuit, along the path of progress, so that the number of transistors per unit area 'substantially The critical dimension is shrinking, causing a number of serious problems to be solved by the light source manufacturer. In particular, the 193 nm wavelength of the light source results in several challenges. The lower wavelength photons from the 193 nm laser system have a ratio The higher energy of the previous Krf;i 24 8 nm source is a problem for both the light source manufacturer and today's scanner manufacturers. The higher energy photonic regions are received at the source and scanner's, especially for high energy per unit area. The density requirement consists of a single window/lens material that is currently subjected to any reasonable economic time period, that is, the material is CaF. The two-material lens in the device requires the scanner manufacturer to, for example, require substantial monochromatic light from the laser source system to avoid chromatic aberration of the lens. The required bandwidth is getting smaller and smaller (more and more monochrome is required). Light), there is a need for increasingly sophisticated line narrowing units, such as etalon or chemistry. Old-fashioned single-cavity lasers have the problem of short life of such materialized single handles. Narrowing single (10) light is narrow in the line: the process is medium loss, and the narrower the output bandwidth is, the larger the required loss is. Therefore, it is necessary to transmit a continuously increasing pulse line narrowing unit to obtain a given pulse. Thus, for example, a previously used single-cavity laser can have a laser output pulse of about 5 millijoules, while a line-narrowing unit has a reasonably cost-effective lifetime. A single source, the manufacturer's Acheng 1 uses ArF light source to solve the problem of narrower (four) (four) and higher (10) average materials, to improve pulse I: mainly for each pulse with equal pulse energy. Thus, by about pulse, the pulse repetition increases the pure Hz by hundreds of pulses per second. Thus, the optical damage per pulse is kept low, but as the pulse repetition rate increases, the total exposure of the line narrowing unit and the laser optical element there is increased. In addition, higher pulse repetition rates cause other problems for the light source manufacturer, and the main electrode degradation rate increases, requiring a faster n% rate, such as f, more fan motor power, resulting in cavity and fan motor and bearing assembly heat. The increase in the result results in a shorter average time for the laser cavity. The higher pulse repetition rate of β is also a problem that light source manufacturers must solve, such as the magnetic switching pulse power supply, whose time and component life are negatively affected by the same heat load, for example, in a pulsed power supply system. The magnetic switching element of the towel is at a higher pulse repetition rate. ', the difficulty that light source manufacturers must address increases the need for integrated circuits to continue to be improved by other laser pulse parameters, such as beam (four) and beam divergence and pulse-to-pulse stability requirements, such as bandwidth requirements and scanners from The energy and time requirements of the trigger signal. The ability to control the laser output and operating parameters of this nature may be adversely affected by either or both of the increased pulse energy requirements and higher pulse repetition rates, as well as changes in factors such as work. Period (percentage of laser emission time during operation), pulse energy selected by the scanner, F2 depletion rate in the laser cavity, and the like. For example, the applicant's product, ELS 6010#, the world's first variable 248 nm krF excimer single-cavity laser system, was introduced in the late (10) years and then broke into semiconductor manufacturers' 13 Advanced optical performance that can be applied to nanometers. It is also provided with a full-width half-maximum (FWHM) of about ^5^ and a height-line narrowing bandwidth of about 1.4 pm (95% energy integral), so that the lithography stepper and scanner can be used with a numerical aperture. > 〇 75 lens to achieve the king of the effect of the moon b ELS-6010 can support higher output rate, for example up to 2 stickers 2 8 mJ pulse can give 2 watts of average power operation, commit and delete the improver in the qualitative The wafer is used to achieve better CD control and higher energy rates. The ELS 6010 also provides precision energy control to reduce the need for attenuation, the use of optimal pulsing pulses, and the longevity of laser consumables. Improvements to signal processing components in the wavelength stabilization module will provide faster gains and more reliable wavelength stability. The ELS 6XXX model is followed by a later model, referred to by the inventor's assignee as the ELS 7000, which addresses the semiconductor industry's more aggressive requirements for the secondary design node 10. It is also a KrF 248 nm wavelength excimer single-cavity laser system, which transmits a tighter and more limited bandwidth to higher power, which reduces the CD geometry of semiconductor lithography, further improves throughput and reduces operating costs. . The ELS 7000 is also available in the ArF 193 nm wavelength version. A larger amount of average power can be transmitted by boosting the pulse repetition rate from 2.5 kHz to 4 kHz'. 7〇 1〇 15 can be used to improve line narrowing performance (select bandwidth) and wavelength stability, such as ensuring better focus control, optimizing exposure, and improving the critical dimension (“CD”) control of semiconductor circuits. Improvements can also be made to the gas injection deduction rule, such as by injecting a small amount of precision gas into the laser chamber during the exposure sequence to provide excellent energy stability. The ELS-7000 is designed to meet the needs of South Volume products such as sub-0.13 micron components on 248 nm exposure tools. Offering 4kHz, 7.5mJ, 30W optical output, plus ultra-low frequency performance and high-speed wavelength control equal to 6〇 1〇, the ELS-7000 also reduces the cost of laser consumables. ELS 7000 followed by the applicant's Els 7010 10 model in about 2001, and then further actively addressed the semiconductor industry's performance and cost requirements for the sub-100 nm design node. ^ ELS-7010 is also 4-kHz cesium fluoride (KrF, 248 nm) excimer light source, addressing the semiconductor industry's need for lithography for the design of the 00 nm design node. The ELS-7010 provides increased power and bandwidth performance parameters for KrF sources, further reducing the cost of consumables (C〇C). The ELS-7010 provides 5〇% to 1〇〇〇/〇 improvement for the life expectancy of various major consumable modules. At the same time, the power is increased to further reduce the bandwidth. The ELS 7010 is a 4 kHz, 10 mJ '40 W (FWHM) 0.35 pm and (E95%) 1.2 pm single cavity laser system. Another system that subsequently asks the market and may expand the range of single-cavity excimer laser technology is the applicant's assignee, Nan〇lith.

ArF (193奈米)單腔雷射系統,於約2002年問市。奈石7〇〇〇 為具有與ELS 7000於193奈米約略相等頻寬規格的ArF雷射 系統’亦即<0.5 pm FWHM及幻.3 pm (E 95%強度積分)於5 毫焦耳及4kHz (20瓦)操作來供給下一代光刻術工具具有優 異的頻譜威力、與高度聚焦的線窄化頻寬,再度可降低雷 射耗材成本,較為困難的工作係於193奈米,主要係由於光 波長縮小造成光學損壞增加。用於體積微影術半導體製造 的193 nm奈石ArF光源,隨著其高度線縮窄、高功率及高 準確度調諧波長控制,允許當時最先進的成像,例如具有 ΝΑ>〇·75以下的1 OOnm節點,仍然可滿足當時的影像對比度 以及晶圓產出量的需求,因而讓晶片的設計又可更進一步 縮小,例如達成更快速的處理器速度,每個晶片更大的記 憶體容量’且同時每個晶圓的良率變更佳。 1324423 奈石7000的結構設計,例如新腔設計,結合於電源設 計、雷射放電腔、及波長控制等方面的新穎技術進展,允 許更密切控制曝光劑量能(<±〇.3%)及雷射波長穩定性(<± 0.03 pm)。板上雷射度莖術提供脈衝對脈衝資料獲得與回授 5控制,來減少變遷波長的不穩定性,藉此提升曝光程序寬 容度與CD控制。 但隨著對縮小頻寬及提高功率的更進一步需求移動至 甚至超過申請人的受讓人之世界級單腔雷射系統的技術進 步之外,顯然必須要有系統可置換單腔系統。進一步優化 10此種光束參數,諸如頻寬,包括維持頻寬於特定範圍,例 如由於OPC理由而非只是不要超過規格,於所需平均功率 位準變成不可能。此時似乎增加重複率並非有效途徑,理 由有數項。 申請人的受讓人選用的解決之道是一種二腔雷射系 15統,包含一種子雷射脈衝光束製造雷射腔,例如主振盪器 (「MO」)’也是氣體放電準分子變種,播種另一個有放大 雷射媒質的雷射腔’也屬於相同的準分子氣體放電變化, 作用來放大種子光束,作為功率放大器(ΓρΑ」)。其它所 謂的主振盡器-功率放大器(「ΜΟΡΑ」)雷射系統也已知, 20大部分出現於固態雷射業界’主要係用來提升功率輸出。 申請人的受讓人有個構想’利用其中製造種子雷射的種子 雷射腔’優化該腔用於選擇/控制期望光束參數(例如頻寬、 光束側寫、光束空間強度分布、脈衝時間形狀等)的操作, 以及然後大致上於放大器媒質例如ΡΑ放大具有期望的參數 12The ArF (193 nm) single-cavity laser system was asked about in 2002. Nai 7 is an ArF laser system with approximately the same bandwidth as the ELS 7000 at 193 nm, ie <0.5 pm FWHM and Magic 3.3 pm (E 95% intensity integral) at 5 mJ and 4kHz (20W) operation to provide next-generation lithography tools with excellent spectral power, narrowing bandwidth with highly focused lines, and again reducing the cost of laser consumables. The more difficult work is at 193 nm, the main system Optical damage increases due to the reduction in wavelength of light. The 193 nm Nyro ArF source for volumetric lithography semiconductor manufacturing, with its height-line narrowing, high power and high-accuracy tuning wavelength control, allows for state-of-the-art imaging at the time, for example, with ΝΑ > 〇 · 75 or less The 1 OOnm node still meets the needs of image contrast and wafer throughput at that time, thus allowing the chip design to be further reduced, such as achieving faster processor speeds and greater memory capacity per wafer. At the same time, the yield of each wafer is changed. 1324423 The structural design of the Nishi 7000, such as the new cavity design, combined with new technological advances in power supply design, laser discharge cavity, and wavelength control, allows for closer control of exposure dose energy (<±〇.3%) and Laser wavelength stability (<± 0.03 pm). On-board laser stalking provides pulse-to-pulse data acquisition and feedback control to reduce instability of transition wavelengths, thereby increasing exposure program latitude and CD control. However, as further demands for shrinking bandwidth and increasing power move beyond the technological advancement of the applicant's world-class single-cavity laser system, it is clear that there must be a system replaceable single-cavity system. Further optimization 10 such beam parameters, such as bandwidth, including maintaining the bandwidth over a particular range, such as for OPC reasons rather than just not exceeding specifications, becomes impossible at the desired average power level. At this point, it seems that increasing the repetition rate is not an effective way, and there are several reasons. The solution chosen by the applicant's assignee is a two-cavity laser system, which includes a sub-laser pulse beam to create a laser cavity, such as a main oscillator ("MO"), which is also a gas discharge excimer variant. Seeding another laser cavity with an amplified laser medium also belongs to the same excimer gas discharge change, acting to amplify the seed beam as a power amplifier (ΓρΑ). Other so-called main-vibrator-power amplifier ("ΜΟΡΑ") laser systems are also known, and most of the 20 are found in the solid-state laser industry's main purpose to increase power output. Applicant's assignee has the idea of 'using a seed laser cavity in which a seed laser is made' to optimize the cavity for selecting/controlling desired beam parameters (eg bandwidth, beam profile, beam spatial intensity distribution, pulse time shape) The operation of, etc., and then substantially the amplifier medium, such as ΡΑ amplification, has the desired parameters 12

:S 1324423 之脈衝。申請人之受讓人的此項突破可滿足當時伴隨著半 導體微影術D U V光源的持續不斷縮小的節點尺寸的電流需 求。 此二腔雷射系統中的第一者為XLA-100,提供於超線 5窄化、高功率氟化氬(ArF)雷射產生光源中的前緣光學效能 及功率效能。由申請人的受讓人所發展出的雙腔主振盪器 功率放大器(ΜΟΡΑ)架構可具有4〇 W平均輸出功率,此乃早 先希瑪(Cymer’s)基於單腔的奈石7000 ArF型號之輸出功率 的兩倍,同時也滿足對於&lt;1〇〇 nm節點之半導體晶片生產上 10不斷變苛刻的效能與成本要求。提供約(X25 pmFWHM之超 線窄化頻譜頻寬及約0.65 pm E95%積分,至當時換言之約 2003年時任何深紫外光(DUV)製造光源的最嚴格的頻譜頻 寬效能,XLA 100提供光,其允許具有數值孔徑(NA)高達 〇·9的光刻術工具之高對比度成像。 15 大半原因係由於較少能量被耗用在ΜΟ腔用來製造具 有所選定的光學參數例如頻寬的光束;以及放大器媒質提 供足夠放大來獲得例如約lmj輸出高達於4kHz操作脈衝重 複率時於10mJ 40瓦平均輸出功率的PA輸出。如此允許例如 每個曝光窗較少脈衝,因而允許使用每次曝光較少脈衝。 20也可取得同等嚴謹的曝光控制,換言之曝光劑量(約土 0.3%),波長穩定性(約±〇.〇25 pm),係經由提供脈衝對脈衝 資料獲得與回授控制予其原位度量術系統,涉及於p〇及PA 二者的輸出取樣來達成此項目的。 於約2005年的年末時,申請人的受讓人問市 13 1324423 n 射系統,變成全球首度 的…又式微影術’允許氣體放電雷射光源比較原先 XLA·10。系列更進一步降低超線窄化輸出於观以上的平 J輸出求更加小型的結構尺寸,需要有新穎的創:S 1324423 pulse. This breakthrough by the applicant's assignee met the current requirements of the ever-decreasing node size associated with the semiconductor lithography D U V source. The first of the two-cavity laser systems, the XLA-100, provides leading edge optical performance and power efficiency in a super-line 5 narrowed, high-power argon-argon (ArF) laser-generated source. The dual-chamber main oscillator power amplifier (ΜΟΡΑ) architecture developed by the applicant's assignee can have an average output power of 4 〇 W, which was the output of Cymer's single-cavity Nylon 7000 ArF model. At twice the power, it also meets the ever-increasing performance and cost requirements for semiconductor wafer production at the <1〇〇nm node. Provides approximately (X25 pmFWHM's super-line narrowed spectral bandwidth and approximately 0.65 pm E95% integral to the most stringent spectral bandwidth performance of any deep ultraviolet (DUV) manufactured light source at the time, in 2003, XLA 100 provides light It allows for high contrast imaging of lithography tools with numerical apertures (NA) up to 〇9. 15 Most of the reason is due to less energy being used in the cavity to create optical parameters with selected wavelengths such as bandwidth. The beam; and the amplifier medium provide sufficient amplification to obtain, for example, a PA output with an average output power of 10 mJ at 40 watts at an operating pulse repetition rate of up to 4 kHz. This allows, for example, fewer pulses per exposure window, thus allowing each exposure to be used. Less pulse. 20 can also achieve the same rigorous exposure control, in other words exposure dose (about 0.3%), wavelength stability (about ± 〇. 〇 25 pm), through the provision of pulse to pulse data acquisition and feedback control Its in-situ metrology system, which involves sampling the output of both p〇 and PA to achieve this project. At the end of the year, the applicant's assignee asked the city 13 1324423 n The system has become the world's first... Repetitive lithography' allows the gas discharge laser source to compare the original XLA·10. The series further reduces the narrow line output of the super-line narrower output. Novel creation

新技術來符合摩狀律的指令,从料著销縮小的CDNew technology to comply with the law of the law, from the shrinking CD

尺寸,特別極端紫外光(EUV)傳輸日期已經移動超出新的千 料第—個十年結束以外或甚至更往外㈣。將具有與空 氣不同折射率的流體例如水導人曝光程序,稱作為浸沒式 光刻術變成擴展193 nm波長光刻術來滿足秘奈米製程節 10 點亦即超高純孔彳準A)浸沒掃㈣具有成本效益 且可供生產製造的技術。Dimensions, particularly extreme ultraviolet (EUV) transmission dates have moved beyond the end of the new decade, or even beyond (4). A fluid exposure process with a refractive index different from air, such as water, is referred to as immersion lithography to expand 193 nm wavelength lithography to meet the 10 points of the secret nanometer process, ie ultra-high purity aperture A) Immersion sweep (4) Cost-effective and production-ready technology.

XLA 2GG可滿足最複雜的半導體晶片製造技術之苛刻 效能與成本要求,提供超純頻譜效能約〇12 pm fwhm及 0.25 pm E95%積分,可支援對次65奈米曝光的超高·掃描 15器系統,同時提供高功率(高達6〇W)來支援產業界的高度生 產力而求。蝻緣頻譜度量術用於XLA系列,該度量術也允 許監視與維持極高頻譜純度,包括板上高準確度E95%強度 積分頻寬度量學,例如來提供對浸沒式光刻術所需的製程 控制。XLA 200是一種 193nm、4kHz、15mJ、60W二腔雷射 20 系統。 隨後’申請人的受讓人於約2006年的早期問市xla 300,XLA 300是XLA 200的6kHz 90W版本。對i93nm出現 浸沒式光刻術’引導臨界層處理低抵32nm節點,XLA300 可滿足該等需求。即使於45nm節點,對臨界維度、側寫、 14 線緣粗度以及不同層的重疊要求等要求仍然影響設計邊界 與良率極限。高產出量超NA(&gt; 1.2)曝光工具連同偏振照明 效應、及優化解析度提升技術(RET)為製程控制所需,可藉 由申請人的受讓人之X L A 3 00系列雷射系統的問市滿足此 等需求。kl物理極限於0.25(用於記憶體應用&lt;0.30為主動, 邏輯通常較高)需要45nm製程高NA曝光工具及高頻譜功率 (高雷射功率與高頻譜純度)雷射。此乃申請人受讓人的XLA 300系列目前傳輸的雷射。 不幸摩爾定律並未完成,EUV仍然是發展計劃。因此 需要解決193nm雷射光源的又更高功率需求。於前述單腔雷 射系統及後來的二腔雷射系統中功率輸出進展造成典型脈 衝重複率增高的兩大障礙是難以獲得準分子氣體放電雷射 系統腔,來於高於6kHz操作;以及隨著脈衝重複率的進一 步走高,於操作期間對某些暴露於最苛刻193 nm光劑量的 光學元件的光學損傷增加,即使使用ΜΟΡΑ架構亦如此。此 外’由於多項理由,包括ΜΟ需要較高壓操作,例如來儘可 能從線窄化ΜΟ腔中提取出更大量脈衝能,例如約380 kPa 總氣體壓力,例如最大約38 kPa氟分壓造成有利於腔壽命 延長的條件無法達成,伴隨著LNM壽命問題促成XLA雷射 系統的CoC增高。XLA 2GG meets the demanding performance and cost requirements of the most complex semiconductor wafer fabrication technology, providing ultra-pure spectral performance of approximately 12 pm fwhm and 0.25 pm E95% integration, supporting ultra-high-scanning 15 amps for the next 65 nm exposure The system also provides high power (up to 6 〇W) to support the high productivity of the industry. The edge spectrum metric is used in the XLA series, which also allows for monitoring and maintaining extremely high spectral purity, including on-board high accuracy E95% intensity integral frequency width metrics, for example to provide the required immersion lithography Process control. The XLA 200 is a 193nm, 4kHz, 15mJ, 60W two-cavity laser 20 system. Subsequently, the applicant's assignee asked the xla 300 in early 2006, and the XLA 300 was the 6 kHz 90W version of the XLA 200. The i93nm immersion lithography 'guided critical layer processing is lower than the 32nm node, and the XLA300 can meet these needs. Even at the 45nm node, requirements such as critical dimensions, profile, 14-line thickness, and overlap requirements for different layers still affect design boundaries and yield limits. High throughput ultra-NA (&gt; 1.2) exposure tools along with polarized illumination effects and optimized resolution enhancement technology (RET) for process control, available through the applicant's assignee's XLA 3 00 series laser system Ask the market to meet these needs. The kl physical limit of 0.25 (for memory applications &lt; 0.30 is active, the logic is usually higher) requires a 45 nm process high NA exposure tool and high spectral power (high laser power and high spectral purity) laser. This is the laser currently transmitted by the applicant's assignee's XLA 300 series. Unfortunately, Moore's Law has not been completed, and EUV is still a development plan. Therefore, there is a need to address the higher power requirements of 193 nm laser sources. Two major obstacles to the increase in typical pulse repetition rate due to power output progression in the aforementioned single-chamber laser system and later two-cavity laser systems are the difficulty in obtaining excimer gas discharge laser system cavities for operation above 6 kHz; A further increase in pulse repetition rate increases the optical damage to certain optical components exposed to the most severe 193 nm light dose during operation, even with the ΜΟΡΑ architecture. In addition, 'for a number of reasons, including the need for higher pressure operation, such as to extract as much as possible from the narrowing of the line cavity, a larger amount of pulse energy, such as a total gas pressure of about 380 kPa, for example, a maximum of about 38 kPa of fluorine partial pressure is beneficial. The condition that the cavity life is prolonged cannot be achieved, and the CoN increase of the XLA laser system is promoted along with the LNM lifetime problem.

此種最新一代的基於ΜΟΡΑ的氟化氬光源提供超線窄 化頻寬低抵0.12 pm FWHM及0.30 pm 95%能量積分雷射光 源’支援極高數值孔徑屈光透鏡和反屈光透鏡浸沒式光刻 術掃描器。XLA 300導入擴充性6kHz平台來傳輸45W至90W 功率。重複率增高連同脈衝伸展’減少對掃描器系統光學 元件的損傷。業界現況板上E95%頻寬度量術與改良頻寬穩 定性,可促進對臨界維度的控制。腔壽命延長,功率光學 元件技術的證實,可延長關鍵雷射模組的使用壽命,來透 5過例如延長關鍵雷射模組使用壽命的腔壽命延長與經過證 實的功率光學技術,可改良(減少)CoC (耗材成本)。 於單純產生高平均功率例如約100 W及以上且高達甚 至200 W及以上的高平均功率領域中,使用於不會遠大於 6kHz操作的雷射系統亦即ΜΟΡΑ系統,可免除厘〇要求架構 10 的線窄化,但仍然需要有新穎技術。 一種可能的解決之道係使用包含功率振盪器的放大媒 質。申請人的受讓人之ΡΑ用於放大以及ΜΟ所產生的期望輸 出光束脈衝參數的保存二者為最佳化,具有優化的線窄化 (舉例)。放大器媒質也是振盪器亦即功率振盪器(「ρ〇」) 15曾經由申請人之受讓人的競爭對手技嘉福通公司 (GigaPhoton)提示及使用,如美國專利案6721344,名稱「注 入鎖定型或ΜΟΡΑ型雷射裝置」,核發日期2〇〇4年4月13日核 發予Nakao等人;6741627’名稱「微影術分子氟雷射系統」, 2004年5月25日核發予Kitatochi等人;以及6839373,名稱 2〇 「超窄頻氟雷射裝置」,2005年1月4曰核發予Takehisha等 人。 不幸’使用振盪器諸如具有前反射鏡及後反射鏡的振 盈器(包括部分反射輸出耦合器及例如透過95%反射後反射 鏡之一之孔徑進行輸入耦合)有多項缺點。由肘〇至放大器 媒質的輸入耦合極為容易有能量損耗。於具有此種所選振 盪器空腔優化光束參數的放大器媒質中,例如於河〇腔中, 可將此種振盪器用作為放大媒質。可能製造無法接受的 ASE水平。 申請人提示一種架構,其可保有Μ〇腔中所發展出的優 化光束參數幾乎接近與申請人的受讓人目前XLA χχχ系 統同等程度,同時由放大媒質產生遠更有效的放大,例如 來獲得輸出平均功率之目前位準,來自於厘〇 (種子雷射) 的輸出脈衝能驚人地降低,結果導致1^0的(:0(:遠更降低。 此外,申請人相信根據本案主題所揭示之實施例之各個態 樣例如脈衝對脈衝穩定性或多項雷射輸出參數也可大為 改良。 提高晶圓產出量或生產力,維持大量製造時對深紫外 光光刻術的先進需求,與雷射使用經濟學重要性可藉由提 阿雷射重複率之6kHz與提高輸出功率至9〇w來部分滿足。 於i93 nm於先進光刻術中的解析度及臨界維度之控制 要求窄頻義寬,例如由好料鏡材料皆有某種程㈣ 色差’需要窄頻寬雷射來減少光源的波長變化,藉此減少 。色差的影響。極為狹窄的頻寬可改良系統的最終解析度, 或另外可對透鏡設計師提供〇的焦距寬容度。昂貴^氣 ,詞光學it件比融合錢於193nm有較少色差。窄頻寬雷射 可減少於193nm曝光系統對氟化两光學元件的需求。頻譜工 程例如對臨界維度(CD)控制的頻譜工程例如由於更積:使 用光學鄰近校正以及較高似透鏡驅動的頻譜王程提高對 17 1324423 BW的敏感度,BW的改變不僅包括不造超越的頻寬規格, 同時也包括於高(先前不超越型極限)與低間相對窄範圍的 頻寬規格。穩定的BW對ArF的重要性比對KrF的重要性更 高。即使極低的BW,若於上限下方具有顯著變化,即使極 5低BW也可能產生不良CD。如此,BW度量術穩定為 獲得良好CD控制的關鍵技術。 6kHz重複率結果也導致劑量效能的改良,減少於45nm 節點的CD變化,可減少劑量量化誤差,例如出現於曝光隙 並未捕捉於該劑量内的全部脈衝時。此外,由於雷射束動 力學的劑量誤差可能造成曝光隙側寫的不完好。新顆設計 的XLA期之LNM,例如使用較高解析度的分散元件、及 改良波長的控制致動機構,改良LNM,組合申請人受讓人 之降低聲學功率(RAP)腔,提供頻寬的絕佳穩定性。 其它存在於此種配置的問題例如ASE的產生可能夠顯 15著例如於功率放大級夠顯著而由於ASE超出頻帶之外,故 於線窄化版本中造成下游的問題。細也可能於例如寬頻 版本例如LTPS版本引發問題,原因在於光束處理光學元 件,例如來產生細長且極細的例如ι〇微米左右光束可能對 於放大級由準分子雷射通常所產生的歧出寬頻的光敏 2◦感。此外,ASE也可能劫奪增益媒質,如此降低於放大級 的可用同頻帶輸出或其它可用輪出。This latest generation of yttrium-based argon-fluoride source provides ultra-line narrowing bandwidth down to 0.12 pm FWHM and 0.30 pm 95% energy-integrated laser source' support for very high numerical aperture refractive lenses and inverse refractive lens immersion Lithography scanner. The XLA 300 is introduced into an expandable 6 kHz platform to transfer 45W to 90W of power. An increase in repetition rate along with pulse stretching&apos; reduces damage to the optical components of the scanner system. The industry's current state of the E95% frequency width measurement and improved bandwidth stability can promote the control of critical dimensions. Extended cavity life, proven by power optics technology, extends the life of critical laser modules, and extends cavity life, such as extended lifespans for critical laser modules, with proven power optics for improved ( Reduce) CoC (consumable cost). In the field of high average power, which only produces high average power, for example about 100 W and above and up to 200 W and above, the laser system used for operation not far greater than 6 kHz is also known as the ΜΟΡΑ system, which eliminates the need for the 〇 〇 architecture 10 The line is narrowed, but new technologies are still needed. One possible solution is to use an amplifying medium that includes a power oscillator. The Applicant's assignee is optimized for both amplification and the preservation of the desired output beam pulse parameters produced by the ,, with optimized line narrowing (for example). The amplifier medium is also the oscillator, ie the power oscillator ("ρ〇") 15 was prompted and used by the applicant's assignee's competitor GigaPhoton, such as the US patent case 6721344, the name "injection lock type" Or a ΜΟΡΑ-type laser device, issued on April 13, 2002, to Nakao et al; 6741627' name "Micro-filming molecular fluorine laser system", issued to Kitatochi et al. on May 25, 2004 And 6893373, the name 2 "ultra-narrow-frequency fluorine laser device", issued to Takehisha et al. on January 4, 2005. Unfortunately, the use of oscillators such as oscillators with front and back mirrors (including partially reflective output couplers and input coupling through one of the apertures of a 95% retroreflective mirror) has several disadvantages. The input coupling from the elbow to the amplifier medium is extremely prone to energy loss. Such an oscillator can be used as an amplifying medium in an amplifier medium having such a selected oscillator cavity optimized beam parameter, such as in a channel. May create unacceptable ASE levels. Applicants have suggested an architecture that preserves the optimized beam parameters developed in the cavity almost as much as the current XLA® system of the Applicant's assignee, while producing a much more efficient amplification from the amplifying medium, for example to obtain The current level of output average power, the output pulse from centistoke (seed laser) can be dramatically reduced, resulting in 1 ^ 0 (: 0 (: far less.), the applicant believes that according to the subject matter of the case Various aspects of the embodiments, such as pulse-to-pulse stability or multiple laser output parameters, can also be greatly improved. Increasing wafer throughput or productivity, maintaining the advanced demand for deep ultraviolet lithography in mass manufacturing, and The importance of laser economics can be partially satisfied by the 6 kHz repetition rate of the Thunder and the increased output power to 9 〇 w. The resolution and critical dimension of the i93 nm in advanced lithography require narrow-band meaning. Width, for example, from a good material, there is a certain process (4) chromatic aberration 'requires narrow bandwidth laser to reduce the wavelength variation of the light source, thereby reducing the effect of chromatic aberration. Very narrow bandwidth can be The final resolution of the improved system, or in addition to the lens designer, can provide a wide range of focal length latitude. Expensive, the word optical piece has less color difference than the fusion money at 193nm. The narrow bandwidth laser can be reduced to the 193nm exposure system. The need for fluorinated two optical components. Spectral engineering such as spectral engineering for critical dimension (CD) control, for example, due to the increased product: using optical proximity correction and higher lens-like spectral spectroscopy to increase sensitivity to 17 1324423 BW, The change of BW includes not only the bandwidth specification that does not exceed the transcendence, but also the bandwidth specification of the relatively high range (previously not exceeding the limit) and the low range. The importance of stable BW to ArF is more important than KrF. Higher. Even with very low BW, if there is a significant change below the upper limit, even a very low BW may produce a bad CD. Thus, BW measurement is a key technique for obtaining good CD control. The 6 kHz repetition rate result also results in a dose. Improved performance, reduced CD variation at the 45nm node, reduces dose quantization errors, such as occurs when the exposure gap does not capture all of the pulses within the dose. The dose error of the laser beam dynamics may cause inaccurate writing on the exposure gap side. The new design of the LLA of the XLA period, such as the use of higher resolution dispersion elements, and improved wavelength control actuation mechanisms, improve LNM, Combining the applicant's assignee's reduced acoustic power (RAP) cavity provides excellent stability of the bandwidth. Other problems that exist in such a configuration, such as the generation of ASE, can be significant, for example, due to the power amplification stage being significant due to The ASE is outside the band, causing downstream problems in the line-narrowed version. Fine may also cause problems in, for example, broadband versions such as the LTPS version, because the beam processing optics, for example, produce slender and very thin, such as ι 微米The beam may be a broadband 2 photosensitive sensation for the amplification stage that is typically produced by excimer lasers. In addition, ASE may also rob the gain medium, thus reducing the available in-band output or other available rounds of the amplifier stage.

Buczek等人三氧化碳再生環形功率放A||,L AppBuczek et al. Carbon trioxide regeneration ring power amplifier A||, L App

Phys” ν〇ι. 42, Νο· 8 (1971年7月)係有關使用前述穩定(條 件穩定)操作的單向再生環形二氧化碳雷射,討論增益飽和 18 於二乳化碳雷射效能上所扮演的角色。Nabors等人13-W YAG^形雷射之注入鎖定光學函件第14卷,第21期 (1989年11月)係有關由二極體泵送固態Nd:YAG主振盈器對 $二果送固形雷射的注人鎖定。經由半波長板、法拉 第轉子及形成於種子雷射與放大器間之光學二極體的薄膜 偏光鏡,種子被輸入耗合於環形雷射。Pacala等人,波長可 掃描就1振盪器-環形放大器雷射系統App. Phys. Ltrs.,Vol. 40’No. 1 (1982年1月),係有關藉線窄化XeC1振盪器所播種 之單通準分子(XeCl)雷射系統。美國專利案3 53〇 388, 197〇 10年9月22日核發予Buerra等人,名稱「光放大器系統」,係有 關種振盪器雷射播種二_聯單通環形雷射,有分光鏡輸 入耦合於各個單通環形雷射。美國專利案3,566,128,1971 年2月23日核發予Amaud ’名稱「利用先導頻率放大之多模 式學再生放大器之光學通訊配置」,係有關一種具有環形放 15大器之光學通訊系統。美國專利案3,646,468,1972年2月29 曰核發予Buczek等人係有關具有低功率振盪器、高功率振 盡器、及共振調整裝置之雷射系統》美國專利案3,646,469, 1997年2月29日核發予Buczek等人,名稱「行進波再生雷射 放大器」,係有關一種類似’468 Buczek專利案之雷射系統, 20 具有可將放大器的共振頻率鎖定於振盪器的輸出頻率之裝 置。美國專利案3,969,685,1976年7月13日核發予Phys" ν〇ι. 42, Νο· 8 (July 1971) is a one-way regenerative ring carbon dioxide laser using the aforementioned stable (conditionally stable) operation to discuss the effect of gain saturation 18 on the performance of the two-emulsified carbon laser. The role of Nabors et al. 13-W YAG^-shaped laser injection-locking optical letter, Volume 14, Issue 21 (November 1989) relates to the pumping of solid-state Nd:YAG main vibrators by diodes. The second fruit is sent to the solid laser to lock in. The seed is input into the ring laser via a half-wavelength plate, a Faraday rotator and a thin film polarizer formed in the optical diode between the seed laser and the amplifier. Pacala et al. The wavelength can be scanned as an oscillator-to-loop amplifier laser system App. Phys. Ltrs., Vol. 40'No. 1 (January 1982), a single pass for seeding a narrowed XeC1 oscillator Molecular (XeCl) laser system. US Patent No. 3 53〇388, issued on September 22, 197, issued to Buerra et al., the name "optical amplifier system", related to the kind of oscillator laser seeding two_ single pass A ring laser with a beam splitter input coupled to each single-pass ring laser. U.S. Patent No. 3,566,128, issued February 23, 1971, to Amaud's "Optical Communication Configuration of Multi-Mode Regenerative Amplifiers Using Pilot Frequency Amplification" is an optical communication system having a ring-shaped amplifier. US Patent No. 3,646,468, February 29, 1972 issued to Buczek et al. for laser systems with low power oscillators, high power oscillators, and resonance adjustment devices. US Patent 3,646,469, February 29, 1997 Issued to Buczek et al., entitled "Rising Wave Reproducing Laser Amplifier", for a laser system similar to the '468 Buczek patent, 20 has a means to lock the resonant frequency of the amplifier to the output frequency of the oscillator. US Patent No. 3,969,685, issued on July 13, 1976

Chenausky,名稱「來自不穩定雷射共振器的增強的輻射耗 合」,係有關柄合來自於增益媒質的能量與不穩定共振器, 來提供能量之較大分量於遠場的中葉。美國專利案 19 1324423 4,107,628 ’ 1978年8月15日核發予tot Hill等人,名稱「CW BRILLOUIN環形雷射」,係有關BdUouin散射環形雷射,具 有一聲光元件來調變散射頻率。美國專利案4,135,787,1979 年1月23日核發予McLafferty,名稱「具有柱面鏡之不穩定 5 環形共振器」,係有關具有中間空間濾波器之不穩定環形共 振器。美國專利案4229106,1980年10月21日核發予 Domschner ’名稱「電磁波環形產生器」,係有關一種環形 雷射共振器’有一個裝置可空間旋轉於其中共振的雷射波 之電子場分布,例如允許波可以相反偏振共振。美國專利 10案4,239,34卜1980年12月16日核發予Carson,名稱「具有 傾斜球面鏡之不穩定光學共振器」,係有關使用傾斜球面鏡 於不穩定共振器,達成非對稱放大來獲得「同時共焦」,且 免除非球面鏡的需求。美國專利案4,247,83卜1981年1月27 曰核發予Lindop ’名稱「環形雷射」,係有關有至少一種平 15行邊各向同性折射裝置例如稜鏡之共振腔,具有與部分光 鏡成斜角的平行邊與該等邊交叉,連同有一裝置可應用共 振平移移動至該折射裝置。美國專利案4,268,800,1981年5 月19日核發予johnst〇n等人,名稱「環形雷射安裝於頂點之 梢端布魯斯特(Brewster)板」,係有關一種梢端布魯斯特板 2〇來微調位置接近平面後反射鏡A的環形雷射,作為環形雷射 腔之反射光學元件之一。美國專利案4 499 582,名稱「環 形雷射」,1980年2月5日核發予Kaming等人係有關一種環 形雷射系統具有折疊光路輕拍分開兩對電極,有部分反射 輸入耦合器於一給定波長。美國專利案5,097,478,1992年3 20 月17日核發予Verdiel等人,名稱「環形腔雷射裝置」,係有 關-種環形腔,其使用來自於主雷射的光束來控制或鎖定 於位在環形腔中的賓雷射操作。其使用非線性媒質於環形 腔來避免絕緣體的需求,例如用來穩定遏止共振,如第4欄 5第9_18行的討論。Nabekawa等人,具有閘控增益放大之 50-W平均功率200 Hz重複率,48〇_fs KrF準分子雷射,cle〇 (2001) 96頁,例如如第1圖之討論,係有關一種有固態種子 之多通放大器雷射,其經過倍頻來獲得約248 nm之KrF準分 子放大。美國專利案6,373,869,2002年4月16日核發予 10 Jacob,名稱「於紫外光波長產生相干性輻射之系統與方 法」,係有關使用Nd:YAG光源加上光學參數振盪器及頻率 倍增器與混合器,來提供種子予多通KrF放大器。美國專利 案6,901,084 ’ 2005年5月31日核發予pask,名稱「穩定固態 拉曼雷射及其操作方法」,係有關於雷射系統共振腔中具有 15拉曼散射機構之固態雷射系統來平移該輸出波長。美國專 利案6,940,880 ’ 2005年9月6日核發予Butterworth等人,名 稱「光學泵送半導體雷射」,係有關構成環形共振器之一部 分之光學泵送半導體雷射共振腔,例如有非線性晶體位於 環形共振器内,包括例如第1、2、3、5及6圖之討論,具有 20 領結形組態。美國公告專利申請案2004/0202220,公告曰 期2004年10月14日’發明人Hua等人,名稱「主振盪器-功 率放大器準分子雷射系統」,係有關一種例如呈ΜΟΡΑ組態 的準分子雷射系統,有一組反射光學元件來轉向至少部分 透射通過ΡΑ的振盈器光束於反向返回通過ΡΑβ美國公告專 21 1324423 利申請案2005/0002425,公告日期2003年1月1日,發明人 Govorkov等人’名稱「光學元件壽命長之主振盪器_功率放 大器(ΜΟΡΑ)準分子或分子氟雷射系統」,係有關具有脈衝 擴幅器的ΜΟΡΑ,於脈衝擴幅器中使用一分光棱鏡於脈衝擴 5幅器,一殼體罩住(ΜΟ+ΡΑ)及反射光學元件,有脈衝擴幅 器安裝於其上’以及反射光學元件形成環繞ΡΑ之一延遲 線。美國公告專利申請案2006/0007978,公告日期2006年1 月12日,發明人Govokov等人,名稱「頻寬限制及長脈衝主 振盪器功率振盪器雷射系統」,係有關有一稜鏡來限制振盪 1〇器内部的頻寬之環形振盪器。 美國專利案6590922,2003年7月8日核發予Onkels等 人’名稱「具有線選擇及甄別之注入播種F2雷射」,揭示經 由單通功率放大器反向注入F2雷射非期望輻射取中環繞一 個波長,來選擇性放大於F2雷射分子氟氣體放電雷射中F2 15 頻譜期望部分之線選擇用之F2頻譜期望部分。 美國專利案6904073,2005年6月7日核發給Yager等 人,名稱「有長壽光學元件之高功率深紫外光雷射」,揭示 含腔内氟晶體光學元件暴露於含氟雷射氣體混合物來保護 光學元件。 20 已公開的國際申請案WO 97/08792,公告日期1997年3 月6日揭示一種具有腔内光學系統之放大器,該系統有一光 路16次通過同一個交叉點,於該處導引一栗送光源來放大 通過該交又點之光。 R. Paschotta’再生放大器,參考http://www.i*p-photonics. 22 com/regenerative__amplifiers.html (2006) ’ 討論一種再生放 大器可視為具有雷射腔之光學放大器,其中脈衝確實從事 幾次來回,俾便達成短光學脈衝的強力放大。經由將增益 媒質放置於光腔連同一光學開關例如光電調變器及/或偏 5 光鏡,可達成多次通過增益媒質,例如固態或氣態雷射媒 質。增益媒質可被泵送一段時間,因此累積某些能量,隨 後初始脈衝可經由埠口開啟短時間(比一個回合時間更短) 注入空腔内,例如使用光電開關(或偶爾使用聲光開關)來開 啟。隨後’脈衝可進行多次(可能數百次)的共振腔來回,被 10放大至高能量位準,俗稱為振盪。光電開關隨後再度用來 從共振腔釋放脈衝。另外,振盘次數可如下測定,經由使 用部分反射輸出耦合器,將於光腔產生的光之若干部分例 如約10%-20%反射回光腔内,直到於雷射媒質中經由刺激 發射所產生的光量為於被激化媒質的個別引發及維持期 15間,有有用的能量脈衝通過輸出耦合器,例如於電泵送氣 體放電脈衝式雷射系統中,電極間的氣體放電係經由以期 望脈衝重複树電極間設置電壓所弓!發。Uppal等人,通常 非對稱Nd:玻璃環形雷射之效能 ’應用光學第25卷第1期Chenausky, entitled "Enhanced Radiation Constraints from Unstable Laser Resonators," is an energy and unstable resonator from the gain medium that provides a larger component of energy to the midfield of the far field. U.S. Patent No. 19 1324423 4,107,628 ' was issued on August 15, 1978 to tot Hill et al., entitled "CW BRILLOUIN Ring Laser", which is a BdUouin scattering ring laser with an acoustic component to modulate the scattering frequency. U.S. Patent No. 4,135,787, issued January 23, 1979, to McLafferty, entitled "Unstable 5 Ring Resonator with Cylindrical Mirror", is an unstable ring resonator with an intermediate space filter. U.S. Patent No. 4,229,106, issued October 21, 1980 to Domschner's name "Electromagnetic Wave Ring Generator", relating to an electron field distribution of a circular laser resonator having a device capable of spatially rotating a laser beam that resonates therein. For example, the wave can be allowed to resonate with opposite polarization. US Patent No. 10, 4, 239, 34, issued to Carson on December 16, 1980, entitled "Unstable Optical Resonator with Tilted Spherical Mirror", is related to the use of a tilted spherical mirror in an unstable resonator to achieve asymmetric amplification to obtain Confocal, and free of the need for a spherical mirror. U.S. Patent No. 4,247,83, issued January 27, 1981, issued to Lindop's name "Circular Laser", which is a resonant cavity with at least one flat 15 line side isotropic refraction device such as 稜鏡, with partial light mirror The beveled parallel edges intersect the equilateral edges, along with a means to apply resonant translation to the refractive device. U.S. Patent No. 4,268,800, issued May 19, 1981, issued to johnst〇n et al., "The ring laser is mounted on the tip of the Brewster board", which is a fine-tuning of a tip-bristled plate. The annular laser of the mirror A is located close to the plane and serves as one of the reflective optical elements of the annular laser cavity. U.S. Patent No. 4,499,582, entitled "Circular Laser", issued to the Kaming et al. on February 5, 1980, relates to a ring-shaped laser system having a folded optical path patted to separate two pairs of electrodes, with a partially reflective input coupler Given wavelength. U.S. Patent No. 5,097,478, issued December 23, 1992 to Verdiel et al., entitled "Circular Cavity Laser Device", is a type of annular cavity that is controlled or locked in place using a beam from the main laser. Binary laser operation in the annular cavity. It uses a non-linear medium in the toroidal cavity to avoid the need for an insulator, such as to stabilize the resonance, as discussed in col. 4, line 9_18. Nabekawa et al., 50-W average power 200 Hz repetition rate with gate-controlled gain amplification, 48 〇 _fs KrF excimer laser, cle〇 (2001) 96 pages, for example, as discussed in Figure 1, Solid-state seed multi-pass amplifier laser, which is multiplied to obtain KrF excimer amplification at approximately 248 nm. U.S. Patent No. 6,373,869, issued April 10, 2002, to 10 Jacob, entitled "System and Method for Producing Coherent Radiation at Ultraviolet Wavelengths", relating to the use of Nd:YAG sources plus optical parametric oscillators and frequency multipliers A mixer to provide seed to the multi-pass KrF amplifier. US Patent Case 6,901,084 ' issued to pask on May 31, 2005, the name "stabilized solid-state Raman laser and its operation method", is a solid-state laser with 15 Raman scattering mechanism in the cavity of the laser system. The system translates the output wavelength. U.S. Patent No. 6,940,880 ' issued September 6, 2005 to Butterworth et al., entitled "Optical Pumped Semiconductor Laser", is an optically pumped semiconductor laser cavity that forms part of a ring resonator, such as a nonlinear crystal. Located within the ring resonator, including, for example, the discussion of Figures 1, 2, 3, 5, and 6, with a 20-neck configuration. U.S. Announced Patent Application 2004/0202220, Announcement, October 14, 2004, 'Inventor Hua et al., titled "Primary Oscillator - Power Amplifier Excimer Laser System", relating to a configuration such as ΜΟΡΑ configuration A molecular laser system having a set of reflective optical elements to deflect at least partially through the oscillating oscillating beam of light in a reverse direction through ΡΑβ US Bulletin 21 2124423 Application 2005/0002425, dated January 1, 2003, invented Human Govorkov et al.'s name "The main component of the long life of the optical component _ power amplifier (ΜΟΡΑ) excimer or molecular fluorine laser system" is related to the 具有 with pulse expander, using a split light in the pulse expander The prism is pulsed into a 5-frame, a housing covers (ΜΟ+ΡΑ) and a reflective optical element on which a pulse expander is mounted' and the reflective optical element forms a delay line around the turns. U.S. Announced Patent Application No. 2006/0007978, dated January 1, 2006, inventor Govokov et al., entitled "Bandwidth Limit and Long Pulse Main Oscillator Power Oscillator Laser System", is related to a limitation A ring oscillator that oscillates the bandwidth inside the 1 〇 device. U.S. Patent No. 6,590,922, issued July 8, 2003, issued to Onkels et al., entitled "Injection of Seeded F2 Laser with Line Selection and Screening", revealing that the F2 laser is unintendedly radiated through a single-pass power amplifier. A wavelength to selectively amplify the desired portion of the F2 spectrum used for the line selection of the desired portion of the F2 15 spectrum in the F2 laser molecular fluorine discharge laser. U.S. Patent No. 6,904,073, issued June 7, 2005 to Yager et al., entitled "High-Power Deep-Energy Laser with Long-Life Optical Components," Revealing the Exposure of Fluorescent Crystal Optical Elements Containing Cavities to Fluoride-Containing Laser Gas Mixtures Protect the optical components. 20 Published International Application No. WO 97/08792, filed on March 6, 1997, discloses an amplifier having an intracavity optical system having an optical path through the same intersection 16 times, where a chestnut is directed The light source is used to amplify the light passing through the intersection. R. Paschotta' Regenerative Amplifier, refer to http://www.i*p-photonics. 22 com/regenerative__amplifiers.html (2006) ' Discuss a regenerative amplifier that can be viewed as an optical amplifier with a laser cavity, where the pulse does engage several times Back and forth, a strong amplification of short optical pulses is achieved. Multiple pass gain media, such as solid state or gaseous laser media, can be achieved by placing the gain medium in the optical cavity with the same optical switch, such as a photo-modulator and/or a polarizer. The gain medium can be pumped for a period of time, thus accumulating some energy, and then the initial pulse can be injected into the cavity via the port opening for a short time (less than one turn), for example using a photoelectric switch (or occasionally using an acousto-optic switch) To open. The 'pulse can then be repeated multiple times (possibly hundreds of times) back and forth, amplified by 10 to a high energy level, commonly known as oscillation. The photoelectric switch is then used again to release the pulse from the resonant cavity. In addition, the number of vibration discs can be determined by using a partially reflective output coupler to reflect portions of the light generated by the optical cavity, for example, about 10%-20%, back into the optical cavity, until through the stimulus emission in the laser medium. The amount of light generated is between the individual initiation and maintenance periods of the excited medium, and there is a useful energy pulse through the output coupler, for example, in an electrically pumped gas discharge pulsed laser system, the gas discharge between the electrodes is expected The voltage is set between the pulse repeating tree electrodes. Uppal et al., Asymmetric Nd: The efficacy of a glass ring laser ‘Applied Optics, Volume 25, Number 1

的四面鏡中的兩面的小量轉向 放大器[以及設置]額外裝置… °而被轉換成為密閉再生多通 ...用來由密閉再生器中導入脈 23 1324423 衝以及擷取脈衝」。本參考文獻述及固定數目(由光學裝置 所固定)通過放大器部分之開放端放大器部分,例如須時多 久讓光束通過透鏡送出放大器部分之外作為「共振器」。如 此處使用,共振器及其它術語例如共振腔、振盪、輸出耦 5 合器等術語係特別用來表示主振盪器或放大器部分、功率 振盪器,原因在於由光腔内藉振盪產生雷射直到有足夠脈 衝強度送出用於有用脈衝來從部分反射輸出耦合器輸出成 為雷射輸出脈衝。此係取決於雷射腔的光學性質,例如雷 射腔大小及輸出耦合器的反射係數,而非單純係取決於導 ίο引種子雷射輸入通過增益媒質固定次數例如通過一次、通 過兩次等的反射次數(功率放大器)或六次等出現於Fork等 人所揭示之實施例。三菱日本專利公開案,第jP11_025890 號,申請日期1999年2月3日,公開日期2000年8月11日,公 開號碼2000223408 ’名稱「半導體製造元件及半導體元件 15 之製造」’揭示一種固態種子雷射及注入鎖定功率放大器, 具有一相延遲均化器例如grism或grism狀光學裝置於主振 盪器與放大器間。美國公告專利申請案20060171439,公告 曰期2006年8月3曰,名稱「主振盪器-功率放大器準分子雷 射系統」,先前公告之申請案20040202220之分割案,揭示 20作為主振盪器/功率放大器雷射系統具有光延遲光路介於 主振盪器與功率放大器中間,形成來自於具有重疊子脈衝 之輸入脈衝的擴幅脈衝。The small amount of the steering amplifier on both sides of the four-sided mirror [and the setting] additional device... is converted into a closed regenerative multipass ... used to introduce the pulse 23 1324423 from the closed regenerator and to extract the pulse". This reference refers to a fixed number (fixed by an optical device) through the open-end amplifier portion of the amplifier section, for example, how long it takes time for the beam to pass through the lens out of the amplifier portion as a "resonator". As used herein, resonators and other terms such as resonant cavity, oscillation, output coupling, etc. are used specifically to denote a main oscillator or amplifier section, a power oscillator, because the laser is generated by oscillation in the cavity until the laser is generated. There is sufficient pulse strength to be sent out for a useful pulse to output from the partially reflected output coupler into a laser output pulse. This depends on the optical properties of the laser cavity, such as the size of the laser cavity and the reflection coefficient of the output coupler, rather than simply relying on the guide laser input through the gain medium for a fixed number of times, for example, once, twice, etc. The number of reflections (power amplifier) or six times, etc., is presented in the embodiment disclosed by Fork et al. Mitsubishi Japanese Patent Publication No. jP11_025890, application date February 3, 1999, publication date August 11, 2000, public number 2000223408 'Name "Manufacture of semiconductor manufacturing components and semiconductor components 15" ' reveals a solid seed mine The injection and injection locking power amplifier has a phase delay homogenizer such as a grism or grism optical device between the main oscillator and the amplifier. U.S. Announced Patent Application No. 20060171439, published on August 3, 2006, titled "Primary Oscillator - Power Amplifier Excimer Laser System", the previously announced application of the division of 20040202220, revealing 20 as the main oscillator / power The amplifier laser system has an optical delay optical path intermediate the main oscillator and the power amplifier to form an amplified pulse from an input pulse having overlapping sub-pulses.

Partlo等人,漫射器散斑模型:應用於多個移動漫射 器,討論散斑減少之各方面。美國專利案5,233,460,名稱 24 「於相干性雷射脈衝減少散斑之方法及手段」,1993年8月3 日核發給Pani。等人’討論於氣體放電雷射系統諸如準分子 雷射系統輸出之相干性破壞之未校準的光學延遲光路。 再生放大器例如使用切換元件再生放大器之功率效率 5藉由腔内耗損效應(特別於光電開關耗損效應)而嚴重減 低。此外’部分反射輸出輕合器之反射率可能影響腔内耗 損及輸出脈衝持續時間等。此種耗損的敏感度於有低增益 的情況下為特高,原因在於如此會增加要求的雷射腔來回 次數俾達成某個總放大因數。再生放大器之一種可能替代 之道為多通放大器,例如前述巾請人受讓人之XLA型號雷 射系統,此處多通(每次通過時之傳播方向略有不同)可以一 組鏡配置。此種方法無需快速調變器,但若通過增益媒質 的次數增尚,則此種辦法變複雜(而難以校準)。 業界一般瞭解,輸出耦合器係表示部分反射光學裝置 15可提供回授進入雷射振盪腔,同時也將能量通出雷射共振 腔之外。 有關耗材成本改良的需求例如用於ArF準分子雷射例 如供微影術光源使用,KrF CoC長久以來係由腔壽命所掌 控,例如光學元件於KrF之較高248 nm波長為強勁。晚近於 20希瑪ArF光學元件及設計的進展,結果導致ArF光學壽命的 顯著增高’例如對希瑪NL-7000A發展出ArF光柵壽命改 良,LNM強度低,例如於二級式xla系統。ArF標準具材料 改良已經促成ArF波計、穩定模組、LAM、SAM及BAM之 使用壽命延長。此外,KrF腔壽命使用希瑪ELS-7000及 25 ELS-7010產品例如透過使用專有電極技術而顯著改良。但 電極技術壽命延長需要特殊操作參數,例如於ELS-7000及 ELS-7010 KrF腔及XLA-200及XLA-300 PA腔所滿足的技 術。但此等參數由於系統的總輸出功率需求而無法用於任 5 何希瑪ArFXLAMO腔。申請人提示例如於用於積體電路製 造微影術之ArF雙腔主振盪器/放大器產品中緩和對此耗材 成本的損傷。 如此處使用,共振器及其它術語例如共振腔、振盪、 輸出耦合器等術語係特別用來表示主振盪器或放大器部 10 分、功率振盪器,原因在於由光腔内藉振盪產生雷射直到 有足夠脈衝強度送出用於有用脈衝來從部分反射輸出耦合 器輸出成為雷射輸出脈衝。此係取決於雷射腔的光學性 質,例如雷射腔大小及輸出麵合器的反射係數,而非單純 係取決於導引種子雷射輸入通過增益媒質固定次數例如通 15 過一次、通過兩次等的反射次數(功率放大器)。如此處使用 封閉回路光徑或振盪回路係指通過放大增益媒質的光徑例 如準分子或類似的氣體放電雷射放大級。 【明内^§13 發明概要 20 熟諳技藝人士須瞭解揭示一種裝置及方法包含一種線 窄化脈衝式準分子或分子氟氣體放電雷射系統,包含:一 種子雷射振盪器,其產生一輸出包含一雷射輸出脈衝光 束’包含:一第一氣體放電準分子或分子氟雷射腔;於一 第一振盡器腔内部之一線窄化模組;一雷射放大級含有一 26 放大增益媒質於一第二氣體放電準分子或分子氟雷射腔, 其接收該種子雷射振盪器的輸出,且放大該種子雷射振盪 器的輸出來形成包含一雷射輸出脈衝光束之雷射系統輸 出’包含:一環形功率放大級。該環形功率放大級包含了 5含有一部分反射光學元件之一注入機構,透過該注入機 構,該種子雷射振盪器輸出光束被注入環形功率放大級。 該環形功率放大級包含一領結回路或跑馬場回路。該種子 雷射振盪器輸出之脈衝能可小於或等於〇1 mj,或〇 2mJ或 〇.5mJ ’或〇.75mJ。環形功率放大級可將該種子雷射振盪器 10腔的輸出放大至脈衝能21mJ,或22mJ,或25mJ,或21〇mJ, 或&gt;15mJ。該雷射系統可於至多丨以出或^至&lt;8kHz或至 S6kHz之輸出脈衝重複率操作。該裝置及方法可包含一種寬 頻脈衝式準分子或分子氟氣體放電雷射系統,包含:一種 子雷射振盪器,其產生一輸出包含一雷射輸出脈衝光束, 15包含:一第一氣體放電準分子或分子氟雷射腔;一雷射放 大級含有一放大增益媒質於一第二氣體放電準分子或分子 氟雷射腔,其接收該種子雷射振盪器的輸出,且放大該種 子雷射振盪器的輸出來形成包含一雷射輸出脈衝光束之雷 射系統輪出,包含:一環形功率放大級。根據所揭示之主 2〇題之實知例之態樣,一種相干性破壞機構係位於該種子 雷射振盪器與該放大器增益媒質間。該相干性破壞機構包 3光學延遲光路,其具有延遲長度比於該種子雷射振盪 器之雷射輸出脈衝光束中之—脈衝的相干性長度更長。該 光學延遲光路不會實質上延遲於該種子雷射振遠器之雷射 27 輸出脈衝光束中之該光束長度。該相干性破壞機構包含第 一長度之一第一光學延遲光路及第二長度之一第二光學延 遲光路,於該第一光學延遲光路及第二光學延遲光路各自 之光學延遲係超越於該種子雷射振盪器之雷射輸出脈衝光 5束中之—脈衝之相干性長度,但實質上不會增加脈衝長 度,以及該第一延遲光路長度與該第二延遲光路長度之差 值係超越該脈衝之相干性長度。根據一實施例之態樣之裝 置及方法可包含一種線窄化脈衝式準分子或分子氟氣體放 電雷射系統,包含:一種子雷射振盪器,其產生一輸出包 10含一雷射輸出脈衝光束,包含:一第一氣體放電準分子或 分子氟雷射腔;於一第一振盪器腔内部之一線窄化模組; 一雷射放大級含有一放大增益媒質於一第二氣體放電準分 子或分子氟雷射腔,其接收該種子雷射振盪器的輸出,且 放大該種子雷射振盪器的輸出來形成包含一雷射輸出脈衝 15光束之雷射系統輸出’包含:一環形功率放大級;介於該 種子雷射振盪器與該環形功率放大級間之一相干性破壞機 構。 根據一實施例之態樣,該裝置及方法可包含一種寬頻 脈衝式準分子或分子氟氣體放電雷射系統,包含:一種子 20雷射振盪器’其產生一輸出包含一雷射輸出脈衝光束,包 含:一第一氣體放電準分子或分子氟雷射腔;一雷射放大 級含有一放大增益媒質於一第二氣體放電準分子或分子氟 雷射腔’其接收該種子雷射振盪器的輸出,且放大該種子 雷射振盪器的輸出來形成包含一雷射輸出脈衝光束之雷射Partlo et al., Diffuse Speckle Model: applied to multiple moving diffusers to discuss various aspects of speckle reduction. U.S. Patent No. 5,233,460, entitled "Methods and Means for Reducing Speckle in Coherent Laser Pulses", issued to Pani on August 3, 1993. Et al. discuss uncalibrated optical delay optical paths for coherent destruction of gas discharge laser systems such as excimer laser system outputs. The power efficiency 5 of the regenerative amplifier, for example using a switching element regenerative amplifier, is severely reduced by the in-cavity loss effect (especially the photoelectric switch wear effect). In addition, the reflectivity of the 'partial reflection output light coupler may affect the cavity loss and the output pulse duration. The sensitivity of such wear is extremely high with low gain because it increases the number of round trips required to achieve a certain total amplification factor. One possible alternative to a regenerative amplifier is a multi-pass amplifier, such as the XLA model of the aforementioned conveyor, where the multi-pass (the direction of propagation is slightly different each time it passes) can be configured in a set of mirrors. This method does not require a fast modulator, but if the number of gain media increases, this approach becomes complicated (and difficult to calibrate). It is generally understood in the industry that the output coupler means that the partially reflective optics 15 can provide feedback into the laser oscillating chamber while also passing energy out of the laser cavity. Demand for consumable cost improvements, such as for ArF excimer lasers such as those used in lithography sources, has long been dominated by cavity lifetimes, such as optical components that are strong at the higher 248 nm wavelength of KrF. Recent advances in the design and design of the 20-horse ArF optics have resulted in a significant increase in the optical lifetime of the ArF', for example, the development of the ArF grating has been improved for the Xima NL-7000A, and the LNM has a low intensity, such as the two-stage xla system. ArF etalon material improvements have led to extended life for ArF wave meters, stabilizing modules, LAM, SAM and BAM. In addition, KrF cavity lifetimes have been significantly improved using the Xima ELS-7000 and 25 ELS-7010 products, for example, through the use of proprietary electrode technology. However, extended electrode technology life requires special operating parameters such as those for the ELS-7000 and ELS-7010 KrF chambers and the XLA-200 and XLA-300 PA chambers. However, these parameters cannot be used in any of the Hexima ArFXLAMO chambers due to the total output power requirements of the system. Applicants have suggested mitigating damage to the cost of such consumables, for example, in ArF dual cavity main oscillator/amplifier products for integrated circuit fabrication lithography. As used herein, resonators and other terms such as resonant cavity, oscillation, output coupler, etc. are used specifically to denote a main oscillator or amplifier section 10, a power oscillator, because the laser is generated by oscillation in the cavity until the laser is generated. There is sufficient pulse strength to be sent out for a useful pulse to output from the partially reflected output coupler into a laser output pulse. This depends on the optical properties of the laser cavity, such as the size of the laser cavity and the reflection coefficient of the output facet, rather than simply relying on the pilot seed laser input through the gain medium for a fixed number of times, such as through 15 times, through two Inferior number of reflections (power amplifier). As used herein, a closed loop optical path or an oscillating circuit refers to a laser discharge amplification stage that amplifies a gain medium such as an excimer or similar gas discharge. [Ming Na ^ § 13 Summary of Invention 20 skilled in the art to understand that a device and method includes a line narrowing pulsed excimer or molecular fluorine gas discharge laser system, comprising: a sub-laser oscillator that produces an output The invention comprises a laser output pulse beam comprising: a first gas discharge excimer or a molecular fluorine laser cavity; a narrowing module in a first cavity of the first cavity; a laser amplification stage comprising a 26 amplification gain The medium is in a second gas discharge excimer or molecular fluorine laser cavity, which receives the output of the seed laser oscillator and amplifies the output of the seed laser oscillator to form a laser system including a laser output pulse beam The output 'includes: a ring power amplifier stage. The ring power amplifier stage includes an injection mechanism including a portion of the reflective optical element through which the output beam of the seed laser oscillator is injected into the loop power amplification stage. The ring power amplifier stage includes a bow tie loop or a racetrack loop. The pulse output of the seed laser oscillator can be less than or equal to 〇1 mj, or 〇 2mJ or 〇.5mJ ’ or 〇.75mJ. The ring power amplifier stage amplifies the output of the seed laser oscillator 10 cavity to a pulse energy of 21 mJ, or 22 mJ, or 25 mJ, or 21 〇 mJ, or &gt; 15 mJ. The laser system can operate at up to or at an output pulse repetition rate of &lt;8 kHz or to S6 kHz. The apparatus and method can include a broadband pulsed excimer or molecular fluorine gas discharge laser system comprising: a sub-laser oscillator that produces an output comprising a laser output pulse beam, 15 comprising: a first gas discharge An excimer or molecular fluorine laser cavity; a laser amplification stage comprising an amplification gain medium in a second gas discharge excimer or molecular fluorine laser cavity, receiving the output of the seed laser oscillator, and amplifying the seed lightning The output of the oscillator is used to form a laser system that includes a laser beam of the output pulse, comprising: a ring power amplifier stage. According to a practical example of the disclosed main problem, a coherence destruction mechanism is located between the seed laser oscillator and the amplifier gain medium. The coherence disrupting mechanism includes an optical delay optical path having a delay length that is longer than a coherence length of the pulse in the laser output pulse beam of the seed laser oscillator. The optical delay optical path is not substantially delayed by the length of the beam in the output pulse beam of the laser of the seed laser remote. The coherence destruction mechanism includes a first optical delay optical path of a first length and a second optical delayed optical path of a second length, wherein an optical delay of each of the first optical delay optical path and the second optical delayed optical path exceeds the seed The laser output of the laser oscillator outputs a pulse-coherent length of the pulse, but does not substantially increase the pulse length, and the difference between the length of the first delayed optical path and the length of the second delayed optical path exceeds the The coherence length of the pulse. Apparatus and method according to an embodiment may comprise a line narrowing pulsed excimer or molecular fluorine gas discharge laser system comprising: a sub-laser oscillator that produces an output package 10 comprising a laser output The pulse beam comprises: a first gas discharge excimer or a molecular fluorine laser cavity; a narrowing module inside a first oscillator cavity; a laser amplification stage containing an amplification gain medium for discharging a second gas An excimer or molecular fluorine laser cavity that receives the output of the seed laser oscillator and amplifies the output of the seed laser oscillator to form a laser system output comprising a laser output pulse 15 beam comprising: a ring A power amplification stage; a coherent destruction mechanism between the seed laser oscillator and the ring power amplification stage. According to an aspect of the embodiment, the apparatus and method may comprise a broadband pulsed excimer or molecular fluorine gas discharge laser system comprising: a sub-20 laser oscillator that produces an output comprising a laser output pulse beam Included: a first gas discharge excimer or molecular fluorine laser cavity; a laser amplification stage containing an amplification gain medium in a second gas discharge excimer or molecular fluorine laser cavity' receiving the seed laser oscillator Output, and amplifying the output of the seed laser oscillator to form a laser comprising a laser output pulse beam

·· . S 28 邊輪出’包含:—環形功率放大級;介於該種子雷射振 實y、4¼形功率放大級間之—相干性破壞機構。根據一 八]之態樣H置及方法可包含-種脈衝式準分子或 職電雷㈣統’包含:—種子雷射減器,其 放;輪出包含-雷射輸出脈衝光束包含:一第一氣體 線!準t子或分子氟雷射腔;於-第一減器腔内部之一 L化柄組,-雷射放大級含有一放大增益媒質於一第二 =放電準分子或分子氟雷射腔,其接收該種子雷射振盪 的輪出’且放大該種子雷射振i器的輸出來形成包含一 與,輪出脈衝光束之雷射系統輸出;於該種子雷射振盈器 路超雷射放大級間之__相干性破壞機構包含—光學延遲光 可2該種子雷射輸出光束脈衝之相干性長度。該放大級 質3 t射振盡腔或一光學路徑界定通過該放大增益媒 15 延固定-人數。忒相干性破壞機構包含一相干性破壞光學 脈衝。構’其可產生循序由—單—輸人脈衝延遲的多個次 /、中各個次脈衝係比隨後次脈衝延遲大於該脈衝光 之相干性長度。 處理熟技藝人士也須瞭解揭示一種裝置及方法包含一種 2〇· · S 28 side wheel out 'contains: - ring power amplifier stage; between the seed laser vibration y, 41⁄4 power amplification stage - coherence destruction mechanism. According to the eight-eighth aspect, the H-and-method may include a pulsed excimer or a vocational lightning (four) system comprising: - a seed laser reducer, which is placed; the wheeled inclusion-laser output pulse beam comprises: a first gas line! a quasi-t or molecular fluorine laser cavity; an L-handle group inside the first reducer chamber, - the laser amplification stage contains an amplification gain medium in a second = discharge excimer or molecule a fluorine laser cavity that receives the wheeling of the seed laser oscillation and amplifies the output of the seed laser oscillator to form a laser system output comprising a pulsed pulse; the laser is excited by the seed The __coherence destruction mechanism between the super-laser amplification stages includes - the optical delay light 2 the coherence length of the seed laser output beam pulse. The amplification level 3 t is radiated to the cavity or an optical path is defined by the amplification gain medium 15 to be fixed - the number of people. The 忒 coherent destruction mechanism contains a coherent destruction optical pulse. The plurality of times / which are generated by the sequential-single-input pulse delay are delayed by more than the subsequent pulse length by the length of the coherence of the pulse light. Those skilled in the art should also understand that a device and method are disclosed that include a

機盗,包含:一照射機構其係以脈衝式uv光照射一工 作件* T 壞 V光輸入開口;一工作件固定平台;一相干性破 路機構包含超過該uv光脈衝之相干性長度之光學延遲光 該光學延遲放並未實質上增加UV光贿長度。相干 =破壞機構包含第-長度之-第-光學延遲光路、以及第 長度之一第二光學延遲光路,於該第一延遲光路及該第 29 ι遲光路各自之光學延遲.係超越該UV光脈衝之相干性 長度,但不會貫質上增加脈衝長度,以及於該第一延遲光 路與該第一延遲光路之長度差係超過該脈衝之相干性長 度。第一延遲光路與第二延遲光路中之至少一者包含一光 5束翻轉機構或光束平移機構。 热諳技藝人士也瞭解,揭示一種裝置及方法根據一實 施例之態樣包含—種雷射光源系統,包含:提供一種子雷 射輸出之一固態雷射種子光束源;一頻率轉換級其係將該 種子雷射輸出轉換成適合播種一準分子或分子氟氣體放電 10雷射之一波長;一準分子或分子氟氣體放電雷射增益媒質 其放大轉換後的種子雷射輸出來產生約於該轉換波長之一 氣體放電雷射輸出脈衝光束;一相干性破壞機構包含一光 學延遲元件’其具有延遲光路比該輸出脈衝之相干性長度 更長。 15 該準分子或分子氟雷射可選自於包含XeC卜XeF、The machine pirate includes: an illuminating mechanism that irradiates a working piece with pulsed uv light*T a bad V light input opening; a working piece fixed platform; and a coherent breaking mechanism that exceeds the coherence length of the uv light pulse Optical Delay Light This optical delay does not substantially increase the UV light bribe length. The coherence=destruction mechanism includes a first-length-first optical delay optical path and a second optical delay optical path of a first length, and an optical delay of each of the first delayed optical path and the 29th optical path is exceeded by the UV light The coherence length of the pulse, but does not increase the pulse length, and the length difference between the first delayed optical path and the first delayed optical path exceeds the coherence length of the pulse. At least one of the first delayed optical path and the second delayed optical path includes a light 5 beam inversion mechanism or a beam translating mechanism. A person skilled in the art will also appreciate that a device and method according to an embodiment includes a laser source system comprising: a solid-state laser seed beam source providing a sub-laser output; a frequency conversion stage Converting the seed laser output into one wavelength suitable for seeding an excimer or molecular fluorine gas discharge 10 laser; an excimer or molecular fluorine gas discharge laser gain medium amplifying the converted seed laser output to generate One of the converted wavelengths is a gas discharge laser outputting a pulsed beam; a coherent destruction mechanism comprising an optical delay element having a delayed optical path that is longer than a coherence length of the output pulse. 15 the excimer or molecular fluorine laser may be selected from the group consisting of XeC Bu XeF,

KrF、ArF及F2雷射系統之一組群。該雷射增益媒質包含一 功率放大器’其包含一單通放大器級或一多通放大器級。 該增益媒質包含一環形功率放大級,其包含一領結組態或 一跑馬場組態,也包含一輸入/輸出耦合器種子注入機構。 20該相干性破壞機構可於該雷射種子光束源與該氣體放電雷 射增益媒質間。該固態種子雷射光束源包含一基於Nd之固 態雷射’可包含泵送該基於Nd之固態雷射之一倍頻幫浦。 該基於Nd之固態雷射包含一纖維放大器雷射,以及包含一 基於Nd之固態雷射其係選自於包含Nd:YAG、Nd:YLF及 30 1324423A group of KrF, ArF and F2 laser systems. The laser gain medium includes a power amplifier 'which includes a single pass amplifier stage or a multi-pass amplifier stage. The gain medium includes a ring power amplifier stage that includes a bow tie configuration or a racetrack configuration and an input/output coupler seed injection mechanism. 20 the coherence disrupting mechanism is between the laser seed beam source and the gas discharge laser gain medium. The solid seed laser beam source comprising a Nd based solid state laser&apos; can include pumping one of the Nd based solid state lasers. The Nd-based solid state laser includes a fiber amplifier laser and includes a Nd-based solid state laser selected from the group consisting of Nd:YAG, Nd:YLF, and 30 1324423

Nd:YV04固態雷射所組成之組群。固態種子雷射光束源包 含基於Er之固態雷射,包含一纖維雷射。基於Er之固態雷 射包含Er:YAG雷射。頻率轉換級包含一線性頻率轉換器, 包含一Ti:藍寶石晶體或包含紫翠玉之晶體。該頻率轉率級 5 包含一非線性頻率轉換器,例如一第二諸波產生器或一和 頻混合器。根據一實施例之態樣,該裝置及方法包含一種 雷射光源系統,包含:提供一種子雷射輸出之一固態雷射 種子光束源;一頻率轉換級其係將該種子雷射輸出轉換成 適合播種一準分子或分子氟氣體放電雷射之一波長;一準 10 分子或分子氟氣體放電雷射增益媒質其放大轉換後的種子 雷射輸出來產生一放電雷射輸出於約略所轉換之波長,包 含一環形功率放大級。該方法包含利用一固態雷射種子光 束源來提供一種子雷射輸出;於一頻率轉換級中,將該種 子雷射輸出頻率轉換成適合播種一準分子或分子氟氣體放 15 電雷射之波長;利用一準分子或分子氟氣體放電雷射增益 媒質,放大該所轉換之種子雷射輸出,來產生約略於該所 轉換波長之一氣體放電雷射輸出。 圖式簡單說明 第1圖顯示已知之Μ Ο PA組態多腔雷射系統; 20 第2圖顯示揭示之所請求專利主旨之一實施例之各個 樣, 第3圖顯示揭示之所請求專利主旨之一實施例之各個 態樣, 第4圖顯示揭示之所請求專利主旨之一實施例之各個 31 1324423 態樣, 第5圖顯示揭示之所請求專利主旨之一實施例之各個 態樣; 第6圖顯示揭示之所請求專利主旨之一實施例之各個 5 態樣, 第7圖顯示根據所揭示之主旨之一實施例之各個態樣 之一時序與控制方案; 第8圖示意顯示根據所揭示之主旨之一實施例之各個 態樣,類似第37圖之多重反射或使用分開光束來填補一孔 10 隙之不同空間部分; 第9圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之輸入耦合; 第10圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之輸入耦合; 15 第11圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之輸入耦合; 第12圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之輸入耦合; 第13圖示意顯示根據所揭示之主旨之一實施例之各個 20 態樣有用之輸入耦合; 第14圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之輸入耦合; 第15圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之一輸入耦合機構之一實施例態樣之頂視圖;A group of Nd:YV04 solid state lasers. The solid seed laser beam source contains a solid-state laser based on Er and contains a fiber laser. The solid-state laser based on Er contains an Er:YAG laser. The frequency conversion stage comprises a linear frequency converter comprising a Ti: sapphire crystal or a crystal containing amethyst. The frequency conversion stage 5 includes a non-linear frequency converter, such as a second wave generator or a sum mixer. According to an aspect of the embodiment, the apparatus and method comprise a laser light source system comprising: providing a solid laser seed source of a sub-laser output; and a frequency conversion stage converting the seed laser output into Suitable for seeding one of the excimer or molecular fluorine gas discharge laser wavelengths; a quasi-10 molecule or molecular fluorine gas discharge laser gain medium that amplifies the converted seed laser output to produce a discharge laser output in an approximate conversion The wavelength includes a ring power amplification stage. The method includes utilizing a solid-state laser seed beam source to provide a sub-laser output; in a frequency conversion stage, converting the seed laser output frequency into a suitable one for excimer or molecular fluorine gas discharge 15 electric laser Wavelength; utilizing an excimer or molecular fluorine gas to discharge a laser gain medium, amplifying the converted seed laser output to produce a gas discharge laser output that is approximately one of the converted wavelengths. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a known Μ PA configuration multi-cavity laser system; 20 Figure 2 shows various embodiments of the claimed patent subject matter, and Figure 3 shows the claimed patent subject matter disclosed. Various aspects of one embodiment, FIG. 4 shows various aspects of an embodiment of one of the claimed patents, and FIG. 5 shows various aspects of an embodiment of the claimed patent subject; 6 shows various aspects of one embodiment of the claimed subject matter, and FIG. 7 shows a timing and control scheme for each aspect of an embodiment in accordance with one of the disclosed subject matter; FIG. 8 is a schematic representation of Various aspects of one embodiment of the disclosed subject matter, similar to the multiple reflections of Figure 37 or the use of separate beams to fill different spatial portions of a hole 10 gap; Figure 9 schematically illustrates an embodiment in accordance with the disclosed subject matter. Various aspects are useful for input coupling; Figure 10 is a schematic illustration of useful input couplings in accordance with various aspects of an embodiment of the disclosed subject matter; 15 Figure 11 is a schematic illustration of the subject matter disclosed Various aspects of an embodiment are useful for input coupling; FIG. 12 is a schematic illustration of useful input couplings in accordance with various aspects of one embodiment of the disclosed subject matter; FIG. 13 is a schematic illustration of one of the disclosed aspects Each of the 20 aspects is useful for input coupling; Figure 14 is a schematic representation of useful input couplings in accordance with various aspects of one embodiment of the disclosed subject matter; Figure 15 is a schematic illustration of one embodiment in accordance with the disclosed subject matter. Each aspect of the invention is useful in a top view of one embodiment of an input coupling mechanism;

32 1324423 第16圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之第15圖之輸入耦合機構之側視圖; 第17圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之輸入耦合; 5 第18圖以剖面圖示意顯示根據所揭示之主旨之一實施 例之各個態樣,一種正交注入播種機構之一實施例之各個 態樣, 第19圖以剖面圖示意顯示根據所揭示之主旨之一實施 # 例之各個態樣,一種正交注入播種機構之一實施例之各個 10 態樣; 第20圖以剖面圖示意顯示根據所揭示之主旨之一實施 例之各個態樣,一種正交注入播種機構之一實施例之各個 態樣, 第21圖以剖面圖示意顯示根據所揭示之主旨之一實施 15 例之各個態樣,一種正交注入播種機構之一實施例之各個 態樣; ® 第22圖以剖面圖示意顯示根據所揭示之主旨之一實施 ' 例之各個態樣,一種正交注入播種機構之一實施例之各個 態樣, 20 第23圖以部分切除透視圖部分示意顯示根據所揭示之 主旨之一實施例之各個態樣,含有光學元件於雷射腔中之 一雷射腔之延伸; 第24圖顯示根據所揭示之主旨之一實施例之各個態 樣,於一環形功率放大器中之正向能和反向能之測量值; 33 第25圖顯示根據所揭示之主旨之之各個態 樣,於-環形功率放大器中之正向能和反向能之測量值; 第26圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣,一種ΜΟΡΟ之一時序與控制系統; 5 第27圖顯示根據所揭示之主旨之—實施例之各個態 樣’具有Μ0輸出脈衝能變化之—種環形功率巍器之飽和 度; 第28圖示意且以方塊圖形式顯示根據所揭示之主旨之 —實施例之各個態樣之一種雷射控制系統; 1〇 帛29圖示意且以方塊圖形式顯示根據所揭示之主旨之 —實施例之各個態樣之一種雷射控制系統; 第30圖不意顯不根據所揭示之主旨之一實施例之各個 態樣之一種種子注入機構及光束擴幅器; 第31圖示意顯示根據所揭示之主旨之一實施例之各個 15 態樣之相干性破壞器; 第32圖示意顯示根據所揭示之主旨之—實施例之各個 態樣之相干性破壞器; 第33圖部分不意而部分以方塊圖形式顯示根據所揭示 之主s之一實施例之各個態樣,一種相干性破壞體系之各 20元件之實例以及該體系之各態樣之結果實例; 第34圖顯不根據所揭示之主旨之一實施例之各個態 樣’各個Ε-Ο偏向器電壓之相對散斑強度,相對於種子雷射 中Ε-0與脈衝產生間之相對時序· 第35圖顯不根據所揭示之主旨之一實施例之各個態樣32 1324423 Figure 16 is a side elevational view of the input coupling mechanism of Figure 15 useful in accordance with various aspects of one embodiment of the disclosed subject matter; Figure 17 is a schematic illustration of an embodiment in accordance with one of the disclosed subject matter Various aspects are useful for input coupling; 5 Figure 18 is a cross-sectional view schematically showing various aspects of an embodiment of an orthogonal injection seeding mechanism in accordance with various aspects of one embodiment of the disclosed subject matter, Figure 19 A cross-sectional view schematically illustrates various aspects of an embodiment of an orthogonal injection seeding mechanism in accordance with one aspect of the disclosed subject matter; FIG. 20 is a cross-sectional view schematically showing Various aspects of one embodiment of the subject matter, an aspect of an embodiment of an orthogonal injection seeding mechanism, and FIG. 21 is a cross-sectional view schematically showing various aspects of a 15 example according to one of the disclosed subject matter, Various aspects of an embodiment of an orthogonal injection seeding mechanism; ® Figure 22 is a cross-sectional view schematically showing various aspects of an embodiment of the disclosed subject matter, an orthogonal injection seeding mechanism Various aspects of the embodiment, FIG. 23 is a partial cutaway perspective view schematically showing an extension of one of the laser chambers in the laser cavity according to various aspects of an embodiment of the disclosed subject matter; Figure 24 shows measured values of forward and reverse energy in a ring power amplifier in accordance with various aspects of an embodiment of the disclosed subject matter; 33 Figure 25 shows various aspects in accordance with the disclosed subject matter. The measured values of the forward energy and the reverse energy in the ring-shaped power amplifier; Figure 26 is a schematic and block diagram showing the various aspects of an embodiment according to one of the disclosed g Control System; 5 Figure 27 shows the saturation of a ring-shaped power buffer with varying 输出0 output pulse energy according to the disclosed subject matter; Figure 28 is schematic and shown in block diagram form A laser control system in accordance with various aspects of the disclosed subject matter; FIG. 29 is a schematic and block diagram showing various aspects of an embodiment in accordance with the disclosed subject matter. A laser control system; FIG. 30 is not intended to show a seed injection mechanism and a beam expander according to various aspects of one embodiment of the disclosed subject matter; FIG. 31 is a schematic view showing one of the embodiments according to the disclosed subject matter. Each of the 15 aspects of the coherence destroyer; FIG. 32 is a schematic view showing the coherence destroyer of each aspect of the embodiment according to the disclosed subject matter; the 33rd part is partially unintentionally and partially shown in block diagram form. Examples of one embodiment of the disclosed main s, examples of each of the 20 elements of a coherent destruction system, and examples of the results of the various aspects of the system; Figure 34 shows an embodiment in accordance with the disclosed subject matter. The relative speckle intensity of each Ε-Ο deflector voltage, relative to the relative timing between Ε-0 and pulse generation in the seed laser. Figure 35 shows an embodiment according to one of the disclosed aspects. Various aspects

34 之指向位移相對於E-Ο電壓; 第36圖顯示根據所揭示之 … 曰之—實施例之各個態 樣,E-0偏向電壓時序與種子蛩 〜 射脈衝頻譜之實例; 實施例之各個 響; 實施例之各個態 第37圖不意顯不根據所揭干之主^ t 態樣,來自於衫反折料知目干性^成的影 第38圖顯示根據所揭示之 t ^ 樣,光束掃拂/塗抹相干性造成的影響; 之效 第39圖示意以卡通方式顯示多個相干性破壞體系 應 第40圖示意顯示«所揭示之主旨之—實_之各個 態樣之一種相干性減少體系; 第41圖顯示模擬光束脈衝翻轉之結果; 第42圖示思且以部分方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種具有發散控制之一光束組 合器; 第43圖顯示根據所揭示之主旨之一實施例之各個態 樣,隨著時間之經過模擬E-Ο供應電壓相對於種子脈衝強度 頻譜; 第44圖顯示根據所揭示之主旨之一實施例之各個態 樣,隨著時間之經過測試E - 〇供應電壓相對於種子脈衝強度 頻譜; 第4 5圖顯示根據所揭示之主旨之一實施例之各個態樣 之E-0電池驅動電路; 第46圖顯示根據所揭示之主旨之一實施例之各個態樣 1324423 之範例側視結果; 第47圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣,一種使用DUV雷射光之寬頻光源及 雷射表面處理系統; 5 第48圖示意顯示根據所揭示之主旨之一實施例之各個 態樣之相干性破壞器光學延遲光路; 第49圖示意顯示根據所揭示之主旨之一實施例之各個 態樣之相干性破壞器光學延遲光路; 第50圖示意且以方塊圖形式顯示根據所揭示之主旨之 10 一實施例之各個態樣之微影術工具; 第51圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之微影術工具; 第52圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之雷射微影術工具; 15 第53圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之雷射微影術工具; 第5 4圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之極高平均功率雷射光源; 第55圖示意且以方塊圖形式顯示根據所揭示之主旨之 20 一實施例之各個態樣之極高平均功率雷射光源; 第56圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之極高平均功率雷射光源之一實例; 第5 7圖部分示意且部分以方塊圖形式顯示根據所揭示 之主旨之一實施例之各個態樣之一種浸沒式雷射光刻術系 36 1324423 統; 第58圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之一固態種子雷射至氣體放電放大器 雷射糸統, 5 第59圖以方塊圖形式顯示根據所揭示之主旨之一實施 例之各個態樣之一種固態種子雷射/放大器雷射系統, 第60圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣,一種子雷射之輸出轉換,例如使用 一頻率轉換器連同一分光鏡轉換,接著為相干性破壞; 10 第61圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之第60圖之實施例之一個版本; 第62圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種注入播種DUV氣體放電主 振盪器/放大器增益媒質雷射系統固態主振盪器; 15 第63圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種注入播種DUV氣體放電主 振盪器/放大器增益媒質雷射系統固態主振盪器; 第6 4圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種注入播種DUV氣體放電主 20 振盪器/放大器增益媒質雷射系統固態主振盪器; 第65圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種注入播種DUV氣體放電主 振盪器/放大器增益媒質雷射系統固態主振盪器; 第66圖示意且部分以方塊圖形式顯示根據所揭示之主 ::S ; 37 1324423 旨之一實施例之各個態樣,一種極高功率固態種子雷射及 增益放大器雷射系統; 第67圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種再生/循環功率增益振盪器 5 功率放大級; 第68圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種固態種子雷射/增益放大器 雷射系統; 第69圖示意且部分以方塊圖形式顯示根據所揭示之主 10旨之一實施例之各個態樣,一種固態種子雷射/增益放大器 雷射系統; 第7 0圖顯示根據所揭示之主旨之一實施例之各個態樣 之得自雷射系統之規度化輸出脈衝形狀. 第71圖示意顯示根據所揭示之主旨之一實施例之各個 15 態樣之E-0電池雷射操控輸入電壓; 第72圖以方塊圖形式7F意顯示根據所揭示之主旨之_ 實施例之各個態樣之一種雷射操控系絶. 第73圖示意顯示根據所揭示之主旨之一實施例之各個 態樣之E-O電池雷射操控電壓輸入信號; 20 第74圖顯示根據所揭示之主旨之一實施例之各個態樣 之相干性破壞測試結果之實例; 第75圖顯示根據所揭示之主旨之一實施例之各個態樣 之相干性破壞測試結果之實例; 第76圖示意且部分以方塊圖形式顯示根據所揭示之主 38 1324423 旨之一實施例之各個態樣,一種具有約193 nm輸出光之固 態種子雷射; 第77圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種具有約193 nm輸出光之固 5 態種子雷射; 第78圖顯示各種頻率向上轉換體系; 第79圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之一種雷射系統; 第80圖示意且以方塊圖形式顯示根據所揭示之主旨之 10 —實施例之各個態樣之一種雷射系統; 第81A-C圖以分解形式顯示根據所揭示之主旨之一實 施例之各個態樣,一種種子雷射放大增益媒質之射線路徑 之透視及部分示意圖; 第82A及82B圖以透視圖部分示意顯示第81A_C圖之部 15分射線路徑之頂視圖及側視圖; 第83A圖顯示第81A-C圖及第82A-B圖之部分中繼光學 元件之透視部分示意圖; 第83B圖顯示第81Α_(^、第82AB圖及第83a圖之光 束擴幅器之側視圖細節; 2〇 第84A圖及第84B圖示意顯示根據所揭示之主旨之一 實之各個態樣,一種光束空間平移/扇出/哪伯(〇㈣機 構之頂視圖及側視圖; 第85圖為光束位移至偏移角之圖表;以及 第86圖為示意顯示根據所揭示之主旨之—實施例之各The directing displacement of 34 is relative to the E-Ο voltage; Figure 36 shows an example of the E-0 biasing voltage timing and the seed 蛩~jecting pulse spectrum according to the various aspects of the disclosed embodiment; Figure 37 of the various embodiments of the embodiment is not intended to show the effect of the dryness of the shirt from the back of the shirt. Figure 38 shows the image according to the disclosed t ^ Effect of beam broom/smear coherence; effect Figure 39 shows a cartoon showing multiple coherence failure systems. Figure 40 shows a schematic representation of the various aspects of the revealed subject matter. Coherence reduction system; Figure 41 shows the result of the analog beam pulse inversion; Figure 42 shows a partial block diagram showing each aspect of an embodiment according to the disclosed subject matter, a beam combination with divergence control Figure 43 shows various aspects of an embodiment according to one of the disclosed subject matter, emulating E-Ο supply voltage versus seed pulse intensity spectrum over time; Figure 44 shows implementation in accordance with one of the disclosed g In various aspects of the example, the E-〇 supply voltage is tested over time with respect to the seed pulse intensity spectrum; FIG. 45 shows an E-0 battery drive circuit in various aspects in accordance with an embodiment of the disclosed subject matter; Figure 46 shows an example side view of various aspects 1324423 in accordance with one embodiment of the disclosed subject matter; Figure 47 is a schematic and block diagram showing various aspects of an embodiment in accordance with the disclosed subject matter, Broadband source and laser surface treatment system using DUV laser light; 5 Figure 48 is a schematic illustration of a coherent disrupter optical delay optical path in accordance with various aspects of one embodiment of the disclosed subject matter; Coherent Destructor Optical Delay Optical Path of Various Aspects of an Embodiment of the Disclosure of the Invention; FIG. 50 is a block diagram showing, in block diagram form, various aspects of lithography according to one embodiment of the disclosed subject matter. Figure 51 is a schematic and block diagram showing various aspects of a lithography tool in accordance with an embodiment of the disclosed subject matter; Figure 52 is schematic and shown in block diagram form Laser lithography tool of various aspects of one embodiment of the disclosed subject matter; 15 Figure 53 is a schematic and block diagram showing laser lithography of various aspects in accordance with an embodiment of the disclosed subject matter Figure 5 shows a very high average power laser source in accordance with an embodiment of one of the disclosed subject matter in a block diagram; Figure 55 is a schematic and block diagram showing The present invention discloses an extremely high average power laser source of various aspects of an embodiment; FIG. 56 is a schematic and block diagram showing the extremely high average power of various aspects in accordance with an embodiment of the disclosed subject matter. An example of a laser source; a portion of the immersion laser lithography system 36 1324423, which is partially and partially shown in block diagram form in accordance with an embodiment of the disclosed subject matter; A solid-state seed laser to a gas discharge amplifier laser system in accordance with an embodiment of one of the disclosed embodiments is shown in block diagram form, and FIG. 59 is shown in block diagram form in accordance with the disclosed subject matter. A solid-state seed laser/amplifier laser system of various aspects of an embodiment, FIG. 60 is a schematic and block diagram showing various aspects of an embodiment of the disclosed subject matter, a sub-laser Output conversion, for example using a frequency converter for the same beam splitter transformation, followed by coherence destruction; 10 Figure 61 is a schematic and block diagram showing a 60th diagram of various aspects of an embodiment in accordance with one of the disclosed subject matter A version of an embodiment; FIG. 62 is a schematic and partial block diagram showing various aspects of an embodiment of the disclosed subject matter, a seeded DUV gas discharge main oscillator/amplifier gain medium laser system solid state Main oscillator; 15 Figure 63 is a schematic and partial block diagram showing various aspects of an embodiment of the disclosed subject matter, a seeded DUV gas discharge main oscillator / amplifier gain medium laser system solid state main oscillation Figure 6 is a schematic and partial block diagram showing various aspects of an embodiment of the disclosed subject matter, an implanted DUV gas discharge Main 20 Oscillator/Amplifier Gain Medium Laser System Solid State Main Oscillator; Figure 65 is a schematic and partial block diagram showing various aspects of an embodiment of the disclosed subject matter, an implanted DUV gas discharge main oscillation /Amplifier gain medium laser system solid state main oscillator; Figure 66 is a schematic and partial block diagram showing various aspects of an embodiment according to the disclosed main::S; 37 1324423, a very high power Solid state seed laser and gain amplifier laser system; FIG. 67 is a schematic, and partial, block diagram showing various aspects of an embodiment of the disclosed subject matter, a regenerative/cycle power gain oscillator 5 power amplification stage; Figure 68 is a schematic and partial block diagram showing various aspects of an embodiment of the disclosed subject matter, a solid seed laser/gain amplifier laser system; Figure 69 is schematically and partially shown in block diagram form A solid-state seed laser/gain amplifier laser system according to various aspects of one embodiment of the disclosed main body 10; FIG. DETAILED DESCRIPTION OF THE INVENTION Various aspects of an embodiment result from a regulated output pulse shape of a laser system. Figure 71 is a schematic representation of an E-0 battery mine of each of the 15 aspects according to one embodiment of the disclosed subject matter. The control of the input voltage is shown in block diagram form 7F. In accordance with the disclosed subject matter, a laser steering system is used in accordance with various aspects of the disclosed embodiments. Figure 73 is a schematic illustration of one of the disclosed aspects. Example of an EO battery laser-operated voltage input signal; 20 Figure 74 shows an example of coherence failure test results for various aspects of an embodiment according to the disclosed subject matter; Figure 75 shows An example of a coherence failure test result of each aspect of an embodiment; FIG. 76 is a schematic and partial block diagram showing various aspects of an embodiment according to the disclosed main 38 1324423, one having about Solid-state seed laser of 193 nm output light; Figure 77 is a schematic and partial block diagram showing various aspects of an embodiment according to the disclosed subject matter, a solid state of about 193 nm output light Sub-laser; Figure 78 shows various frequency up-conversion systems; Figure 79 is a schematic and block diagram showing a laser system in accordance with various aspects of one embodiment of the disclosed subject matter; A laser system in accordance with various aspects of the disclosed subject matter is shown in block diagram form; Section 81A-C shows, in exploded form, various aspects of an embodiment in accordance with the disclosed subject matter, a seed Perspective and partial schematic view of the ray path of the laser amplification gain medium; Sections 82A and 82B show a top view and a side view of the 15th ray path of the 81A_C diagram in a perspective view; Fig. 83A shows the 81A-C diagram And a schematic perspective view of a portion of the relay optical component of FIG. 82A-B; FIG. 83B is a side view detail of the beam expander of the 81st Α (^, 82AB, and 83a; 2〇 84A and Figure 84B is a schematic illustration of a top view and a side view of a beam spatial translation/fanout/hoof (four) mechanism in accordance with one of the disclosed subject matter; Figure 85 is a beam displacement to an offset angle Chart; and Figure 86 is a schematic representation of each of the embodiments in accordance with the disclosed subject matter.

S 39 個態樣具有一光束延遲光路之一種光束翻轉機構。S 39 aspects have a beam inversion mechanism of a beam delay optical path.

t實施方式;J 較佳實施例之詳細說明 根據所揭示之主旨之一實施例之各個態樣,一種增益 5放大媒質適合用於例如呈多腔(多部分)振盪器/放大器組態 之例如準分子或分子氟氣體放電種子振盪器雷射,可呈例 如主振盪器功率增益放大組態,利用改良式種子雷射耦合 配置,基本上設計來將種子雷射光,例如主振盪器種子輸 出雷射光脈衝光束之脈衝插入放大增益媒質,通常極少有 10損耗,且可於主振盪器雷射媒質被激化時,保護避免放大 器振盪及/或ASE返回主振盪器。如此可能干擾主振盪器的 適當操作,例如結合線窄化模組,產生適當窄化之種子振 盡器輸出雷射光脈衝光束脈衝頻寬。 根據所揭示之主旨之一實施例之各個態樣,較佳組態 15例如包含環形腔,例如功率振盪器或功率環形振盪器 (「PRO」)或功率環形放大器(「PRA」)。此種組態經由申 請人確定為於線窄化多部分(種子雷射放大器)配置中進入 較高功率雷射操作的極為有效的解決之道,特別係用於氣 體放電種子雷射至相同氣體放電放大器雷射多部分雷射系 20統。此種雷射系統之操作係類似申請人的雇主之XLA系列 雷射,但具有功率環形放大級。根據所揭示之主旨之一實 施例之各個態樣,可達成CoC的改良。 此外,功率環形放大級可用於其它用途包括同型氣體 放電雷射例如固態種子雷射以外之種子雷射,例如藉平移 40 1324423 及/或藉頻率倍增來匹配準分子或分子氟放大器之雷射波 長。此種系統最終可用於控制雷射系統輸出雷射光脈衝光 束脈衝參數’例如頻寬、頻寬穩定性、輸出脈衝能、輸出 脈衝能穩定性等。於此種系統中,脈衝裁剪例如於放大級 5輸出的脈衝裁剪也可用來控制雷射系統輸出脈衝參數。如 此根據所揭示之主旨之一實施例之各個態樣,一種環形腔 P 0可例如以2 4 %輸出耦合器例如包含既有〇 P u s分光鏡組 成’如文進一步詳細說明。 根據所揭示之主旨之一實施例之各個態樣,申請人提 10示重新配置例如具有基於準分子MO的既有的XLA產品由 ΜΟΡΑ重新配置成m〇PR〇 (功率環形振盪器),或配置成 MOPRA,根據所揭示之主旨之一實施例之各個態樣,一種 具有再生放大器例如呈環形組態(功率再生放大器之種子 雷射)’於此處偶爾合稱為功率放大級。此種系統(丨)改良能 15量穩定性,例如於飽和或有效飽和脈衝對脈衝操作放大 級,藉此更準確確保脈衝對脈衝能穩定性;(2)達成LNM壽 命的延長。 根據所揭示之主旨之一實施例之各個態樣,多腔雷射 系統之優點允許滿足前文討論之各項需求,例如要求更高 20功率、更佳脈衝能穩定性、更佳頻寬控制與降低可達成的 頻寬、更高重複率與降低操作成本。此外,可達成目前可 付之雷射系統輸出光平均功率的升局。如此有利於線窄化 系統及/或寬頻系統例如XeCl或XeF多腔雷射系統例如用於 LTPS處理程序來退火基材上之非晶矽,用來製造例如薄膜 41 1324423 電晶體生產用的結晶化基材。 根據所揭示之主旨之一實施例之各個態樣,對例如 120-180 W或更高雷射系統例如有兩個並列放大器增益媒 質腔的極高功率放大級腔之某些效能要求。此處所述實例 5 基於假設要求為200 W或更高。其產生線性偏振(&gt;98%)«各 放大級須產生且可於例如193 nm ArF波長存活24〇w平均 輸出能,但預期也可使用260W之規格,或於較長波長時較 不苛刻,例如KrF之248及XeF之351或XeCl之318,但F2於 157 nm時甚至更苛刻。一個實施例中,各放大級可至少於 10 4kHz或以上操作,於某些情況下也預期可為6kHz。根據所 揭示之主旨之一實施例之各個態樣,放大級有相對小種子 雷射能之完全播種(於飽和或接近飽和)。申請人相信放大級 也需要支援某些用途之中等大型角度分布,例如來維持種 子雷射的相同角度展頻,俾便防止不慎例如經由去除相干 15 性電池例如具有角度於數個毫弧度(m Rad)範圍以内的相 干性電池而改良相干性。保護種子雷射避免反向通過輻 射,也是一項重要操作要求。根據所揭示之主旨之一實施 例之各個態樣,當適當播種時,由放大級所產生的ASE位 準須低於總輸出之0.1 %或以下。 20 根據所揭示之主旨之一實施例之各個態樣,申請人預 期(1)增益截面將類似既有的A rF腔例如申請人的受讓人之 XLA ArF雷射系統功率放大器(「PA」)腔;(2)增益長度也 類似既有的ArF腔;(3)増益時間長度也類似既有ArF腔。 根據所揭示之主旨之一實施例之各個態樣,申請人提 42 示例如單一 MO/增益放大媒質XLA滴答(tic-toc)附有固態種 子雷射於12kHz操作,具有約1毫焦耳種子雷射輸出光脈衝 能,以及該二放大級各自係於約17mJ輸出脈衝能操作,換 言之於個別放大增益媒質腔中交替放大來自於種子雷射之 5 輸出脈衝平分來以串聯形式交替進入個別兩個放大增益媒 質(如前文說明也可包括多於兩個放大增益媒質),以及脈衝 被平分為多於交替脈衝,例如三種增益媒質及三個脈衝循 序由個別增益媒質之種子脈衝輸出平分,隨著時間之經過 重複,故增益媒質係依據於種子雷射輸出並列使用的增益 10 媒質數目決定,增益媒質係以種子雷射之脈衝重複率的分 量之脈衝重複率操作。 此外,根據所揭示之主旨之一實施例之各個態樣,申 請人提示利用再生增益媒質,其中振盪雷射產生光光子通 過增益媒質,例如環形功率放大級、環形功率振盪器或環 15 形功率放大器相較於呈Μ Ο PA組態之於功率放大器(「pA」) 之功率放大器放大級,具有經過光學界定之固定次數通過 增益媒質’前三者可更有效放大來自於種子雷射之種子脈 衝能。用於測試目的,申請人使用線窄化ArF雷射來模擬固 態193 nm種子雷射。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In accordance with various aspects of an embodiment of the disclosed subject matter, a gain 5 amplifying medium is suitable, for example, for use in a multi-chamber (multi-part) oscillator/amplifier configuration, for example Excimer or molecular fluorine gas discharge seed oscillator lasers, for example, a main oscillator power gain amplification configuration, using an improved seed laser coupling configuration, basically designed to seed laser light, such as a main oscillator seed output lightning The pulse of the illuminating pulse beam is inserted into the amplification gain medium, typically with very little loss, and protects against amplifier oscillations and/or ASE return to the main oscillator when the main oscillator laser medium is energized. This may interfere with proper operation of the primary oscillator, such as in conjunction with a line narrowing module, to produce a suitably narrowed seed oscillator output laser pulse beam pulse width. In accordance with various aspects of one embodiment of the disclosed subject matter, the preferred configuration 15 includes, for example, an annular cavity, such as a power oscillator or power ring oscillator ("PRO") or a power ring amplifier ("PRA"). This configuration is determined by the Applicant as an extremely effective solution for entering higher power laser operations in a line narrowed multi-part (seed laser amplifier) configuration, particularly for gas discharge seed lasers to the same gas The discharge amplifier is laser multi-part laser system. The operation of such a laser system is similar to the applicant's employer's XLA series of lasers, but with a power toroidal amplification stage. Improvements in CoC can be achieved in accordance with various aspects of one embodiment of the disclosed subject matter. In addition, the power toroidal amplification stage can be used for other purposes including seed lasers of the same type of gas discharge laser, such as solid seed lasers, for example by translation 40 1324423 and/or by frequency multiplication to match the laser wavelength of an excimer or molecular fluorine amplifier. . Such a system can ultimately be used to control laser system output laser beam pulse parameters such as bandwidth, bandwidth stability, output pulse energy, output pulse energy stability, and the like. In such a system, pulse cropping, such as pulse cropping at the output of amplifier stage 5, can also be used to control the output pulse parameters of the laser system. Thus, in accordance with various aspects of one embodiment of the disclosed subject matter, an annular cavity P 0 can be formed, for example, with a 24% output coupler, for example, including an existing u P u s beam splitter assembly' as further detailed herein. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicant mentions that reconfiguration, such as having an existing XLA product based on excimer MO, is reconfigured from mΜΟΡΑPR〇 (power ring oscillator), or Configured as MOPRA, a regenerative amplifier having, for example, a ring configuration (seed laser of a power regenerative amplifier) is occasionally referred to herein as a power amplification stage, in accordance with various aspects of an embodiment of the disclosed subject matter. Such a system (丨) improves the stability of the amount of energy, such as a saturation or effective saturation pulse to pulse operation amplification stage, thereby more accurately ensuring pulse-to-pulse energy stability; (2) achieving an extension of LNM life. In accordance with various aspects of one embodiment of the disclosed subject matter, the advantages of a multi-cavity laser system allow for meeting the various needs discussed above, such as requiring a higher power of 20, better pulse energy stability, better bandwidth control and Reduce achievable bandwidth, higher repetition rates, and lower operating costs. In addition, a rise in the average power output of the currently available laser system can be achieved. This is advantageous for line narrowing systems and/or broadband systems such as XeCl or XeF multi-cavity laser systems, such as for LTPS processing to anneal amorphous germanium on substrates, for the fabrication of, for example, thin film 41 1324423 crystals for crystal production. The substrate. In accordance with various aspects of one embodiment of the disclosed subject matter, certain performance requirements are imposed on very high power amplification stages of, for example, a 120-180 W or higher laser system, such as two parallel amplifier gain media cavities. Example 5 described here is based on a hypothetical requirement of 200 W or higher. It produces a linear polarization (&gt;98%)« each amplification stage must be generated and can survive 24 〇w average output energy at, for example, a 193 nm ArF wavelength, but it is expected to use a 260 W specification, or less harsh at longer wavelengths. For example, 248 of KrF and 351 of XeF or 318 of XeCl, but F2 is even more demanding at 157 nm. In one embodiment, each amplification stage can operate at least 10 4 kHz or more, and in some cases is also expected to be 6 kHz. In accordance with various aspects of one embodiment of the disclosed subject matter, the amplification stage has a complete seeding (saturated or near saturation) of relatively small seed laser energy. Applicants believe that the amplification stage also needs to support large angular distributions such as certain applications, for example to maintain the same angular spread of the seed laser, to prevent inadvertently, for example, by removing coherent 15-cell batteries, for example, at angles of a few milliradians ( The coherence is improved by a coherent battery within the range of m Rad ). Protecting the seed laser from reverse radiation is also an important operational requirement. In accordance with various aspects of one embodiment of the disclosed subject matter, the ASE level produced by the amplification stage must be less than 0.1% or less of the total output when properly seeded. 20 In accordance with various aspects of an embodiment of the disclosed subject matter, Applicants anticipate that (1) the gain profile will be similar to an existing A rF cavity such as the applicant's assignee's XLA ArF laser system power amplifier ("PA"). The cavity is (2) the gain length is similar to the existing ArF cavity; (3) the length of the benefit time is similar to that of the existing ArF cavity. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicant cited 42 examples such as a single MO/gain amplifying medium XLA ticks (tic-toc) with solid seed lasers operating at 12 kHz, having about 1 millijoule of seed ray The output optical pulse energy, and the two amplification stages are each capable of operating at about 17 mJ output pulse, in other words, alternately amplifying the 5 output pulse averaging from the seed laser in an individual amplification gain medium cavity to alternately enter the individual two in series Amplifying the gain medium (which may include more than two amplification gain media as described above), and the pulses are equally divided into more than alternating pulses, for example three gain media and three pulse sequences are equally divided by the seed pulse output of the individual gain media, The time is repeated, so the gain medium is determined by the number of gains 10 used in parallel with the seed laser output, and the gain medium is operated at the pulse repetition rate of the component of the pulse repetition rate of the seed laser. Moreover, in accordance with various aspects of an embodiment of the disclosed subject matter, Applicants have suggested utilizing a regenerative gain medium in which an oscillating laser produces photons through a gain medium, such as a loop power amplifier stage, a ring power oscillator, or a loop power. Compared to the power amplifier amplifier stage of the power amplifier ("pA"), the amplifier has an optically defined fixed number of passes through the gain medium. The first three can more effectively amplify the seeds from the seed laser. Pulse energy. For testing purposes, Applicants used a line-narrowed ArF laser to simulate a solid 193 nm seed laser.

2〇 申請人對前述參數之不同數值研究ASE相對於MO-PO 時序差,結果顯示於第45圖。ΜΟΡΟ能相對於MO-PO時序 呈相同參數之函數之研究也顯示於第45圖。 為了符合前述要求,例如已知光刻術雷射光源技術之 限制,根據所揭示之主旨之一實施例之各個態樣,申請人 43 提供多種整體㈣,相信可提供可工作方式來解決前述要 求與限制。首㈣提供兩種多腔雷射系統連同中請人之受 讓人之XLA XXX雷射线_,例如有兩個雙腔雷射振逢 器/功率放大器配置,藉此各自組配來於高於4kHz且較佳於 約6kHz操作,產生具有交織發射時間之於約l7mj的輸出脈 衝,根據一實施例,來產生每脈衝約17m之單一約略i2kHz 系統。 轉向參照第1圖,示意且部分以方塊圖形式顯示或多或 少典型ΜΟΡΑ雷射系統20,諸如申請人之受讓人的XLA多腔 M〇PA雷射系統。雷射系統例如可包括振盪器種子雷射腔22 及放大器增益媒質雷射腔24 ’例如多通功率放大器 (「ΡΑ」)。ΜΟ 22例如用於半導體製造微影術之用途可結合 線窄化模組(「LNM」)26 ;或若有所需可以寬頻模式操作 例如用於諸如LTPS之用途可不含線窄化模組。一輪出耦合 器28例如部分反射鏡例如對可用之名目中心波長具有選定 之反射率該波長例如用於XeF雷射振盪器約為351 nm,用於 KrF雷射振盪器約為248 nm,用於ArF雷射振盪器約為193 nm’用於分子氟雷射振盪器約為i57nm;連同由LNM 26(或 對一給定之名目中心波長(圖中未顯示)之最大反射鏡來於 寬頻操作期間替代LNM 26)所提供的後端反射可用來形成 雷射20振盪器腔。 中繼光學元件40例如包括轉向鏡44及轉向鏡46可用來 操控種子振盪雷射20輸出雷射光脈衝光束62脈衝由線中心 (中心波長)分析模組(「LAM」)42沿光路(光轴)60送至放大 益杈組雷射腔24的輸入。除了中心波長監視裝置(圖中未顯 示)外’雷射腔可包括M0能監視器48,可設有小部分來自 於M0腔22用於度量衡目的的雷射輸出光脈衝光束 ,例如用 來藉LAM 42内部的分光鏡50進行名目中心波長及能量檢 5測。轉向鏡44可沿光路光路提供主振盪器22輸出雷射光脈 衝光束62脈衝予轉向鏡46,轉向鏡46可反射光束62進入放 大器腔24成為光束64。 於第1圖之系統20之情況下,增益放大器24被設定為功 率放大器,亦即接收自MO之光,MO種子輸出雷射光脈衝 1〇光束脈衝通過增益放大媒質固定次數,例如由光學元件包 括轉向鏡46所判定的次數,如第丨圖所示,架設成邊緣耦合 光學tl件及光束返回器(反向器)光學元件7〇,例如後反射鏡 (容後詳述)’連同一光路72將雷射增益媒質經一窗口 80送 出,窗口 80可設定為相對於送出光路72夾角約7〇度,來最 15佳化光學元件上的能量密度降低,如此最佳化對該給定名 目中心波長之熱負載’窗80之材料例如caF2用於較短波 長,諸如ArF雷射系統之名目中心波長或夾角約布魯斯特的 角來最佳化出射光的透射率。出射光1〇〇也通過於頻寬分析 模組(「BAM」)内部之分光鏡74。雷射系統輸出光束1〇〇也 20可通過於脈衝延伸器86例如光學脈衝延伸器(r〇PuS」)内 部之第一分光鏡76及第二分光鏡78 ,諸如含括有多個申請 人受讓人之前文討論的雷射系統作為4χ脈衝延伸器,例如 經由導引光束100進入延遲光路88,將由系統出射的雷射系 統20輸出雷射光脈衝光束1〇〇之Tis由約17奈秒增加至約40 45 1324423 奈秒’如於前文摘述之美國專利案6,928,093,名稱「長期 延遲及高TIS脈衝延伸器」’ 2005年8月9日核發給Webb等人 中更完整討論&quot; 也於雷射系統20之光路中,輸出雷射光脈衝光束1〇〇 5 脈衝例如可為光束擴幅器84來降低於下游光學元件之光密 度’包括於OPuS 86之分光鏡76、78及光學延遲ling鏡90及 光學元件’例如出現於利用雷射系統20輸出雷射光脈衝光 束100脈衝之掃描器(圖中未顯示)。雷射系統2〇也包括一快 門96 ’包括例如快門分光鏡98,於快門96取出部分雷射系 10 統20輸出雷射光脈衝光束1〇〇脈衝部分用於快門96之輸出 能量監視器(圖中未顯示)測定。 OPuS 86 如第1圖所示現有XLA ΜΟΡΑ組態進一步示意顯示,於 數個位置之水平轴與垂直轴間之開關設置於數個位置讓示 15意圖更簡單且更容易明瞭。前文說明的任何構想皆不受光 路橫轴及縱轴之繪圖的影響。 參考第2圖,顯示根據所揭示之主旨之一實施例之各個 態樣,由ΜΟΡΑ組態轉成主振盪器,具有功率振盪放大級或 再生放大組態功率放大級,例如包括功率環形放大級,例 20如具有環形腔功率振盪器(也稱作為環形腔再生放大器)形 成於束反向器70與低轉向鏡44間,係以根據所揭示之主旨 之一實施例之各個態樣之注入播種機構160替代。如第1圖 所示之ΒΑΜ也可移動或其功能可含括於快門96。 根據所揭示之主旨之一實施例之各個態樣,包括例如 46 1324423 將包含例如第一及第二光束擴幅與分散稜鏡146、148之一 光束擴幅器142設置於入口窗及光束擴幅器殼體140内部, 殼體140可藉適當手段例如使用適當密封機構熔接或鉚接 而固定於增益媒質腔144。光學元件146、148可設置於正交 5 種子注入機構160輸入/輸出耦接部分反射鏡162及束反向 器70間所形成的環形腔内侧,例如用來降低於形成束反向 器70之最大反射鏡之能量密度,如第20-22圖所示,可由例 如CaF2所製成,例如目前用於申請人之受讓人之OPuS該型 分光鏡且塗覆有塗層,塗層例如可反射20%入射光,構成 10 環形功率放大級腔之種子注入機構160之一部分162,容後 詳述。於實施例中稜鏡可為非分散式,功率放大級經組配 為不會自我振盪,如此可免除由系統輸出中減少或去除 ASE之需求。束反向器70也可移動至腔增益媒質腔内部, 腔144具有類似殼體140的殼體15Ό之附接配件。 15 光束擴幅器光學元件146、148及光束返回器/反向器 70 ’由於其組成包括含氟晶體,於腔144及殼體14〇、150内 部暴露於雷射媒質氣體中的氟可保護避免光損害。放大級 腔窗168同樣也係由含氟晶體例如CaF2所組成,於其暴露於 最高能量密度之面上無需有保護塗層,部分由於於腔中光 20束擴幅142:的光束擴幅同時也由於使用約45度例如47度定 向,故面對環形功率振盪器振盪腔。 根據所揭示之主旨之一實施例之各個態樣,如第2圖舉 例說明之一種環形功率振盪器腔具有光束擴幅與腔144的 輸出輕合器端’且具有光束擴幅棱鏡146、148定向來產生 47 淨分散(此處可用於ASE減少或消除),有多項顯著優點,例 如可極為有效使用種子能,免除高功率及極短名目中心波 長特別於193 nm及以下之保護性塗層,於腔中分散,例如 有助於降低ASE比,以及光學元件上有可接受的能量密 5 度’例如形成種子注入機構之輸出耦合器部分162及種子注 入機構之最大反射鏡(「Rmax」)部分164其可能或可未視需 要經塗覆,如申請人之受讓人的〇puS對既有雷射系統(分光 鏡76、78及鏡90)之進行方式。此外,該配置例如可於雷射 系統輸出雷射光脈衝光束1〇〇進入OPuS 86之前,發揮期望 10 的光束擴幅功能’額外有140及150之腔144容易由申請人之 党讓人既有的腔例如XLA型號腔製成,例如加入兩個「鼻 」140、150來替代既有的窗安裝總成而製成。於第23圖 進—步示意顯示其細節。 此外’於腔内部的全部光學元件’例如包括鼻部14〇、 15丨50可進一步由腔粉塵來源移開。該組態例如可製作成於現 有XLA光學元件灣内部。 如本文它處討論,如第12圖及第13圖所示之環形腔也 可使用相當長的來回時間,例如約7毫秒來從輸入/輸出麵 合器分光鏡262橫過至光束反向器270,且返回分光鏡262。 20此外,當然,特別於寬頻實施例中,同時也於線窄化實施 例中,根據所揭示之主旨之一實施例之各個態樣,使用較 為典型的l-3mJM0輸出,大為增加放大級的平均功率輸出 超過例如目前XLA-XXX雷射系統的平均功率輸出。 低MO腔壓力具有多項雷射腔壽命延長的優點。 並非以目前方式來單純用於高功率例如於200W範 圍’根據所揭示之主旨之一實施例之各個態樣,申請人預 期並非將目光焦點集中在目前組態之較佳能量安定性、指 向安定性、側寫安定性及ASE安定性,同時可以例如4kHz 5 至6kHz或甚至更高的完整重複率操作。 現在參考第3圖,以部分示意及方塊圖形式顯示一種環 形功率放大級雷射系統400,除了第2圖之元件之外,系統 4〇〇可包括例如諸如播種耦合器機構160其係與腔輸入/輸 出窗94校準且具有光束擴幅器分散光學元件17〇,例如包含 10 光束擴幅與分散棱鏡172及174,其回縮且操控且分散光束 64至一光路74至腔延伸部150中的光束反向器70,且返回輸 入/輸出耦合器部分反射鏡162。擋板190及192分別可保護 於後鼻部150及前鼻部140的光學元件避免例如腔144内所 循環的粉塵。 15 第4圖中,根據所揭示之主旨之一實施例之各個態樣, 類似的系統A10可包括例如光束返回器/反向器170於腔14A 的外側,其結合經修改的鼻部140、150例如連同擋板190、 192分別來保護前輸入/輸出窗194及後窗196避免循環粉 塵。本實施例例如可包括布魯斯特楔形件420及430用來例 20 如清除經由將非期望的偏振反射出光腔之外而清潔期望的 偏振。 第5圖示意且以部分方塊圖形式顯示一種系統330,其 中例如環形功率放大級須由例如使用偏振分光鏡336、半波 長板338、及輸出耦合器340所架設。於操作中,種子雷射 1324423 334將一種子雷射輸出雷射光脈衝光束62進給至分光鏡 336 ’ %形腔係以單一最大後反射鏡243例如以及部分反射 輸出耦合器340所建立。 同理,如第6圖所示,根據所揭示之主旨之一實施例之 5各個態樣,可於輸出耦合器410與後腔鏡412間架設一環形 腔。 有多種可能方式來將輸出雷射光脈衝光束脈衝由 耦合至功率放大級’如第9-11圖及第14圖所示意且部分以 方塊圖格式舉例說明。如第9圖所示,部分反射輸入耦合振 10堡器放大級或功率再生放大器200可有一腔202,例如部分 反射光學元件204作為此振盪器腔之輸入耦合器,具有前部 分反射光學元件輸出輕合器2〇6。於操作中,MO輸出62進 入腔200 (為求說明清晰’腔200係顯示為普通振盪器而非環 形振盪器),且於由入口部分反射光學元件2〇4及輸出耦合 15器部分反射光學元件206所形成之腔内部振盪直到振盪導 致雷射系統輸出光脈衝光束100之夠顯著脈衝離開輸出耦 合器為止,如熟諳技藝人士所瞭解。 第10圖中以方塊圖形式示意部分舉例說明,偏振輸入 搞合振堡器220形成環形功率放大級,包括例如一腔2丨〇、 20 一偏振分光鏡212、—四分之一波長板214、一後最大反射 鏡218及一輸出耦合器210。於操作中為求方便,振盪器腔 之後最大反射鏡218及輸出耦合器216類似第2圖也顯示為 常規振盪器而非環形振盪器。偏振分光鏡212及四分之一波 長板214係用來將MO與放大級隔離。輸入光束62具有由分 50 1324423 光鏡212反射入腔之極性’具有例如四分之一波長板214將 光束62透射入腔内呈圓偏振光,且將來自於輪出耗合器216 的返回光束轉換成為藉偏振分光鏡212透射的偏振光。 如第11圖所示,切換輸入/輸出耗合器輕合振盡器230 5 係以示意及部分方塊圖格式顯示,其中腔232可含於例如於 腔内由最大反射鏡240及窗238所形成之腔内,例如有一光 電開關例如Q開關2 3 6來作為開關允許振盪累積至選定點, 然後作動Q開關來允許發射雷射系統輸出雷射脈衝光束1〇〇 脈衝。 1〇 如第12圖以部分方塊圖示意顯示,根據所揭示之主旨 之一實施例之各個態.樣,一種多通再生環形振盪器雷射系 統250包括例如一放大器腔252及一種子雷射254,系統250 也可包括一輸入/輸出耗合器例如注入種子輸入/輸出麵合 器機構260。輸入/輸出耦合器260可包括例如部分反射鏡 15 262,其例如可為目前由申請人之受讓人之OPuS連同其雷 射設備一起出售的該型分光鏡。系統250例如也可包括最大 反射光學元件264,來操控M0光束62進入腔的電極區作為 一個通過光束276,其可返回至輸出耦合器262作為來自於 光束反向器/返回器270之第二通過光束278,光束反向器/ 2〇 返回器270包括例如第一最大反射鏡272及第二最大反射鏡 274。 第13圖以方塊圖形式部分示意顯示根據所揭示之主旨 之一實施例之各個態樣’呈領結組態之一種多通再生環形 功率放大級雷射系統280,可包含例如一腔282、一種子雷 51 1324423 射284、一注入播種機構260及一光束反向器/返回器270, 後二者例如可經組配(夾角)來執行例如於電極(圖中未顯示) 之個別縱中線軸及橫中線軸交又點或接近交叉點的交叉, 來藉電極間的氣體放電產生增益媒質’如此,通常係位在 5 增益媒質的縱轴與橫軸的交又點。於此種實施例中,兩次 通過的角度可幾乎無法察覺地小,因此實際上,光束286、 288幾乎與電極間所形成之放電的縱中線軸校準,其中一個 光束例如光束288可形成雷射系統之光系1〇〇的光軸。如本 案附圖示意顯示且非成比例顯示,第13圖所顯示之光路例 10如286、288皆非沿電極之縱中線軸延伸,或可由側視圖顯 示,此處縱中線轴無法識別。但實際上一次校準將與其軸 線略為未校準,而其它大致上仍然校準,只要此種校準為 以光學方式可達成且係於雷射系統之光列所容許的容許度 以内即可。 15 第15圖以方塊圖格式示意部分顯示諸如第13圖所示實 施例280之平面圖’此處MO輸出雷射光脈衝束62係來自於 位在功率放大級腔282上方(於垂直紙面方向)之]^〇。此外, 第16圖以方塊圖格式部分示意顯示第13圖及第15圖之裝置 280之側視圖。轉向鏡最大反射鏡430將MO雷射輸出光脈衝 2〇光束62轉向例如至種子注入機構260及交叉(領結形)通過 276、278於藉後鏡光束反向器/返回器270 (未顯示於第16圖) 及種子注入機構260輸入/輸出耦合器部分反射鏡262所形 成之振盪共振腔424中’來形成雷射系統輸出光脈衝光束 100浸沒式通過用作為尋常振盪器腔輸出耦合器的光學元 52 件262’如具有輸出耦合器之氣體放電雷射振盪器腔業界眾 所周知。如第15圖及第16圖可知,M0輸出光束62經由部分 反射鏡262而入射環形功率放大級振盪腔,也由相對於系統 輪出光束100之軸線方向形成腔輸出耦合器,因而防止系統 5 輪出光束100耦合回MO的反向耦合。 第17圖與方塊圖格式示意部分顯示根據所揭示之主旨 之一實施例之各個態樣,單一後反射鏡腔31〇例如具有多通 再生環形振盪器雷射系統3〇〇之一種輸入/輸出耦合體系, 其係呈領結組態且例如具有單一最大反射後腔反射鏡。於 10操作中,M0雷射輸入/輸出耦合器例如正交種子注入機構 160可將MO雷射輸出光脈衝光束62藉例如單一最大反射鏡 310導入於後方所形成的腔,來形成例如有第一通過光路76 及一第二通過光路78之一種「半」領結組態。 現在參考第8圖’顯示根據所揭示之主旨之一實施例之 15 各個態樣’申請人稱作為OPuS效應腔320,其中例如偏振 分光鏡322及最大反射後腔反射鏡324可連同四分之一波長 板326及輸出耦合器228 —起使用。根據所揭示之主旨之一 實施例之各個態樣,系統320由於光學元件322及324的略為 未校準,因此具有例如由於未校準而於後鏡324與輸出耦合 20 器328間所形成的振盪器腔内部所產生的多次通過。 根據所揭示之主旨之一實施例之各個態樣,正交種子 注入機構可包含諸如第18圖示意顯示之正交注入播種光學 元件例如光學元件350,於剖面圖中係跨越光學元件350的 縱向幅員。光學元件350可由例如CaF2製成,例如未經塗覆 53 raF2製成’且根據所㈣之主旨之-實施例之各個態 樣,包含例如-外部輸入/輸出界面352、一全内反射面 10 354'及,μ356。如熟料學純技藝人 士已知,於操作中,MO雷射輪出光脈衝光束62可入射而例 如以約70度之入射角由外部輪入/輪出界面352所接收,且 於光學元件350内部折射成為光束62,至全内反射面说,可 ^因而將光束62,全然内反射至内部輸入/輸出界面说成 t光束62”,此處再度折射進入於腔内部的雷射氣體媒質環 W未顯不於第18圖)’例如順著第—光路%人射;於再度通 過增益媒質,例如於從光束反向器(未顯示於第關)反射 後’再度人㈣界面356与轉面说透㈣為光束78, 於光學元件350内部折射成為光束78,,送出光學元件35〇之 外’成為通過外部輸入/輪出界面352之雷射系統輸出 光脈 15 衝光束刚。根據所揭示之主旨之一實施例之各個態樣,光 束76、78連同光束反向器(未顯示於第可能交叉如第 13圖所不’未顯示於第12圖。須_光束78,也部分反射至 全内反射面354上成為光束78”(62,);部分反射部將再度變 成光束62”及光束76,故光學元件35〇作為輸㈣合器直到 出現足夠振盈為止,讓模擬發射構成實質雷射系統輸出光 2〇 脈衝光束1〇〇。 根據所揭示之主旨之-實施例之各個態樣,第19圖以 跨越縱轴之剖面形式示意顯示一種種子注入光學元件36〇 的另一個版本包含例如一外部輸入/輸出界面362、一全内 反射面364及一内部輸入/輸出界面366。操作中,來自於M〇 54 10 的光束62可人射於外部輸人/輸出界面如上 -内部折射成為光束62’至全内反射面⑽,被反= 束62”至_輸瑪出界㈣,於該處频㈣,且再^ 於雷射媒質環境的氣體中折射成為光束%。光束%從光束 反向器(未顯稀第丨9圖)_後,光束Μ於絲元件細折 射成為光束78,,通過外部輸人/輸出界面362透射成為光學 元件1〇〇。熟諳技藝人士也須瞭解,也使用第18圖之實施 例”,光束78,也可部分反射至全内反射面364上成為光束 78 (62 ),部分反射部將再度變成光束62”及光束%,故光 學元件360作為輸出耦合器直到出現足夠振盈為止,讓模擬 發射構成實質雷射系統輸出光脈衝光束1〇〇。 15 20 根據所揭示之主旨之一實施例之各個態樣,可利用多 種光束返回器/反向器370 ,如第20-22圖之示意顯示。第2〇 圖之光學元件370可結合例如一輸入/輸出面372、一第一全 内反射面374、一第二全内反射面3V6及一第三全内反射面 378 ’因此於操作中,於第一方向過渡增益媒質之光束%可 入射至面372上,由面374、376及378反射而於輸入/輸出面 372離開光學元件370成為光束78,於第二方向通過增益媒 質。類似之光束反向器380以截面圖示意顯示於第21圖及第 22圖,其中於光學元件380及390分別只有兩個全内反射面 384、386及394、396。 熟諸光學元件技藝人士瞭解,以三次内反射,或有三 個反射鏡配置,如目前用於申請人之受讓人的XLA型號雷 射系統之光束反向器,輸入光束76及輸出光束78將有效校 55 準立平行,該關係不會隨著光學元件例如光學元件370以垂 直第20圖頁面之轴線為中心的旋轉而改變。對第21圖及第 22圖之反向器380、390而言,偶數内反射,例如兩次内反 射將允許光束76、78於第21圖及第22圖之紙面上具有可變 與度關係。 熟諳光學元件技藝人士瞭解,本案所述之種子注入機 構於光束反向器/返回器之各項組合可用來讓光路上的光 束76、78交叉,如第2、3、4及13圖所示或否,例如第12圖 所禾。此外,操縱此等光學元件將可允許於增益媒質激化 電極間的放電期間,相對於雷射增益媒質之幅員,例如沿 雷射氣體增益媒質之縱轴及/或垂直轴,光路例如76、78的 交又點。可用來改變最終雷射系統輸出雷射光脈衝光束脈 衝的各項參數,例如能量、能量穩定性等。 現在參考第23圖,顯示鼻部M0’其各個版本示意顯示 於第2、3、及4圖。鼻部M0可包含例如一窗殼體55〇可包含 一外部安裝板552及殼體壁554與殼體安裝板552 —起切削 或以其它方式固定於殼體安裝板552〇同時也顯示一窗安裝 板556。此窗殼體550係根據所揭示之主旨之一實施例之各 個態樣示意顯示,窗殼體550類似目前用於申請人之受讓人 的雷射系統的窗殼體,有一窗殼體端板(為求清晰而未顯示 於本視圖中),類似例如第23圖顯示於鼻部140之雷射端的 雷射端板570。圖中未顯示的窗安裝雷射端板可位於窗安裝 板556該點。同理’鼻部140可具有類似端板552的窗端板(為 求清晰未顯示於本圖)來固定窗殼體550於鼻部H0的其餘 1324423 部分。雷射腔端安裝板568可藉安裝螺栓574而附接於第2圖 的雷射腔,例如雷射腔144 ’且有一孔口 572,例如光束76 通過該孔口 572入射於腔144内部,及光束78通過孔口 572而 從腔144返回。 5 如第23圖以方塊圖形式部分示意顯示,光束擴幅器142 例如包含光束擴幅稜鏡146及光束擴幅稜鏡148,光束擴幅 器142可於鼻部140内部,如第23圖之切除視圖所示。稜鏡 146、148中之至少一者可安裝於座(圖中未顯示)上來相對於 彼此移動。此種移動例如可藉控制器600控制,例如藉致動 10 器580控制,例如前文引述之專利案或共同審查中之申請案 中之一者或多者所引述之雷射系統光學定位控制技藝界已 知之步進馬達或其它適當致動器控制,致動器580藉一致動 器轴582而連結至個別至少一個稜鏡例如稜鏡148,例如用 來於軸582的轴線上旋轉稜鏡148,俾改變稜鏡148相對於稜 15 鏡142,也相對於其它光學元件例如正交種子注入機構(未 顯示於第23圖)及/或光束返回器/反向器(未顯示於第23圖) 的相對位置。 如於第13圖及第15圖以方塊圖形式示意部分顯示,光 束返回器/反向器270及/或種子輸入/輸出耦合光學元件260 20 可藉控制器600控制光束返回器/反向器之致動器594及輸 入/輸出光學元件例如正交種子注入機構260的操作來加以 控制,致動器590、594分別係藉控制信號線592及596而連 結至控制器600。 一環形腔例如具有輸出耦合器種子雷射耦合例如一種2〇 The applicant studied the ASE relative to the MO-PO timing difference for the different values of the above parameters. The results are shown in Figure 45. A study of the function of the same parameters relative to the MO-PO timing is also shown in Figure 45. In order to comply with the foregoing requirements, such as the limitations of known lithographic laser source technology, Applicants 43 provide a variety of holistic (4) aspects in accordance with various aspects of one of the disclosed subject matter, and it is believed that a workable manner can be provided to address the foregoing requirements. With restrictions. The first (four) provides two multi-cavity laser systems together with the XLA XXX Ray Ray _ of the assignee of the request, for example, two dual-chamber laser oscillating devices/power amplifier configurations, whereby the respective combinations are higher than Operating at 4 kHz and preferably at about 6 kHz produces an output pulse having an interleaved emission time of about 17 mj, according to one embodiment, to produce a single approximately i2 kHz system of about 17 m per pulse. Turning to Fig. 1, a more or less typical laser system 20, such as the applicant's assignee's XLA multi-cavity M〇PA laser system, is shown and partially shown in block diagram form. The laser system may, for example, include an oscillator seed laser cavity 22 and an amplifier gain medium laser cavity 24' such as a multi-pass power amplifier ("ΡΑ"). ΜΟ 22, for example, for semiconductor manufacturing lithography, can be combined with a line narrowing module ("LNM") 26; or can be operated in a wideband mode if desired. For example, for applications such as LTPS, the line narrowing module is not included. A round of outcoupler 28, such as a partial mirror, for example having a selected reflectivity for the available center wavelength, for example, for a XeF laser oscillator of approximately 351 nm, for a KrF laser oscillator of approximately 248 nm, for The ArF laser oscillator is approximately 193 nm' for the molecular fluorine laser oscillator approximately i57 nm; together with the maximum mirror from LNM 26 (or for a given nominal center wavelength (not shown) for wideband operation The back end reflection provided by the LNM 26) can be used to form a laser 20 oscillator cavity. The relay optical component 40 includes, for example, a steering mirror 44 and a steering mirror 46 that can be used to manipulate the seed oscillating laser 20 to output a laser light pulse beam 62 pulse from the line center (center wavelength) analysis module ("LAM") 42 along the optical path (optical axis) 60 is sent to the input of the magnifying chamber 24 of the magnifying group. In addition to the central wavelength monitoring device (not shown), the 'laser cavity can include a M0 energy monitor 48, and a small portion of the laser output light pulse beam from the M0 cavity 22 for metrology purposes can be provided, for example, to borrow The spectroscope 50 inside the LAM 42 performs a nominal center wavelength and energy detection. The turning mirror 44 provides a main oscillator 22 along the optical path to output a laser pulse beam 62 to the steering mirror 46. The steering mirror 46 reflects the beam 62 into the amplifier chamber 24 to become the beam 64. In the case of system 20 of Figure 1, gain amplifier 24 is configured as a power amplifier, i.e., light received from MO, and the MO seed outputs a laser pulse 1 〇 beam pulse through a gain amplifying medium for a fixed number of times, such as by optical components. The number of times determined by the turning mirror 46, as shown in the figure, is set up as an edge coupling optical element TL and a beam returner (inverter) optical element 7 〇, such as a back mirror (described in detail later), which is connected to the same optical path. 72, the laser gain medium is sent through a window 80, and the window 80 can be set at an angle of about 7 degrees with respect to the outgoing optical path 72 to reduce the energy density of the most preferred optical element, thus optimizing the given name. The central wavelength thermal load 'window 80' material such as caF2 is used for shorter wavelengths, such as the nominal center wavelength of the ArF laser system or the angle of the angle about Brewster to optimize the transmittance of the exiting light. The outgoing light 1〇〇 is also passed through a beam splitter 74 inside the bandwidth analysis module ("BAM"). The laser system output beam 1 〇〇 20 can also pass through a first beam splitter 76 and a second beam splitter 78 inside a pulse extender 86 such as an optical pulse extender (r〇PuS), such as including multiple applicants The laser system discussed previously by the assignee as a 4 χ pulse stretcher, for example via the guiding beam 100 into the retarding light path 88, outputs the laser light from the system to the laser system 1 Ti Tis by about 17 nanoseconds. Increased to approximately 40 45 1324423 nanoseconds as described in the above-mentioned U.S. Patent No. 6,928,093, entitled "Long Term Delay and High TIS Pulse Extender", issued on August 9, 2005 to Webb et al. In the optical path of the laser system 20, the output laser beam pulse 1 〇〇 5 pulse can be, for example, the beam expander 84 to reduce the optical density of the downstream optical component'. The beam splitters 76, 78 included in the OPuS 86 and the optical delay The ling mirror 90 and the optical element 'e appear, for example, in a scanner (not shown) that outputs a pulse of a laser beam of 100 pulses using a laser system 20. The laser system 2A also includes a shutter 96' including, for example, a shutter beam splitter 98, and a portion of the laser system 10 that outputs a laser light pulse beam 1 at the shutter 96. The pulse portion is used for the output energy monitor of the shutter 96 (Fig. Not shown). OPuS 86 As shown in Figure 1, the existing XLA ΜΟΡΑ configuration is further shown. The switch between the horizontal and vertical axes at several positions is set at several positions to make the indication simpler and easier to understand. Any of the ideas described above are not affected by the drawing of the horizontal and vertical axes of the light path. Referring to FIG. 2, there is shown a power amplifier amplification stage or a regenerative amplification configuration power amplification stage, for example, including a power ring amplification stage, in accordance with various aspects of an embodiment of the disclosed subject matter. Example 20, having a ring cavity power oscillator (also referred to as a ring cavity regenerative amplifier) formed between the beam reverser 70 and the low turning mirror 44, is implanted in accordance with various aspects of an embodiment of the disclosed subject matter. Seeding mechanism 160 is substituted. The cymbal as shown in Fig. 1 can also be moved or its function can be included in the shutter 96. In accordance with various aspects of an embodiment of the disclosed subject matter, including, for example, 46 1324423, a beam expander 142 including, for example, first and second beam expanders and dispersions 146, 148 is disposed in the entrance window and beam expansion Inside the frame housing 140, the housing 140 can be secured to the gain medium chamber 144 by suitable means, such as by welding or riveting using a suitable sealing mechanism. The optical elements 146, 148 may be disposed inside the annular cavity formed between the input/output coupling portion mirror 162 and the beam reverser 70 of the orthogonal 5 seed injection mechanism 160, for example, to reduce the formation of the beam reverser 70. The energy density of the largest mirror, as shown in Figures 20-22, may be made, for example, of CaF2, such as the OPuS type of spectroscope currently used by the Applicant's assignee and coated with a coating such as 20% of the incident light is reflected to form a portion 162 of the seed injection mechanism 160 of the 10 annular power amplification stage, which will be described in detail later. In the embodiment, the 稜鏡 can be non-dispersive, and the power amplification stage is configured to not self-oscillate, thus eliminating the need to reduce or remove the ASE from the system output. The beam reverser 70 can also be moved into the interior of the cavity gain medium chamber, which has an attachment fitting similar to the housing 15 of the housing 140. 15 Beam expander optics 146, 148 and beam returner/inverter 70' are protected by fluorine in the cavity 144 and housing 14A, 150 exposed to the laser medium due to its composition comprising a fluorine-containing crystal. Avoid light damage. The amplification stage window 168 is also composed of a fluorine-containing crystal such as CaF2, which does not require a protective coating on the surface exposed to the highest energy density, in part due to the expansion of the beam of light 20 in the cavity. Also facing the ring-shaped power oscillator oscillating cavity due to the orientation of about 45 degrees, such as 47 degrees. In accordance with various aspects of one embodiment of the disclosed subject matter, a ring-shaped power oscillator cavity as illustrated in FIG. 2 has a beam expander and an output combiner end of cavity 144 and has beam expander prisms 146, 148. Orientation to produce 47 net dispersion (which can be used for ASE reduction or elimination) has several significant advantages, such as extremely efficient use of seed energy, and protection from high power and very short nominal center wavelengths especially at 193 nm and below. Dispersing in the cavity, for example, to help reduce the ASE ratio, and an acceptable energy density of 5 degrees on the optical component', such as the output mirror coupler portion 162 forming the seed injection mechanism and the maximum mirror of the seed injection mechanism ("Rmax" The portion 164 may or may not be coated as desired, such as the manner in which the applicant's assignee's 〇puS performs on existing laser systems (beam splitters 76, 78 and mirror 90). In addition, the configuration can be used, for example, before the laser system outputs the laser beam of light to enter the OCuS 86, and the desired beam expansion function of 10 is required. The cavity is made, for example, of an XLA model cavity, for example by adding two "nasals" 140, 150 instead of the existing window mounting assembly. Figure 23 shows the details in detail. Further, all of the optical elements inside the cavity, for example including the nose 14〇, 15丨50, can be further removed by the cavity dust source. This configuration can be made, for example, inside an existing XLA optical component bay. As discussed herein, the annular cavity as shown in Figures 12 and 13 can also use a relatively long round trip time, such as about 7 milliseconds to traverse from the input/output facet beam splitter 262 to the beam reverser. 270, and returns to the beam splitter 262. In addition, of course, in particular in the broadband embodiment, and also in the line narrowing embodiment, in accordance with various aspects of an embodiment of the disclosed subject matter, a more typical l-3mJM0 output is used, greatly increasing the amplification stage. The average power output exceeds the average power output of, for example, the current XLA-XXX laser system. Low MO cavity pressure has the advantage of multiple laser cavity life extensions. Not in the present manner, purely for high power, for example in the 200 W range, 'according to various aspects of one of the disclosed embodiments, Applicants anticipate not focusing on the preferred energy stability of the current configuration, pointing to stability. Sex, profile stability and ASE stability, while operating at full repetition rates of, for example, 4 kHz 5 to 6 kHz or even higher. Referring now to FIG. 3, a toroidal power amplifier stage laser system 400 is shown in partial and block diagram form, and in addition to the elements of FIG. 2, system 4A can include, for example, a seeding coupler mechanism 160. The input/output window 94 is calibrated and has a beam expander dispersing optical element 17A, for example comprising 10 beam expander and dispersion prisms 172 and 174 that retract and manipulate and disperse the beam 64 to an optical path 74 into the cavity extension 150 The beam reverser 70 returns to the input/output coupler partial mirror 162. Baffles 190 and 192, respectively, protect the optical elements of rear nose 150 and front nose 140 from, for example, dust circulating within cavity 144. In Fig. 4, a similar system A10 can include, for example, a beam return/reverse 170 on the outside of the cavity 14A in conjunction with the modified nose 140, in accordance with various aspects of one embodiment of the disclosed subject matter. 150, for example, together with the baffles 190, 192, respectively protects the front input/output window 194 and the rear window 196 from circulating dust. This embodiment may include, for example, Brewster wedges 420 and 430 for example 20 to clean the desired polarization by removing undesired polarization out of the optical cavity. Figure 5 illustrates and in partial block diagram form a system 330 in which, for example, a ring power amplifier stage is to be erected, for example, using a polarization beam splitter 336, a half-wavelength plate 338, and an output coupler 340. In operation, the seed laser 1324423 334 feeds a sub-laser output laser light pulse beam 62 to the beam splitter 336'. The %-cavity is established by a single maximum back mirror 243, for example, and a partially reflective output coupler 340. Similarly, as shown in Fig. 6, an annular cavity can be disposed between the output coupler 410 and the rear mirror 412 according to various aspects of an embodiment of the disclosed subject matter. There are a number of possible ways to couple the output laser pulse beam pulses from the coupling to the power amplification stage' as illustrated in Figures 9-11 and 14 and partially illustrated in block diagram format. As shown in FIG. 9, the partially reflective input coupling oscillator 10 or the power regenerative amplifier 200 can have a cavity 202, such as a partially reflective optical component 204 as an input coupler for the oscillator cavity, having a front partial reflective optical component output. Light combiner 2〇6. In operation, the MO output 62 enters the cavity 200 (for clarity of description 'the cavity 200 is shown as a normal oscillator instead of a ring oscillator), and the reflective optics are reflected by the entrance portion of the reflective optical element 2〇4 and the output coupling 15 The cavity formed by element 206 oscillates internally until oscillation causes the laser system to output a significant pulse of light pulse beam 100 away from the output coupler, as will be appreciated by those skilled in the art. In Fig. 10, a schematic diagram is partially illustrated in the form of a block diagram. The polarization input combines the vibrating unit 220 to form a ring power amplification stage, including, for example, a cavity 2丨〇, a 20 polarization beam splitter 212, and a quarter wave plate 214. a rear maximum mirror 218 and an output coupler 210. For ease of operation, the maximum mirror 218 and output coupler 216 after the oscillator cavity are similar to those shown in Figure 2 as a conventional oscillator rather than a ring oscillator. A polarization beam splitter 212 and a quarter wave plate 214 are used to isolate the MO from the amplification stage. The input beam 62 has a polarity that is reflected into the cavity by the segment 50 1324423 light mirror 212 having, for example, a quarter wave plate 214 that transmits the beam 62 into the cavity as circularly polarized light and will return from the wheeled outfit 216 The beam is converted into polarized light transmitted by the polarization beam splitter 212. As shown in FIG. 11, the switching input/output consumulator light-collecting and sustaining device 230 5 is displayed in a schematic and partial block diagram format, wherein the cavity 232 can be contained, for example, in the cavity by the maximum mirror 240 and the window 238. Within the cavity formed, for example, a photoelectric switch such as Q switch 2 3 6 is provided as a switch to allow oscillation to accumulate to a selected point, and then the Q switch is actuated to allow the launch laser system to output a laser pulse beam 1 〇〇 pulse. 1 shows, as shown in a partial block diagram, a multi-pass regenerative ring oscillator laser system 250, for example, including an amplifier cavity 252 and a sub-lei, in accordance with various aspects of one embodiment of the disclosed subject matter. At 254, system 250 can also include an input/output consuming device such as injection seed input/output combiner mechanism 260. The input/output coupler 260 can include, for example, a partial mirror 15 262, which can be, for example, the type of beam splitter currently sold by the applicant's assignee's OPuS along with its laser device. System 250, for example, can also include a maximum reflective optical element 264 to manipulate M0 beam 62 into the electrode region of the cavity as a pass beam 276 that can be returned to output coupler 262 as a second from beam inverter/return 270 The beam inverter / 2 〇 returner 270 includes, for example, a first maximum mirror 272 and a second maximum mirror 274 by a beam 278. Figure 13 is a block diagram showing, in block diagram form, a multi-pass regenerative ring power amplifier stage laser system 280 in accordance with various aspects of an embodiment of the disclosed subject matter, in a bowtie configuration, which may include, for example, a cavity 282, a Seed ray 51 1324423 284, an injection seeding mechanism 260 and a beam inverter/return 270, the latter two, for example, can be assembled (angled) to perform, for example, individual longitudinal center axes of electrodes (not shown) And the intersection of the horizontal and middle axes intersects or approaches the intersection, to generate a gain medium by the gas discharge between the electrodes. Thus, it is usually at the intersection of the vertical axis and the horizontal axis of the 5 gain medium. In such an embodiment, the angle of the two passes can be almost imperceptibly small, so that in practice, the beams 286, 288 are nearly aligned with the longitudinal centerline of the discharge formed between the electrodes, wherein a beam of light, such as beam 288, can form a thunder. The light system of the system is 1 〇〇 optical axis. As shown in the drawings of the present invention and not shown to be proportional, the optical path example 10 shown in FIG. 13 such as 286 and 288 does not extend along the longitudinal center axis of the electrode, or may be displayed by a side view, where the longitudinal axis is not recognized. . In practice, however, a calibration will be slightly uncalibrated with its axis, while others are still substantially calibrated as long as such calibration is optically achievable and within the tolerances allowed by the laser system's light column. 15 Figure 15 is a block diagram format showing a plan view such as the embodiment 280 shown in Figure 13 where the MO output laser beam 26 is from above the power amplification stage 282 (in the direction of the vertical plane). ]^〇. Further, Fig. 16 is a side view schematically showing a side view of the apparatus 280 of Figs. 13 and 15 in a block diagram format. The steering mirror maximum mirror 430 diverts the MO laser output light pulse 2 〇 beam 62 to, for example, the seed injection mechanism 260 and the cross (collar shape) through 276, 278 to the rear mirror beam inverter/returner 270 (not shown in Figure 16) and seed injection mechanism 260 input/output coupler partial mirror 262 formed in oscillating resonant cavity 424' to form a laser system output light pulse beam 100 immersed through the use as an ordinary oscillator cavity output coupler Optical element 52 262' is well known in the art as a gas discharge laser oscillator chamber with an output coupler. As can be seen from FIGS. 15 and 16, the M0 output beam 62 is incident on the ring power amplifier stage oscillating chamber via the partial mirror 262, and also forms a cavity output coupler with respect to the axis direction of the system wheel 100, thereby preventing the system 5 The wheeled beam 100 is coupled back to the reverse coupling of the MO. Figure 17 and block diagram formatted portions show various aspects of an embodiment of an embodiment of the disclosed subject matter, a single back mirror cavity 31, such as an input/output having a multi-pass regenerative ring oscillator laser system A coupling system, which is in a bow tie configuration and has, for example, a single maximum reflected back cavity mirror. In operation 10, the M0 laser input/output coupler, for example, the orthogonal seed injection mechanism 160, can introduce the MO laser output light pulse beam 62 into a cavity formed by a single maximum mirror 310, for example, to form a A "half" bow tie configuration through the optical path 76 and a second pass optical path 78. Reference is now made to Fig. 8 'showing various aspects of an embodiment in accordance with one of the disclosed subject matter', the applicant being referred to as an OPu effect cavity 320, wherein, for example, a polarization beam splitter 322 and a maximum reflection back cavity mirror 324 may be combined with a quarter Wavelength plate 326 and output coupler 228 are used together. In accordance with various aspects of one embodiment of the disclosed subject matter, system 320 has an oscillator formed between rear mirror 324 and output coupling 20 328, for example, due to uncalibration due to the slight uncalibration of optical components 322 and 324. Multiple passes generated inside the cavity. In accordance with various aspects of an embodiment of the disclosed subject matter, the orthogonal seed injection mechanism can include an orthogonal implant seeding optical element, such as optical element 350, such as shown schematically in FIG. 18, which spans optical element 350 in cross-section. Longitudinal size. The optical element 350 can be made, for example, of CaF2, such as uncoated 53 raF2, and according to the various aspects of the fourth embodiment, including, for example, an external input/output interface 352, a total internal reflection surface 10 354' and, μ356. As is known to those skilled in the art of clinker, in operation, the MO laser wheel light pulse beam 62 can be incident and received by the external wheeling/wheeling interface 352, for example at an angle of incidence of about 70 degrees, and at the optical element 350. The internal refraction becomes the beam 62, and to the total internal reflection surface, the beam 62 can be totally internally reflected to the internal input/output interface as a t-beam 62", where the laser gas medium ring entering the cavity is again refracted. W does not appear in Fig. 18) 'for example, following the first-light path % shot; after passing through the gain medium again, for example, after reflection from the beam reverser (not shown in the first off), 're-personal (four) interface 356 and turn It is said that (4) is a light beam 78, which is refracted into the light beam 78 inside the optical element 350, and is sent out of the optical element 35, and becomes a laser system output light pulse 15 through the external input/rounding interface 352. In various aspects of one embodiment of the disclosure, the beams 76, 78 together with the beam inverter (not shown in the first possible crossover as shown in Figure 13 are not shown in Figure 12. The ray beam 78 is also partially reflected) Light on the total internal reflection surface 354 The beam 78" (62,); the partial reflection portion will again become the beam 62" and the beam 76, so the optical element 35 is used as the input (four) combiner until sufficient oscillation occurs, so that the analog emission constitutes the output light of the substantial laser system. Pulsed beam 1 〇〇. According to various aspects of the disclosed subject matter, FIG. 19 schematically shows a version of a seed-injecting optical element 36〇 in a cross-sectional view across a longitudinal axis including, for example, an external input/output. Interface 362, a total internal reflection surface 364 and an internal input/output interface 366. In operation, the beam 62 from M〇54 10 can be incident on the external input/output interface as above - internally refracted into beam 62' to full The inner reflection surface (10) is reversed from the beam 62" to the _transmission boundary (four), where it is frequency (four), and is refracted into the beam % in the gas of the laser medium environment. The beam % is from the beam inverter (not shown) After thinning, the beam is finely refracted into a beam 78 by the wire element, and transmitted through the external input/output interface 362 to become an optical element. The skilled artisan must also understand that the image is also used in FIG. Example", beam 78 It can also be partially reflected onto the total internal reflection surface 364 to become the beam 78 (62), and the partial reflection portion will become the beam 62" and the beam % again, so the optical element 360 acts as an output coupler until sufficient oscillation occurs, allowing the analog emission. Forming a substantial laser system output light pulse beam 1 15 15 20 In accordance with various aspects of one embodiment of the disclosed subject matter, a plurality of beam returners/inverters 370 can be utilized, as shown schematically in Figures 20-22 The optical element 370 of FIG. 2 can be combined, for example, with an input/output surface 372, a first total internal reflection surface 374, a second total internal reflection surface 3V6, and a third total internal reflection surface 378'. The beam % of the transition gain medium in the first direction can be incident on the surface 372, reflected by the faces 374, 376, and 378, leaving the optical element 370 on the input/output face 372 as the beam 78, and passing through the gain medium in the second direction. A similar beam invertor 380 is shown in cross-section in Figures 21 and 22, with only two total internal reflection surfaces 384, 386 and 394, 396 in optical elements 380 and 390, respectively. Those skilled in the art of optical components understand that with three internal reflections, or three mirror configurations, such as the beam invertor of the XLA model laser system currently used by the applicant's assignee, the input beam 76 and the output beam 78 will The active calibration 55 is parallel, and the relationship does not change as the optical component, such as optical component 370, rotates about the axis of the vertical 20th page. For the inverters 380, 390 of Figures 21 and 22, even internal reflections, such as two internal reflections, will allow the beams 76, 78 to have a variable degree relationship on the paper surfaces of Figures 21 and 22. . Those skilled in the art of optical components understand that the combination of the seed injectors described herein in the beam inverter/returner can be used to intersect the beams 76, 78 on the optical path, as shown in Figures 2, 3, 4 and 13. Or no, for example, Figure 12. In addition, manipulation of such optical components will allow for excitation of the gain medium between the energizing electrodes, relative to the amplitude of the laser gain medium, such as along the longitudinal and/or vertical axes of the laser gas gain medium, such as 76, 78. The intersection is a bit. It can be used to change various parameters of the laser pulse pulse output from the final laser system, such as energy and energy stability. Referring now to Figure 23, the various versions of the nose M0' are shown schematically in Figures 2, 3, and 4. The nose M0 can include, for example, a window housing 55 that can include an outer mounting plate 552 and the housing wall 554 can be cut or otherwise secured to the housing mounting plate 552 while also displaying a window. Mounting plate 556. The window housing 550 is schematically illustrated in accordance with various aspects of an embodiment of the disclosed subject matter, the window housing 550 being similar to the window housing of the laser system currently used by the applicant's assignee, having a window housing end The plate (not shown in this view for clarity) is similar to the laser end plate 570 shown at the laser end of the nose 140, for example, in Figure 23. A window mounting laser end plate not shown may be located at the window mounting plate 556. Similarly, the nose portion 140 can have a window end plate similar to the end plate 552 (not shown in this figure for clarity) to secure the window housing 550 to the remaining portion 1324423 of the nose H0. The laser cavity end mounting plate 568 can be attached to the laser cavity of FIG. 2 by mounting bolts 574, such as the laser cavity 144' and has an aperture 572 through which the beam 76 is incident, for example, within the cavity 144. The beam 78 is returned from the cavity 144 through the aperture 572. 5 is partially shown in block diagram form, and the beam expander 142 includes, for example, a beam expander 146 and a beam expander 148, and the beam expander 142 can be inside the nose 140, as shown in FIG. The cut view is shown. At least one of 稜鏡 146, 148 can be mounted on a seat (not shown) for movement relative to each other. Such movement may be controlled, for example, by the controller 600, such as by the actuator 10, such as the laser positioning optical positioning control technique cited in one or more of the above-cited patents or co-examined applications. Controlled by a stepper motor or other suitable actuator known in the art, the actuator 580 is coupled to an individual at least one of, for example, a crucible 148 by an actuator shaft 582, for example, for rotation on the axis of the shaft 582. , 俾 change 稜鏡 148 relative to rib 15 mirror 142, also relative to other optical components such as orthogonal seed injection mechanisms (not shown in Figure 23) and/or beam return/reverse (not shown in Figure 23) Relative position of ). The beam return/reverse 270 and/or the seed input/output coupling optical element 260 20 can control the beam return/reverse device by the controller 600 as shown schematically in block diagrams in Figures 13 and 15. The actuator 594 and the input/output optical elements, such as the operation of the orthogonal seed injection mechanism 260, are controlled, and the actuators 590, 594 are coupled to the controller 600 by control signal lines 592 and 596, respectively. An annular cavity, for example, having an output coupler seed laser coupling, such as a

57 1324423 子注入機構,或許有更複雜的組態’來最有效使用種子雷 射能。 根據所揭示之主旨之一實施例之各個態樣,用於種子 雷射輸入/輸出耦合,可利用某個範圍之最大反射鏡,例如 5 由方波45度Rmax至約方波30度Rmax’如於申請人之受讓人 的ArF 193 nm LNM所使用者。P偏振之反射係數於45度只 有約85%。 根據所揭示之主旨之一實施例之各個態樣,例如由於 ASE,可能需要篩檢s偏振,可透過布魯斯特反射以及插入 1〇 部分反射鏡於功率放大級腔内來達成此項目的。 已經於種子雷射能、ArF腔氣體混合物、輸出耦合器(腔 Q)之反射係數百分比及種子雷射脈衝持續時間之不同數 值’來檢驗ΜΟΡΟ能相對於放大級時序,結果係就第7圖作 說明。種子脈衝之最大強度係出現於放大級的初期極低位 15準螢光期間。此種極低位準螢光(因而極低位準增益)如 ΜΟΡΟ輸出之觀察,相信可藉此種子光來增強。於放大級 發射前稍早或稍遲例如約20奈秒左右的調整種子時序,例 如將導致微弱線輸出的增南,例如指示放大級產生「基礎」 光子的指向。 2〇 已經於種子雷射能、ArF腔氣體混合物、輸出耦合器(腔 Q)之反射係數百分比及種子雷射脈衝持續時間之不同數 值,來檢驗ASE相對於ΜΟΡΟ之時序,結果係就第7圖作說 明。 也已經檢驗正向能與種子能間之關係,結果例如舉例57 1324423 Sub-injection mechanisms, perhaps with more complex configurations' to make the most efficient use of seed laser energy. In accordance with various aspects of an embodiment of the disclosed subject matter, for seed laser input/output coupling, a range of maximum mirrors may be utilized, such as 5 from a square wave 45 degrees Rmax to about a square wave 30 degrees Rmax' As used by the applicant's assignee, ArF 193 nm LNM. The reflection coefficient of P polarization is only about 85% at 45 degrees. In accordance with various aspects of one embodiment of the disclosed subject matter, such as due to ASE, it may be desirable to screen for s-polarization, through Brewster reflection, and by inserting a 1 〇 partial mirror into the power amplification stage to achieve this. The time between the seed laser energy, the ArF cavity gas mixture, the percentage of the reflection coefficient of the output coupler (cavity Q), and the duration of the seed laser pulse has been tested to verify the timing of the energy relative to the amplification stage. Give instructions. The maximum intensity of the seed pulse occurs during the initial very low level of the amplification stage. Such extremely low level fluorescence (and thus very low level gain), such as the observation of the ΜΟΡΟ output, is believed to be enhanced by the seed light. Adjusting the seed timing earlier or later, e.g., about 20 nanoseconds before the emission stage, for example, will increase the output of the weak line output, for example, indicating that the amplification stage produces a "base" photon. 2) The difference between the reflection coefficient of the seed laser energy, the ArF cavity gas mixture, the output coupler (cavity Q) and the duration of the seed laser pulse is used to verify the timing of the ASE relative to the ΜΟΡΟ, and the result is the seventh. The figure shows. The relationship between positive energy and seed energy has also been examined. Results such as examples

58 6兑明於第24圖及第25圖。測量值係於被視為MO的雷射媒質 中放電的最佳時序、以及於環形功率放大級中於雷射媒質 中放電的最佳時序進行測量。第24圖中,曲線6ι〇表示正向 月匕里值,曲線612表示反向能量值,方形資料點表示以 5 P90+P7G濾波器操作,插人部分反射鏡後再度進行校準,結 果係如第25圖所示。 ASE與MOPQ的設計上大為㈣。時料#可能導致 ASE增南至包括只產生ASE,此時M〇及功率放大級之時間 錯開,於功率放大級大致上只出現寬頻(ASE)雷射,當於功 10率放大級中電極間出現放電時振盈器將發出雷射。不似功 率放大11,諸如於申請人之受讓人之XLA-ΧΧΧ雷射系統 中,於根據所揭*之主旨之—實施例之各個態樣之系統 中,依據光學配置而定,種子光束通過放大級固定次數, 無論是否存在有種子雷射脈衝供放大,皆發生放大的自發 15發射(ASE)雷射。來自於放大器腔光學元件的反向散射可形 成寄生雷射腔。若干放大器腔光學元件可於放大器與M〇 間形成非預期之雷射腔。因此,根據所揭示之主旨之一實 施例之各個態樣,使用審慎控制時序來維持ASE低於極 限’俾減少或有效消除非期望的雷射。 20 可使用中等及小型種子輸入能來進行ASE測量。舉例 言之對中等種子輸入能,例如約50 之種子輸入能,有放 電電壓Vco約950伏特,放大級氣體填補為38/38〇氟分壓/總 壓,顯示約-10奈秒至+ 10奈秒之相對時序,ASE比最佳低 於3χ10·5。使用低種子能,例如約5 W的種子能,而電壓及 59 1324423 填補為相同,則於約-10奈秒至+10奈秒之相對時序,ase 比係維持低於約6x 1 〇-4。 維持適當ASE效能,要求選擇適當放大器腔光學元 件,有適當選擇性來去除非期望的偏振(例如利用適當塗層 5或入射角等),可導致非期望偏振的較佳抑制,結果導致例 如來自S偏振的ASE減少。例如使用光束擴幅與分散棱鏡來 於放大器腔中形成分散,根據所揭示之主旨之一實施例之 各個態樣,也已經由申請人判定為進一步降低aSE比的有 效方法’來促成對所選定之ASE規格有效夠大的邊際。 10 根據所揭示之主旨之一實施例之各個態樣,提示—種 方法來減少環形放大器中之ASE,例如更加利用此種架構 之其它特色’例如低種子能、高效率、能量穩定性等。申 請人提示導入若干寬頻’至少比於主輕射方向之反向傳播 的線窄化種子輻射遠更寬,來增加於此方向之ASE,減少 15於主要方向的ase。換言之,寬頻增益將被用於環繞環形 的反向,來減少於主向之ASE可得增益。此項目的例如可 以來自於光學元件之種子雷射光束之若干散射達成,例如 將種子雷射之螢光進給入環形功率放大級來達成。藉此寬 頻發射例如耗盡ASE可利用的增益,且寬頻發射將於主要 20賴射方向之反向傳播,來減少於主向的寬頻發射。 根據所揭示之主旨之一實施例之各個態樣,須瞭解於 前述專利案或專利申請案中之一或多者所述或申請人之受 讓人的雷射系統所出售之固態脈衝式功率系統,諸如磁性 切換系統,於個別MO腔及放大增益媒質腔中之電極間有極58 6 is shown in Figures 24 and 25. The measured values are measured at the optimum timing of the discharge in the laser medium considered to be MO, and the optimum timing of the discharge in the laser medium in the ring power amplifier stage. In Fig. 24, the curve 6ι〇 represents the positive moonrise value, the curve 612 represents the reverse energy value, and the square data point represents the operation of the 5 P90+P7G filter, and the partial mirror is inserted and then calibrated again. Figure 25 shows. The design of ASE and MOPQ is great (4). Time material # may cause ASE to increase to include only ASE. At this time, the time of M〇 and power amplification stage is staggered. Generally, only the broadband (ASE) laser appears in the power amplification stage, and the electrode in the power amplification stage. The vibrator will emit a laser when a discharge occurs. Unlike the power amplification 11, such as in the applicant's assignee's XLA-ΧΧΧ laser system, in the system according to the various aspects of the disclosed embodiment, depending on the optical configuration, the seed beam By amplifying the fixed number of times, an amplified spontaneous emission (ASE) laser occurs regardless of the presence or absence of a seed laser pulse for amplification. Backscattering from the optical components of the amplifier cavity can form a parasitic laser cavity. A number of amplifier cavity optics can form an unintended laser cavity between the amplifier and M〇. Thus, in accordance with various aspects of one embodiment of the disclosed subject matter, prudent control timing is used to maintain ASE below a limit&apos; reduction or to effectively eliminate undesired lasers. 20 Medium and small seed input can be used for ASE measurements. For example, for medium seed input energy, for example, a seed input energy of about 50, a discharge voltage Vco of about 950 volts, and an amplification stage gas fill of 38/38 〇 fluorine partial pressure/total pressure, showing about -10 nanoseconds to +10. The relative timing of nanoseconds, the ASE ratio is preferably lower than 3χ10·5. Using a low seed energy, such as a seed energy of about 5 W, and a voltage and 59 1324423 fill the same, then at a relative timing of about -10 nanoseconds to +10 nanoseconds, the ase ratio is maintained below about 6 x 1 〇 -4 . Maintaining proper ASE performance requires the selection of appropriate amplifier cavity optics with appropriate selectivity to remove undesired polarization (eg, with a suitable coating 5 or angle of incidence, etc.), which can result in better suppression of undesired polarization, resulting in, for example, from S The polarization of the ASE is reduced. For example, the use of a beam expander and a dispersion prism to form a dispersion in the amplifier cavity, in accordance with various aspects of an embodiment of the disclosed subject matter, has also been determined by the Applicant as an effective method to further reduce the aSE ratio to facilitate selection of the pair. The ASE specification is effective enough for the margin. In accordance with various aspects of one embodiment of the disclosed subject matter, a method is shown to reduce ASE in a loop amplifier, such as to take advantage of other features of such architectures such as low seed energy, high efficiency, energy stability, and the like. The applicant suggests that the introduction of a number of broadband frequencies, at least farther than the back-propagating line of the main light-directed direction, narrows the seed radiation farther to increase the ASE in this direction, reducing the ase in the primary direction by 15 . In other words, the wideband gain will be used to reverse the loop, to reduce the gain available to the main ASE. This item can for example be achieved by a number of scattering of the seed laser beam from the optical element, for example by feeding the fluorescence of the seed laser into the ring power amplification stage. Thereby wideband transmission, e.g., depletion of the gain available to the ASE, and wideband transmission will propagate in the reverse direction of the dominant direction to reduce the mainband wideband transmission. In accordance with various aspects of one embodiment of the disclosed subject matter, it is to be understood that the solid state pulsed power sold by the laser system of one or more of the aforementioned patents or patent applications, or the assignee of the applicant Systems, such as magnetic switching systems, have poles between the individual MO chambers and the electrodes in the amplified gain medium cavity

60 1324423 為緊密控制之放電發射時序,連同於MOPRO組態之環形功 率放大級之性質(例如於全然飽和或極為接近全然飽和操 作環形功率放大級)’允許具有例如申請人之受讓人的XLA ΜΟΡΑ雷射系統目前所能達成之劑量穩定性,約兩倍劑量穩 5定性之雷射系統輸出光脈衝光束脈衝傳輸至光刻術工具或 LTPS工具等。 第26圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之能量/劑量控制系統62〇。如以方塊 圖形式舉例說明,能量/劑量控制器620包括一固態脈衝式 10功率系統(SSPPM) 624’諸如前述之磁性切換脈衝式功率系 統,該系統例如可藉申請人之受讓人目前雷射系統例如 XLA ΜΟΡΑ組態雷射系統所出售的,且於前述專利案或審 查中之申請案中之一者或多者所討論的時序與能量控制模 組622加以控制。此種時序與能量控制模組組合SSppM 15 624,可達成河〇的極為精密的脈衝對脈衝能量控制;以及 達成MO 24中之第一對電極(圖中未顯示)與第二對電極例 如第15圖及第16圖所示之放大級144中之電極424間之放電 發射相對時序的極為精密控制,例如控制於數奈秒以内。 如前述專利案及審查中之申請案中之一或多者討論,如此 20允許選擇來自於Μ◦之部分輸出雷射光脈衝光束脈衝,來引 發放大增益媒質的播種等,例如控制頻寬,同時也影響其 匕總雷射糸統輸出光脈衝光束脈衝參數。如此組合環形功 率振盪器於飽和或接近飽和操作,例如於約5_丨〇%飽和或更 接近飽和操作,允許系統傳遞如申請人之受讓人2XLA雷 61 1324423 射系統之光刻術雷射光源或既有雷射退火光源例如用於 LT P S之雷射光源目前可得的劑量穩定性之約兩倍劑量穩定 性。 參考第31圖,顯示光束混合器/翻轉器1050來對一光束 5 1052操作(供舉例說明目的顯示為上半白色及下半黑色)。容 後詳述,光束混合器1050可用來變更光束之強度側寫,例 如改良沿光束之一選定軸的強度對稱性,且可用來降低光 束相干性或二者。對於所示實施例,光束混合器1050包括 一分光鏡1054及反射鏡l〇56a-c。 10 至於第31圖所示之配置,光束1052最初入射於分光鏡 1054,此時部分光束透過反射而被導引朝向鏡1056a,其餘 光束(例如方向實質上不變)通過分光鏡1054透射,由光束混 合器1050出射至輸出光路1070上。於一種配置中,可使用 反射約40%至60%例如50%入射光的分光鏡1054 »用於此種 15 配置,約50%入射於分光鏡1054之初期光束被導引朝向鏡 1056a。至於光束混合器1050,鏡1056a-c典型為平面最大反 射鏡。如第31圖所示,鏡1056a可設置且定向成於約30度的 入射角接收來自於分光鏡1054的光。如進一步顯示,鏡 1056b可設置且定向成以約30度入射角接收從鏡1056a反射 20 的光;以及鏡1056c可設置且定向成以約30度入射角接收從 鏡1056b反射的光。 繼續參考第31圖,由鏡1056c反射的光以約45度角而入 射於分光鏡1054。對50%反射率的分光鏡而言,約半量來 自於鏡1056c的光被反射至輸出光路上,約半量來自於 62 1324423 鏡1056c的光通過分光鏡1054於朝向鏡1056a的光路上,如. 圖所示。如此,輸出光路1070包括含有通過分光鏡1054之 部分初始光束1052及由分光鏡1054反射的部分來自於鏡 1056c之光的組合光束。同理,於由分光鏡1054至鏡l〇56a 5 之光路上的光包括由分光鏡1054所反射的部分初始光束 1052與透射通過分光鏡1054之來自於鏡1056c之光之一部 分的組合光束。 第31圖中入射光束混合器1050之光束顯示有矩形截面 界定一個長軸1058。此型光束典型為由準分子雷射所產生 10 的雷射光束,準分子雷射具有長轴與由一個放電電極至另 一個放電電極之方向相對應。典型光束之尺寸約為3毫米x 12毫米。此外,對準分子雷射之輸出,於一個轴例如長轴 1058之強度側寫典型為非對稱性,而另一個轴例如短轴(亦 即於長軸1058之正交轴)之強度特寫約為高斯。雖然所示光 15 束混合器1〇50特別適合用於改良高功率準分子放電雷射之 對稱性’但須瞭解也可結合其它型別的雷射系統而用於其 它用途,例如光束混合器可用來減少由固態雷射所產生的 光束的相干性。 第31圖顯示沿由第一緣1060至第二緣1〇62之轴1〇58延 20伸之光束。第31圖也顯示鏡1056a-c建立有起點1〇64和終點 1066的空間反相光路。如第31圖所示,反相光路的特徵為 接近反相光路起點1064的第一光束緣1〇6〇的部分光束平移 至反相光束的終點1066的第二光束緣。特定言之,對所示 光束混合器1050,於撞擊鏡l〇56a的光束「頂端」的光子平 63 1324423 移,於鏡1056c留下光束「底端」。因反相光路構成延遲光 路,偶爾有光束的時間延伸,可能有利,特別於主振盪器/ 種子雷射與放大增益媒質例如環形功率放大級間的相干性 破壞機構之實施例特別有利。種子雷射與放大增益媒質間 5的脈衝延伸可略為將脈衝延伸出放大增益媒質之外。如它 處所述,也可以適當延遲光時間等經由最小化延遲光路例 如減少至約1奈秒左右長度而被最小化,光束混合器1〇5〇可 形成相干性破壞迷你-OPuS,如參考第48圖所討論。光束混 合器1050可設置於ΜΟΡΑ或]VIOPRA(例如有環形功率放大 10級)之種子光束雷射部分與放大器雷射部分間,組配多腔雷 射系統,如第1-6圖及第9-16圖所示。其它形式的被動型相 干性破壞例如可用於MO與PA間,討論於前文引述之美國專 利申請案第11/447,380號,名稱「用於高能脈衝雷射用途穩 疋化光束形狀及對稱性質裝置及方法」,申請日2006年6月5 15日,代理人檔號2006-0039-01 ;及申請案第1〇/881,533號, 名稱「用於減低氣體放電雷射輸出光相干性之方法及裝 置」,申請曰2004年6月29曰,公告日期2〇〇5年12月29日, 公告案號20050286599 ;以及申請案第__號,名稱「雷 射系統」’代理人樓號2005-0103-02,如前文說明係與本案 20 同一天提出申請。 如第31圖所示,較深和較淺的入射光束部分可為來自 於空間分離的分開光源的分開光束;光束混合器1〇5〇可就 此額外作用、或替代作用為單一光束之相干性破壞器。 而瞭解包含光束渡合器、相干性破壞5|、戍二者的延 64 f光路之若干可能實施例係舉例說明於本發明,但並未將 可用的光學延遲光路羅列盡淨,例如具有成像鏡的延遲光 路以及不具有成像鏡的延遲光路或有二者混合物之延遲光 5路可執行光束延遲、翻轉及/或混合功能,但至少光束脈衝 (匕括子脈衝)係相對於主脈衝及其它子脈衝而翻轉/混合 (或二者)。 热諳技藝人士須瞭解如本申請案揭示,根據所揭示之 主曰之—實施例之各個態樣,申請人可滿足來自於掃描器 製造商及半導體製造商終端使用者的客戶需求該等客戶 10而求對光源供應器例如ArF光源的要求甚至超越傳統預期 的力率與頻寬上的改良。舉例言之,要求進一步c〇c改良, 原因在於例如ArF今日用於高量生產,例如用於成本敏感產 品的生產’業界預期操作成本因而ArF的耗材成本也須同等 降低’如同當KrF技術成熟時過去對KrF雷射的要求般。此 15外,藉本案揭示之主體,例如臨界維度變化對劑量之敏感 度已經隨著低K1光刻術技術的進展而變大,能量穩定性改 良可由本文揭示主旨滿足。雙重曝光構想也須在負擔與劑 量控制間折衷。光學無阻罩光刻術要求單一脈衝曝光控 制’可由本文揭示主旨之實施例之態樣加以改良。 20 有關能量穩定性的改良,希瑪XLA光源藉由探勘於 ΜΟΡΑ組態之PA的飽和效應,例如二通pA放大,可獲得能 量穩定性的顯著改良。XLA之Eout相對於Ein之斜率約為 1/3。當通過此種PA時,M0能量不穩定性降低3X因數。但 即使透過PA由3X改良,ΜΟΡΑ系統能量穩定性仍然大為受 65 1324423 到例如MO能量不穩定性的衝擊。MO貢獻與pa貢獻約略相 等。其它貢獻諸如電壓調節、時序抖動、及MO指向抖動係 相對較小的貢獻因數,但仍然並非無意義。pA能量穩定性 效能係落入典型寬頻振盪器與全飽和放大器間的某個位 5 置。60 1324423 is a closely controlled discharge emission timing, together with the nature of the ring power amplification stage configured in MOPRO (eg, full saturation or very close to full saturation operation of the loop power amplification stage) 'allows XLA with, for example, the assignee of the applicant The dose stability that can be achieved by the laser system at present is about two times the dose of the stable five-point laser system output light pulse beam pulse transmission to the lithography tool or LTPS tool. Figure 26 is a schematic and block diagram showing an energy/dose control system 62A in accordance with various aspects of an embodiment of the disclosed subject matter. As exemplified in block diagram form, the energy/dose controller 620 includes a solid state pulsed 10 power system (SSPPM) 624' such as the aforementioned magnetically switched pulsed power system, such as the current assignee of the applicant. The firing system, such as the XLA® configuration laser system, is controlled by the timing and energy control module 622 as discussed in one or more of the aforementioned patents or applications. This timing and energy control module combination SSppM 15 624 can achieve extremely precise pulse-to-pulse energy control of the river raft; and achieve the first pair of electrodes (not shown) and the second pair of electrodes in the MO 24, for example The extremely precise control of the relative timing of the discharge emissions between the electrodes 424 in the amplification stage 144 shown in FIG. 16 and FIG. 16 is, for example, controlled within a few nanoseconds. As discussed in one or more of the aforementioned patents and the applications under review, such a 20 allows selection of a portion of the output laser beam pulse from the Μ◦ to induce seeding of the amplification gain medium, such as controlling the bandwidth, while It also affects the pulse parameters of the output laser pulse beam of the total laser system. Combining the ring power oscillator in such a saturation or near saturation operation, for example, about 5 丨〇 % saturation or near saturation operation, allows the system to pass a lithography laser as claimed by the Applicant's assignee 2XLA Ray 61 1324423 system A light source or a laser annealing source such as a laser source for LT PS has about twice the dose stability of the currently available dose stability. Referring to Fig. 31, beam mixer/flipper 1050 is shown to operate on a beam 5 1052 (shown as upper half white and lower half black for illustrative purposes). As will be described in more detail later, beam mixer 1050 can be used to alter the intensity profile of the beam, such as improving the intensity symmetry of a selected axis along one of the beams, and can be used to reduce beam coherence or both. For the illustrated embodiment, beam mixer 1050 includes a beam splitter 1054 and mirrors 16a-c-c. 10 As for the configuration shown in Fig. 31, the light beam 1052 is initially incident on the beam splitter 1054. At this time, part of the light beam is guided by the reflection toward the mirror 1056a, and the remaining light beams (for example, the direction is substantially constant) are transmitted through the beam splitter 1054. Beam mixer 1050 exits output light path 1070. In one configuration, a beam splitter 1054 can be used that reflects about 40% to 60%, such as 50% of incident light, for such a 15 configuration, with about 50% of the initial beam incident on the beam splitter 1054 being directed toward the mirror 1056a. As with beam mixer 1050, mirrors 1056a-c are typically planar maximum mirrors. As shown in Fig. 31, mirror 1056a can be positioned and oriented to receive light from beam splitter 1054 at an angle of incidence of about 30 degrees. As further shown, mirror 1056b can be positioned and oriented to receive light reflected 20 from mirror 1056a at an angle of incidence of about 30 degrees; and mirror 1056c can be positioned and oriented to receive light reflected from mirror 1056b at an angle of incidence of about 30 degrees. Continuing with reference to Fig. 31, the light reflected by the mirror 1056c is incident on the beam splitter 1054 at an angle of about 45 degrees. For a 50% reflectance spectroscope, about half of the light from the mirror 1056c is reflected onto the output beam path, and about half of the light from the 62 1324423 mirror 1056c passes through the beam splitter 1054 on the optical path toward the mirror 1056a, such as. The figure shows. Thus, the output optical path 1070 includes a combined beam of light comprising a portion of the initial beam 1052 passing through the beam splitter 1054 and a portion of the light from the mirror 1056c reflected by the beam splitter 1054. Similarly, the light on the optical path from the beam splitter 1054 to the mirror 104a 5 includes a partial beam 1052 reflected by the beam splitter 1054 and a combined beam of light from the mirror 1056c that is transmitted through the beam splitter 1054. The beam of incident beam mixer 1050 in Fig. 31 is shown with a rectangular cross section defining a major axis 1058. This type of beam is typically a laser beam produced by a quasi-molecular laser having a long axis corresponding to the direction from one discharge electrode to the other. A typical beam size is approximately 3 mm x 12 mm. Moreover, the output of the aligned molecular laser is typically asymmetrical on the intensity side of one axis, such as the major axis 1058, while the intensity of the other axis, such as the minor axis (ie, the orthogonal axis of the long axis 1058), is approximately For Gauss. Although the illustrated light 15 beam mixer 1〇50 is particularly suitable for improving the symmetry of high power excimer discharge lasers, it is understood that it can be used in combination with other types of laser systems for other purposes, such as beam mixers. Can be used to reduce the coherence of a beam produced by a solid state laser. Figure 31 shows a beam extending along the axis 1 〇 58 of the first edge 1060 to the second edge 1 〇 62. Figure 31 also shows that the mirrors 1056a-c establish a spatially inverted optical path with a starting point 1 〇 64 and an ending point 1066. As shown in Fig. 31, the inverting optical path is characterized by a partial beam of the first beam edge 1〇6〇 approaching the start of the inversion optical path 1064 being translated to the second beam edge of the end point 1066 of the inverting beam. Specifically, for the illustrated beam mixer 1050, the photon level 63 1324423 of the beam "tip" of the impact mirror l〇56a is shifted, leaving the beam "bottom end" at the mirror 1056c. Since the anti-phase optical path constitutes a delayed optical path, occasionally there is a time extension of the optical beam, which may be advantageous, particularly embodiments of the coherent destruction mechanism between the main oscillator/seed laser and the amplified gain medium such as the toroidal power amplification stage. The pulse extension between the seed laser and the amplification gain medium can slightly extend the pulse out of the amplification gain medium. As described therein, it is also possible to minimize the light time or the like by minimizing the delay optical path, for example, to a length of about 1 nanosecond, and the beam mixer 1〇5〇 can form a coherence-damaging mini-OPuS, as described. Discussed in Figure 48. The beam mixer 1050 can be placed between the laser beam of the seed beam of the ΜΟΡΑ or ]VIOPRA (for example, with a ring power amplification of 10 stages) and the laser portion of the amplifier, and is equipped with a multi-cavity laser system, such as Figures 1-6 and IX. Figure 16 shows. Other forms of passive coherence destruction, for example, can be used between MO and PA, and are discussed in U.S. Patent Application Serial No. 11/447,380, the entire disclosure of which is incorporated herein by reference. Method, application date June 5, 2006, agent file number 2006-0039-01; and application No. 1 / 881, 533, name "method and device for reducing gas discharge laser output light coherence "Applicant 6 June 29, 2004, the date of the announcement is December 29, 2005, Announcement No. 20050286599; and the application number __, the name "Laser System" 'Attorney Building No. 2005-0103 -02, as explained above, apply on the same day as this case 20. As shown in Fig. 31, the deeper and shallower incident beam portions may be separate beams from spatially separated split sources; the beam mixer 1〇5〇 may additionally or alternatively act as a single beam coherence. Destroyer. Several possible embodiments for understanding the extended 64 f optical path including beam combiner, coherence disruption 5|, and 戍 are exemplified in the present invention, but the available optical delay paths are not listed, for example, with an imaging mirror. The delayed optical path and the delayed optical path without the imaging mirror or the delayed light with a mixture of the two can perform beam delay, inversion and/or mixing functions, but at least the beam pulse (including the sub-pulse) is relative to the main pulse and other Sub-pulse and flip/mix (or both). It will be appreciated by those skilled in the art that, as disclosed in the present application, applicants can satisfy the needs of customers from scanner manufacturers and semiconductor manufacturer end users in accordance with the various aspects of the disclosed embodiments. The demand for a light source supplier such as an ArF light source is even better than the conventionally expected improvement in force rate and bandwidth. For example, further improvements are required because, for example, ArF is used today for high-volume production, such as for the production of cost-sensitive products. 'The industry expects operating costs and the cost of ArF's consumables must be reduced as well' as when KrF technology matures. In the past, the requirements for the KrF laser were the same. In addition, the sensitivity of the subject revealed by this case, such as the critical dimension change, has become larger as the low K1 lithography technique progresses, and the energy stability improvement can be satisfied by the gist of the present disclosure. The double exposure concept also has to be compromised between burden and dose control. Optical unobstructed lithography requires that a single pulse exposure control&apos; be modified by aspects of the embodiments disclosed herein. 20 With regard to the improvement of energy stability, the Xima XLA source can achieve significant improvements in energy stability by exploiting the saturation effects of the PA configured in the ΜΟΡΑ configuration, such as two-pass pA amplification. The slope of Eout of XLA relative to Ein is about 1/3. When passing this PA, the M0 energy instability is reduced by a factor of 3X. But even if the PA is modified by 3X, the energy stability of the helium system is still greatly affected by the energy instability of 65 1324423 to, for example, MO. The MO contribution is approximately equal to the contribution of pa. Other contributions such as voltage regulation, timing jitter, and MO pointing jitter are relatively small contributing factors, but are still not meaningless. The pA energy stability performance falls within a certain bit between the typical wideband oscillator and the fully saturated amplifier.

根據所揭示之主旨之一實施例之各個態樣,循環環形 組態例如功率環形放大級係於遠更強的飽和區操作。對於 例如具有環形功率放大級的種子雷射/放大增益媒質系 統,Emit相對於Ein之斜率係由申請人的雇主測量得為 10 0.059。例如當通過循環環形振盪器,例如功率環形放大級 時,MO能量不穩定可降低17χ因數。 使用循環環形組態,放大級能量穩定性將具有全飽和 放大器的特险。申清人預期能量穩定性至少改良約1 ·5-2Χ。 +σΡΑ +σ^ + + σ 2 ΜΟ指標 1!) 熟相技藝人士須瞭解,根據所揭主體内容之一實施例 之各個態樣’可湘功㈣職大級。絲元件可用來形 成兩個或更多個重疊領結形回路或跑馬場形回路。 此種放大器媒質例如再生或循環環形功率放大級之特 m括平仃平面’可為穩定振盪器,例如半平面或不穩定 盛器。光束返回117光纽向ϋ可姻位在腔或其組合内 夕1或卜側的夕面反射鏡或稜鏡或其組合,例如依據一個或 2光學元件曝光至某種光學密度位準決定。非期望的光 例如大部分細可以多種方歧別,例域佳係形成於種 66 20 1324423 子雷射脈衝光束振盡之再生光路的反向方向 率放大級。 衣形功 於放大級腔内將光束擴幅例如與布魯斯特角窗… 直方向相對應,也可用來保護於環形功率振盈器腔 學元件’以及分散航來減少ASE。種子注入機構之 “ 合器部分例如對期望的(同頻帶)頻率(或偏振或二者^ 約20〇/〇之反射係數。光束擴幅也可使用多個棱鏡進行了其 中-或多個稜鏡可位於腔包圍體内側及/或外側。換令之了 10 當-或多個稜鏡於腔包圍體内側且曝光於含氣雷^體現 合物時,至少一個稜鏡也可於腔外側。 匕 15 現在參考第7圖,顯示根據所揭示之主旨之_實施例之 各個態樣之時序及控制演繹法則的圖表。該圖表將雷射系 統輸出能呈種子雷射腔中放電與放大級例如環形功率放大 級之差異之時序之函數作圖,成為曲線_,於此處為求方 便稱作為綱⑽,瞭解於若干組態巾放纽並未嚴格稱作 為PO,反而稱作為PA,但有振盪,此點係與通過增益媒質 固定次數相反,後者係出現於申請人之受讓人傳統上稱作 為功率放大器,亦即於中請人之受讓人之m〇paxlaxxx 20 之 裂號雷射系統中的PA ’例如由於環形光路長度與名目波長 之整數倍數關係所致。也舉例說明於雷射系統放大級所產 生的ASE呈細0P0之函數之代表性曲線,作為曲線6〇2。 此外,顯㈣雜4,麵雷㈣、錄出㈣變化呈dtM〇p〇 之函數。也顯示對ASE之選定極限,呈曲線6〇6。 須瞭解可選擇於最小極端或最小極端附近的證曲線 67 (S ) 的操作點’於該點操作’例如經由遞色顯示dtMOPO之控制 選擇例如來決定曲線606上系統之操作點。可知有相當大餘 裕空間來於曲線602的ASE最小極端附近操作,同時維持輸 出脈衝能於能量曲線的相對平面頂部,例如來維持雷射系 5統輸出脈衝能及能量α及相關劑量及劑量σ常數於可接受 的公差以内。此外如圖所示,可同時使用dtM〇p〇來由一定 頻寬範圍選定頻寬同時不干擾前述的E控制。 無論所使用的種子雷射本質如何’亦即固態種子雷射 系統或氣體放電種子雷射系統,皆可達成此項目的。但使 1〇用固態種子雷射,多項技術之—可用來例如經由控制固態 種子雷射聚送程度而選擇(控制)種子雷射的頻寬。此種系送 功率控制例如讓功率於高於雷射臨界值的功率栗送,俾選 定頻寬。此種頻寬的選擇可遷移或改變曲線604的相關值, 但雷射系統仍然適合前述E類型及0评類型控制,使用 15 dtMOPO來選疋bw且同時選定操作點,維持雷射系統之脈 衝輸出能於所示能量曲線6 〇 0平面頂端區的穩定且或多或 /恆疋值。也可使用非_cw固態種子雷射,且可調整輸出 頻寬。例如,主振盪器腔(腔-Q)之輸出耦合器反射率的選擇 可調整種子雷射系統之輸出頻寬。種子雷射脈衝之脈衝修 20剪也可用來控制雷射系統的總輪出頻寬。 由第7圖可知’所選定之ASE上限或能量曲線隨 dtMOPO維持相對平面的部分幅員可能限制可用於選擇的 頻寬範® mv曲線之斜率及位置也影響ASE曲線的可用操 作點,來維持恆定能量輸出及最小ASE,同時也經由選擇 68 1324423 dtMOPO操作值來從可用頻寬範圍内選定頻寬。 同樣已知於氣體放電種子雷射中放電脈衝之脈衝時間 例如前導波控制可用來從種子雷射中選出名目頻寬,如此 也影響BW曲線604之斜率及/或位置,如第7圖所示。 5 參考第28圖,顯示根據所揭示主旨之實施例之各個態 樣,以示意圖及方塊圖形式顯示雷射系統控制器620。控制 器620包含可構成雷射系統之一部分,例如包括一種子雷射 622 ’例如技藝界已知之XeCl、XeF、KrF、ArF或F2等型的 氣體放電雷射,結合線窄化模組(如技藝界已知)用來選擇特 10殊名目中心波長’且同時窄化頻寬至前文於本案中討論之 範圍。種子雷射622可產生種子雷射輸出光束626,其通過 分光鏡630 ’轉向小部分輸出光束626至度量衡單位度量衡 模組632 ’其包括一MO能量檢測器及一波計例如測量中心 波長及頻寬。 15 輸出光束626隨後藉最大反射鏡634(對名目中心波長 而言)轉向至一種子注入機構636。種子注入機構例如可包 括一部分反射光學元件638及最大反射光學元件640,如本 案討論’可為兩個分開元件或一個單一光學元件。如本文 討論’種子注入機構可將種子雷射輸出脈衝光束626沿注入 20 光路652注入如環形功率放大級650之放大增益媒質。分光 鏡654可將小部分輸出光束658轉向入可測量例如輸出能及 頻寬之一度量衡單元656。一度量衡單元642直接連接至放 大增益媒質雷射650,例如可測量雷射腔650的ASE。 控制器660可包含一處理器662,控制器660接收來自於 69 夕個度莖衡單元632、642及656及其它(若屬適當)的輸入, 且利用該等輸入作為於前述專利案及共同審查中之專利申 。月案中之一者或多者所述的控制演繹法則的一部分,同時 也結合前述控制演繹法則有關於A S E曲線最小值或其附近 5操作’同時維持能量恆定,也選擇由選定之ASE極限所加 諸之於極限範圍内之頻寬。此外,於前文引述之專利案及 共同審查中之專利申請案中之一或多者所示,控制器660也 控制於種子雷射輸出脈衝之形成時序 ,以及於放大增益媒 質(簡稱dtM〇p〇)之輸出脈衝的形成,也提供控制信號予線 10窄化模組’其控制方式例如係藉由前文討論以及於前文引 述之專利案及共同審查中之專利申請案中之一或多者之前 導波操縱及光學表面操縱來達成。 現在轉向第29圖,以方塊圖形式示意顯示類似第28圖 之雷射系統620之雷射系統680,但種子雷射682例如為有相 15關頻率轉換器684之固態種子雷射,例如來修改種子雷射 682之輸出波長至於放大增益媒質級650適合放大的波長。 此外,如前文討論,例如經由修改泵送功率,控制器66〇可 提供輸入予種子雷射682來控制種子雷射脈衝的形成時序 及頻寬。 20 根據所揭示之主旨之一實施例之各個態樣,需要選擇 於邊緣光學元件,邊緣光學元件為必須被使用至邊緣且或 許塗覆至邊緣的光學元件,因而困難。此種光學元件可能 要求形成於第2圖所示之輸出耦合器如162及第2圖所示之 最大反射器如164間,例如依據二者分開情況而定,連同形 70 1324423 成第2圖所示之種子注入機構160的一種版本,原因在於可 能空間過小而須避免使用一邊緣光學元件。若是,則邊緣 光學元件須選擇為Rmax,原因在於出現光當其通過〇c部 162時之射線光路。由塗覆觀點,較佳有OC作為邊緣光學 5元件,原因在於OC的層數較少。但根據所揭示之主旨之一 實施例之各個態樣’另一項設計係選用如申請人選擇且於 第30圖示意舉例說明,例如其中可避免使用邊緣光學元 件,例如於第2圖所示’藉光束擴幅器142例如稜鏡146、148 所形成而於輸出及輸入環形功率放大級光束提供夠大空 10間,則巧*避免使用邊緣光學元件。舉例言之,兩個光束間 隔約5毫米判定夠滿意來避免使用任何邊緣光學元件。 如第30圖舉例說明’雷射系統例如第2圖舉例說明之系 統11 〇可產生雷射系統輸出脈衝光束1 〇〇,例如可使用環形 功率放大級144來產生雷射系統輸出脈衝光束1〇〇,俾便放 15大於環形功率放大144中之主振盪器22之輸出光束62。根據 所揭示之主旨之一實施例之各個態樣,顯示其細節之光束 擴幅器/分散器142可包含一第一擴幅/分散稜鏡i46a及一第 二擴幅/分散稜鏡146b及一第三稜鏡148。 種子注入機構160可包含一部分反射輸入/輸出耦合器 2〇 162及一最大反射(Rmax)鏡164,於第3〇圖中以平面圖部分 示意舉例說明,例如參考種子注入機構及光束擴幅/分散 160、及環形功率放大級腔(圖中未顯示),光束74及72分別 由該腔入射及出射,換言之由主振盪器腔22輸出光束64行 進軸透視’於本實施例中說明為可位於腔144上方(如圖所In accordance with various aspects of one embodiment of the disclosed subject matter, a cyclic loop configuration, such as a power ring amplification stage, operates in a much stronger saturation region. For a seed laser/amplification gain medium system such as a loop power amplifier stage, the slope of Emit relative to Ein is measured by the applicant's employer as 10 0.059. For example, when passing through a circulating ring oscillator, such as a power ring amplification stage, the MO energy instability can be reduced by a factor of 17. With a cyclic ring configuration, the energy stability of the amplifier stage will have the special risk of a fully saturated amplifier. Shen Qingren expects at least an improvement of energy stability of about 1 · 5-2 Χ. +σΡΑ +σ^ + + σ 2 ΜΟ indicator 1!) Skilled artisans should be aware of the various aspects of the embodiment according to the main body of the subject matter. The wire element can be used to form two or more overlapping bow-tie loops or a racetrack-shaped loop. Such an amplifier medium, such as a regenerative or cyclic toroidal power amplifier stage, may be a stationary oscillator, such as a semi-planar or unstable receptacle. The beam return 117 light can be used in the cavity or combination thereof in the evening or on the side of the mirror or the combination of ridges, or a combination thereof, for example, depending on the exposure of one or two optical elements to a certain optical density level. Undesired light, for example, most of the fineness can be multi-faceted, and the case is formed in the reverse direction amplification stage of the regenerative optical path of the laser beam that is vibrated by the 66 20 1324423 sub-beam. The shape of the garment is such that the beam expands, for example, in the direction of the straight end of the Brewster angle window, and can also be used to protect the ring-shaped power vibrator cavity element and to disperse the ASE. The "means" portion of the seed injection mechanism is, for example, for the desired (same frequency band) frequency (or polarization or both of the reflection coefficients of about 20 〇 / 。. The beam expansion can also be performed using multiple prisms - or more The mirror may be located inside and/or outside the cavity surrounding body. When 10 or more are inside the cavity surrounding body and exposed to the gas containing ray embossing, at least one 稜鏡 may also be outside the cavity匕15 Referring now to Figure 7, there is shown a chart of the timing and control deduction rules for various aspects of the embodiment according to the disclosed subject matter. The chart provides the laser system output as a discharge and amplification stage in the seed laser cavity. For example, the function of the timing of the difference of the ring power amplification stage is plotted as a curve _. Here, for convenience, it is called the outline (10). It is understood that a number of configuration towels are not strictly referred to as PO, but instead are called PA, but There is oscillation, this point is opposite to the number of times fixed by the gain medium. The latter appears in the applicant's assignee. Traditionally, it is called a power amplifier, that is, the cracker of the m〇paxlaxxx 20 of the assignee of the applicant. PA in the shooting system For example, due to the relationship between the length of the ring optical path and the integer multiple of the wavelength of the name, a representative curve of the ASE generated by the amplification stage of the laser system as a function of the fine 0P0 is also exemplified as the curve 6〇2. , face lightning (four), recording (four) change is a function of dtM〇p〇. It also shows the selected limit for ASE, which is a curve of 6〇6. It should be understood that the curve 67 (S) can be selected near the minimum or minimum extreme. The operating point 'operating at this point' determines the operating point of the system on curve 606, for example, via the control selection of the dither display dtMOPO. It is known that there is considerable margin to operate near the ASE minimum extreme of curve 602 while maintaining the output pulse energy. At the top of the relative plane of the energy curve, for example, to maintain the output energy of the laser system and the energy α and the associated dose and dose σ constant within acceptable tolerances. In addition, as shown, dtM〇p〇 can be used simultaneously. The bandwidth is selected from a range of bandwidths without interfering with the aforementioned E control. Regardless of the nature of the seed laser used, ie solid-state seed laser systems or gas discharge seeds This system can be achieved with a launch system, but with a solid-state seed laser, a number of techniques can be used to select (control) the bandwidth of the seed laser, for example by controlling the degree of solid-state seed laser delivery. The power supply control, for example, allows the power to be delivered above the laser threshold, and selects the bandwidth. The choice of such bandwidth can shift or change the correlation value of curve 604, but the laser system is still suitable for the aforementioned E type and 0 evaluation type control, use 15 dtMOPO to select bw and select the operating point at the same time, to maintain the pulse output of the laser system can be stable and more or / constant value in the top region of the energy curve 6 〇 0 plane. A non-cw solid-state seed laser is used and the output bandwidth can be adjusted. For example, the output coupler reflectivity of the main oscillator cavity (cavity-Q) can be adjusted to adjust the output bandwidth of the seed laser system. The pulse of the seed laser pulse can also be used to control the total wheel width of the laser system. It can be seen from Fig. 7 that the selected ASE upper limit or energy curve maintains a relative plane with the dtMOPO. The partial width may limit the slope and position of the bandwidth width mv curve that can be used for selection. It also affects the available operating point of the ASE curve to maintain a constant The energy output and minimum ASE are also selected from the available bandwidth range by selecting the 68 1324423 dtMOPO manipulated value. It is also known that the pulse time of the discharge pulse in a gas discharge seed laser, such as the pre-wave control, can be used to select the nominal bandwidth from the seed laser, which also affects the slope and/or position of the BW curve 604, as shown in FIG. . 5 Referring to Figure 28, the laser system controller 620 is shown in schematic and block diagram form in accordance with various aspects of the disclosed embodiments. The controller 620 includes a portion of the laser system that can be formed, for example, including a sub-laser 622' such as a gas discharge laser of the type known as XeCl, XeF, KrF, ArF, or F2, as disclosed in the art, in conjunction with a line narrowing module (eg, It is known in the art) to select a special center wavelength ' while narrowing the bandwidth to the extent discussed above in this case. The seed laser 622 can generate a seed laser output beam 626 that passes through the beam splitter 630' to a small portion of the output beam 626 to the metrology unit metrology module 632' which includes an MO energy detector and a wave meter such as a measurement center wavelength and frequency. width. The output beam 626 is then diverted to a sub-injection mechanism 636 by a maximum mirror 634 (for the nominal center wavelength). The seed injection mechanism can comprise, for example, a portion of reflective optical element 638 and a maximum reflective optical element 640, as discussed herein, as two separate elements or a single optical element. As discussed herein, the seed implantation mechanism can implant the seed laser output pulse beam 626 along the injection 20 optical path 652 into an amplification gain medium such as the toroidal power amplification stage 650. Beam splitter 654 can divert a small portion of output beam 658 into a metrology unit 656 that can measure, for example, output energy and bandwidth. A metrology unit 642 is directly coupled to the amplification gain medium laser 650, such as the ASE of the laser chamber 650. The controller 660 can include a processor 660 that receives inputs from the 69th stalk scale units 632, 642, and 656 and other, if appropriate, and utilizes the inputs as the aforementioned patents and common Patent application under review. Part of the control deductive rule described in one or more of the monthly cases, and also in conjunction with the aforementioned control deductive rule, regarding the minimum value of the ASE curve or its vicinity 5 operations while maintaining constant energy, also selected by the selected ASE limit The bandwidth added to the limits. In addition, as shown in one or more of the patents cited above and the co-pending patent application, the controller 660 also controls the timing of the formation of the seed laser output pulses, and the amplification gain medium (abbreviated as dtM〇p).形成) the formation of an output pulse, which also provides a control signal to the line 10 narrowing module's control method, for example, by one or more of the patent applications discussed in the foregoing and in the patents and co-examination cited above. Previous guided wave manipulation and optical surface manipulation were achieved. Turning now to Figure 29, a laser system 680 similar to the laser system 620 of Figure 28 is shown in block diagram form, but the seed laser 682 is, for example, a solid seed laser having a phase 15 frequency converter 684, for example The output wavelength of the seed laser 682 is modified to amplify the wavelength at which the gain medium level 650 is suitable for amplification. In addition, as discussed above, controller 66 can provide input to seed laser 682 to control the timing and bandwidth of seed laser pulses, for example, by modifying pump power. In accordance with various aspects of an embodiment of the disclosed subject matter, it is desirable to select an edge optical element that is an optical element that must be applied to the edge and possibly applied to the edge, and thus is difficult. Such an optical component may be required to be formed between the output coupler shown in FIG. 2 such as 162 and the maximum reflector shown in FIG. 2, such as 164, for example, depending on the separation of the two, together with the shape 70 1324423 into the second figure. One version of the seed injection mechanism 160 is shown because the space may be too small to avoid the use of an edge optic. If so, the edge optics must be selected to be Rmax because of the ray path of light as it passes through the 〇c portion 162. From the viewpoint of coating, OC is preferred as the edge optical 5 element because the number of layers of OC is small. However, in accordance with various aspects of one embodiment of the disclosed subject matter, another design is selected as selected by the applicant and schematically illustrated in FIG. 30, for example, where edge optics can be avoided, such as in FIG. It is shown that the 'boring beam expander 142, for example, 稜鏡146, 148, is formed to provide a large enough space for the output and input ring power amplifier stage beams to be large enough to avoid the use of edge optics. For example, a determination of two beam spacings of about 5 mm is satisfactory to avoid the use of any edge optics. As illustrated in Figure 30, the laser system, such as the system illustrated in Figure 2, can produce a laser output pulse beam 1 〇〇. For example, a ring power amplifier stage 144 can be used to generate a laser output pulse beam. That is, the cymbal 15 is larger than the output beam 62 of the main oscillator 22 in the ring power amplifier 144. In accordance with various aspects of an embodiment of the disclosed subject matter, the beam expander/disperser 142 showing details thereof can include a first expansion/dispersion 稜鏡i46a and a second expansion/dispersion 146b and A third 稜鏡148. The seed injection mechanism 160 can include a portion of the reflective input/output coupler 2 162 and a maximum reflectance (Rmax) mirror 164, which are illustrated schematically in a plan view in FIG. 3, such as a reference seed injection mechanism and beam expansion/dispersion. 160, and a ring power amplifier stage (not shown), the beams 74 and 72 are respectively incident and outgoing from the cavity, in other words, the main oscillator cavity 22 output beam 64 travel axis perspective 'in the embodiment is illustrated as Above the cavity 144 (as shown

71 1324423 示’光束62已經被反折成概略水平縱轴),如本文所述,光 束也已經於MOPuS於其短軸擴幅,因此截面形狀概略為方 形。 有關於環形功率放大級腔内側之光束擴幅稜鏡146a、 5 146b之148之組態,可設置與申請人之受讓人XLA_XXX型 號雷射系統中於功率放大器(「PA」)級輸出之光束擴幅類 似的配置,例如具有4X擴幅,例如由68.6度入射及28.1度出 射所提供,例如設置於同一個稜鏡或有相同入射角及出射 角的兩個稜鏡。如此可用來平衡且最小化總費滋涅(Fresnd) 10耗損。於此等表面上可避免反射率塗層例如抗反射塗層, 原因在於將遭遇系統中的最高能量密度。根據所揭示之主 旨之一實施例之各個態樣,光束擴幅器/分散器16〇可實作 為第一稜鏡146分裂成兩個稜鏡146a及146b ,例如33毫米光 束擴幅器稜鏡’如第30圖舉例說明經過截頭來嵌合定位於 15有類似夾角的棱鏡可定位位置,分裂稜鏡有多項優點,例 如成本較低,可較佳校準及/或操控光束72、74(與光束反向 器(未顯示於第30圖)組合操控)及系統輸出光束1〇〇。71 1324423 shows that the 'beam 62 has been folded back into a substantially horizontal vertical axis.) As described herein, the beam has also been expanded at its short axis by MOPuS, so that the cross-sectional shape is generally square. The configuration of the beam spread 稜鏡 146a, 5 146b 148 on the inside of the loop power amplifier stage can be set to the power amplifier ("PA") level output in the applicant's XLA_XXX model laser system. A similar configuration of beam expansion, for example with a 4X expansion, is provided, for example, by a 68.6 degree incidence and a 28.1 degree exit, such as two turns disposed on the same turn or having the same angle of incidence and exit angle. This can be used to balance and minimize the total cost of Fresnd 10 losses. Reflective coatings such as anti-reflective coatings can be avoided on these surfaces because they will encounter the highest energy density in the system. In accordance with various aspects of an embodiment of the disclosed subject matter, the beam expander/disperser 16 can be split as a first turn 146 into two turns 146a and 146b, such as a 33 mm beam expander. 'As shown in Fig. 30, the prism can be positioned to be positioned at 15 with a similar angle. The splitter has several advantages, such as lower cost, and it is better to calibrate and/or manipulate the beams 72, 74 ( Combined with the beam inverter (not shown in Figure 30) and the system output beam 1〇〇.

主振盪器種子光束62可經由分光鏡部分反射光學元件 162而進入種子注入機構160(作為輸入/輸出耦合器),至 20 Rmax 164作為光束62a,於該處反射成為光束74a至第一光 束擴幅器稜鏡146a’其係用來於橫軸將光束解除放大約1/2 x (如第30圖所示於紙面上縱轴維持約10_n毫米)。然後光束 74b被導引至第二光束擴幅稜鏡146b,例如40毫米光束擴幅 稜鏡’再度被解除放大達約1/2 X,故總解除放大約為1/4 X 72 1324423 來形成進人·功料缝(麵㈣_圖)的增益媒質 之光束74。該光束藉光束反向器例如由中請人之受讓人 XLA-XXX型號雷射系統伙目前所使用之該型光束反向器 逆轉,呈以72_至稜鏡148,例如交又於增益媒質呈領 5結形回路配置,或粗略平行前進,或許於跑馬場形配置版 本重疊至某種程度。由稜鏡148,光束72被擴幅約&amp;,光束 72b被導引至稜鏡142b,進一步擴幅約&amp;成為光束仏。光 束72a被部分反射回為光束62a的一部分部分透射 作為輸出光束100,能量漸進遞增至經由於環形功率放大級 1〇之雷射振盪獲得有足夠能量之輪出光束脈衝。進入放大增 益媒質例如環形功率放大級之光束窄化為若干優異結果, 例如將光束之水平寬度限於增益媒質中二電極間的放電寬 度,用於領結形配置,二光束間的位移角過小,大致上維 持於數毫米的放電寬度,即使水平寬度各自約為2 3毫米亦 15如此;而用於跑馬場形配置,光束72或光束74只於各次來 回時通過增益媒質,或光束可進一步窄化或放電加寬,讓 一光束72、74於種子光束72、74之各次來回時通過放電增 益媒質。 稜鏡146a、146b及148特別為146及146b之定位及校準 20可用來確保輸出光束100從環形功率放大級至雷射輸出光 光學串列朝向快門的適當校準。離開輸入/輸出耦合器162 之光束大小可固定,例如水平方向大小藉水平尺寸選擇孔 口 130固定來形成(於橫轴)的部分系統孔口約10.5毫米。另 一個孔口,例如粗略於本PA WEB位置,例如於申請人之受 73 1324423 讓人XLA-XXX雷射系統產品之位置可決定光束之縱向維 度。根據所揭示之主旨之一實施例之各個態樣,申請人提 示一系統限制孔口設置於恰在主系統輸出〇PuS例如4X OPuS後方。一環形功率放大級孔口可進一步定位於雷射系 5 統内部之約500毫米。此種距離過大而無法防止指向變化轉 成於指定測量平面的位置變化(本系統孔口)。反而限制系統 孔口可定位於恰在OPuS後方,有193nm反射介電塗層來替 代常用的不鏽鋼板。此項設計允許更容易作光學校準,同 時減少孔口的加熱。 10 根據所揭示之主旨之一實施例之各個態樣,申請人提 示類似或於前文討論之共同審查中之美國專利申請案類似 或相同的相對無應力腔窗配置,由於使用例如PCCF塗覆 窗。 根據所揭示之主旨之一實施例之各個態樣,申請人提 15 示例如將ASE檢測如反向傳播ASE檢測置於LAM或置於 M0前導波工程箱(「WEB」),例如包括得自申請人之受讓 人現有XLA-XXX型號雷射系統之M0WEB元件,連同本文 討論之迷你OPuS,以及例如光束擴幅,例如使用一或多個 光束擴幅棱鏡來將M0輸出光束於短轴擴幅,例如來形成概 20略為方形的截面光束。目前MO WEB及其光束轉向功能係 於第2圖所示示意表示為轉向鏡例如44。但較佳可將後向傳 播檢測器置於MO WEB/MOPuS「内」,換言之經由採用摺 疊鏡(摺疊#2)例如第2圖之44有反射係數R=95%而非 R= 100%,透過此鏡44來監視浅漏。可忍受此讀值的若干遷 74 f: S ) 1324423 移及不準確,例如由於可用作為行進感測器(例如當條件為 可接受時,大致上不含反向ASE時,測量值約為〇.〇〇lmJ而 於無法接受時有反向ASE時,測量值約為10mJ相反)’例如 當環形功率放大器並未被計時來放大種子脈衝,但仍然形 成寬頻雷射光。也可使用既有控制器例如TEM控制器、用 於新穎檢測器之纜線及埠口等。檢測器例如可為目前由申 請人之受讓人用於既有XLA-XXX型號雷射系統來檢測光 束強度例如於雷射系統輸出快門的光束強度之檢測器。 10 15 20 根據所揭示之主旨之一實施例之各個態樣,一個或多 個迷你OPuS可共焦,因而對未校準有高度忍受性,如此可 能之像差低’例如於所提示之短〇PuS,所謂的迷你〇pus 中所需偏轴射線分別具有延遲時間4奈秒及5奈秒可採用多 於一個迷你OPuS。此等數值經選擇,故除了相干性破壞的 適當延遲光路之外’二者〇PuS使用球形光學元件具有低前 導波失真。低前導波要求實際上可防止來自於迷你OPuS的 顯著減少散斑,除非從迷你〇PuS的輸出產生角度散出,例 X略為横形板來置換平面/平面補償板,讓迷你OPuS的透 光束及延遲光束略為彼此作角向偏移。f射光束例如來 王於主振之雷射光束為部分相干性,結果導致光束出 Z斑。再度入射逑你opus的角向偏移反射光束,與透射 衛輸出’連同主脈衝的延遲光路分離成主脈衝及子脈 少’可於晶_及於退U作件達成㈣顯著的散斑減 而 之相^ ;…月工作件(晶圓或結晶面板)的雷射光源脈衝 ,的降低°例如可經由蓄意將延遲光路鏡未校準 75 達成’可能有共焦排列’但加入略為楔形件於延遲光路, 隨後分光鏡將部分延遲光束反射入有透射光束的輸出及其 親代脈衝及先前的子脈衝(若有)。例如板中的1毫弧度楔形 件將於反射子脈衝光束產生0.86毫弧度的角向偏移。 迷你OPuS的光學延遲光路就雷射效能及效率而言有 其它有利結果。根據所揭示之主旨之一實施例之各個態 樣’如第48圖示意顯示,雷射光束例如來自於種子雷射源 (未顯不於第48圖)的種子光束5〇〇可使用部分反射鏡(分光 鏡)510分光成為二光束5〇2、5〇4。此鏡51〇將一定百分比的 光束透射成為主光束5〇2,將其餘光束5〇〇反射入光學延遲 光路506成為光束5〇4。透射部分5〇2持續前進至雷射系統其 餘部分(未顯示於第48圖)。反射部分5〇4係沿光學延遲光路 506被導向’光學延遲光路506包括鏡512、514及516,鏡514 相對於示意顯示的紙面垂直,來允許主光束如再度進入雷 射系統的其餘部分,例如形成雷射輸出光束,或於隨後放 大 ',及放大。然後光束504可與原先光束500之透射部分502再 度、且0延遲光束504通過大致上垂直於光束504光路配置 的楔形件(補償板⑽。如此’來自於延遲光路5Q6的子脈衝 光束504與遠場巾透射部分5()2的光束主要部分略為位移。 位移例如約為50微弧度至5〇〇微弧度。 L遲光路5G6之長度將延遲光束脈衝,故透射光束部分 與=射光束部分有略為時間偏移,例如大於相干性長度, 史J於脈衝長度例如約15奈秒。經由選擇適當光路長 度決疋延遲時間,增加二光束,讓脈衝能量展頻成為略 1324423 為更長的Tis,其與主OPuS之後來脈衝延伸組合,可改良雷 射效能,也可提供其它有利的雷射效能效益。The main oscillator seed beam 62 can enter the seed injection mechanism 160 (as an input/output coupler) via the beam splitter partially reflective optical element 162 to 20 Rmax 164 as a beam 62a where it is reflected as a beam 74a to the first beam. The frame 稜鏡 146a' is used to release the beam about 1/2 x on the horizontal axis (as shown in Fig. 30, maintaining a longitudinal axis of about 10 mm on the paper). The beam 74b is then directed to the second beam expansion 稜鏡 146b, for example, the 40 mm beam expansion 稜鏡' is again de-amplified by up to about 1/2 X, so the total de-amplification is about 1/4 X 72 1324423 to form A beam 74 of the gain medium that enters the manhole (face (four)_graph). The beam is reversed by a beam reverstor, for example, by a beam invertor currently used by the XLA-XXX model laser system of the assignee of the applicant, which is 72_ to 稜鏡148, for example, the gain and the gain. The media is presented in a 5 knot loop configuration, or roughly parallel advancement, perhaps overlapping the racetrack configuration version to some extent. From 稜鏡 148, beam 72 is expanded by &amp; beam 72b is directed to 稜鏡 142b, further expanding &amp; The beam 72a is partially reflected back as part of the transmission of the beam 62a as an output beam 100, and the energy is progressively incremented to obtain a rounded beam pulse of sufficient energy via the laser oscillation of the ring power amplifier stage 1〇. The narrowing of the beam into the amplification gain medium, such as the ring power amplifier stage, results in several excellent results, such as limiting the horizontal width of the beam to the discharge width between the two electrodes in the gain medium, for the bow-tie configuration, the displacement angle between the two beams is too small, roughly The discharge width is maintained at a few millimeters, even if the horizontal width is about 23 mm, respectively; and for the racetrack configuration, the beam 72 or the beam 74 passes through the gain medium only when it is back and forth, or the beam can be further narrowed. The discharge or discharge is broadened such that a beam 72, 74 passes through the discharge gain medium as it travels back and forth between the seed beams 72, 74. The positioning and calibration 20 of 146a, 146b, and 148, particularly 146 and 146b, can be used to ensure proper alignment of output beam 100 from the ring power amplification stage to the laser output optical train towards the shutter. The beam size leaving the input/output coupler 162 can be fixed, e.g., the horizontal dimension is fixed by the horizontal size selection aperture 130 to form a partial system aperture (on the horizontal axis) of about 10.5 mm. Another aperture, such as roughly the location of the PA WEB, for example, the Applicant's position on the XLA-XXX laser system can determine the longitudinal dimension of the beam. In accordance with various aspects of one embodiment of the disclosed subject matter, the Applicant suggests that a system limiting orifice is disposed just behind the main system output 〇PuS, such as 4X OPuS. A ring power amplifier stage aperture can be further positioned about 500 mm inside the laser system. This distance is too large to prevent a change in the position of the pointing change from the specified measurement plane (the system orifice). Instead, the system orifice can be positioned just behind the OPuS with a 193 nm reflective dielectric coating instead of the commonly used stainless steel plate. This design allows for easier optical alignment while reducing orifice heating. 10 In accordance with various aspects of one embodiment of the disclosed subject matter, the Applicant suggests a relatively unstressed chamber window configuration similar or identical to the U.S. patent application in the co-examination discussed above, due to the use of, for example, a PCCF coating window. . In accordance with various aspects of one embodiment of the disclosed subject matter, the Applicant recites an example such as placing an ASE test, such as a backpropagation ASE test, in a LAM or a M0 pre-wave engineering box ("WEB"), for example, including Applicant's assignee's existing M0WEB component of the XLA-XXX model laser system, along with the mini OPUS discussed herein, and, for example, beam expansion, for example using one or more beam expansion prisms to dim the M0 output beam to the short axis The web, for example, forms a cross-section beam that is approximately square in shape. The current MO WEB and its beam steering function are schematically shown in Fig. 2 as a turning mirror, for example 44. However, it is preferable to place the backward propagation detector "inside" MO WEB/MOPuS, in other words, by using a folding mirror (folding #2), for example, FIG. 2 has a reflection coefficient of R=95% instead of R=100%. The shallow leak is monitored through this mirror 44. Some of the transitions that can tolerate this reading 74 f: S ) 1324423 are inaccurate, for example because they are available as travel sensors (for example, when the condition is acceptable, there is substantially no reverse ASE, the measured value is approximately 〇 〇〇lmJ and when there is a reverse ASE when it is unacceptable, the measured value is about 10mJ instead) 'For example, when the ring power amplifier is not timed to amplify the seed pulse, but still forms wide-band laser light. It is also possible to use an existing controller such as a TEM controller, a cable for a novel detector, a cornice, and the like. The detector can be, for example, a detector currently used by the assignee of the applicant for detecting the beam intensity of the beam output, e.g., the output of the shutter of the laser system, using an XLA-XXX model laser system. 10 15 20 In accordance with various aspects of one embodiment of the disclosed subject matter, one or more of the mini-OPuS may be confocal and thus highly tolerant to uncalibrated, such that the possible aberration is low 'eg, such as a short cues indicated PuS, the so-called off-axis rays in the mini 〇pus have a delay time of 4 nanoseconds and 5 nanoseconds, respectively, which can use more than one mini OPuS. These values are chosen so that in addition to the appropriate delayed optical path for coherence destruction, both PuS use spherical optical elements with low leading-end distortion. The low pre-guided wave requirement actually prevents significant reduction of speckle from the mini-OPuS, unless angularly dissipated from the output of the mini-PuS, which is a slightly horizontal plate to replace the planar/planar compensation plate, allowing the mini-OPuS to transmit light and The delayed beams are slightly angularly offset from each other. The f-beam is, for example, the laser beam of the main vibration is partially coherent, resulting in a Z-spot of the beam. Re-injection of the angularly offset reflected beam of your opus, and the transmission of the transmission and the delay of the main pulse together with the delayed path of the main pulse into a main pulse and fewer sub-pulses can be achieved in the crystal_ and the retreat U (4) significant speckle reduction And the reduction of the laser source pulse of the monthly workpiece (wafer or crystallized panel) can be achieved, for example, by deliberately delaying the path mirror uncalibrated 75 to achieve a "possible confocal alignment" but adding a slightly wedge-shaped member The optical path is delayed, and then the beam splitter reflects a portion of the delayed beam into the output of the transmitted beam and its parent and previous sub-pulses, if any. For example, a 1 milliradius wedge in the plate will produce an angular offset of 0.86 milliradians from the reflected sub-pulse beam. The optical delay optical path of the Mini OPUS has other beneficial results in terms of laser performance and efficiency. Various aspects of an embodiment according to the disclosed subject matter, as schematically illustrated in Fig. 48, a laser beam, such as a seed beam from a seed laser source (not shown in Fig. 48), may be used. The mirror (beam splitter) 510 splits into two beams 5 〇 2 and 5 〇 4 . This mirror 51 transmits a certain percentage of the beam into the main beam 5〇2, and the remaining beam 5〇〇 into the optical retardation path 506 into the beam 5〇4. The transmissive portion 5〇2 continues to advance to the rest of the laser system (not shown in Fig. 48). The reflective portion 5〇4 is directed along the optical retarding optical path 506. The optical retarding optical path 506 includes mirrors 512, 514, and 516 that are perpendicular to the plane of the schematic display to allow the primary beam to re-enter the rest of the laser system, For example, a laser output beam is formed, or subsequently amplified, and amplified. The beam 504 can then be re-transmitted with the transmitted portion 502 of the original beam 500, and the delayed beam 504 passes through a wedge (compensation plate (10) disposed substantially perpendicular to the beam path of the beam 504. Thus the sub-pulse beam 504 from the retarded path 5Q6 is far away The main part of the beam of the field towel transmitting portion 5() 2 is slightly displaced. The displacement is, for example, about 50 microradians to 5 〇〇 microradians. The length of the L-light path 5G6 will delay the beam pulse, so the transmitted beam portion and the = beam portion have Slightly time offset, for example, greater than the coherence length, the pulse length is, for example, about 15 nanoseconds. By selecting the appropriate optical path length to determine the delay time, increase the two beams, and let the pulse energy spread to become slightly 1324423 for longer Tis. Combined with the main OPuS pulse extension, it can improve the laser performance and provide other favorable laser performance benefits.

需要兩個迷你OPuS來達成期望的效果。來自於兩個迷 你OPuS之脈衝間的偏移時間例如為i奈秒。基於光學與機 5 械考量’對延伸器選用的延遲例如第一迷你OPuS為3奈米 延遲光路’第二者為4奈秒延遲光路。若延遲為更短,則光 學系統例如若使用共焦鏡或球面鏡可能導入無法接受的像 差。若延遲較長,難以將系統嵌入雷射櫃中的可用空間。 光束間達成3奈秒延遲光束必須行進的距離為9〇〇毫米延 1〇遲4奈秒為1200毫米。共焦光學系統52〇可減少對未校準的 敏感度,如第49圖示意顯示,共焦光學系統520係由二鏡 522、524連同分光鏡526所組成,鏡522、524其焦點係位在 空間的同一個位置,其曲率中心係位在相對鏡。補償器板 530(例如楔形件)可加人其中來雜反射光束及透射光束略Two mini OPuS are needed to achieve the desired effect. The offset time between the pulses from the two OPuS is, for example, i nanoseconds. Based on the optical and mechanical considerations, the delay selected for the extender, for example, the first mini OPUS is a 3 nm delayed optical path, and the second is a 4 nanosecond delay optical path. If the delay is shorter, the optical system may introduce unacceptable aberrations, for example, using a confocal mirror or a spherical mirror. If the delay is long, it is difficult to embed the system into the available space in the laser cabinet. A distance of 3 nanoseconds between the beams is required to travel a distance of 9 mm and a delay of 1 〇 is 4 1200 mm. The confocal optical system 52A reduces the sensitivity to uncalibration. As shown in Fig. 49, the confocal optical system 520 is composed of two mirrors 522, 524 together with a beam splitter 526, and the focus of the mirrors 522, 524 In the same position of space, the center of curvature is in the opposite mirror. The compensator plate 530 (for example, a wedge member) can be added to the mis-reflected beam and the transmitted beam.

★準如刖文就第48圖所示。於此種情況下,補償器 板係位在延遲光束之光路上夾角適當功能角度。 現在參考第5G圖,以方塊圖形式示意顯示根據所揭示 ^曰之—實施例之各個態樣之一種線緣/線寬粗度(結構 粗度)控制(減少及/或選擇)系統1350。系統1350包括雷 20射光源20,訣t_ 如本案揭示以及前述於本案同時提出申請的 申月案揭示,提供曝光照明DUV光至微影術工具90中 ’、’、月光入射開口 1352。工具90例如掃描器如技藝界眾 。匕括照明器92,照明一阻罩/標線片94用來將置於 工具* 9 0 0 夕· 、 。艾—晶圓固定平台94上之一積體電路晶圓(圖 (5 / 77 10 15 20 中未顯示)照明。於照明器92與晶圓固定平台94間可插入一 相干性破壞機構1370 ’諸如本案揭示以及於前述與本案同 時提出申請的專利申請案所揭示之—種或多種類型,例如 迷你OPuS。照明器可包括具有前述性質之投射透鏡(圖中未 5 顯示)。 系統也包括一感測器例如影像對比感測器1372,其可 排列來檢測散斑對積體電路製作圖案整體或部分或選定轴 的影響,該選定軸例如大致上平行於一積體電路之一轴延 伸的主結構維度,以及一軸係於另一轴線上,例如大致上 正交於第一轴線。感測器輸出可提供予一控制器1374,控 制器可構成雷射或掃描器之控制系統的—部分,或雷射及 掃描器mu統的_部分,或可基於由感測器 1372對相干性破㈣構之賴來提供—控制㈣。控制作 號可變更計性破壞機構㈣作,例純健號經由修^ 例如光束掃拂機構於任-轴或二者的致動信號,或修α 前文討論於迷你OPUS之位置補償板52〇、532,例如參考 47-48圖’來例如於-轴或二轴改變主脈衝及子脈衝的 位移’換言之經由改變各自含於前述串聯排列的分開_ OPuS之至少二片修正板各自的差異量及/或方向來達成。小 現在參考第51圖,以方塊圖形式示意顯示根據所揭八 之主旨之-實施例之各個態樣,類似第测之線緣/線= 度(結構維度粗度)控制(減少及/或選擇)系統14〇〇但有相 性破壞機構介於光源光入射開口敗與照明㈣間。:干 於第52圖及第53圖以方塊圖形式示意顯示根據所揭示= 78 叫4423 曰㈣樣之線緣/線寬粗度(結構維度粗 控制(減少及/紐擇)系統,其中㈣器⑽(未顯示於扣 圖或第53圖)例如係於工具9〇中,提供控制信號予個別雷射 系統第52圖之1450及第53m + Ώ之146〇内部之相干性破壞機構 第52圖之Μ54及第53圖之1462,其中於各圖中,相干性破 壞機構顯示於第52圖之脈衝延伸〇PuS 1452與光刻術工呈 92間,而於第53®之雷㈣統1偏中顯示於雷射光源20與 脈衝延伸〇puS 1462間。 於迷你〇PuS用於相干性破壞目的及其它目的的延遲 10光路時間可能短至約時間相干性長度,而如所述光學考量 及空間考量般長度,諸如未校準公差及像差公差。若有兩 個或更多個迷你OPuS,則各個迷你〇PuS的延遲光路之長度 必須彼此不同,例如差異超過相干性長度,選擇不會由於 來自於分開OPuS之子脈衝交互作用造成顯著相干性反應 15 (增加)。舉例言之,依據光學配置而定,延遲光路時間分開 至少一個相干性長度,而不超過某個量例如4或5相干性長 度。 根據所揭示之主旨之一實施例之各個態樣,申請人提 示採用一種相干性破壞光學結構,其係產生從單—輸入脈 20衝循序延遲的多個子脈衝,其中各個子脈衝由隨後的子脈 衝延遲達超過光的相干性長度,此外,有各個子脈衝指向 之蓄意唧伯(chirped)量小於輸入脈衝的發散。此外,申請人 提示利用一對相干性破壞光學延遲結構,此處該對光學延 遲結構間之光學延遲時間差異係超過輸入光的相干性長 79 1324423 度。兩個光學延遲結構各自也可產生具有經過控制的唧伯 指向之子脈衝,如前文就先前說明之相干性破壞光學延遲 結構之各個態樣所述。 根據所揭示之主旨之一實施例之各個態樣,兩個成像 5 迷你〇PuS可共焦,因此可高度容許未校準,如此例如於所 提示之短OPuS所謂的迷你〇PuS所需的偏軸射線可能具有 低像差’具有延遲時間分別為4奈秒及5奈秒。選定此等數 值’兩個OPuS具有使用球面光學元件之低前導波失真。低 前導波需求可防止來自於迷你OPuS的顯著散斑減少,除非 1〇例如經由使用略為楔形板來置換平面/平面補償板,產生來 自於迷你OPuS的角向扇出效果。 熟諳技藝人士瞭解,根據所揭示之主旨之一實施例之 各個態樣,可充分達成足夠相干性破壞,來顯著減少散斑 對暴露於來自於雷射系統照明的工作件處理的影響,諸如 15用於積體電路微影術光阻曝光(包括對線緣粗度及線寬粗 度的影響)、或雷射加熱,例如用於低溫再結晶處理時玻璃 基材^之非晶石夕的雷射退火。此項目的之達成方式係將來 自於單腔雷H狀雷射光束、或來自衫腔雷射系統之 輸出之雷射光束、或於此種多腔雷射系統中來自於種子雷 2〇射之雷射光束,於多腔雷射系統的另一腔中放大前’通過 一種光學配置,其將輸出絲分裂成為_及子脈衝,且 將脈衝與子脈衝重新組合成為單一光束,脈衝及子脈衝相 對於彼此微量例如約5〇微弧度至獅微弧度角向位移, 子脈衝已經比主脈衝延遲例如至少時間相干性長产, 80 丄 佳超過時間相干性長度。 可於具有分紐之光料駐路上崎,來透射—主 遲光束= 束注入延遲光路,然後將主光束與延 延遲光束/°。當合時’兩個光束亦即主光束和 束可於遠場中彼此略有角向偏差(差異指向),於後文 冉作為賦與指㈣伯。延遲光路闕擇為比脈衝之時間相 干性長度更長。 角向位移可於延遲光束返回分光鏡之前,使用光學延 遲光路中的娜件達成,該楔形件對延遲光束提供略為不 Η)同指向(指向哪伯)。如前述之指向哪伯量可為例如約%微弧 度至500微弧度。 光學延遲光路包含串列的兩個延遲光路,各自有個別 的分光鏡。此種情況下,各個延遲光路之長度可不同因 此來自個別延遲光路的主脈衝和子脈衝間不會形成相干性 15效應。舉例言之,若第一延遲光路之延遲為i奈秒,則第二 延遲光路之延遲約為3奈秒;若第—延遲光路之延遲為3奈 秒’則第二延遲光路之延遲約為4奈秒。 於二分開延遲光路之楔形件相對於光束側寫大致上可 彼此正交排列,故第一延遲光路的楔形件可用來減少於一 2〇軸的相干性(散斑),於另一延遲光路的楔形件可減少另一軸 的相干性(散斑),該另一軸通常係與第一軸正交。如此沿著 晶圓上二不同軸之結構尺寸,可減少散斑的影響,例如於 積體電路製造程序中晶圓之光阻曝光時促成線緣粗度 (「LER」)及/或線寬粗度(「LWR」)的影響。 81 1324423 根樨所揭不之主旨之一實施例之各個態樣,於領結回 路環形功率放大級中例如具有領結之6毫弧度交又於環形 腔内部的放大稜鏡對於入射光束和出射光束可能略有不 同,稜鏡可排列成光束環繞環行進時略為成長或光束環 5繞環行進時略為續縮。另外,且較佳根據所揭示之主旨之 -實施例之各個態樣,例如由出射光束與人射光束間之間 隔較大例如約5-6毫米,將較大光束擴幅稜鏡分裂成為二分 開稜鏡的結果,如第30圖舉例說明,申請人提示調整二稜 鏡例如146、148的角度,如第4圖示意顯示,因此對出射光 10束及入射光束例如光束100及62獲得相同放大,如第3〇圖示 意舉例說明。 根據所揭示之主旨之一實施例之各個態樣,申請人提 示設置含Rmax 164及OC 162之種子注入機構版本的Rmax 例如164及OC例如162部分,例如連同系統橫軸光束輸出孔 15 口 一起定位於同一平台。如此允許例如整個單位作先前校 準’免除現場需要對個別元件校準的需求。如此允許例如 第二圖所示之Rmax/OC總成例如160(種子注入機構)位置固 定’恰類似於申請人之受讓人的單腔振盪器系統(例如XLS 7〇0〇型號雷射系統)之OC位置固定般。同理,此種配置將允 許達成允許Rmax/OC相對於系統孔口適當定位,而無需顯 著做進行中調整的公差。光束擴幅稜鏡可移動用來校準具 有放大增益媒質腔144的種子注入機構總成與具有雷射系 統光軸之輸出光束100光路。 根據所揭示之主旨之一實施例之各個態樣,申請人提★Quasi as the text is shown in Figure 48. In this case, the compensator plate is positioned at an appropriate functional angle on the optical path of the delayed beam. Referring now to Figure 5G, a line edge/line width coarseness (structural thickness) control (reduction and/or selection) system 1350 in accordance with various aspects of the disclosed embodiments is schematically illustrated in block diagram form. The system 1350 includes a stroboscopic light source 20, 诀t_, as disclosed in the present disclosure and the aforementioned copending disclosure of the present application, providing exposure to illuminate DUV light to the lithography tool 90, ', ', moonlight incident opening 1352. A tool 90 such as a scanner is as in the art. Included in the illuminator 92, the illumination of a mask/line 94 is used to place the tool*900. An integrated circuit wafer on the wafer-fixing platform 94 (not shown in Fig. 5/77 10 15 20). A coherent destruction mechanism 1370 can be inserted between the illuminator 92 and the wafer fixing platform 94. One or more types, such as a mini-OPuS, as disclosed in the present patent application and the patent application filed concurrently with the present application, the illuminator may include a projection lens having the aforementioned properties (not shown in Figure 5). The system also includes a A sensor, such as image contrast sensor 1372, can be arranged to detect the effect of the speckle on the overall or partial or selected axis of the integrated circuit fabrication pattern, the selected axis extending, for example, substantially parallel to one of the axes of the integrated circuit. The main structural dimension, and one axis is on another axis, for example substantially orthogonal to the first axis. The sensor output can be provided to a controller 1374, which can constitute a laser or scanner control system - Partially, or the portion of the laser and scanner system, or may be based on the dependence of the sensor 1372 on the coherence (four) structure - control (4). The control number can be changed by the statistical damage mechanism (4), The pure health signal is modified by, for example, an actuation signal of the beam sweeping mechanism on the any-axis or both, or the position compensation plates 52〇, 532 discussed above for the mini OPUS, for example, refer to the figure 47-48' - The axis or the two axes change the displacement of the main pulse and the sub-pulse', in other words, by changing the difference amount and/or direction of each of the at least two correction plates respectively included in the series-arranged _OPuS. Small reference now to Figure 51 The various aspects of the embodiment according to the gist of the eighth embodiment are shown in block diagram form, similar to the measured edge/line = degree (structural dimension thickness) control (reduction and/or selection) system. However, there is a phase-damage mechanism between the source light entrance opening and the illumination (4).: Figure 52 and Figure 53 are shown in block diagram form. According to the disclosed = 78, the 4423 曰 (4) line edge/line width is shown. Degree (structure dimension coarse control (reduction and / selection) system, where (4) device (10) (not shown in the buckle diagram or Figure 53) is, for example, in the tool 9〇, providing control signals to the individual laser system, Figure 52 1450 and the 53m + Ώ 146 〇 internal coherence break The bad mechanism is shown in Figure 52 and Figure 54 and Figure 1462. In each figure, the coherence destruction mechanism is shown in Figure 52. The pulse extension 〇PuS 1452 and the lithography worker are 92, and the 53® The thunder (4) system 1 is shown between the laser source 20 and the pulse extension 〇puS 1462. The delay 10 optical path time for the mini 〇 PuS for coherence destruction purposes and other purposes may be as short as about the time coherence length, and Optical considerations and space-constrained lengths, such as uncalibrated tolerances and aberration tolerances. If there are two or more mini-OPuS, the lengths of the delayed optical paths of each mini-PuS must be different from each other, for example, the difference exceeds the coherence length. The selection does not result in a significant coherent response 15 (increase) due to sub-pulse interactions from separate OPuS. For example, depending on the optical configuration, the delayed optical path time is separated by at least one coherence length without exceeding a certain amount, such as 4 or 5 coherence lengths. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicants have suggested employing a coherence-damaging optical structure that produces a plurality of sub-pulses that are sequentially delayed from a single-input pulse 20, wherein each sub-pulse is followed by a sub-pulse The pulse delay exceeds the coherence length of the light, and in addition, there is a deliberate chirped amount of each sub-pulse directed less than the divergence of the input pulse. In addition, Applicants have suggested using a pair of coherence to destroy the optical retardation structure where the optical delay time difference between the pair of optically retarded structures exceeds the coherence of the input light by a length of 13 1324423 degrees. Each of the two optical delay structures can also produce a sub-pulse having a controlled Uber direction, as described above with respect to various aspects of the coherent-damaging optical delay structure previously described. According to various aspects of an embodiment of the disclosed subject matter, the two imaging 5 mini 〇 PuS can be confocal, and thus can be highly tolerated uncalibrated, such as for example the short axis required for the so-called mini 〇 PuS of the short OPuS. The rays may have low aberrations' with delay times of 4 nanoseconds and 5 nanoseconds, respectively. Selecting these values' two OPuS have low leading wave distortion using spherical optics. The low leading wave requirement prevents significant speckle reduction from the mini OPUS, unless the planar/planar compensation plate is replaced, for example, by using a slightly wedge-shaped plate, resulting in an angular fan-out effect from the mini OPUS. It will be appreciated by those skilled in the art that sufficient coherence damage can be adequately achieved in accordance with various aspects of one embodiment of the disclosed subject matter to substantially reduce the effects of speckle on the handling of workpieces exposed to illumination from a laser system, such as 15 Used for integrated circuit lithography photoresist exposure (including the effect on the thickness of the line edge and the thickness of the line width), or laser heating, such as the amorphous substrate of the glass substrate when used for low temperature recrystallization treatment. Laser annealing. This project is achieved by a laser beam from a single-chamber Thunder H-beam, or from the output of a lasing laser system, or from a seed-lei 2 in such a multi-chamber laser system. The laser beam, before being amplified in another cavity of the multi-cavity laser system, passes through an optical configuration that splits the output filament into _ and sub-pulses, and recombines the pulses with the sub-pulses into a single beam, pulse and sub-pulse The pulses are displaced relative to each other by, for example, about 5 〇 microradians to lion microradians, and the sub-pulses have been longer than the main pulse delays, for example, at least temporally coherent, 80 超过 better than the temporal coherence length. The light beam can be transmitted on the road with a branch, and the main beam is delayed. The beam is injected into the retarded beam, and then the main beam is delayed by /°. When combined, the two beams, i.e., the main beam and the beam, may be slightly angularly offset from each other in the far field (differential pointing), which is referred to as the assignment finger (four). The delay optical path is chosen to be longer than the pulse coherence length. The angular displacement can be achieved by using an optical member in the optically retarded optical path before the delayed beam is returned to the beam splitter, which provides a slightly unbiased pointing to the delayed beam (pointing to which). The amount of singularity as described above can be, for example, about % microradians to 500 microradians. The optical delay optical path contains two delayed optical paths in series, each having an individual beam splitter. In this case, the lengths of the respective delayed optical paths may be different, so that the coherence 15 effect is not formed between the main pulses and the sub-pulses from the individual delayed optical paths. For example, if the delay of the first delay optical path is i nanoseconds, the delay of the second delayed optical path is about 3 nanoseconds; if the delay of the first delayed optical path is 3 nanoseconds, the delay of the second delayed optical path is about 4 nanoseconds. The wedges of the second delayed optical path are substantially orthogonal to each other with respect to the beam side, so that the wedge of the first delayed optical path can be used to reduce the coherence (speckle) of one and two axes, and the other delayed optical path. The wedge can reduce the coherence (speckle) of the other axis, which is typically orthogonal to the first axis. Thus, along the structural dimensions of the two different axes on the wafer, the effect of speckle can be reduced, for example, the thickness of the line ("LER") and/or the line width is promoted during exposure of the photoresist in the integrated circuit manufacturing process. The effect of the thickness ("LWR"). 81 1324423 According to one aspect of the embodiment of the invention, in the bow-tie loop power amplification stage, for example, a projection of 6 milliradians and an amplification inside the annular cavity may be for the incident beam and the outgoing beam. Slightly different, the crucibles may be arranged such that the beam slightly grows as it travels around the loop or slightly retracts as the beam loop 5 travels around the loop. In addition, and preferably in accordance with various aspects of the disclosed subject matter, for example, the distance between the outgoing beam and the human beam is greater, for example, about 5-6 mm, splitting the larger beam into two. As a result of the separation, as exemplified in Fig. 30, the applicant has suggested adjusting the angles of the two, for example, 146, 148, as shown in Fig. 4, thus obtaining the beam of outgoing light 10 and the incident beams such as beams 100 and 62. The same amplification, as illustrated in Figure 3, is illustrated. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicants have suggested setting Rmax, such as 164 and OC, for example, 162 portions of the seed injection mechanism version containing Rmax 164 and OC 162, for example, along with the system horizontal beam output aperture 15 Located on the same platform. This allows, for example, the entire unit to be previously calibrated to 'eliminate the need for individual component calibration. This allows, for example, the Rmax/OC assembly shown in the second figure, for example 160 (seed injection mechanism) to be fixed in position to a single-chamber oscillator system similar to the applicant's assignee (eg XLS 7〇0〇 model laser system) The OC position is fixed. By the same token, this configuration will allow for tolerances that allow Rmax/OC to be properly positioned relative to the system orifice without significant in-progress adjustments. The beam expander 稜鏡 is movable to calibrate the seed injection mechanism assembly having the amplification gain medium cavity 144 and the output beam 100 optical path having the laser system optical axis. According to various aspects of an embodiment of the disclosed subject matter, the applicant mentions

82 1324423 示設置-機械快門,來於適合時p且斷m〇輸出進入環形,類 似諸如用於申凊人之文讓人的〇Pus來於校正與診斷期間 封阻M0輪出。確切位置可能於環形功率放大級前例如恰高 於最後摺疊鏡’此處於未經播放的環形功率放大級校準與 5操作期間,迷你OPuS經保護。 熟諳技藝人士須瞭解,此處揭示一種裝置及方法用於 -種線窄化脈衝式準分子或分子氟氣體放電雷射系統,包 含·一種子雷射振盪器,其產生—輸出包含一雷射輸出脈 衝光束,包含:一第一氣體放電準分子或分子氟雷射腔; 10於一第一振盪器腔内部之一線窄化模組;一雷射放大級含 有一放大增益媒質於一第二氣體放電準分子或分子氟雷射 腔,其接收該種子雷射振盪器的輸出,且放大該種子雷射 振盈器的輸出來形成包含一雷射輸出脈衝光束之雷射系統 輸出,包含:一環形功率放大級。該環形功率放大級包含 15可能包含一部分反射光學元件之一注入機構,例如分光 鏡’其可為部分反射光學元件且可為偏振敏感,透過該注 入機構,该種子雷射振堡器輸出光束被注入環形功率放大 級。該環形功率放大級包含一領結回路或跑馬場回路。環 形功率放大級可將該種子雷射振盪器腔的輸出放大至脈衝 20 能超過lmJ ’或2mJ,或5mJ,或10mJ,或15mJ。該雷射系 統可於至多12kHz或&gt;2至&lt;8kHz或24至&lt;6kHz之輸出脈衝重 複率操作。雷射系統可包含產生包含一雷射輸出脈衝光束 之一輸出的一種子雷射振盪器,其包含一第一氣體放電準 分子或分子氟雷射腔;一雷射放大級含有於一第二氣體放82 1324423 shows the setting - mechanical shutter, which is suitable for p and breaks the output into the ring, similar to the 〇Pus, such as used for the person of the applicant, to block the M0 rotation during calibration and diagnosis. The exact position may be protected before the ring power amplification stage, e.g., just above the last folding mirror, where the unplayed ring power amplifier stage calibration and 5 operations are performed. It will be appreciated by those skilled in the art that a device and method are disclosed herein for use in a line narrowing pulsed excimer or molecular fluorine gas discharge laser system comprising a sub-laser oscillator having a generator-output comprising a laser The output pulse beam comprises: a first gas discharge excimer or a molecular fluorine laser cavity; 10 a narrowing module inside a first oscillator cavity; a laser amplification stage containing an amplification gain medium in a second a gas discharge excimer or molecular fluorine laser cavity that receives the output of the seed laser oscillator and amplifies the output of the seed laser oscillator to form a laser system output comprising a laser output pulse beam comprising: A ring power amplifier stage. The ring power amplification stage comprises an injection mechanism that may include a portion of a reflective optical element, such as a beam splitter 'which may be a partially reflective optical element and may be polarization sensitive, through which the output beam of the seed laser is outputted Injection into the loop power amplifier stage. The ring power amplifier stage includes a bow tie loop or a racetrack loop. The ring power amplification stage amplifies the output of the seed laser oscillator cavity to a pulse 20 of more than lmJ' or 2mJ, or 5mJ, or 10mJ, or 15mJ. The laser system can operate at an output pulse repetition rate of up to 12 kHz or &gt; 2 to &lt; 8 kHz or 24 to &lt; 6 kHz. The laser system can include a sub-laser oscillator that produces an output comprising a laser output pulse beam comprising a first gas discharge excimer or a molecular fluorine laser cavity; a laser amplification stage is included in a second Gas discharge

83 1324423 電準分子或分子氟雷射腔中之一放大增益媒質,來接收種 子雷射振盪器之輸出,以及放大種子雷射振盪器之輸出, 來形成包含一雷射輸出脈衝光束之一雷射系統輸出,其可 包含一環形功率放大。雷射系統可於操作值矩陣内部操 5 作,該操作值矩陣可用來最佳化雷射壽命,且產生其它優 異效果’包括較佳脈衝能安定性等,例如含有包含氟與其 它氣體之混合物之雷射氣體之種子雷射於下列壓力操作: 5350 kPa總雷射氣體壓力,或幻〇〇 kPa總雷射氣體壓力,或 &lt;250 kPa總雷射氣體壓力,或s2〇〇 kPa總雷射氣體壓力,或 10 &gt;35 kPa氟分壓’或230 kPa氟分壓’或225 kPa氟分壓,或220 kPa氟分壓及前述組合。系統進一步包含於種子雷射振盪器 與環形功率放大級間之一相干性破壞機構。該相干性破壞 機構可充分破壞種子雷射之輸出之相干性,減少使用來自 於雷射系統之光於處理工具中之散斑效應。相干性破壞機 15構包含一第一軸相干性破壞機構及一第二軸相干性破壞機 構。相干性破壞機構可包含一光束掃拂機構。光束掃拂機 構可於第一軸由第一時間變化致動信號驅動。光束掃拂機 構可於另一軸由第二時間變化致動信號驅動。第一致動信 號包含斜坡彳s號,第二致動信號包含正弦狀信號。時間變 20化信號之頻率為於一種子雷射輸出脈衝之時間長度以内至 少出現一個元整週期。相干性破壞機構可包含一光學延遲 光路,具有未校準的光學元件來產生鏡之霍爾效應。相干 性破壞機構可包含比種子雷射輸出脈衝之相干性長度更長 之光學延遲光路。相干性破壞機構可包含一主動光學相干 84 (S ) 1324423 性破壞機構及一被動光學相干性破壞機構。主動相干性破 壞機構包含一光束掃拂元件,被動相干性破壞機構包含— 光學延遲光路。相干性破壞機構包含一第一光學延遲光 路,具有延遲比種子雷射輸出脈衝之相干性長度更長·一 5第二光學延遲光路與該第一光學延遲光路串列且具有比該 種子雷射輸出脈衝之相干性長度更長的延遲。第二光學延 遲光路的延遲可大於或等於種子雷射輸出脈衝之相干性長 度之約三倍。相干性破壞機構包含一脈衝延長器。脈衝延 長器可包含一負像光學延遲光路。脈衝延長器包含六鏡 ίο 〇puS。相干性破壞機構可為一光束翻轉機構。系統及方法 可包含使用-種線窄化脈衝式準分子或分子敦氣體放電雷 射系統,包含:一種子雷射振盪器,其產生—輸出包含一 雷射輸出脈衝光束,包含:一第-氣體放電準分子或分子 氣雷射腔;於-第—振盛器腔内部之一線窄化模組;一雷 15射放大級含有-放大增益媒質於一第二氣體放電準分子或 分子氟雷射腔,其接收該種子雷射振逢器的輸出,且放大 該種子雷射振盪器的輪出來形成包含一雷射輪出脈衝光束 之雷射系統輸出,包含:一環形功率放大級;於該種子雷 射振盈器與環形功率放大級間之一相干性破壞機構。該環 20形功率放大級包含包含—部分反射光學元件之一注入機 構’透過該注入機構,該種子雷射振盈器輸出光束被注入 環形功率放大級。系統及方法可包含使用-種宽頻脈衝式 準分子或分子氟氣體放電雷射系統,包含:—種子雷射振 盛器’其產生—輸出包含-雷射輸出脈衝光束,包含:一 85 第一氣體放電準分子威分+a -放大W心 /腔;—雷射放大級含有 、貝於―第—氣體放電準分子或分子氣雷射 蓋::=該種子雷射振盈器的輪出,且放大該種子雷射 來形成包含-雷射輪出脈衝光束之雷射系統 I 3 ㈣功率放大級;於該種子雷射振盈器與 10 15 20 2功率放大_1相干性破壞機構。該環形功率放大 紅含包含-部妓射光學元件之__注人機構,透過該注 入機構,該種子雷射器·光束被注人環形功率放大 級。系統及方法包含使用—脈衝轉分子或分子魏體放 電雷射,其包含產生包含雷射輸出脈衝光束之一輸出之一 ,子雷射振盪n ’其可包含—第—氣體放電準分子或分子 氣雷射腔;於-第—振i器腔内部之—線窄化模組;於一 第二氣體放電準分子或分子氟雷射腔中之含有—放大增益 媒質之-雷射放大級’用來接收該種子雷射振盪器之輸 出,且放大5亥種子雷射振盪器之輸出,來形成包含一雷射 輸出脈衝光束之一雷射系統輸出;例如一種1^〇1&gt;八或1^〇1&gt;〇 組態雙腔種子雷射/放大雷射系統,諸如申請人之受讓人之 ΜΟΡΑ XLA-XXX型號雷射系統;進一步包含於種子雷射振 盪器與放大增益媒質級間之如此處討論之該種相干性破壞 機構。放大級可包含一雷射振盪腔。放大級包含一光路定 義通過放大增益媒質之固定次數。83 1324423 An amplification gain medium in an excimer or molecular fluorine laser cavity to receive the output of the seed laser oscillator and to amplify the output of the seed laser oscillator to form one of the laser beams comprising a laser output pulse The system output, which may include a ring power amplification. The laser system can be operated inside the operating value matrix, which can be used to optimize the laser life and produce other excellent effects 'including better pulse energy stability, etc., for example, containing a mixture containing fluorine and other gases. The laser of the laser gas is operated at the following pressures: 5350 kPa total laser gas pressure, or phantom kPa total laser gas pressure, or &lt;250 kPa total laser gas pressure, or s2 kPa total mine The gas pressure, or 10 &gt; 35 kPa fluorine partial pressure 'or 230 kPa fluorine partial pressure' or 225 kPa fluorine partial pressure, or 220 kPa fluorine partial pressure and the foregoing combination. The system further includes a coherence destruction mechanism between the seed laser oscillator and the ring power amplification stage. The coherent destruction mechanism can sufficiently destroy the coherence of the output of the seed laser and reduce the speckle effect of using light from the laser system in the processing tool. The coherence disrupter 15 includes a first axis coherence destruction mechanism and a second axis coherence destruction mechanism. The coherence destruction mechanism can include a beam broom mechanism. The beam broom mechanism can be driven by the first time varying actuation signal on the first axis. The beam broom mechanism can be driven by the second time varying actuation signal on the other axis. The first motion signal includes a ramp s s number and the second actuation signal includes a sinusoidal signal. The frequency of the time-varying signal is such that at least one element period occurs within the length of time of a sub-laser output pulse. The coherence destruction mechanism can include an optically retarded optical path with uncalibrated optical elements to create a Hall effect of the mirror. The coherent destruction mechanism can include an optical delay optical path that is longer than the coherence length of the seed laser output pulse. The coherent destruction mechanism can include an active optical coherence 84 (S) 1324423 sexual destruction mechanism and a passive optical coherence destruction mechanism. The active coherence destruction mechanism includes a beam broom element, and the passive coherence destruction mechanism includes an optical retardation path. The coherence destruction mechanism includes a first optical delay optical path having a longer delay than the coherence length of the seed laser output pulse. A fifth optical delay optical path and the first optical delayed optical path are serially arranged and have a laser than the seed The delay of the coherence length of the output pulse is longer. The delay of the second optical delay optical path may be greater than or equal to about three times the coherence length of the seed laser output pulse. The coherence destruction mechanism includes a pulse extender. The pulse extension can include a negative optical delay optical path. The pulse extender consists of six mirrors ίο 〇puS. The coherence destruction mechanism can be a beam inversion mechanism. The system and method can include the use of a line narrowing pulsed excimer or molecular gas discharge laser system comprising: a sub-laser oscillator, the generator-output comprising a laser output pulse beam comprising: a first a gas discharge excimer or a molecular gas laser cavity; a line narrowing module inside the -first vibrating chamber; a thunder 15 emission amplification stage containing - amplifying the gain medium in a second gas discharge excimer or molecular fluorine laser a cavity that receives the output of the seed laser oscillating device and amplifies the wheel of the seed laser oscillator to form a laser system output comprising a laser pulsed beam comprising: a ring power amplification stage; A coherent destruction mechanism between the seed laser vibrator and the ring power amplification stage. The ring-shaped power amplification stage includes an injection mechanism that includes one of the partially reflective optical elements through which the output beam of the seed laser is injected into the toroidal power amplification stage. The system and method can include the use of a broadband pulsed excimer or molecular fluorine gas discharge laser system comprising: - a seed laser oscillator - its generating - output comprising - a laser output pulse beam comprising: a 85 first Gas discharge quasi-molecular weight +a - amplify W heart / cavity; - laser amplification stage contains, shell - gas discharge excimer or molecular gas laser cover:: = the seed laser oscillator round And amplifying the seed laser to form a laser system comprising a laser-pulsed beam I 3 (four) power amplification stage; the seed laser oscillator and the 10 15 20 2 power amplification _1 coherent destruction mechanism. The ring power amplification red includes a __ injection mechanism including a portion of the illuminating optical element, through which the seed laser beam is injected into the ring power amplification stage. The system and method comprise using a pulse-transferring molecule or a molecular-body-discharge laser comprising generating one of an output comprising a laser output pulse beam, the sub-laser oscillation n 'which may comprise - a gas discharge excimer or molecule a gas laser cavity; a line narrowing module inside the -first vibration chamber; a second gas discharge excimer or a molecular fluorine laser cavity - amplifying the gain medium - the laser amplification stage' Used to receive the output of the seed laser oscillator and amplify the output of the 5 liter seed laser oscillator to form a laser system output including a laser output pulse beam; for example, a 1^〇1&gt;8 or 1 ^〇1&gt;〇Configure a dual-chamber seed laser/amplified laser system, such as the applicant's assignee, the XLA-XXX model laser system; further included between the seed laser oscillator and the amplification gain medium level Such a coherent destruction mechanism as discussed herein. The amplification stage can include a laser oscillating cavity. The amplification stage contains an optical path defined by a fixed number of times the gain medium is amplified.

雷射系統例如光刻術使用之雷射系統可於ΜΟ操作條 件之矩陣以内操作。環形功率放大級可放大寬頻種子雷射 振盈器之輸出至超過ImJ ’或2mJ,或5mJ,或10mJ,或l5mJ 86 1324423 或20mJ或以上的脈衝能。雷射系統可於至多12kHz或&gt;2而 S8kHz或24而&lt;6kHz之輸出脈衝重複率操作。系統可包含種 子雷射振盪器,含有包含氟與其它氣體混合物之雷射氣 體,且係於&lt;500 kPa或S400 kPa,或S350 kPa總雷射氣體壓 5 力,或幻OOkPa總雷射氣體壓力,或U50kPa總雷射氣體壓 力,或&lt;200 kPa總雷射氣體壓力操作。系統可包含&lt;5〇 kPa 或S40 kPa,或&lt;35 kPa氟分壓,或幻〇 kPa氟分壓,或&lt;25 kPa 氟分壓,或520 kPa氟分壓。 現在參考第32圖,以示意形式顯示一脈衝延長器 10 160a ’例如與申請人之受讓人的雷射系統一起出售的光學 脈衝延伸器(「OPuS」)版本,但具有例如未設計用於脈衝 延伸之遠更縮短的延遲光路,亦即充分延伸用來於空域及 時域顯著延長脈衝,如同申請人之受讓人目前出售的OPuS 脈衝延伸器,增加Tis達4X或以上。但於光束也可達成相同 15 的摺疊/反向成像效應用於相干性破壞目的,也如第31圖之 光束混合器之說明。 相干性破壞器160a有一輸入光束162a入射於分光鏡 164a上’例如對相關波長之部分反射鏡164a。反射入多鏡 例如共焦鏡166a所組成之延遲光路的部分光束162a被成像 返回部分反射鏡164a,例如一次或多次。須瞭解此種光學 相干性破壞器具有多於四面鏡,例如六面鏡,但為求方便 及清晰只以四面鏡舉例說明。延遲光路可比7米至10米左右 遠更短,例如4X 〇PuS,故第二次和第三次通過延遲光路 實質上重疊進入與離開相干性破壞器16〇&amp;之脈衝,但無法 87 (S :) 實質上均勻延伸脈衝。如熟諳技藝人士瞭解,延遲光路可 包含平面鏡。此外,可加上多個曲面成像鏡,該種情況下, 可能出現負1成像或甚至出現正丨成像。 第33圖以部分方塊圖形式部分示意顯示根據所揭示之 5主旨之一實施例之各個態樣之一相干性破壞體系360a之實 例及其結果,例如就光束發散因而造成相干性破壞的結 果。所示系統可結合一振盪器/放大器雷射37〇a例如包括一 固態或準分子種子雷射372a及一振盪器放大器雷射394a, 或其它功率放大級,例如環形功率放大級。放大器增益媒 10質3943可為排列成為功率放大器組態之準分子雷射,例如 具有全反射後腔鏡396a及輸入/輸出耦合器例如398a。須瞭 解其它種子雷射/放大級配置,其中部分討論於此處,也可 用於第33圖舉例說明之示意顯示的相干性破壞體系。 於種子雷射372a之輸出顯示含有指示相對高相干性的 15單點之種子雷射輸出雷射光脈衝光束發散374a之代表圖。 種子雷射372a之輸出可通過一個或多個相干性破壞器例如 376a、378a如第32圖之實例所示,或如第31圖顯示於1〇5〇(後 文於前述共同審查中之申請案代理人檔號2005/0039詳細 說明)或其它諸如揭示於前述US20050286599之光學元件, 20 或前文討論之一或多個迷你〇PuS相干性破壞機構或其組 合。根據所揭示之主旨之一實施例之各個態樣,一種可能 的實施例可使用共焦OPuS,類似揭示於前述共同審查中之 美國專利申請案第10/847,799號,名稱「雷射輸出光脈衝延 伸器」,申請日2004年5月18日,代理人檔號2003-0121,具 88 • 户 有例如二共焦球面鏡、及四次通過延遲光路,例如由分光 鏡至1號鏡至2號鏡’返回1號鏡及返回2號鏡’然後返回分 光鏡’例如通過偏移校正光學元件,例如討論於前述共同 審查中之美國專利申請案11/394,512,名稱「共焦脈衝延伸 5器」’申請日2006年3月31日,代理人檔號2004-0144-01。此 種所謂之「迷你OPuS」版本包含串聯之二脈衝延伸器,例 如有一延遲光徑偏移選定來於主振盪器輸出之時間脈衝強 度曲線略為位移高頻峰。例如可經由延遲偏移約2奈秒經歷 第一 1奈秒,然後為3奈秒延遲線迷你OPuS對,或3奈秒至4 10奈秒延遲線串聯迷你〇PuS對間有1奈秒延遲,或4奈秒與5 奈秒延遲線串聯迷你〇PuS間有約1奈秒延遲。須瞭解脈衝 本身無法顯著延伸,例如接近重疊其它脈衝,反而大致上 絲毫也不延伸,原因在於目前申請人之受讓人所出售的正 常脈衝延伸OPuS中,延遲光路遠比1〇米延遲光路更短。 15 申請人發現由固態種子脈衝產生5奈秒或以上之脈衝 長度可挑戰技藝界的現況。但玎使用迷你OPuS來於注入放 大級前,增加來自於種子脈衝時間,如此提示申請人即使 使用來自於種子的較短脈衝和使用1個、2個或多個迷你 OPuS來增加脈衝長度,仍然可產生來自於種子的較長脈 20 衝,迷你OPuS略為未校準,如此於注入放大級之前形成加 寬的發散。使用此種多種子迷你OPuS體系’申請人預期於 單一脈衝内部可能無需任一種主動光束操控,特別係用於 非固態種子雷射系統。可能期望採用主動操控來甚至於需 要時更加模糊例如於固態種子雷射系統的發散,但於全部 89 1324423 情況下預期並不需要’種子雷射逑你〇PuS只須約卜尺總光 路延遲’讓其可極為直捷地建立於種子雷射光學平台上。 迷你OPuS與常規0P_堆疊外觀如第33圖所示,也顯示當 光學串聯出現發散時該發散的卡通圖畫。假設來自各個迷 5你OPUS 376a、380a為2.7倍,則可從未校準的放大器級腔143 產生2.7倍分開的「脈衝」。先前使用未校準的放大級之測 里值,拓出申清人开)成六個獨立脈衝,總脈衝高達317。E〇 偏向器392a容易透過夠大可形成至少四個獨立脈衝的指向 空間模糊,獲得共1271脈衝的大電位。假設初散斑對比度 10為1〇〇%,則於全部彈開後,獲得散斑對比度28%。 較佳實施例由於校準問題增加,使用第一延遲略大於i 奈秒,於較短的延遲光路延伸的脈衝有較短延遲和較大像 差。但各個延遲光路係比脈衝的相干性長度更長,第二延 遲光路比第一延遲光路更長,來達成諸如此處討論的相干 15 性破壞效果。 迷你Ο P u S脈衝延伸器可經選擇及排列例如將光束反 摺’或例如於第一迷你OPuS 376a中將光束於第一軸散出, 獲付發散代表圖378a ;然後於另一正交相關轴,例如於第 二迷你OPuS 380a,獲得發散代表圖390a。脈衝操控器392a 2〇例如光電(「E-0」)元件392a可將種子光束掃拂(塗抹)入放 大器部分394a之輸入/輸出耦合器400a,結果獲得一軸的模 糊’如於功率振盪器410的脈衝發散代表圖所示(也包括放 大增益級394a之發散代表圖410)。「常規〇pus」或「標準 OPuS」例如4XTis OPuS (約10米延遲光路),含有例如由第 90 1324423 一分光鏡414a及第二分光鏡422a所引發的兩條延遲光路 412a、420a,同樣可配置成光束於第一軸自我反摺;然後 於第二軸自我反摺,結果導致脈衝發散代表圖如4143及 424a。最終發散代表圖424a示意顯示種子光束的發散大 5增,亦即光束由種子雷射372a至放大器增益媒質394a的通 路上變模糊,於放大器增益媒質394a放大,隨後進一步於 4X常規OPuS 412a、420a中破壞相干性。此種發散的增加導 致相干性的減少。 熟諳技藝人士須瞭解依據脈衝的初始相干性決定,例 10如來自種子雷射的脈衝相干性(例如於固態種子雷射之情 況下幾乎為完全相干性至極少相干性),但仍然期望進一步 減少相干性,例如使用準分子種子雷射來減少相干性,相 干性破壞元件的類型、數目與排列可各異。舉例言之,對 固態種子雷射只須主動破壞相干性,例如使用一種形式或 15另一種形式的脈衝操控/塗抹來破壞,若干情況下用於某些 用途證實只需要斜坡或只需要AC脈衝偏向,換言之於一軸 或另一軸只需斜坡或只需AC脈衝偏向;或證實需要DC與 AC脈衝塗抹(混成塗抹)’連同於]^〇與放大器增益媒質例如 P0或PA或其它放大增益媒質級例如環形功率放大級間的 20 〇PuS效應相干性破壞’也須採用常規OPuS脈衝延伸器對放 大器增益媒質輸出的影響。使用準分子氣體放電雷射M〇, 相干性比較來自於固態種子雷射遠更低,則例如於M〇與增 益放大器媒質間只需要被動相干性破壞,例如該破壞可使 用迷你〇PuS 376、38〇中之-者或二者或前述其它被動光學 91 兀件於MO與放大器增益媒質間。 仁仍然需要從事光束操控,例如使用主動光束操控機 =如前文討論的機構來讓脈衝更加_化(更加發散),但可 此車乂非必要只需要較小的掃拂角度。相信此種種子雷射迷 5你〇PuS各自約則吸總光路延遲,如目前於申請人之受讓 人的XLA系列雷射系統中用於中繼光學元件,延遲光路也 可方便建立於種子雷射光學平台上。 第34圖顯示1 kV Ε·〇偏向器電壓相對於時間之相對散 斑強度實例。相對標準偏向曲線55加為i kv,相當脈衝曲 1〇線為曲線550a’。2kVE-〇偏向器電壓曲線552a及相當脈衝 曲線552a’也顯示為3 kV E-0偏向器電壓曲線554a及相當脈 衝曲線554a’。指向位移相對於E_〇電壓曲線56加之實例舉 例顯不於第35圖。指向位移(申請人由散斑位移測量值推定) 相對於E-0電池施加電壓之作圖顯示於第35圖。根據所揭示 15之主旨之一實施例之各個態樣,申請人提示於單一脈衝内 部掃描種子雷射指向,來降低其中的散斑對比度。例如可 使用光電元件來達成,例如於第66圖以示意部分方塊圖形 式舉例說明根據所揭示之主旨之一實施例之各個態樣之元 件1912及1914。於將種子雷射脈衝輸入準分子功率振盈器 20之前’使用垂直擴幅,XeF腔設置於接近輸入耦合器例如分 光鏡,E-Ο偏向器之餘隙孔口直徑約為3·2毫米,偏向器可 位在垂直擴幅的上游(未顯示於第66圖)。為了最小化任何平 移入振蘯器腔’例如XeF腔1930,與由E-0偏向器的斜角組 合,可能期望將放置於儘可能接近放大器腔。 92 1324423Laser systems such as laser systems for lithography can operate within a matrix of operating conditions. The ring power amplifier stage amplifies the output of the wide-band seed laser oscillator to more than 1mJ or 2mJ, or 5mJ, or 10mJ, or 15mJ 86 1324423 or 20mJ or more. The laser system can operate at an output pulse repetition rate of up to 12 kHz or &gt; 2 and S8 kHz or 24 and &lt; 6 kHz. The system may include a seed laser oscillator containing a laser gas containing a mixture of fluorine and other gases at a pressure of &lt;500 kPa or S400 kPa, or a total laser pressure of S350 kPa, or a total of OOkPa total laser gas. Pressure, or U50kPa total laser gas pressure, or &lt;200 kPa total laser gas pressure operation. The system may contain &lt;5 kPa or S40 kPa, or &lt;35 kPa fluorine partial pressure, or phantom kPa fluorine partial pressure, or &lt;25 kPa fluorine partial pressure, or 520 kPa fluorine partial pressure. Referring now to Figure 32, there is shown in schematic form a pulse extender 10 160a', such as an optical pulse extender ("OPuS") version sold with the applicant's assignee's laser system, but having, for example, not designed for use with The farther shortened delay path of the pulse extension, i.e., the full extension, is used to significantly extend the pulse in the airspace and time domain, as the applicant's current offer of the OPuS pulse extender, increasing Tis by 4X or more. However, the same 15 folding/reverse imaging effects can be achieved for the beam for coherence destruction purposes, as also illustrated by the beam mixer of Figure 31. The coherence destroyer 160a has an input beam 162a incident on the beam splitter 164a, e.g., a partial mirror 164a for the associated wavelength. The partial beam 162a reflected into the multi-mirror, e.g., the delayed optical path formed by the confocal mirror 166a, is imaged back to the partial mirror 164a, for example one or more times. It should be understood that such an optical coherence destroyer has more than four mirrors, such as a six-sided mirror, but for the sake of convenience and clarity, only a four-sided mirror is illustrated. The delayed optical path can be shorter than 7 meters to 10 meters, such as 4X 〇 PuS, so the second and third passes through the delayed optical path substantially overlap into and out of the coherent disruptor 16 〇 &amp; pulse, but not 87 ( S :) Substantially extends the pulse evenly. As known to those skilled in the art, the delayed light path can include a flat mirror. In addition, multiple curved imaging mirrors can be added, in which case negative 1 imaging or even positive imaging may occur. Figure 33 is a partial block diagram showing, in partial block diagram form, an example of a coherence destruction system 360a and its results, in accordance with one embodiment of one of the disclosed subject matter, such as the result of coherent destruction in terms of beam divergence. The illustrated system can incorporate an oscillator/amplifier laser 37a comprising, for example, a solid or excimer seed laser 372a and an oscillator amplifier laser 394a, or other power amplification stage, such as a ring power amplifier stage. Amplifier Gain Media The 109433 can be an excimer laser that is arranged into a power amplifier configuration, such as a total reflection back cavity mirror 396a and an input/output coupler such as 398a. Other seed laser/amplifier configurations are to be understood, some of which are discussed herein, and can also be used in the coherent destruction system illustrated schematically in Figure 33. The output of the seed laser 372a is shown as a representative of a 15 single point seed laser output laser pulse beam divergence 374a indicating relatively high coherence. The output of the seed laser 372a may be as shown in the example of Figure 32 by one or more coherence disrupters such as 376a, 378a, or as shown in Figure 31 (hereinafter referred to in the co-examination application). The agent's file number 2005/0039 is described in detail) or other optical elements such as those disclosed in the aforementioned US20050286599, 20 or one or more of the mini-PuS coherence destruction mechanisms discussed above or combinations thereof. In accordance with various aspects of an embodiment of the disclosed subject matter, a possible embodiment may use a confocal OPUS, similar to the U.S. Patent Application Serial No. 10/847,799, the disclosure of which is incorporated herein by reference in its entirety, the disclosure of the disclosure of Extender, application date May 18, 2004, agent file number 2003-0121, with 88 • households such as two confocal spherical mirrors, and four times through the delayed optical path, such as from the beam splitter to the 1st mirror to the 2nd The mirror 'returns to the No. 1 mirror and returns to the No. 2 mirror' and then returns to the spectroscope, for example, by offsetting the optical element, for example, in the aforementioned co-pending U.S. Patent Application Serial No. 11/394,512, entitled "Confocal Pulse Extension 5" 'Application date March 31, 2006, agent file number 2004-0144-01. This so-called "mini-OPuS" version consists of a two-pulse extender in series, for example a delay optical path offset selected for the time-pulse intensity curve of the main oscillator output with a slightly shifted high-frequency peak. For example, the first 1 nanosecond can be experienced via a delay offset of about 2 nanoseconds, followed by a 3 nanosecond delay line mini-OPuS pair, or a 3 nanosecond to 4 10 nanosecond delay line serial mini-PuS pair with a 1 nanosecond delay. , or 4 nanoseconds with a 5 nanosecond delay line in series with a mini 〇 PuS with a delay of about 1 nanosecond. It must be understood that the pulse itself cannot be significantly extended, for example, close to overlapping other pulses, but generally does not extend at all, because the delay pulse path is much longer than the 1 延迟 delay optical path in the normal pulse-extended OPUS sold by the applicant's assignee. short. 15 Applicants have discovered that pulse lengths of 5 nanoseconds or more generated by solid seed pulses can challenge the state of the art. However, the use of mini OPUS to increase the pulse time from the seed before injecting the amplification stage suggests that the applicant will increase the pulse length even with shorter pulses from the seed and using one, two or more mini OPuS. A longer pulse 20 from the seed can be generated, and the mini OPUS is slightly uncalibrated, thus forming a broadened divergence before injecting the amplification stage. Using such a variety of sub-mini-OPuS systems, applicants anticipate that there may be no need for any active beam steering inside a single pulse, particularly for non-solid seed laser systems. It may be desirable to use active maneuvers to blur even the divergence of solid-state seed laser systems, even when needed, but in the case of all 89 1324423 it is not expected that 'seed lasers, you 〇 PuS only need to measure the total optical path delay' It is extremely straightforward to build on a seed laser optical platform. The appearance of the Mini OPuS and the conventional 0P_stack as shown in Figure 33 also shows the cartoon picture that diverges when the optical series appears divergent. Assuming that your OPUS 376a, 380a is 2.7 times from each fan 5, a 2.7-fold "pulse" can be generated from the uncalibrated amplifier stage 143. Previously, the measured value of the uncalibrated amplification stage was used to expand the Shenqing person into six independent pulses with a total pulse of up to 317. The E 〇 deflector 392a easily penetrates the pointing space blur which is large enough to form at least four independent pulses, obtaining a large potential of a total of 1271 pulses. Assuming that the initial speckle contrast ratio 10 is 1%, the speckle contrast is 28% after all the pop-ups are obtained. The preferred embodiment uses a first delay slightly greater than i nanoseconds due to an increase in calibration problems, with shorter delays and larger aberrations for pulses extending in shorter delay paths. However, each of the delayed optical paths has a longer coherence length than the pulses, and the second delayed optical path is longer than the first delayed optical path to achieve a coherent 15-disruption effect such as discussed herein. The mini Ο P u S pulse extender can be selected and arranged, for example, to reflex the beam ' or the first mini OPUS 376a to dissipate the beam on the first axis, to obtain a divergence representative map 378a; and then to another orthogonal The associated axis, such as the second mini OBuS 380a, obtains a divergent representative map 390a. A pulse manipulator 392a 2, for example, an optoelectronic ("E-0") component 392a, can sweep (smear) the seed beam into the input/output coupler 400a of the amplifier portion 394a, resulting in a blur of one axis as in the power oscillator 410. The pulse divergence representative is shown (also including the divergence representative of the amplification gain stage 394a, representation 410). "Conventional 〇pus" or "standard OCuS" such as 4XTis OPuS (about 10 meters delayed optical path), for example, includes two delayed optical paths 412a, 420a caused by a 901324423 dichroic mirror 414a and a second dichroic mirror 422a. The beam is configured to self-fold at the first axis; then self-folding on the second axis, resulting in a pulse divergence representative of the figures such as 4143 and 424a. The final divergence representative map 424a schematically shows that the divergence of the seed beam is greatly increased, i.e., the beam is blurred from the path of the seed laser 372a to the amplifier gain medium 394a, amplified by the amplifier gain medium 394a, and then further to the 4X conventional OPuS 412a, 420a. Destroy coherence. This increase in divergence leads to a decrease in coherence. Those skilled in the art will be aware of the initial coherence determination based on the pulse, such as pulse coherence from a seed laser (e.g., almost complete coherence to very little coherence in the case of solid seed lasers), but further reduction is still desired Coherence, such as the use of excimer seed lasers to reduce coherence, the type, number, and arrangement of coherent destruction elements can vary. For example, a solid-state seed laser only has to actively destroy coherence, such as using one form or 15 other forms of pulse manipulation/smear to destroy, and in some cases it is used for certain purposes to verify that only a ramp or only an AC pulse is required. Bias, in other words, only one axis or the other axis needs to be ramped or only AC pulse biased; or confirm that DC and AC pulse smear (mixed smear) is required 'together with ' 〇 〇 with amplifier gain medium such as P0 or PA or other amplification gain medium level For example, 20 〇 PuS effect coherence destruction between ring power amplifier stages must also use the effect of a conventional OPuS pulse extender on the output of the amplifier gain medium. Using an excimer gas discharge laser M〇, the coherence comparison is much lower from the solid-state seed laser, for example, only passive coherence destruction is required between the M〇 and the gain amplifier medium, for example, the mini-PuS 376 can be used for the damage. The 38 or the other or the other passive optics 91 described above are interposed between the MO and the amplifier gain medium. Ren still needs to be engaged in beam manipulation, such as using an active beam steering machine = the mechanism discussed above to make the pulse more _ (more divergent), but it is not necessary to have a smaller broom angle. I believe that this kind of seed laser fan 5, you PuS each about the total optical path delay, as currently used in the applicant's transferee XLA series laser system for relay optical components, the delay light path can also be easily established in the seed On the laser optical platform. Figure 34 shows an example of the relative speckle intensity of the 1 kV Ε·〇 deflector voltage versus time. The relative standard deviation curve 55 is added as i kv, and the equivalent pulse curve is the curve 550a'. The 2kVE-〇 deflector voltage curve 552a and the equivalent pulse curve 552a' are also shown as a 3 kV E-0 deflector voltage curve 554a and a corresponding pulse curve 554a'. The example of the pointing displacement versus the E_〇 voltage curve 56 is shown in Figure 35. The pointing displacement (applicant estimated by the speckle displacement measurement) is plotted against the E-0 battery applied voltage as shown in Figure 35. In accordance with various aspects of one embodiment of the teachings of the disclosure, Applicants have suggested scanning the seed laser pointer internally within a single pulse to reduce speckle contrast therein. For example, optoelectronic components can be used, for example, in Figure 66, which illustrates, in a schematic partial block diagram, elements 1912 and 1914 in accordance with various aspects of an embodiment of the disclosed subject matter. Before the seed laser pulse is input into the excimer power oscillator 20, 'using vertical expansion, the XeF cavity is placed close to the input coupler such as the beam splitter, and the clearance aperture of the E-Ο deflector is about 3.2 mm. The deflector can be positioned upstream of the vertical expansion (not shown in Figure 66). In order to minimize any translation into the vibrator cavity, such as the XeF cavity 1930, in combination with the bevel of the E-0 deflector, it may be desirable to place it as close as possible to the amplifier cavity. 92 1324423

聯電阻器於E-0電池终 尽顯不局早一電晶體1130a。所施加 $形狀之作圖顯示於第36圖。設置串 端與電壓供應源之間,可用來例如控 制她力口於Ε Ο電池的電壓斜率。與例如細歐姆電阻器串聯 的E-0電池之50PF電容,獲得初斜率約為1〇11微弧度/秒。跨 10 E_0電池的電壓降’如第36圖所示,於類似種子脈衝時間長 度,由DC位準降至接近零。經由變更E 〇電池脈衝器與種 子雷射間的相對時間,例如可改變種子脈衝期間的指向掃 拂量。此外,可改變初DC電壓值,來於種子脈衝期間執行 或大或小的指向掃拂。申請人例如只使用種子雷射或只使 15用來自於〇C的反射測試快速指向能力,因此並無來自於〇c 及Rmax的多重反射之OPuS效應,也無因ΜΟΡΟ操作造成的 效應。並未將Ε-0電池與種子脈衝間的相對時間最佳化,申 請人係捕捉於兩個時間間的一時間範圍的散斑圖案。申請 人施加三種不同DC電廢位準至Ε-0電池,俾改變最大可得 2〇指向斜率。結果顯示於約57奈秒相對時間,獲得最小散斑 強度規度化標準差,如第34圖可知。於種子脈衝期間不含 任何角向偏移,於小型或大型相對時間值,低於和高於57 奈秒的散斑對比度高。此點係與靜態測試期間申請人的發 現數值交互相關。例如當相對時間讓E-0電池電壓斜率與種 93 1324423 子脈衝重合時,單一脈衝的散斑圖案於垂直方向以引人注 目的滿意程度模糊化。 可將此等對比度的值規度化成為最大值,來評估由於 動態指向偏移所造成的對比度降低百分比。於最佳相對時 5 間點’散斑對比度降至其峰值之約40%。使用1/#假設有 等數獨立脈衝,資料可用來導出達成此種程度的散斑對比 度下降所需的脈衝數目。於優化相對時間,且以3kV施加於 E-0電池,對比度的降低等於6脈衝。又更高的電壓位準(以 及於單一脈衝期間甚至更大的指向位移)可改良此結果。申 10請人進行類似的測量,以種子雷射脈衝入射ΜΟΡΟ放大級 腔’但放大級電極間並未放電,發現於XeF腔中來自於〇C 及Rmax的反射’由〇puS效應’光束單獨擴展’指出最大散 斑對比度降低量達效應之預測量(N=156具有2〇% 〇C,獲 得1/^=0.80。如此70%對比度變成56%)。模糊化的效應即 15使初散斑對比度低,當加入來自全XeF腔的二次反射時,模 糊化效應仍然不變。散斑減少之相等脈衝仍然約為6。 申請人以放大級腔電極放電進行類似測量,如此暗示 於放電級腔中的放大效應,如第34圖的指示,對於經由種 子光束掃拂造成散斑減少的影響小。使用此種組態,發現 20當作為河0]?0操作時,該效應恰超過所產生的等數脈衝數 之一半,亦即約3,也發現尖峰散斑對比度的減少相當大, 且無模糊化。ΜΟΡΟ操作的先前測量值顯示與約6脈衝相等 的降低。此種結果顯示相當於約8脈衝的減少。申請人覺察 放大級腔可與例如於平面.平面腔中的偏轴射線角區別,如 94 此多種角度送入腔内可能並非同等放大(例如可使用真正 穩疋腔例如採用彎曲0C及彎曲Rmax校正)。另一項說明為 並非全部種子脈衝皆參與放大級特性的控制。可能只有種 子脈衝的10-15奈秒脈衝時間的前5奈秒可控制放大級,如 5此於較小型窗中E-〇掃拂不夠快,例如可經由使用較小塑電 阻器和較短掃拂來校正。 根據所揭示之主旨之一實施例之各個態樣,申請人提 示使用6鏡相干性破壞機構(為求方便,此處示意指示的光 學脈衝延遲光路每個延遲光路只有四面鏡),該相干性破壞 10機構係由申请人之受讓人開發用於使用申請人之受讓人之 XLA型號多腔雷射系統所使用的〇pus中用於第一或第二 脈衝延伸器中任一者或二者的額外光路延遲。此種光路延 遲例如可對各子脈衝產生負1影像。示意且以卡通方式顯示 於第37圖,舉例說明此等「翻轉」子脈衝之加總。例如第8 15圖所示的翻轉子脈衝可用於改良側寫均勻度和對稱性。6鏡 S史a十可將指向位移轉換成為發散增加,有利於環形配置中 的ASE減少。標準四面鏡設計則否。須瞭解用於此項相干 性破壞目的之延遲光路無需如同用於脈衝延長的實際 OPuS般長,來獲得遠更增加的脈衝L例如用於微影術用 20途。反而相干性破壞機構所謂的「迷你OPuS」只須將脈衝 摺疊某個次數。以脈衝580a舉例說明,角隅(前置翻轉)標示 為582a,以及脈衝584a、586a、588a。此外由於於延遲光 路上鏡幾乎無法避免的未校準,「半數鏡」或所謂的〇PuS 效應也可降低種子雷射脈衝的相干性,只要延遲光路超過 95 1324423 光束的空間相干性長度,則於延遲光路中將出現進一步相 干性破壞。就此方面而言4鏡迷你OPuS,例如為了方便校 準使用共焦球面鏡可用作為滿意的相干性破壞器,即使兩 軸上不含光束翻轉亦可達成此項目的。 5 根據所揭示之主旨之一實施例之各個態樣,可能需要 於根據所揭示之主旨之一實施例之各個態樣之系統中,於 各點組合二分開雷射光束。若只有一半至6鏡脈衝延伸器的 入口被照明,則子脈衝於頂與底間翻轉,如第8圖所示。此 等「翻轉」子脈衝加總獲得填補滿尺寸側寫,例如第41圖 10 之脈衝翻轉模擬所示,曲線562a顯示入射延遲光路前的脈 衝,曲線564a(黑)顯示於一條延遲光路後的脈衝,曲線 566a(紅)顯示於第二延遲光路後的脈衝。雷射發散隨後可用 來填入例如超過約1米左右之傳播後的中部568a。 使用固態雷射源於光刻術係過去所提議使用,但後來 15 不用有兩項理由。固態雷射未曾被視為可進行光刻術要求 的高平均功率,固態雷射產生高度(完好)相干性之單模輸 出。根據所揭示之主旨之一實施例之各個態樣,申請人提 示例如使用固態種子/準分子放大器混成組合來解決平均 功率低的問題。根據所揭示之主旨之一實施例之各個態 20 樣,以多種方式可解決固態種子雷射之高相干性問題,例 如解決之道係經由形成子脈衝時間上的分隔比相干性長度 更長;或經由於極短時間刻度例如單一雷射脈衝以内,改 變種子雷射指向,或二者的組合。申請人發現相干性破壞 也有利於雙腔氣體放電(例如準分子)種子/氣體放電(例如 96 1324423 準分子)放大器部分雷射。 由漫射器670a可知散斑圖案去除相位發生於久/2d,此 處d為開槽孔口之照明寬度、或圓形孔口之直徑例如㈣ 圖以卡通圖案示意說明。散斑圖案的非相干性也可發生於 5由-脈衝延伸器所產生的各個子脈衝,限制條件為脈衝延 伸器延伸各脈衝達大於時間長度,例如經由蓄意將各個脈 衝延伸器例如脈衝延伸器中之鏡蓄意未校準極微量來進— 步探討。實際上申請人之雇主藉測試發現於例如4Χ τ OPUS型脈衝延伸器極為難以精密校準多面鏡,多面鏡幾乎s 1〇隨,未校準,而不必蓄意讓其未校準。此種「尋常」未校 準量由申請人的雇主發現該量足夠達成期望的散斑降低程 度,示意顯示於第4〇圖,討論如文。 有效數目之相等分開雷射脈衝也等於各個脈衝延伸器 的時間積刀平方(「Tis」)放大。前述該種OPuS脈衝延伸器 15具有放大倍率約2.4倍。使用三級式脈衝延伸,獨立子脈衝 數目將變成(2.4)3=ι3·8。因散斑對比度隨著獨立子脈衝數目 Ν以1/#而縮放’脈衝延伸器可提供輸出散斑對比度 1ΤΪ31 26.9/。’輸入散斑對比度刚%。由於散斑對比度仍 然過局’根據所揭示之主旨之一實施例之各個態樣,可設 20置種機構來減少進出脈衝延伸器的散斑對比度。可稱作 為迷你OPiiS,討論如文。 光電7L件或聲電元件可用於光束操控例如操控於光 束中的單脈_部之—種子雷射光脈衝光束。藉此例如 於種子雷射輸出,根據所揭示之主旨之一實施例之各個態 97 1324423 樣,可獲得光電材料只須接收低平均功率種子雷射光束。 例如經由隨機及/或連續改變光束操控,例如於單一雷射脈 衝内部’功率放大級之角度接受性可對各個雷射脈衝作「塗 抹」或填補。結果一主脈衝可具有一發散集合,例如由M〇/ 5功率放大級光學組態而非由種子雷射特性所決定的發散集 合。可獲传雷射系統輸出雷射光脈衝的相干性大減。 根據所揭示之主旨之一實施例之各個態樣,例如有一 平面腔和平面後反射鏡的注入經控制放大器雷射系統可 有適當能量穩定性例如用於於〇.〇〇85mj至〇.99mj範圍之種 10子脈衝注入能。此光束能例如入射於功率放大級的後反射 鏡,可形成種子雷射之輸入搞合器。此反射鏡例如具有約 90%反射及約8%透射》因此入射放大級腔的種子能本身可 月&amp;比入射後反射鏡的種子能小約一個次羃幅度。使用環形 腔,特別為根據所揭示之主旨之一實施例之各個態樣之部 15分反射種子注入機構,如文討論,輸入種子能可遠較少浪 費,例如允許輸入約8〇。/〇種子雷射光。Rmax及〇C可於含氟 環境,因而較為強勁’但若使用偏振耦合,耦合效率仍然 係低於某些應用用途的最佳耦合效率。例如於MOpa組態的 適當架構可為2-通道(「滴答」)固態種子雷射,例如第三諧 20波Nd:YLF ΜΟ系統或Nd:YACJ系統(例如微調至351奈米)連 同一對兩個3通XeFPA模組。此種於ΜΟΡΟ之系統,例如主 振盈器/功率放大級(諸如環形功率振盪器放大級)組態也可 視為有效替代之道。此種二通道ΜΟΡΟ辦法係類似ΜΟΡΑ組 態’亦即有兩個播種功率振盪器。可使用多種耦合技術, 98 例如使用偏振技術之MO耦合或種子注入機構。發現不同 PO/PA組態之效率相對於Em。對ΜΟΡΟ或對三通ΜΟΡΑ為較 佳,但未曾測試四通ΜΟΡΑ。發現脈衝寬度(FWHM)對ΜΟΡΟ 約為17.3奈秒,對單通ΜΟΡΑ約為13.9奈秒,對三通ΜΟΡΑ 5 約為12.7奈秒。 申請人檢驗散斑圖案是否有角度偏移之未校正,例如 於一ΜΟΡΟ輸出光束中具有Nd-YLF種子雷射及XeF功率振 盪器(例如平面-平面偏振耦合配置)。XeF放電與種子雷射脈 衝間之相對時序調整,也可對XeF增益所產生的弱線(353 10 奈米)之最大抑制達成角度調整與空間調整。 第39圖不思·顯不於一輸出雷射脈衝之一相干性破壞體 系之結果,例如有關掃描器角度接受視窗,例如有關於橫 向及縱向(如第39圖之頁面平面所示)所導入之一掃描器角 度接受性窗。點780a示意舉例說明初種子雷射輸出脈衝發 15散側寫780a。脈衝782a之圖案顯示於完好校準光束延遲光 路或透過未校準光束延遲光路或二者於光束摺疊後之子脈 衝發散側寫圖案782a,或其組合;環繞各圖案之圓乃牝表 示對光電模糊化的發散側寫的影響。 現在參考第40圖,為根據所揭示之主旨之—實施例之 20各個態樣相干性破壞效應之示意代表圖。利用成像延遲光 路例如脈衝延伸器,如所謂之光學脈衝延伸器(「〇puS 例如於前述申請人之受讓人之雷射系統—起出售的=」丁) 六面鏡OPuS且顯示於前述美國專利案及共同審杳中之申5 請案,或其具有較短延遲光路的前述修改版本,例如^來 99 1^24423 將光束反摺,及/或用來延遲超過前文討論的相干性長度, 亦即所謂的迷你OPuS,可達成例如M0與放大器增益媒質 間的相干性破壞程度,例如PA或P〇或環形功率放大級。其 它相干性破壞形式如第31圖所示,可單獨使用或與此種「迷 5你〇PuS」組合使用,如第33圖所示且討論如文。 根據所揭示之主旨之一實施例之各個態樣,脈衝延伸 器例如4鏡6鏡脈衝延伸器例如常規〇PuS諸如4χ Tis 〇Pus 或所謂的迷你OPuS之指向/發散敏感度,或就第3i圖說明其 細節之延遲光路如第13、14及42圖所示經由加上例如由來 10自於指向/發散感測器的回授將可增加主動鏡控制。此等優 點包括形成霍爾鏡效應,藉此例如雷射輸出光脈衝光束於 延遲光路上平順化,此外,實際上變成類似有極為不同指 向的多個光束,如此於脈衝延伸器之各面鏡上有不同的入 射角。申請人之受讓人於脈衝延伸器觀察到此點,極為難 15以完好校準例如目前使用的4X Tis OPuS脈衝延伸器的各面 鏡’如此產生鏡霍爾效應來減少存在於脈衝延伸器之雷射 輸出光脈衝光束之相干性。如此光束86〇a形成多個分開光 束862a。第40圖也示意說明平面_平面腔85〇a有略為未校準 之鏡形成腔852a後部及一輪出耦合器854a的結果,但申請 20人的僱主觀察到於〇PuS有相同效應,如前述具有相干性破 壞效果。第40圖所示腔也有一偏振輸入耦合器858a及一四 分之一波長板856a。 第40圖顯示當於平面·平面腔中使用〇c及Rmax的反射 係數二者’具有來自於種子雷射脈衝之種子雷射光源的偏 100 1324423 振輸入耦合,可達成相干性的降低。角度係誇大來方便清 晰說明。由0C與Rmax間所產生的靜態扇出,亦即「鏡之霍 爾效應」可產生多射線。此等射線的理論能量加權,假設 通過腔並無透射耗損且有完好反射係數,此等射線之理論 5 能量加權顯示如下。 101 U24423 MMM3. 規度化能 分量能 1 0.2 =0.200 0.3125 2 0.8*0.8 =0.640 1.000 3 〇.8*0.2*0.8 =0.128 0.2000 4 0-8*0.2*0.2*0.8 =0.0256 0.0400 5 0.8*0·2*0·2*0.2*0.8 =0.00512 0.0080 6 0.8*0.2*0.2*0.2*0.2*0.8 =0.00102 0.0016 饭设各射線彼此皆非相干性’例如OC與Rmax間的光路 1〇長度維持比時間相干性長度更長。各射線假設角度彼此略 有不同,原因在於相信極為難以獲得完好校準,特別於垂 直方向。申請人相信於垂直方向的37微弧度角差異可形成 未經校準的散斑。將規度化能量權值加總,獲得等數獨立 脈衝,計算方根來獲得標準差的減少,得自前述之和數為 15 L56。方根為丨·25,當使用〇C及Rmax反射時的標準差預測 為0.551/1.25=0.440 ’與申請人的測量值亦即〇 427相當可媲 美。 靜態扇出,於文中它處稱作為鏡之霍爾效應相信大致 上為手動校準所無法避免,靜態扇出產生單一脈衝散斑對 20比度,具有於放大增益媒質的放大比單獨種子雷射小2.5〇 倍。此種減少相當於6.3未經校準的子脈衝。若干對比度減 少係由於用來測試振盈放大級效果之來自於XeF功率振盈 器的弱線内容’但大部分相信係由於靜態扇出效應。同理, 由〇C-Rmax (OC-後腔反射鏡)反射之仿〇puS靜態扇出特性 102 1324423 所形成的乡個子脈衝全m大至㈣相等強度 ,如此比 上表所示顯示更多相當的獨立脈衝。 產生未經校準的散斑圖案所需傾角顯著。於相當脈衝 例如1.0至1·55之第一大躍遷,申請人相信大部分係由於作 5為ΜΟΡΟ操作時散斑圖案之各脈衝間之重複性不佳所致。 即使,’’糸毫也未改變鏡傾角,二脈衝間的交互關係不優於 30 3 5 口 _ 。。只使用種子雷射,發現此種脈衝對脈衝的交互關 係變成約85-9G%。相當脈衝數的冗長而緩慢的升高至約4〇〇 微弧度鏡傾角皆甚至無法到達2.0的數值,例如第46圖所 1〇不。此項結果表示可能需要大型角度掃拂約±500-1000微弧 度來於單脈衝形成數個未經校正的散斑圖案。 透過相干性相關實驗,申請人的偏主瞭解例如由脈衝 延伸器所形成的多個小脈衝不相干,若其角度略為偏移貝,j 將導致不同邊帶圖案。當輸入角為A/2d時 ,針孔邊帶圖案 15由最大值偏移成最小值。 拐向偏移(申請人由散斑偏移測量值推論所得指向偏 移)相對於Ε·〇電池施加電壓之作圖顯示於第35圖 。根據所 揭不之主旨之—實施例之各個態樣,申請人提示於單一脈 衝内部掃描種子雷射指向,來減少内部的散斑對比度。例 2〇如可使用光電元件如第33圖示意顯示之元件392來達成。於 種子雷射脈衝輸入設置於接近輸入耦合 器例如分光鏡之準 分子雷射振盪器例如XeF腔内部之前,使用垂直擴幅,以及 E-0偏向器之餘隙孔口直徑約為3 2毫米偏向器必須於垂 直擴幅上游(未顯示於第33圖)。為了最小化振盪器腔的任何 103 平移,例如於來自於E-Ο偏向器之角度偏移相關聯的平移, 期望將E-0偏向器放置於儘可能接近放大器腔。 現在參考苐42圖’以方塊圖形式部分示意顯示根據所 揭示之主旨之一實施例之各個態樣之一光束組合器系統 5 600a。光束組合器系統600a例如包括一第一放大器增益媒 質部分602a及一第二放大器增益媒質部分6〇4a,其各自可 為例如PA或PO或環形功率放大級,如本案它處所述。放大 器部分602a、604a各自的輸出可通過光束擴幅器608,其包 括一稜鏡610a及一稜鏡612a來放大光束達4倍。轉向鏡620a 10可操控來自於放大器602a之一第一雷射系統輸出光脈衝光 束622a至一第二轉向鏡624a,第二轉向鏡624a可操控脈衝 光束622a來形成脈衝光束632a於分光鏡上用於第一脈衝延 伸器640a,由該處再到達用於第二脈衝延伸器644a之分光 鏡646a。轉向鏡630a可操控由第二放大器604a至第二轉向 15 鏡634a之第二雷射系統輸出光脈衝光束632a,其可操控光 束632a來形成光束634a而入射於分光器642a,由該處再入 射於分光鏡646a。第一OPuS及第二OPuS (如本案討論可為 「迷你OPuS」)之輸出通過另一分光鏡650a,於該處例如小 部分雷射系統輸出雷射光脈衝光束可被轉向,例如用於度 20量衡目的’例如藉聚焦透鏡652a聚焦於發散檢測器654a, 其可為控制系統(圖中未顯示)之一部分提供回授控制信號 656a予第一及/或第二〇PuS 640a、644a之分光鏡642a、 646a、或各光束632a、634a之轉向鏡來增減發散。此種相 干性破壞如第42圖所示出現於放大器602a、604a之輸入, 而非輪出。 有效數目之相等分開雷射脈衝也等於各個脈衝延伸器 的時間積刀平方(「Tis」)放大。前述該種〇PuS脈衝延伸器 、有放大倍率約2.4倍。使用三級式脈衝延伸獨立子脈衝 5數目將變成(2.4)3=13,8。因散斑對比度隨著獨 立子脈衝數目 N以1/#而縮放’脈衝延伸器可提供輸出散斑對比度 ΐνη^-26·9% ’輸入散斑對比度1〇〇%。由於散斑對比度仍 J過间I據所揭不之主旨之—實施例之各個態樣,可設 置種機構來減少進出脈衝延伸器的散斑對比度。可稱作 10為迷你〇Pus,討論如文。 已經例如利用光電元件驗證於193奈米之脈衝修剪。替 代用於若干其它形式脈衝修剪的偏振旋轉,光電元件可用 於光束操控’例如操控於光束中的單一脈衝内部之一種子 雷射光脈衝光束。藉此例如於種子雷射輸出,根據所揭示 之主曰之實施例之各個態樣,可獲得光電材料只須接收 低平均功率種子雷射光束。例如經由隨機及/或連續改變光 束操控,例如於單一雷射脈衝内部,功率放大級之角度接 文性可對各個雷射脈衝作「塗抹」或填補。結果-主脈衝 可具有一發散集合,例如由M0/功率放大級光學組態而非 2〇由種子雷射特性所決定的發散集合。可獲得雷射系統輸出 雷射光脈衝的相干性大減。 根據所揭示之主旨之一實施例之各個態樣,例如有一 平面腔和平面後反射鏡的注入經控制放大器雷射系統,可 有適當能量穩定性例如用於於〇.〇〇85Mj至〇.99mJ範圍之種 1324423 子脈衝注入能。此光束能例如入射於功率放大級的後反射 鏡,可形成種子雷射之輸入耦合器。此反射鏡例如具有約 90%反射及約10%透射。因此入射放大級腔的種子能本身可 能比入射後反射鏡的種子能小約一個次羃幅度。使用環形 5 腔,特別為根據所揭示之主旨之一實施例之各個態樣之部 分反射種子注入機構,如文討論’輸入種子能可遠較少浪 費,例如約80%注入放大級。Rmax及OC可於含氟環境,因 而較為強勁,但若使用偏振耦合,耦合效率仍然係低於某 些應用用途的最佳耦合效率。例如於ΜΟΡΑ組態的適當架構 10 可為2-通道(「滴答」)固態種子雷射,例如第三諧波Nd:YLF MO系統或Nd:YAG系統(例如微調至351奈米)連同一對兩個 3通XeF PA模組。此種於ΜΟΡΟ之系統,例如主振盪器/功率 放大級(諸如環形功率振盪器放大級)組態也可視為有效替 代之道。此種二通道ΜΟΡΟ辦法係類似ΜΟΡΑ組態,亦即有 15 兩個播種功率振蘯器。可使用多種搞合技術,例如使用偏 振技術之ΜΟ耦合或種子注入機構。發現不同ΡΟ/ΡΑ組態之 效率相對於Em。對MOP◦或對三通ΜΟΡΑ為較佳,但未曾測 試四通ΜΟΡΑ。發現脈衝寬度(FWHM)對ΜΟΡΟ約為17.3奈 秒,對單通ΜΟΡΑ約為13.9奈秒,對三通ΜΟΡΑ約為12.7奈 20 秒。 申請人檢驗散斑圖案是否有角度偏移之未校正,例如 於一 ΜΟΡΟ輸出光束中具有Nd-YLF種子雷射及XeF功率振 盪器(例如平面-平面偏振耦合配置)。XeF放電與種子雷射脈 衝間之相對時序調整,也可對XeF增益所產生的弱線(353 106 1324423 奈米)之最大抑制達成角度調整與空間調整。 於放大級之初始極低位準螢光,觀察得出現種子脈衝 之最大強度。此種極低位準螢光(因而極低位準增益)如於 ΜΟΡΟ輸出觀察得,可藉此種子雷射光提升。調整種子光 5於放大級發射前之稍早或稍遲例如約20奈秒左右,可導致 弱線輸出的增加。 根據所揭示之主旨之一實施例之各個態樣,經由光束 操控例如使用光電元件之光束操控,例如使用匹配期望名 目中心波長的Con〇pticsE_〇偏向器總成,可於單一脈衝期 10間達成種子光束的指向。此種E-0元件類似CD讀寫器和 DVD讀寫器使用接近351奈米的雙氬離子雷射線,具有e 〇 偏向器用來調控光束。具有指向係數例如約〇6微弧度/伏 特’以及具有電容5〇pF,甚至完整毫弧度的偏向只需要17〇〇 伏特。可使用如第40圖示意顯示(於本案詳細討論)之可用於 15脈衝修剪的驅動電路,例如有電阻器串聯來於單一脈衝期 間產生經控制的掃拂速率。種子脈衝時間約為15奈秒,故 上升速率係於驅動器的能力範圍内,來獲得合理的指向變 化例如咼達1毫弧度。使用泵送二極體電流約3〇安培及4安 培至振虚器幫浦二極體’種子雷射輸出雷射光脈衝光束脈 20衝能判定為L2mJ,足夠播種氣體放電雷射例如XeF氣體放 電雷射。 Μ Ο Ρ Ο組態之散斑對比度作圖(平均散斑交互關係相對 於鏡傾斜角-輸入角變化)舉例說明於第75圖。類似作圖於振 盪器組態只有種子雷射脈衝通過放大器增益媒質,但放大 107The junction resistor is not in the E-0 battery at the end of the transistor 1130a. The plot of the applied $ shape is shown in Figure 36. Between the string and the voltage supply, it can be used, for example, to control the voltage slope of the battery. The 50 PF capacitor of an E-0 battery in series with a fine ohmic resistor, for example, achieves an initial slope of approximately 1 〇 11 microradians per second. The voltage drop across the 10 E_0 battery is shown in Figure 36, which is reduced to near zero by the DC level for a similar seed pulse time length. By varying the relative time between the E 〇 battery pulsator and the seed laser, for example, the amount of directional sweep during the seed pulse can be varied. In addition, the initial DC voltage value can be varied to perform a larger or smaller pointing broom during the seed pulse. Applicants, for example, use only seed lasers or only 15 to use the reflection from 〇C to test the fast pointing ability, so there is no OPuS effect from the multiple reflections of 〇c and Rmax, and there is no effect due to the operation. The relative time between the Ε-0 cell and the seed pulse is not optimized, and the applicant captures a speckle pattern over a time range between two times. The applicant applies three different DC electrical waste levels to the Ε-0 battery, and the maximum change is 2 〇 pointing slope. The results are shown in the relative time of about 57 nsec, and the minimum speckle intensity normalization standard deviation is obtained, as shown in Fig. 34. There is no angular offset during the seed pulse, and the speckle contrast is lower than or above 57 nanoseconds for small or large relative time values. This point is related to the applicant's found value interaction during the static test. For example, when the relative time makes the E-0 battery voltage slope coincide with the seed 93 1324423 sub-pulse, the speckle pattern of a single pulse is blurred in the vertical direction with an impressive degree of satisfaction. The values of these contrasts can be normalized to a maximum value to estimate the percentage reduction in contrast due to the dynamic pointing offset. At the 5th point of the best relative, the speckle contrast decreased to about 40% of its peak value. Using the 1/# hypothesis with an equal number of independent pulses, the data can be used to derive the number of pulses required to achieve this level of speckle contrast reduction. To optimize the relative time and apply to the E-0 battery at 3 kV, the reduction in contrast is equal to 6 pulses. A higher voltage level (and even greater pointing displacement during a single pulse) can improve this result. Shen 10 invited a similar measurement, the seed laser pulse was incident on the 级 amplification stage cavity 'but the amplifier stage did not discharge between the electrodes, found in the XeF cavity from the reflection of 〇C and Rmax 'by 〇puS effect' beam alone The extension 'points the maximum speckle contrast reduction to the predicted amount of effect (N=156 has 2〇% 〇C, which gives 1/^=0.80. So 70% contrast becomes 56%). The effect of fuzzification is 15 which makes the initial speckle contrast low, and the addition of the secondary reflection from the full XeF cavity remains unchanged. The equal pulse of speckle reduction is still about 6. Applicants performed similar measurements with amplified stage cavity electrode discharges, thus suggesting that the amplification effect in the discharge stage cavity, as indicated by Figure 34, has little effect on speckle reduction via the seed beam broom. Using this configuration, it was found that when operating as a river 0]?0, the effect just exceeds one-half of the number of equal-numbered pulses generated, that is, about 3, and the reduction in peak speckle contrast is also found to be quite large, and Blurring. The previous measurement of the ΜΟΡΟ operation shows a reduction equal to about 6 pulses. This result shows a reduction of about 8 pulses. Applicant perceives that the magnifying cavity can be distinguished from the off-axis ray angle, for example, in a planar, planar cavity, such as 94. The various angles into the cavity may not be equally amplified (eg, a true stabilizing cavity such as curved 0C and curved Rmax may be used) Correction). Another indication is that not all seed pulses are involved in the control of the amplification stage characteristics. It is possible that only the first 5 nanoseconds of the 10-15 nanosecond pulse time of the seed pulse can control the amplification level, such as 5 in the smaller window. The E-〇 broom is not fast enough, for example, by using a smaller plastic resistor and shorter. Broom to correct. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicants have suggested the use of a 6-mirror coherence destruction mechanism (for convenience, the optical pulse delay optical path indicated herein is a four-sided mirror for each delayed optical path), the coherence The Destruction 10 mechanism is developed by the Applicant's assignee for use in either the first or second pulse extender used in the XLA model multi-cavity laser system of the Applicant's assignee or The extra light path delay between the two. Such an optical path delay can, for example, produce a negative 1 image for each sub-pulse. It is shown schematically and cartoonized in Figure 37, illustrating the sum of these "flip" sub-pulses. For example, the flip sub-pulse shown in Figure 8 15 can be used to improve profile uniformity and symmetry. 6 Mirror S history a ten can convert the pointing displacement into divergence increase, which is beneficial to the reduction of ASE in the ring configuration. The standard four-sided mirror design is no. It is to be understood that the delayed optical path for this purpose of coherence destruction does not need to be as long as the actual OPuS used for pulse extension to obtain far more increasing pulses L, for example for lithography. Instead, the so-called "mini OPuS" of the coherent destruction mechanism only has to fold the pulse a certain number of times. Illustrated by pulse 580a, the corner turn (front flip) is labeled 582a, and pulses 584a, 586a, 588a. In addition, due to the unavoidable uncalibrated mirror on the delayed path, the "half mirror" or the so-called 〇PuS effect can also reduce the coherence of the seed laser pulse, as long as the delay path exceeds the spatial coherence length of the 95 1324423 beam, then Further coherence destruction will occur in the delayed light path. In this respect, the 4-mirror mini OPUS, for example, can be used as a satisfactory coherence destroyer for the purpose of calibrating the confocal spherical mirror, even if the beam is not flipped on both axes. 5 In accordance with various aspects of one embodiment of the disclosed subject matter, it may be desirable to combine two separate laser beams at various points in a system in accordance with various aspects of an embodiment of the disclosed subject matter. If only half of the entrance to the 6-mirror pulse extender is illuminated, the sub-pulse flips between the top and bottom, as shown in Figure 8. These "flip" sub-pulses add up to fill the full-size side, as shown in the pulse-flip simulation of Figure 41, curve 562a shows the pulse before the incident delay path, and curve 564a (black) is shown after a delayed path. Pulse, curve 566a (red) shows the pulse after the second delayed optical path. The laser divergence can then be used to fill in the propagated central portion 568a, for example, above about 1 meter. The use of solid-state lasers has been proposed in the past for lithography systems, but there are no two reasons for this. Solid-state lasers have not been considered as high average power required for lithography, and solid-state lasers produce high (good) coherence single mode outputs. In accordance with various aspects of one embodiment of the disclosed subject matter, the Applicant's example uses a solid seed/excimer amplifier hybrid combination to address the problem of low average power. According to various aspects of an embodiment of the disclosed subject matter, the high coherence problem of solid seed lasers can be solved in a variety of ways, for example, the solution is longer than the coherence length by forming sub-pulses over time; Or via a very short time scale, such as within a single laser pulse, changing the seed laser pointing, or a combination of the two. Applicants have found that coherent destruction also facilitates partial lasers for dual chamber gas discharge (e.g., excimer) seed/gas discharge (e.g., 96 1324423 excimer) amplifiers. It is known from the diffuser 670a that the speckle pattern removal phase occurs for a long time /2d, where d is the illumination width of the slotted aperture, or the diameter of the circular aperture, for example (4). The incoherence of the speckle pattern may also occur at 5 sub-pulses generated by the -pulse extender, with the proviso that the pulse extender extends each pulse for greater than the length of time, for example via deliberately placing individual pulse extenders such as pulse extenders The mirror is deliberately not calibrated to a very small amount. In fact, the employer's employer has found that it is extremely difficult to precisely calibrate the polygon mirror, for example, the 4Χτ OPUS type pulse extender. The polygon mirror is almost calibrated and not calibrated, and it is not necessary to deliberately make it uncalibrated. This "normal" uncalibrated amount is found by the applicant's employer to be sufficient to achieve the desired degree of speckle reduction, as shown in Figure 4, which is discussed. The effective number of equal divided laser pulses is also equal to the time product squared ("Tis") amplification of each pulse extender. The aforementioned OPuS pulse stretcher 15 has a magnification of about 2.4 times. Using a three-stage pulse extension, the number of independent sub-pulses will become (2.4) 3 = ι 3 · 8. Since the speckle contrast is scaled by the number of independent sub-pulses Ν by 1/#, the pulse extender provides an output speckle contrast ratio of 1ΤΪ31 26.9/. 'Enter the speckle contrast just %. Since the speckle contrast is still circulated&apos;, in accordance with various aspects of one embodiment of the disclosed subject matter, a seeding mechanism can be provided to reduce the speckle contrast of the ingress and egress pulse extenders. It can be called a mini OPiiS, as discussed in the text. Photoelectric 7L or acoustical elements can be used for beam steering such as a single pulse------------ Thereby, for example, the seed laser output, according to various states 97 1324423 of one embodiment of the disclosed subject matter, it is obtained that the photovoltaic material only has to receive a low average power seed laser beam. For example, by randomly and/or continuously changing the beam steering, for example, the angle acceptance of the internal power amplification stage of a single laser pulse can be "smeared" or filled for each laser pulse. As a result, a main pulse can have a divergent set, such as a divergent set that is optically configured by the M〇/5 power amplifier stage rather than by the seed laser characteristics. The coherence of the laser light output from the laser system can be greatly reduced. In accordance with various aspects of an embodiment of the disclosed subject matter, for example, an injection of a planar cavity and a planar back mirror via a controlled amplifier laser system may have suitable energy stability, for example, for use in 〇.〇〇85mj to 〇.99mj A range of 10 sub-pulse injection energy. This beam can, for example, be incident on the rear mirror of the power amplifier stage to form an input combiner for the seed laser. This mirror, for example, has about 90% reflection and about 8% transmission. Thus the seed energy of the incident amplification stage can itself be less than one seed amplitude less than the seed of the incident mirror. The use of a toroidal cavity, particularly for a portion of the various aspects of an embodiment of the disclosed subject matter, is a 15 minute reflection seed injection mechanism, as discussed herein, the input seed can be much less expensive, such as allowing an input of about 8 Torr. /〇 Seed laser light. Rmax and 〇C can be used in a fluorine-containing environment and are therefore relatively strong. However, if polarization coupling is used, the coupling efficiency is still lower than the optimum coupling efficiency for some applications. For example, a suitable architecture for MOpa configuration can be a 2-channel ("tick") solid-state seed laser, such as a third harmonic 20-wave Nd:YLF system or a Nd:YACJ system (eg, fine-tuned to 351 nm) with a pair Two 3-way XeFPA modules. Such a system, such as a main oscillator/power amplifier stage (such as a ring power oscillator amplification stage) configuration, can also be considered an effective alternative. This two-channel approach is similar to the ΜΟΡΑ configuration, ie there are two seed power oscillators. A variety of coupling techniques can be used, 98 such as MO coupling or seed injection mechanisms using polarization techniques. The efficiency of different PO/PA configurations was found relative to Em. It is better for ΜΟΡΟ or for the three-way ,, but has not tested the four-way ΜΟΡΑ. It was found that the pulse width (FWHM) is about 17.3 nanoseconds for ΜΟΡΟ, about 13.9 nanoseconds for single pass, and about 12.7 nanoseconds for three-way ΜΟΡΑ5. Applicants examined whether the speckle pattern has an uncorrected angular offset, such as an Nd-YLF seed laser and a XeF power oscillator (e.g., a planar-plane polarization coupled configuration) in a single output beam. The relative timing adjustment between the XeF discharge and the seed laser pulse can also achieve angle adjustment and spatial adjustment for the maximum suppression of the weak line (353 10 nm) generated by the XeF gain. Figure 39 is not the result of a coherent destruction system of one of the output laser pulses, such as the scanner angle acceptance window, for example, horizontal and vertical (as shown in the page plane of Figure 39) One of the scanner angle acceptance windows. Point 780a is illustrative of an initial seed laser output pulse 780a. The pattern of the pulse 782a is displayed in the perfect calibration beam delay optical path or through the uncalibrated beam delay optical path or both of the sub-pulse divergence side writing patterns 782a after the beam is folded, or a combination thereof; the circle surrounding each pattern represents the photoelectric blurring The effect of divergent profile. Referring now to Figure 40, there is shown a schematic representation of the coherence disruption effect of various aspects in accordance with the disclosed subject matter. Utilizing an imaging delay optical path such as a pulse extender, such as the so-called optical pulse extender ("Pu puS, for example, the laser system of the assignee of the aforementioned Applicant" - hexagram OPuS and shown in the aforementioned US The patent application and the co-pending application 5, or its previously modified version with a shorter delay optical path, such as ^ 99 1^24423, reversing the beam and/or delaying the coherence length discussed above The so-called mini OPUS can achieve, for example, the degree of coherence damage between M0 and the amplifier gain medium, such as PA or P〇 or ring power amplifier stage. Other forms of coherence destruction, as shown in Figure 31, can be used alone or in combination with this type of "PuS", as shown in Figure 33 and discussed. According to various aspects of an embodiment of the disclosed subject matter, a pulse extender such as a 4-mirror 6-mirror pulse extender such as a conventional 〇PuS such as 4χ Tis 〇Pus or a so-called mini OPUS has a pointing/diverging sensitivity, or on the 3i The diagram illustrates the details of the delayed optical path as shown in Figures 13, 14, and 42 by adding, for example, the feedback from the pointing/diverging sensor to increase the active mirror control. These advantages include the formation of a Hall mirror effect whereby, for example, the laser output light pulse beam is smoothed on the delayed optical path and, in addition, actually becomes a plurality of beams similar to very different directions, such that the mirrors of the pulse extenders There are different angles of incidence on the top. Applicant's assignee observes this at the pulse extender, which is extremely difficult 15 to perfectly calibrate, for example, the face mirrors of the currently used 4X Tis OPuS pulse extenders, thus creating a mirror Hall effect to reduce the presence of the pulse extender. The coherence of the laser output light pulse beam. The beam 86A thus forms a plurality of split beams 862a. Figure 40 also illustrates the results of the planar-plane cavity 85A having a slightly uncalibrated mirror-forming cavity 852a rear and a round-out coupler 854a, but the employer of 20 applicants observed that the 〇PuS has the same effect, as previously described Coherence damage effect. The cavity shown in Fig. 40 also has a polarization input coupler 858a and a quarter-wave plate 856a. Figure 40 shows the reduction in coherence by using the polarization input coupling of the seed laser source from the seed laser source when both the reflection coefficients of 〇c and Rmax are used in the planar/planar cavity. The angle is exaggerated to facilitate clear explanation. The static fan-out produced by 0C and Rmax, that is, the "mirror effect of the mirror", can produce multiple rays. The theoretical energy weighting of these rays, assuming that there is no transmission loss through the cavity and a good reflection coefficient, the theoretical 5 energy weighting of these rays is shown below. 101 U24423 MMM3. Regularized energy component energy 1 0.2 =0.200 0.3125 2 0.8*0.8 =0.640 1.000 3 〇.8*0.2*0.8 =0.128 0.2000 4 0-8*0.2*0.2*0.8 =0.0256 0.0400 5 0.8*0 ·2*0·2*0.2*0.8 =0.00512 0.0080 6 0.8*0.2*0.2*0.2*0.2*0.8 =0.00102 0.0016 The ray of each meal is non-coherent with each other'. For example, the optical path length between OC and Rmax is maintained. The temporal coherence is longer. The ray assumptions are slightly different from each other because it is believed that it is extremely difficult to obtain a good calibration, especially in the vertical direction. Applicants believe that a difference of 37 microradians in the vertical direction can result in uncalibrated speckle. The regularized energy weights are summed to obtain an equal number of independent pulses, and the square root is calculated to obtain a reduction in the standard deviation, which is obtained from the aforementioned sum of 15 L56. The square root is 丨·25, and the standard deviation predicted when using 〇C and Rmax reflection is 0.551/1.25=0.440 ′, which is comparable to the applicant's measured value, ie 〇427. Static fanout, which is called the Hall effect of the mirror in the text, is believed to be largely unavoidable for manual calibration. Static fanout produces a single pulse speckle for 20 degrees, with amplification of the amplification gain medium compared to the single seed laser. 2.5 times smaller. This reduction is equivalent to 6.3 uncalibrated sub-pulses. Some of the contrast reduction is due to the weak line content from the XeF power oscillator used to test the effects of the vibration amplification stage's but most are believed to be due to the static fan-out effect. Similarly, the C-Rmax (OC-back cavity mirror) reflection of the pseudo-puS static fan-out characteristic 102 1324423 formed by the sub-pulse all m to (four) equal intensity, so more than the above table shows Quite independent pulse. The angle of inclination required to produce an uncalibrated speckle pattern is significant. In the first large transition of a comparable pulse, for example 1.0 to 1.55, the Applicant believes that most of this is due to the poor repeatability between the pulses of the speckle pattern during the operation of 55. Even if the '' does not change the mirror tilt angle, the interaction between the two pulses is not better than 30 3 5 _ . . Using only the seed laser, it was found that the interaction of such pulses with the pulse became about 85-9 G%. The lengthy and slow rise of the number of pulses is about 4 〇〇. The micro-radial mirror tilt angle can't even reach the value of 2.0, such as Figure 46. This result indicates that a large angle broom may be required for approximately ±500-1000 microradians to form a number of uncorrected speckle patterns in a single pulse. Through coherence-related experiments, the Applicant's partial master understands that, for example, a plurality of small pulses formed by a pulse extender are incoherent, and if the angle is slightly offset, j will result in a different sideband pattern. When the input angle is A/2d, the pinhole sideband pattern 15 is shifted from the maximum value to the minimum value. The turning offset (applicable to the offset from the speckle offset measurement) is plotted against the applied voltage of the Ε·〇 battery as shown in Figure 35. In light of the various aspects of the embodiments, the Applicant has suggested scanning the seed laser pointer inside a single pulse to reduce the internal speckle contrast. Example 2 can be achieved, for example, using a photovoltaic element such as element 392 shown schematically in Figure 33. Before the seed laser pulse input is placed in the vicinity of an input coupler such as a spectroscopic laser oscillator such as a beam splitter, such as a XeF cavity, the vertical expansion is used, and the clearance of the E-0 deflector is about 32 mm. The deflector must be upstream of the vertical expansion (not shown in Figure 33). In order to minimize any 103 translation of the oscillator cavity, such as the translation associated with the angular offset from the E-Ο deflector, it is desirable to place the E-0 deflector as close as possible to the amplifier cavity. A beam combiner system 5 600a, in accordance with one of the various aspects of the disclosed subject matter, is now partially illustrated in block diagram form in the block diagram. Beam combiner system 600a, for example, includes a first amplifier gain medium portion 602a and a second amplifier gain medium portion 6〇4a, each of which may be, for example, a PA or PO or a ring power amplification stage, as described herein. The respective outputs of the amplifier sections 602a, 604a are passed through a beam expander 608 which includes a stack 610a and a stack 612a to amplify the beam by a factor of four. The steering mirror 620a 10 can control the first laser system output light pulse beam 622a from the amplifier 602a to a second steering mirror 624a, and the second steering mirror 624a can manipulate the pulse beam 622a to form the pulse beam 632a for use on the beam splitter. At the first pulse extender 640a, the beam splitter 646a for the second pulse extender 644a is again reached there. The turning mirror 630a can control the second laser system output light pulse beam 632a from the second amplifier 604a to the second steering 15 mirror 634a, which can manipulate the light beam 632a to form the light beam 634a and be incident on the beam splitter 642a, where it is incident again. In the beam splitter 646a. The output of the first OPuS and the second OPuS (which may be "mini-OPuS" as discussed in this discussion) passes through another beam splitter 650a where a portion of the laser system output laser light pulse beam can be diverted, for example for degree 20 The weighing objective 'is focused, for example, by a focusing lens 652a on a divergence detector 654a that provides a feedback control signal 656a to a portion of the control system (not shown) to the first and/or second pupil PuS 640a, 644a. The mirrors 642a, 646a, or the diverting mirrors of the respective beams 632a, 634a increase or decrease the divergence. Such coherence damage occurs at the input of amplifiers 602a, 604a as shown in Fig. 42, rather than being rotated. The effective number of equal divided laser pulses is also equal to the time product squared ("Tis") amplification of each pulse extender. The above-mentioned 〇PuS pulse stretcher has a magnification of about 2.4 times. Using a three-stage pulse to extend the number of independent sub-pulses 5 will become (2.4) 3 = 13,8. Since the speckle contrast scales with the number of independent sub-pulses N scaled by 1/#, the pulse extender provides output speckle contrast ΐνη^-26·9% ‘input speckle contrast 1〇〇%. Since the speckle contrast is still unresolved, various aspects of the embodiment may be provided to reduce the speckle contrast of the ingress and egress pulse extenders. It can be called 10 as a mini 〇Pus, as discussed in the text. Pulse trimming at 193 nm has been verified, for example, using optoelectronic components. Instead of polarization rotation for several other forms of pulse trimming, the optoelectronic component can be used to manipulate the beam&apos;, e.g., one of the seeds within the single pulse of the laser beam. Thereby, for example, in the seed laser output, it is possible to obtain a photovoltaic material that only receives a low average power seed laser beam in accordance with various aspects of the disclosed embodiment. For example, by randomly and/or continuously changing the beam steering, for example within a single laser pulse, the angle of the power amplification stage can be "smeared" or filled with respect to each laser pulse. The result - the main pulse can have a divergence set, such as a dimming set determined by the M0/power amplification stage optical configuration rather than the seed laser characteristics. The laser system output can be obtained. The coherence of the laser pulse is greatly reduced. In accordance with various aspects of an embodiment of the disclosed subject matter, such as a planar cavity and a planar back mirror injected into a controlled amplifier laser system, suitable energy stability can be used, for example, for 〇.〇〇85Mj to 〇. 1324423 sub-pulse injection energy in the 99mJ range. This beam can, for example, be incident on the back mirror of the power amplifier stage to form an input coupler for the seed laser. This mirror has, for example, about 90% reflection and about 10% transmission. Therefore, the seed energy of the incident amplification stage cavity itself may be about one time smaller than the seed energy of the incident mirror. The use of a toroidal 5 cavity, particularly a partial reflection seed injection mechanism in accordance with various aspects of an embodiment of the disclosed subject matter, as discussed herein, can be much less expensive, such as about 80% of the injection amplification stage. Rmax and OC are strong in a fluorine-containing environment, but if polarization coupling is used, the coupling efficiency is still lower than the optimum coupling efficiency for some applications. For example, the appropriate architecture 10 for the ΜΟΡΑ configuration can be a 2-channel ("tick") solid-state seed laser, such as a third harmonic Nd:YLF MO system or a Nd:YAG system (eg, fine-tuned to 351 nm) with a pair Two 3-way XeF PA modules. Such a system, such as a main oscillator/power amplifier stage (such as a ring power oscillator amplification stage) configuration, can also be considered an effective alternative. This two-channel ΜΟΡΟ method is similar to the ΜΟΡΑ configuration, that is, there are 15 seeding power vibrators. A variety of bonding techniques can be used, such as ΜΟ coupling or seed injection mechanisms using polarization techniques. The efficiency of different ΡΟ/ΡΑ configurations was found relative to Em. It is better for MOP◦ or for three-way, but has not tested four-way. The pulse width (FWHM) is found to be about 17.3 nanoseconds, about 13.9 nanoseconds for a single pass, and about 12.7 nanoseconds for a three pass. Applicants examined whether the speckle pattern has an uncorrected angular offset, such as a Nd-YLF seed laser and a XeF power oscillator (e.g., a planar-plane polarization coupled configuration) in a single output beam. The relative timing adjustment between the XeF discharge and the seed laser pulse can also achieve angle adjustment and spatial adjustment for the maximum suppression of the weak line (353 106 1324423 nm) generated by the XeF gain. At the initial very low level of fluorescence at the amplification stage, the maximum intensity of the seed pulse is observed. This very low level of fluorescence (and therefore very low level gain) can be observed by the 雷 output, which can be boosted by the seed laser. Adjusting the seed light 5 earlier or later than about 20 nanoseconds before the amplification stage is emitted may result in an increase in the output of the weak line. In accordance with various aspects of an embodiment of the disclosed subject matter, manipulation of the beam, for example using a photovoltaic element, via a beam manipulation, for example using a Con〇ptics E_〇 deflector assembly matching the desired center wavelength of the target, can be performed in a single pulse period of 10 Achieve the direction of the seed beam. This E-0 component is similar to a CD reader and DVD reader using a dual argon ion beam of approximately 351 nm with an e 偏 deflector to regulate the beam. A deflection with a pointing coefficient of, for example, about 6 microradians/volts and having a capacitance of 5 〇 pF, or even a full milliradial requires only 17 volts. A drive circuit that can be used for 15 pulse trimming as shown schematically in Figure 40 (discussed in detail herein) can be used, e.g., with resistors in series to produce a controlled broom rate during a single pulse. The seed pulse time is approximately 15 nanoseconds, so the rate of rise is within the capabilities of the driver to achieve a reasonable pointing change such as 1 milliradian. Use pumping diode current about 3 amps and 4 amps to vibrating damper diode diode 'seed laser output laser light pulse beam pulse 20 can be judged as L2mJ, enough seeding gas discharge laser such as XeF gas discharge Laser. The speckle contrast mapping of the Μ Ο Ρ Ο configuration (average speckle interaction versus mirror tilt angle - input angle variation) is illustrated in Figure 75. Similar to the diagram in the oscillator configuration, only the seed laser pulse passes through the amplifier gain medium, but zooms in 107

丄d厶吁叶厶J 器増益媒質未被激化。舉例說明於第46圖之作圖590,也舉 例說明相當獨立脈衝之作圖592。類似作圖顯示於第74圖, 種子雷射脈衝只於P0,曲、線596為相當獨立脈衝,曲線594 為規度化標準差,曲線598為交互_。類似M〇p〇案例, 5需要約150_250微弧度傾斜來產生完全或大致上完全無交 互關係之散斑圖案、及約二相當獨立脈衝。但如前文說明, 無位移之開始散斑對比度可能較小,〇c反射係數只有因數 約1.25。如此根據所揭示之主旨之一實施例之各個態樣, 申請人發現例如ΜΟΡΟ單一脈衝散斑對比度顯著低於只有 10種子雷射的情況,原因在於由多個OC-Rmax-OC-Rmax反射 產生射線的靜態扇出,例如各反射係於所示分開略為不同 的角度出射,產生未經校準的散斑圖案,如第75圖之舉例 說明。 根據所揭示之主旨之一實施例之各個態樣,申請人相 15信此項發現可用來大為簡化所需相干性破壞體系,此處發 現需要較低相干性破壞程度。替代形成光電元件之操控及/ 或更快速調變(於使用二者的情況稱作為「混成塗抹」)的能 力,例如於一軸或二軸之整個發散空間(例如要求高頻裝 置)’可將種子雷射與P0略為未校準,例如於一軸或於另一 20軸或於二軸略為未校準來探勘此種將靜態射線展頻的效 應’所謂的鏡霍爾效應。然後例如只使用沿一轴或另一軸 或二轴的線性掃拂指向,例如於只有一轴的展頻情況該一 轴即為另一轴,E-0驅動電子元件的需求大減。於最簡單的 情況下’未校準展頻(光束扇出),所謂的鏡霍爾效應可用於 (S ) 108 /、有軸,於另一軸「單次塗抹」例如據此符號表示傾斜 鏡,不含AC形成混成塗抹。可應用更複雜的置換及可應用 此等相干性破壞技術的組合。 第43圖顯示理想高頻塗抹E_〇電壓信號疊置於斜坡式 5 (時間變化)E_〇直流電壓信號相關於種子脈衝被「塗抹」強 度之實例,例如塗抹入延遲光路或塗抹入放大增益媒質, 例如PA或p〇級或其它功率放大級。如第45圖之電路示意顯 不,斜坡電壓可藉Ε·〇電池電容的快速R C衰減來形成。由 於申睛人至目前為止所建立及測試的測試電路的某些限 10制,例如RF頻率極限、阻抗不匹配、E_〇負載電池電容不 匹配等’由「塗抹」電路所傳輸的實際電壓顯示於第44圖, 考慮探針負載等的困難可獲得最佳測定。約為所需RF頻率 的25% (例如約1〇〇 MHz而非4〇〇 mHz),及所需峰至峰電壓 的10% (例如約±2〇〇 kV而非±2000 kV)。塗抹電壓當然也可 15更為優化’但測試電路用於驗證種子光束「塗抹」入放大 器增益媒質用於降低相干性/散斑的效果,例如混成塗抹使 用時間變化之DC操控及AC調變二者,一者係於一軸,另一 者係於第二轴,二軸彼此正交。 申請人進行實驗測量測定並無斜坡電壓或AC電壓,2D 2〇散斑對比度整體為76.8%,且由橫軸改變至縱軸。單獨具有 斜坡電壓使用塗抹,總散斑對比度為29.4%再度於二轴中改 變。單獨具有AC電壓使用塗抹,總散斑對比度為59.9%再 度於二轴中改變。施加斜坡電壓及AC電壓,總散斑對比度 為28.1%且於二轴改變。係使用比第4〇圖更不優化的電路進 109 電路測試結果顯示於第 行’無法由測試取得,實際測試之 44圖。 申請人相信第45圖舉例顯示之更佳優化電路可更進一 步減少散斑對比度。第40圖之電路11〇〇a例如包括前述E 〇 5電池,具有E-0電池電容職及阻抗匹配電感器龜及 則步進升壓變壓器1120ae如圖所示也含括例如dc電源供 應器1122a其經由大型電阻器113〇a而充電電容器,以 及RF頻率產生器經由電阻器而連接至快速動作開關,a例二 電晶體1140a(實際上為此種電晶體並列之排組)。此外當 1〇開關1140a關閉時,電容器11263係經由小型電阻器ιΐ4域 電。 根據所揭示之主旨之一實施例之各個態樣,「塗抹」也 可於放大器增益媒質上游進行,例如塗抹無需於一個脈衝 時間以内完成則係藉傾斜放大上游之鏡,例如壓電可調式 15鏡,或此種塗抹用之壓力驅動夠快速,否則則使用光電或 聲光光束偏向器來達成。只有使用種子、只有使用〇c以及 使用OC加Rmax反射的結果似乎極為類似申請人諸如使用 傾斜鏡例如透過漫射鏡如第22圖所示測量所得結果。如同 先前之測量,可見OC-Rmax反射之仿〇puS特性可獲得由所 20產生的等數子脈衝而減少單脈衝散斑對比值。減少未經校 正的散斑圖案所需角度傾斜判定約為200-250微弧度,再度 係類似使用例如功率放大級下游之鏡所得的結果。 申請人使用準分子種子雷射例如大為衰減來模擬例如 193nm固態雷射之預期脈衝能,進行固態MO/功率放大級之 1324423 決疋特徵。但所產生的脈衝時間不匹配193nm固態雷射預期 的脈衝時間。申請人相信適當模擬種子脈衝時間,應牙進 一步降低M0/功率放大級操作所需的總種子雷射能。使用 脈衝修剪器例如被施加步進電壓之派克(p〇ckels)電池,例 5如疋時修剪準分子種子脈衝形狀之後期部分(1/4又電壓 =2.5kV),以及由於準分子種子雷射脈衝之上升時間及派克 電池的下降時間,故所達成的最短實際脈衝形狀約為9奈秒 FWHM及約15奈秒根至根。修剪種子脈衝之後期部分判定 為對M0/功率放大級輸出脈衝特徵例如強度不會造成實質 10影響,即使去除約25%種子脈衝能亦如此。但如本案所述, 脈衝修剪經由消除輸出脈衝之有最大相干性(最少散斑對 比度)部分而可進一步減少散斑。丄d厶 厶 厶 厶 厶 。 。 。 。 。 。 。 。 。 Illustrated in Figure 590 of Figure 46, a diagram 592 of a relatively independent pulse is also illustrated. A similar plot is shown in Figure 74. The seed laser pulse is only at P0, the curve and line 596 are fairly independent pulses, the curve 594 is the gauge standard deviation, and the curve 598 is the interaction _. Similar to the M〇p〇 case, 5 requires about 150_250 microradians to produce a speckle pattern that is completely or substantially completely free of cross-correlation, and about two fairly independent pulses. However, as explained above, the speckle contrast at the beginning of no displacement may be small, and the reflection coefficient of 〇c is only about 1.25. Thus, in accordance with various aspects of one embodiment of the disclosed subject matter, Applicants have discovered that, for example, single-pulse speckle contrast is significantly lower than in the case of only 10 seed lasers due to multiple OC-Rmax-OC-Rmax reflections. The static fan-out of the ray, e.g., each of the reflections, exits at a slightly different angle as shown, resulting in an uncalibrated speckle pattern, as exemplified in Figure 75. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicant believes that this finding can be used to greatly simplify the desired coherence disruption system, and here it has been found that a lower degree of coherence damage is required. The ability to replace the control and/or more rapid modulation of the optoelectronic component (referred to as "mixed smear" in the case of using both), such as the entire divergent space of one or two axes (eg, requiring high frequency devices) The seed laser and P0 are slightly uncalibrated, for example, one axis or the other 20 axes or slightly uncalibrated on the two axes to explore the effect of this static ray spreading phenomenon, the so-called mirror Hall effect. Then, for example, only a linear broom pointing along one or the other axis or two axes is used. For example, in the case of a spread spectrum with only one axis, the one axis is the other axis, and the demand for the E-0 driving electronic component is greatly reduced. In the simplest case, 'uncalibrated spread spectrum (beam fanout), the so-called mirror Hall effect can be used for (S) 108 /, with the axis, on the other axis "single application", for example, according to the symbol to indicate the tilting mirror, Does not contain AC to form a mixed smear. More complex permutations can be applied and combinations of such coherence destruction techniques can be applied. Figure 43 shows an example of an ideal high-frequency smear E_〇 voltage signal stacked on a ramp type 5 (time change) E_〇 DC voltage signal related to the intensity of the seed pulse being "smeared", such as smearing into a delayed light path or smearing into a magnification Gain media, such as PA or p〇 or other power amplifier stages. As shown in the circuit of Figure 45, the ramp voltage can be formed by the fast R C attenuation of the 电容·〇 battery capacitor. Due to certain limitations of the test circuit established and tested by Shen Shen people so far, such as RF frequency limit, impedance mismatch, E_〇 load battery capacitance mismatch, etc. 'The actual voltage transmitted by the "smear" circuit As shown in Fig. 44, the optimum measurement can be obtained in consideration of the difficulty of the probe load and the like. It is about 25% of the desired RF frequency (for example, about 1 〇〇 MHz instead of 4 〇〇 mHz), and 10% of the peak-to-peak voltage required (for example, about ±2〇〇 kV instead of ±2000 kV). The application voltage can of course be more optimized. 'But the test circuit is used to verify that the seed beam is "smeared" into the amplifier gain medium for reducing the effects of coherence/speckle, such as DC control and AC modulation for mixed application time changes. One is tied to one axis and the other is tied to the second axis, and the two axes are orthogonal to each other. The applicant conducted an experimental measurement to determine that there was no ramp voltage or AC voltage, and the 2D 2〇 speckle contrast was 76.8% overall and changed from the horizontal axis to the vertical axis. The smear was applied with a ramp voltage alone, and the total speckle contrast was 29.4% and changed again in the two axes. The smear was applied with an AC voltage alone, and the total speckle contrast was 59.9% and changed again in the two axes. The ramp voltage and AC voltage were applied, and the total speckle contrast was 28.1% and changed on two axes. Using a circuit that is less optimized than Figure 4, the results of the circuit test are shown in the first row, which cannot be obtained by the test. The Applicant believes that the better optimized circuit shown in Figure 45 can further reduce the speckle contrast. The circuit 11A of FIG. 40 includes, for example, the aforementioned E 〇 5 battery, has an E-0 battery capacitor and an impedance matching inductor turtle, and the step step-up transformer 1120ae also includes, for example, a dc power supply as shown. 1122a charges the capacitor via a large resistor 113A, and the RF frequency generator is connected to the fast action switch via a resistor, a second transistor 1140a (actually a row of such transistors arranged side by side). Further, when the switch 1140a is turned off, the capacitor 11263 is electrically connected via the small resistor ι4. According to various aspects of an embodiment of the disclosed subject matter, "smear" can also be performed upstream of the amplifier gain medium. For example, the smear does not need to be completed within one pulse time, and the mirror is amplified by tilting, for example, piezoelectric adjustable type 15 The mirror, or the pressure applied by this application, is fast enough, otherwise it is achieved using a photoelectric or acousto-optic beam deflector. The results of using only seeds, using only 〇c, and using OC plus Rmax seem to be very similar to those of applicants such as those measured using a tilting mirror such as a diffusing mirror as shown in Fig. 22. As with the previous measurements, it can be seen that the pu-spot puS characteristic of the OC-Rmax reflection can obtain an equal number of sub-pulses generated by the 20 to reduce the single-pulse speckle contrast value. The angle tilt required to reduce the uncorrected speckle pattern is determined to be about 200-250 microradians, again similar to the results obtained using a mirror such as the downstream of the power amplifier stage. Applicants use excimer seed lasers such as large attenuation to simulate the expected pulse energy of, for example, a 193 nm solid state laser, and perform the 1324423 feature of the solid state MO/power amplification stage. However, the resulting pulse time does not match the expected pulse time of a 193 nm solid state laser. Applicants believe that the appropriate simulated seed pulse time should further reduce the total seed laser energy required for M0/power amplification stage operation. Using a pulse trimmer, for example, a pikecks cell to which a stepping voltage is applied, for example, when the sputum is trimmed, the excimer seed pulse shape is later (1/4 volts = 2.5 kV), and due to the excimer seed ray The rise time of the pulse and the fall time of the Parker battery, so the shortest actual pulse shape achieved is about 9 nanoseconds FWHM and about 15 nanoseconds root to root. The subsequent phase of the pruning seed pulse is determined to have no substantial effect on the M0/power amplification stage output pulse characteristics such as intensity, even if about 25% of the seed pulses are removed. However, as described in this case, pulse trimming can further reduce speckle by eliminating the portion of the output pulse that has the greatest coherence (minimum speckle contrast).

根據所揭示之主旨之一實施例之各個態樣,預期可以 類似種子脈衝時間的時間規度來施加時間變化電壓,例如 15 經由施加DC電壓位準直到觸發為止,此時高電廢可被短路 接地’例如如第40圖示意顯示為單一電晶體1130之一快速 MOSFET堆疊來短路接地《施加電壓及種子雷射脈衝形狀 之作圖顯示於第19圖。於E-0電池端子與電壓供應器間設置 一串聯電阻器,可用來控制例如施加於E-0電池的電壓形 20 狀。與例如200歐姆電阻器串聯的E-0電池之5〇pF電容,獲 得初斜率約1011微弧度/秒。跨E-0電池的電壓如第19圖可 知,於類似種子脈衝時間由DC位準降至接近零。經由改變 Ε·0電池脈衝器與種子雷射間之相對時間,例如可改變於種 子脈衝期間出現的指標掃拂量。此外,可改變初DC電;i 111 值’來於種子脈衝期間執行或多或少的指標掃拂。申請人 已經刪試此種快速指標能力,例如只使用種子雷射,只從 〇c反射測量,因此並無來自於0C及Rmax的多次反射的 〇PuS影響,也無來自於ΜΟΡΟ操作的影響。未將e-ο電池與 5種子脈衝間的相對時序最佳化,申請人對兩者間之一段時 間範圍捕捉散斑圖案。申請人將三種不同DC電壓位準施加 於匕〇電池,來改變最大可行之指標斜率。結果顯示於約57 奈秒相對時間,有最小散斑強度規度化標準差。於種子脈 衝期間若無任何角向位移,於小和大之相對時間值,於低 於及阿於57奈秒之散斑對比度高。如此與申請人於靜態測 5式期間發現之數值有交互關聯 。例如當相對時序讓E-0電池 電壓斜率重合種子脈衝電壓斜率時,單一脈衝的散斑圖案 於垂直方向以驚人且滿意的方式塗抹。 如目前瞭解,對ASE要求的極限相信可以約5uJ種子雷 15射旎及以下來達成’例如以長的種子脈衝形狀來達成。飽 和測試結果顯示,可達成輸出能,當使用短脈衝時間之種 子脈衝時,只要3 75uJ種子雷射能即可達成相等ase上限位 準。可能獲得種子脈衝時間的進一步縮短,結果獲得又更 小的種子能需求。但此種種子能的進一步縮短可能並非必 2〇要,原因在於申請人須使用約10uJ固態193nm種子雷射能。 更短的脈衝時間已經證實為困難,原因在於可使用二級式 迷你OPuS,例如種子雷射級與功率放大級間使用二級式迷 你OPuS’要求各個迷你〇PuS之延遲長度係大於種子雷射脈 衝時間’所得延伸的脈衝約為10奈秒FWHM。 112 1324423 可將對比度值規度化成為最大值,來評估對比度百分 比的降低’例如藉動態指標位移獲得對比度百分比的降 低。於最佳相對時間點,發現散斑對比度降至其峰值之約 40%。使用等數獨立脈衝之1/#假設,資料可用來導出達 5成此種散斑對比度降低程度所需的脈衝數目。於最佳相對 時序,3kV施加於E-0電池,發現對比度降低等於6脈衝。 又更高電壓位準(於單一脈衝期間較大指標位移)可改良此 結果。申請人以種子雷射脈衝進入功率放大級腔來進行類 似的測量,但放大級電極間並無放電,發現於Xep腔中來自 10 於OPuS效應之由OC及Rmax的反射,光束單獨展頻,指出 最大散斑對比度降低達效應的預測量(N=1.56具有20% 0C ’獲得1/7^=0.80。如此70%對比度變56%)。即使初散斑 對比度低,當增加來自於全部XeF腔的二次反射時,模糊效 應顯然不變。散斑減少相當脈衝仍然約為6。 15 申請人使用放大級腔電極放電進行類似的測量,暗示 於放大級腔内部的放大效應,如第17圖顯示,指出經由種 子光束掃拂對散斑減少造成影響。使用此種組態,當如同 MO/放大級操作時,發現該效應恰超過所產生的相當脈衝 數至約一半’換言之約為3’同時也發現尖峰散斑對比度大 2〇 為降低’而無模糊現象。先前測量MO/放大級操作,顯示 減少相當於約6脈衝。此等結果顯示減少相當於8脈衝。申 請人懷疑放大級腔例如於平面-平面腔可區別偏抽光線 角,如此送至腔中的角度喷灑無法全部皆同等放大(例如可 使用真正安定腔例如採用彎曲OC及彎曲Rmax來校正)。另 113 1324423 -項說明為並非全部種子脈衝皆參與放大級特徵的控制。 可能只有種子脈衝的HM5奈秒脈衝時間的前5奈秒可控制 放大級,如此E.W拂不夠絲於較小視窗㈣發生。例如 也可經由使用較小電阻器及較短掃拂來校正。 :5 現在參考第47圖,以方塊圖形式示意顯示雷射處理系 統以及例如LTPS^bSLS雷射退火系統用來於低溫於玻璃 魏上轉及再結晶非晶财、㈣聊包括諸如此處所 狀雷射线20、及光㈣統1272來將雷射Μ輸itj光脈衝 光束由約5x 12毫米轉成1〇微米或約10微米χ39〇奈米或更長 10細光束用來處理工作件,例如固定於工作件操縱平台1274 上的工作件。 熟諳技藝人士須瞭解本文揭示一種裝置及方法包含一 種線窄化脈衝式準分子或分子氟氣體放電雷射系統包 含:一種子雷射振盪器,其產生一輸出包含一雷射輸出脈 15衝光束,包含:一第一氣體放電準分子或分子氟雷射腔; 丨於一第一振盪器腔内部之一線窄化模組;—雷射放大級含 . 有一放大增益媒質於一第二氣體放電準分子或分子氟雷射 : 腔,其接收該種子雷射振盪器的輸出,且放大該種子雷射 - 振盪器的輸出來形成包含一雷射輸出脈衝光束之雷射系統 20 輸出,包含:一環形功率放大級級。該環形功率放大級包 含可能包含一部分反射光學元件之一注入機構,透過該注 入機構’該種子雷射振盪器輸出光束被注入環形功率放大 級。該環形功率放大級包含一領結回路或一跑馬場回路。 環形功率放大級可將該種子雷射振盪器腔的輸出放大至脈 114 .5 ) 衝能2lmJ,或&gt;2mJ,或&gt;5mJ,或21〇mJ,或215mJ。該雷 射系統可於至多12kHz或22至$8kHz或24至S6kHz之輸出脈 衝重複率操作。該裝置及方法可包含一種寬頻脈衝式準分 子或分子氟氣體放電雷射系統,包含:一種子雷射振盪器, 5其產生一輪出包含一雷射輸出脈衝光束,包含:一第一氣 體放電準分子或分子氟雷射腔;一雷射放大級含有一放大 增益媒質於一第二氣體放電準分子或分子氟雷射腔,其接 收該種子雷射振盪器的輸出,且放大該種子雷射振盪器的 輸出來形成包含一雷射輸出脈衝光束之雷射系統輸出,包 1〇含.一壌形功率放大級。環形功率放大級可包含一包含一 部分反射光學元件之-注入機構,種子雷射振蘯器輸出光 束係經由該機構而注入環形功率放大級。環形功率放大級 可包含一領結形回路或一跑馬場形回路。該裝置及方法可 ^含-相干性破壞機構係、位於該種子雷射振|器與該放大 15器增益媒質間。該相干性破壞機構包含一光學延遲光路, 其具有延遲長度比於該種子雷射振盈器之雷射輸出脈衝光 束中之财、衝的相干性長度更長。該光學延遲光路不會實 質上延遲於該種子雷射振盡器之雷射輸出脈衝光束令之該 20光束長度,但不會如同申請人之受讓人所出售的4X0PUS 中發生形成疊置脈衝’各個脈衝間有數米長度的延遲光 路’也顯著增加脈衝的Tis及其時間長度及空間長度。該相 ^ 生破壞機構包含第-長度之—第—光學延遲光路及第二 度之一第二光學延遲光路,於該第-光學延遲光路及第 〜光學延遲光路各自之光學延遲係超越於該種子雷射㈣ 115 器之雷射輸出脈衝光束中之—脈衝之相干性長度,但實質 上不會增加脈衝長度,以及該第—延遲光路^與該第: 延遲光路長度之差值係超越該脈衝之相干性長度。該裝置 及方法可包含-種線窄化脈衝式準分子或分子^驗放電 雷射系統,包含:-種子雷射振盈器,其產生_輸出包含 -雷射輸出脈衝光束,包含:—第—氣體放電準分子或分 子氟雷射腔;於-第-振堡器腔内部之—線窄化模組;一 雷射放大級含有-放大增益媒料-第二氣黯電準分子 或分子氟f射腔,其接收鋪子雷射的輸出,且放 大該種子雷射振盈器的輸出來形成包含_雷射輸出脈衝光 束之雷射⑽輸出,包含:-環形功率放大級;介於該種 子雷射振盪器與該環形功率放大級間之一相干性破壞機 構。該環形功率放大級包含—包含部分反射光學元件之注 入機構,種子雷射振盪器輸出光束經由該注入機構而注入 %形功率放大級。相干性破壞機構可包含一光學延遲光 路1光路具有延遲長度比於種子雷射振㈣雷射輸出脈 衝光束中之-輯之相干性長度更長。該光學延遲光路不 會實質上增加於種子雷射振盈器雷射輸出脈衝光束中之該 脈衝長度。相干性破壞機構包含第__長度之第—光學延遲 光路及第二長度之第二光學延遲光路,於第—延遲光路及 第二延遲光路各自之光學延遲係超過於種子雷射振盈器雷 射輸出脈衝光束之一脈衝之相干性長度,但不會實質上増 加脈衝長度,以及第一延遲光路與第二延遲光路之長度差 異係超過該脈衝之相干性長度。相干性破壞機構可包 1324423 相干性破壞光學延遲結構’可由一單一輸入脈衝循序產生 多個子脈衝’其中各個子脈衝由隨後的子脈衝延遲超過該 脈衝光之相干性長度。該裝置及方法可包含一種寬頻脈衝 式準分子或分子氟氣體放電雷射系統,包含:一種子雷射 5振盪器,其產生一輸出包含一雷射輸出脈衝光束,包含: 一第一氣體放電準分子或分子氟雷射腔;一雷射放大級含 有一放大增盈媒質於一第一氣體放電準分子或分子氟雷射 腔’其接收該種子雷射振盪器的輸出,且放大該種子雷射 振盪器的輸出來形成包含一雷射輸出脈衝光束之雷射系統 1〇輸出,包含:一環形功率放大級;介於該種子雷射振盪器 與該環形功率放大級間之一相干性破壞機構。該環形功率 放大級包含一包含部分反射光學元件之注入機構,種子雷 射振盪器輸出光束經由該注入機構而注入環形功率放大 級。相干性破壞機構可包含一光學延遲光路,該光路具有 15延遲長度比於種子雷射振盪器雷射輸出脈衝光束中之一脈 衝之相干性長度更長。該光學延遲光路不會實質上增加於 種子雷射振盪器雷射輸出脈衝光束中之該脈衝長度。相干 性破壞機構包含第一長度之第一光學延遲光路及第二長度 之第二光學延遲光路,於第一延遲光路及第二延遲光路各 20自之光學延遲係超過於種子雷射振盪器雷射輸出脈衝光束 之一脈衝之相干性長度,但不會實質上增加脈衝長度,以 及第一延遲光路與第二延遲光路之長度差異係超過該脈衝 之相干性長度。相干性破壞機構可包含一相干性破壞光學 延遲結構,可由一單一輸入脈衝循序產生多個子脈衝其 117 中各個子脈衝由隨後的子脈衝延遲超過該脈衝光之相干性 長度。該裝置及方法可包含-種脈衝式準分子或分子氣氣 體放電雷射系統,包含.一種子雷射振盪器,其產生一輸 出包含一雷射輸出脈衝光束,包含:一第—氣體放電準分 子或为子氟雷射腔,於一第一振盈器腔内部之一線窄化模 ’’·且,一雷射放大級含有一放大增益媒質於—第二氣體放電 準分子或分子氟雷射腔,其接收該種子雷射振盪器的輸 出,且放大該種子雷射振盪器的輸出來形成包含一雷射輸 出脈衝光束之雷射系統輸出;於該種子雷射振盪器與該雷 10射放大級間之一相干性破壞機構包含一光學延遲光路超過 該種子雷射輸出光束脈衝之相干性長度。該放大級可包含 一雷射振盪腔。放大級可包含一光路界定通過該放大增益 媒質之固定通過次數。該相干性破壞機構可包含一光學延 遲光路,該光路具有延遲長度比於種子雷射振盪器雷射輪 15出脈衝光束中之一脈衝之相干性長度更長。該光學延遲光 路不會實貝上增加於種子雷射振盪器雷射輸出脈衝光束中 之該脈衝長度。相干性破壞機構包含第一長度之第一光學 延遲光路及第二長度之第二光學延遲光路,於第一延遲光 路及第二延遲光路各自之光學延遲係超過於種子雷射振盪 20器雷射輸出脈衝光束之一脈衝之相干性長度,但不會實質 上增加脈衝長度,以及第一延遲光路與第二延遲光路之長 度差異係超過該脈衝之相干性長度。 申請人已經透過計算模擬散斑的減少係與單一氣體放 電(例如ArF準分子或KrF準分子)雷射系統輸出脈衝内部之 相干性長度位置有關’此種脈衝已經通過由申請人之受讓 人希瑪公司所製造的雷射系統之二opus脈衝延伸器,用來 脈衝延伸,來增加總積分頻譜(Tis),俾減少使用來自於雷 射系統例如光刻術工具掃描器照明器之輸出光對工具中的 5光學70件之雷射輸出脈衝之尖峰強度的影響。串聯兩個 OPuS,第一個具有延遲光路足夠將輸出脈衝的由約186 奈秒延長至約47.8奈秒,第二個〇PuS將該脈衝進一步延伸 至約83.5奈秒。 始於未經延伸的脈衝,申請人將該脈衝平分成為約等 ⑺於相干性長度之多個部分,假設FWHM頻寬為〇 1〇卿、及 相干性長度函數為高斯形狀。脈衝延伸對通過第一〇1&gt;1^的 脈衝之相干性長度部分的影響,係顯示延伸脈衝的第一強 度駝峰係由主脈衝之相干性長度部分所組成,第二強度駝 峰係由主脈衝之相干性長度部分疊置第一子脈衝之相干性 15長度部分所組成。延伸脈衝之第三強度駝峰為第一及第二 子脈衝疊置的結果。注意兩個駝峰個別的相干性長度部 分’申請人觀察到相干性長度部分的多個版本(包括子脈衝) 維持充分分開,不會互相干擾。 • 於通過第二OPuS後’經過延伸之脈衝之模擬強度(再度 •只注意經延伸脈衝之前三個駝峰之内容物),於模擬中(第二 鸵峰下方之貢獻係如前述來自於原先未經延遲的脈衝,如 前述來自於第一OPuS之第一延遲脈衝,以及來自於第二 opus之第一延遲脈衝),申請人觀察到於本第二脈衝中多 個相干性長度部分版本彼此極為接近。係由於第一〇Pus之 119 1324423 延遲約18奈秒’第二〇pus之延遲約22奈秒所造成。如此只 有約4奈秒分開相干性長度部分之多個版本,仍然不夠接近 不會彼此干擾。 於第三駝峰下,申請人觀察到來自於第一OPuS之第一 5延遲脈衝、來自於第一OPuS之第二延遲脈衝、來自於第二 OPuS之第一延遲脈衝、以及來自於第二〇puS之第二延遲脈 衝之貝獻。申睛人觀察到若干相關相干性部分之分開比較 於藉兩個OPuS延伸之脈衝強度圖中的第三駝峰之其它分 開更大。此種分開的增加係由於通過各個〇PuS兩次來回係 10等於約36奈秒=18*2及約44奈秒=22*2。如此相干性長度間 的分開係隨著各次來回而成長。 申請人獲得結論,對如本案所述之迷你0puS ,延遲等 於一個相干性長度之單一迷你0PUS將形成一串脈衝,而於 約4相干性長度值之後消失。如此,申請人判定為了讓單一 15逑彳小〇PuS為有效,兩個主OPuS不可導致任何子相干性長度 彼此係於4相干性長度以内。但申請人於模擬時也觀察到, OPuS確實會造成如此,但只有邊際情況。第三駝峰及更大 駝峰之相干性長度間的分開夠大。申請人相信M 〇與放大增 益媒質間單一迷你0PuS的影響接近完全預期的相干性破 20壞效應。M〇與PA間的第二迷你OPuS不會於兩個主OPua 分交互作用。當將單一迷你OPuS與二常規0PuS組合時,未 以脈衝駝峰之相關相干性長度部分填補之空白空間愈來愈 稀少,第一可能太過稀少。根據本發明之一實施例之態樣, 申請人提示當架設迷你OPuS時,常規〇puS延遲長度之協力In accordance with various aspects of an embodiment of the disclosed subject matter, it is contemplated that a time varying voltage can be applied similar to the time scale of the seed pulse time, for example 15 by applying a DC voltage level until triggered, where high power waste can be shorted Grounding is shown, for example, as shown in Fig. 40 as a fast MOSFET stack of a single transistor 1130 for short circuit grounding. The plot of applied voltage and seed laser pulse shape is shown in FIG. A series resistor is provided between the E-0 battery terminal and the voltage supply to control, for example, the voltage shape applied to the E-0 battery. The 5 〇 pF capacitor of an E-0 battery in series with a 200 ohm resistor results in an initial slope of about 1011 microradians per second. The voltage across the E-0 battery is as shown in Fig. 19, and the pulse timing is reduced from the DC level to near zero at a similar seed pulse time. By varying the relative time between the Ε·0 battery pulser and the seed laser, for example, the amount of index bounce that occurs during the seed pulse can be changed. In addition, the initial DC power can be varied; i 111 value&apos; to perform more or less indicator sweeps during the seed pulse. The applicant has already tested the ability to test such rapid indicators, for example using only seed lasers, only from 〇c reflection measurements, so there is no 〇PuS effect from multiple reflections of 0C and Rmax, and no effect from ΜΟΡΟ operation. . The relative timing between the e-o battery and the 5 seed pulse was not optimized, and the applicant captured the speckle pattern for a period of time between the two. Applicants applied three different DC voltage levels to the helium battery to change the slope of the most feasible indicator. The results are shown in the relative time of about 57 nanoseconds with a minimum speckle intensity gauge standard deviation. If there is no angular displacement during the seed pulse, the relative time value between small and large is higher than that of the hypothyroidism at 57 nm. This is related to the value found by the applicant during the static test. For example, when the relative timing causes the E-0 cell voltage slope to coincide with the seed pulse voltage slope, the speckle pattern of a single pulse is applied in an astonishing and satisfactory manner in the vertical direction. As is currently understood, the limits required for ASE are believed to be achieved by approximately 5 uJ seed ray 15 and below, for example, in the form of long seed pulses. The saturation test results show that the output energy can be achieved. When the seed pulse of short pulse time is used, the equivalent ase upper limit can be achieved by only 3 75uJ seed laser energy. It is possible to obtain a further shortening of the seed pulse time, resulting in a smaller seed energy requirement. However, further shortening of such seed energy may not be necessary because the applicant must use about 10 uJ of solid 193 nm seed laser energy. Shorter pulse times have proven difficult because of the use of two-stage mini OPUs, such as the use of two-stage mini-OPuS between the seed laser stage and the power amplifier stage. The delay length of each mini-PuS is greater than the seed laser. The pulsed time of the resulting pulse is approximately 10 nanoseconds FWHM. 112 1324423 The contrast value can be normalized to a maximum value to estimate the decrease in contrast percentage', for example, by reducing the percentage of contrast by dynamic index displacement. At the optimal relative time point, the speckle contrast was found to fall to about 40% of its peak value. Using the 1/# assumption of an equal number of independent pulses, the data can be used to derive the number of pulses required to achieve this reduction in speckle contrast by up to 50%. At the optimal relative timing, 3kV was applied to the E-0 battery and the contrast reduction was found to be equal to 6 pulses. A higher voltage level (larger index displacement during a single pulse) can improve this result. Applicants used a seed laser pulse to enter the power amplifier stage for similar measurements, but there was no discharge between the amplifier stages. It was found in the Xep cavity that the reflection from OC and Rmax from the OBuS effect was separately spread. It is pointed out that the maximum speckle contrast reduction is up to the predicted amount of effect (N=1.56 has 20% 0C 'obtained 1/7^=0.80. Thus 70% contrast becomes 56%). Even if the initial speckle contrast is low, the blur effect is apparently unchanged when the secondary reflection from all XeF cavities is increased. The speckle reduction is still quite a pulse of about 6. 15 Applicants used amplifying stage cell discharges for similar measurements, suggesting an amplification effect inside the amplification stage, as shown in Figure 17, indicating the effect of speckle reduction via the seed beam broom. With this configuration, when operating as an MO/amplifier stage, it is found that the effect is just over the equivalent number of pulses generated to about half 'in other words, about 3'. It is also found that the peak speckle contrast is large 2 〇 is reduced' without Blurring. Previously measured MO/amplifier stage operation, the display reduction was equivalent to approximately 6 pulses. These results show a reduction of equivalent to 8 pulses. Applicants suspect that the magnifying cavity, for example in a plane-plane cavity, can distinguish the ray angles, so that the angular sprays sent to the cavity cannot all be equally amplified (for example, a true stabilizing cavity can be used, for example, using curved OC and bending Rmax). . Another 113 1324423 - item describes the control that not all seed pulses participate in the amplification stage feature. It is possible that only the first 5 nanoseconds of the HM5 nanosecond pulse time of the seed pulse can control the amplification stage, so that E.W拂 is not enough for the smaller window (4) to occur. For example, it can also be corrected by using a smaller resistor and a shorter broom. :5 Referring now to Figure 47, a laser processing system and, for example, an LTPS^bSLS laser annealing system are used in block diagram form for low temperature and glass reversion and recrystallization of amorphous materials, (4) including, for example, Ray ray 20, and light (4) system 1272 to convert the laser beam of the itj light pulse from about 5 x 12 mm to 1 〇 micron or about 10 micron χ 39 〇 nanometer or longer 10 thin beam for processing the workpiece, for example A work piece that is fixed to the work piece manipulation platform 1274. Those skilled in the art will appreciate that a device and method disclosed herein includes a line narrowing pulsed excimer or molecular fluorine gas discharge laser system comprising: a sub-laser oscillator that produces an output comprising a laser output pulse 15 ray beam The method comprises: a first gas discharge excimer or a molecular fluorine laser cavity; a line narrowing module inside a first oscillator cavity; - a laser amplification stage comprising: an amplification gain medium for discharging a second gas An excimer or molecular fluorine laser: a cavity that receives the output of the seed laser oscillator and amplifies the output of the seed laser-oscillator to form a laser system 20 output comprising a laser output pulse beam comprising: A ring power amplification stage. The toroidal power amplification stage includes an injection mechanism that may include a portion of the reflective optical element through which the output beam of the seed laser oscillator is injected into the toroidal power amplification stage. The ring power amplifier stage includes a bow tie loop or a racetrack loop. The ring power amplifier stage amplifies the output of the seed laser oscillator cavity to a pulse of 114. 5 ), 2 lmJ, or &gt; 2 mJ, or &gt; 5 mJ, or 21 〇 mJ, or 215 mJ. The laser system can operate at output pulse repetition rates of up to 12 kHz or 22 to $8 kHz or 24 to S6 kHz. The apparatus and method can include a broadband pulsed excimer or molecular fluorine gas discharge laser system, comprising: a sub-laser oscillator, 5 which produces a round of a laser beam comprising a laser output, comprising: a first gas discharge An excimer or molecular fluorine laser cavity; a laser amplification stage comprising an amplification gain medium in a second gas discharge excimer or molecular fluorine laser cavity, receiving the output of the seed laser oscillator, and amplifying the seed lightning The output of the oscillator is used to form a laser system output comprising a laser output pulse beam, and a 功率-shaped power amplification stage is included. The toroidal power amplification stage can include an injection mechanism including a partially reflective optical element through which the seed laser oscillator output beam is injected into the toroidal power amplification stage. The ring power amplifier stage can include a bow tie loop or a racetrack loop. The apparatus and method can include a coherent destruction mechanism between the seed laser oscillator and the amplifying medium. The coherence disrupting mechanism includes an optically retarded optical path having a length of delay that is longer than a length of coherence in the laser output pulse beam of the seed laser oscillator. The optical delay optical path is not substantially delayed by the laser output pulse beam of the seed laser oscillating device to make the 20-beam length, but does not form a stacked pulse as in the 4X0PUS sold by the applicant's assignee. 'The delayed optical path with a length of several meters between each pulse' also significantly increases the Tis of the pulse and its length and space length. The phase destruction mechanism includes a first-length optical optical optical path and a second optical optical optical path, and an optical delay of each of the first optical optical path and the optical optical optical path exceeds Seed laser (4) 115 laser output pulse beam - the coherence length of the pulse, but does not substantially increase the pulse length, and the difference between the first delay optical path and the length of the delayed optical path exceeds the The coherence length of the pulse. The apparatus and method can include a line narrowing pulsed excimer or a molecularly charged discharge laser system comprising: a seed laser oscillator, which produces an output-containing laser output pulse beam comprising: - - a gas discharge excimer or a molecular fluorine laser cavity; a line narrowing module inside the - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - a fluorine f-cavity that receives the output of the shelf laser and amplifies the output of the seed laser oscillator to form a laser (10) output comprising a laser output pulse beam comprising: - a ring power amplification stage; A coherent destruction mechanism between the seed laser oscillator and the ring power amplification stage. The ring power amplification stage includes an injection mechanism including a partially reflective optical element through which the seed laser output beam is injected into the % power amplifier stage. The coherence disruption mechanism can include an optical delay optical path 1 with an optical path having a longer delay length than the seed laser (four) laser output pulse beam. The optical delay optical path does not substantially increase the length of the pulse in the laser output of the seed laser oscillator. The coherence destruction mechanism includes a first optical delay optical path of a first __ length and a second optical delayed optical path of a second length, wherein an optical delay system of each of the first delay optical path and the second delayed optical path exceeds a seed laser oscillator The coherence length of one pulse of the output pulsed beam is emitted, but the pulse length is not substantially increased, and the difference in length between the first delayed optical path and the second delayed optical path exceeds the coherence length of the pulse. The coherence disrupting mechanism may include 1324423 coherence-damaging optical delay structure 'a plurality of sub-pulses may be sequentially generated by a single input pulse' wherein each sub-pulse is delayed by a subsequent sub-pulse beyond the coherence length of the pulsed light. The apparatus and method can include a broadband pulsed excimer or molecular fluorine gas discharge laser system comprising: a sub-laser 5 oscillator that produces an output comprising a laser output pulse beam comprising: a first gas discharge An excimer or molecular fluorine laser cavity; a laser amplification stage comprising an amplification gain medium in a first gas discharge excimer or molecular fluorine laser cavity 'which receives the output of the seed laser oscillator and amplifies the seed The output of the laser oscillator forms a laser system 1 〇 output comprising a laser output pulse beam comprising: a ring power amplification stage; a coherence between the seed laser oscillator and the ring power amplification stage Destroy the institution. The toroidal power amplification stage includes an injection mechanism including a partially reflective optical element through which the output beam of the seeded laser oscillator is injected into the toroidal power amplification stage. The coherence disrupting mechanism can include an optical delay optical path having a delay length that is longer than a coherence length of one of the pulsed laser output laser beam of the seed laser oscillator. The optical delay optical path does not substantially increase the length of the pulse in the laser output pulse beam of the seed laser oscillator. The coherence destruction mechanism includes a first optical delay optical path of a first length and a second optical delay optical path of a second length, wherein the optical delay system of the first delayed optical path and the second delayed optical path 20 exceeds the seed laser oscillator The coherence length of one pulse of the output pulsed beam is emitted, but the pulse length is not substantially increased, and the difference in length between the first delayed optical path and the second delayed optical path exceeds the coherence length of the pulse. The coherence disrupting mechanism can include a coherent-damaging optical delay structure that can sequentially generate a plurality of sub-pulses from a single input pulse. Each of the sub-pulses 117 is delayed by a subsequent sub-pulse beyond the coherence length of the pulsed light. The apparatus and method can include a pulsed excimer or molecular gas gas discharge laser system, comprising: a sub-laser oscillator that produces an output comprising a laser output pulse beam comprising: a first gas discharge The molecule is a sub-fluorine laser cavity, and a narrowing mode is formed inside a first vibrating cavity. The laser amplification stage contains an amplification gain medium for the second gas discharge excimer or molecular fluorine a cavity that receives an output of the seed laser oscillator and amplifies an output of the seed laser oscillator to form a laser system output including a laser output pulse beam; the seed laser oscillator and the mine 10 One of the coherent destruction mechanisms between the amplification stages includes an optically retarded optical path that exceeds the coherence length of the seed laser output beam pulse. The amplification stage can include a laser oscillating cavity. The amplification stage can include an optical path defining the number of fixed passes through the amplification gain medium. The coherence disrupting mechanism can include an optically retarded optical path having a delay length that is longer than a coherence length of one of the pulsed beams of the seed laser oscillator. The optical delay path is not added to the pulse length of the seed laser oscillator laser output pulse beam. The coherence destruction mechanism includes a first optical delay optical path of a first length and a second optical delay optical path of a second length, wherein an optical delay of each of the first delayed optical path and the second delayed optical path exceeds a laser of a seed laser oscillation of 20 The length of the coherence of one of the pulsed beams is output, but the pulse length is not substantially increased, and the difference in length between the first delayed optical path and the second delayed optical path exceeds the coherence length of the pulse. Applicants have calculated that the reduction of simulated speckle is related to the position of the coherence length inside the output pulse of a single gas discharge (eg, ArF excimer or KrF excimer). The pulse has been passed by the assignee of the applicant. The second opus pulse extender of the laser system manufactured by Xima is used for pulse stretching to increase the total integrated spectrum (Tis) and to reduce the output of light from laser illuminators such as lithography tool scanner illuminators. The effect of the peak intensity of the laser output pulse of 5 optics in the tool. Two OPuS are connected in series, the first having a delayed optical path sufficient to extend the output pulse from about 186 nanoseconds to about 47.8 nanoseconds, and the second 〇PuS further extending the pulse to about 83.5 nanoseconds. Starting from the unexpanded pulse, the applicant bisects the pulse into approximately equal parts (7) over the length of the coherence length, assuming a FWHM bandwidth of 〇1〇, and a coherence length function of Gaussian shape. The influence of the pulse extension on the coherence length portion of the pulse passing through the first 〇1&gt;1^ indicates that the first intensity hump of the extended pulse is composed of the coherence length portion of the main pulse, and the second intensity hump is dominated by the main pulse. The coherence length partially overlaps the coherence 15 length portion of the first sub-pulse. The third intensity hump of the extension pulse is the result of the first and second sub-pulse overlays. Note the individual coherence length portions of the two humps. Applicants observed that multiple versions of the coherence length portion (including sub-pulses) remain sufficiently separate and do not interfere with each other. • After passing the second OPuS, the simulated intensity of the extended pulse (again • only pay attention to the contents of the three hump before the extended pulse), in the simulation (the contribution below the second peak is as previously mentioned from the original The delayed pulse, as described above for the first delayed pulse from the first OPuS, and the first delayed pulse from the second opus, Applicant observed that the plurality of coherence length versions in the second pulse are extremely different from each other Close. This is caused by a delay of approximately 18 nanoseconds for the first 〇Pus 119 1324423 and a delay of approximately 22 nanoseconds for the second 〇pus. So only about 4 nanoseconds separate multiple versions of the coherence length portion, still not close enough to not interfere with each other. Under the third hump, the applicant observes a first 5 delay pulse from the first OPuS, a second delay pulse from the first OPuS, a first delay pulse from the second OPuS, and a second delay. The second delay pulse of puS. Shen Shenren observed that the separation of several related coherence parts was greater than the other separation of the third hump in the pulse intensity map extended by the two OPuS. This separate increase is due to two round trips through each of the 〇PuS 10 equal to about 36 nanoseconds = 18 * 2 and about 44 nanoseconds = 22 * 2. The separation between the lengths of such coherence increases with each round trip. The Applicant has concluded that for a mini 0 puS as described in this case, a single mini 0PUS with a delay equal to one coherence length will form a series of pulses that disappear after about 4 coherence length values. Thus, Applicants have determined that in order for a single 15 逑彳 PuS to be effective, the two main OPuS must not cause any sub-coherence lengths to be within 4 coherence lengths of each other. However, the applicant also observed during the simulation that OPuS did cause this, but only marginal conditions. The separation between the coherence lengths of the third hump and the larger hump is large enough. Applicants believe that the impact of a single mini-OpuS between M〇 and amplifying the gain medium is close to the fully expected coherence breakout 20 bad effect. The second mini OPuS between M〇 and PA does not interact with the two primary OPua points. When a single mini OPuS is combined with two conventional 0PuS, the blank space that is not partially filled with the relevant coherence length of the pulse hump is increasingly rare, and the first may be too rare. According to an aspect of an embodiment of the present invention, the applicant suggests that when the mini OPUS is set up, the conventional 〇puS delay length is combined.

120 1324423 變化包括屬於雷射系統之一部分或架設於常規迷你〇PuS 下游,例如架設於光刻術工具本身内部。申請人相信此種 迷你OPuS可略為填補脈衝時間的波谷,結果導致Tis增加, 如此允許二主要OPuS中之一者之延遲長度的減少,來獲得 5 更佳之總相干性長度分開。 根據所揭示之主旨之一實施例之各個態樣,對例如 120-180W或更高雷射系統例如有兩個並列放大器增益媒質 腔的極高功率放大級腔之某些效能要求。其產生線性偏振 (&gt;98%)。各放大級須產生且可於例如193mn ArF波長存活 10 240W平均輸出能,但預期也可使用&gt;6〇w之規格,或於較 長波長時較不苛刻,例如KrF之248及XeF之351或XeCl之 318,但F2於157nm時甚至更苛刻。一個實施例中,各個放 大級可於約6kHz或以上操作。根據所揭示之主旨之一實施 例之各個態樣’放大級有相對小種子雷射能之完全播種(於 15飽和或接近飽和)。根據所揭示之主旨之一實施例之各個態 樣,種子雷射能可具有不超過約丨卜〗,但於此種情況下系統 的整體輸出功率可小於2〇〇w。申請人相信放大級也需要支 援中等大型角度分布,例如來維持種子雷射的相同角度展 頻’俾便防止不慎例如經由去除相干性電池例如具有角度 20於數個毫弧度範圍以内的相干性電池而改良相干性。保護 種子雷射避免反向通過輻射,也是一項重要操作要求。根 據所揭示之主旨之一實施例之各個態樣,當適當播種時, 由放大級所產生的ASE位準須低於總輸出之〇 1 %或以下。 根據所揭示之主旨之一實施例之各個態樣,申請人預 121 1324423 期(1)增益截面將類似既有的ArF腔例如申請人的受讓人之 XLA ArF雷射系統功率放大器(「PA」)腔;(2)增益長度也 類似既有的ArF腔;(3)增益時間長度也類似既有ArF腔。120 1324423 Changes include part of a laser system or are located downstream of a conventional mini 〇 PuS, such as inside a lithography tool itself. Applicants believe that such a mini OPuS can slightly fill the valleys of the pulse time, resulting in an increase in Tis, thus allowing for a reduction in the delay length of one of the two main OPuS to achieve a better total coherence length separation. In accordance with various aspects of an embodiment of the disclosed subject matter, certain performance requirements for very high power amplification stages of, for example, a 120-180 W or higher laser system, such as two parallel amplifier gain media cavities. It produces a linear polarization (&gt;98%). Each amplification stage must be generated and can survive an average output of 10 240 W at, for example, a 193 nm ArF wavelength, but it is expected to use a specification of &gt;6〇w, or less severe at longer wavelengths, such as 248 for KrF and 351 for XeF. Or 318 of XeCl, but F2 is even more demanding at 157 nm. In one embodiment, each amplification stage can operate at about 6 kHz or above. The various aspects of an embodiment according to one of the disclosed subject matter have a full seeding of relatively small seed laser energy (saturated or nearly saturated at 15). In accordance with various aspects of one embodiment of the disclosed subject matter, the seed laser energy can have no more than about ,, but in this case the overall output power of the system can be less than 2 〇〇w. Applicant believes that the amplification stage also needs to support medium large angular distributions, for example to maintain the same angular spread spectrum of the seed lasers, to prevent inadvertent coherence, for example, by removing coherent cells, for example, having an angle of 20 to a few milliradians. The battery improves the coherence. Protecting the seed laser from reverse radiation is also an important operational requirement. In accordance with various aspects of one embodiment of the disclosed subject matter, the ASE level produced by the amplification stage must be less than 1% or less of the total output when properly seeded. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicant Pre-121 1324423 (1) gain section will be similar to an existing ArF cavity such as the applicant's assignee's XLA ArF laser system power amplifier ("PA ") cavity; (2) the gain length is similar to the existing ArF cavity; (3) the gain time length is similar to the existing ArF cavity.

根據所揭示之主旨之一實施例之各個態樣,申請人提 5 示例如單一M0/增益放大媒質XLA滴答附有固態種子雷射 於12kHz操作’具有約1毫焦耳種子雷射輸出光脈衝能,以 及該二放大級各自係於約17mJ輸出脈衝能操作。此外,根 據所揭示之主旨之一實施例之各個態樣,申請人提示利用 再生增益媒質,例如一環形功率放大級,允許比較例如於 1〇 ΜΟΡΑ組態之功率放大器(「PA」),於環形功率放大級產生 數倍大的輸出脈衝銲。用於測試目的,申請人模擬使用線 窄化ArF雷射得自固-態I93nm種子雷射之輸入。 申請人對前述參數之不同數值研究ASE相對於MO-PO 時序差’結果顯示於第7圖。ΜΟΡΟ能相對於MO-PO時序呈 15相同參數之函數之研究也顯示於第7圖。 為了符合前述要求’例如已知光刻術雷射光源技術之 限制,根據所揭示之主旨之一實施例之各個態樣,申請人 提供多種整體架構,相信可提供可工作方式來解決前述要 求與限制°首先係提供兩種多腔雷射系統連同申請人之受 2〇讓人之XLAXXX雷射系統系列,例如有兩個雙腔雷射振盪 器/功率放大器配置,藉此各自組配來於約6kHz操作,產生 具有父織發射時間之於約17mJ的輸出脈衝,根據一實施 例,來產生每脈衝約17m之單一約略12kHz系統。 如此,根據所揭示之主旨之一實施例之各個態樣,如 122 1324423 第5 4圖以方塊圖不意顯示一種極高平均功率雷射系統例如 /又/又式光刻術雷射光源152G可包含多個振盪器^放大器雷 射系統輸出光脈衝光束源,例如i522、1524,其各自包含 例如3主振堡器腔153〇之主振盈器部分,諸如申請人之受 5讓人#瑪公司作為有XLA χχχ㈣多腔雷射系統之一 心出售的主振|||部分。於各個振盈器/放大器雷射系統 1522 1524中也包括一功率放大器部分1532,例如包含一 放大器增益媒f。兩個振盈器/放大器雷射系統1522、1524 各自提供-輸出光脈衝光束予一光束組合器154〇,例如以 10交織方式提供輸出光脈衝光束。 如此,各個雷射系統1522、1524於6kHz及17mJ輸出雷 射光脈衝光束脈衝能操作,來自於光束組合器154〇之組合 輸出可為於6kHz 17mJ輸出,獲得約200”平均功率雷射系 統。須瞭解,第54圖之實施例可以更多個相同的振盈器/放 15大器雷射系統1526、U28實施,來產生400w平均功率雷射 系統。另外’各個振盪器/放大器系統1522、1524、1526、 1528各自例如可於低於6kHz,例如各自於^Ηζ操作及/ 或以較高總振盪器/放大器系統1522、1524、1526、1528輸 出雷射光脈衝光束脈衝能操作,例如高達約331^至光損害 20及操作成本以及其它因素所容許的極限操作用於最終輸出 10 〇脈衝重複速率與對來自於㈣丨5 2 G之類似多種平均輸 出功率值之脈衝能之各種組合。 現在參考第55圖,以方塊圖形式示意顯示根據所揭示 之主旨之一實施例之各個態樣,一種極高平均功率滴答形 123 (S ) 種子雷射/放大器系統1550。種子雷射/放大器系統155〇例如 包括種子雷射部分1530,例如固態種子雷射諸wNd:YAG或 Nd:YLF或Ti:藍寶石或纖維雷射或其它固態雷射或準分子 或分子氟氣體放電種子雷射,例如於約12kHzal_2mj輸出 5能脈衝操作,如本說明書詳細說明,一對放大器部分1532 各自例如係經由分光鏡1552而被供給來自於種子雷射部分 1530之交流輸出脈衝。依據放大級之重複率而定,脈衝可 以交流以外之方式供應。各個放大器部分1532隨後於例如 約6kHz用於200W輸出,以只有來自於各個放大器部分1532 10之17mJ操作。此外’種子雷射可被選擇於約4-12kHz之範圍 操作’獲得於平行實施例中兩個放大級有8kHz至24kHz之 輸出。In accordance with various aspects of an embodiment of the disclosed subject matter, Applicant mentions 5 examples such as a single M0/gain amplifying medium XLA tick with a solid seed laser operating at 12 kHz 'having about 1 mJ of seed laser output light pulse energy And the two amplification stages are each capable of operating at an output pulse of about 17 mJ. Moreover, in accordance with various aspects of an embodiment of the disclosed subject matter, Applicants have suggested utilizing a regenerative gain medium, such as a ring power amplifier stage, to allow comparison of, for example, a power amplifier ("PA") configured in a configuration. The ring power amplifier stage produces several times larger output pulse welds. For testing purposes, Applicants simulated the use of a line-narrowed ArF laser derived from the input of a solid-state I93 nm seed laser. The Applicant's study of the different values of the aforementioned parameters for the ASE vs. MO-PO timing difference&apos; results is shown in Figure 7. A study of the function of the same parameter with respect to the MO-PO timing is also shown in Figure 7. In order to comply with the foregoing requirements, such as the limitations of known lithography laser source technology, Applicants have provided a variety of overall architectures in accordance with various aspects of one of the disclosed subject matter, and it is believed that a workable manner can be provided to address the foregoing requirements. Restriction ° Firstly, two multi-cavity laser systems are provided, together with the applicant's XLAXXX laser system series, for example, two dual-chamber laser oscillator/power amplifier configurations, which are each configured to Operating at about 6 kHz produces an output pulse having a parent-made emission time of about 17 mJ, according to one embodiment, to produce a single approximately 12 kHz system of about 17 m per pulse. Thus, in accordance with various aspects of an embodiment of the disclosed subject matter, such as 122 1324423, FIG. 4 is a block diagram not showing an extremely high average power laser system such as /and/or lithography laser source 152G. A plurality of oscillators, laser system output optical pulse beam sources, such as i522, 1524, each of which includes, for example, a main vibrator portion of 3 main vibrating chambers 153, such as the applicant's 5 people #玛The company is the main vibration ||| part of the XLA χχχ(4) multi-cavity laser system. A power amplifier portion 1532 is also included in each of the oscillator/amplifier laser systems 1522 1524, for example, including an amplifier gain medium f. The two oscillator/amplifier laser systems 1522, 1524 each provide an output light pulse beam to a beam combiner 154, for example, to provide an output light pulse beam in a 10 interleaved manner. Thus, each of the laser systems 1522, 1524 can operate at 6 kHz and 17 mJ output laser pulse beam pulses, and the combined output from the beam combiner 154 可 can be output at 6 kHz 17 mJ to obtain an approximately 200" average power laser system. It is understood that the embodiment of Figure 54 can be implemented with more of the same oscillator/15 laser systems 1526, U28 to produce a 400W average power laser system. In addition, 'each oscillator/amplifier system 1522, 1524 Each of 1526, 1528 can operate, for example, at less than 6 kHz, for example, each operating at a higher frequency and/or outputting a laser beam pulse signal at a higher total oscillator/amplifier system 1522, 1524, 1526, 1528, for example up to about 331. The limit operation allowed by optical damage 20 and operating costs, among other factors, is used for various combinations of the final output 10 〇 pulse repetition rate and pulse energy for a variety of average output power values from (iv) 丨 5 2 G. Figure 55 is a block diagram showing various aspects of an embodiment of the disclosed subject matter, a very high average power ticking 123 (S) seed laser / The bulk system 1550. The seed laser/amplifier system 155 〇 includes, for example, a seed laser portion 1530, such as a solid seed laser, wNd:YAG or Nd:YLF or Ti: sapphire or fiber laser or other solid state laser or excimer Or a molecular fluorine gas discharge seed laser, for example, at about 12 kHzal_2mj output 5 can be pulsed, as described in detail in the specification, a pair of amplifier portions 1532 are each supplied with an AC output from the seed laser portion 1530, for example, via a beam splitter 1552. Pulses. Depending on the repetition rate of the amplification stage, the pulses can be supplied in a manner other than AC. The individual amplifier sections 1532 are then used for 200W output, for example, at about 6 kHz, to operate only 17 mJ from each amplifier section 1532 10. The shots can be selected to operate in the range of about 4-12 kHz 'obtained in the parallel embodiment where the two amplifier stages have an output of 8 kHz to 24 kHz.

現在參考第56圖,以方塊圖形式示意顯示根據所揭示 之主旨之一實施例之各個態樣,一種極高平均功率滴答形 15種子雷射/放大器系統1570。系統1570例如包括第一種子雷 射及第二種子雷射1572各自係經由分光鏡1552供給種子雷 射脈衝至一對放大器部分例如放大器增益媒質1574,於光 束組合器1578各自組合輸出來對雷射光源系統輸出雷射光 脈衝光束100提供以平均輸出功率於2〇〇w或高於200W。種 2 0子雷射例如可為於約12 k Η z操作之固態雷射,放大器部分可 為例如於約6kHz操作之氣體放電雷射如準分子或分子氟雷 射。另外,例如種子雷射1572可為於約6kHz操作之準分子 雷射諸如KrF、ArF、xeC1、XeF或分子氟雷射,個別成對 滴答开&gt;放大器部分各自係於3kHz操作,每次光刻術或LTPS 1324423 雷射光源系統輸出雷射光脈衝共計12kHz及17mJ ’結果獲 得平均功率約200W。如本案詳細討論,可能需頻率轉換來 遷移種子雷射72例如固態雷射之波長至氣體放電雷射放大 器部分1574之波長。光束組合器1578如圖所示可為單一光 5 束組合器,或如第54圖之組合器1540、1542所示可為串級 組合器。 熟諳技藝人士須瞭解可利用第56圖所示之配置之各項 組合及置換。舉例言之,可有多個於X kHz操作的A種子雷 射1572 ’各自播種多個b放大器部分1574,B放大器部分 10 1W4各自於X/BkHz操作,其組合提供第56圖輸出光束1〇〇 中之AX系統輸出雷射光源輸出脈衝。然後依攄所需平均系 統輸出功率而定’多個放大器部分74各自之輸出之脈衝能 例如可以A=2及B=2如第56圖所示及X=6kHz判定,總輸出 光束100具有12kHz輸出,以放大器部分輸出17mJ脈衝,得 15知約200W平均輸出脈衝。對第54圖之配置亦同等可行。 須注忍滴答形放大器LTPS或浸沒式光刻術光源,例如 由二放大器腔之重複頻率的兩倍運作的主振盪器所播種, έ亥LTPS或光源可為呈M〇/放大增益媒質組態之二準分子雷 射腔。例如,各放大媒質可為循環/再生環形功率放大級, 20各自藉於任-放大級準分子雷射腔之重複率兩倍操作的主 振盈器交替播種。此種系統可於任何期望波長例如duv波 長操作,MO及PA/P0係於咖难2) ' i93nm(ArF)、 池难的、308(XeC1)、或351nm(XeF)操作。此外,此種 系統可包括固態雷射或準分子種子雷射於較高脈衝重複率 125 操作播種多個例如兩個呈滴答形組態之功率放大級,諸 如環形功率放大級。 第5 7圖部分以方塊圖形式部分示意舉例說明根據所揭 米之主曰之一實施例之各個態樣之浸沒式雷射光刻術系統 1580系統1580例如可包括—極高平均功率輸出雷射光脈 衡光束源1520如第54圖所示,或155〇如第%圖所示或157〇 如第56圖所示,供給於200W或以上平均功率之線窄化脈衝 予掃為Θ 1590’諸如八5见公司或佳能公司或日光公司所製 造之掃描器。掃描器1590可結合一照明器1592、一標線片 1594及—晶圓平台1596載運一晶圓1598來藉來自於光源 1520之輻射曝光。於晶圓平台1596上為液體來源1602,例 如液體為水’具有與標線片1594及晶圓平台1596周圍環境 不同的折射率’以及具有一液體排水孔1604,供應液體1606 來覆蓋晶圓1598用於浸沒式光刻術。 也須瞭解用於相干性破壞目的,用於準分子或其它氣 體放電種子雷射供應準分子或其它氣體放電雷射放大器部 分、或用於固態種子雷射,使用如本案所示之組合光束之 多個放大器部分,具有降低光相干性的有利效果,因此可 於積體電路微影術或LTPS或tbSLS加工處理獲得減少散斑 的效果。也須瞭解如此處討論之多種相干性破壞技術及/或 其組合中之一或多者可用於掃描器1590内側,而無論該掃 描器1590是否為浸沒式掃描器。 現在參考第58圖’以方塊圖形式示意顯示根據所揭示 之主旨之一實施例之各個態樣之固態種子雷射至氣體放電 1324423 放大器雷射系統1620。系統1620例如包括—固態脈衝式種 子雷射1622,例如Nd:YAG或ND:YLF泵送可調諧固態雷射 1622。雷射1622之輸出可通過相干性破壞器/頻率倍增器 1626 ’其例如為可對種子雷射1622之輸出作頻率遷移及光 5束操控二者之單一光學元件,如本案它處就相干性破壞之 詳細說明;或可為連同串聯相干性破壞器之頻率遷移器, 例如如第59圖所不。系統也具有例如一放大器增益媒質如 PA或PO 1624,或例如具有一環形功率放大級1624,例如其 輸出1〇〇供給掃描器1590(如第57圖所示)。 10 須瞭解可使用多種調諧機轉,例如如技藝界已知之操 作溫度;固態雷射例如1064波長Nd:YAG(摻鈾釔鋁石榴石 (Nd:Y3Al5〇l2))或l〇53nm Nd:YLF(摻鈥氟化釔鋁)或Ti:藍寶 石雷射(由約650nm可調諧至llOOnm);及/或經由線選擇。 於放大器部分1624放大之期望頻率/波長例如可使用頻率 15提南轉換器1626來達成於名目中心波長(xeF約為351,KrF 約為248 ’或ArF約為193及分子氟約為157)之可接受的△ λ 以内’來讓放大器部分1624出現可接受之放大雷射,如技 藝界所瞭解。如前文說明,此處討論之該型相干性破壞可 用於掃描器1590或其它應用工具内部,例如其它微影術工 20 具或細光束雷射退火工具。 轉向參考第59圖,以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣之固態種子雷射/放大器雷射系 統1620,類似第69圖,其中頻率倍增器1630及相干性破壞 器1632可用來提供適當種子脈衝予放大器雷射部分1624俾 127 1324423 配合例如種子雷射輸出雷射光脈衝光束之高度相干性,及 頻率也遷移至例如於放大器級1624之氣體放電放大增益媒 質中放大之期望頻率/波長。頻率倍增器1630及相干性破壞 器1632如同本文其它配置,二者可組合,例如單一非線性 5 晶體可用於二者,如熟諳技藝人士已知有適當驅動信號; 或可使用多個晶體,某些晶體最適合用於頻率轉換,其它 晶體最適合用於相干性破壞’位置可調換,例如先相干性 破壞接著才頻率遷移,反之亦然。 轉向參考第60圖,以方塊圖形式示意顯示種子雷射輪 10出之轉換,例如具有頻率轉換器1630連同分光鏡1640,接 著為於一軸之相干性破壞’例如該雷射光束之長軸,或若 該光束非為橢圓或細長矩形則為該光束之第一軸,以及該 光束之短轴或該光束非為細長矩形則為第二正交軸,具有 個別的縱軸相干性破壞器1642及橫軸相干性破壞器1644,Referring now to Fig. 56, a very high average power tick 15 seed laser/amplifier system 1570 is shown in block diagram form in accordance with various aspects of one embodiment of the disclosed subject matter. System 1570, for example, includes first seed laser and second seed laser 1572 each supplying a seed laser pulse via beam splitter 1552 to a pair of amplifier portions, such as amplifier gain medium 1574, which are each combined output at beam combiner 1578 to the laser. The light source system outputs a laser beam of light 100 to provide an average output power of 2 〇〇 w or more. The 20-pole laser can be, for example, a solid-state laser operating at about 12 k Η z, and the amplifier portion can be, for example, a gas discharge laser operating at about 6 kHz, such as an excimer or molecular fluorine laser. Additionally, for example, the seed laser 1572 can be an excimer laser operating at about 6 kHz such as KrF, ArF, xeC1, XeF, or molecular fluorine lasers, individually paired ticks &gt; amplifier sections each operating at 3 kHz, each time light The engraving or LTPS 1324423 laser source system outputs a total of 12 kHz and 17 mJ of laser light pulses, resulting in an average power of approximately 200 W. As discussed in detail herein, frequency conversion may be required to migrate the wavelength of the seed laser 72, such as a solid state laser, to the wavelength of the gas discharge laser amplifier portion 1574. Beam combiner 1578 can be a single light bundle combiner as shown, or a cascade combiner as shown by combiner 1540, 1542 of Figure 54. Those skilled in the art will be aware of the various combinations and permutations of the configurations shown in Figure 56. For example, there may be multiple A-seed lasers 1572' operating at X kHz' each seeding a plurality of b-amplifier sections 1574, each of which operates at X/BkHz, the combination of which provides an output beam of Figure 56. The AX system in Suizhong outputs the output pulse of the laser source. Then, depending on the desired average system output power, the pulse energy of the respective outputs of the plurality of amplifier sections 74 can be determined, for example, by A=2 and B=2 as shown in Fig. 56 and X=6 kHz, and the total output beam 100 has 12 kHz. Output, output 17mJ pulse in the amplifier part, get 15 about 200W average output pulse. The configuration of Figure 54 is equally feasible. Need to note the LTPS or immersion lithography source, such as the main oscillator operated by twice the repetition frequency of the two amplifier chambers, the LTPS or the light source can be configured as M〇/amplification gain medium The second excimer laser cavity. For example, each of the amplifying media may be a circulating/regenerating ring power amplifier stage, 20 each alternately seeded by a main vibrator operating at twice the repetition rate of the ex-amplifying stage excimer laser cavity. Such a system can operate at any desired wavelength, such as a duv wavelength, MO and PA/P0 are operated at 2) 'i93nm (ArF), pooled, 308 (XeC1), or 351 nm (XeF). In addition, such systems may include solid state laser or excimer seed lasers at a higher pulse repetition rate 125 operation to seed a plurality of, for example, two titration configurations of power amplification stages, such as a ring power amplification stage. The immersed laser lithography system 1580 system 1580, which is partially illustrated in block diagram form, schematically illustrating the various aspects of an embodiment according to the disclosed embodiment, may include, for example, a very high average power output laser light. The pulse-balance beam source 1520 is as shown in Fig. 54, or 155, as shown in Fig. 100 or 157, as shown in Fig. 56, and the line narrowing pulse supplied to the average power of 200 W or more is pre-scanned to Θ 1590' such as 8:5 See the scanner manufactured by the company or Canon or Nikko. The scanner 1590 can carry a radiation exposure from the light source 1520 by combining a illuminator 1592, a reticle 1594, and a wafer platform 1596 carrying a wafer 1598. On the wafer platform 1596 is a liquid source 1602, such as liquid water 'having a refractive index different from the environment around the reticle 1594 and the wafer platform 1596' and having a liquid drain hole 1604 for supplying the liquid 1606 to cover the wafer 1598 Used for immersion lithography. It is also necessary to understand the purpose of coherence destruction for excimer or other gas discharge seed laser supply excimer or other gas discharge laser amplifier sections, or for solid state seed lasers, using a combined beam as shown in this case. A plurality of amplifier sections have the advantageous effect of reducing optical coherence, so that the effect of reducing speckle can be obtained in integrated circuit lithography or LTPS or tbSLS processing. It will also be appreciated that one or more of the various coherence destruction techniques and/or combinations thereof discussed herein can be used on the inside of the scanner 1590, whether or not the scanner 1590 is an immersion scanner. Referring now to Figure 58&apos;, a solid state seed laser to gas discharge 1324423 amplifier laser system 1620 in accordance with various aspects of one embodiment of the disclosed subject matter is schematically illustrated in block diagram form. System 1620 includes, for example, a solid state pulsed seed laser 1622, such as Nd:YAG or ND:YLF, pumping tunable solid state laser 1622. The output of the laser 1622 can be passed through a coherence disrupter/frequency multiplier 1626' which is, for example, a single optical component that can both frequency shift and light 5 beam manipulation of the output of the seed laser 1622, as in this case, coherence A detailed description of the damage; or may be a frequency migrator along with a series coherent disrupter, such as as shown in Figure 59. The system also has, for example, an amplifier gain medium such as PA or PO 1624, or for example, has a ring power amplification stage 1624, such as its output 1 〇〇 supply scanner 1590 (as shown in Figure 57). 10 It should be understood that a variety of tuners can be used, such as operating temperatures known to the art; solid-state lasers such as 1064 wavelength Nd:YAG (Nd:Y3Al5〇l2) or l〇53nm Nd:YLF (Doped yttrium aluminum fluoride) or Ti: sapphire laser (tunable from about 650 nm to llOOnm); and/or selected via wire. The desired frequency/wavelength amplified by amplifier portion 1624 can be achieved, for example, using frequency 15 boost converter 1626 to achieve a nominal center wavelength (xeF of about 351, KrF of about 248' or ArF of about 193 and molecular fluorine of about 157). An acceptable Δ λ can be used to allow the amplifier portion 1624 to exhibit an acceptable amplified laser, as understood by the art. As explained above, this type of coherence disruption discussed herein can be used within scanner 1590 or other application tool, such as other lithography tools or beamlet laser annealing tools. Turning to FIG. 59, a solid-state seed laser/amplifier laser system 1620 in accordance with an embodiment of one of the disclosed subject matter is shown in block diagram form, similar to FIG. 69, in which frequency multiplier 1630 and coherence disruption The device 1632 can be used to provide appropriate seed pulses to the amplifier laser portion 1624 俾 127 1324423 in conjunction with, for example, the high coherence of the seed laser output laser beam pulse, and the frequency also shifts to, for example, the gas discharge amplification gain medium of the amplifier stage 1624. The desired frequency/wavelength. Frequency multiplier 1630 and coherence disruptor 1632, as with other configurations herein, may be combined, for example, a single non-linear 5 crystal may be used for both, as is known to those skilled in the art having appropriate drive signals; or multiple crystals may be used, some Some crystals are best suited for frequency conversion, and other crystals are best suited for coherence failure 'position reversal, such as first coherence destruction followed by frequency migration, and vice versa. Turning to Fig. 60, the conversion of the seed laser wheel 10 is schematically illustrated in block diagram form, for example, with a frequency converter 1630 along with a beam splitter 1640, followed by coherence destruction on one axis 'e.g., the long axis of the laser beam, Or if the beam is not an ellipse or an elongated rectangle, the first axis of the beam, and the short axis of the beam or the beam is not an elongated rectangle, the second orthogonal axis has an individual vertical axis coherence breaker 1642 And horizontal axis coherence destroyer 1644,

15 如本文詳細說明。相干性破壞器1642、1644之輸出可於光 束組合器1646中組合,如它處所述也可扮演相干性破壞角 色,如第31圖及/或第37 A及B圖所示,被提供為種子雷射 脈衝予放大器增益媒質部分1648。否則若對此種實施例未 找到適當之非線性晶體,則可於一轴進行相干性破壞,例 20 如於相干性破壞器1642進行相干性破壞,串列接著於相干 性破壞器1644於第二軸之相干性破壞而無需隨後之光束組 合器1646。 參考第61圖,以方塊圖形式示意顯示第60圖之實施例 之一個版本,其中例如於頻率轉換器1630中之頻率轉換係 128 出現於相干性破壞之後,換言之介於光束組合器1646與放 大器部分1648之間。 根據所揭示之主旨之一實施例之各個態樣,35lnm輻 射例如相干性35lnm輻射的產生可以固態組態例如固態驅 5動雷射(或雷射)其驅動線性或非線性頻率轉換級進行。如圖 所示,351nm雷射輻射的產生可藉由於1〇53nm操作之 Nd:YLF雷射輸出之第三諧波轉換來達成。為了使用此種辦 法作為XeF準分子放大器/振盪器之種子雷射,必須確保例 如Nd:YLF種子雷射主振盪器之名目中心波長係匹配XeF之 10增益頻譜(二線位於351.12nm及351.26nm)。另一辦法可使用 摻镱纖維雷射作為基礎驅動雷射種子脈衝源。Yb3+纖維雷 射本質上可調協,如J Nilsson等人,「高功率波長可調譜容 置-經栗送之換稀土妙石纖維雷射」,〇pt. Fiber Technol. 1 〇, pp 5-30 (2004)來允許於l〇5〇nm至l〇65nm操作。纖維雷射提 15供設計上的若干簡化’於要求超高可靠度的用途例如LTPS 或微影術特別有用。申請人提示使用脈衝式纖維雷射系統 作為中等尖峰功率(5-50kW)高重複率(多個kHz例如高達約 12-15kHz) 1054nm窄頻脈衝式轄射之光源。此種雷射可使 用標準化Yb3+脈衝式纖維雷射技術組成,為q切換纖維振盪 2〇器、纖維放大脈衝式二極體來源、或經調變(内部或外部調 變)且為纖維放大之CW源(纖維振盪器或二極體)。 於1054nm輻射產生後,例如可使用二級式非線性頻率 轉換而直接將頻率調高至約351.2nm [1054nm至527nm之第 二諧波產生(「SHGj ),然後為和頻率產生(「SFG」),殘 129 餘基礎頻率為351.2nm (具有約±0.1nm頻寬)]。 CW固態雷射例如有極窄頻寬(極高頻譜純度)之例如 二極體雷射匹配纖維雷射,來提供極窄頻種子予脈衝式固 態纖維雷射用於放大及製造極窄頻脈衝式固態種子至功率 敌大級例如用於KrF雷射或ArF雷射。適當LMA(大模式區) 纖維技術可用來於包含纖維之纖維雷射放大振盪器或任何 隨後的放大級中,因非線性效應造成頻譜的降級。使用此 等辦法’允許維持空間光束品質(有技術可確保於大模式區 纖維之單一模式操作),同時降低於纖維核心的尖峰功率。15 As detailed in this article. The outputs of the coherence disruptors 1642, 1644 can be combined in the beam combiner 1646, as described elsewhere, and can also play a coherent destruction role, as shown in FIG. 31 and/or 37A and B, provided as The seed laser pulse is applied to the amplifier gain medium portion 1648. Otherwise, if a suitable nonlinear crystal is not found for this embodiment, coherence destruction can be performed on one axis, for example, as the coherence disruptor 1642 performs coherence destruction, and the sequence is followed by the coherence disruptor 1644. The coherence of the two axes is destroyed without the need for a subsequent beam combiner 1646. Referring to Fig. 61, a version of the embodiment of Fig. 60 is schematically illustrated in block diagram form, wherein, for example, the frequency conversion system 128 in the frequency converter 1630 occurs after coherence destruction, in other words, between the beam combiner 1646 and the amplifier. Part between 1648. In accordance with various aspects of an embodiment of the disclosed subject matter, the generation of 35 lnm radiation, e.g., coherent 35 lnm radiation, can be performed in a solid state configuration such as a solid state drive (or laser) that drives a linear or non-linear frequency conversion stage. As shown, the generation of 351 nm laser radiation can be achieved by a third harmonic conversion of the Nd:YLF laser output operating at 1 〇 53 nm. In order to use this method as a seed laser for a XeF excimer amplifier/oscillator, it must be ensured that, for example, the nominal center wavelength of the Nd:YLF seed laser main oscillator matches the gain spectrum of XeF (the second line is at 351.12 nm and 351.26 nm). ). Alternatively, a erbium-doped fiber laser can be used as a base to drive a laser seed pulse source. The Yb3+ fiber laser is essentially adjustable, such as J Nilsson et al., "High Power Wavelength Adjustable Spectral Capacitance - Reversing Rare Earth Miao Shi Fiber Laser", 〇pt. Fiber Technol. 1 〇, pp 5 -30 (2004) to allow operation from l〇5〇nm to l〇65nm. Fiber lasers provide a number of simplifications in design that are particularly useful for applications requiring ultra-high reliability such as LTPS or lithography. Applicants have suggested using a pulsed fiber laser system as a medium peak power (5-50 kW) high repetition rate (multiple kHz, for example up to about 12-15 kHz) 1054 nm narrow frequency pulsed source. This type of laser can be composed of standardized Yb3+ pulsed fiber laser technology, which is a q-switched fiber oscillating 2 〇 device, a fiber-amplified pulsed diode source, or modulated (internal or externally modulated) and amplified by fiber. CW source (fiber oscillator or diode). After the 1054 nm radiation is generated, for example, the frequency can be directly increased to about 351.2 nm using a two-stage nonlinear frequency conversion [second harmonic generation of 1054 nm to 527 nm ("SHGj", and then generated by the sum frequency ("SFG"). ), the residual fundamental frequency of 129 is 351.2 nm (having a bandwidth of about ±0.1 nm)]. CW solid-state lasers, for example, have extremely narrow bandwidths (very high spectral purity) such as diode-matched laser-matched fiber lasers to provide extremely narrow-frequency seed-pulsed solid-state fiber lasers for amplifying and fabricating very narrow-frequency pulses. Solid state seed to power enemy level, for example for KrF laser or ArF laser. Proper LMA (Large Mode Zone) fiber technology can be used to degrade the spectrum due to nonlinear effects in fiber laser amplifying oscillators containing fibers or any subsequent amplification stage. Using this approach 'allows for maintaining spatial beam quality (there is a technique to ensure single mode operation of the fibers in the large mode zone) while reducing the peak power at the fiber core.

XeF之基於纖維雷射之固態351nm M0也可根據所揭 示之主旨之一實施例之各個態樣而實現◎此種主振盪器架 樽可能比體積固態雷射為更簡單更強勁的解決之道。 現在參考第62-65圖,部分以方塊圖形式示意顯示根據 所揭示之主旨之一實施例之各個態樣多個注入播種351 nm 15 氣體放電主振盪器/放大器增益媒質雷射系統固態主振盈 器1700。主振盪器1700包括一Yb3+摻雜之纖維振盪器或放 大器1710 ’例如具有一二極體幫浦1712 ;及一種子雷射例 如1054nm CW種子二極體雷射1714。 參考第62圖,主振盪器振盪腔可藉一後腔全反射鏡 20 1720及部分反射輸出耦合器1722所形成,可為於纖維振盘 器1710之名目l〇54nm中心波長之90%反射。主振盪器1700 可採用一 Q開關1724來允許主振盪器1700之輸出脈衝能累 積於振盪腔,至能量夠高,隨後開啟Q開關1724,如技藝界 眾所周知。主振盪器1700的輸出可藉Q開關操作頻率例如約 130 1324423 12kHz速率施加脈衝。纖維振盪器雷射1710之輸出可通過一 第二諧波產生器1730,接著通過頻率加法器1732,來將原 先頻率加至第二諧波,來產生第三諧波,亦即於例如XeF 氣體放電雷射功率放大器、或功率振盪器、或環形功率放 5 大級放大增益媒質(未顯示於第62-65圖)中適合放大之約 351nm波長。 參考第63圖,部分以方塊圖形式示意顯示根據所揭示 之主旨之一實施例之各個態樣之固態主振盪器1700。於本XeF's fiber-based laser-based solid-state 351nm M0 can also be implemented in accordance with various aspects of one of the disclosed embodiments. ◎This main oscillator architecture may be a simpler and more powerful solution than volumetric solid-state lasers. . Referring now to Figures 62-65, portions of a plurality of implanted 351 nm 15 gas discharge primary oscillator/amplifier gain medium laser system solid state main oscillators are schematically illustrated in block diagram form in accordance with an embodiment of the disclosed subject matter. The surplus is 1700. The main oscillator 1700 includes a Yb3+ doped fiber oscillator or amplifier 1710' having, for example, a diode pump 1712; and a sub-laser such as a 1054 nm CW seed diode laser 1714. Referring to Fig. 62, the main oscillator oscillating cavity can be formed by a back cavity total reflection mirror 20 1720 and a partial reflection output coupler 1722, which can be reflected at 90% of the center wavelength of the fiber disk 1710. The main oscillator 1700 can employ a Q switch 1724 to allow the output pulses of the main oscillator 1700 to accumulate in the oscillating cavity until the energy is high enough to subsequently turn on the Q switch 1724, as is well known in the art. The output of the main oscillator 1700 can be pulsed by a Q switch operating frequency, e.g., about 130 1324423 12 kHz. The output of the fiber oscillator laser 1710 can be passed through a second harmonic generator 1730, followed by a frequency adder 1732, to add the original frequency to the second harmonic to produce a third harmonic, that is, for example, a XeF gas. A discharge laser power amplifier, or a power oscillator, or a ring-shaped power amplifier (not shown in Figures 62-65) is suitable for amplification at a wavelength of about 351 nm. Referring to Fig. 63, a solid state main oscillator 1700 in various aspects in accordance with an embodiment of the disclosed subject matter is schematically illustrated in block diagram form. Yu Ben

實施例中,外部調幅器1740例如光聲開關或光電開關或其 10 它適當機構可用來施加CW種子1714脈衝至纖維放大器 1710 ’來產生主振盪器1700之脈衝式輸出。 於第64圖之實施例中,i〇54nm種子雷射例如可利用脈 衝式種子二極體1750來例如於約12kHz產生主振盪器1700 之脈衝式輸出。於第65圖之實施例中,可調諧cWYb3+主振 15盈器1760可切換成有外部調幅器之纖維放大器1710(如前 文討論)獲得來自主振盪器1700之脈衝式種子雷射輪出。纖 維放大器1710可利用幫浦二極體1712來泵送纖維放大器 Π10。纖維雷射包含單根纖維或多根纖維例如串列設置, 如技藝界所已知,各根纖維最佳化來用於其輸入信號的放 20 大。 根據所揭示之主旨之一實施例之各個態樣,申請人測 定種子雷射例如固態種子雷射用於極高平均功率雷射系統 例如用於微影術或LTps料證實為期望之多種特性,例如 包括脈衝能、脈衝時間及時序抖動器,其可驅動種子雷射 131 1324423 的選擇,例如對Nd:YAG、Nd:YLF、Ti:藍寶石及纖維雷射 選用之固態種子雷射,如本文它處之討論。 根據所揭示之主旨之一實施例之各個態樣,申請人已 經研究某些放大級共振腔性質。一方面為平面平面腔有單 5純分光鏡輸入/輸出耦合,其具有簡單構造,但或許比製造 系統實際上更耗費種子雷射能。另—方面,循環功率振遭 器或再生功率振盪器,例如環形功率放大級具有分光鏡/ 鏡輸入/輸出耦合器。如前文說明,熟諳技藝人士須瞭解共 振器、共振腔等詞用於例如述&amp;M〇p〇組態之雷射系統 10時,表示由種子雷射部分所播種的雷射系統之放大部分因 來自於腔中共振的種子光束脈衝的刺激發射而產生雷射。 此點可以稱作為功率放大器區別,諸如申請人之受讓人之 ΜΟΡΑ組態XLA XXX系列雷射系統之pA部分區別。相反 地,於雷射系統放大器部分之放大增益媒質中,當種子雷 15射脈衝係藉光學配置,例如如申請人之受讓人之目前XLA XXX系列雷射系統使用的雙通光學系統於激發態導引通過 放大增益媒質固定次數時’於放電期間藉刺激發射而於功 率放大器出現放大。但於部分文獻中,環繞放大增益媒質 有封閉腔之放大器’例如領結形或跑馬場形回路光路長 20度,該放大器可被視為「功率放大器」或再生放大器,而 非「功率振盪器」《因此,用於本案及隨附之申請專利範圍, 使用「環形功率放大級」—詞意圖涵蓋任一種結構,此處 功率升壓級結合有密閉光腔的增益媒質。 平面-平面組態可用於傳統偏光輸入/輸出耦合,例如有 132 1324423 偏振分光鏡及四分之一波長板及部分反射輸出耦合器,如 參考第66圖及第69圖進一步討論細節。如此可更有效使用 種子雷射能,但也可對例如於高脈衝能及/或高平均輪出功 率之熱效應更為敏感。也可採用其它輸入/輸出耦合,如本 5 案它處討論。In an embodiment, an external amplitude modulator 1740, such as a photoacoustic switch or photoelectric switch or its appropriate mechanism, can be used to apply a pulse of CW seed 1714 to fiber amplifier 1710&apos; to produce a pulsed output of primary oscillator 1700. In the embodiment of Fig. 64, the i〇54 nm seed laser can utilize, for example, a pulsed seed diode 1750 to generate a pulsed output of the main oscillator 1700, for example, at about 12 kHz. In the embodiment of Fig. 65, the tunable cWYb3+ main oscillator 15760 can be switched to a fiber amplifier 1710 having an external amplitude modulator (as discussed above) to obtain a pulsed seed laser wheel from the main oscillator 1700. The fiber amplifier 1710 can pump the fiber amplifier Π10 using the pump diode 1712. Fiber lasers comprise a single fiber or a plurality of fibers, such as a tandem arrangement, as is known in the art, and each fiber is optimized for use in the insertion of its input signal. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicants determined that seed lasers, such as solid-state seed lasers, are used in extremely high average power laser systems, such as for lithography or LTps, to demonstrate various desirable characteristics. Examples include pulse energy, pulse time, and timing jitterers that drive the selection of seed laser 131 1324423, such as solid seed lasers for Nd:YAG, Nd:YLF, Ti: sapphire, and fiber lasers, as it is Discussion. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicants have investigated certain amplification stage cavity properties. On the one hand, there is a single 5 pure spectroscope input/output coupling for a planar planar cavity, which has a simple construction, but may actually consume more seed laser energy than a manufacturing system. Alternatively, a circulating power oscillator or a regenerative power oscillator, such as a ring power amplifier stage, has a beam splitter/mirror input/output coupler. As explained above, skilled artisans are required to understand that the resonator, resonant cavity, etc., when used in a laser system 10 such as the &amp;M〇p〇 configuration, represents an enlarged portion of the laser system seeded by the seed laser portion. A laser is generated due to the stimuli emission of the seed beam pulse from the resonance in the cavity. This can be referred to as a power amplifier distinction, such as the pA portion of the Applicant's assignee's XLA XXX series laser system. Conversely, in the amplification gain medium of the laser system amplifier section, when the seed ray 15 pulse is optically configured, for example, the two-pass optical system used by the current XLA XXX series laser system of the applicant's assignee is excited. The state guides the amplification of the power amplifier by the stimulus emission during the discharge by amplifying the gain medium a fixed number of times. However, in some documents, an amplifier with a closed cavity around the amplification gain medium, such as a bow-tie or a racetrack-shaped loop, is 20 degrees long. The amplifier can be regarded as a "power amplifier" or a regenerative amplifier instead of a "power oscillator." "Therefore, for the purposes of this case and the accompanying patent application, the use of "loop power amplifier stage" - the term is intended to encompass any structure where the power boost stage incorporates a gain medium that encloses the optical cavity. The planar-planar configuration can be used for conventional polarized input/output coupling, such as 132 1324423 polarizing beamsplitters and quarter-wave plates and partially reflective output couplers, as discussed further with reference to Figures 66 and 69. This makes it possible to use seed laser energy more efficiently, but it can also be more sensitive to thermal effects such as high pulse energy and/or high average turn-off power. Other input/output couplings can also be used, as discussed in this case.

轉向參考第14圖及第16圖,以部分方塊圖形式示意顯 示根據所揭示之主旨之一實施例之各個態樣之極高功率 (例如約200W或以上平均輸出功率)雷射系統280及450。雷 射系統280及450例如可用於浸沒式光刻術用途或用於LTPS 10用途等,其可包括例如於第14圖之情況,包括環形功率放 大級組態雷射系統280。系統280包括一種子雷射286,其提 供於約l.OmJ或以下之種子雷射脈衝,以及例如約6kHz之脈 衝重複速率於雷射輸出光脈衝之種子雷射輸出光脈衝光束 288。來自於種子雷射286之光束288可通過種子注入耦合機 15 構300進入雷射系統280之放大器增益媒質部分290。Turning to Figures 14 and 16, a very high power (e.g., about 200 W or more average output power) laser systems 280 and 450 in various aspects in accordance with an embodiment of the disclosed subject matter is schematically illustrated in partial block diagram form. . The laser systems 280 and 450 can be used, for example, for immersion lithography applications or for LTPS 10 applications, etc., which can include, for example, the case of Figure 14, including a ring power amplification configuration laser system 280. System 280 includes a sub-laser 286 that provides a seed laser pulse of about 1.0 millimeters or less, and a seed laser output light pulse beam 288 of, for example, a pulse repetition rate of about 6 kHz to the laser output light pulse. A beam 288 from the seed laser 286 can enter the amplifier gain medium portion 290 of the laser system 280 through the seed injection coupling mechanism 300.

放大器增益媒質部分290可包含一環形功率放大級腔 292含有一對氣體放電電極294,其中一個電極係出現於第 14圖之視圖。腔292也包含一輸入腔區段296及一光束反向 器腔區段298’其各自可利用例如適當防漏機構而形成於腔 2〇 292或附接於腔292,故例如輸入區段296之光學元件以及光 束反向器腔區段298之光學元件可有利地暴露於包圍於腔 區段292、296、298之雷射氣體混合物中之敦。 種子注入機構例如可包括分光鏡/輸入-輸出耦合器 302,其可塗覆以一塗層,或經選擇或經調整為對例如於名The amplifier gain medium portion 290 can include a ring power amplification stage 292 containing a pair of gas discharge electrodes 294, one of which is shown in Figure 14. The cavity 292 also includes an input cavity section 296 and a beam reverser cavity section 298' each of which may be formed in the cavity 2〇292 or attached to the cavity 292 using, for example, a suitable leak-proof mechanism, such as the input section 296. The optical elements and optical elements of the beam reverser cavity section 298 can advantageously be exposed to the laser gas mixture surrounding the cavity sections 292, 296, 298. The seed injection mechanism can, for example, include a beam splitter/input-output coupler 302 that can be coated with a coating, or selected or adjusted to, for example, a name

133 1324423 目中心波長(ArF 為 193nm, KrF 為248nm,XeCl為 318或XeF 雷射系統為351nm)之種子雷射光為部分反射;以及一最大 反射鏡304,其對個別ArF、KrF、XeC卜或XeF等氣體放電 雷射系統選定之名目中心波長為最大反射。光束反向器310 5 類似功率放大器光束反向器,例如於申請人之受讓人之 XLAMOPA組態雷射系統亦即XLAXXX系統中出售。此種 於XLA-XXX之光束反向器可組成一模組,構成中繼光學元 件次系統的一部分,該模組例如導引來自於MO輸出之光 束’通過PA ’至脈衝延伸器的入口,以及隨後經由快門由 10 雷射系統送出。中繼光學次系統可包括一MO前導波工程處 理/操控箱(「WEB」)、一PA WEB、及該光束反向器模組。 光束反向器模組接收送出PA腔後端之光束,將光束通過pa 腔以特定角度及位置送至PAWEB。模組含有光束反向器稜 鏡’稜鏡操控光束通過PA腔的返回,確保光束撇取通過pa 15 WEB轉向稜鏡,其於第一種情況下將光束操控進入pa腔。 稜鏡可沿X轴調整,可以X軸為中心旋轉(傾斜)。如此於略 為不同光路返回PA腔’而非從PAWEB至光束反向器,例如 如第20-22圖所示,藉此例如於縱轴於同一個光路通過放大 增盈媒質,而於橫轴於不同的交叉光路通過放大增益媒 20質,縱及橫係與電極及放電雷射放大媒質增益,並非必要 定向於或於真正的縱向垂直或真正的橫向水平相對應。如 此構成來自於種子雷射之種子光束以光學方式判定之傾斜 雙重通過ΜΟΡΑ功率放大器之功率放大器增益媒質(並非密 封腔)’諸如前文說明。光束反向器可將些微角(數毫弧度) 134 1324423 及些微偏差(數毫米)導入通過PA腔反射的光束,因此_光 束於PA腔内部重疊(例如交叉於腔長度的中央,電極縱勹長 度的中央),而於PA WEB轉向稜鏡空間分開。根據所揭示 之主旨之一實施例之各個態樣之光束返回器可利用無光學 5塗層之反向器稜鏡。光束可於接近布魯斯特角進入及離開 光束返回器稜鏡,總内反射可出現於内部反射面如此實 質上並無表面耗損。稜鏡必須由昂貴的準分子及Cah製 造。必須將雙折射、體積吸收耗損及散射耗損列入考量, 但此等現象預期皆不成問題。 1〇 於通過輸入窗312可光學存取之輸入區段296中,可設 置一光束擴幅器320,其包含一稜鏡322及一稜鏡324,共通 將光束288於進入腔292的路上窄化光束,轉而將光束288於 送出腔292的途中擴幅,於輸出途中擴幅例如用來保護光學 元件如輸入/輸出耦合器3〇〇;光束288進入腔292之途中窄 15化例如係用來窄化進入放大增益媒質的光束340至於大致 垂直於電極294分開方向的電極294間之約略放電寬度。 擋板330例如用來保護腔292之輸入區段296及光束反 向器區段298之光學元件避免因於腔292中連同雷射氣體混 合物一起循環的碎屑之損傷。 20 於環形功率放大級290之腔内部,光束288係採一第一 方向循環振盪光路340前進,而於一第二方向循環振盪光路 342返回至種子注入機構3〇〇,此處部分反射輸入/輸出耦合 器係作為振盪器雷射腔之傳統輸出耦合器,反射部分振盪 雷射光光子至Rmax鏡304且沿光路340而返回。如此於由種 135 1324423 子注入機構300及光束反向器3i〇所形成之腔中的振盪為多 通振盪光路。如本文所述,此種振盪係與功率放大器中之 光子不同,因此通過增益媒質固定次數,例如於申請人之 艾讓人之XLAXXX雷射系統中通過兩次,而未沿此種功率 5放大器光路振盪。當於循環/再生光路340、342中振盪時, 累積足量脈衝能,雷射系統輪出雷射光脈衝光束1〇〇由所播 種之功率振盈器雷射系統280產生。種子雷射286可為氣體 放電例如準分子或氟雷射或固態雷射。 第16圖以方塊圖形式部分示意顯示根據所揭示之主旨 ίο之一實施例之各個態樣,類似申請人之受讓人之XLAXXX 多腔ΜΟΡΑ雷㈣統組態之—㈣形功率放纽雷射系統 450’ ΡΑ係由環形功率放大級49〇所置換。雷射系統45〇可包 含一準分子氣體放電雷射種子雷射452其可包含一主振盪 器雷射腔454,有一線窄化模組456具有一反射元件例如波 15長及頻寬選擇光柵,形成後腔鏡,以及一部分反射輸出麵 合器458形成主振盪器452振i腔之另一端。主振盪器松種 子雷射輸出雷射光脈衝光束離開輸出耦合器458,可通過度 量衡模組(線中心分析触「LAM」),其可使用分光鏡 472取樣MO腔454輸出之-部分,此外,除了波長儀(圖中 20未顯tf)用於測量主振盘器種子雷射輸出雷射光脈衝光束 脈衝之名目中心波長之外,也可包含一 M〇雷射輸出光脈衝 光束脈衝能監視器474及ASE監視器476,諸如螢光檢測 益。ASE檢測器’例如寬頻光檢測器可用來檢測存在有夠 问強度之寬頻光,指示於放大增益媒質中放大時間為關, 136 丄:524423 故未出現同頻帶的顯著雷射(於放電期間於放大級腔中之 種子脈衝並未符合時序),且大致上於放大級之放電期間只 出現寬頻雷射。 主振遂器種子雷射452輸出雷射光脈衝光束,隨後送至 5轉向鏡480,由該處傳送至種子注入機構300,輸入放大器 增益媒質部分490,其可包含一環形功率放大級腔492,具 有一腔輸入區段494及一腔光束反向器區段496。熟諳技藝 人士須瞭解雷射系統450之示意圖並未反映出光束由 452至PO腔442之光路上之各個態樣,附圖係示意顯示來吻 10合紙張平面,而非符合二者間的光路以及進入放大級腔492 的光路之光學實際狀況。 種子注入機構300例如可包括一部分反射輸入/輸出耦 合器302’例如類似申請人之受讓人之雷射系統出售之分光 鏡,例如出售作為光脈衝延伸器(「0PuS」)之一部分,以 15及用於給定之名目中心波長之最大反射鏡Rmax 304,部分 反射輸出耦合器302用作為如前述之輸入/輸出耦合器,特 別係用作為環形功率放大級㈣腔(也定義為光束反向 器310)之輸出麵合器。來自廳452之種子雷射輸出雷射光 脈衝光束脈衝經由輸入窗500通入環形功率放大級腔492, 20也如前文第14圖所示,通過光束擴幅器510。環形功率放大 級腔492之輸入區段494也罩住光束擴幅器51〇,光束擴幅器 510例如係由稜鏡512及稜鏡514所組成。其它形式之種子注 入機構可包括於刖述於本案同一天提出申請之共同審查中 之臨時專利中請案(本案請求其優先權)以及其它該臨時申 137 1324423 請案請求優先權之共同申請案或本案請求優先權之臨時申 請案所討論者。 環形功率放大級振盪器490之輸出可為總系統輸出雷 射光雷射脈衝光束,但如第16圖所示,此光束(最終為送至 5利用工具例如掃描器之輸出光束100)也通過度量衡單元(頻 寬分析模組「BAM」)340,此處例如對該光束中的各脈衝 可測量輸出雷射光脈衝光束頻寬’以及通過脈衝延伸器, 例如4X OPuS 520,其包括例如一第一延遲光路522,雷射 系統輸出光束係通過分光鏡526進入,以及包括一第二延遲 10光路524,雷射系統輸出光束係通過分光鏡528進入(由鏡 530所形成的延遲光路)。離開〇PuS 52〇,輸出光束100通過 快門540,也具有分光鏡542,例如去除部分雷射系統輸出 雷射光脈衝光束100來測量例如脈衝能。 以第3圖之光束擴幅器17〇及第2圖之光束擴幅器142設 15置於環形功率放大級振盪腔内,可達成組成放大級180、144 之環形腔之輸入/輸出耦合器16〇之最大反射器164及部分 反射器162上之能量密度的降低。光束反向器7〇移動至腔内 部,可用空間罩住BAM (或SAM)。可免除光塗層的需要, 例如由於於輸入/輸出耦合器部分反射鏡162及最大反射鏡 20 164上由於光通量減少造成之光通量降低,光束反向器70夾 角來減少光傷害,例如輸入及輸出係於約布魯斯特角,來 減少吸收’同時也讓光束展頻於輸入面及輸出面上。於放 大級腔窗194、168也無需保護性塗層。輸出窗194、168可 為47度定向。 138 1324423 同時,因功率放大級以lOOuJ MO能量及以下,例如低 抵約5μ】或以下可達到強力飽和,輸出能量安定性係由良好 環形功率放大級特性所主控,而不少於理想ΜΟ能量安定性 特性。本希瑪XLA XXX ΜΟΡΑ系統係由ΜΟ能量不安定性 5 所主控。其它輸出雷射光束參數例如指標安定性、側寫安 定性及ASE安定性也受到根據所揭示之主旨之一實施例之 各個態樣之一組態利用較低Μ Ο能量輸出獲得有利作用。133 1324423 The target laser wavelength (193 nm for ArF, 248 nm for KrF, 318 for XeCl or 351 nm for XeF laser system) is partial reflection; and a maximum mirror 304 for individual ArF, KrF, XeC or The wavelength of the selected center of the gas discharge laser system such as XeF is the maximum reflection. The beam inverter 310 5 is similar to a power amplifier beam inverter, such as the XLAMOPA configuration laser system, i.e., the XLAXXX system, of the applicant's assignee. Such a beam invertor of XLA-XXX can form a module that forms part of a secondary system of relay optics that, for example, directs the beam from the MO output 'through PA' to the entrance of the pulse extender, And then sent via a shutter through a 10 laser system. The relay optical subsystem can include a MO pre-wave engineering processing/control box ("WEB"), a PA WEB, and the beam inverter module. The beam reverser module receives the beam that is sent out of the back end of the PA cavity and sends the beam through the cavity to the PAWEB at a specific angle and position. The module contains a beam reversal prism 稜鏡 稜鏡 the steering beam returns through the PA cavity, ensuring that the beam is diverted through the pa 15 WEB steering 稜鏡, which in the first case manipulates the beam into the pa cavity.稜鏡 It can be adjusted along the X axis and can be rotated (tilted) around the X axis. Thus returning to the PA cavity in a slightly different optical path' instead of from the PAWEB to the beam reversal, for example as shown in Figures 20-22, whereby for example, the longitudinal axis passes through the same optical path to amplify the gain medium, and on the horizontal axis The different intersecting optical paths pass through the amplification gain medium 20, the longitudinal and transverse lines and the electrodes and the discharge laser amplifying medium gain, and are not necessarily oriented to correspond to true longitudinal vertical or true lateral levels. Thus, the seed beam from the seed laser is optically determined to tilt the double power through the power amplifier gain medium of the power amplifier (not the sealed cavity) as described above. The beam inverter can introduce some micro-angles (several milliradians) 134 1324423 and some slight deviations (several millimeters) into the beam reflected by the PA cavity, so the _beams overlap inside the PA cavity (for example, intersecting the center of the cavity length, the electrode mediastinum The center of the length), while the PA WEB turns to the space. A beam returner in accordance with various aspects of an embodiment of the disclosed subject matter can utilize an optical 5 coating-free inverter. The beam can enter and exit the beam returner near the Brewster angle, and the total internal reflection can occur on the internal reflector surface so that there is virtually no surface loss.稜鏡 must be made of expensive excimers and Cah. Birefringence, volumetric absorption loss, and scattering loss must be considered, but these phenomena are not expected to be a problem. In the input section 296 which is optically accessible through the input window 312, a beam expander 320 can be provided which includes a 稜鏡 322 and a 稜鏡 324 which are common to narrow the beam 288 into the cavity 292. The beam, in turn, expands the beam 288 on the way to the delivery cavity 292, for example, to expand the optical component such as the input/output coupler 3〇〇 during the output; the beam 288 enters the cavity 292 in a narrow manner. The light beam 340 used to narrow the entrance into the amplification gain medium is about the approximate discharge width between the electrodes 294 that are substantially perpendicular to the direction in which the electrodes 294 are separated. The baffle 330, for example, serves to protect the input section 296 of the cavity 292 and the optical elements of the beam reverser section 298 from damage due to debris circulating in the cavity 292 along with the laser gas mixture. 20 inside the cavity of the ring power amplifier stage 290, the beam 288 is advanced by a first direction circulating optical path 340, and in a second direction, the circulating optical path 342 is returned to the seed injecting mechanism 3, where the partial reflection input / The output coupler acts as a conventional output coupler for the oscillator laser cavity, and the reflected portion oscillates the laser photon to the Rmax mirror 304 and returns along the optical path 340. The oscillation in the cavity formed by the sub-injection mechanism 300 and the beam inverter 3i is thus a multi-pass oscillation optical path. As described herein, such an oscillating system is different from the photons in the power amplifier, and therefore passes through the gain medium a fixed number of times, for example, twice in the XLAXXX laser system of the Applicant's Ai Ren, but not along this power 5 amplifier. The light path oscillates When oscillating in the loop/regeneration optical paths 340, 342, a sufficient amount of pulse energy is accumulated, and the laser system takes the laser light pulse beam 1 产生 generated by the seeded power oscillating laser system 280. The seed laser 286 can be a gas discharge such as an excimer or a fluorine laser or a solid state laser. Figure 16 is a block diagram partially showing various aspects of an embodiment according to the disclosed subject matter, similar to the applicant's assignee's XLAXXX multi-cavity mine (four) system configuration - (four) power dump New Zealand The firing system 450' is replaced by a ring power amplifier stage 49A. The laser system 45A can include a quasi-molecular gas discharge laser seed laser 452 which can include a main oscillator laser cavity 454, and a line narrowing module 456 having a reflective element such as a wave 15 length and a bandwidth selective grating A rear mirror is formed, and a portion of the reflective output combiner 458 forms the other end of the main oscillator 452. The main oscillator loose seed laser output laser light pulse beam leaves the output coupler 458, and can pass through the metrology module (line center analysis touch "LAM"), which can use the beam splitter 472 to sample the output of the MO cavity 454 - in addition, In addition to the wavelength meter (20 is not shown in the figure) used to measure the center wavelength of the main laser disc source laser output laser pulse beam pulse, it can also include a M 〇 laser output optical pulse beam pulse energy monitor 474 and ASE monitor 476, such as fluorescent detection benefits. An ASE detector, such as a broadband photodetector, can be used to detect the presence of broadband power with sufficient intensity, indicating that the amplification time in the amplification gain medium is off, 136 丄: 524423, so there is no significant laser in the same frequency band (during discharge) The seed pulse in the amplification stage does not meet the timing), and only a broad frequency laser appears during the discharge of the amplification stage. The main vibrator seed laser 452 outputs a laser beam of light, which is then sent to a turning mirror 480 where it is passed to a seed injection mechanism 300, which is coupled to an amplifier gain medium portion 490, which may include an annular power amplification stage 492, There is a cavity input section 494 and a cavity beam inverter section 496. Those skilled in the art will appreciate that the schematic of the laser system 450 does not reflect the various aspects of the beam path from the 452 to the PO cavity 442. The drawing is a schematic representation of the 10-ply paper plane, rather than the optical path between the two. And the optical reality of the optical path into the amplification stage cavity 492. The seed injection mechanism 300 can, for example, include a portion of the reflective input/output coupler 302', such as a spectroscope sold by a laser system similar to that of the applicant's assignee, for example sold as part of a light pulse extender ("OPuS"), to 15 And a maximum mirror Rmax 304 for a given central wavelength of the name, the partially reflective output coupler 302 is used as an input/output coupler as described above, in particular as a ring power amplifier stage (four) cavity (also defined as a beam inverter) 310) Output face combiner. The seed laser output laser light from the hall 452 is passed through the input window 500 to the toroidal power amplification stage 492, 20 which also passes through the beam expander 510 as shown in Fig. 14 above. The input section 494 of the ring power amplification stage 492 also covers the beam expander 51, which is comprised of, for example, 稜鏡 512 and 稜鏡 514. Other forms of seed injection may be included in the interim patent in the joint review of the application filed on the same day of the case (the priority of the case is requested) and other co-applications for the priority of the provisional application 137 1324423 Or the person who discussed the provisional application for priority in this case. The output of the ring power amplifier stage oscillator 490 can output the laser beam of the laser beam for the total system, but as shown in Fig. 16, the beam (which is ultimately sent to the output beam 100 using a tool such as a scanner) is also measured and measured. a unit (bandwidth analysis module "BAM") 340, here for example measuring the output laser pulse beam bandwidth 'for each pulse in the beam and passing through a pulse extender, such as 4X OPuS 520, which includes, for example, a first The delay optical path 522, the laser system output beam enters through the beam splitter 526, and includes a second delay 10 optical path 524 through which the laser system output beam enters (the delayed optical path formed by the mirror 530). Leaving the 〇PuS 52 〇, the output beam 100 passes through the shutter 540 and also has a beam splitter 542, for example, removing a portion of the laser system output laser light pulse beam 100 to measure, for example, pulse energy. The beam expander 17A of FIG. 3 and the beam expander 142 of FIG. 2 are disposed 15 in the ring-shaped power amplifier stage oscillating cavity, and the input/output coupler of the annular cavity constituting the amplification stages 180 and 144 can be realized. The reduction in energy density on the largest reflector 164 and the partial reflector 162 of 16 turns. The beam reverser 7〇 is moved inside the chamber and the space is used to cover the BAM (or SAM). The need for a light coating can be eliminated, for example, due to a decrease in luminous flux due to reduced luminous flux on the input/output coupler partial mirror 162 and the maximum mirror 20 164, the beam reverser 70 is angled to reduce light damage, such as input and output. It is attached to the Brewster Point to reduce absorption and also spreads the beam over the input and output surfaces. A protective coating is also not required for the large stage chambers 194, 168. Output windows 194, 168 can be oriented at 47 degrees. 138 1324423 At the same time, because the power amplifier stage can achieve strong saturation with lOOuJ MO energy and below, for example, low to about 5μ or less, the output energy stability is controlled by the characteristics of good loop power amplifier stage, not less than ideal. Energy stability characteristics. The Benma XLA XXX ΜΟΡΑ system is dominated by the energy instability 5 . Other output laser beam parameters such as index stability, profile stability, and ASE stability are also advantageously utilized by one of the various aspects of one of the disclosed embodiments to utilize a lower energy output.

根據所揭示之主旨之一實施例之各個態樣,申請人提 示使用6鏡相干性破壞機構(於此處為求方便將光脈衝延遲 10光路示意顯示為每條延遲光路有四鏡),該機構已經由申請 人之受讓人發展於申請人之受讓人之XLA型號多腔雷射系 統使用的OPuS中於第一脈衝延伸器或第二脈衝延伸器中 之任一者或二者内側的額外光路延遲。此種延遲光路例如 以奇數成像鏡可產生負1成像。以卡通方式示意顯示於第η 15圖及第8圖,其中舉例說日月「翻轉」子脈衝之加總。例如於 第8圖所示之翻轉子脈衝可用於改良側寫均句度及對稱 性,用於重疊來自不同來源之加啦輸出孔口脈衝,例如二 為光束組合器。 20 ,,〜〜呀崎热需如同 實際上驗脈舰伸⑧PuS—般長,來獲得遠更増 衝T,s和重疊脈衝。替代相干性破壞機構,所謂之9: 〇PuS」,於多項其它特徵中,可重疊脈衝某個次數= 脈衝580料m明,角隅(前置_)標示為582矿、错 584、586、勝此外,由於延遲光路中鏡之未 2In accordance with various aspects of an embodiment of the disclosed subject matter, the Applicant has suggested the use of a 6-mirror coherence destruction mechanism (here, for convenience, the light pulse is delayed by 10 light paths for four mirrors per delayed light path). The mechanism has been developed by the applicant's assignee in the applicant's assignee's XLA model multi-cavity laser system using the OPuS in either or both of the first pulse extender or the second pulse extender Extra light path delay. Such delayed optical paths can produce negative 1 imaging, for example, with odd imaging mirrors. It is shown in cartoon form in Figure η 15 and Figure 8, which is an example of the sum of the sun and moon "flip" sub-pulses. For example, the flip sub-pulse shown in Fig. 8 can be used to improve the degree of singularity and symmetry of the side, for overlapping the output aperture pulses from different sources, for example, the beam combiner. 20,, ~ ~ Yasaki heat needs to be as long as the actual test ship stretched 8PuS - to get far more T, s and overlapping pulses. Instead of the coherence destruction mechanism, the so-called 9: 〇PuS", among many other features, the number of times the pulse can be overlapped = the pulse 580 is m, and the angle 前 (preposition _) is marked as 582 mine, 584, 586, In addition, due to the delay of the optical path in the mirror 2

139 光束未校準之小部分「鏡之霍爾」效應也降低種子雷射脈 衝之相干性,例如只要延遲光路超過光束之時間相干性長 度即可。就此方面而t,四鏡迷你0PUS,例如有共焦排列 之球面鏡方便校準,可用作為滿意之相干性破壞器,即使 5如本案它處說明,於二軸並無光束翻轉亦如此。基本要求 係例如於一轴或多軸換言之無論是否出現_丨成像,皆可藉 反摺來混合光束。不僅可能出現於仿〇PuSS遲光路,或所 謂之仿迷你OPuS延遲光路,換言之具有成像鏡,同時也會 出現於有平面鏡之延遲光路,故至少於延遲光路之每次來 ίο回,子脈衝相對於主脈衝於至少一軸翻轉,且相對於彼此 翻轉。 根據所揭示之主旨之一實施例之各個態樣,可能需要 於根據所揭示之主旨之一實施例之各個態樣系統内部,於 各點組合二分開雷射光束,若只顯示入射至6鏡脈衝延伸器 15 之一半,則頂與底間之子脈衝翻轉例如係如第8圖所示。此 等「翻轉的」子脈衝加總可能導致填滿的全尺寸側寫,例 如如第41圖所示之脈衝延伸模擬,曲線562顯示於入射延遲 光路前的脈衝,曲線564(黑色)顯示於入射一延遲光路後, 曲線566(紅色)顯示於入射第二延遲光路之後\然後雷射發 2〇 散可用來於若干傳播例如超過約1米左右之後,填補中心部 分568 〇 現在轉向第40圖’顯示根據所揭示之主旨之—實施例 之各個態樣之相千性破壞效應之示意代表圖。利用成像延 遲光路,例如脈衝延伸器,例如所謂之光學脈衝延伸器 140 1324423 (「OPuS」),例如於前述申請人之受讓人之雷射系統一起 出售的4X Tis四面鏡OPuS,如前述美國專利案及共同審查 中之申請案舉例說明,或其修改版本,較短延遲光路例如 用來將光束反摺,及/或用於超過此處討論的相干性長度延 5 遲’所謂的迷你OPuS,可達成例如M0與放大器增益媒質, 例如PA或P〇或環形功率放大級間之相干性破壞狀況。其它 形式之相干性破壞,例如第31圖所示,可單獨使用或組合 此種「迷你OPuS」組合使用,如第33圖所示且討論如文或 迷你OPuS本身。 10 根據所揭示之主旨之一實施例之各個態樣,脈衝延伸 器例如4鏡或6鏡脈衝延伸器,例如常規〇pus諸如4χ Tis 〇PuS或所謂的迷你0PuS,或就第31圖詳細討論之延遲光 路’也包括有若干或全部鏡為平面(非成像)之延遲光路之指 向/發散敏感度例如藉增加主動鏡控制,具有來自於例如第 15 42圖及第66圖所示之指向/發散感測器的回授可獲益。此等 優勢包括形成鏡之霍爾效應或維持例如鏡之霍爾效應,藉 此例如雷射輸出光脈衝光束於延遲光路上平順化,實際上 變成類似多個光束具有略為不同的指向,如此具有入射於 脈衝延伸器之各個鏡及/或延遲光路下游之入射角。申請人 °之又讓人於脈衝延伸器觀察到,極為難以完美校準目前使 用的4X Tis OPuS脈衝延伸器的多面鏡,如此形成鏡之霍爾 效應,來減少送出脈衝延伸器之雷射輸出光脈衝光束之相 干性。如此光束860a形成多個分開光束862a。 第40圖顯示相干性的降低’例如當使用〇(:及尺〇1狀二者 141 1324423 之反射性於平面-平面腔時,有來自於種子雷射脈衝之種子 雷射光源的偏振輸入。角度誇張以求顯示清晰。例如藉靜 態扇出產生多道射線,換言之於〇c與Rmax間形成「鏡之霍 爾效應」。此等射線的理論能量加權,假設通過腔並無透射 5 耗損且有完好反射係數顯示如下。 射線號碼 分詈能 1 0.2 =0.200 /JC 1L* HK 0.3125 2 0.8*0.8 =0.640 1.000 3 〇.8*0.2*0.8 =0.128 0.2000 10 4 0.8*0.2*0.2*0.8 =0.0256 0.0400 5 〇.8*0.2*0.2*0.2*0.8 =0.00512 0.0080 6 0.8*0.2*0.2*0.2*0.2*0.8=0.00102 0.0016The 139 beam uncalibrated fraction of the “mirror of the mirror” effect also reduces the coherence of the seed laser pulse, for example as long as the delay path exceeds the temporal coherence of the beam. In this respect, the four-mirror mini 0PUS, for example, a spherical mirror with a confocal arrangement, can be easily calibrated and can be used as a satisfactory coherence destroyer, even if it is described in the present case, there is no beam flipping on the two axes. The basic requirements are, for example, one-axis or multi-axis, in other words, whether or not _丨 imaging occurs, the beam can be mixed by folding. Not only may it appear in the pseudo-PuSS late light path, or the so-called pseudo-OPuS delay optical path, in other words, it has an imaging mirror, and it also appears in the delayed optical path with the plane mirror, so at least the delay optical path comes back, the sub-pulse is relatively The main pulses are flipped over at least one axis and flipped relative to each other. In accordance with various aspects of one embodiment of the disclosed subject matter, it may be desirable to combine two separate laser beams at various points within each aspect system in accordance with an embodiment of the disclosed subject matter, if only the incident to 6 mirrors is displayed Half of the pulse extender 15, the sub-pulse flip between the top and bottom is as shown in Fig. 8, for example. The summation of such "flip" sub-pulses may result in a full-scale side fill that fills up, such as a pulse extension simulation as shown in Figure 41, curve 562 shows the pulse in front of the incident delay light path, and curve 564 (black) is shown in After entering a delayed optical path, curve 566 (red) is displayed after the second delayed optical path is incident. Then the laser 2 is scattered. After several propagations, for example, more than about 1 meter, the center portion 568 is filled. Now, turn to the 40th picture. 'Shows a schematic representation of the thousands of vandalism effects of various aspects of the embodiments in accordance with the disclosed subject matter. Using an imaging delay optical path, such as a pulse extender, such as the so-called optical pulse extender 140 1324423 ("OPuS"), such as the 4X Tis four-sided mirror OPUS sold with the applicant's assignee's laser system, as described above. Examples of patent applications and co-examination applications, or modified versions thereof, shorter delay optical paths, for example, used to fold the beam back, and/or used to extend the coherence length discussed here beyond 5' so-called mini OPuS For example, a coherent destruction condition between M0 and an amplifier gain medium such as a PA or P〇 or a ring power amplification stage can be achieved. Other forms of coherence destruction, such as shown in Figure 31, can be used alone or in combination with such "mini OPuS" as shown in Figure 33 and discussed as the text or mini OPUS itself. 10 In accordance with various aspects of an embodiment of the disclosed subject matter, a pulse extender such as a 4-mirror or a 6-mirror pulse extender, such as a conventional 〇pus such as a 4 χ Tis 〇 PuS or a so-called mini OPC, or discussed in detail in FIG. The delayed optical path 'also includes the pointing/diverging sensitivity of the delayed optical path with some or all of the mirrors being planar (non-imaging), for example by adding active mirror control, with pointing from, for example, Figures 15 42 and 66 The feedback of the divergent sensor can benefit. These advantages include forming a Hall effect of the mirror or maintaining a Hall effect such as a mirror, whereby, for example, the laser output light pulse beam is smoothed on the delayed optical path, actually becoming like a plurality of beams having slightly different orientations, thus having Incident angles incident on the respective mirrors of the pulse extender and/or downstream of the delayed optical path. Applicant's observation of the pulse extender makes it extremely difficult to perfectly calibrate the polygon mirror of the currently used 4X Tis OPuS pulse extender, thus forming the Hall effect of the mirror to reduce the laser output light of the pulse extender. The coherence of the pulsed beam. Such a beam 860a forms a plurality of split beams 862a. Figure 40 shows the reduction in coherence 'e.g., when using the reflectivity of both : (and 〇 1 141 1324423) in a planar-planar cavity, there is a polarization input from the seed laser source of the seed laser pulse. The angle is exaggerated in order to show clarity. For example, static fanout produces multiple rays, in other words, 「c and Rmax form a "mirror effect of the mirror." The theoretical energy of these rays is weighted, assuming that there is no transmission through the cavity. The perfect reflection coefficient is shown below. The ray number can be divided into 1 0.2 =0.200 / JC 1L* HK 0.3125 2 0.8*0.8 =0.640 1.000 3 〇.8*0.2*0.8 =0.128 0.2000 10 4 0.8*0.2*0.2*0.8 = 0.0256 0.0400 5 〇.8*0.2*0.2*0.2*0.8 =0.00512 0.0080 6 0.8*0.2*0.2*0.2*0.2*0.8=0.00102 0.0016

可假設各射線係彼此不相干,例如0 C與Rmax間之光路 15長f係維持比時間相干性長度更長例如無重疊延伸,亦 即遠比脈衝長度更短。各射線也可假設例如彼此角度略有 不=,原因在於相信極為難以獲得完好校準,特別於縱向 的疋美校準極為困難。申請人相信於縱向方向角度差約37 =度為料未經校準的散斑所需。將規度化能量權值加 20二獲得等數獨立脈衝,取方根來獲得標準差的減少, 由月J述所得之和為^56。方根為1.25,如此當使用〇C及Rmax 標準差預測為0.551/1.25=0.440,該值盘申請人的 測量值亦即0.427良好吻合。 靜態扇出,否則稱作為鏡之霍爾效應,相信大致上為 142 使用手動校準時所無法避免’靜態扇出產生單一脈衝散斑 對比度,具有於放大增益媒質中的放大比單獨種子雷射小 2.50倍。此種減少係等於63未經校準的子脈衝。部分對比 度降低係由於用於測試振盪放大級效應之XeF功率振盪器 5之弱線内容所致,但大部分對比度降低係由於靜態扇出效 應。同理,由0C-Rmax(0C·後腔反射鏡)反射之仿〇PuS靜態 扇出特性所形成之多個子脈衝全部皆可放大至接近相等強 度,如此形成比較上表所示之更多相當的獨立脈衝。 於第40圖,也示意顯示例如於具有一輸入耦合器,其 10具有略為未校準之鏡形成腔852a的後部以及具有一輸出耦 合器854a之一平面-平面腔85〇a中之光束展頻,但相同效應 也由申請人的僱主於具有前述相干性破壞效應之〇PuS* 觀察到。第40圖所示之腔也有一偏振輸入耦合器858a及一 四分之一波長板856a。 15 產生未經校準的散斑圖案所需的傾角顯著。於相當脈 衝由1.0至1.55之第一大躍遷,申請人相信大部分係由於當 作為ΜΟΡΟ操作時’散斑圖案之脈衝至脈衝重複性不良所 致。即使鏡的傾斜絲毫也未改變,二脈衝間的交互關係不 優於30-35%。只使用種子,此種脈衝至脈衝的交互關係約 20 為85-90%。相當脈衝數目長期緩慢升高至如第37圖所示之 約400微弧度鏡傾角也未達2.0的數值。此項結果表示可能 需要大型角度掃拂約±500-1000微弧度來於單一脈衝形成 數個未經校正的散斑圖案。 經由相干性的相關實驗,申請人的僱主習得例如由脈 衝延伸器所產生的子脈衝雖然為非相干性,即使其角度略 為偏移也導致不同的邊帶圖案,但子脈衝的延遲比時間相 干性長度更長。當輸入角為;l/2d時,針孔邊帶圖案由最大 值偏移成最小值。 過去已經提議使用固態雷射光源用於光刻術,但由於 兩項理由故並未繼續追蹤。固態雷射未被視為可用於光刻 術所需的高平均功率,固態雷射產生高度(完好)相干性之單 模輸出。根據所揭示之主旨之一實施例之各個態樣,申請 人提示以例如混成固態種子/準分子放大器組合來解決低 平均功率的問題。根據所揭示之主旨之一實施例之各個態 樣,固態種子之高相干性性質可以多種方式解決,例如經 由形成多個子脈衝,該等子脈衝之分開時間長度比相干性 長度更長,連同於極短時間規度,例如於單一雷射脈衝以 内改變種子雷射指向,或二者的組合。申請人發現相干性 破壞也有利於雙腔氣體放電(例如準分子)種子/氣體放電 (例如準分子)放大器部分雷射。 熟諳技藝人士須瞭解揭示一種裝置及方法利用例如功 率振盘器或其它放大增益級例如環形功率放大級,使用於 DUV波長範圍(例如XeF為35卜XeCl為318,KrF為248,ArF 為193及F2為157)之準分子或分子氟氣體放電雷射系統,達 到極南平均輸出功率例如大於100W或以上之平均輸出功 率之裝置及方法,極少或無顯著ASE干擾雷射系統之同頻 帶期望輕射輸出’例如ASE與同頻帶輻射之比係於或低於 約5X10·4,例如每個脈衝有1〇〇 uJ脈衝能輸入功率放大級 144 1324423It can be assumed that the ray lines are not coherent with each other, e.g., the optical path 15 between 0 C and Rmax is longer than the time coherence length, e.g., without overlap extension, i.e., much shorter than the pulse length. The rays can also assume, for example, that the angles are slightly different from each other because it is believed that it is extremely difficult to obtain a good calibration, and it is extremely difficult to perform calibration in particular in the longitudinal direction. Applicants believe that the angular difference in the longitudinal direction is about 37 = degrees required for uncalibrated speckle. The regularized energy weight is added to 20 to obtain an equal number of independent pulses, and the square root is taken to obtain the reduction of the standard deviation. The sum obtained by the month J is ^56. The square root is 1.25, so when the standard deviation of 〇C and Rmax is predicted to be 0.551/1.25=0.440, the value of the applicant for the value plate is 0.427. Static fanout, otherwise known as the Hall effect of the mirror, I believe it is roughly 142. When using manual calibration, it is unavoidable that 'static fanout produces a single pulse speckle contrast, which is smaller than the single seed laser in the amplification gain medium. 2.50 times. This reduction is equal to 63 uncalibrated sub-pulses. Part of the contrast reduction is due to the weak line content of the XeF power oscillator 5 used to test the oscillation amplification stage effect, but most of the contrast reduction is due to the static fanout effect. Similarly, the multiple sub-pulses formed by the static fan-out characteristics of the pseudo-PuS reflected by the 0C-Rmax (0C·rear cavity mirror) can all be amplified to nearly equal intensity, thus forming more equivalents as shown in the above table. Independent pulse. Also shown in Fig. 40, for example, having an input coupler having a rear portion of the slightly uncalibrated mirror forming cavity 852a and a beam spreader having a plane-plane cavity 85〇a of an output coupler 854a However, the same effect was also observed by the applicant's employer in the PuS* with the aforementioned coherence-damaging effect. The cavity shown in Fig. 40 also has a polarization input coupler 858a and a quarter-wave plate 856a. 15 The angle of inclination required to produce an uncalibrated speckle pattern is significant. At the first major transition from 1.0 to 1.55 for a fairly pulse, Applicants believe that most of this is due to poor pulse-to-pulse repeatability of the speckle pattern when operating as a ruthenium. Even if the tilt of the mirror is not changed at all, the interaction between the two pulses is not better than 30-35%. Using only seeds, this pulse-to-pulse interaction is about 20-90%. The number of equivalent pulses is slowly increased over a long period of time to a value of about 400 microradians, as shown in Fig. 37, which is less than 2.0. This result indicates that a large angle broom may be required to be approximately ±500-1000 microradians to form a number of uncorrected speckle patterns in a single pulse. Through correlation experiments of coherence, Applicants' employers learned that sub-pulses, such as those produced by pulse extenders, are incoherent, even though their angles are slightly offset, resulting in different sideband patterns, but the delay of the sub-pulses is more time-dependent. Sex length is longer. When the input angle is; l/2d, the pinhole sideband pattern is shifted from the maximum value to the minimum value. Solid-state laser sources have been proposed for lithography in the past, but have not continued to track for two reasons. Solid-state lasers are not considered to be the high average power required for lithography, and solid-state lasers produce a single (mode) output of high (good) coherence. In accordance with various aspects of one embodiment of the disclosed subject matter, the Applicant suggests solving the problem of low average power with, for example, a hybrid solid seed/excimer amplifier combination. In accordance with various aspects of an embodiment of the disclosed subject matter, the high coherence properties of the solid seed can be resolved in a variety of ways, such as by forming a plurality of sub-pulses, the length of separation of the sub-pulses being longer than the length of coherence, Very short time schedules, such as changing the seed laser pointing within a single laser pulse, or a combination of the two. Applicants have found that coherent destruction also facilitates partial laser exposure of a dual chamber gas discharge (e.g., excimer) seed/gas discharge (e.g., excimer) amplifier. Those skilled in the art will appreciate that a device and method are disclosed that utilize, for example, a power oscilloscope or other amplification gain stage, such as a ring power amplifier stage, for use in the DUV wavelength range (eg, XeF is 35 Bu XeCl is 318, KrF is 248, ArF is 193 and F2 is an excimer or molecular fluorine gas discharge laser system of 157), and the device and method for achieving an average output power of a very south average output power, for example, greater than 100 W or more, with little or no significant ASE interference, the same frequency band of the laser system is expected to be light The ratio of the emission output 'such as ASE to the same band radiation is at or below about 5×10·4, for example, 1 〇〇uJ pulse energy input power amplification stage 144 1324423 per pulse.

腔。根據所揭示之主旨之一實施例之各個態樣,非期望之 環形功率放大級光逆向傳播,也取樣用於診斷及ASE回授 控制。加入小量線窄化(例如使用棱鏡)調諧來線窄化,也可 輔助抑制來自於功率放大級之ASE。同時,根據所揭示之 5 主旨之一實施例之各個態樣,可使用PA例如連同固態M0 可使用PA,例如4通放大器不具有振盪,但有可接受之放 大,或許有甚至夠高的飽和。使用此種設計,可能需要4次 通過’ 4次通過各次橫過整個增益截面。腔於兩邊有2稜鏡 俾便減少於經塗覆之腔中光學元件之能量密度,同時也提 10 供分散來降低ASE。 此外,於ΜΟΡΟ或其它主振盪器/功率放大級組態中之 最終ASE位準無需隨著ΜΟ能的降低而升高,因此根據所揭 示之主旨之一實施例之各個態樣,ΜΟ輸出能即使降至低於 10 μ〗,可能不會導致無法接受的ASE,例如即使不含部分 15 反射偏轴種子注入機構及/或不含再生環形功率放大級組 態亦如此。有光束擴大及交叉光束之腔可建構成不超過今 曰XLA之腔長度,例如有光束擴幅稜鏡充分遠離腔,來允 許例如依據光束寬度及交叉角指示,光束交叉橫向平移例 如腔窗之數厘米距離。稜鏡及/或光束反向器光學元件之容 2〇 器分開,也允許使用直接F2供應,例如F2濃度與雷射氣體 混合物之F2濃度不同,例如約1%濃度《也可例如避免來自 於光學元件固定器的污染。 例如於光學蛑遲光路上例如於有延遲光路只約1呎的 迷你OPuS中之反向成像效應顯示於第37圖,例如顯示輸入 145 1324423 光束580a之成像效應,其中光束角隅582a係由最初於光束 580a之右下角的方形標示。對第一子脈衝584a,例如於入 口分光鏡與第一迷你OPuS鏡間之第一子脈衝584a,光束角 隅582a維持相同。於例如從第一鏡反射之第二子脈衝586, 5 光束已經被負成像至第二迷你〇PuS鏡,光束角隅已經移動 至左上角,然後對於反射至第四迷你01&gt;1^鏡之第三子脈衝 588a而言’光束角隅已經被負成像返回右下角,如圖所示。 將全部此等子脈衝組合成為一輸出脈衝,有相當短光學脈 衝延遲’由Tis觀點脈衝無法極為顯著延伸,依據延遲光路 10上的鏡數目而定’藉由光束自我反摺數次的效應仍然可實 質上減少相干性。 第8圖顯示對光束之相同效應,例如該光束於進入兩個 分開光源例如於2X kHz系統中於X kHz操作的兩個固態種 子雷射之延遲光路之前,已經分光成兩半。如圖可知,兩 15半同樣負成像於各子脈衝’結果導致於例如經由兩半組合 成第37圖舉例說明之該種形狀之單一輸出脈衝時所形成的 總輸出脈衝之相干性進一步降低,如前文說明 ,如此也可 作為用來將來自分開光源之分開光束組合之有效光束組合 is /混合器。 20 現在參考第42圖,部分以方塊圖示意顯示根據所揭示 之主旨之一實施例之各個態樣之光束組合器系統600。光束 組合盗系統600例如可包括一第一放大器增益媒質部分6〇2 及一第二放大器增益媒質部分604,如本文它處所述,其各 自可為環形功率放大級之PA或p〇。各個放大器部分6〇2、 146 1324423 604之輸出可通過光束擴幅器608,其包括一稜鏡610及一稜 鏡612可放大光束例如約2倍。轉向鏡620將來自放大器602 之第一雷射系統輸出光脈衝光束622操控第二轉向鏡624, 鏡624操控脈衝光束622來形成一脈衝光束632至第一脈衝 5延伸器64〇之分光鏡642,由該處之第二脈衝延伸器644之分 光鏡646。轉向鏡630可操控來自於第二放大器6〇4之第二雷 射系統輸出光脈衝光束632至第二轉向鏡634,鏡634可操控 光束632來形成光束634入射於分光鏡642,由該處入射分光 鏡646。第一OPuS及第二〇pus(如本文它處討論可為「迷你 10 〇PuS」)之輸出可通過另一分光鏡650,於此種例如雷射系 統輸出雷射脈衝光束之小部分可被轉向,例如用於度量衡 的目的,藉聚焦透鏡652聚焦於發散檢測器654,發散檢測 器654可為控制系統(圖中未顯示)之一部分,來提供回授控 制信號656予第一OPuS及/或第二〇pus 640、644之分光鏡 15 642、646或各光束632 ' 634之轉向鏡來確保來自二放大器 之指向實質上於遠場維持重疊,故光束顯示為單一光束, 同時例如由於OPuS的共焦性質,二脈衝延伸器維持指向哪 伯導入=d。 第38圖示意顯示就相干性/散斑減少方面,改變光束指 2〇向(掃拂光束)的影響。脈衝延伸器662可接收雷射系統輸出 雷射光脈衝光束100於分光鏡664上,例如經由改變分光鏡 角度,來將光束100的指向掃拂至漫射器67〇上。所得檢測 得之散斑圖案680指示掃拂可減少相干性對比度因而= 散斑。 ‘ ^ 147 % 1324423 現在參考第66圖’以部分方塊圖形式示意顯示極高功 率之固態播種浸沒式光刻術雷射光源7〇〇,其例如包括高脈 衝重複率如12kHz之固態種子雷射7〇2。種子雷射7〇2之輸出 可通過格式化光學元件704,其包括透鏡706及透鏡708,可 5用來將光束由圓光束重新格式化成為與放大器部分之增益 媒質形狀符合一致的形狀。來自於種子雷射7〇2之輸出雷射 光脈衝光束隨後通過X軸光電(「E-Ο」)操控機構712及/或y 軸E-0操控機構714或二者,例如前述E_〇單元模式,各自 設置於彼此正交轴,光束掃拂來塗抹所用工具(例如掃描器 10或退火工具)孔口的合理百分比,例如約1毫弧度,連同高 頻AC塗抹電壓’如本案它處所述。來自於種子雷射7〇2之 雷射輸出光脈衝光束隨後於分光鏡分光可提供交替(「滴答 形」)輸入脈衝於個別放大器增益媒質,例如第一功率振盈 器730及第二功率振盪器730。功率振盪器730包含一環形功 15 率振盪器。 分光鏡720包含一分光鏡722其將例如50%來自於種子 雷射702之輸出光束選擇性透射至轉向鏡724及轉向鏡726 上’進入第二放大器增益媒質730,反射50%至轉向鏡728, 前進至第二放大器增益媒質730,例如於各脈衝上分光鏡 20 720也包含例如光電光束檢測器或光聲光束檢測器交替被 作動’來發送光至交替脈衝上的摺疊鏡728或摺疊鏡724。 各個增益放大器媒質730例如可包括功率放大級腔 732、輸入耦合器/後腔器734,例如凹面鏡有個孔口於鏡面 的轉軸上,允許種子雷射光束進入由後腔鏡734及前腔鏡Cavity. In accordance with various aspects of an embodiment of the disclosed subject matter, the undesired loop power amplification stage optical reverse propagation is also sampled for diagnostic and ASE feedback control. Adding a small amount of line narrowing (e.g., using a prism) tuning to narrow the line also assists in suppressing the ASE from the power amplification stage. In the meantime, according to various aspects of one embodiment of the disclosed subject matter, a PA can be used, for example, together with a solid state M0. For example, a 4-way amplifier does not have an oscillation, but an acceptable amplification, perhaps even a sufficiently high saturation. . With this design, it may take 4 passes to cross the entire gain section by '4 passes. The cavity has 2 稜鏡 on both sides to reduce the energy density of the optical components in the coated cavity, while also providing dispersion to reduce ASE. Furthermore, the final ASE level in the configuration of the primary oscillator or other power amplifier stage does not need to increase as the energy level decreases, so that in accordance with various aspects of an embodiment of the disclosed subject matter, the output can be Even if it falls below 10 μ, it may not result in an unacceptable ASE, for example even if there is no partial 15 reflective off-axis seed injection mechanism and/or no regenerative loop power amplifier configuration. The cavity with beam expansion and intersecting beams can be constructed to form a cavity length that does not exceed the current XLA, such as beam broadening, sufficiently far away from the cavity, to allow lateral cross-translation of the beam, such as a cavity window, for example, depending on beam width and angle of intersection indication. A few centimeters away. The separation of the 稜鏡 and/or the beam reverser optics allows the direct F2 supply to be used, for example, the F2 concentration differs from the F2 concentration of the laser gas mixture, for example about 1% concentration. Contamination of the optical component holder. For example, the inverse imaging effect in an optical 蛑-light path, for example, in a mini-OPuS with a delayed optical path of only about 1 显示 is shown in Figure 37, for example, showing the imaging effect of the input 145 1324423 beam 580a, where the beam angle 隅 582a is initially The square in the lower right corner of the beam 580a is indicated. For the first sub-pulse 584a, for example, the first sub-pulse 584a between the entrance beam splitter and the first mini-OPuS mirror, the beam angle 隅 582a remains the same. For example, the second sub-pulse 586, 5 light beam reflected from the first mirror has been negatively imaged to the second mini 〇 PuS mirror, the beam angle 隅 has moved to the upper left corner, and then to the fourth mini 01 &gt; In the third sub-pulse 588a, the beam angle 隅 has been negatively imaged back to the lower right corner as shown. Combining all of these sub-pulses into one output pulse, with a relatively short optical pulse delay 'cannot be significantly extended by the Tis point of view, depending on the number of mirrors on the delay path 10', the effect of self-reflexing by the beam is still several times The coherence can be substantially reduced. Figure 8 shows the same effect on the beam, e.g., the beam has been split into two halves before entering the two separate sources, e.g., the delayed optical paths of two solid seed lasers operating at X kHz in a 2X kHz system. As can be seen, the two 15 and a half negative imaging images of each sub-pulse result in a further reduction in the coherence of the total output pulse formed, for example, by combining the two halves into a single output pulse of the shape illustrated in FIG. As previously explained, this can also be used as an effective beam combining is/mixer for combining separate beams from separate sources. 20 Referring now to Figure 42, a portion of a beam combiner system 600 in accordance with various aspects of one of the disclosed subject matter is schematically illustrated in block diagram form. The beam pirate system 600 can include, for example, a first amplifier gain medium portion 〇2 and a second amplifier gain medium portion 604, each of which can be a PA or a 〇 of the ring power amplification stage, as described herein. The output of each of the amplifier sections 6 〇 2, 146 1324423 604 can be passed through a beam expander 608 which includes a 稜鏡 610 and a prism 612 to amplify the beam, for example about 2 times. The turning mirror 620 directs the first laser system output light pulse beam 622 from the amplifier 602 to operate the second turning mirror 624, and the mirror 624 manipulates the pulse beam 622 to form a pulsed beam 632 to the first pulse 5 extender 64's beam splitter 642. From the beam splitter 646 of the second pulse extender 644 there. The turning mirror 630 can control the second laser system output light pulse beam 632 from the second amplifier 6〇4 to the second turning mirror 634, and the mirror 634 can manipulate the light beam 632 to form the light beam 634 incident on the beam splitter 642, where The incident beam splitter 646 is incident. The output of the first OPuS and the second 〇pus (which may be referred to herein as "mini 10 〇 PuS") may pass through another beam splitter 650, such that a small portion of the laser beam output from the laser system may be Steering, for example for metrology purposes, is focused by focusing lens 652 on divergence detector 654, which may be part of a control system (not shown) to provide feedback control signal 656 to first OPuS and/or Or a diverting mirror of the second pupils 640, 644 beamsplitters 15 642, 646 or beams 632 ' 634 to ensure that the pointing from the two amplifiers remains substantially overlapping in the far field, so that the beam is shown as a single beam, for example due to OPuS The confocal nature of the two-pulse extender maintains which position to introduce =d. Figure 38 is a diagram showing the effect of changing the beam direction (sweep beam) in terms of coherence/speckle reduction. The pulse extender 662 can receive the laser output laser light beam 100 onto the beam splitter 664, for example by changing the beam splitter angle, to sweep the beam 100 to the diffuser 67A. The resulting detected speckle pattern 680 indicates that the broom can reduce the coherence contrast and thus the speckle. ' ^ 147 % 1324423 Referring now to Figure 66, a partially high-power solid-state seed immersion lithography laser source 7 示意 is shown in partial block diagram, which for example includes a solid seed laser with a high pulse repetition rate such as 12 kHz. 7〇2. The output of the seed laser 7〇2 can be passed through a formatted optical element 704 that includes a lens 706 and a lens 708 that can be used to reformat the beam from the circular beam into a shape that conforms to the shape of the gain medium of the amplifier portion. The output laser beam from the seed laser 7〇2 is then passed through an X-axis optoelectronic ("E-Ο") steering mechanism 712 and/or a y-axis E-0 steering mechanism 714 or both, such as the aforementioned E_〇 unit Modes, each set on an orthogonal axis to each other, a beam broom to apply a reasonable percentage of the orifice of the tool used (eg, scanner 10 or annealing tool), eg, about 1 milliradian, along with a high frequency AC smear voltage' as it is in this case Said. The laser output light pulse beam from the seed laser 7〇2 is then split at the beam splitter to provide an alternating ("tick") input pulse to the individual amplifier gain medium, such as the first power oscillator 730 and the second power oscillation. 730. Power oscillator 730 includes a loop power oscillator. The beam splitter 720 includes a beam splitter 722 that selectively transmits, for example, 50% of the output beam from the seed laser 702 to the steering mirror 724 and the steering mirror 726' into the second amplifier gain medium 730, reflecting 50% to the turning mirror 728. Advancing to the second amplifier gain medium 730, for example, on each pulse, the beam splitter 20 720 also includes a folding mirror 728 or a folding mirror that, for example, the photobeam detector or the photoacoustic beam detector are alternately actuated to transmit light onto the alternating pulses. 724. Each of the gain amplifier media 730 can include, for example, a power amplification stage 732, an input coupler/rear chamber 734, such as a concave mirror having an aperture on the mirror axis, allowing the seed laser beam to enter the back mirror 734 and the anterior mirror

148 736所形成的腔内部’如技藝界稱作為不穩定振盪腔。須瞭 解放大器增益媒質可呈本案所述的其它組態,例如安定共 振器具有種子注入機構,討論於共同審查中且同時提出申 請之前述申請案;以及例如環形功率放大級或功率玫大 5器,不含共振器腔’如技藝界已知,只有固定橫向光路供 放大,同時增益媒質被激化(例如存在有反向族群),而未發 生雷射振盪’換言之如雷射振盪腔業界已知不含輸出輕合 器。於振盪腔環境中’例如凸面鏡可藉諸如本案它處所詳 細討論之輸入耦合器諸如種子注入機構替代;凸面鏡736係 10以輸出耦合器替代。來自於第一放大器增益媒質730之輪出 光束766及來自於第二放大器增益媒質730之輸出光束764 個別之光束擴幅、光束組合、及相干性破壞及發散測量(例 如考慮ASE),及回授控制可如第21圖之討論,第21圖係就 例如包含稜鏡742及744之光束擴幅器740、包含來自第一放 15大器增益媒質730之鏡750、752及來自第二放大器增益媒質 730之鏡760、762之光束組合器、及脈衝延伸器64〇及644及 度量衡單元654做討論。 第39圖示意顯示有關掃描器接受窗例如於水平方向及 垂直方向(如就第39圖之頁面顯示)於輸出雷射脈衝之相干 2 〇性破壞體系之結果。點7 8 0示意舉例說明初種子雷射輸出脈 衝側寫780。脈衝782之圖案係顯示光束於完好校準光束延 遲光路上摺疊後,或通過未校準的脈衝延伸器或二者後之 子脈衝圖案側寫782 ’或其組合,以及環繞各點的圈784係 表示對光電塗抹側寫的影響。 1324423The interior of the cavity formed by 148 736 is referred to as an unstable oscillating cavity as in the art. It is to be understood that the amplifier gain medium can be in other configurations as described herein, such as a stabilization resonator having a seed injection mechanism, discussed in the co-examination and concurrently filed with the aforementioned application; and, for example, a ring power amplifier stage or a power amplifier , without resonator cavity 'as known in the art, only fixed lateral optical path for amplification, while the gain medium is excited (for example, there is a reverse group), and no laser oscillation occurs. In other words, the laser oscillation cavity is known in the industry. Does not contain an output lighter. In an oscillating cavity environment, for example, a convex mirror may be replaced by an input coupler such as a seed injection mechanism as discussed in detail herein; the convex mirror 736 is replaced with an output coupler. Individual beam expansion, beam combining, and coherence destruction and divergence measurements (eg, considering ASE) from the wheeled beam 766 of the first amplifier gain medium 730 and the output beam 764 from the second amplifier gain medium 730, and back The control can be as discussed in FIG. 21, which is for example a beam expander 740 comprising 稜鏡 742 and 744, a mirror 750, 752 comprising a first gain source 730, and a second amplifier. The beam combiner of the mirrors 760, 762 of the gain medium 730, and the pulse extenders 64A and 644 and the metrology unit 654 are discussed. Figure 39 is a schematic illustration of the results of a coherent 2-destructive system for outputting laser pulses, such as in the horizontal and vertical directions (as shown on page 39). Point 780 illustrates the initial seed laser output pulse side write 780. The pattern of the pulse 782 is such that after the beam is folded over the smooth path of the perfect calibration beam, or by the uncalibrated pulse stretcher or both sub-pulse pattern side 782' or a combination thereof, and the circle 784 around the points represents the pair The effect of photoelectric painting on the side. 1324423

第67圖以部分方塊圖形式示意顯示環形功率放大級振 盪器雷射系統1800及種子注入機構1812,如本文它處討 論。雷射系統1800例如包含領結形環形功率放大級1804及 種子雷射例如固態或氣體放電種子雷射振盪器1802。種子 5 振盪器丨8〇2可藉隔件而與功率放大級1804之振盪器腔隔 開’來防止來自於回授光子之非期望的雷射,例如具有適 當種子注入機構1812時,該隔件為不必要》功率放大級區 段1804例如包括功率放大級腔1810、種子注入機構1812, 其例如包括輸入/輸出耗合器1814及最大反射(「Rmax」)鏡 10 1816 ’光束反向器1820將來自於種子振盪器1802之輸出光 束1806反向入放大器部分腔1804,也包括光束反向器/返回 器1820,其可包括例如第一最大反射鏡1822及第二鏡1824 例如由類似Rmax鏡1816之材料製成,選用來最大反射雷射 系統之名目中心波長(例如XeF為351,XeCl為318,KrF為 15 248 ’ ArF為193及F2為157)附近的適當頻帶。如本文詳細說 明’種子注入機構及光束返回器可配置成形成功率放大級 184〇之振盈腔(依據腔長度而言技術上可稱作為振盈器或 放大器振盪器級)。須瞭解光束826 ' 828之偏轉角大為誇張 供舉例說明,可能約為1微弧度。 20 第68圖部分以方塊圖形式示意顯示根據所揭示之主旨 之一實施例之各個態樣之固態種子/功率放大器雷射系統 1880。系統可結合一固態12icHz種子雷射1882及一對放大器 增益媒質,例如一對功率放大器腔1888。光學介面模組1884 接收種子雷射1882之輸出,以滴答方式將種子雷射導引入 150 個別放大器增益媒質1888,例如於交替脈衝上導引。光學 介面模組1884可包含一對筒形望遠鏡1886,其可用來格式 化光束,例如由於輸出可能為散光,使用望遠鏡來去除散 光’也包括例如一輸入光學模組1890其各自包含一鏡 1902、一鏡1908、及一鏡1910,其與鏡1904及19〇6可共同 形成於組配成為三通功率放大器(「PA」)之放大器增益媒 質中,於電極間通過固定次數例如通過電極間(未顯示於第 68圖)之增益媒質三次,換言之於放大器增益媒質未出現雷 射振盈。個別功率放大器1888之個別輸出一方面可藉光束 轉向鏡1930、1932操控,另一方面可經由個別能量感測器 藉光束轉向鏡1934、1936操控》來自系統188〇之輸出光束 可於光束組合器組合,如本文它處之討論。 相干性破壞器,例如於輸入光學元件模組89〇調變個別 鏡910的傾斜角度之自動化雙軸角度調整機構191〇可作為 類似第66圖之實施例之X軸及γ轴光束操控光電元件 1712、1714之類似目的,例如將入射於放大器增益媒質之 光束由邊掃拂及/或上下掃拂來獲雜Α發散,如此獲 得如本文它處討論之相干性破壞。 現在轉向參考第69圖,以部分方塊圖格式示意顯示根 據所揭不之主旨之一實施例之各個態樣,一種種子雷射/放 大器增益媒質雷射系統,諸如固態種子/功率放大級雷射系 統1950。系統195G例如包括種子雷射如@態丨2kHz種子雷射 1952,其輸出可人射於光學介面模組刪,如第_之實 把例入射☆ 筒形望遠鏡1886之個別望遠鏡。輸入柄合 1324423 模組I960例如包括一偏振分光鏡1962、一Rmax 1964、一四 分之一波長板1966、及一輸入耦合器Rmax鏡1968,其係共 同發揮功能來耦合種子雷射1952之輸出,亦即個別種子光 束1970、1972,例如使用偏振耦合而耦合入個別增益放大 5 器媒質,例如具有輸出耦合器1982之功率放大級振盪器。 轉向鏡1984、1986、1994、1996係用於第68圖之實施例之 個別轉向鏡之相同目的。Figure 67 shows, in partial block diagram form, a toroidal power amplifier stage oscillator system 1800 and a seed injection mechanism 1812, as discussed herein. Laser system 1800 includes, for example, a bow-tie shaped ring power amplifier stage 1804 and a seed laser such as a solid state or gas discharge seed laser oscillator 1802. The seed 5 oscillator 丨8〇2 can be separated from the oscillator cavity of the power amplifier stage 1804 by a spacer to prevent undesired lasers from returning photons, such as with a suitable seed injection mechanism 1812. The power amplification stage section 1804 includes, for example, a power amplification stage 1810, a seed injection mechanism 1812 that includes, for example, an input/output consuming device 1814 and a maximum reflection ("Rmax") mirror 10 1816 'beam nebulizer 1820 inverts output beam 1806 from seed oscillator 1802 into amplifier portion cavity 1804, also including beam inverter/returner 1820, which may include, for example, first maximum mirror 1822 and second mirror 1824, for example by Rmax The mirror 1816 is made of a material selected for the maximum reflection center system wavelength (e.g., XeF is 351, XeCl is 318, KrF is 15 248 'ArF is 193 and F2 is 157). As described in detail herein, the seed implantation mechanism and beam returner can be configured to form a vibration chamber of the power amplification stage 184 (which may be referred to as a vibrator or amplifier oscillator stage depending on the length of the cavity). It is to be understood that the deflection angle of the beam 826 '828 is greatly exaggerated for illustrative purposes and may be approximately 1 microradian. 20 Section 68 is a block diagram representation of a solid state seed/power amplifier laser system 1880 in accordance with various aspects of one embodiment of the disclosed subject matter. The system can incorporate a solid 12icHz seed laser 1882 and a pair of amplifier gain media, such as a pair of power amplifier cavities 1888. The optical interface module 1884 receives the output of the seed laser 1882 and tweaks the seed laser into a 150 individual amplifier gain medium 1888, for example, on an alternate pulse. The optical interface module 1884 can include a pair of cylindrical telescopes 1886 that can be used to format a beam of light, for example, because the output can be astigmatic, using a telescope to remove astigmatism. ' Also includes, for example, an input optical module 1890 that each includes a mirror 1902 A mirror 1908 and a mirror 1910, which together with the mirrors 1904 and 19〇6, are formed in an amplifier gain medium assembled as a three-way power amplifier ("PA"), through a fixed number of times between electrodes, for example, between electrodes ( The gain medium is not shown in Figure 68 three times, in other words, the laser gain medium does not exhibit laser vibration. The individual outputs of the individual power amplifiers 1888 can be manipulated on the one hand by the beam steering mirrors 1930, 1932, and on the other hand by the individual energy sensors by the beam steering mirrors 1934, 1936. The output beam from the system 188 can be used in the beam combiner. Combinations, as discussed in this article. The coherent destroyer, for example, the input optical element module 89, the automatic biaxial angle adjustment mechanism 191 that modulates the tilt angle of the individual mirror 910 can be used as an X-axis and γ-axis beam steering optoelectronic component similar to the embodiment of FIG. 66. For similar purposes, 1712, 1714, for example, the beam incident on the amplifier gain medium is bounced by side brooms and/or brooms up and down, thus obtaining coherence damage as discussed herein. Turning now to FIG. 69, a partial block diagram format illustrates various aspects of an embodiment of a disclosed subject matter, a seed laser/amplifier gain medium laser system, such as a solid seed/power amplifier stage laser. System 1950. The system 195G includes, for example, a seed laser such as an @state 丨 2 kHz seed laser 1952, the output of which can be shot by an optical interface module, such as the first ray. Input Handle 1324423 The module I960 includes, for example, a polarization beam splitter 1962, an Rmax 1964, a quarter wave plate 1966, and an input coupler Rmax mirror 1968 that collectively function to couple the output of the seed laser 1952. That is, individual seed beams 1970, 1972, for example, are coupled into an individual gain amplifying device using polarization coupling, such as a power amplifier stage oscillator having an output coupler 1982. The turning mirrors 1984, 1986, 1994, 1996 are used for the same purpose of the individual turning mirrors of the embodiment of Fig. 68.

第70圖顯示一舉例說明之規度化ΜΟΡΟ強度1000、一 規度化單通ΡΑ強度1002、及一規度化雙通ΡΑ強度1004。 10 第71圖顯示範例巨觀操控脈衝1010,其可包含多個交 替之高DC及低DC電壓1010、1012及1014,如圖所示可以三 種不同高電壓以某種樣式重複,以及一疊置的交流高頻操 控電壓1016,其可能出現於局電壓及低電壓。如圖所示, 例如高電壓可有不同脈衝時間,以及有不同低電壓時間間 15隔。如第73圖所示,高電壓1032有相同值,以及具有與疊 置AC 1034相同的低電壓時間間隔1〇36。 第72圖以方塊圖形式示意顯示根據所揭示之主旨之一 實施例之各個態樣之光學切換及塗抹系統1〇2〇,系統1〇2〇 例如可包括一固態種子1022、一頻率轉換器1〇24、及一光 20學開關及塗抹器1026,其可包括一光電光束導向器,當如 第73圖所示之脈衝為高(第73圖之1〇32)時將光束導入放大 器增益媒質1030之第一者;以及當脈衝為低(第73圖之1036) 時將光束偏向入另一個放大器增益媒質1〇32;同時也施加 AC光束導向1034至各個放大器1030、1〇32。第二頻率遷移 152 器1028可介於分光鏡/塗抹器1〇26與個別放大器增益媒質 1032間,而除了元件1〇24之頻率遷移之外可額外頻率遷 移’或替代元件1024的頻率遷移。 根據所揭示之主旨之一實施例之各個態樣,申請人提 5示利用固態種子雷射來產生193nm雷射光,例如以可驅動線 性或非線性頻率轉換級之固態種子驅動雷射來產生固態組 態之相干性193nm輻射。一種可能的種子驅動雷射為脈衝式 Yb纖維雷射’發出約i〇6〇nm之雷射’於1〇5〇1〇8〇mn區可 調諸。此種雷射構成成熟有力的纖維雷射技術,例如可組 10配成產生於多千赫之重複頻率之短時間脈衝(1-5奈秒)。為 了使用1060nm作為最長波長混合光源來產生193nm,根據 所揭示之主旨之一實施例之各個態樣,申請人提示使用有 長波長及中等短波長之和頻率產生(「SFG」)來產生深紫外 光(「DUV」)。由於目前缺乏236.5nm光源作為其它混合波 15長故無法產生第二諧波(「SHG」)來達到193nm。但此種光 源可藉第四諧波產生(「FHG」)來導出,第四諧波為q_切換 二極體泵送Nd:YAG雷射之946NM輸出(946nm為Nd:YAG中 之較低效率變遷)。Figure 70 shows an exemplary gauge strength 1000, a regular single pass strength 1002, and a regular double pass strength 1004. 10 Figure 71 shows an example giant control pulse 1010, which may include a plurality of alternating high DC and low DC voltages 1010, 1012, and 1014, as shown in the figure, which can be repeated in a certain pattern with three different high voltages, and a stack The AC high frequency control voltage 1016, which may occur at the local voltage and low voltage. As shown, for example, high voltages can have different pulse times, and there are 15 intervals between different low voltage times. As shown in Fig. 73, the high voltage 1032 has the same value and has the same low voltage time interval 1〇36 as the stacked AC 1034. Figure 72 is a block diagram showing an optical switching and smearing system in accordance with an embodiment of the disclosed subject matter. The system 1 〇 2 〇 can include, for example, a solid seed 1022, a frequency converter. 1 〇 24, and a light 20 switch and applicator 1026, which may include a photo beam director, which directs the beam into the amplifier gain when the pulse as shown in Fig. 73 is high (Fig. 73, Fig. 1 〇 32) The first of the media 1030; and deflecting the beam into another amplifier gain medium 1〇32 when the pulse is low (1036 in Fig. 73); and also applying the AC beam directing 1034 to each of the amplifiers 1030, 1〇32. The second frequency shift 152 1028 can be interposed between the beam splitter/applicator 1 〇 26 and the individual amplifier gain medium 1032, with the exception of the frequency shift of the elements 1 〇 24 for additional frequency shifting or replacement of the frequency shift of the element 1024. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicant mentions that solid state seed lasers are utilized to generate 193 nm laser light, such as solid state seed driven lasers that can drive linear or nonlinear frequency conversion stages to produce solid state Configure the coherence of 193 nm radiation. One possible seed-driven laser is a pulsed Yb fiber laser that emits a laser of about i〇6〇nm in the area of 1〇5〇1〇8〇mn. Such lasers constitute a mature and powerful fiber laser technique, such as a short time pulse (1-5 nanoseconds) that can be generated at a repetition rate of multiple kilohertz. In order to use 193 nm as the longest wavelength hybrid source to produce 193 nm, Applicants have suggested using a combination of long wavelength and medium short wavelength frequencies ("SFG") to generate deep ultraviolet light in accordance with various aspects of one embodiment of the disclosed subject matter. Light ("DUV"). Due to the current lack of a 236.5 nm light source as the other mixed wave 15 length, the second harmonic ("SHG") cannot be generated to reach 193 nm. However, such a light source can be derived by the fourth harmonic generation ("FHG"), and the fourth harmonic is the 946 NM output of the q_switched diode pumped Nd:YAG laser (946 nm is the lower of Nd:YAG) Efficiency changes).

Nd:YAG輸出主要為固定波長,總可微調能力係經由微 20調Yb纖維雷射例如Yb+3纖維雷射之輸出波長來提供。Yb纖 維雷射輸出之微調性可透過CW二極體種子雷射例如新聚 焦漩渦(New Focus Vortex) TLB-6021獲得。此種二極體雷射 播種器如對光刻術來源用途所期望,例如可透過反射器之 内部PZT控制’而於有限波長範圍提供快速波長控制,且有 1324423 高光譜純度。Nd:YAG雷射可於多千赫兹重複頻率操作確 保總系統重複率滿足實際上準分子雷射注入播種來源 複率需求。 為了達成窄頻寬操作,二雷射光源必須個別為窄頻。 5於Nd: YAG系統中例如可透過以(^較低功率贴γΑ〇雷射 注入播種來達成,例如於非平面環形振盪器架構係以單〜 細長模式輸出操作來達成。於Yb纖維雷射之情況下,經由 CW二極體雷射播種器可確保頻寬,播種器典型係於極為窄 的線寬例如約100 MHz FWHM操作。此外,可使用適當大 1〇模式區(「LMA」)纖維技術來減少因於包含纖維雷射振逢 器或其任何隨後之放大級之纖維中,因非線性效應而造成 光譜的降級。 為了產生193.4nm輻射,如第76圖以部分方塊圖示意 顯不,一種系統12〇〇例如包括由946nm種子雷射例如946 15 CW Nd:YAG種子雷射1202播種之一脈衝式946nm則:γΑ(} 雷射1204,Nd:YAG雷射1204之輸出頻率於頻率轉換器 1206倍增,頻率轉換器1206例如包括頻率倍增器12〇8如非 線性材料如LBO或KTP晶體;接著為另一個頻率倍增器(圖 中未顯示)或第三諧波產生器1210及第四諧波產生器1212 20 (例如各自係使用和頻率產生帶有殘餘泵送輻射進行,例如 使用則述晶體進行)’任一種辦法皆可產生於236.5nm之第 四諧波。236.5nm輻射隨後於最終非線性晶體混合級,和 頻產生器1240例如CLBO或BBO晶體例如於和頻產生中與 Yb纖維雷射之i〇60nm混合。亦即例如1/ι〇4〇(·〇〇〇943)+ 154 1324423 1/236.5(.00423)=1/193.3(.005173)。纖維雷射 1222可具有後 振盪腔鏡1224及前窗1226帶有一Q開關1228。 CLBO為硼酸铯鋰,其為Nd:YAG輸出光之有效第四或 第五諧波產生器,可相位匹配達193nm操作,具有損害臨界 5 值&gt;26 GW/cm2。BBC^召棚酸類(b-BaB2〇4),其為可得之 最多樣化之非線性光學晶體材料之一,最常用於Nd:YAG、 Ti:藍寶石、氬離子雷射及紫翠玉之第二級或更高級諧波產The Nd:YAG output is primarily a fixed wavelength, and the total fine-tuning capability is provided by the output wavelength of a micro-tuned Yb fiber laser such as a Yb+3 fiber laser. The fine tuning of the Yb fiber laser output can be obtained by a CW diode seed laser such as the New Focus Vortex TLB-6021. Such a diode laser seeder is desirable for lithography source applications, such as through the internal PZT control of the reflector to provide fast wavelength control over a limited wavelength range, and has a 1324423 hyperspectral purity. The Nd:YAG laser can operate at multiple kilohertz repetitions to ensure that the total system repetition rate meets the actual excimer laser injection source recovery rate requirement. In order to achieve narrow bandwidth operation, the two laser sources must be individually narrowband. 5 In the Nd: YAG system, for example, it can be achieved by (^ lower power γ Α〇 laser injection seeding, for example, the non-planar ring oscillator architecture is achieved by single-slim mode output operation. Yb fiber laser In this case, the bandwidth is ensured via the CW diode laser seeder, which is typically operated at very narrow line widths, for example about 100 MHz FWHM. In addition, a suitable large mode area ("LMA") can be used. Fiber technology to reduce the degradation of the spectrum due to nonlinear effects in fibers containing fiber laser oscillators or any subsequent amplification stage. To generate 193.4 nm radiation, as shown in Figure 76 in partial block diagram No, a system 12 〇〇 includes, for example, a 946 nm seed laser such as 946 15 CW Nd:YAG seed laser 1202 seeding one pulse type 946 nm: γΑ(} laser 1204, Nd:YAG laser 1204 output frequency The frequency converter 1206 is multiplied by a frequency converter 1206, for example, including a frequency multiplier 12A such as a nonlinear material such as an LBO or KTP crystal; followed by another frequency multiplier (not shown) or a third harmonic generator 1210. Fourth harmonic Wave generators 1212 20 (eg, each using and frequency generating with residual pumping radiation, for example using a crystal) either can be generated at a fourth harmonic of 236.5 nm. The 236.5 nm radiation is then finalized. The nonlinear crystal mixing stage, the sum frequency generator 1240 such as a CLBO or BBO crystal, for example, is mixed with the Yb fiber laser at a frequency of 和60 nm in the sum frequency generation, that is, for example, 1/ι〇4〇(·〇〇〇943)+ 154 1324423 1/236.5 (.00423) = 1/193.3 (.005173). The fiber laser 1222 can have a rear oscillating mirror 1224 and a front window 1226 with a Q switch 1228. CLBO is lithium bismuth borate, which is Nd:YAG The output of the effective fourth or fifth harmonic generator can be phase matched up to 193 nm operation with a damage critical value of 5 > 26 GW / cm 2 . BBC ^ shed acid (b-BaB2 〇 4), which is available One of the most diverse nonlinear optical crystal materials, most commonly used in Nd:YAG, Ti: sapphire, argon-ion lasers, and second or higher harmonics of alexandrite

生。可使用CLBO,例如由於其較高透明度及高接受角,但 需要相位匹配之低溫冷卻,因CLBO為吸濕性材料故成問 10 題。另一種替代之道為BBO,其可相位匹配,但係於極為 接近約190nm之吸收帶緣操作。BBO也具有比CLBO遠更窄 的接受角,但可經由光學設計例如使用歪像聚焦來處理。 根據所揭示之主旨之一實施例之各個態樣,二雷射1024、 1022可相當強力,例如實際輸出功率大於約25KW,輔助補 I5 償於非線性頻率轉換級1206、1204的任何無效率。 根據所揭示之主旨之態樣,以固態雷射播種準分子放 大器增益媒質產生193.3nm也可例如使用成熟驅動雷射技 術來達成,可以類似目前微調準分子雷射之方式來微調波 長。第77圖以部分方塊圖形式示意顯示之種子雷射系統 2〇 1200’例如包括Er纖維雷射1260,例如於約I550nm雷射,但 可於1540-1570nm之範圍微調。Er纖維雷射可得,且使用類 似Yb纖維雷射之技術。此種辦法具有吸引力,原因在於此 波長範圍之纖維雷射技術及泵送二極體雷射技術的成熟可 應用於例如基於纖維之電信方面,例如摻铒纖維雷射或 155 EDFA用於光纖通訊作為信號加強器。 根據所揭示之主旨之一實施例之各個態樣,申請人提 示使用脈衝式纖維雷射振盪器1260作為中等尖峰功率(例 如5-50kW)高重複率(多個千赫茲例如至少丨2kHzH 546 5nm 5乍頻脈衝式賴射之來源。该雷射1260也可使用標準脈衝式 纖維雷射技術組成’使用單模CW可微調窄頻二極體雷射 1262作為纖維雷射振盪器1260之注入播種器,來確保窄頻 單波長效能,同時也允許光刻術光源用途要求的快速波長 可微調性。二極體雷射播種器1262該類型之一實例例如新 10聚焦旋渦TLB-1647 ’使用外腔二極體組態,有ρζτ波長致 動用於有限波長範圍的高速波長驅動,與延伸波長範圍操 作之機械驅動並行。此外,適當大模式區(「LMA」)纖維 技術可用來減少頻譜的降級,例如由於於包含纖維雷射振 盪器或任何隨後放大級之纖維中的非線性效應可減少頻譜 降、.及。使用此種辦法允許採用確保於大模式區纖維之單模 操作來維持空間光束品質,同時降低於纖維核心之尖峰功 率於產生l546.5nm輻射後,隨後頻率可直接升頻至 193.3nm,例如使用非線性頻率轉換第二諧波產生或和頻 產生之五級來直接升頻。可經由第78圖所列舉之步驟來達 2〇成’其中一者舉例說明於第77圖,其$ ω係指j 546.5nm而8 ω變成193.3nm °於第77圖中顯示於SHG 12()8之1546 5細 白波的產生,以及第三證波的產生,例如於SFG 1258將基頻加至第二譜波來獲得^,於鮮倍增器⑵8頻 率倍增3ω來獲得6ω ’接著於咖及⑵4恰以前 1324423 述類似之和頻產生技術來獲得7ω及。此外,根據所揭 不之主曰之一實施例之各個態樣’例如由二極體雷射播種 用於頻譜/波長控制之相對低功率脈衝式纖維雷射振盈器 輸出’隨後可透過纖維放大級(圖中未顯示)而於尖峰功率中 5 增強。申請人也提示基於此種辦法發展全纖維固態驅動雷 射。 轉向參考第47圖,以方塊圖形式示意顯示—種雷射處 理系統’例如LTPS或tbSLS雷射退火系統用於低溫熔解與再 結晶玻璃基板上的非晶形石夕。系統1〇7〇可包括諸如此處所 10述之雷射系統20,以及光學系統1272來將雷射2〇輸出光脈 衝由約5 X12毫米轉換成為約1 〇微米x 3 9 〇毫米或更長之細 光束用來處理例如固定於工作件處理平台1274上的工作 件。 已經於種子雷射能、ArF腔氣體混合物、輸出耦合器反 15射率百分比(腔Q)及種子雷射脈衝時間等不同數值檢驗MO/ 放大級能相對於MO/放大級時間,結果如第7圖之說明。 已經於種子雷射能、ArF腔氣體混合物、輸出耗合器反 射率百分比(腔Q)及種子雷射脈衝時間等不同數值檢驗规 相對於MO/放大級時間,結果也如第7圖之說明。 20 參考第7圖,舉例說明根據所揭示之主旨之一實施例之 各個態樣之時間及控制演繹法則。圖表中作圖雷射系統輸 出能呈於種子雷射腔及放大級例如環形功率放大級中之差 異放電時間之函數,為曲線600a,於此處為求方便稱作為 dtMOK) ’須瞭解於若干組態中的放大級並非嚴格為p〇,Health. CLBO can be used, for example because of its high transparency and high acceptance angle, but requires phase-matched cryogenic cooling, which is a problem with CLBO as a hygroscopic material. Another alternative is BBO, which is phase matched but operates at an absorption band edge that is very close to about 190 nm. The BBO also has a much narrower acceptance angle than the CLBO, but can be processed via optical design, for example using an image focus. In accordance with various aspects of one embodiment of the disclosed subject matter, the two lasers 1024, 1022 can be relatively powerful, such as the actual output power being greater than about 25 kW, and any inefficiencies of the auxiliary compensation I5 for the nonlinear frequency conversion stages 1206, 1204. According to the disclosed subject matter, the production of 193.3 nm by a solid-state laser seeded excimer amplifier gain medium can also be achieved, for example, using a mature-driven laser technique, which can be fine-tuned in a manner similar to the current fine-tuning of excimer lasers. Figure 77 shows a seed laser system schematically shown in partial block diagram. The 1200' includes, for example, an Er fiber laser 1260, such as a laser of about 1550 nm, but can be fine tuned in the range of 1540-1570 nm. Er fiber lasers are available and use a technique similar to Yb fiber lasers. This approach is attractive because fiber laser technology and pumped diode laser technology in this wavelength range can be applied, for example, to fiber-based telecommunications, such as erbium-doped fiber lasers or 155 EDFAs for fiber optics. Communication acts as a signal booster. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicants have suggested using pulsed fiber laser oscillator 1260 as a medium peak power (e.g., 5-50 kW) high repetition rate (multiple kilohertz, e.g., at least 丨 2 kHz H 546 5 nm The source of the 5 乍 pulse-pulse lasing. The laser 1260 can also be composed of standard pulse fiber laser technology. 'Using single-mode CW fine-tunable narrow-frequency diode laser 1262 as the injection of fiber laser oscillator 1260 To ensure narrow-wavelength single-wavelength performance while also allowing for fast wavelength fine-tunability required for lithography source applications. One example of this type of diode laser seeder 1262, such as the new 10-focus vortex TLB-1647' Cavity diode configuration with ρζτ wavelength actuation for high-speed wavelength driving in a limited wavelength range, in parallel with mechanical drive for extended wavelength range operation. In addition, appropriate large mode region (“LMA”) fiber technology can be used to reduce spectral degradation , for example, due to nonlinear effects in fibers containing fiber laser oscillators or any subsequent amplification stage, the spectral drop can be reduced, and Maintaining spatial beam quality with single mode operation to ensure fiber in the large mode region, while reducing the peak power of the fiber core to produce radiation at 1425 nm, then the frequency can be directly upconverted to 193.3 nm, for example using nonlinear frequency conversion The second harmonic generation or the sum of the frequency generation is directly up-converted. It can be up to 2 by the steps listed in Figure 78. One of them is illustrated in Figure 77, where $ω refers to j 546.5 nm. 8 ω becomes 193.3 nm ° in Fig. 77 shows the generation of 1546 5 fine white waves in SHG 12() 8 and the generation of the third proof wave, for example, adding the fundamental frequency to the second spectral wave at SFG 1258 to obtain ^ In the fresh multiplier (2) 8 frequency multiply 3ω to obtain 6ω 'and then in the coffee and (2) 4 just before 1324423 to describe the similar frequency generation technique to obtain 7ω and. In addition, according to the various aspects of the embodiment of the invention 'For example, a relatively low-power pulsed fiber laser inductor output for spectrum/wavelength control by diode lasers' can then be enhanced by a fiber amplification stage (not shown) and 5 in peak power. People also suggest that based on this Approach to the development of all-fiber solid-state drive lasers. Turning to Figure 47, a block diagram shows a laser processing system such as LTPS or tbSLS laser annealing system for low temperature melting and recrystallizing glass substrates. The system 1〇7〇 may include a laser system 20 such as that described herein, and an optical system 1272 to convert the laser output light pulse from about 5 x 12 mm to about 1 〇 micron x 3 9 〇 mm or Longer beamlets are used to process, for example, workpieces that are attached to the workpiece handling platform 1274. Already in seed laser energy, ArF chamber gas mixture, output coupler inverse 15% (cavity Q) and seed laser pulses Different values such as time test the MO/amplifier level relative to the MO/amplifier stage time, and the results are as illustrated in Fig. 7. Different values have been tested for the laser energy of the seed, the ArF cavity gas mixture, the output reflectance reflectance percentage (cavity Q) and the seed laser pulse time relative to the MO/amplifier stage time. The result is also illustrated in Figure 7. . 20 Referring to Figure 7, an illustration of the timing and control deduction rules for various aspects of an embodiment in accordance with the disclosed subject matter. The output of the laser system in the diagram can be expressed as a function of the differential discharge time in the seed laser cavity and the amplification stage, such as the ring power amplifier stage, which is the curve 600a, which is referred to herein as dtMOK) The amplification level in the configuration is not strictly p〇,

157 1324423 反而為PA,但有振盪,與通過增益媒質固定次數相反’申 請人之受讓人於傳統上將其稱作為功率放大器,亦即於申 請人之受讓人的ΜΟΡΑ XLA-XXX型號雷射系統中的PA,原 因在於環形光路長度與名目波長的整數倍數的關係。也顯 5不於雷射系統之放大級所產生之ASE呈dtMOPO之函數之 代表性曲線,為曲線602a。此外顯示曲線604a,表示雷射 系統輸出頻寬呈dtMOPO之函數。也顯示對ASE選用之極 限’為曲線606a。 須瞭解,可於ASE之最低極端或其附近選擇時間油線 10的操作點,於該處經由遞色dtMOPO之控制選擇來例如決定 於操作曲線602a上的系統操作點。可知有相當餘裕來於 ASE曲線6〇2a之最低極限附近操作,同時維持輸出脈衝能 於能量曲線之相當平面頂部,例如來維持雷射系統輸出脈 衝能及能σ、及相關劑量及劑量(J常數於可接受之公差以 15内。此外’如圖所示’可同時使用dtMOPO來從頻寬範圍中 選出頻寬,而不干擾前述E控制。 無論使用的種子雷射本質如何,亦即固態種子或氣體 放電雷射種子雷射系統皆可達成此項目的。但若使用固態 種子雷射,則有多項技術之一可供選擇(控制)種子雷射的頻 20寬,例如經由控制種子雷射之泵送程度或任何其它技藝界 已知之多種手段。此種泵送功率控制,例如將泵送功率置 於咼於雷射臨界值來選擇頻寬。此種頻寬的選擇可能遷移 或改變曲線604a之相關數值,但雷射系統仍然適合前述£控 制型及BW控制型,使用dtMOPO來選擇BW且同時選擇操作 S ) 158 1324423 點,其可維持雷射系統脈衝之輸出能於所示能量曲線6〇〇之 平坦頂區之穩疋值且或多或少恆定值。也可使用非cw固態 種子雷射,以及調整輸出頻寬。舉例言之,選擇主振盪器 腔之輸出麵合器反射係數(腔-Q)’可調整種子雷射系統之輸 5出頻寬。種子雷射脈衝之脈衝修剪也可用來控制雷射系統 之總輸出頻寬。 由第7圖可知,所選ASE上限或能量曲線隨著dtM〇p〇 變化維持平坦之部分幅員可能限制所選用之可用頻寬之範 圍。BW曲線之斜率及位置也可能影響時間曲線上的可用操 1〇作點,來維持恆定能量輸出及最小ASE,同時經由使用 dtMOPO操作值的選擇,也從可用頻寬範圍選擇頻寬。 同樣已知於氣體放電種子雷射中放電脈衝之脈衝時 間,例如前導波控制可用來從種子雷射中選出名目頻寬, 如此也景&gt;響8\\^曲線604之斜率及/或位置,如第7圖所示。 15 根據所揭示之主旨之一實施例之各個態樣,需要選擇 邊緣光學裝置,亦即必須使用的光學元件,如此或許必須 塗覆至其邊緣可能遭遇困難。此種光學元件例如為第2圖所 示輸出耦合器162與第2圖所示最大反射器例如164間所 需,依據二者間的分離情況共同來形成第2圖所示之種子注 2〇入機構160之一個版本,原因在於其間間隔可能過小而無法 使用邊緣光學元件。若是,則邊緣光學元件須選擇為 Rmax由於輪出光束當其通過OC部分162時的射線光路。 由塗覆觀點,由於0C具有較少層,故較佳讓〇c變成邊緣光 學元件。但根據所揭示之主旨之一實施例之各個態樣申 159 (S ; 1324423 請人已經選擇另一項設計,示意顯示於第30圖,例如其中 避免使用邊緣光學元件,例如若輸出與輸入環形功率放大 級光束間提供夠大間隔,如由第2圖所示之光束擴幅器142 如稜鏡146、148形成夠大間隔。例如二光束間間隔約5毫米 5 判定可足夠避免使用任何邊緣光學元件。157 1324423 is instead a PA, but there is oscillation, as opposed to the number of times fixed by the gain medium. The applicant's assignee has traditionally referred to it as a power amplifier, that is, the applicant's assignee's ΜΟΡΑ XLA-XXX model. The PA in the shot system is due to the relationship between the length of the loop path and the integer multiple of the nominal wavelength. A representative curve of the function of dtMOPO generated by the amplification stage of the laser system is also shown as curve 602a. In addition, a curve 604a is displayed indicating that the output bandwidth of the laser system is a function of dtMOPO. The limit 'selected for ASE' is also shown as curve 606a. It will be appreciated that the operating point of time oil line 10 can be selected at or near the lowest extreme of ASE where control selection by dithering dtMOPO is used, for example, to determine the system operating point on operating curve 602a. It can be seen that there is considerable margin to operate near the lowest limit of the ASE curve 6〇2a while maintaining the output pulse at the top of the equivalent plane of the energy curve, for example to maintain the output pulse energy and energy σ of the laser system, and the associated dose and dose (J The constant is within 15 tolerances. In addition, 'dtMOPO can be used simultaneously to select the bandwidth from the bandwidth range without disturbing the aforementioned E control. Regardless of the nature of the seed laser used, ie solid state Seed or gas discharge laser seed laser systems can achieve this project. However, if solid-state seed lasers are used, there are several techniques to select (control) the frequency of the seed lasers, for example, by controlling the seed mine. The degree of pumping or any other means known in the art. Such pumping power control, such as placing the pumping power at a laser threshold to select the bandwidth. The choice of such bandwidth may migrate or change. The correlation value of curve 604a, but the laser system is still suitable for the aforementioned £ control type and BW control type, using dtMOPO to select BW and simultaneously selecting operation S) 158 1324423 points, which can Holding the laser system output pulse energy curve can be shown in the 6〇〇 stable flat top region of the piece goods and a more or less constant value. Non-cw solid-state seed lasers can also be used, as well as adjusting the output bandwidth. For example, selecting the output oscillator reflectance (cavity-Q) of the main oscillator cavity can adjust the output bandwidth of the seed laser system. Pulse trimming of the seed laser pulse can also be used to control the total output bandwidth of the laser system. As can be seen from Figure 7, the selected ASE upper limit or energy curve that maintains a flattening with dtM〇p〇 may limit the range of available bandwidths selected. The slope and position of the BW curve may also affect the available operating points on the time curve to maintain a constant energy output and a minimum ASE, while also selecting the bandwidth from the available bandwidth range by using the dtMOPO operation value selection. It is also known that the pulse time of a discharge pulse in a gas discharge seed laser, such as the pre-guided wave control, can be used to select the nominal bandwidth from the seed laser, so that the slope and/or position of the 8 \\ curve 604 As shown in Figure 7. In accordance with various aspects of an embodiment of the disclosed subject matter, it is desirable to select edge optics, i.e., optical components that must be used, so that it may be difficult to apply to the edges thereof. Such an optical element is, for example, required between the output coupler 162 shown in Fig. 2 and the maximum reflector shown in Fig. 2, for example, 164, and the seeding shown in Fig. 2 is formed in accordance with the separation between the two. One version of the mechanism 160 is inserted because the spacing between them may be too small to use edge optics. If so, the edge optics must be selected to be Rmax due to the ray path of the beam as it passes through the OC portion 162. From the viewpoint of coating, since OC has fewer layers, it is preferable to make 〇c an edge optical element. However, in accordance with various aspects of one of the disclosed subject matter, 159 (S; 1324423 has chosen another design, shown schematically in Figure 30, for example, where edge optics are avoided, such as if the output and input ring The power amplifier stage provides a large enough spacing between the beams, as formed by the beam expanders 142, such as 稜鏡146, 148, shown in Fig. 2. For example, the spacing between the two beams is about 5 mm. 5 Determination is sufficient to avoid using any edges. Optical element.

如第46圖舉例說明,雷射系統例如第2圖所示系統110 可使用環形功率放大級144產生雷射系統輸出脈衝光束 100 ’來放大於環形功率放大級144中之主振盪器22之輸出 光束62。藉所揭示主旨之一實施例之各態樣顯示其進一步 10 細節,光束擴幅器/分散器142可包含第一擴幅/分散棱鏡 146a及第二擴幅/分散稜鏡146b及一第三稜鏡148。 種子注入機構160可包含一部分反射輸入/輸出耦合器 162及一最大反射(Rmax)鏡164,舉例說明且部分示意顯示 於第30圖之平面圖’換言之俯視種子注入機構及光束擴幅 I5器/分散器160及環形功率放大級腔(圖中未顯示),光束74及 72通過其中,由來自於主振盪器腔22之輸出光束62之軸線 透視’於本實施例中描述為位在腔144上方,光束62已經摺 疊於概略水平縱軸(如圖所示),光束也於短軸於MOPuS摺 疊(也稱作為MO WEB,具有如本文討論之迷你〇pus及光束 20擴幅器),如本文它處之說明來讓其截面形狀大致上為方 形。 有關於環形功率放大級腔内側,光束擴幅稜鏡1463、 146b及148之組態,類似的配置也可提供予申請人之受讓人 之XLA-XXX型號雷射系統中之功率放大器(「pA」)級輸出 S ) 160 的光束擴幅,例如具有4倍擴幅,例如由68 6度入射角及i 度出射角所提供’例如於單一稜鏡上,或二稜鏡上而有相 同的入射角及出射角。如此可用來平衡及減少總費茲涅損 耗。反射塗層例如抗反射塗層可避免塗覆於此等表面上, 5原因在於此等表面將出現系統中的最高能量密度。根據所 揭示之主旨之一實施例之各個態樣,光束擴幅器/分散器 160可以第一稜鏡146分光至小稜鏡I46a&amp;146b來實作,如 第30圖所示,小稜鏡146a及146b例如為載頭的33毫米光束 擴幅器稜鏡,嵌合於有類似夾角稜鏡可嵌合的位置,分光 10稜鏡有多項優點,例如成本較低,且可較佳校準及/或操控 光束72、74 (於光束反向器(未顯示於第3〇圖)組合)及系統輸 出光束100。 主振盪器種子光束62進入種子注入機構16〇,通過作為 輸入/輸出耦合器之分光鏡部分反射光學元件162,至Rmax 15 I64呈光束62a’由Rmax164反射為光束74a至第一光束擴幅 器稜鏡146a’其係用來於橫軸解除光束的放大達約1/2倍(於 第30圖之紙張平面之縱軸維持約1〇·η毫米)。然後光束 被導引至第二光束擴幅稜鏡148,例如4G毫米光束擴幅棱 鏡,於該處再度被解除放大約1/2倍,故總解除放大倍率約 20為1/4倍,來形成進入環形功率放大級(未顯示於第%圖冰 增益媒質之光束74。該光束藉光束反向器反向例如目前 用於申請人之受讓人之Χ[Α·ΧΧΧ㈣雷射系統PA之該型 光束反向器反向,成為光束72進入稜鏡⑷,例如以領結形 配置於增益媒質中交又,或粗略平行前進,或許與跑騎 1324423As illustrated in FIG. 46, a laser system, such as system 110 of FIG. 2, may use a ring power amplification stage 144 to generate a laser system output pulse beam 100' to amplify the output of main oscillator 22 in ring power amplifier stage 144. Beam 62. The various aspects of an embodiment of the disclosed subject matter show further details. The beam expander/disperser 142 can include a first expanding/dispersing prism 146a and a second expanding/dispersing 146b and a third稜鏡148. The seed injection mechanism 160 can include a portion of the reflective input/output coupler 162 and a maximum reflectance (Rmax) mirror 164, illustrated and partially illustrated in the plan view of FIG. 30. In other words, the top view seed injection mechanism and the beam expander I5/dispersion The device 160 and the annular power amplifier stage (not shown) through which the beams 74 and 72 pass are viewed from the axis of the output beam 62 from the main oscillator cavity 22 as being positioned above the cavity 144 in this embodiment. The beam 62 has been folded over the generally horizontal longitudinal axis (as shown) and the beam is also folded on the short axis at MOPuS (also known as MO WEB, with mini 〇pus and beam 20 expander as discussed herein), as in this paper It is described so that its cross-sectional shape is roughly square. For the configuration of the beam expansion 稜鏡1463, 146b and 148 on the inside of the ring power amplifier stage, a similar configuration can also be provided to the applicant's assignee's power amplifier in the XLA-XXX model laser system (" The beam expansion of the pA") stage output S) 160, for example, has a 4x expansion, for example provided by a 68 6 degree angle of incidence and an i degree angle of exit 'for example on a single turn, or on the second turn, the same Angle of incidence and angle of exit. This can be used to balance and reduce the total Feznier loss. Reflective coatings such as anti-reflective coatings can be avoided on such surfaces, 5 for which the highest energy density in the system will occur. In accordance with various aspects of an embodiment of the disclosed subject matter, the beam expander/disperser 160 can be implemented by splitting the first pupil 146 to the smaller pupils I46a &amp; 146b, as shown in FIG. 146a and 146b are, for example, 33mm beam expanders of the carrier head, which are fitted in a position with a similar angle 稜鏡 fit, and the splitting 10 稜鏡 has several advantages, such as lower cost and better calibration and / or manipulate the beams 72, 74 (combined in a beam inverter (not shown in Figure 3)) and the system output beam 100. The main oscillator seed beam 62 enters the seed injection mechanism 16A, and the optical element 162 is partially reflected by the beam splitter as an input/output coupler, until Rmax 15 I64 is reflected by Rmax 164 into beam 74a to the first beam expander稜鏡 146a' is used to amplify the beam by about 1/2 times on the horizontal axis (mainly about 1 〇 η mm on the longitudinal axis of the paper plane in Fig. 30). The beam is then directed to a second beam expander 148, such as a 4G millimeter beam expander prism, where it is again released about 1/2 times, so the total release magnification is about 1/4 times the magnification. Forming a loop into the loop power amplifier stage (not shown in the % map ice gain medium beam 74. The beam is reversed by the beam reverstor, for example, currently used by the applicant's assignee [Α·ΧΧΧ(4) laser system PA The beam reverser is reversed, and the beam 72 enters the 稜鏡 (4), for example, in a bow-tie configuration in the gain medium, or in a roughly parallel advancement, perhaps with a ride 1324423

形配置的版本重疊至某種程度。由稜鏡148,光束72被擴幅 約2倍,光束72b被導向稜鏡142b,又進一步被擴幅約2倍成 為光束72a。光束72a被部分反射回Rmax成為光束62a的一部 分,以及部分透射成為輸出光束100,能量徐緩增加至經由 5於環形功率放大級之雷射振盪獲得有足夠能量之輸出光束 脈衝。進入放大增益媒質之光束的窄化,例如環形功率放 大級有數種優異結果,例如將光束水平寬度侷限於增益媒 質中一電極間之氣體放電之約略寬度。於領結形配置實施 例中’ 一光束間的位移角太小,各自大致上留在數毫米的 10放電寬度以内,即使各自水平寬度約2-3毫米亦如此;以及 於跑馬場形配置之實施例中’光束72或光束74於各次來回 時只通過增益媒質,或光束可進一步窄化或放電加寬。 稜鏡146a、146b及148特別146a及146b之定位和校準可 用來確保來自環形功率放大級之輸出光束1〇〇適當校準成 15 朝向快門之雷射輸出光學串列。離開輸入/輸出耦合器162 之光束大小可固定,例如於水平方向藉水平大小選擇孔口 130形成系統孔口部分(於水平轴部分)至約10.5毫米來固定 大小。於孔口中,例如於本PAWEB例如申請人之受讓人之 XLA-XXX雷射系統產品之粗略位置可決定光束於垂直維 2〇 度之尺寸。因光束具有約1毫弧度發散,各維度之尺寸係略 小於於快門期望之實際光束尺寸,例如略小約1毫米。根據 所揭示之主旨之一實施例之各個態樣,申請人提示系統限 幅孔口恰位在主系統輸出〇puS例如4X OPuS後方。環形功 率放大級孔口可位在雷射系統進一步内側約500毫米處。此 162 1324423 項距離過大無法避免指向變化,轉成於特定測量平面(本系 統孔口)之位置變化。取而代之,系統限幅孔口可恰位在於 OPuS後方,有個193奈米反射介電塗層,替代常用的不鏽 鋼板。此項設計允許更早期光學校準,同時減少孔口的加 5 埶。 根據所揭示之主旨之一實施例之各個態樣,申請人提 示類似前述共同審查中之美國專利申請案之討論或與該等 美國專利申請案相同’實作相對無應力之腔窗配置,例如 至少用於腔之光束反向器該側上,原因在於於此位置使用 10 經過PCCF塗覆之窗。 根據所揭示之主旨之一實施例之各個態樣,申請人提 示將ASE檢測得例如反向傳播ASE檢測置於LAM或置於 M0前導波工程箱(「WEB」)或所謂的m〇pus,其包括得自 申請人之受讓人現有XLA-XXX型號雷射系統之m〇weB元 15件’連同於本案它處討論的迷你OPuS,以及光束擴幅,例 如使用一或多個光束擴巾δ稜鏡來於短軸擴幅之輸出光 束,例如形成大致上為方形截面之光束。目前的M〇 WEB 及其光束轉向功能係示意表示為轉向鏡,例如第22圖所示 的轉向鏡44。但較佳反向傳播檢測器可「置於」M〇 20 WE臟OPuS,換言之經由採用摺疊鏡(指疊#2)例如第2圖 之摺疊鏡44具有反射係數R=95%而非R=1〇〇%,以及監視通 過此鏡44的漏光。可忍受此讀值有若干飄移或不準確,由 於可用作為行程感測器(亦即當條件為可接受時大致上無 反向ASE⑽G.GG1毫f、耳附近測量,而非當條件為無法接 163 c S ) 1324423 受時,有反向ASE,於約ι〇毫焦耳測量)。例如當環形功率 放大器並未定時放大種子脈衝,仍然形成寬頻雷射光時可 忍受讀值的飄移與不準確。可採用現有控制器例如ΤΕΜ控 制器、纜線和埠口等來用於新的檢測器。檢測器可為目前 5由申請人之受讓人用於既有XLA-XXX型號雷射系統來測 量光束強度,例如於雷射系統輸出快門測量光束強度的檢 測器。 根據所揭示之主旨之一實施例之各個態樣,一個或多 個迷你OPuS可為共焦,因此高度可忍受未校準,如此具有 10可能的低像差,例如對於於所提示之短0PuS所需的偏軸射 線所謂的迷你OPuS具有可能低像差,當採用多於—個迷你 OPuS時,可具有延遲時間4奈秒及5奈秒。選用此等數值, 讓兩個OPuS除了具有相干性破壞的適當延遲光路之外,也 具有使用球形光學元件之低前導波失真。低前導波需求, 15實際上除非係利用特殊裝置否則係無法阻止來自於迷你 OPuS的顯著散斑降低’利用特殊裝置例如為以略為模形板 來置換平面/平面補償板,產生來自於迷你〇PuS輸出的角向 扇出’讓迷你0PuS的透射光束而延遲光束彼此略為角向偏 移。可採用其它裝置,例如於任-軸或於三軸的光束翻轉, 20例如頂底翻轉、或左右翻轉、]成像、頂底翻轉與左右翻 轉的組合、及光束平移(切變),例如可經由去除補償板來達 成,如於前述共同審查中之專利申請案名稱「共焦脈衝延 伸器」’申請案號i i/394,5 i 2,代理人擋號2〇〇4 〇 i44 〇 i,申 請曰2006年3月31曰所述;或於第二轴例如與第一轴正交的 164 1324423 第二軸加上第二片補償板來達成。The version of the configuration overlaps to some extent. Since 148, beam 72 is expanded by a factor of about two, beam 72b is directed to 稜鏡 142b and further expanded by about 2 times into beam 72a. The beam 72a is partially reflected back to Rmax as part of the beam 62a and partially transmitted as the output beam 100, and the energy is slowly increased to obtain an output beam pulse of sufficient energy via the laser oscillation of the ring power amplifier stage. The narrowing of the beam entering the amplification gain medium, such as the ring power amplification stage, has several excellent results, such as limiting the horizontal width of the beam to the approximate width of the gas discharge between the electrodes in the gain medium. In the bow-tie configuration embodiment, the displacement angle between the beams is too small, each of which is substantially within 10 discharge widths of a few millimeters, even if the respective horizontal width is about 2-3 mm; and the implementation of the racetrack configuration In the example, beam 72 or beam 74 passes through the gain medium only once and again, or the beam can be further narrowed or discharged widened. The positioning and calibration of 稜鏡 146a, 146b, and 148, particularly 146a and 146b, can be used to ensure that the output beam 1 来自 from the loop power amplification stage is properly calibrated to a laser output optical train that faces the shutter. The beam size leaving the input/output coupler 162 can be fixed, for example, by horizontally selecting the aperture 130 in the horizontal direction to form the system aperture portion (in the horizontal axis portion) to about 10.5 mm to fix the size. In the aperture, for example, the rough position of the XLA-XXX laser system product of the PAWEB, such as the Applicant's assignee, may determine the size of the beam at a vertical dimension of 2 degrees. Since the beam has a divergence of about 1 milliradian, the dimensions of each dimension are slightly less than the actual beam size desired for the shutter, such as slightly less than about 1 mm. In accordance with various aspects of one embodiment of the disclosed subject matter, the Applicant suggests that the system limit aperture is just behind the main system output 〇puS, e.g., 4X OPuS. The annular power amplifier stage orifice can be located approximately 500 mm further inside the laser system. This 162 1324423 item is too large to avoid pointing changes, and changes to the position of a particular measurement plane (the system orifice). Instead, the system's limiting aperture is located just behind the OPuS and has a 193 nm reflective dielectric coating that replaces the commonly used stainless steel. This design allows for earlier optical calibration while reducing the 5 孔 of the orifice. In accordance with various aspects of one embodiment of the disclosed subject matter, the Applicant suggests a discussion of a U.S. patent application in the co-examination of the aforementioned co-examination or the same as that of the U.S. patent application. At least on the side of the beam nebulizer for the cavity, because the PCCF coated window is used at this location. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicants have suggested that ASE detection, such as backpropagation ASE detection, be placed in the LAM or placed in the M0 pre-guided engineering box ("WEB") or so-called m〇pus, It includes 15 pieces of m〇weB elements from the applicant's existing XLA-XXX model laser system', together with the mini OPUS discussed in this case, and beam expansion, for example using one or more beam extensions δ稜鏡 is the output beam of the short-axis expansion, for example, forming a beam having a substantially square cross section. The current M〇 WEB and its beam steering function are schematically represented as a turning mirror, such as the turning mirror 44 shown in Fig. 22. Preferably, however, the backpropagation detector can be "placed" by M〇20 WE dirty OPuS, in other words via a folding mirror (referred to as stack #2), for example, the folding mirror 44 of Fig. 2 has a reflection coefficient R = 95% instead of R = 1〇〇%, and monitoring for light leakage through this mirror 44. It can be tolerated that this reading has some drift or inaccuracy, because it can be used as a stroke sensor (that is, when the condition is acceptable, there is almost no reverse ASE (10) G.GG1 milli f, measured near the ear, not when the condition is unreachable 163 c S ) 1324423 Timed, reverse ASE, measured at approximately ι〇mJ). For example, when the ring power amplifier does not time-amplify the seed pulse, the wide-range laser light still forms a drift and inaccuracy of the reading. Existing controllers such as helium controllers, cables and ports can be used for new detectors. The detector can be used by the applicant's assignee for measuring the beam intensity of an existing XLA-XXX model laser system, such as a laser system outputting a shutter to measure the beam intensity. In accordance with various aspects of an embodiment of the disclosed subject matter, one or more of the mini-OPuS may be confocal, and thus highly tolerable uncalibrated, thus having 10 possible low aberrations, such as for the short 0PuS indicated The required off-axis ray The so-called mini OPuS has the potential for low aberrations, and when more than one mini OPuS is used, it can have a delay time of 4 nanoseconds and 5 nanoseconds. Using these values, the two OPuS have low front guided wave distortion using spherical optical elements in addition to the appropriate delayed optical path with coherent destruction. The low leading wave demand, 15 does not actually prevent significant speckle reduction from the mini OPUS unless special equipment is used. 'Using special equipment, for example, to replace the planar/planar compensation board with a slightly shaped plate, resulting from the mini 〇 The angular fan-out of the PuS output 'allows the transmitted beam of the mini-OpuS and the delayed beams are slightly angularly offset from each other. Other means may be employed, such as beam flipping on any-axis or tri-axis, 20 such as top-bottom flip, or left-right flip, imaging, combination of top-bottom flip and left-right flip, and beam translation (shear), for example This is achieved by removing the compensation plate, as described in the above-mentioned co-examination of the patent application entitled "Confocal Pulse Extender", application number ii/394,5 i 2, agent number 2〇〇4 〇i44 〇i, The application is as described in March 31, 2006; or it is achieved by adding a second compensation plate to the second axis, for example, 164 1324423 orthogonal to the first axis.

雷射光束例如來自於主振盪器的雷射光束為部分相干 性,結果導致光束中有散斑。以透射光束角向補償再度進 入迷你OPuS輸出的反射光束,連同主脈衝的延遲光路分開 5 成為主脈衝和子脈衝,可於晶圓或於退火工作件上達成極 為顯著的散斑減少,係來自於雷射光源脈衝照明工作件(晶 圓或結晶面板)相干性的減少。如此例如可經由讓延遲光路 鏡蓄意變未校準來達成,或許不可能有共焦配置,但也於 延遲光路上於分光鏡前方增加略為楔形件,將部分延遲光 10 束反射成有透射光束及其親代脈衝以及先前子脈衝(若有) 的輸出。例如,板中的1毫弧度楔形件可於0.86毫弧度的反 射子脈衝光束產生角度偏差。 迷你OPuS之光學延遲光路就雷射效能與效率而言可 獲得其它有利結果。根據所揭示之主旨之一實施例之各個 15 態樣,如第48圖示意顯示,來自於雷射光源(未顯示於第48 圖)之雷射光束例如種子光束500可使用部分反射鏡(分光鏡) 510而分光成為二光束502、504。此分光鏡510將一定百分 比的光束分光成為主光束502,而將其餘光束500反射入光 學延遲光路506作為光束504。透射光束部分502繼續前進至 20 雷射系統其餘部分(未顯示於第48圖)。反射光束部分504沿 著延遲光路506導向’包括鏡512、514及516,於示意圖中 鏡514係垂直於紙面異位來允許主光束502再度進入雷射系 統的其餘部分’例如形成雷射輸出光束,或於隨後的放大 級放大。然後光束504與原先光束5〇〇之透射部分5〇2再度組 165 1324423 合。延遲光束504可通過大致上垂直於光束5〇4之光路配置 的楔形件(補償板)520。如此來自於延遲光路5〇6的子脈衝光 束504由遠場的透射部5〇2之主要部分略為角向位移。位移 例如可為約50微弧度至5〇〇微弧度。 5 延遲光路506之長度將延遲光束脈衝,故光束的透射部 分與反射部分間略為有時間偏移,例如大於相干性長度, 但遠小於脈衝長度,例如時間偏移約丨_5奈秒。經由選擇適 备光路長度來決定延遲時間,增加二光束,讓脈衝能量展 頻成略為較長的Tis ’其與主OPuS的後來脈衝延伸組合,可 10改良雷射效能,且可提供其它有利的雷射效能結果。 可能需要兩個迷你OPuS來達成期望的效果。來自於兩 個迷你Ο P u S的脈衝間的偏差時間例如為丨_ 2奈秒。基於光學 考里和機械考量,對延伸器所選的延遲例如於第一迷你 OPuS為3奈秒延遲光路,以及於第二迷你〇1&gt;113為4奈秒延遲 15光路。若延遲較短,例如若光學系統使用共焦鏡或球面鏡, 則可能導入無法接受的像差。若延遲較長,則可能難以將 系統嵌入雷射箱中的可用空間。達成3奈秒延遲光束必須行 進的距離為900毫米,延遲4奈秒必須行進的距離為12〇〇毫 米共焦光學系統5〇〇對未校準的敏感度減少,示意顯示於 2〇第49圖,共焦光學系統5〇〇係由兩個鏡522、524所組成,其 焦點係位在於空間的同一個位置,其曲率中心係位在於對 側鏡上且有一分光鏡526。可加上補償板53〇 (例如楔形件), 來確保反射光束和透射光束略為未校準,如前文就第49圖 所述。於此種情況下,補償器板係置於延遲光束的光路上 166 失角可適當發揮功能。 …迷你OPuS中用於相干性破壞以及用於其它目的之延 旦光路時間可短至約相干性之時間長度只要所述光學考 5可及Γ間考置諸如未校準及像差公差等考量為實際可行即 可,。右有兩個或更多個迷你〇puS,則各自的延遲光路長度 2須不同,例如大於相干性長度,且選擇為因並無來自於 分開〇 p u S的子脈衝間的交互個所導致的顯著相干性反 “加)。例如,延遲光路時間依據光學配置而定可分開至 相干性長度,且不超過某個量,例如四倍至五倍相 10長度。 根據所揭示之主旨之一實施例之各個態樣,申請人提 不採用相干性破壞光學結構,例如產生由單一輸入脈衝而 循序延遲的多個子脈衝,其中各個子脈衝與隨後的子脈衝 延遲超過光的相干性長度,此外,各個子脈衝的指向蓄意 15被唧伯達小於輸入脈衝的發散量。此外,申請人提示利用 —對相干性破壞光學延遲結構,此處該對光學延遲結構間 的光予延遲時間差係大於輸入光之相干性長度,兩個光學 延遲結構各自也產生子脈衝,具有經過控制的吁卩伯指向如 前文說明之相干性破壞光學延遲結構的各個態樣所述。 20 根據所揭示之主旨之一實施例之各個態樣,兩個成像 迷你OPuS可為共焦,故可高度容許未校準,如此容許所提 示之短OPuS所謂的迷你〇PuS中所需偏軸射線可能有低像 差,兩個OPuS各自有延遲時間4奈秒至5奈秒。選用此等數 值,讓兩個OPuS具有使用球面鏡的低前導波失真。除非使 167 1324423 用特殊設備,否則低前導波要求可能妨礙來自迷你〇pus的 顯著散斑減少使用特殊裝置例如以略為㈣板置換平面/ 平面補償板,或於不同轴加上另一片補償板,來產生來自 於迷你OPuS的角度扇出、或位置平移/切變(「位置哪伯」) 5 或如前文說明之光束翻轉/反向。 」 熟諳技藝人士須瞭解根據所揭示之主旨之一實施例之 各個態樣’可充分達成相干性破壞來顯著減少散斑對工作 件暴露於來自於雷射系統的照明處理的影響諸如於積體 電路微影術光阻曝光(包括對線緣粗度及線寬粗度的影 H)響),或雷射加熱,例如低溫再結晶處理程序中玻璃晶圓上 的非晶歡雷射退火。此項目的例如可經由下述方式達 成,將來自於單腔雷射系統、或來自於多腔雷射系統之輸 出、或來自於此種多腔雷射系統與多腔雷射系統的另一個 腔中放大前的種子雷射,通過光學配置,將輸出光束分光 15成為脈衝和子脈衝,且將脈衝與子脈衝重新組合成為單一 光束,脈衝與子脈衝彼此角向位移些微量,例如約5〇微弧 度至500微弧度,各個子脈衝比主脈衝延遲達例如至少時間 相干性長度,且較佳大於時間相干性長度。 進行方式可於光束延遲光路上有分光鏡,來透射主光 20束’將部分光束注入延遲光路,然後主光束與延遲光束組 合。於重新組合時,二光束亦即主光束和延遲光束於遠場 上彼此略有角度偏差(有不同指向),於此處稱作為賦與指向 哪伯。延遲光路可選擇為比脈衝之時間相干性長度更長。 使用楔形件力光學延遲光路上,力延遲光束返回分光 168 1324423 鏡之前使用楔形件,楔形件對延遲光束賦與略為不同的指 向(指向唧伯),可達成角向位移。如前文說明,指向唧伯量 可為約50微弧度至5〇〇微弧度。 光學延遲光路可包含串列之二延遲光路,各自有其個 5別的分光鏡。此種情況下,各延遲光路之長度不同,故於 來自於個別延遲光路的主脈衝與子脈衝間並未形成相干性 效應。舉例言之,若第一延遲光路之延遲為丨奈秒,則第二 延遲光路之延遲可為約3奈秒;若第一延遲光路之延遲為3 奈秒’則第二延遲為約4奈秒。 10 兩個分開延遲光路中的楔形件相對於光束側寫彼此大 致正交排列,故於第一延遲光路之楔形件可用來減少於第 一轴之相干性(散斑),而於另一延遲光路之楔形件可用來減 少另一軸,大致正交於第一軸之相干性(散斑)。如此,例如 於積體電路製造程序中晶圓暴露於光阻時,對散斑的影 15響,例如對線緣粗度(「LER」)及/或線寬粗度(「lwr」) 之貢獻可沿結構維度於晶圓上的二不同軸減少。 可採用則述其它特殊手段,例如光束平移、光束成像、 扇出翻轉等。 根據所揭示之主旨之一實施例之各個態樣,於領結形 2〇環形功率放大級中使用領結的6毫弧度截面,環形腔内部的 放大棱鏡對輸入光束與輪出光束而言略有不同,可配置成 當其環繞環行進時光束略為成長,或當環繞環行進時光束 略為收縮。另外,且較佳根據所揭示之主旨之一實施例之 各個態樣,將更大型光束擴幅稜鏡裂成分開兩塊,例如讓 169 S ) 1324423 輸出光束與輸入光束間有更大間隔例如約5-6毫米(如第3〇 圖之舉例說明),申請人提示調整如第4圖示意顯示的兩個 稜鏡如146、148之角度,故對輸出光束及輸入光束例如光 束100及62(示意顯示於第30圖)獲得相同放大倍率。 5 根據所揭示之主旨之一實施例之各個態樣,申請人提 示設置含有Rmax 164及OC 162的種子注入機構該版本之 Rmax例如164及OC例如162,連同定位系統水平軸光束輸出 孔口於該平台上。如此允許先前各自呈一整個單元校準, 而免除個別元件做現場校準的需求。如此允許第2圖所示 10 Rmax/OC總成如160 (種子注入機構)位置的固定,恰似於申 請人之受讓人之單腔振盪器系統(例如XLS 7000型號雷射 系統)中OC位置的固定般。同理,此種配置允許達成一種公 差,讓Rmax/OC相對於系統孔口妥善定位而無需顯著做進 行中調整。光束擴幅稜鏡可移動來讓注入種子機構總成與 15放大增益媒質之腔144校準,以及輸出光束1〇〇光路與雷射 系統光軸校準。 根據所揭示之主旨之一實施例之各個態樣,申請人提 議採用相干性破壞光學結構,其產生多個由單一輸入脈衝 而循序延遲的多個子脈衝,其中至少各個子脈衝從隨後的 20子脈衝延遲超過光的相干性長度,此外,各個子脈衝的指 向被蓄意唧伯量少於輸入脈衝的發散,或前述任何其它手 •k此外申凊人提議使用一對相干性破壞光學延遲結構, 此處該對光學延遲結構間的光學延遲時間差係大於輸入光 的相干性長度。兩個光學延遲結構各自也產生子脈衝,該 170 等子脈衝具有前文就前述相干性破壞光學延遲結構或前述 任何其它特殊手段說明之經控制的唧伯指向。 根據所揭示之主旨之一實施例之各個態樣,申請人提 不設置機械快門,類似如申請人之受讓人的〇PuSK使用, 5阻擋1^0輪出進入環形,例如於校準及診斷期間阻擋M0輸 出的進入。確切位置例如可為恰高於環形功率放大級前的 最末摺疊鏡上方,此處迷你〇puS於未經播種之環形功率放 大級校準與操作期間受保護。 轉向參考第79圖,以方塊圖形式示意顯示根據所揭示 10之主旨之一實施例之各個態樣之雷射DUV光源。系統1300 例如包括多個種子雷射系統,可為例如本案它處所述之固 態雷射1302、1304、1306,種子雷射13〇6為系統中的第η個 種子雷射。對各個種子雷射,可有相對應之放大雷射系統 例如1310、1320及1330,以放大雷射系統133〇為第η個放大 15雷射系統。各個放大雷射系統1310、1320、1330可有多個A, 於所示例中A=2,放大增益媒質1312、1314及1322、1324 及1332、1334,放大增益媒質1332、1334組成範例第η個放 大增益媒質系統1330。各個放大增益媒質1312、1314、 1322、1324、1332、1334包含氣體放電雷射,諸如準分子 20或分子氟雷射,更特別可包含如本案它處以及於前述共同 審查中之申請案(申請日同本案)所述之環形功率放大級。各 個Α放大增益媒質 1312、1314及 1322、1324及 1332、1334 可藉分光鏡1308被供給來自於個別種子雷射1302、1304及 1306的輸出脈衝。個別放大增益媒質1312、1314、1322、 1324423 1324及1332、1334可於個別雷射光束之脈衝重複率X之分量 如A/X操作。光束組合器1340可將放大增益媒質1312、 1314、1322、1324、1332、1334之輸出組合而形成於脈衝 重複率nX之雷射光源光束脈衝1〇〇之雷射系統1300之輸出。 5 轉向參考第80圖,以方塊圖形式示意顯示根據所揭示 之主旨之一實施例之各個態樣之雷射系統1350。雷射系統 1350可包含多個種子雷射1352a、1352b及1352c,可為固態 雷射1352a、1352b、1352c例如如本文它處所述,種子雷射 1352c為雷射系統1350中的第η個種子雷射。各個種子雷射 10 可進給一對放大器增益媒質1356、1358及1360、1362及 1364、1366,以放大器增益媒質1364 ' 1366為系統1350之 第η對’與第η個種子雷射1352c相對應且有個別的分光鏡 1354。各個放大增益媒質可為氣體放電雷射諸如準分子或 分子ll雷射,更特別包含如本案它處以及前述與本案同一 15天提出申請之共同審查中之申請案說明之環形功率放大 級。各對放大增益媒質1356、1358及1360、1362及1364、 1366可於個別種子雷射1352a、1352b及1352c之1/2脈衝重複 率X操作’種子雷射1352a、1352b及1352c全部皆於相同脈 衝重複率X操作來產生於nX之雷射光源輸出脈衝光束 20 100 ’或各自可於個別的脈衝重複率X、X,、X,,χη’操作, 部分彼此相等’但非全部,故輸出脈衝光束1〇〇中的輸出脈 衝率經由光束組合器137〇為ΣΧ,+Χ,,...χη。 Α諸技藝人士須瞭解本案揭示一種方法及裝置其包含 一雷射光源系統’其可包含一固態雷射種子光束光源提供 172 ¢. S ) 1324423The laser beam, for example the laser beam from the main oscillator, is partially coherent, resulting in speckle in the beam. The reflected beam that is re-entered into the mini-OPuS output with the transmitted beam angular direction, separated from the delayed optical path of the main pulse, becomes the main pulse and the sub-pulse, and an extremely significant speckle reduction can be achieved on the wafer or on the annealed workpiece. Laser source pulsed illumination work piece (wafer or crystallized panel) reduces coherence. Thus, for example, by delaying the path mirror to be uncalibrated, it may not be possible to have a confocal arrangement, but also adding a slightly wedge in front of the beam splitter on the retarding path, and reflecting a portion of the delayed beam 10 into a transmitted beam and Its parent pulse and the output of the previous sub-pulse (if any). For example, a 1 milliradian wedge in the plate can produce an angular offset at 0.86 milliradians of reflected sub-pulse beams. The optical delay optical path of the Mini OPUS provides other advantageous results in terms of laser performance and efficiency. In accordance with various 15 aspects of one embodiment of the disclosed subject matter, as shown schematically in Fig. 48, a laser beam from a laser source (not shown in Fig. 48), such as seed beam 500, may use a partial mirror ( The beam splitter 510 splits into two beams 502, 504. The beam splitter 510 splits a certain percentage of the beam into the main beam 502 and the remaining beam 500 into the optical retarding path 506 as the beam 504. The transmitted beam portion 502 continues to advance to the remainder of the 20 laser system (not shown in Figure 48). The reflected beam portion 504 is directed along the retarding path 506 to include mirrors 512, 514, and 516, in which the mirror 514 is eccentric to the paper surface to allow the main beam 502 to re-enter the rest of the laser system, e.g., to form a laser output beam. , or zoom in at the subsequent magnification level. The beam 504 is then combined with the transmission portion 5〇2 of the original beam 5〇〇 again by 165 1324423. The delayed beam 504 can pass through a wedge (compensation plate) 520 that is disposed substantially perpendicular to the optical path of the beam 5〇4. Thus, the sub-pulsed light beam 504 from the delayed optical path 5〇6 is slightly angularly displaced by the main portion of the far-field transmitting portion 5〇2. The displacement can be, for example, from about 50 microradians to 5 turns microradians. 5 The length of the delay optical path 506 will delay the beam pulse so that there is a slight time offset between the transmitted portion of the beam and the reflected portion, e.g., greater than the coherence length, but much less than the pulse length, e.g., the time offset is about 丨 5 nanoseconds. The delay time is determined by selecting the appropriate optical path length, the two beams are increased, and the pulse energy is spread to a slightly longer Tis' which is combined with the subsequent pulse extension of the main OPuS, which can improve the laser performance and provide other advantageous advantages. Laser performance results. Two mini OPuS may be needed to achieve the desired effect. The deviation time between the pulses from the two mini Ο P u S is, for example, 丨 2 nanoseconds. Based on the optical test and mechanical considerations, the delay selected for the extender is, for example, a 3 nanosecond delay optical path for the first mini OPuS, and a 4 nanosecond delay 15 optical path for the second mini 〇 1 &gt; 113. If the delay is short, for example, if the optical system uses a confocal mirror or a spherical mirror, unacceptable aberrations may be introduced. If the delay is long, it may be difficult to embed the system into the available space in the laser box. Achieving a 3 nanosecond delay beam must travel a distance of 900 mm, a delay of 4 nanoseconds must travel a distance of 12 mm. Confocal optical system 5 〇〇 reduced sensitivity to uncalibrated, shown in Fig. 49 The confocal optical system 5 is composed of two mirrors 522, 524 whose focus is at the same position of the space, and the center of curvature is located on the opposite side mirror and has a beam splitter 526. A compensating plate 53 (e.g., a wedge) may be added to ensure that the reflected and transmitted beams are slightly uncalibrated, as previously described in Figure 49. In this case, the compensator plate is placed on the optical path of the delayed beam. ...the length of time in the mini OPUS for coherence destruction and for other purposes, the length of the light path can be as short as about coherence as long as the optical test 5 can be used to measure such as uncalibrated and aberration tolerances. It is practical. There are two or more mini 〇puS on the right, and the respective delay optical path lengths 2 must be different, for example, greater than the coherence length, and are selected to be significant because there is no interaction between the sub-pulses from the separate 〇pu S Coherence is inversely "added.) For example, the retarded optical path time may be separated to a coherence length depending on the optical configuration, and does not exceed a certain amount, such as four times to five times the phase 10 length. According to one embodiment of the disclosed subject matter In various aspects, the Applicant proposes not to use coherence to destroy the optical structure, such as generating a plurality of sub-pulses that are sequentially delayed by a single input pulse, wherein each sub-pulse and subsequent sub-pulses are delayed by more than the coherence length of the light, and further, each The direction of the sub-pulse is deliberately 15 is less than the amount of divergence of the input pulse. In addition, the Applicant suggests using the optical delay structure for coherence, where the optical delay between the optical delay structures is greater than the input light. The length of the coherence, the two optical delay structures each also produce a sub-pulse with a controlled caller pointing to the coherence as previously explained The various aspects of the sexually-damped optical delay structure are described. 20 In accordance with various aspects of one embodiment of the disclosed subject matter, the two imaging mini-OPuS can be confocal, so that the unacceptable is highly tolerable, thus allowing the prompting to be short OPuS's so-called mini 〇PuS may have low aberrations in the off-axis rays. The two OPuS each have a delay time of 4 nanoseconds to 5 nanoseconds. Use these values to make the two OPuS have low front guided wave distortion using a spherical mirror. Unless special equipment is used for 167 1324423, low leading wave requirements may prevent significant speckle reduction from mini 〇pus using special equipment such as replacing the plane/planar compensation plate with a slightly (four) plate, or adding another piece of compensation to a different axis The board is used to generate angular fanouts from the mini-OPuS, or position translation/shear ("Location") or beam flip/reverse as explained above. Those skilled in the art will appreciate that various aspects of an embodiment of the disclosed subject matter may be sufficient to achieve coherent damage to significantly reduce the effects of speckle on the exposure of the workpiece to the illumination system from the laser system, such as integrators. Circuit lithography photoresist exposure (including shadowing of line edge thickness and line width), or laser heating, such as amorphous laser annealing on glass wafers in a low temperature recrystallization process. This item can be achieved, for example, by a single cavity laser system, or an output from a multi-cavity laser system, or from another multi-chamber laser system and a multi-cavity laser system. The seed laser before amplification in the cavity is optically configured to split the output beam into pulses and sub-pulses, and recombine the pulses and sub-pulses into a single beam, and the pulses and sub-pulses are angularly displaced from each other by a small amount, for example, about 5 〇. From microradians to 500 microradians, each sub-pulse is delayed by, for example, at least a temporal coherence length, and preferably greater than a temporal coherence length, than the main pulse. This can be done by having a beam splitter on the beam delay light path to transmit the main beam 20 beam' to inject a partial beam into the delayed beam path, and then combining the main beam with the delayed beam. In recombination, the two beams, i.e., the main beam and the delayed beam, are slightly angularly offset from each other in the far field (with different pointing directions), which is referred to herein as the assignment. The delayed optical path can be selected to be longer than the temporal coherence of the pulse. Using a wedge force to optically retard the optical path, the force delays the beam back to the split 168 1324423 Before the mirror uses a wedge, the wedge imparts a slightly different orientation (pointing to the )) to the delayed beam, achieving angular displacement. As explained above, the pointing amount can be from about 50 microradians to 5 microradians. The optical delay optical path may comprise a series of two delayed optical paths, each having its own other beam splitter. In this case, since the lengths of the respective delay optical paths are different, a coherence effect is not formed between the main pulse and the sub-pulses from the individual delayed optical paths. For example, if the delay of the first delayed optical path is 丨 nanoseconds, the delay of the second delayed optical path may be about 3 nanoseconds; if the delay of the first delayed optical path is 3 nanoseconds, then the second delay is about 4 nanometers. second. 10 The wedges in the two separate delayed optical paths are arranged substantially orthogonally to each other with respect to the beam side, so that the wedge of the first delayed optical path can be used to reduce the coherence (speckle) of the first axis, while the other delay The wedge of the optical path can be used to reduce the coherence (speckle) of the other axis, substantially orthogonal to the first axis. Thus, for example, in the integrated circuit manufacturing process, when the wafer is exposed to the photoresist, the image of the speckle is 15, for example, the thickness of the line edge ("LER") and/or the thickness of the line width ("lwr"). The contribution can be reduced along the structural dimension on two different axes on the wafer. Other special means such as beam translation, beam imaging, fan-out flipping, etc., can be employed. In accordance with various aspects of one embodiment of the disclosed subject matter, a 6 milliradial cross section of the bowtie is used in a bowtie shaped 2 〇 ring power amplifier stage, and the magnifying prism inside the annular cavity is slightly different for the input beam and the wheeled beam. It can be configured such that the beam grows slightly as it travels around the ring, or the beam contracts slightly as it travels around the ring. In addition, and preferably in accordance with various aspects of an embodiment of the disclosed subject matter, the larger beam is split into two pieces, for example, the 169 S) 1324423 output beam is spaced more from the input beam, for example. Approximately 5-6 mm (as exemplified in Figure 3), the Applicant has suggested adjusting the angles of two such as 146, 148 as shown schematically in Figure 4, so for the output beam and the input beam such as beam 100 and 62 (shown schematically in Figure 30) obtains the same magnification. 5 In accordance with various aspects of an embodiment of the disclosed subject matter, the Applicant suggests setting a seed injection mechanism containing Rmax 164 and OC 162 for a version of Rmax such as 164 and OC, such as 162, along with a horizontal axis beam output aperture of the positioning system. On the platform. This allows each of the previous units to be individually calibrated, eliminating the need for individual components for field calibration. This allows the position of the 10 Rmax/OC assembly as shown in Figure 2, such as the 160 (seed injection mechanism), to be similar to the OC position in the applicant's single-chamber oscillator system (eg XLS 7000 laser system). Fixed as usual. By the same token, this configuration allows for a tolerance that allows Rmax/OC to be properly positioned relative to the system orifice without significant adjustments. The beam expander 稜鏡 is movable to align the implant seed mechanism assembly with the cavity 144 of the amplification gain medium, and the output beam 1 〇〇 optical path is aligned with the laser system optical axis. In accordance with various aspects of one embodiment of the disclosed subject matter, Applicants propose to employ a coherence-damaging optical structure that produces a plurality of sub-pulses that are sequentially delayed by a single input pulse, wherein at least each sub-pulse is from the subsequent 20 sub-pulses The pulse delay exceeds the coherence length of the light, and in addition, the orientation of each sub-pulse is deliberately less than the divergence of the input pulse, or any other hand described above. In addition, the applicant proposes to use a pair of coherence to destroy the optical delay structure, Here, the optical delay time difference between the pair of optical delay structures is greater than the coherence length of the input light. Each of the two optical delay structures also produces a sub-pulse having a controlled sinister orientation as previously described for the aforementioned coherence-damaging optical delay structure or any other particular means previously described. In accordance with various aspects of one embodiment of the disclosed subject matter, the Applicant proposes not to provide a mechanical shutter, similar to the use of the 〇PuSK as the Applicant's assignee, 5 blocking 1^0 rounding into the ring, for example for calibration and diagnosis. Block the entry of the M0 output during the period. The exact position can be, for example, just above the last folding mirror just before the ring power amplification stage, where the mini 〇puS is protected during uncalibrated ring power amplification calibration and operation. Turning to Fig. 79, a laser DUV source in accordance with various aspects of one embodiment of the disclosed subject matter is schematically illustrated in block diagram form. System 1300, for example, includes a plurality of seed laser systems, which may be, for example, solid state lasers 1302, 1304, 1306 as described herein, and seed lasers 13〇6 being the nth seed laser in the system. For each seed laser, there may be corresponding amplified laser systems such as 1310, 1320 and 1330 to amplify the laser system 133 to the nth amplification 15 laser system. Each of the amplifying laser systems 1310, 1320, 1330 may have a plurality of A, in the illustrated example, A=2, the amplification gain media 1312, 1314 and 1322, 1324 and 1332, 1334, and the amplification gain media 1332, 1334 constitute the example nth The gain medium system 1330 is amplified. Each of the amplification gain media 1312, 1314, 1322, 1324, 1332, 1334 comprises a gas discharge laser, such as an excimer 20 or a molecular fluorine laser, and more particularly may include an application as herein and in the aforementioned co-examination (application) The ring power amplification stage described in the same day). Each of the chirped gain vectors 1312, 1314 and 1322, 1324 and 1332, 1334 can be supplied with output pulses from individual seed lasers 1302, 1304 and 1306 by means of beam splitter 1308. The individual amplification gain vectors 1312, 1314, 1322, 1324423 1324 and 1332, 1334 can operate as a component of the pulse repetition rate X of the individual laser beams, such as A/X. The beam combiner 1340 can combine the outputs of the amplification gain media 1312, 1314, 1322, 1324, 1332, 1334 to form an output of the laser system 1300 of the laser source beam pulse 1 of the pulse repetition rate nX. 5 Turning to FIG. 80, a laser system 1350 in various aspects in accordance with an embodiment of the disclosed subject matter is schematically illustrated in block diagram form. The laser system 1350 can include a plurality of seed lasers 1352a, 1352b, and 1352c, which can be solid state lasers 1352a, 1352b, 1352c, for example, as described elsewhere herein, the seed laser 1352c is the nth seed in the laser system 1350. Laser. Each seed laser 10 can feed a pair of amplifier gain media 1356, 1358 and 1360, 1362 and 1364, 1366, with the amplifier gain medium 1364 ' 1366 as the nth pair of system 1350 corresponding to the nth seed laser 1352c. There are also individual beamsplitters 1354. Each of the amplifying gain media may be a gas discharge laser such as an excimer or a molecule ll laser, and more particularly includes a ring power amplification stage as described in the present application and in the co-pending application of the same application as the same. Each pair of amplification gain media 1356, 1358 and 1360, 1362 and 1364, 1366 can operate at 1/2 pulse repetition rate X of individual seed lasers 1352a, 1352b and 1352c. 'Seed lasers 1352a, 1352b and 1352c are all in the same pulse. The repetition rate X operation is generated by the laser source of the nX output pulse beam 20 100 ′ or each can operate at an individual pulse repetition rate X, X, X, χ η ', and the portions are equal to each other 'but not all, so the output pulse The output pulse rate in the beam 1 〇 is ΣΧ, Χ, ..., χη via the beam combiner 137. Those skilled in the art will appreciate that the present disclosure discloses a method and apparatus that includes a laser source system that can include a solid-state laser seed beam source to provide 172 ¢. S ) 1324423

10 1510 15

2子雷射輪出;一頻率轉換級,將該種子雷射輸出轉成 ^播種準分子或分子氟氣體放電雷射之波長,例如於約 個別氣體放電雷射_之輸出之名目中心波長附近之波長 頻帶内’熟諳技藝人士瞭解可於選定之氣體放電雷射媒質' 中放大準分子或分子I氣體放電雷射增益媒質,將轉 換後之種子f射輪出放大來產切約略所轉換波長之氣體 放電雷射輸出,熟諳技藝人均解於氣體放電雷射媒 質之名目t心波長附近之波長頻帶内,其中有適當波長之 種子雷射_將由所激發的雷㈣統巾職的發射來放 大。準分子或分子氟雷射可選自於包含乂幻、xeF、KrF、2 sub-laser rotation; a frequency conversion stage, the seed laser output is converted into a wavelength of the seeded or molecular fluorine gas discharge laser, for example, near the center wavelength of the output of the output of the individual gas discharge laser In the wavelength band, 'skilled artisans understand that the excimer or molecular I gas discharge laser gain medium can be amplified in the selected gas discharge laser medium', and the converted seed f-shot is amplified to produce a roughly converted wavelength. The gas discharge laser output is fully solved by the skilled person in the wavelength band near the wavelength of the star of the gas discharge laser medium, and the seed laser with the appropriate wavelength will be amplified by the excitation of the excited thunder (four) . The excimer or molecular fluorine laser may be selected from the group consisting of illusion, xeF, KrF,

ArFW2雷射祕之組群。雷射增益媒f包含功率放大器。 功率放大器包含單通放大器級、多通放大器級。增益媒質 可包含一環形功率放大級或一功率振盪器。環形功率放大 級包含領結形組態或跑馬場形組態。該方法及裝置進一步 包含一輸入/輸出耦合器種子注入機構。該方法及裝置進一 步包含一相干性破壞機構。固態種子雷射光源包含於基於 Nd之固態雷射,例如有頻率倍增幫浦來泵送該基sNd之固 態雷射。基於Nd之固態雷射包含一纖維放大器雷射。基於ArFW2 laser secret group. The laser gain medium f contains a power amplifier. The power amplifier includes a single pass amplifier stage and a multi-pass amplifier stage. The gain medium can include a ring power amplifier stage or a power oscillator. The ring power amplifier stage consists of a bowtie configuration or a racetrack configuration. The method and apparatus further include an input/output coupler seed injection mechanism. The method and apparatus further include a coherent destruction mechanism. Solid-state seed laser sources are included in Nd-based solid-state lasers, such as solid-state lasers that have a frequency-multiplied pump to pump the base sNd. Nd-based solid state lasers include a fiber amplifier laser. based on

Nd之固態雷射可選自於包含Nd:YAG、Nd:YLF及Nd:YV04 20之固態雷射。固態種子雷射光束源可包含基於Er之固態雷 射’例如包含纖維雷射。基於Er之固態雷射可包含Er:YAG 雷射或例如Er:玻璃雷射。頻率轉換級可包含線性頻率轉換 器’例如包含Ti:藍寶石晶體,或包含含紫翠玉的晶體。頻 率轉換級包含非線性頻率轉換器,例如包含第二諧波產生 173 1324423 器或和頻混頻器。 申請人已經經由計算來模擬散斑的減少係與單—氣體 放電(例如A rF或KrF準分子)雷射系統輸出脈衝内部的相干 性長度位置有關,係於此種雷射系統輸出脈衝已經通過由 5申請人之受讓人希瑪公司製造的雷射系統一起出售的兩個 OPuS脈衝延伸器,用於脈衝延伸,來增加總積分頻譜(τ ) 後,俾減少雷射輸出脈衝之尖峰強度對使用得自雷射系統 之輸出光例如光刻術工具掃描器照明器之工具中的光學元 件的影響。有兩個0PuS串列,第一者的延遲光路足夠將輪 10出脈衝的Tis從約18.6奈秒延伸至約47.8奈秒,而第二個 OPuS可將脈衝更進一步延伸至約83 5奈秒,例如於 (其中頻譜寬度係含於脈衝能之95%以内)測量。 始於未經延伸的脈衝,申請人將脈衝平分為多個約等 於相干性長度部分,假設FWHM頻寬為〇.i〇pm,及相干性 15長度函數為高斯形狀。脈衝延伸對脈衝通過第_〇PuS後之 相干性長度部分的影響顯示經延伸的脈衝頻譜中的第一強 度駝峰係由主脈衝之相干性長度部分所組成,第二強产纩 峰係由重叠第一子脈衝之相干性長度部分的主脈衝之相干 性長度部分所組成。強度頻譜中的第三駝峰係由於第一子 20脈衝與第二子脈衝重疊的結果。注意二乾峰個別的相干性 長度部分,申請人觀察到相干性長度部分之多個版本(包括 子脈衝)維持彼此充分分開而不會互相干擾。 此於通過第二OPuS後,模擬頻譜再度只注意經延伸脈衝 之前三個辦的相干性,模擬中(第二较峰下方為來自於原 &lt; 3 174 1324423 先下方脈衝的貢獻,如前述、來自於第一0PuS之第—延遲 脈衝如前述、及來自於第二01&gt;沾之第一延遲脈衝),申請人 觀察到於此第二脈衝中,相干性長度部分的多個版本彼此 極為接近。其由於實際上第一〇puS之延遲約為丨8奈秒,第 5二〇puS之延遲約為22奈秒所致。如此,相干性長度部分之 各版本間間隔只有約4奈秒,仍然不夠接近不會彼此造成干 擾0 於第三駝峰下方,申請人觀察到得自第一OPuS之第— 延遲脈衝、第一OPuS之第二延遲脈衝、第二01&gt;沾之第—延 10遲脈衝、及第二〇PuS之第二延遲脈衝的貢獻。申請人觀察 到兩個相關相干性部分間之間隔係大於由兩個〇Pu s所延 伸之脈衝之強度頻譜中第三個駝峰彼此間之間隔。此種間 隔的增加係由於通過各個〇PuS的一次來回係等於約36奈 秒= 18*2及約44奈秒=22*2。如此,相干性長度間的分隔隨 15 著各回合而增加。 申請人判定欲讓各個單一迷你〇PuS為有效,兩個主 OPuS不町造成任何子脈衝相干性長度於彼此之約4相干性 長度以内。換5之’為了確保相關的時間相干性元素不會 重疊,必須考慮分開延遲光路的規格,讓來自於主光束之 20時間相干性元素後來不會由於不同延遲光路之各元素的延 遲版本重合而再度自我組合。此種經由延遲光路之各個組 合影響造成時間的整體延遲為由散斑減少觀點所不期望。 必須小心選擇迷你〇PuS和主〇PuS的延遲長度’來避免 時間性相干性元素的時間衝突。根據本發明之實施例之態 175 &lt; S ) 1324423 樣,申請人提示當安裝迷你0PuS時常規〇PuS延遲長度之協 力變化,包括其是否屬於雷射系統的一部分或安裝於光刻 術工具本身中於常規主0PUS下游。申請人相信此種迷你 OPUS可略為填補於脈衝時間的波谷,導致Tis的增加,例如 5允5午二主〇PuS之一的延遲長度縮短來獲得更佳的總相干 性長度分開。 根據所揭示之主旨之一實施例之各個態樣,相干性破 壞可經由前述延遲光路與特殊手段的組合,例如如前文討 淪所貫作之光束翻轉、-1成像、光束平移/切變、光束哪伯 10 或光束扇出。 轉向參考第81A-C圖,以透視方式部分示意顯示所揭示 之主曰之一實施例的射線軌跡,例如包含一]VIO腔22及一放 大器增益媒質腔144,第81A圖顯示所追縱射線之左側部分 於種子雷射腔22(上)及放大器增益媒質腔144(下)。光束通 15過LNM孔口 29離開線窄化模組LN(未顯示於第81A圖),經 由M0腔後窗28 ’進入種子雷射腔22。於領結的左側,光束 通過後窗167射出放大器增益媒質腔M4之外,通過光束反 向器孔口 71,於前文說明之光束反向器7〇中反向,通過與 光束反向器/返回器70中的光路略為不同的光路上的孔口 20 71和窗167,返回放大器增益媒質腔144,於範例情況下係 呈形成領結形的交叉配置。 轉向第81B圖,以透視圖示意顯示於種子雷射腔22與放 大器增益媒質腔144中間之延遲光學元件及相干性破壞延 遲光路之一部分。於種子雷射輸出光脈衝光束中,來自於 176 1324423 種子雷射腔22的種子脈衝輸出通過種子雷射右窗27、輸出 輕合器28、及LAM分光鏡,部分光束被轉向供度量衡目的。 然後光束於一對轉向鏡44a和44b中水平和垂直轉向,且於 第一迷你OPuS延遲光路376例如3奈秒延遲光路中被導引 至一分光鏡520,部分光束,例如4〇%光束被反射入延遲光 路,其餘光束進入第二延遲光路380。補償器楔形件53〇可The solid state laser of Nd may be selected from solid state lasers including Nd:YAG, Nd:YLF, and Nd:YV04 20. The solid seed laser beam source may comprise an Er-based solid state laser&apos; for example comprising a fiber laser. Er-based solid state lasers may include Er:YAG lasers or, for example, Er: glass lasers. The frequency conversion stage may comprise a linear frequency converter&apos; for example comprising a Ti: sapphire crystal or comprising a crystal containing amethyst. The frequency conversion stage includes a nonlinear frequency converter, for example, containing a second harmonic generation 173 1324423 or a sum mixer. Applicants have calculated that the reduction of speckle is related to the position of the coherence length inside the output pulse of a single-gas discharge (eg, ArF or KrF excimer) laser system, and the output pulse of such a laser system has passed. Two OPuS pulse extenders sold together with a laser system manufactured by the applicant's assignee, Xima, for pulse stretching to increase the total integrated spectrum (τ) and reduce the peak intensity of the laser output pulse The effect on optical components in tools that use output light from a laser system, such as a lithography tool scanner illuminator. There are two 0PuS strings, the first of which has a delayed optical path sufficient to extend the Tis pulsed from wheel 10 from about 18.6 nanoseconds to about 47.8 nanoseconds, while the second OPuS can extend the pulse further to about 83 5 nanoseconds. For example, where (where the spectral width is contained within 95% of the pulse energy). Starting from a pulse that is not extended, the applicant divides the pulse into a plurality of sections about the length of the coherence, assuming that the FWHM bandwidth is 〇.i〇pm, and the coherence 15 length function is Gaussian. The effect of pulse extension on the length of the coherence length after the pulse passes through the _〇PuS shows that the first intensity hump in the extended pulse spectrum consists of the coherence length of the main pulse, and the second strong peak is overlapped. The coherence length portion of the main pulse of the coherent length portion of the first sub-pulse is composed. The third hump in the intensity spectrum is the result of the overlap of the first sub- 20 pulses with the second sub-pulse. Note that the individual coherence length portions of the two peaks, the Applicant observed that multiple versions of the coherence length portion (including the sub-pulses) remain sufficiently separated from each other without interfering with each other. After passing the second OPuS, the analog spectrum again pays attention only to the coherence of the three previous ones before the extension pulse. In the simulation (the second lower peak is the contribution from the original &lt; 3 174 1324423 first lower pulse, as mentioned above, From the first -PuS first-delay pulse as described above, and from the second 01&gt; the first delayed pulse, the Applicant observed that in the second pulse, multiple versions of the coherence length portion are in close proximity to each other. . Since the delay of the first 〇puS is actually about 8 nanoseconds, the delay of the 5th 〇puS is about 22 nanoseconds. Thus, the interval between the versions of the coherence length portion is only about 4 nanoseconds, which is still not close enough to cause interference with each other. 0 Below the third hump, the applicant observes the first from the first OPuS - the delay pulse, the first OPuS The contribution of the second delay pulse, the second 01&gt; the first delay delay pulse, and the second delay pulse of the second 〇PuS. Applicants observed that the interval between the two related coherence portions is greater than the interval between the third hump in the intensity spectrum of the pulse extending from the two 〇Pu s. The increase in this interval is due to a round trip through each 〇PuS equal to about 36 nanoseconds = 18*2 and about 44 nanoseconds = 22*2. Thus, the separation between the lengths of coherence increases with each turn. The Applicant has determined that for each single mini 〇 PuS to be effective, the two main OPuS chocho causes any sub-pulse coherence lengths to be within about 4 coherence lengths of each other. In order to ensure that the relevant temporal coherence elements do not overlap, the specification of the separate delay optical path must be considered so that the 20 temporal coherence elements from the main beam do not later coincide with the delayed versions of the elements of the different delayed optical paths. Re-combination again. The overall delay in time caused by the effects of each combination of the delayed optical paths is undesirable from the viewpoint of speckle reduction. Care must be taken to select the delay lengths of the mini 〇 PuS and the main 〇 PuS to avoid time conflicts of temporal coherence elements. In accordance with an embodiment of the present invention, 175 &lt;S) 1324423, the Applicant suggests a synergistic change in the length of the conventional 〇PuS delay when installing the mini-OpuS, including whether it is part of the laser system or is mounted on the lithography tool itself. In the downstream of the regular main 0PUS. Applicant believes that such a mini OPUS can be slightly filled in the trough of the pulse time, resulting in an increase in Tis, for example, a delay length of one of the 5th principal 〇PuS is shortened to obtain a better total coherence length separation. In accordance with various aspects of one embodiment of the disclosed subject matter, coherence destruction can be accomplished via a combination of the aforementioned retarding optical path and special means, such as beam flipping, -1 imaging, beam shifting/shearing, as discussed above. The beam 10 or the beam is fanned out. Turning to FIGS. 81A-C, a ray trace of an embodiment of the disclosed main body is partially shown in perspective, including, for example, a VIO cavity 22 and an amplifier gain medium cavity 144, and FIG. 81A shows the tracking ray. The left side is partially on the seed laser cavity 22 (top) and the amplifier gain medium cavity 144 (bottom). The beam pass 15 exits the line narrowing module LN (not shown in Fig. 81A) through the LNM aperture 29 and enters the seed laser cavity 22 via the M0 cavity rear window 28'. On the left side of the bow tie, the beam exits the amplifier gain medium cavity M4 through the rear window 167, passes through the beam inverter aperture 71, reverses in the beam reverser 7〇 described above, and passes through the beam reverser/return The optical path in the device 70 is slightly different from the apertures 20 71 and 167 on the optical path, returning to the amplifier gain medium cavity 144, which in the exemplary case is in the form of a bow tie. Turning to Fig. 81B, a portion of the retarding optical element and the coherence-destructive delay optical path are shown in perspective view between the seed laser cavity 22 and the amplifier gain medium cavity 144. In the seed laser output light pulse beam, the seed pulse output from the 176 1324423 seed laser cavity 22 passes through the seed laser right window 27, the output combiner 28, and the LAM beam splitter, and part of the beam is diverted for metrology purposes. The beam is then horizontally and vertically deflected in a pair of turning mirrors 44a and 44b and directed to a beam splitter 520 in a first mini OPuS delay beam path 376, such as a 3 nanosecond delay beam path, a partial beam, such as a 4% beam, is Reflected into the delayed optical path, the remaining beams enter the second delayed optical path 380. Compensator wedge 53

校準來重疊於有延遲光路376射出的子脈衝;或略為未校準 來讓個別子脈衝由延遲光路376(光束切變)射出時有略為不 同空間光路。延遲光路376可由一對共焦鏡522、524或其它 1〇鏡配置所形成,例如包括於延遲光路376各端的兩個或更多 個共焦鏡或非共焦鏡來將延遲光束傳輸回分光鏡似。然後 光束送入第一延遲光路38〇,例如有分光鏡526,的4奈秒延 15The calibration is superimposed on the sub-pulses emitted by the delayed optical path 376; or slightly uncalibrated to cause the individual sub-pulses to exit from the delayed optical path 376 (beam shear) with slightly different spatial optical paths. Delayed optical path 376 may be formed by a pair of confocal mirrors 522, 524 or other 1 mirror configuration, such as two or more confocal mirrors or non-confocal mirrors included at each end of delay optical path 376 to transmit delayed beams back to splitting Mirror like. The beam is then sent to the first delayed optical path 38, for example, with a beam splitter 526, a 4 nanosecond delay.

20 遲光路’此處部分光束例如4()5被反射人延遲光路,其餘光 束由延遲光路谓送出,而送人光束擴幅㈣。延遲光路除 有不同延遲如4奈秒外,可與延遲光路m的組成完全相 ’或可有不同變化,例如有不同鏡組態,例如設置用於 光束翻轉或⑽㈣。替代未被校㈣補償器板 一延遲光路376或第-a 延遲光路380可有一者校準或另一者 校準用於輸出光束重最,+士 i或有一者或另一者以光束翻轉光 學70件取代’如本文它處之詳細討論。 了 同 由第一延遲光路所送出 如一雙稜鏡光束擴幅器3〇 , 一第二擴幅稜鏡30。 之光束可通過光束擴幅器,例 例如包括一第一擴幅稜鏡32及 轉向參考第81C圖 顯示輸入/輸出光學耦合元件及與 177 丄 W44:Z:320 The retardation path Here, part of the beam, for example 4()5, is reflected by the person to delay the optical path, and the remaining beam is sent out by the delayed optical path, and the beam is spread (4). The delayed optical path can be completely different from the composition of the delayed optical path m, except for different delays such as 4 nanoseconds, for example, with different mirror configurations, such as for beam flipping or (10) (d). Instead of being uncalibrated (4) compensator plate - a delay optical path 376 or a - a delay optical path 380 may have one calibration or the other calibration for output beam weight most, + s or one or the other with beam reversal optics 70 The article replaces 'as discussed in detail herein. The same as the first delayed optical path, such as a double beam expander 3〇, a second expanded frame 30. The beam can be passed through a beam expander, for example including a first expanded 稜鏡 32 and a steering reference 81C showing the input/output optical coupling elements and with 177 丄 W44: Z: 3

種子雷射光束離開光束擴幅器3〇,進入放大增益媒質級 144(例如呈領結形環形功率放大級配置)以及離開級144之 種子雷射光束輸入相關聯之雷射系統輸出光束光路。離開 光束擴幅器30之光束藉轉向鏡45轉向至部分反射鏡162,作 5為分光鏡/輸入/輸出耦合器光學元件用於放大增益媒質級 144。部分反射鏡162可有抗反射塗層於輸入入射側,例如 於相對的放大增益媒質腔之腔側有2〇_3〇%反射來執行輸出 耗合器功能。部分反射鏡將光束送至最大反射鏡(給定波長 的最大反射鏡)’其可經由光束擴幅器光學總成及腔右側窗 10 168將光束反射入放大增益媒質腔144。光束擴幅器光學配 置可包括一第一(輸入)光束擴幅器稜鏡部146a,沿第一光路 繼續前進至第二光束擴幅器稜鏡148,進入放大增益媒質腔 144;而於領結形回路的返回光束可通過第二光束擴幅器棱 鏡148及通過一第一光束擴幅器稜鏡第二部146b,將通過輸 15 入/輸出耦合器162出射的或經由輸出耦合器162及最大反 射鏡164於領結形振盪回路中反射偏向而返回腔之放大光 束擴幅。 經由輸出耦合器162由放大增益媒質腔144輸出的光束 巧通過BAM分光鏡,此處部分光束被重新導向用於度量衡 Λ目的,一OPuS分光鏡此處光束被分成主要部分及延遲部分 2〇 通過多個主OPuS之一進行光束延伸來延長雷射系統輸出 脈衡之Tis’一系統孔口 92及一快門分光鏡’此處部分光束 被分開用於度量衡目的。 轉向參考第82A圖及第82B圖,以透視及部分示意圖顯 178 1324423 示第81A-C圖之光學串列之部分頂視圖,包括延遲光學元件 與種子雷射腔與放大增益媒質雷射腔間。第83A圖顯示延遲 光路376及380及光束擴幅器30之透視與部分示意之進一步 細節圖。第83B圖顯示光束擴幅器30之進一步細節之側視 5 圖。 延遲光路例如3奈秒延遲光路之設計包括厚3.18毫米 分光鏡526、兩個凹面鏡522、524,例如有曲率半徑225毫 米及一補償器板530,故反射光束將重疊透射光束。期望反The seed laser beam exits the beam expander 3 〇, enters the amplification gain medium level 144 (e.g., in a bow-tie ring power amplification stage configuration), and the seed laser beam input from the stage 144 enters the associated laser system output beam path. The beam exiting the beam expander 30 is diverted by the turning mirror 45 to the partial mirror 162, which is a beam splitter/input/output coupler optical element for amplifying the gain medium level 144. The partial mirror 162 may have an anti-reflective coating on the input incident side, for example 2 〇 〇 〇 % reflection on the cavity side of the opposite amplification gain medium chamber to perform the output consuming function. The partial mirror delivers the beam to the largest mirror (the largest mirror of a given wavelength)&apos; which reflects the beam into the amplification gain medium cavity 144 via the beam expander optical assembly and the cavity right side window 10 168. The beam expander optical configuration can include a first (input) beam expander crotch portion 146a that continues along the first optical path to the second beam expander 稜鏡 148 to enter the amplification gain medium cavity 144; The return beam of the loop can pass through the second beam expander prism 148 and through a first beam expander 稜鏡 second portion 146b, through the output 15 input/output coupler 162 or via the output coupler 162 and The maximum mirror 164 reflects the deflection in the bow-tie oscillation circuit and returns to the amplification beam of the cavity. The beam output from the amplification gain medium cavity 144 via the output coupler 162 passes through the BAM beam splitter, where a portion of the beam is redirected for metrology purposes, an OPuS beam splitter where the beam is split into a main portion and the delay portion 2 One of the plurality of main OPuS performs beam extension to extend the output system of the laser system to a Tis'-system aperture 92 and a shutter beam splitter' where the partial beams are separately used for metrology purposes. Turning to Figures 82A and 82B, a partial top view of the optical series of Figures 81A-C is shown in perspective and partial schematic view 178 1324423, including the delay optics and the seed laser cavity and the amplification gain medium laser cavity . Figure 83A shows a further detailed view of the perspective and partial representation of the delayed optical paths 376 and 380 and the beam expander 30. Figure 83B shows a side view of further details of beam expander 30. The design of the delayed optical path, e.g., a 3 nanosecond delay optical path, includes a 3.18 mm thick beam splitter 526, two concave mirrors 522, 524, such as a radius of curvature of 225 mm and a compensator plate 530, so that the reflected beam will overlap the transmitted beam. Anticipation

射/延遲光束不重疊透射光束,可採用多個實施例例如包括 10 補償器板530的傾斜。如此例如通過分光鏡526之光束之偏 差為1.048毫米’補償器板530可置於分光鏡526該側的相對 角度。反射光束隨後重疊透射光束。經由改變補償器板530 的旋轉角’可控制透射光束與第一反射光束間的偏差。若 分光鏡526為光束之法線方向,則二光束間的偏差為1〇48 15毫米。二光束間的△偏差呈角度之函數顯示於第85圖。為 了產生0.5毫米偏差,需要27度入射角。另一種產生偏差的 方式例如係讓補償器板53〇為更薄或更厚。板厚度166毫米 或4.70毫米將產生〇 5毫米偏差。使用45度角較厚板的優點 為抗反射塗層維持相同。但使用27度角的板,須使用與分 20光鏡526相同的厚度來料基材。人射於補償器板別的光 束A過8偏#,故對於27度角的零組件作為抗反射塗層比衫 度角更佳。 對本文它處討論之特殊手段中之一者或多者可設定任 種延遲光路’其中前述光束切變技術屬於一種延遲光 179 (S ) 路,另一個延遲光路例如4奈秒延遲光路有相同或大致上相 同之光束操縱(連同特定長度的延遲),或有不同的相干性破 壞體系。例如於第83圖示意顯示第二較長的延遲光路例如4 奈秒延遲光路380也結合光束翻轉機構例如稜鏡如等腰稜 5鏡525,類似於前述共同審查中之申請案「氣體放電雷射輸 出光相干性減少之方法及裝置」,申請日期2〇〇5年12月29 日,申請案號10/881533’代理人檔號2003_〇12〇_〇1 (說明如 前)之相干性破壞光學元件,可於一轴或多軸讓光束自身翻 轉。範例光束翻轉光學元件525當其通過棱鏡且於稜鏡内部 1〇内反射時可讓各個子脈衝自身翻轉,例如於長軸自身翻 轉,如第86圖示意顯示。如本文它處所述,此種相干性破 壞機構有延遲光路和類似或相關聯的其它特殊裝置用於諸 如本文它處討論之光束翻轉、平移、成像等,可於放大增 益媒質輸出、於種子雷射與放大增益媒質間、雷射系統快 15門後、光束傳輸單元内部進行,例如介於雷射快門與使用 雷射光的工具或工具本身内部例如掃描器或tbSLS機器内 側之輸入端間被包圍的吸光物種自由光路。 熟諳技藝人士須瞭解揭示一種裝置及方法包含一種線 窄化脈衝式準分子或分子氟氣體放電雷射系統,包含:一 20種子雷射振盪器,其產生一輸出包含一雷射輸出脈衝光 束,包含:一第一氣體放電準分子或分子氟雷射腔;於一 第一振盪器腔内部之一線窄化模組;一雷射放大級含有一 放大增益媒質於一第二氣體放電準分子或分子氟雷射腔, 其接收該種子雷射振盪器的輸出,且放大該種子雷射振盪 1324423 器的輸出來形成包含一雷射輸出脈衝光束之雷射系統輸 出,包含:一環形功率放大級。該環形功率放大級包含了 包含一部分反射光學元件之一注入機構,透過該注入機 構,該種子雷射振盪器輸出光束被注入環形功率放大級。 5該環形功率放大級包含一領結回路或跑馬場回路。環形功 率放大級可將該種子雷射振盪器腔的輸出放大至脈衝能 klmJ ’或22mJ,或dmJ,或y〇mJ,或出mJ。該雷射系 統可於至多12kHz或3至至%kHz之輸出脈衝重 複率操作。该裝置及方法可包含一種寬頻脈衝式準分子或 10刀子氟氣體放電雷射系統,包含:一種子雷射振盪芎,其 產生一輸出包含一雷射輸出脈衝光束,包含:一第一氣體 放電準分子或分子氟雷射腔;一雷射放大級含有—放大增 益媒質於一第二氣體放電準分子或分子氟雷射腔,其接收 «亥種子雷射振蘯器的輸出,且放大該種子雷射振盛器的輸 15出來形成包含一雷射輸出脈衝光束之雷射系統輸出,包 含:一環形功率放大級。根據所揭示之主題之一實施例之 態樣,一種相干性破壞機構係位於該種子雷射振盪器與該 放大器增益媒質間。該相干性破壞機構包含一光學延遲光 路,其具有延遲長度比於該種子雷射振盪器之雷射輸出脈 20衝光束中之一脈衝的相干性長度更長。該光學延遲光路不 會實貝上延遲於該種子雷射振盡器之雷射輸出脈衝光束中 之該光束長度。該相干性破壞機構包含第一長度之一第一 光學延遲光路及第二長度之一第二光學延遲光路,於該第 光學延遲光路及第二光學延遲光路各自之光學延遲係超 181 +該種子雷射振盪器之雷射輪出脈衝光束中之—脈衝之 性長度,但實質上不會増加脈衝長度以及該第一延 遲光路長度能第二㈣•長度之差值係超越該脈衝之 目:性長度’也不會實質上增加脈衝長度。根據一實施例 Μ 策之裝置及方法可包含—種線窄化脈衝式準分子或分 :錢體放電雷射系統,包含:一種子雷射録器,其產 ^輪出包含-雷射輸出脈衝光束,包含:―第一氣體放 =準分子或分子㈣射腔;於—第―振㈣㈣部之一線 10 窄化模組;—雷射放大級含有—放大增«質於-第二氣 體放電準77子或分子氟雷射腔,其接收該種子雷射振盈器 的輸出’錢大該種子雷射缝器的輸出來形成包含一雷 射輸出脈衝光束m統輸出n —卿功率放大 級;介於該種子雷射振μ與該環形功率放大級間之一相 干性破壞機構。 15 根據一實施例之態樣,該裝置及方法可包含一種寶镅 脈衝式準分子或分子默氣體放電雷射系統,包含:一種子 雷射振盪器,其產生-輸出包含一雷射輸出脈衝光束,包 含.一第一氣體放電準分子或分子氟雷射腔;—雷射放大 級含有一放大增益媒質於一第二氣體放電準分子或分子氟 2〇雷射腔,其接收該種子雷射振盈器的輸出,且放大該種子 雷射振盈器的輸出來形成包含一雷射輸出脈衝光束之雷射 系統輸出,包含:-環形功率放大級;介於該種子雷射振 盈器與該環形功率放大級間之一相干性破壞機構。根據一 實施例之態樣,該裝置及方法可包含一種脈衝式準分子或 182 1324423 分子氟氣體放電雷射系統,包含:一種子雷射振盪器,其 產生一輸出包含一雷射輸出脈衝光束,包含:一第一氣體 放電準分子或分子I雷射腔;於__第—振腔内部之一 線窄化模組;一雷射放大級含有一放大增益媒質於一第二 氣體放電準分子或分子氟雷射腔,其接收該種子雷射振堡 器的輸出,且放大該種子雷射振盪器的輸出來形成包含一 雷射輸出_光束之雷射线輸出;於該種子雷射振盪器 與該雷射放大級間之-相干性破壞機構包含—絲延遲光 路超過該種子雷射輸ά光束脈衝之相干性錢。該放大級 10 可包含-雷射振|腔或—光科徑界定通過職大增益媒 質之固定次數。該相干性破壞機構包含—相干性破壞光學 I遲、”。構,其可產生循序由一單一輸入脈衝延遲的多個次 脈衝’其巾各個魏衝觀隨後:欠_延遲大於該脈衝光 之相干性長度。熟諸技藝人士也瞭解,揭示—種裝置及方 15 法根據—實關之態樣包含-難射光源系統,包含:提 供-種子雷射輸出之―固態雷射種子絲源;—頻率轉換 級其係將錄子雷射輪出轉換錢合髓—準分子或分子 氟氣體放電雷射之-波長;_準分子或分子氟氣體放電雷 射增盈媒質其放大轉換後_子雷射輸出來產生約於該轉 20 換波長之-氣體放電雷射輸鎌衝光η干性破壞機 構包3-光學延遲轉’其具有延遲光路比該輸出脈衝之 相干性長度更長。 該準分子或分子氟雷射可選自於包含XeCl、XeF、 KrF Arf^F2田射系統之_組群。該雷射增益媒質包含一 183 &lt; S ) 功率放大器’其包含_單通放大器級或—多通放大器級。 該增益媒質包含-環形功率放大級,其包含一領結組態或 -跑馬場組態,也包含—輸人/輸出齡器種子注入機構。 該相干性破壞機構可於該雷射種子光束源與該氣體放電雷 5射增益媒質間。該g]態種子雷射光束源包含__基於Nd之固 態雷射,可包含泵送該基於Nd之固態雷射之一倍頻幫浦。 該基於Nd之固態雷射包含一纖維放大器雷射,以及包含一 基於Nd之固態雷射其係選自於包含Nd:YAG、Nd:YLF及 Nd:YV〇4固態雷射所組成之組群。固態種子雷射光束源包 10含基於价之固態雷射,包含一纖維雷射。基於Er之固態雷 射包含Er:YAG雷射。頻率轉換級包含一線性頻率轉換器, 包含一Ti:藍寶石晶體或包含紫翠玉之晶體。該頻率轉率級 包含一非線性頻率轉換器,例如一第二諧波產生器或一和 頻混合器。根據一實施例之態樣,該裝置及方法包含一種 15雷射光源系統,包含:提供一種子雷射輸出之一固態雷射 種子光束源;一頻率轉換級其係將該種子雷射輸出轉換成 適合播種一準分子或分子氟氣體放電雷射之一波長;一準 分子或分子氟氣體放電雷射增益媒質其放大轉換後的種子 雷射輸出來產生一放電雷射輸出於約略所轉換之波長,包 2〇 含一環形功率放大級。該方法包含利用一固態雷射種子光 束源來提供一種子雷射輸出;於一頻率轉換級中,將該種 子雷射輸出頻率轉換成適合播種一準分子或分子氟氣體放 電雷射之波長;利用一準分子或分子氟氣體放電雷射増益 媒質,放大該所轉換之種子雷射輸出,來產生約略於該所 1324423 轉換波長之一氣體放電雷射輸出。 10 15 熟諳技藝人士也瞭解揭示一種裝置及方法其包含一處 理機器,包含一照射機構來照射一工作件例如接受照射之 半導體製造晶圓或薄膜電晶體面板,例如於前述情況下係 作為微影術處理程序的一部分,而於後述情況下係作為非 晶矽結晶化用的雷射退火,使用脈衝式紫外光例如於248奈 米或193奈米的DUV光,或於約13奈米的EUV光;紫外光輸 出開口;工作件固定平台,例如晶_移送平台或薄膜電 晶體的移送平台;相干性破壞機構包含超過紫外光脈衝之 相干性長度之光學延遲光路。光學延遲光路可能不會實質 上增加紫外光脈衝長度。相干性破壞機構可包含第一長度 之第一光學延遲光路、及第二長度之第二光學延遲光路; 於第-延遲光路和第二延遲光路各自之光學延遲係超過紫 外光脈衝的好性長度,料會實#切加_長度第 -延遲光路與第二延遲祕之差係超過脈衝的相干性長 度。第一延遲光路和第二延遲光路中之—者包含光束翻轉 或光束平㈣構,例如未校準的補償轉、轉以 -1成像光學元件等。 20 立熟諳技藝人士瞭解前文揭示之主旨之實_之各個態 樣思圖作為較佳實施例,而絕非囿限所揭示之主匕, 知 並非單獨揭示特定較佳實施例。熟諳技#人士瞭 揭不之發明之倾狀各_樣做衫料改 附之申請專利範狀範圍及意義±不僅衫所揭示: 之實施例之各個態樣,同時也涵蓋熟諳技藝人士旨The shot/delay beam does not overlap the transmitted beam, and a plurality of embodiments may be employed, such as including the tilt of the 10 compensator plate 530. Thus, for example, the beam passing through the beam splitter 526 has a deviation of 1.048 mm. The compensator plate 530 can be placed at a relative angle to the side of the beam splitter 526. The reflected beam then overlaps the transmitted beam. The deviation between the transmitted beam and the first reflected beam can be controlled by changing the angle of rotation ' of the compensator plate 530'. If the dichroic mirror 526 is in the normal direction of the beam, the deviation between the two beams is 1 〇 48 15 mm. The Δ deviation between the two beams as a function of angle is shown in Fig. 85. In order to produce a 0.5 mm deviation, a 27 degree angle of incidence is required. Another way to create a bias is, for example, to make the compensator plate 53 thinner or thicker. A plate thickness of 166 mm or 4.70 mm will result in a 〇 5 mm deviation. The advantage of using a 45 degree angle thicker plate is that the anti-reflective coating remains the same. However, using a 27 degree angle plate, the substrate must be fed to the same thickness as the minute glass 526. The beam A that is shot by the person on the compensator plate is over 8, so the component with a 27-degree angle is better as the anti-reflective coating than the angle of the shirt. Any one or more of the special means discussed herein may be set to any of the delayed optical paths, wherein the aforementioned beam shearing technique belongs to a delayed light 179 (S) path, and the other delayed optical path, such as a 4 nanosecond delay optical path, has the same Or substantially the same beam manipulation (along with a specific length of delay), or a different coherence destruction system. For example, in Fig. 83, a second longer delay optical path, such as a 4 nanosecond delay optical path 380, is also incorporated in conjunction with a beam inversion mechanism such as an isosceles 5 mirror 525, similar to the aforementioned co-examination application "Gas Discharge". Method and device for reducing the coherence of laser output light", application date: December 29, 2005, application number 10/881533 'agent file number 2003_〇12〇_〇1 (described as before) Coherence destroys the optical component and allows the beam to flip itself on one or more axes. The example beam flipping optical element 525 allows the individual sub-pulses to flip themselves as they pass through the prism and are reflected within the interior of the crucible, e.g., the long axis itself flips, as shown schematically in Figure 86. As described elsewhere herein, such a coherence disrupting mechanism has a delayed optical path and other similar or associated special means for beam flipping, translation, imaging, etc., as discussed herein, for amplifying the gain medium output, for seeding Between the laser and the amplified gain medium, after 15 steps of the laser system, inside the beam transfer unit, for example between the laser shutter and the tool using the laser or the inside of the tool itself, such as the scanner or the input inside the tbSLS machine. The light-absorbing species surrounded by free light paths. A skilled artisan will appreciate that a device and method includes a line narrowing pulsed excimer or molecular fluorine gas discharge laser system comprising: a 20 seed laser oscillator that produces an output comprising a laser output pulse beam, The method comprises: a first gas discharge excimer or a molecular fluorine laser cavity; a narrowing module inside a first oscillator cavity; a laser amplification stage containing an amplification gain medium in a second gas discharge excimer or a molecular fluorine laser cavity that receives the output of the seed laser oscillator and amplifies the output of the seed laser oscillation 1324423 to form a laser system output comprising a laser output pulse beam comprising: a ring power amplification stage . The toroidal power amplifier stage includes an injection mechanism including a portion of the reflective optical element through which the output beam of the seed laser oscillator is injected into the toroidal power amplification stage. 5 The ring power amplifier stage includes a bow tie circuit or a racetrack circuit. The loop power amplification stage amplifies the output of the seed laser oscillator cavity to a pulse energy klmJ ' or 22 mJ, or dmJ, or y 〇 mJ, or mJ. The laser system can operate at an output pulse repetition rate of up to 12 kHz or 3 to % kHz. The apparatus and method can include a broadband pulsed excimer or a 10-knife fluorine gas discharge laser system, comprising: a sub-laser oscillation chirp that produces an output comprising a laser output pulse beam comprising: a first gas discharge An excimer or molecular fluorine laser cavity; a laser amplification stage comprising: an amplification gain medium in a second gas discharge excimer or a molecular fluorine laser cavity, which receives the output of the «Hi seed laser oscillator and amplifies the The output of the seed laser oscillator 15 forms a laser system output comprising a laser output pulse beam comprising: a ring power amplifier stage. In accordance with an aspect of an embodiment of the disclosed subject matter, a coherence disruption mechanism is located between the seed laser oscillator and the amplifier gain medium. The coherence disrupting mechanism includes an optical delay optical path having a delay length that is longer than a coherence length of one of the laser output pulses of the seed laser oscillator. The optical delay optical path is not delayed on the scalar by the length of the beam in the laser output pulse beam of the seed laser oscillating device. The coherence destruction mechanism includes a first optical retardation optical path of a first length and a second optical retardation optical path of a second length, and an optical delay system of each of the optical retardation optical path and the second optical retardation optical path is super 181 + the seed The laser of the laser oscillator emits a pulse-length of the pulsed beam, but does not substantially increase the pulse length and the length of the first delayed optical path can be second (four). The difference between the lengths exceeds the purpose of the pulse: The length ' does not substantially increase the pulse length. Apparatus and methods according to an embodiment may include a line narrowing pulsed excimer or a fractional-volume discharge laser system comprising: a sub-throat recorder that produces a wheel-injection-laser output Pulsed beam, comprising: "first gas discharge = excimer or molecular (four) cavity; in the - - vibration (four) (four) part of the line 10 narrowing module; - laser amplification stage contains - amplification + quality - second gas Discharge quasi-77 or molecular fluorine laser cavity, which receives the output of the seed laser vibrator. 'The output of the seed laser laser slitter is formed to form a laser output pulse beam m system output n-qing power amplification Level; a coherent destruction mechanism between the seed laser vibration μ and the ring power amplification stage. According to an aspect of the embodiment, the apparatus and method may comprise a Breguet pulsed excimer or molecular gas discharge laser system comprising: a sub-laser oscillator, the generation-output comprising a laser output pulse a beam comprising: a first gas discharge excimer or a molecular fluorine laser cavity; the laser amplification stage comprising an amplification gain medium in a second gas discharge excimer or a molecular fluorine 2 〇 laser cavity, which receives the seed ray Shooting the output of the vibrator and amplifying the output of the seed laser vibrator to form a laser system output comprising a laser output pulse beam comprising: - a ring power amplifier stage; between the seed laser vibrators A coherent destruction mechanism with the ring power amplification stage. According to an aspect of the embodiment, the apparatus and method may comprise a pulsed excimer or a 182 1324423 molecular fluorine gas discharge laser system comprising: a sub-laser oscillator that produces an output comprising a laser output pulse beam The method includes: a first gas discharge excimer or a molecular I laser cavity; a narrowing module inside the __ first cavity; a laser amplification stage containing an amplification gain medium to a second gas discharge excimer Or a molecular fluorine laser cavity that receives the output of the seed laser vibrator and amplifies the output of the seed laser oscillator to form a lightning ray output comprising a laser output beam; the seed laser oscillator The coherence destruction mechanism with the laser amplification stage includes a wire delay optical path that exceeds the coherence of the seed laser beam pulse. The amplification stage 10 can include a -laser vibration cavity or a light path defined by a fixed number of times the service medium gain medium. The coherence destruction mechanism includes - coherence destruction optical I is delayed, which can generate a plurality of sub-pulses that are sequentially delayed by a single input pulse, and each of the wipes is followed by: the under-delay is greater than the pulsed light The length of the coherence. It is also known to those skilled in the art that the device and the method of the method 15 include a hard-to-light source system according to the aspect of the real-time, including: a solid-state laser seed source that provides a seed laser output; - the frequency conversion stage is to convert the recording laser to the core - excimer or molecular fluorine gas discharge laser - wavelength; _ excimer or molecular fluorine gas discharge laser amplification medium after amplification conversion _ sub The laser output is generated to generate a wavelength of about 20 rpm. The gas discharge laser 镰 镰 η dry dry destruction mechanism package 3 - optical delay turn 'has a delayed optical path longer than the coherence length of the output pulse. The excimer or molecular fluorine laser may be selected from the group consisting of XeCl, XeF, KrF Arf^F2 field systems. The laser gain medium comprises a 183 &lt; S) power amplifier 'which includes a single pass amplifier stage Or - multi-pass amplifier stage The gain medium includes a loop power amplification stage including a bow tie configuration or a racetrack configuration, and also includes an input/output age seed injection mechanism. The coherence destruction mechanism can be used with the laser seed beam source The gas discharge beam is between the gain mediums. The g] seed laser beam source comprises a __Nd-based solid state laser, which may include pumping the Nd-based solid state laser as a frequency doubling pump. The solid state laser comprises a fiber amplifier laser and comprises a solid-state laser based on Nd selected from the group consisting of Nd:YAG, Nd:YLF and Nd:YV〇4 solid state lasers. The laser beam source package 10 comprises a price-based solid-state laser comprising a fiber laser. The Er-based solid-state laser comprises an Er:YAG laser. The frequency conversion stage comprises a linear frequency converter comprising a Ti: sapphire crystal or A crystal comprising amethyst. The frequency conversion stage comprises a nonlinear frequency converter, such as a second harmonic generator or a frequency mixer. According to an embodiment, the apparatus and method comprise a 15 ray. Light source system, including: A solid-state laser seed beam source of a sub-laser output; a frequency conversion stage that converts the seed laser output into one wavelength suitable for seeding an excimer or molecular fluorine gas discharge laser; an excimer or molecular fluorine The gas discharge laser gain medium amplifies the converted seed laser output to produce a discharge laser output at a wavelength that is approximately converted, and includes a ring power amplification stage. The method includes utilizing a solid state laser seed beam source Providing a sub-laser output; in a frequency conversion stage, converting the seed laser output frequency into a wavelength suitable for seeding an excimer or molecular fluorine gas discharge laser; using an excimer or molecular fluorine gas discharge laser The medium is amplified by amplifying the converted seed laser output to produce a gas discharge laser output that is approximately one of the 1324423 conversion wavelengths. 10 15 skilled artisans are also aware of a device and method that includes a processing apparatus that includes an illumination mechanism for illuminating a workpiece, such as a semiconductor wafer or thin film transistor panel that is illuminated, for example, as a lithography in the foregoing case. Part of the processing procedure, and in the case described below, as a laser annealing for crystallization of amorphous germanium, using pulsed ultraviolet light such as DUV light of 248 nm or 193 nm, or EUV of about 13 nm. Light; ultraviolet light output opening; workpiece fixed platform, such as a crystal transfer platform or a transfer platform of a thin film transistor; the coherence destruction mechanism includes an optical retardation optical path that exceeds the coherence length of the ultraviolet light pulse. The optical retardation path may not substantially increase the length of the ultraviolet pulse. The coherence destruction mechanism may include a first optical delay optical path of a first length and a second optical delay optical path of a second length; and an optical delay of each of the first delay optical path and the second delayed optical path exceeds a good length of the ultraviolet light pulse The difference between the length of the first-delayed light path and the second delay is the length of the coherence of the pulse. The first delay optical path and the second delayed optical path include a beam inversion or a beam flat configuration, such as an uncalibrated compensation rotation, a -1 imaging optical element, and the like. 20 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。熟 谙 # 人士 人士 人士 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明

185 1324423 之此等相當例及其它修改例及變化例❹除了前述所揭示的 和所請求專利的所揭示主旨之實施例之各個態樣之變化及 修改之外,也可實施其它變化及修改。 15 20 本案詳細說明及舉例說明之「雷射系統」之實施例之 特殊態樣要求滿足35 U.S.C.§112可更完整達成前述目的用 於欲藉前述實施例之各態樣解決或由於任何其它理由欲解 決之問題,熟諳技藝人士須瞭解目前說明之所揭示主旨之 實施例之各個態樣僅為所揭示之主旨廣義涵蓋之主旨之範 例舉例說明及代表例。此處所述及所請求之實施例之態 樣之範圍完整涵蓋今日或未來可能對熟請技藝人士基於說 月曰之教不顯然易知之其它實施例。本「雷射系統」之範 =單純且完全只由隨附之巾請專利範圍所限,而未超出所 请求之申請專利範®之說明。巾請專利範圍中以單數形來 個元件絕非意圖表示或解譯為此種所請求之元件為 且唯一 j (除非如此明白說明),反而係表示「一個或多 個」。热諳技藝人士已知或未來將瞭解之前述實施例之各態 種元件的全部結構相當例或功能相當例皆合併於 处主供參考,意圖涵蓋於申請專利範圍之範圍。說明書 —專利範圍中使用的全部術語且於本案說明書及申請 2利範圍:明白陳述且定義將具有該項定義,而與此種術 二=任何字典或任何常用定義無關。意圖或要求說明書中 '裝置或方法作為解決本案揭示實施例之各態樣意圖 、之各項問題轉項問題之_實_之任—態樣,其將 * ;本申明專利範圍。本揭示中並無任何元件、組件或 186 3法步驟意圖公開’而與該等元件、組件或方法步驟是否 陳述於申请專利範圍無關。隨附之申請專利範圍中並 ‘、、任何70件彡轉譯為遵照35 U.S.C§U2第六段的規定,除 非該元件明白使用「裝置」一詞,或於方法專利中該元件 5破陳述為「―步驟」而非「-動作」。 熟諳技藝人士須瞭解符合美國專利中,申請人也揭示 本案說明書所附之任何申請專利範圍中所陳述之各個發明 )個可動作且可工作的實施例,某些情況下可能只 揭不一個實施例。為了縮短專利申請案長度與寫稿時間, 1〇且讓本案對發明人及其它人更易讀,申請人隨時或於全案 中使用限定動詞(例如「為」、「具有」、「包括」等)及/或其 匕限定動詞(例如「製造」、「造成j、「取樣」、「讀取」、「發 sfl」等)及/或動名詞(例如「製造j、「使用」、「取得」、「保 持」、「製作」、「判定」、「測量」、「計算」等)來定義所揭示 15主旨之一個實施例之一個動作或功能之態樣 '特徵/元件, 及/或說明一個實施例之一態樣/特徵/元件之其它定義。當 此種限定詞或限定片語等用來描述此處揭示之任何一個或 多個實施例之態樣/特徵/元件時,亦即說明任何特徵、元 件、系統、次系統、組件、次組件、方法步驟或演繹法則 20步驟、特殊材料等時,須解譯為申請人所發明及所請求專 利之主旨之範圍前方有下列限制詞中之一者、多者或全 部:「舉例言之」、「例如」、「舉個實例」、「僅供舉例說明」、 「藉由舉例說明」等及/或包括「可能」、「可」等詞中之任 一者或多者或全部。全部此等特徵、元件、步驟、材料等 187 U24423 個或多個實施例之可能態樣,而非解譯為 之任何實施例及/或唯-可能實施例之任-或夕種L·樣/特徵/元件 現況的要求安 實作,即使為了滿足專利 實施#H θ f本案所4主旨之―個實施例或任一個 何此種態樣/特徵/元件之單—可運作實例 亦此。除非於本案令或本案執 申嗜人;1丁 y符別明白陳述,否則 °晏不之主旨之任何實施例或任何特; 之-特殊態樣/_元件結果為該種且 請專利範圍的主旨或彳所申 10 15 20 元件,申枝人6“ 7甲吻專利範圍引述的態樣/特徵/ 示的實施例之任:T於本案所申請專利之主旨之任何揭 把例被解譯為該種且為唯一實作所請求之主旨2實 樣/特徵/元件之方―、,主曰或其任何態 Γ請專利_各項,其 何其它可能實作二::::=,旨之任 或所揭示之實施例。申請人特別、明示且益意二件 圍具有其依附之附屬項以及於獨立項:二 之主曰之任何態樣/特徵/元件、步驟等之… :立::直接或間接所附屬之申請專利範圍須 之說明已經充分涵蓋附屬項中之三 其它實作’進1細節絕非實作—獨立項中心7連同 徵/元件之唯一方式,如此絕非將m夺 此等態__件之進_步細節用來限制二:^ 為廣義的綠;》/ &amp; 列仕何獨立項較 、義的Μ羨/特徵/元件’包括將附屬項的進一步細節And other variations and modifications of the various embodiments of the disclosed subject matter disclosed herein. 15 20 This document details and exemplifies the specific aspects of the embodiment of the "laser system" that meet the requirements of 35 USC § 112. The above objectives may be more fully achieved for the various aspects of the foregoing embodiments or for any other reason. To the extent that the subject matter of the present invention is to be understood by those skilled in the art, the embodiments of the present invention are intended to be illustrative and representative. The scope of the embodiments described herein and claimed herein is inclusive of other embodiments that may be apparent to those skilled in the art, which are not readily apparent to those skilled in the art. The scope of this "laser system" is pure and completely limited only by the scope of the patents attached to the patent, and does not exceed the description of the requested patent application. In the singular, the singular elements are not intended to be interpreted or interpreted as such a claimed element and only j (unless so clearly stated), but instead means "one or more." All of the structural equivalents or functional equivalents of the various elements of the foregoing embodiments, which are known to those skilled in the art, are intended to be incorporated by reference. STATEMENT – All terms used in the scope of the patent and in the present specification and application 2 Scope: A clear statement and definition will have this definition, regardless of such a second = any dictionary or any common definition. In the intention or requirement of the specification, the device or method serves as a solution to the problem of the various aspects of the embodiments disclosed in the present disclosure, and the problem of the transfer of the problem is to be * the scope of the patent. No element, component or step is disclosed in the present disclosure, and is not related to whether the element, component or method step is stated in the scope of the patent application. In the scope of the accompanying patent application, and any 70 pieces are translated as follows in accordance with the sixth paragraph of 35 USC § U2, unless the element understands the use of the word "device" or the method patent "Steps" instead of "-actions". Those skilled in the art will be aware that in accordance with the U.S. Patent, the Applicant also discloses embodiments of any of the inventions set forth in the scope of any patent application attached to the present specification. In some cases, only one implementation may be disclosed. example. In order to shorten the length of the patent application and the time of writing, and make the case easier for the inventor and others to read, the applicant can use the qualifiers at any time or in the whole case (such as "Yes", "Yes", "Include", etc. And/or its qualifiers (such as "manufacturing", "causing j", "sampling", "reading", "sending sfl", etc.) and/or gerunds (eg "manufacturing j, "using", "obtaining") , "hold", "produce", "decision", "measure", "calculation", etc.) to define an action or function of an embodiment of the disclosed subject matter, a feature/component, and/or description Other definitions of one aspect/feature/element of one embodiment. When such qualifiers or qualifiers are used to describe the aspects/features/elements of any one or more of the embodiments disclosed herein, any feature, component, system, subsystem, component, sub-component , method steps or deductive rules, 20 steps, special materials, etc., shall be interpreted as one, more or all of the following restrictions in the scope of the subject matter of the invention and the claimed patent: "Example" , "for example", "example", "for illustrative purposes only", "by way of illustration", etc. and/or include any or more of the words "may" or "may". </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; /Features/components are required to be implemented, even if they are intended to satisfy the patent implementation #H θ f, the embodiment of the present invention, or any of the such aspects/features/components. Unless otherwise stated in the case or in this case; 1 y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y Subject or 彳 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 For the purpose of this and the only implementation of the subject matter 2 / the characteristics / components of the party -, the main 曰 or any of its states Γ patent _ items, what other possibilities may be implemented two::::=, The Applicant's specific or disclosed embodiments. Applicants' special, express and beneficial two-parts have attached subordinates and any independent features: any of the features/features/elements, steps, etc. of: Li: The description of the scope of the patent application directly or indirectly attached to the application has fully covered the other three of the sub-items. The details of the implementation are not the only ones. Take m to take this equality __ _ step into the _ step details used to limit two: ^ is the generalized green; 》 / &amp; column It Duli more entries, defined Μ Sin / features / elements' including further details of the dependent claims

S 188 1324423 於獨立項。S 188 1324423 in separate items.

熟諳技藝人士須瞭解前文所揭示主旨之實施例之各個 態樣只為較佳實施例,而絕非意圖囿限所揭示主旨之揭示 内容,更特別並非單獨囿限於一個特定較佳實施例。熟諳 5 技藝人士瞭解且顯然易知可對所揭示主旨之實施例所揭示 之態樣做出多項變化及修改。隨附之申請專利範圍之範圍 及定義上不僅涵蓋所揭示主旨之實施例之揭示態樣,同時 也涵蓋熟諳技藝人士顯然易知之此等相當例及其它修改與 變化。除了前文所述所揭示主旨之實施例所揭示及請求之 10 態樣之變化及修改之外也可實施其它變化及修改。 L圖式簡單說明3 第1圖顯示已知之ΜΟΡΑ組態多腔雷射系統; 第2圖顯示揭示之所請求專利主旨之一實施例之各個 態樣, 15 第3圖顯示揭示之所請求專利主旨之一實施例之各個 態樣,It should be understood by those skilled in the art that the various embodiments of the present invention are intended to be a preferred embodiment, and are not intended to limit the scope of the disclosed subject matter. It will be apparent to those skilled in the art that many changes and modifications can be made in the aspects disclosed in the embodiments disclosed herein. The scope and definitions of the appended claims are intended to cover the invention and the embodiments of the invention Other changes and modifications can be made in addition to the variations and modifications of the embodiments disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a known multi-cavity laser system in a configuration; FIG. 2 shows various aspects of an embodiment of the claimed patent subject, and FIG. 3 shows the claimed patent disclosed. The various aspects of one of the embodiments,

第4圖顯示揭示之所請求專利主旨之一實施例之各個 態樣, 第5圖顯示揭示之所請求專利主旨之一實施例之各個 20 態樣; 第6圖顯示揭示之所請求專利主旨之一實施例之各個 態樣; 第7圖顯示根據所揭示之主旨之一實施例之各個態樣 之一時序與控制方案; 189 1324423 第8圖示意顯示根據所揭示之主旨之一實施例之各個 態樣,類似第37圖之多重反射或使用分開光束來填補一孔 隙之不同空間部分; 第9圖示意顯示根據所揭示之主旨之一實施例之各個 5 態樣有用之輸入耦合; 第10圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之輸入耦合;Figure 4 shows various aspects of one embodiment of the claimed subject matter, and Figure 5 shows various aspects of one embodiment of the claimed patent subject matter; Figure 6 shows the claimed subject matter of the disclosure. Various aspects of an embodiment; FIG. 7 shows a timing and control scheme for each aspect of an embodiment in accordance with one of the disclosed subject matter; 189 1324423 FIG. 8 is a schematic illustration of an embodiment in accordance with one of the disclosed subject matter Various aspects, like multiple reflections of Fig. 37 or using separate beams to fill different spatial portions of a void; Figure 9 is a schematic representation of useful input coupling for each of the five aspects of an embodiment according to the disclosed subject matter; 10 is a schematic illustration of useful input couplings in accordance with various aspects of an embodiment of the disclosed subject matter;

第11圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之輸入耦合; 10 第12圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之輸入耦合; 第13圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之輸入耦合; 第14圖示意顯示根據所揭示之主旨之一實施例之各個 15 態樣有用之輸入耦合; 第15圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之一輸入耦合機構之一實施例態樣之頂視圖; 第16圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之第15圖之輸入耦合機構之側視圖; 20 第17圖示意顯示根據所揭示之主旨之一實施例之各個 態樣有用之輸入耦合; 第18圖以剖面圖示意顯示根據所揭示之主旨之一實施 例之各個態樣,一種正交注入播種機構之一實施例之各個 態樣,Figure 11 is a schematic illustration of useful input couplings in accordance with various aspects of an embodiment of the disclosed subject matter; 10 Figure 12 is a schematic illustration of useful input couplings in accordance with various aspects of an embodiment of the disclosed subject matter; Figure 13 is a schematic illustration of useful input couplings in accordance with various aspects of one embodiment of the disclosed subject matter; Figure 14 is a schematic illustration of useful input couplings for each of the 15 aspects in accordance with one embodiment of the disclosed subject matter; The figure shows a top view of one embodiment of an input coupling mechanism useful in accordance with various aspects of an embodiment of the disclosed subject matter; Figure 16 is a schematic illustration of each of the embodiments in accordance with one of the disclosed subject matter. A side view of the input coupling mechanism of Fig. 15; 20 Fig. 17 is a view schematically showing useful input coupling according to various aspects of an embodiment of the disclosed subject matter; Fig. 18 is a schematic sectional view showing Various aspects of one embodiment of the disclosed subject matter, an aspect of an embodiment of an orthogonal injection seeding mechanism,

190 第19圖以剖面圖示意顯示根據所揭示之主旨之一實施 例之各個態樣,-種正交注入播種機構之一實施例之各個 態樣; 第20圖以剖面圖示意顯示根據所揭示之主旨之—實施 例之各個態樣’ 一種正交注入播種機構之一實施例之各個 態樣; 第21圖以剖面圖示意顯示根據所揭示之主旨之—實施 例之各個態樣,一種正交注入播種機構之-實施例之各個 態樣; 1〇 第22圖以剖面圖示意顯示根據所揭示之主旨之一實施 例之各個態#,-種正交注入_機構之一實施例之各個 態樣; 第23圖以部分切除透視圖部分示意顯示根據所揭示之 主旨之-實施例之各個祕,含有光學元件於雷射腔中之 一雷射腔之延伸; 第24圖顯示根據所揭示之主旨之一實施例之各個態 樣,於-環形功率放大器中之正向能和反向能之測量值; 第25圖顯示根據所揭示之主旨之—實施例之各個態 樣,於一環形功率放大器中之正向能和反向能之測量值; 20 第26圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣,一種]^0?0之一時序與控制系統; 第2 7圖顯示根據所揭示之主旨之一實施例之各個態 樣,具有MO輸出脈衝能變化之一種環形功率振盪器之飽和 度; 1324423 第28圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之一種雷射控制系統; 第29圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之一種雷射控制系統; 5 第30圖示意顯示根據所揭示之主旨之一實施例之各個 態樣之一種種子注入機構及光束擴幅器; 第31圖示意顯示根據所揭示之主旨之一實施例之各個 態樣之相干性破壞器; 第32圖示意顯示根據所揭示之主旨之—實施例之各個 10態樣之相干性破壞器; 第33圖部分示意而部分以方塊圖形式顯示根據所揭示 之主旨之-實施例之各個態樣,一種相干性破壞體系之各 元件之貫例以及該體系之各態樣之結果實例; 第34圖顯示根據所揭示之主旨之—實施例之各個態 15樣,各個E-0偏向器電壓之相對散斑強度,相對於種子雷射 中E-〇與脈衝產生間之相對時序; 第35圖顯示根據所揭示之主旨之—實施例之各個態樣 之指向位移相對於E-0電壓; 2〇 第36圖顯示根據所揭示之主旨之一實施例之各個態 20樣’ E,0偏向電壓時序與種子雷射脈衝頻譜之實例;、 %第37圏示意顯示根據所揭示之主旨之一實施例之各個 來自於光束反折對光束相干性造成的影響; ,第邛圖顯示根據所揭示之主旨之—實施例之各個態 光束掃'拂/塗抹相干性造成的影響; 192 1324423 第3 9圖示意以卡通方式顯示多個相干性破壞體系之效 應; 第40圖示意顯示根據所揭示之主旨之一實施例之各個 態樣之一種相干性減少體系; 第41圖顯示模擬光束脈衝翻轉之結果; 第42圖示意且以部分方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種具有發散控制之一光束組 合器;190 FIG. 19 is a cross-sectional view schematically showing various aspects of an embodiment of an orthogonal injection seeding mechanism in accordance with an embodiment of one of the disclosed subject matter; FIG. 20 is a schematic cross-sectional view showing The disclosed subject matter - various aspects of the embodiments - various aspects of one embodiment of an orthogonal injection seeding mechanism; Figure 21 is a cross-sectional view schematically showing various aspects of the embodiment in accordance with the disclosed subject matter An embodiment of an orthogonal injection seeding mechanism - an embodiment of the embodiment; 1 〇 22 is a cross-sectional view schematically showing each of the states #, one of the orthogonal injection _ mechanisms according to one embodiment of the disclosed subject matter Various aspects of the embodiment; FIG. 23 is a partial cutaway perspective view schematically showing the extension of one of the laser chambers containing the optical element in the laser cavity according to the disclosed subject matter; FIG. Measured values of forward and reverse energy in a toroidal power amplifier in accordance with various aspects of one embodiment of the disclosed subject matter; FIG. 25 shows various aspects of an embodiment in accordance with the disclosed subject matter. Yu Yi Measured values of forward and reverse energy in a toroidal power amplifier; 20 Figure 26 is a schematic and block diagram showing various aspects of an embodiment in accordance with the disclosed subject matter, one of ^0?0 Sequence and control system; Figure 27 shows the saturation of a ring power oscillator having a change in MO output pulse energy in accordance with various aspects of an embodiment of the disclosed subject matter; 1324423 Figure 28 is a schematic and block diagram Forms display a laser control system in accordance with various aspects of an embodiment of the disclosed subject matter; FIG. 29 is a schematic, block diagrammatic view of a laser in accordance with various aspects of an embodiment of the disclosed subject matter Control System; 5 Figure 30 is a schematic illustration of a seed injection mechanism and beam expander in accordance with various aspects of an embodiment of the disclosed subject matter; Figure 31 is a schematic illustration of an embodiment in accordance with one or more embodiments of the disclosed subject matter Coherence breakers of various aspects; Figure 32 is a schematic diagram showing the coherence destroyers of the respective ten aspects according to the disclosed subject matter; Figure 33 is partially schematic and partially shown in block diagram form In accordance with various aspects of the disclosed subject matter, examples of various elements of a coherence disruption system and examples of results of various aspects of the system; FIG. 34 shows an embodiment in accordance with the disclosed subject matter. 15 states, the relative speckle intensity of each E-0 deflector voltage, relative to the relative timing between E-〇 and pulse generation in the seed laser; Figure 35 shows the various embodiments according to the disclosed subject matter. The directional displacement of the aspect is relative to the E-0 voltage; 2 〇 36 shows an example of the 'E, 0 bias voltage timing and the seed laser pulse spectrum' of each state according to an embodiment of the disclosed subject matter; Figure 37 is a schematic representation of the effects of beam refraction on the coherence of the beam in accordance with one embodiment of the disclosed subject matter; the second diagram shows the beam sweeping of the various states in accordance with the disclosed subject matter. / smear the effect of coherence; 192 1324423 Figure 39 shows the effect of displaying multiple coherence failure systems in a cartoon manner; Figure 40 is a schematic representation of the various states according to one embodiment of the disclosed subject matter a coherence reduction system; FIG. 41 shows the result of the analog beam pulse inversion; FIG. 42 is a schematic and partial block diagram showing various aspects of an embodiment according to the disclosed subject matter, one having divergence control Beam combiner

第43圖顯示根據所揭示之主旨之一實施例之各個態 10 樣,隨著時間之經過模擬E-0供應電壓相對於種子脈衝強度 頻譜; 第44圖顯示根據所揭示之主旨之一實施例之各個態 樣,隨著時間之經過測試E-0供應電壓相對於種子脈衝強度 頻譜; 15 第45圖顯示根據所揭示之主旨之一實施例之各個態樣 之E-0電池驅動電路;Figure 43 shows various states in accordance with an embodiment of the disclosed subject matter, simulating an E-0 supply voltage versus seed pulse intensity spectrum over time; Figure 44 shows an embodiment in accordance with the disclosed subject matter. In each of the aspects, the E-0 supply voltage is tested over time with respect to the seed pulse intensity spectrum; 15 Figure 45 shows an E-0 battery drive circuit in accordance with various aspects of an embodiment of the disclosed subject matter;

第46圖顯示根據所揭示之主旨之一實施例之各個態樣 之範例側視結果; 第47圖示意且以方塊圖形式顯示根據所揭示之主旨之 20 一實施例之各個態樣,一種使用DUV雷射光之寬頻光源及 雷射表面處理糸統, 第48圖示意顯示根據所揭示之主旨之一實施例之各個 態樣之相干性破壞器光學延遲光路; 第4 9圖示意顯示根據所揭示之主旨之一實施例之各個 193 1324423 態樣之相干性破壞器光學延遲光路; 第50圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之微影術工具; 第51圖示意且以方塊圖形式顯示根據所揭示之主旨之 5 一實施例之各個態樣之微影術工具; 第52圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之雷射微影術工具;Figure 46 shows an exemplary side view of various aspects of an embodiment in accordance with one of the disclosed subject matter; Figure 47 is a schematic and block diagram showing various aspects of an embodiment in accordance with the disclosed subject matter, a A broadband light source and a laser surface treatment system using DUV laser light, and Fig. 48 is a view schematically showing an optical retardation optical path of a coherence destroyer according to various aspects of an embodiment of the disclosed subject matter; A coherent disrupter optical delay optical path in accordance with an embodiment of one of the disclosed subject matter, 193 1324423; FIG. 50 is a schematic and block diagram showing various aspects of an embodiment in accordance with one of the disclosed subject matter Fig. 51 is a block diagram showing, in block diagram form, a lithography tool according to various aspects of the disclosed subject matter; Fig. 52 is a schematic and block diagram showing a laser lithography tool of various aspects of one of the embodiments;

第53圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之雷射微影術工具; 10 第54圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之極高平均功率雷射光源; 第55圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之極高平均功率雷射光源; 第56圖示意且以方塊圖形式顯示根據所揭示之主旨之 15 一實施例之各個態樣之極高平均功率雷射光源之一實例; 第57圖部分示意且部分以方塊圖形式顯示根據所揭示 之主旨之一實施例之各個態樣之一種浸沒式雷射光刻術系 統, 第58圖示意且以方塊圖形式顯示根據所揭示之主旨之 20 一實施例之各個態樣之一固態種子雷射至氣體放電放大器 雷射系統; 第59圖以方塊圖形式顯示根據所揭示之主旨之一實施 例之各個態樣之一種固態種子雷射/放大器雷射系統, 第60圖示意且以方塊圖形式顯示根據所揭示之主旨之Figure 53 is a schematic and block diagram showing a laser lithography tool in accordance with an embodiment of one of the disclosed subject matter; 10 Figure 54 is a schematic and block diagram showing the subject matter disclosed An extremely high average power laser source of various aspects of an embodiment; FIG. 55 is a block diagram showing, in block diagram form, a very high average power laser source in accordance with various aspects of an embodiment of the disclosed subject matter; Figure 56 is a schematic and block diagram showing an example of a very high average power laser source in accordance with various aspects of the disclosed subject matter; Figure 57 is partially schematic and partially shown in block diagram form. A submerged laser lithography system in accordance with various aspects of an embodiment of the present invention, FIG. 58 is a schematic and block diagram showing one of the various aspects of a solid seed according to one embodiment of the disclosed subject matter. Laser-to-gas discharge amplifier laser system; Figure 59 is a block diagram showing a solid-state seed laser/amplifier laser system in accordance with various aspects of an embodiment of the disclosed subject matter, Figure 60 shows schematically and in block diagram form according to the disclosed subject matter.

194 1324423 一實施例之各個態樣,一種子雷射之輸出轉換,例如使用 一頻率轉換器連同一分光鏡轉換,接著為相干性破壞; 第61圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之第60圖之實施例之一個版本; 5 第62圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種注入播種DUV氣體放電主 振盪器/放大器增益媒質雷射系統固態主振盪器; 第63圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種注入播種DUV氣體放電主 10 振盪器/放大器增益媒質雷射系統固態主振盪器; 第64圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種注入播種DUV氣體放電主 振盪器/放大器增益媒質雷射系統固態主振盪器; 第65圖示意且部分以方塊圖形式顯示根據所揭示之主 15 旨之一實施例之各個態樣,一種注入播種DUV氣體放電主 振盪器/放大器增益媒質雷射系統固態主振盪器; 第66圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種極高功率固態種子窜射及 增益放大器雷射系統; 20 第67圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種再生/循環功率增益振盪器 功率放大級; 第6 8圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種固態種子雷射/增益放大器 195 雷射系統; 第69圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種固態種子雷射/增益放大器 雷射系統; 5 第70圖顯示根據所揭示之主旨之一實施例之各個態樣 之得自雷射系統之規度化輸出脈衝形狀; 第71圖示意顯示根據所揭示之主旨之一實施例之各個 態樣之E-0電池雷射操控輸入電壓; 第72圖以方塊圖形式示意顯示根據所揭示之主旨之— 10 實施例之各個態樣之一種雷射操控系統; 第73圖示意顯示根據所揭示之主旨之一實施例之各個 態樣之E-0電池雷射操控電壓輸入信號; 第74圖顯示根據所揭示之主旨之一實施例之各個態樣 之相干性破壞測試結果之實例; 15 第75圖顯示根據所揭示之主旨之一實施例之各個態樣 之相干性破壞測試結果之實例; 第76圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種具有約193 nm輸出光之固 態種子雷射; 2〇 第77圖示意且部分以方塊圖形式顯示根據所揭示之主 旨之一實施例之各個態樣,一種具有約193 nm輸出光之固 態種子雷射; 第78圖顯示各種頻率向上轉換體系; 第79圖示意且以方塊圖形式顯示根據所揭示之主旨之 196 1324423 一實施例之各個態樣之一種雷射系統; 第80圖示意且以方塊圖形式顯示根據所揭示之主旨之 一實施例之各個態樣之一種雷射系統; 第81A-C圖以分解形式顯示根據所揭示之主旨之一實 5施例之各個態樣,一種種子雷射放大增益媒質之射線路徑 之透視及部分示意圖; 第82A及82B圖以透視圖部分示意顯示第$ 1 a_c圖之部 分射線路徑之頂視圖及側視圖; 第83A圖顯示第81A-C圖及第82A-B圖之部分中繼光學 10 元件之透視部分示意圖; 第83B圖顯示第81A-C圖、第82A-B圖及第83A圖之光 束擴幅器之側視圖細節; 第84A圖及第84B圖示意顯示根據所揭示之主旨之一 實施例之各個態樣,一種光束空間平移/扇出/唧伯(chi卬)機 15 構之頂視圖及側視圖; 第85圖為光束位移至偏移角之圖表;以及 第86圖為示意顯示根據所揭示之主旨之—實施例之各 個態樣具有一光束延遲光路之一種光束翻轉機構。 【主要元件符號說明】 20…主振盪器功率放大器 (ΜΟΡΑ)雷射系統 22…主振盪器(MO)、ΜΟ腔、振 盪器種子雷射腔、種子雷射 腔 24…放大器增益媒質雷射腔、放 大器模組雷射腔 26…線窄化模組(LNM) 27…種子雷射窗 28…輸出耦合器、Μ〇腔後窗 197 1324423 29.. .LNM 孔口 30.. ·光束擴幅器 32.··第一擴幅稜鏡 40…中繼光學元件 42…線中心(中心波長)分析模 組(LAM) 44.. .轉向鏡 44a-b…轉向鏡 45.··轉向鏡 46.. .轉向鏡 48…MO能量監視器 62、62’、62’’·..ΜΟ輸出、輸入 光束、輸出光束 62a··.輸出光束 70…光束返回|§/反向器光學元 件、光束反向器 71…光束反向器孔口 72…光路、光束 74…光束、分光鏡 74a-b...光束 76…第一分光鏡 78…第二分光鏡 82a、860A…脈衝 84…光束擴幅器 86.. .脈衝延伸器、〇puS 88…延遲光路 90&quot;.光延遲ling鏡、微影術工具 92…照明器、系統孔口 94…腔輸入/輸出窗、阻罩/標線 車、晶圓固定平台 96…快門 98…快門分光鏡 100.. .雷射系統輸出光束、輪出 雷射光脈衝光束 110…系統 130…水平大小選擇孔口 140.··入射窗與光束擴幅殼體、 鼻部 142…光束擴幅器/分散器 142b...棱鏡 144…增益媒質腔、放大級 '環 形功率放大級 146、146a-b·.·第一光束擴鴨與 分散稜鏡 146a…第一擴幅/分散稜鏡 146b·.·第一擴幅/分散棱鏡 148…第二光束擴幅與分散複 鏡、第三稜鏡194 1324423 In various aspects of an embodiment, an output conversion of a sub-laser, for example using a frequency converter coupled to the same beam splitter, followed by coherence destruction; Figure 61 is schematically illustrated and shown in block diagram form according to the disclosure One version of the embodiment of Fig. 60 of various aspects of an embodiment; 5 Fig. 62 is a schematic and partial block diagram showing various aspects of an embodiment according to the disclosed subject matter, an injection Seeding DUV gas discharge main oscillator/amplifier gain medium laser system solid state main oscillator; Fig. 63 is a schematic and partial block diagram showing various aspects of an embodiment according to one of the disclosed subject matter, an implanted DUV gas Discharge main 10 oscillator/amplifier gain medium laser system solid state main oscillator; Fig. 64 is a schematic and partial block diagram showing various aspects of an embodiment of the disclosed subject matter, an implanted DUV gas discharge main Oscillator/Amplifier Gain Medium Laser System Solid State Main Oscillator; Figure 65 is a schematic and partial block diagram showing the main 15 according to the disclosure Various aspects of an embodiment, an implanted seeded DUV gas discharge main oscillator/amplifier gain medium laser system solid state main oscillator; Figure 66 is a schematic and partial block diagram showing implementation in accordance with one of the disclosed g Various aspects of an example, a very high power solid state seed beam and gain amplifier laser system; 20 Figure 67 is a schematic and partial block diagram showing various aspects of an embodiment in accordance with the disclosed subject matter, a regeneration /cycle power gain oscillator power amplification stage; Figure 68 is a schematic and partial block diagram showing various aspects of an embodiment of the disclosed subject matter, a solid seed laser/gain amplifier 195 laser system; Figure 69 is a schematic and partial block diagram showing various aspects of an embodiment of the disclosed subject matter, a solid seed laser/gain amplifier laser system; 5 Figure 70 shows one of the disclosed Various aspects of the embodiment result from the regularized output pulse shape of the laser system; Figure 71 is a schematic representation of each of the embodiments in accordance with the disclosed subject matter Aspect E-0 battery laser steered input voltage; Figure 72 is a block diagram showing a laser steering system in accordance with various aspects of the disclosed subject matter; Figure 73 is a schematic representation of E-0 battery laser-operated voltage input signal of various aspects of one embodiment of the disclosed subject matter; Figure 74 shows an example of coherence-damage test results for various aspects of an embodiment in accordance with one of the disclosed subject matter; 15 Figure 75 shows an example of coherence failure test results in accordance with various aspects of one embodiment of the disclosed subject matter; Figure 76 is a schematic and partial block diagram showing each of the embodiments in accordance with one of the disclosed subject matter. In the aspect, a solid-state seed laser having an output light of about 193 nm; FIG. 77 is a schematic and partial block diagram showing various aspects of an embodiment according to the disclosed subject matter, one having an output of about 193 nm Solid-state seed laser of light; Figure 78 shows various frequency up-conversion systems; Figure 79 shows schematically and in block diagram form each of the embodiments according to the disclosed subject matter 196 1324423 A laser system of the aspect; FIG. 80 is a schematic and block diagram showing a laser system in accordance with various aspects of an embodiment of the disclosed subject matter; and FIGS. 81A-C are shown in exploded form. The main purpose of the five embodiments is a perspective and partial schematic diagram of a ray path of a seed laser amplifying gain medium; the 82A and 82B diagrams partially show a partial ray path of the $1 a_c diagram in a perspective view. Top view and side view; Fig. 83A shows a perspective view of a portion of the relay optical 10 element of Figs. 81A-C and 82A-B; Fig. 83B shows Fig. 81A-C, Fig. 82A-B and Side view details of the beam expander of Figure 83A; Figures 84A and 84B show various aspects of an embodiment of the disclosed subject matter, a beam spatial translation/fanout/chi Top view and side view of machine 15; Fig. 85 is a diagram of beam displacement to offset angle; and Fig. 86 is a schematic diagram showing one of the embodiments of the embodiment according to the disclosed subject matter having a beam delay optical path Beam flipping mechanism. [Main component symbol description] 20... main oscillator power amplifier (ΜΟΡΑ) laser system 22... main oscillator (MO), cavity, oscillator seed laser cavity, seed laser cavity 24... amplifier gain medium laser cavity Amplifier module laser cavity 26...line narrowing module (LNM) 27...seed laser window 28...output coupler, cavity rear window 197 1324423 29.. .LNM orifice 30.. ·beam expansion 32. First expansion 稜鏡 40... Relay optical element 42... Line center (center wavelength) analysis module (LAM) 44.. Turning mirror 44a-b... Turning mirror 45.··· turning mirror 46 .. . Turning mirror 48...MO energy monitor 62, 62', 62''·..ΜΟ output, input beam, output beam 62a··. output beam 70...beam return|§/reverse optical element, beam Inverter 71...beam inverter aperture 72...light path, beam 74...beam, beam splitter 74a-b...light beam 76...first beam splitter 78...second beam splitter 82a,860A...pulse 84...beam spread Amplifier 86.. .Pulse extender, 〇puS 88...delay optical path 90&quot;.light delay ling mirror, lithography tool 92...illuminator, system aperture 9 4...cavity input/output window, mask/line car, wafer fixed platform 96...shutter 98...shutter beam splitter 100.. laser system output beam, wheeled laser beam 110...system 130... horizontal size Select aperture 140.··incident window and beam expansion housing, nose 142...beam expander/disperser 142b...prism 144...gain medium cavity,amplifier stage 'ring power amplifier stage 146, 146a-b ···The first beam expansion and dispersion 稜鏡146a...the first expansion/dispersion 稜鏡146b···the first expansion/dispersion prism 148...the second beam expansion and dispersion reversal, the third 稜鏡

198 1324423 150…入射窗與光束擴幅殼體、 鼻部、腔延伸部 160.&quot;注入播種機構、種子注入 機構、輸入/輸出耦合器 160a.··相干性破壞機構 162.. .部分反射鏡、〇c、輸出輕 合器、部分反射輸入 162a...輸入光束 164…Rmax、Rmax鏡、最大反 射鏡 164a…部分反射鏡 166a…共焦鏡 168…放大級腔窗、腔右窗 170··.光束擴幅與分散光學元件 172.··光束擴幅與分散棱鏡 174.··光束擴幅與分散棱鏡 180.. .放大級 190.. .擋板 192…擋板 194·..則輸入/輪出窗、放大級腔 窗 196…後輸入/輸出窗 200…部分反射輪入耦合振盪器 放大級、功率再生放大器 202.. .腔 204…部分反射光學元件、入D 部分反射光學元件 206…部分反射光學元件、輸出 搞合1§部分反射光學元件 210…腔 212…偏振分光鏡 214…四分之一波長板 216…輸出耦合器 218…後最大反射鏡 230···切換輸入/輸出耗合器輕 合振盪器 232…腔 236.. .Q交換器 238…窗 240··.最大反射鏡 243.. .最大反射後鏡 250.. .多通再生裝形振盈器雷射 糸統 252.. .放大器腔 254…種子雷射 260…輸入/輸出耦合器、注入播 種機構 262…輸入/輸出耦合器分光198 1324423 150... Incident window and beam expansion housing, nose, cavity extension 160. &quot;Injection seeding mechanism, seed injection mechanism, input/output coupler 160a.··Coherence destruction mechanism 162.. Partial reflection Mirror, 〇c, output combiner, partially reflected input 162a... input beam 164...Rmax, Rmax mirror, maximum mirror 164a...partial mirror 166a...confocal mirror 168...amplified stage window, cavity right window 170 ··· Beam expanding and dispersing optical element 172.·· Beam expanding and dispersing prism 174··· Beam expanding and dispersing prism 180.. Amplifying stage 190..Baffle 192...Baffle 194·.. Then the input/rounding window, the amplification stage window 196...the rear input/output window 200...the partial reflection wheel-in coupling oscillator amplification stage, the power regeneration amplifier 202.. cavity 204...partial reflection optical element,into D part reflection optics Element 206...partially reflective optical element, output compliant 1 § partially reflective optical element 210...cavity 212...polarizing beam splitter 214...quarter wave plate 216...output coupler 218...after maximum mirror 230···switching input /Output Consumulator Lightweight Oscillator 23 2...cavity 236.. .Q exchanger 238...window 240··.maximum mirror 243.. maximal reflection rear mirror 250.. multi-pass regenerative shape sensor laser system 252.. amplifier cavity 254...seed laser 260...input/output coupler, inject seeding mechanism 262...input/output coupler splitting

199 1324423 鏡、部分反射鏡 264…最大反射光學元件 270…光束返回器/反向器光學 元件 272··.第一最大反射鏡 274…第二最大反射鏡 276…光束 278…光束 280…多通再生環形功率放大級 雷射系統 282…腔、功率放大級腔 284…種子雷射 286··.輸入通過光束、種子雷射 288…輸出通過光束、種子雷射 輸出脈衝光束 290…放大器增益媒質部 292…環形功率放大級腔 294.. .氣體放電電極 296.. .輸入腔區段 298···光束反向器腔區段 300.. .多通再生環形振盪器雷射 系統、種子注入耦合機構 302···分光鏡/輸入-輸出轉合器 304.. .最大反射鏡 310…最大後腔反射鏡、光束反 向器 312…輸入窗 320.. .0.uS效應腔、光束擴幅器 322·..偏振分光鏡、稜鏡 324··.後腔反射鏡、稜鏡 326&quot;·四分之一波長板 328··.輸出耦合器 330···系統、擋板 334…種子雷射 336…偏振分光鏡 338.. .半波長板199 1324423 Mirror, partial mirror 264...maximum reflective optical element 270...beam return/reverse optical element 272··.first largest mirror 274...second largest mirror 276...beam 278...beam 280...multiple Regeneration ring power amplifier stage laser system 282... cavity, power amplifier stage 284...seed laser 286··. input through beam, seed laser 288... output through beam, seed laser output pulse beam 290... amplifier gain medium 292...ring power amplifier stage 294.. gas discharge electrode 296.. input chamber section 298···beam inverter chamber section 300.. multi-pass regenerative ring oscillator laser system, seed injection coupling Mechanism 302···beam splitter/input-output combiner 304.. maximal mirror 310...maximum back cavity mirror, beam inverter 312...input window 320.. .0.uS effect cavity, beam expansion 322·..polarizing beam splitter, 稜鏡324··.back cavity mirror, 稜鏡326&quot;·quarter wave plate 328··.output coupler 330···system, baffle 334...seed mine Shoot 336...polarizing beam splitter 338.. .half wave plate

340.. ·輸出麵合器、光束、第一 方向循環振盪光路、度量衡 單元、頻寬分析模組、BAM 342…第二方向循環振盪光路 350…光學元件 352··.外輸入/輸出介面 354···總内反射面 356…内輸入/輸出介面 360…種子注入光學元件 360a_.·相干性破壞體系 362…外輸入/輸出介面 364··.總内反射面 200 (S ) 1324423 366.. .内輸入/輸出介面 370…光束返回器/反向器光學 元件 370a…振盪器/放大器雷射 372…輸入/輸出介面 372a··.準分子種子雷射、種子雷 射 374.. .第一總内反射面 374a…雷射系統輸出光脈衝光 束發散 376…第二總内反射面 376a、378a···相干性破壞器、迷 你OPuS、第一迷你0PUS 376··.迷你OPuS、延遲光路 378…第三總内反射面 378a...發散代表圖 380···光束返回器/反向器光學 元件、迷你OPuS、第二延 遲光路340.. Output combiner, beam, first direction cyclic oscillation optical path, metrology unit, bandwidth analysis module, BAM 342... second direction cyclic oscillation optical path 350... optical element 352·. external input/output interface 354 ··· Total internal reflection surface 356...Input/output interface 360...Seed injection optical element 360a_.·Coherence destruction system 362...External input/output interface 364··. Total internal reflection surface 200 (S ) 1324423 366.. Internal input/output interface 370...beam return/reverse optical element 370a...oscillator/amplifier laser 372...input/output interface 372a·..excimer seed laser, seed laser 374.. first Total internal reflection surface 374a... Laser system output light pulse beam divergence 376... Second total internal reflection surface 376a, 378a···Coherence destroyer, mini OPUS, first mini 0PUS 376·. Mini OPUS, delayed optical path 378 ...the third total internal reflection surface 378a...diffusion representative diagram 380···beam return/reverse optical element, mini OPUS, second delayed optical path

380a...第二迷你 OPuS 384.. .第一總内反射面 386.. .第二總内反射面 390…光束返回器/反向器光學 元件 390a…發散代表圖 392a...EO偏向器、脈衝操控器 394…第一總内反射面 394a...放大器部分、放大增益 級、振盪器放大器雷射、放 大器增益媒質 396…第二總内反射面 396a...全反射後腔鏡 398a…輸入/輸出耦合器 400…環形功率放大級雷射系統 410…輸出耦合器、發散代表圖 410a…功率振盪器 412…後腔鏡 412a…延遲光路 414a…第一分光鏡 420...Brewster模形件 420a…延遲光路 422a...第二分光鏡 424…振盪共振腔、電極 424a···發散代表圖 430…轉向鏡最大反射鏡 442…P0腔 450…極高功率雷射系統、環形 功率放大級雷射系統 201 &lt; S ) 1324423380a...second mini OPUS 384... first total internal reflection surface 386.. second total internal reflection surface 390...beam return/reverse optical element 390a...divided representation 392a...EO bias , pulse manipulator 394... first total internal reflection surface 394a... amplifier section, amplification gain stage, oscillator amplifier laser, amplifier gain medium 396... second total internal reflection surface 396a... total reflection back cavity mirror 398a...input/output coupler 400...toroidal power amplifier stage laser system 410...output coupler, divergence representative diagram 410a...power oscillator 412...back cavity mirror 412a...delay light path 414a...first beam splitter 420...Brewster The mold member 420a...the retardation light path 422a...the second beam splitter 424...the oscillation cavity, the electrode 424a···the divergence representative diagram 430...the steering mirror maximum mirror 442...P0 cavity 450...very high power laser system, ring Power amplifier stage laser system 201 &lt; S ) 1324423

452…準分子氣體放電雷射種子 雷射、主振盪器 454…主振盈器雷射腔 456.·.線窄化模組 458.. .後腔鏡和部分反射輸出耦 合器 470···度量衡模組、線中心分析 模組、LAM 470a...漫射器 472.. .分光鏡 474…MO雷射輸出光脈衝光束 脈衝能監視器 476.. .ASE監視器 480.. .轉向鏡 490…放大器增益媒質部 492.. .環形功率放大級腔 494…腔輸入區段 496…腔光束反射器區段 500.. .種子光束、輸入窗 502、504...光束 506…光學延遲光路 510…部分反射鏡、分光鏡、光 束擴幅器、主光束 512、514、516...鏡、稜鏡 520…楔形件、補償板、共焦光 學系統、4XOPuS、位置補 償板 522.. .第一延遲光路、鏡、共焦 鏡 524…鏡、共焦鏡、第二延遲光 路 525…光束翻轉光學元件、稜鏡 526、526’、528...分光鏡 530…楔形件、補償板、共焦光 學系統、補償器楔形件 532…楔形件、補償板、共焦光 學系統 540…快門 542…分光鏡 550.. .窗殼體 550a…相對標準差曲線 550a’·..相當脈衝曲線 552…外安裝板、殼體板 552a... E-0偏向器電壓曲線 552a’…相當脈衝曲線 554…殼體壁 554a... E-0偏向器電壓曲線 554a’··.相當脈衝曲線 202 (S ; 1324423452...excimer gas discharge laser seed laser, main oscillator 454... main vibrator laser cavity 456.·.line narrowing module 458.. rear cavity mirror and partial reflection output coupler 470··· Weights and Measures Module, Line Center Analysis Module, LAM 470a...Diffuser 472.. Beamsplitter 474...MO Laser Output Light Pulse Beam Pulse Energy Monitor 476.. .ASE Monitor 480.. . 490...Amplifier Gain Medium Section 492.. Annular Power Amplifier Stage 494... Cavity Input Section 496... Cavity Beam Reflector Section 500.. Seed Beam, Input Window 502, 504... Beam 506... Optical Delay Optical Path 510...partial mirror, beam splitter, beam expander, main beam 512, 514, 516... mirror, 稜鏡520... wedge, compensator, confocal optical system, 4XOPuS, position compensator 522.. First delay optical path, mirror, confocal mirror 524...mirror, confocal mirror, second delayed optical path 525...beam reversal optical element, 稜鏡526, 526', 528...beam splitter 530...wedge, compensation plate, Confocal optical system, compensator wedge 532... wedge, compensator, confocal optical system 540... fast 542...beam splitter 550.. window housing 550a...relative standard deviation curve 550a'... equivalent pulse curve 552...outer mounting plate, housing plate 552a... E-0 deflector voltage curve 552a'...equivalent pulse Curve 554...shell wall 554a... E-0 deflector voltage curve 554a'... equivalent pulse curve 202 (S; 1324423

556.. .窗安裝板 560a&quot;.指向偏移相對於E-0電 壓曲線 562、564、566.··曲線 562a-566a...脈衝 568…雷射腔端安裝板、中部 568a.„中部 570.. .雷射端板 572.. .孔口 574…安裝螺栓 580.. .致動器、脈衝 580a...輸入光束 580a-588a···脈衝 582…脈衝角隅、致動器軸 582a…光束角隅、角隅 584、586、588…脈衝 584a…第一子脈衝 586a…第二子脈衝 588a…第三子脈衝 590.. .致動器、作圖 592…作圖、控制信號線 594…正交種子注入機構、曲線 596…曲線、控制信號線 598…曲線 600…控制器、曲線、光束組合 益系統 600a...光束組合器系統 602…第一放大器增益媒質部 602、604、606…曲線 602a-606a...曲線 602a…第一放大器增益媒質部 604…第二放大器增益媒質部 604a…第二放大器增益媒質部 608.. .光束擴幅器 610…曲線、稜鏡 610a、612a·.·稜鏡 612…曲線、稜鏡 620…能量/劑量控制系統、雷射 系統控制器、轉向鏡 620a…轉向鏡 622.. .時序與能量控制模組、種 子雷射、第一雷射系統輸出 光脈衝光束 622a…第一雷射系統輸出光脈 衝光束 624…固態脈衝式功率系統 (SSPPM)、線窄化模組、第 二轉向鏡 '· S ) 203 624a…第二轉向鏡 626…種子雷射輸出光束 630·.·分光鏡、轉向鏡 630a…轉向鏡 632…度量衡單元、度量衡模 組、脈衝光束 632a…第二雷射系統輸出光脈 衝光束556.. Window mounting plate 560a &quot; pointing offset relative to E-0 voltage curve 562, 564, 566.·· curve 562a-566a... pulse 568... laser cavity end mounting plate, middle 568a. 570.. .Laser end plate 572.. .Aperture 574...mounting bolt 580.. actuator, pulse 580a...input beam 580a-588a···pulse 582...pulse angle 隅, actuator shaft 582a...beam angle 隅, corner 584, 586, 588...pulse 584a...first sub-pulse 586a...second sub-pulse 588a...third sub-pulse 590.. actuator, drawing 592...graphing, control signal Line 594...orthogonal seed injection mechanism, curve 596...curve, control signal line 598...curve 600...controller, curve, beam combination benefit system 600a...beam combiner system 602...first amplifier gain medium portion 602,604 606...curves 602a-606a...curve 602a...first amplifier gain medium portion 604...second amplifier gain medium portion 604a...second amplifier gain medium portion 608..beam expander 610...curve, 稜鏡610a , 612a···稜鏡612...curve, 稜鏡620... energy/dose control system, laser system control Steering mirror 620a... steering mirror 622.. timing and energy control module, seed laser, first laser system output light pulse beam 622a... first laser system output light pulse beam 624... solid state pulsed power system (SSPPM), line narrowing module, second turning mirror '· S ) 203 624a... second turning mirror 626... seed laser output beam 630 ·. beam splitter, turning mirror 630a... turning mirror 632... weight measuring unit, Weight measurement module, pulse beam 632a...second laser system output light pulse beam

634…最大反射鏡、第二轉向鏡 634a…第二轉向鏡、光束 636…種子注入機構 638…部分反射光學元件 640…最大反射光學元件、第一 脈衝延伸器、〇PuS 640a&quot;.第一脈衝延伸器、第一 OPuS 642…度量衡單元、分光鏡 642a...分光鏡634...maximum mirror, second turning mirror 634a...second turning mirror, beam 636...seed injection mechanism 638...partial reflective optical element 640...maximum reflective optical element, first pulse extender, 〇PuS 640a&quot;.first pulse Extender, first OPUS 642...metric unit, beam splitter 642a...beam splitter

644.··第二脈衝延伸器、〇puS 644a··.第二脈衝延伸器、第二 OPuS 646...分光鏡 646a…分光鏡 腔、分光鏡 650a...分光鏡 652…注入光路、聚焦透鏡 652a··.聚焦透鏡 654·..返回反向光路、發散檢測 器、度量衡單元 654a…發散檢測器 656.. .度量衡單元、回授控制信 號 656a.··回授控制信號 658…雷射系統輸出光脈衝光束 660.. .控制器 662.&quot;處理器、脈衝延伸器 664.. .分光鏡 670.. .漫射器 670a...漫射器 680.. .雷射系統、散斑圖案 682…種子雷射 684…頻率轉換器 700…極高功率固態種子浸沒式 光刻術雷射光束源 702···固態種子雷射 704.··格式化光學元件 650...環形功率放大級、雷射 706...透鏡 1324423 708.. .透鏡 712.. .X轴光電(E-O)操控機構 714.. .y軸光電(E-Ο)操控機構 720.. .分光鏡 722.. .分光鏡 724、726、728···轉向鏡、摺疊 鏡 730…第一功率振盪器、第二放 大器增益媒質 732…第二功率振盈器、功率放 大級腔 734…輸入搞合器/後腔鏡 736.. .前腔鏡 740.. .光束擴幅器 742、744..·稜鏡 750、752、760、762.·.鏡 764.. .第一放大器增益媒質 766.. .輸出光束 780…種子雷射輸出脈衝側寫 780a...初始種子雷射輪出脈衝 發散側寫 782…脈衝圖案 782a…子脈衝發散側寫 784…對光電塗抹之側寫之影響 784a...發散側寫 850a...平面-平面腔 852a...腔 854a...輸出耗合器 856a...四分之一波長板 858a...偏振輸入耦合器 860a、862a…光束 890.. .輸入光學元件模組 910&quot;.鏡 1000.. .規度化之ΜΟΡΟ強度 1002.. .規度化之單通ΡΑ強度 1004.. .規度化之二通ΡΑ強度 1010.. .巨觀操控脈衝 1012、1014…直流電壓 1016…交流高頻操控電壓 1020…光學切換與塗抹系統 1022…固態種子雷射、雷射 1024…雷射、頻率轉換器、元件 1026…光學切換與塗抹器、分 光鏡/塗抹器 1030…放大器增益媒質 1032…高電壓、放大器增益媒質 1034…AC ' AC光束操控 1036…低電壓時間間隔 205 1324423 1050.. .光束混合器/翻轉器 1052.. .光束 1054.. .分光鏡 1056a-c...鏡 1058.. .縱轴 1060.. .第一緣 1062.. .第二緣 1064.. .起點 1066.. .終點 1070.. .輸出光路、系統 1100a...電路 1104a....E-0電池電容 1110a...阻抗匹配電感器 1120a...N : 1步進升壓變壓器 1122a... DC電源供應耶 1126a...電容器 1130.. .單一電晶體 1130a...單一電晶體、大型電阻 器 1140a...電晶體、開關 1142a...小型電阻器 1200.. .系統 1200’...種子雷射系統 1202.. .Nd:YAG 雷射系統 1204.. .Nd:YAG 雷射系統 1206…頻率轉換器644.··Second pulse extender, 〇puS 644a·.. second pulse extender, second OPUS 646...beam splitter 646a...splitter mirror cavity, beam splitter 650a...beam splitter 652...injected into the optical path, Focusing lens 652a··.focusing lens 654·.. returning reverse optical path, divergence detector, metrology unit 654a... divergence detector 656.. metrology unit, feedback control signal 656a.·· feedback control signal 658... Shooting system output light pulse beam 660.. controller 662. &quot; processor, pulse extender 664.. splitter 670.. diffuser 670a... diffuser 680.. laser system, Speckle pattern 682...seed laser 684...frequency converter 700...very high power solid state seed immersion lithography laser beam source 702···solid seed laser 704.·formatted optical element 650...ring Power amplifier stage, laser 706... lens 1324423 708.. lens 712.. X-axis photoelectric (EO) steering mechanism 714.. y-axis photoelectric (E-Ο) steering mechanism 720.. . .. . Beam splitter 724, 726, 728··· turning mirror, folding mirror 730... first power oscillator, second amplifier gain medium 732... Power oscillator, power amplifier stage 734... input combiner / rear mirror 736.. front lens 740.. . beam expander 742, 744.. · 稜鏡 750, 752, 760, 762. · Mirror 764.. The first amplifier gain medium 766.. Output beam 780... Seed laser output pulse side write 780a... Initial seed laser wheel pulse divergence side write 782... Pulse pattern 782a... Sub-pulse divergence Profile 784...Impact on the side of photo-electric coating 784a...Diverging side 850a...plane-plane cavity 852a...cavity 854a...output occupant 856a...quarter-wave plate 858a...polarization input coupler 860a, 862a...beam 890.. input optical component module 910&quot;.mirror 1000... gauge strength 1001002... singular monotonic strength 1004. .Regularity of the two-way ΡΑ1010.. . Giant control pulse 1012, 1014... DC voltage 1016... AC high frequency control voltage 1020... Optical switching and smearing system 1022... Solid seed laser, laser 1024...Ray Shot, frequency converter, component 1026... optical switching and applicator, beam splitter/applicator 1030...amplifier gain medium 1032...high power , Amplifier Gain Media 1034...AC 'AC Beam Manipulation 1036...Low Voltage Time Interval 205 1324423 1050.. Beam Mixer/Fliper 1052.. Beam 1054.. . Beam Splitter 1056a-c...Mirror 1058.. Vertical axis 1060.. . First edge 1062.. . Second edge 1064.. Start point 1066.. End point 1070.. Output optical path, system 1100a... Circuit 1104a....E-0 Battery capacitance 1110a... impedance matching inductor 1120a...N: 1 step-up transformer 1122a... DC power supply yeah 1126a...capacitor 1130.. single transistor 1130a...single transistor, large resistor 1140a...transistor, switch 1142a...small resistor 1200..system 1200'...seed laser system 1202.. .Nd:YAG laser system 1204.. .Nd:YAG laser system 1206...frequency converter

1208.. .頻率倍增器、SFG 1210.. .第三諧波產生器 1212…第四諧波產生器 1222.. .纖維雷射 1224.. .後振盪腔鏡 1226.. .前窗1208.. Frequency multiplier, SFG 1210.. Third harmonic generator 1212... Fourth harmonic generator 1222.. Fiber laser 1224.. Rear oscillation mirror 1226.. Front window

1228.. .Q 開關 1252 ' 1254...SFG1228.. .Q switch 1252 ' 1254...SFG

1258.. .5.G 1260.. .脈衝式纖維雷射振盪器 1262…單模CW可調式窄頻二 極體雷射 1272.. .光學系統 1274.. .工作件處理級 1300.. .系統 1302-1306...固態雷射 1308.. .分光鏡 1310、1320、1330...放大雷射系 統 1312-4、1322-4、1332-4...放大 器增益媒質 1350.. .線緣/線寬粗度控制系 206 1324423 統、雷射系統 1352…照明光入口 1352a-c...種子雷射 1356-1366…放大器增益媒質 1370···相干性破壞機構'光束組 合器 1372…影像對比感測器 1374…控制器 1400.. .線緣/線寬粗度控制系統 1454…相干性破壞機構 1460…線緣/線寬粗度控制系統 1462…相干性破壞機構 1520…系統、極南功率輸出雷射 光脈衝光束源 1522、1524、1526、1528...振盈 器/放大器系統 1530.. .主振盪器腔、種子雷射部 1532.·.功率放大器部 1540、1542...光束組合器 1550…種子雷射/振盪器系統、 種子雷射放大器系統 1552…分光鏡 1570…種子雷射/振盪器系統 1572…種子雷射 1574…放大器增益媒質 1580··.浸沒式雷射光刻術系統 1590.. .掃描器 1592…照明器 1594.. .標線片 1596.··晶圓平台 1598.. .晶圓 1602.. .液體源 1604.. .液體排水口 1606.. .液體 1620…固態種子雷射至氣體放 電放大器雷射系統、固態種 子雷射/放大器雷射系統 1622.. .固態脈衝式種子雷射 1624…環形功率放大級、p〇、1258.. .5.G 1260.. Pulsed fiber laser oscillator 1262... Single mode CW adjustable narrowband diode laser 1272.. Optical system 1274.. Workpiece processing level 1300.. . System 1302-1306... solid state laser 1308.. beamsplitters 1310, 1320, 1330...amplified laser systems 1312-4, 1322-4, 1332-4...amplifier gain medium 1350.. Edge / line width control system 206 1324423 system, laser system 1352... illumination light inlet 1352a-c... seed laser 1356-1366... amplifier gain medium 1370 · coherence destruction mechanism 'beam combiner 1372... Image contrast sensor 1374... controller 1400.. rim/line width control system 1454... coherence destruction mechanism 1460... rim/line width control system 1462... coherence destruction mechanism 1520... system, pole South power output laser light pulse beam source 1522, 1524, 1526, 1528... oscillator / amplifier system 1530.. main oscillator cavity, seed laser part 1532.. power amplifier part 1540, 1542... Beam combiner 1550...seed laser/oscillator system, seed laser amplifier system 1552...beam splitter 1570...seed laser/oscillation System 1572...seed laser 1574...amplifier gain medium 1580·.. immersion laser lithography system 1590.. scanner 1592...illuminator 1594.. . reticle 1596.··wafer platform 1598.. Wafer 1602.. Liquid source 1604.. Liquid drain 1606.. Liquid 1620... Solid seed laser to gas discharge amplifier laser system, solid seed laser/amplifier laser system 1622.. Solid state pulse Seed laser 1624... ring power amplifier stage, p〇,

PA 1626…相干性破壞器/頻率倍增 器 1630…頻率倍增器、頻率轉換器 1632.. .相干性破壞器 1640…分光鏡 1642…縱軸相干性破壞器 1644·.·橫軸相干性破壞器 1646…光束組合器PA 1626...Coherence Destructor/Frequency Multiplier 1630...Frequency Multiplier, Frequency Converter 1632..Coherence Destructor 1640...Spectrum Mirror 1642...Longitudinal Coherence Destructor 1644·.·Horizontal Coherence Destructor 1646...beam combiner

207 1324423 1648…放大器增益媒質部 1700…主振盪器 1710…纖維振盪器或放大器 Π12…二極體幫浦、X軸光束操 控光電元件 1714…種子二極體雷射、Y轴光 束操控光電元件 1720…後腔全反射鏡 1722.. .部分反射輸出耦合器 1724…Q開關 1730…第二諧波產生器 1732…頻率加法器 1740…外部調幅器 1750.. .脈衝式種子雷射 1760…主振盪器 1800·.·環形功率放大級振盪器 雷射系統 1802…固態或氣體放電種子振 盪器 1804…功率放大級、振盪腔 1806…輸出光束 1810…功率放大級腔 1812.. .種子注入機構 1814···輸入/輸出耦合器 1816…表大反射鏡、鏡 1820…光束反向器/返回器 1822…第一最大反射鏡 1824.. .第二鏡 1826、1828…振遷光路 1880…固態種子/功率放大器雷 射系統 1882.. .種子雷射 1884…光學介面模組 1886…筒形望遠鏡 1888…功率放大器腔 1890···輸入光學模組 1902-1910.&quot;鏡 1912、1914…光電元件 1930.. .XeF 腔 1930-1936...轉向鏡 1950…固態種子/功率放大級雷 射系統輸出光脈衝光束 1952…固態種子雷射 I960.··輸入耦合模組 1962…偏振分光鏡 1964.. .Rmax 鏡 1966…四分之一波長板 1968…輸入耗合器Rmax鏡 208 1324423 1970、1972...種子光束 1982...輸出耦合器 1984、1986、1994、1996…轉向 鏡 209 (S )207 1324423 1648...Amplifier gain medium part 1700...main oscillator 1710...fiber oscillator or amplifier Π12...diode pump, X-axis beam steering optoelectronic component 1714...seed diode laser, y-axis beam steering optoelectronic component 1720 ...back cavity total reflection mirror 1722..partial reflection output coupler 1724...Q switch 1730...second harmonic generator 1732...frequency adder 1740...external amplitude modulator 1750..pulse seed laser 1760...main oscillation 1800·.. Ring Power Amplifier Stage Oscillator Laser System 1802... Solid State or Gas Discharge Seed Oscillator 1804... Power Amplifier Stage, Oscillating Cavity 1806... Output Beam 1810... Power Amplifier Stage 1812.. Seed Injection Mechanism 1814· Input/Output Coupler 1816... Table Mirror, Mirror 1820... Beam Inverter/Returner 1822... First Maximum Mirror 1824.. Second Mirror 1826, 1828... Revitalizing Light Path 1880... Solid Seed/ Power Amplifier Laser System 1882.. Seed Laser 1884... Optical Interface Module 1886... Tubular Telescope 1888... Power Amplifier Cavity 1890···Input Optical Module 1902-1910.&quot;Mirror 1912, 1914... Photoelectric components 1930.. .XeF cavity 1930-1936...steering mirror 1950...solid seed/power amplifier stage laser system output light pulse beam 1952...solid seed laser I960.··input coupling module 1962...polarizing beam splitter 1964.. .Rmax Mirror 1966... Quarter Wave Plate 1968... Input Consumulator Rmax 208 1324423 1970, 1972... Seed Beam 1982... Output Coupler 1984, 1986, 1994, 1996... Turning Mirror 209 (S)

Claims (1)

13244231324423 10 15 7月//曰修(更)正本 第95140194號申^案_不¥¥瓦冤-圍修正本 98.09.11. 十、申請專利範圍: 1. 一種線窄化脈衝式準分子或分子氟氣體放電雷射系 統,包含: 產生一包含一雷射輸出脈衝光束之輸出的一種子 雷射振盪器,包含: 一第一氣體放電準分子或分子氟雷射腔; 於一第一振盪器腔内部之一線窄化模組; 一雷射放大級含有一放大增益媒質於一第二氣體 放電準分子或分子氟雷射腔,其接收該種子雷射振盪器 的輸出,且放大該種子雷射振盪器的輸出來形成包含一 雷射輸出脈衝光束之雷射系統輸出,該雷射放大級包 含: 一環形功率放大級,其界定於一部份反射光學元件 及一光束返回器間,其中該環形功率放大級包括一置放 於該部份反射光學元件及該光束返回器間之光束擴幅 器。 2. 如申請專利範圍第1項之系統,其中: 該環形功率放大級包含該部分反射光學元件之一注入 機構,透過該注入機構,該種子雷射振盪器輸出光束被 20 注入環形功率放大級。 3. 如申請專利範圍第1項之系統,進一步包含: 該環形功率放大級包含一領結形回路。 4. 如申請專利範圍第1項之系統,進一步包含: 該環形功率放大級包含一跑馬場形回路。 210 1324423 5. 如申請專利範圍第1項之系統,進一步包含: 該環功率放大級放大該種子雷射振盪器腔之輸出 至21毫焦耳之脈衝能。 6. 如申請專利範圍第2項之系統,進一步包含: 5 該環形功率放大級放大該種子雷射振盪器腔之輸 出至&gt;1毫焦耳之脈衝能。 7. 如申請專利範圍第1項之系統,進一步包含: 該環功率放大級放大該種子雷射振盪器之輸出至 22毫焦耳之脈衝能。 10 8.如申請專利範圍第2項之系統,進一步包含: 該環形功率放大級放大該種子雷射振盪器之輸出 至22毫焦耳之脈衝能。 9. 如申請專利範圍第1項之系統,進一步包含: 該環功率放大級放大該種子雷射振盪器之輸出至 15 25毫焦耳之脈衝能。 10. 如申請專利範圍第2項之系統,進一步包含: 該環形功率放大級放大該種子雷射振盪器之輸出 至25毫焦耳之脈衝能。 11. 如申請專利範圍第1項之系統,進一步包含: 20 該環功率放大級放大該種子雷射振盪器之輸出至 210毫焦耳之脈衝能。 12. 如申請專利範圍第2項之系統,進一步包含: 該環形功率放大級放大該種子雷射振盪器之輸出 至210毫焦耳之脈衝能。 211 1324423 13. 如申請專利範圍第1項之系統,進一步包含: 該環功率放大級放大該種子雷射振盪器之輸出至 之15毫焦耳之脈衝能。 14. 如申請專利範圍第2項之系統,進一步包含: 5 該環形功率放大級放大該種子雷射振盪器之輸出 至215毫焦耳之脈衝能。 15. 如申請專利範圍第1項之系統,進一步包含: 該雷射系統係於至多12 k Η z之輸出脈衝重複率操 作。 10 16.如申請專利範圍第2項之系統,進一步包含: 該雷射系統係於至多12 kHζ之輸出脈衝重複率操 作。 17. 如申請專利範圍第1項之系統,進一步包含: 該雷射系統係於22至S8kHz之輸出脈衝重複率操 15 作。 18. 如申請專利範圍第2項之系統,進一步包含: 該雷射系統係於22至&lt;8kHz之輸出脈衝重複率操 作。 19. 如申請專利範圍第1項之系統,進一步包含: 20 該雷射系統係於24至S6kHz之輸出脈衝重複率操 作。 20. 如申請專利範圍第2項之系統,進一步包含: 該雷射系統係於24至&lt;6kHz之輸出脈衝重複率操 作。 212 1324423 21. —種寬頻脈衝式準分子或分子氟氣體放電雷射系統,包 含: 產生一包含一雷射輸出脈衝光束之輸出的一種子 雷射振盡器,包含: 5 一第一氣體放電準分子或分子氟雷射腔; 一雷射放大級含有一放大增益媒質於一第二氣體 放電準分子或分子氟雷射腔,其接收該種子雷射振盪器 的輸出,且放大該種子雷射振盪器的輸出來形成包含一 雷射輸出脈衝光束之雷射系統輸出,包含: 10 一環形功率放大級,其界定於一部份反射光學元件 及一光束返回器間,其中該環形功率放大級包括一置放 於該部份反射光學元件及該光束返回器間之光束擴幅 器。 22. 如申請專利範圍第21項之系統,其中: 15 該環形功率放大級包含該部分反射光學元件之一 注入機構,透過該注入機構,該種子雷射振盪器輸出光 束被注入環形功率放大級。 23. 如申請專利範圍第21項之系統,進一步包含: 該環形功率放大級包含一領結形回路。 20 24.如申請專利範圍第22項之系統,進一步包含: 該環形功率放大級包含一領結形回路。 25. 如申請專利範圍第21項之系統,進一步包含: 該環形功率放大級包含一跑馬場形回路。 26. 如申請專利範圍第22項之系統,進一步包含: 213 1324423 該環形功率放大級包含一跑馬場形回路。 27.如申請專利範圍第1項之系統,進一步包含: 介於該種子雷射振盪器與放大器增益媒質間之一 相干性破壞機構。 5 28.如申請專利範圍第2項之系統,進一步包含: 介於該種子雷射振盪器與放大器增益媒質間之一 相干性破壞機構。 29. 如申請專利範圍第27項之系統,進一步包含: 該相干性破壞機構包含一光學延遲光路,其具有延 10 遲長度比於該種子雷射振盪器之雷射輸出脈衝光束中 之一脈衝的相干性長度更長。 30. 如申請專利範圍第28項之系統,進一步包含: 該相干性破壞機構包含一光學延遲光路,其具有延 遲長度比於該種子雷射振盪器之雷射輸出脈衝光束中 15 之一脈衝的相干性長度更長。 31. 如申請專利範圍第29項之系統,進一步包含: 該光學延遲光路不會實質上延遲於該種子雷射振 盪器之雷射輸出脈衝光束中之該光束長度。 32. 如申請專利範圍第30項之系統,進一步包含: 20 該光學延遲光路不會實質上延遲於該種子雷射振 盪器之雷射輸出脈衝光束中之該光束長度。 33. 如申請專利範圍第27項之系統,進一步包含: 該相干性破壞機構包含第一長度之一第一光學延 遲光路及第二長度之一第二光學延遲光路,於該第一光 214 予延遲光路及第二光學延遲光路各自之光學延遲係超 越於該種子雷射振盈器之雷射輸出脈衝光束中之一脈 ,-4干丨生長度,但實質上不會增加脈衝長度,以及該 第延遲光路長度與該第二延遲光路長度之差值係超 5 越該脈衝之相干性長度。 34.如申請專利範圍第以項之系統,進一步包含: 該相干性破壞機構包含第一長度之一第一光學延 • ^光路及第二長度之—第二光學延遲光路,於該第-光 子延遲光路及第二光學延遲光路各自之光學延遲係超 1〇 齡該種子雷射振i器之雷射輸出脈衝光束中之一脈 衝^相干性長度,但實質上1會增加脈衝長度,以及該 λ ^遲光路長度與該第二延遲光路長度之差值係超 越該脈衝之相干性長度。 冑線窄化脈衝式準分子或分子氟氣體放電雷射系 15 統,包含: 215 1 種子雷射錄器,其產生-輸出包含-雷射輸出 脈衝光束,包含: 一第—氣體放電準分子或分子氟雷射腔; 於—第一振盪器腔内部之一線窄化模組; 「:射放大級含有一放大增益媒質於一第二氣體 準刀子或分子氟雷射腔,其接收該種子雷射振盡器 的輸出且放大該種子雷射振盈器的輪出來形成包含一 雷射輸出脈衝光束之雷射系統輸出,包含: —環形功率放大級; 1324423 介於該種子雷射振盪器與該環形功率放大級間之 一相干性破壞機構。 36. 如申請專利範圍第35項之系統,進一步包含: 該環形功率放大級包含: 5 包含一部分反射光學元件之一注入機構,透過該注 入機構,該種子雷射振盪器輸出光束被注入環形功率放 大級。 37. 如申請專利範圍第36項之系統,進一步包含: 該相干性破壞機構包含一光學延遲光路,其具有延 10 遲長度比於該種子雷射振盪器之雷射輸出脈衝光束中 之一脈衝的相干性長度更長。 38. 如申請專利範圍第37項之系統,進一步包含: 該光學延遲光路不會實質上延遲於該種子雷射振 盪器之雷射輸出脈衝光束中之該光束長度。 15 39.如申請專利範圍第36項之系統,進一步包含: 該相干性破壞機構包含第一長度之一第一光學延 遲光路及第二長度之一第二光學延遲光路,於該第一光 學延遲光路及第二光學延遲光路各自之光學延遲係超 越於該種子雷射振盪器之雷射輸出脈衝光束中之一脈 20 衝之相干性長度,但實質上不會增加脈衝長度,以及該 第一延遲光路長度與該第二延遲光路長度之差值係超 越該脈衝之相干性長度。 40.如申請專利範圍第36項之系統,進一步包含: 該相干性破壞機構包含一相干性破壞光學延遲結 216 構其可產生循序由一單一輸入脈衝延遲的多個次脈 衝/、中各個次脈衝係比隨後次脈衝延遲大於該脈衝光 之相干性長度。 .種完頻脈衝式準分子或分子氟氣體放電雷射系統,包 含: 種子雷射振盪器,其產生一輸出包含一雷射輸出 脈衝光束,包含: —第—氣體放電準分子或分子氟雷射腔; —雷射放大級含有一放大增益媒質於一第二氣體 電準分子或分子氟雷射腔,其接收該種子雷射振盪器 +〜出且放大該種子雷射振盪器的輸出來形成包含一 田射輪出脈衝光束之雷射系統輸出,包含: —環形功率放大級; 介於該種子雷射振盪器與該環形功率放大級間之 —相干性破壞機構。 如申凊專利範圍第41項之系統,進一步包含: 該環形功率放大級包含: 包含一部分反射光學元件之一注入機構,透過該注 入機構,該種子雷射振盪器輸出光束被注入環形功率放 大級。 .如申凊專利範圍第40項之系統,進一步包含: 該相干性破壞機構包含一光學延遲光路,其具有延 遲長度比於該種子雷射振盪器之雷射輸出脈衝光束中 之—脈衝的相干性長度更長。 217 如申請專利範圍第43項之系統,進一步包含: 該光學延遲光路不會實質上延遲於該種子雷射振 邀器之雷射輪出脈衝光束中之該光束長度。 45.如申請專利範圍第4〇項之系統,進一步包含: 該相干性破壞機構包含第一長度之一第一光學延 遲光路及第二長度之—第二光學延職路,於該第一光 予延遲光路及第二光學延遲光路各自之光學延遲係超 越於該種子雷射振盪器之雷射輸出脈衝光束中之一脈 衝之相干性長度,但實質上不會增加脈衝長度以及該 第一延遲光路長度與該第二延遲光路長度之差值係超 越該脈衝之相干性長度。 46·如申請專利範圍第40項之系統,進一步包含: 該相干性破壞機構包含一相干性破壞光學延遲結 構,其可產生循序由一單一輸入脈衝延遲的多個次脈 衝,其中各個次脈衝係比隨後次脈衝延遲大於該脈衝光 之相干性長度。 47_ -種脈衝式準分子或分子氣氣體放電雷㈣統,包含: 產生一包含一雷射輸出脈衝光束之輸出的一種子 雷射振盈器,包含: 一第一氣體放電準分子或分子氟雷射腔; 於一第一振盪器腔内部之一線窄化模組; 一雷射放大級含有一放大增益媒質於一第二氣體 放電準分子或分子氣雷射腔,其接收該種子雷射振盪器 的輸出’且放大該種子雷射㈣出來形成包含一 218 1324423 雷射輸出脈衝光束之雷射系統輸出; 於該種子雷射振盪器與該雷射放大級間之一相干 性破壞機構,其中該相干性破壞機構包含一光學延遲光 路超過該種子雷射輸出光束脈衝之相干性長度。 5 48.如申請專利範圍第47項之系統,進一步包含: 該放大級包—雷射振盥腔。 49.如申請專利範圍第47項之系統,進一步包含: 該放大級包含一光路界定通過該放大增益媒質之 固定通過次數。 10 50.如申請專利範圍第47項之系統,進一步包含: 該相干性破壞機構包含一光學延遲光路,其具有延 遲長度比於該種子雷射振盪器之雷射輸出脈衝光束中 之一脈衝的相干性長度更長。 51. 如申請專利範圍第48項之系統,進一步包含: 15 該相干性破壞機構包含一光學延遲光路,其具有延 遲長度比於該種子雷射振盪器之雷射輸出脈衝光束中 之一脈衝的相干性長度更長。 52. 如申請專利範圍第49項之系統,進一步包含: 該相干性破壞機構包含一光學延遲光路,其具有延 20 遲長度比於該種子雷射振盪器之雷射輸出脈衝光束中 之一脈衝的相干性長度更長。 53. 如申請專利範圍第50項之系統,進一步包含: 該光學延遲光路不會實質上延遲於該種子雷射振 盪器之雷射輸出脈衝光束中之該光束長度。 219 1324423 54. 如申請專利範圍第51項之系統,進一步包含: 該光學延遲光路不會實質上延遲於該種子雷射振 盪器之雷射輸出脈衝光束中之該光束長度。 55. 如申請專利範圍第52項之系統,進一步包含: 5 該光學延遲光路不會實質上延遲於該種子雷射振 盪器之雷射輸出脈衝光束中之該光束長度。 56. 如申請專利範圍第47項之系統,進一步包含: 該相干性破壞機構包含第一長度之一第一光學延 遲光路及第二長度之一第二光學延遲光路,於該第一光 10 學延遲光路及第二光學延遲光路各自之光學延遲係超 越於該種子雷射振盪器之雷射輸出脈衝光束中之一脈 衝之相干性長度,但實質上不會增加脈衝長度,以及該 第一延遲光路長度與該第二延遲光路長度之差值係超 越該脈衝之相干性長度。 15 57.如申請專利範圍第48項之系統,進一步包含: 該相干性破壞機構包含第一長度之一第一光學延 遲光路及第二長度之一第二光學延遲光路,於該第一光 學延遲光路及第二光學延遲光路各自之光學延遲係超 越於該種子雷射振盪器之雷射輸出脈衝光束中之一脈 20 衝之相干性長度,但實質上不會增加脈衝長度,以及該 第一延遲光路長度與該第二延遲光路長度之差值係超 越該脈衝之相干性長度。 58.如申請專利範圍第49項之系統,進一步包含: 該相干性破壞機構包含第一長度之一第一光學延 220 1324423 遲光路及第二長度之一第二光學延遲光路,於該第一光 學延遲光路及第二光學延遲光路各自之光學延遲係超 越於該種子雷射振盪器之雷射輸出脈衝光束中之一脈 衝之相干性長度,但實質上不會增加脈衝長度,以及該 5 第一延遲光路長度與該第二延遲光路長度之差值係超 越該脈衝之相干性長度。 59. 如申請專利範圍第47項之系統,進一步包含: 該相干性破壞機構包含一相干性破壞光學延遲結 構,其可產生循序由一單一輸入脈衝延遲的多個次脈 10 衝,其中各個次脈衝係比隨後次脈衝延遲大於該脈衝光 之相干性長度。 60. 如申請專利範圍第48項之系統,進一步包含: 該相干性破壞機構包含一相干性破壞光學延遲結 構,其可產生循序由一單一輸入脈衝延遲的多個次脈 15 衝,其中各個次脈衝係比隨後次脈衝延遲大於該脈衝光 之相干性長度。 61. 如申請專利範圍第49項之系統,進一步包含: 該相干性破壞機構包含一相干性破壞光學延遲結 構,其可產生循序由一單一輸入脈衝延遲的多個次脈 20 衝,其中各個次脈衝係比隨後次脈衝延遲大於該脈衝光 之相干性長度。 62. —種雷射光源系統,包含: 提供一種子雷射光學輸出之一固態雷射種子光束 源; 221 1324423 一頻率轉換級其係將該種子雷射光學輸出轉換成 適合播種一準分子或分子氟氣體放電雷射之一波長; 一準分子或分子氟氣體放電雷射增益媒質其放大 轉換後的種子雷射光學輸出來產生約於該轉換波長之 5 一氣體放電雷射輸出脈衝光束; 一相干性破壞機構包含一光學延遲元件,其具有延 遲光路比該輸出脈衝之相干性長度更長。 63. 如申請專利範圍第62項之系統,進一步包含: 該準分子或分子氟雷射係選自於包含XeCl、XeF、 10 KrF、ArF及F2雷射系統之組群。 64. 如申請專利範圍第63項之系統,進一步包含: 該雷射增益媒質包含一功率放大器。 65. 如申請專利範圍第64項之系統,進一步包含: 該功率放大器包含一單通放大器級。 15 66.如申請專利範圍第64項之系統,進一步包含: 該功率放大器包含一多通放大器級。 67.如申請專利範圍第63項之系統,進一步包含: 該增益媒質包含一環形功率放大級。 68·如申請專利範圍第67項之系統,進一步包含·· 20 該環形功率放大級包含一領結形組態。 69. 如申請專利範圍第62項之系統,進一步包含: 一輸入/輸出耦合器種子注入機構。 70. 如申請專利範圍第63項之系統,進一步包含: 一輸入/輸出耗合器種子注入機構。 222 1324423 71. 如申請專利範圍第69項之系統,進一步包含: 該相干性破壞機構係介於該雷射種子光束源與該 氣體放電雷射增益媒質間。 72. 如申請專利範圍第70項之系統,進一步包含: 5 該相干性破壞機構係介於該雷射種子光束源與該 氣體放電雷射增益媒質間。 73. 如申請專利範圍第62項之系統,進一步包含: 該固態種子雷射光束源包含一基於Nd之固態雷射。 74. 如申請專利範圍第73項之系統,進一步包含: 10 一頻率倍增幫浦泵送該基於Nd之固態雷射。 75. 如申請專利範圍第73項之系統,進一步包含: 該基於Nd之固態雷射包含一纖維放大器雷射。 76. 如申請專利範圍第73項之系統,進一步包含: 該基於Nd之固態雷射係選自於一個組群包含: 15 Nd:YAG、Nd:YLF及Nd:YV04固態雷射。 77. 如申請專利範圍第62項之系統,進一步包含: 該固態種子雷射光束源包含一基於Er之固態雷射。 78. 如申請專利範圍第77項之系統,進一步包含: 該基於Er之固態雷射包含纖維雷射。 20 79.如申請專利範圍第77項之系統,進一步包含: 該基於Er之固態雷射包含Er:YAG雷射。 80. 如申請專利範圍第62項之系統,進一步包含: 該頻率轉換級包含一線性頻率轉換器。 81. 如申請專利範圍第80項之系統,進一步包含: 223 1324423 該線性頻率轉換器包含Ti:藍寶石晶體。 82. 如申請專利範圍第81項之系統,進一步包含: 該線性頻率轉換器包含含紫翠玉之晶體。 83. 如申請專利範圍第62項之系統,進一步包含: 5 該頻率轉換級包含一非線性頻率轉換器。 84. 如申請專利範圍第83項之系統,進一步包含: 該非線性頻率轉換器包含一第二諧波產生器。 85. 如申請專利範圍第83項之系統,進一步包含: 該非線性頻率轉換器包含一和頻混頻器。 10 86. —種雷射光源系統,包含: 提供一種子雷射光學輸出之一固態雷射種子光束 源; 一頻率轉換級其係將該種子雷射光學輸出轉換成 適合播種一準分子或分子氟氣體放電雷射之一波長; 15 —準分子或分子氟氣體放電雷射增益媒質其放大 轉換後的種子雷射光學輸出來產生一於約略所轉換之 波長之氣體放電雷射輸出,包含: 一環形功率放大級。 87. —種操作雷射光源系統之方法,包含: 20 利用一固態雷射種子光束源來提供一種子雷射光 學輸出; 於一頻率轉換級中,將該種子雷射光學輸出頻率轉 換成適合播種一準分子或分子氟氣體放電雷射之波長; 利用一準分子或分子氟氣體放電雷射增益媒質,放 224 1324423 大該所轉換之種子雷射光學輸出,來產生__ 換波長之一氣體放電雷射輸出。 88.如申請專利範圍第64項之系統,進—步包含· 該雷射增益媒質包含一功率振盈器。 5 89.如申請專利範圍第66項之系統,進—步包含. 該環形功率放大級包含-跑馬場形組態。 90. —種處理機器,包含: 以脈衝式紫外光照射-項件之—照射機構; 一紫外光輸入開口; 10 一工作件固定平台; 一相干性破壞機構其包含-光學延遲光路超過該 紫外光脈衝之相干性長度。 91·如申請專利範圍第90項之機器,進一步包含: 該光學延遲光路並未實質上增加紫外光脈衝之長 15 度。 92.如申請專利範圍第9〇項之機器,進一步包含: 該相干性破壞機構包含具有第一長度之—第一光 學延遲光路及具有第二長度H光料ϋ光路,於 第一延遲光路及第二延遲光路各自之光學延遲係超過 2〇 該紫外光脈衝之相干性長度,但不會實質上增加脈衝之 長度’以及該第-延遲光路與該第二延遲光路長度之差 係超過該脈衝之相干性長度。 93.如申請專利範圍第91項之機器進一步包含: 該相干性破壞機構包含具有第一長度之—第一光 Γ. C .1 225 予延遲光路及具有第二長度之一第二光學延遲光路,於 第延遲光路及第二延遲光路各自之光學延遲係超過 該紫外光脈衝之相干性長度,但不會實質上增加脈衝之 長度,以及該第一延遲光路與該第二延遲光路長度之差 5 係超過該脈衝之相干性長度。 94‘如申凊專利範圍第90項之機器,進一步包含: 該第一光學延遲光路及第二光學延遲光路中之至 • 少一者進一步包含一光束翻轉或光束平移機構。 95. 如申清專利範圍第91項之機器,進一步包含: 1〇 該第一光學延遲光路及第二光學延遲光路中之至 少一者進一步包含一光束翻轉或光束平移機構。 96. 如申請專利範圍第2項之系統’其中該部份反射光學元 件組配於通過至少部份來自於該環形功率放大級之光 束。 15 97,如中請專利範圍第96項之系統’其中該光束擴幅器組配 φ 以產生通過該部份反射光學元件離開該環形功率放大 級之光束,相對於通過該部份反射光學元件進入該環形 功率放大級之光束之一淨散射。 98. 如申請專利範圍第1項之系統,其中該光束返回器是一 20 個棱鏡,其組配於使沿著一第一路徑移動以通過該放大 增益媒質之一光束和沿著一第二路徑移動以通過該放 大增益媒質之一光束交錯。 99. 一種雷射系統,包含: 一種子雷射振盪器,其產生一包含—雷射輸出脈衝 226 光束之輸出;以及 一雷射放大級,其含有一放大增益媒質於一氣體放 電準分子或分子氟雷射腔,其接收該種子雷射振盪器的 輸出’且放大該種子雷射振盪器的輸出來形成包含一雷 ㈣出脈_束之雷射系,统輸出 ,該雷射放大級包含一 再生ί衣形功率放大級’其界定於一部份反射光學元件及 光束返回器稜鏡間,該光束返回器稜鏡組配於使沿著 第一路彳望移動以通過該放大增益媒質之一光束和沿 者一第二路徑移動以通過該放大增益媒質之一光束交 錯。 100. —種雷射系統,其包含: 產生—脈衝種子光束之一種子雷射振盪器; —雷射放大級,其含有—放大增益媒質於-氣體放 電準刀子或分子氟雷射腔,其接收該脈衝種子光束,且 放大舰衝種子光束來形成-脈衝雷射輸出光束,該雷 射放大級包含-再生環祕,其界定於—部份反射光= 兀件及一光束返回器稜鏡間;以及 於該再生環形級内部之—光束修正系統,且包含: 在進入該放大增益媒質前壓縮該脈衝種子光 束之—壓縮器; 擴充離開該放大增益媒質之脈衝光束的 幅器。 傾 101. —種雷射系統,其包含: 產生脈衝種子光束之一種子雷射振盘器; 1324423 一雷射放大級,其含有一放大增益媒質於一氣體放 電準分子或分子氟雷射腔,其接收該脈衝種子光束,且 放大該脈衝種子光束來形成一脈衝雷射輸出光束,該雷 射放大級包含一再生環形級,其界定於一部份反射光學 5 元件及一光束返回器稜鏡間;以及 介於該種子雷射振盪器及該雷射放大級之一光束 修正系統,該光束修正系統包含一擴充離開該種子雷射 振盪器之該脈衝種子光束的光束擴幅器。 102.如申請專利範圍第101項之雷射系統,其中該光束擴幅 10 器包括一或多個光束擴充稜鏡。 22810 15 July / / 曰 repair (more) original No. 95140194 application ^ _ not ¥ ¥ 冤 围 围 98 98 98.09.11. Ten, the scope of application for patent: 1. A line narrowing pulse excimer or molecule A fluorine gas discharge laser system comprising: a sub-laser oscillator for generating an output comprising a laser output pulse beam, comprising: a first gas discharge excimer or a molecular fluorine laser cavity; a line narrowing module inside the cavity; a laser amplification stage comprising an amplification gain medium in a second gas discharge excimer or molecular fluorine laser cavity, receiving the output of the seed laser oscillator, and amplifying the seed mine The output of the oscillator is formed to form a laser system output comprising a laser output pulse beam, the laser amplification stage comprising: a ring power amplification stage defined between a portion of the reflective optical element and a beam returner, wherein The ring power amplifier stage includes a beam expander disposed between the partially reflective optical element and the beam returner. 2. The system of claim 1, wherein: the ring power amplification stage comprises an injection mechanism of the partially reflective optical element, through which the output beam of the seed laser oscillator is injected into the loop power amplification stage by 20 . 3. The system of claim 1, further comprising: the ring power amplifier stage comprising a bow-tie circuit. 4. The system of claim 1, further comprising: the ring power amplifier stage comprising a racetrack loop. 210 1324423 5. The system of claim 1, further comprising: the loop power amplification stage amplifying the output of the seed laser oscillator cavity to a pulse energy of 21 millijoules. 6. The system of claim 2, further comprising: 5 the ring power amplification stage amplifying the output of the seed laser oscillator cavity to &gt; 1 millijoule of pulse energy. 7. The system of claim 1, further comprising: the loop power amplification stage amplifying the output of the seed laser oscillator to a pulse energy of 22 millijoules. 10. The system of claim 2, further comprising: the ring power amplification stage amplifying the output of the seed laser oscillator to a pulse energy of 22 millijoules. 9. The system of claim 1, further comprising: the loop power amplification stage amplifying the output of the seed laser oscillator to a pulse energy of 15 25 millijoules. 10. The system of claim 2, further comprising: the ring power amplification stage amplifying the output of the seed laser oscillator to a pulse energy of 25 millijoules. 11. The system of claim 1, further comprising: 20 the loop power amplification stage amplifying the output of the seed laser oscillator to a pulse energy of 210 millijoules. 12. The system of claim 2, further comprising: the ring power amplification stage amplifying the output of the seed laser oscillator to a pulse energy of 210 millijoules. 211 1324423 13. The system of claim 1, further comprising: the loop power amplification stage amplifying the output of the seed laser oscillator to a pulse energy of 15 millijoules. 14. The system of claim 2, further comprising: 5 the ring power amplification stage amplifying the output of the seed laser oscillator to a pulse energy of 215 millijoules. 15. The system of claim 1, further comprising: the laser system operating at an output pulse repetition rate of at most 12 k Η z. 10 16. The system of claim 2, further comprising: the laser system operating at an output pulse repetition rate of at most 12 kH. 17. The system of claim 1, further comprising: the laser system operating at an output pulse repetition rate of 22 to S8 kHz. 18. The system of claim 2, further comprising: the laser system operating at an output pulse repetition rate of 22 to &lt; 8 kHz. 19. The system of claim 1, further comprising: 20 the laser system operating at an output pulse repetition rate of 24 to S6 kHz. 20. The system of claim 2, further comprising: the laser system operating at an output pulse repetition rate of 24 to &lt;6 kHz. 212 1324423 21. A broadband pulsed excimer or molecular fluorine gas discharge laser system comprising: a sub-laser vibrator for generating an output comprising a laser output pulse beam comprising: 5 a first gas discharge An excimer or molecular fluorine laser cavity; a laser amplification stage comprising an amplification gain medium in a second gas discharge excimer or molecular fluorine laser cavity, receiving the output of the seed laser oscillator, and amplifying the seed lightning The output of the oscillator is formed to form a laser system output comprising a laser output pulse beam comprising: 10 a ring power amplification stage defined between a portion of the reflective optical element and a beam returner, wherein the ring power amplification The stage includes a beam expander disposed between the partially reflective optical element and the beam returner. 22. The system of claim 21, wherein: the loop power amplifier stage comprises an injection mechanism of the partially reflective optical element, through which the output beam of the seed laser oscillator is injected into the loop power amplification stage. . 23. The system of claim 21, further comprising: the ring power amplification stage comprising a bow-tie circuit. 20 24. The system of claim 22, further comprising: the ring power amplification stage comprising a bow-tie circuit. 25. The system of claim 21, further comprising: the ring power amplifier stage comprising a racetrack loop. 26. The system of claim 22, further comprising: 213 1324423 The ring power amplifier stage includes a racetrack loop. 27. The system of claim 1, further comprising: a coherent destruction mechanism between the seed laser oscillator and the amplifier gain medium. 5 28. The system of claim 2, further comprising: a coherent destruction mechanism between the seed laser oscillator and the amplifier gain medium. 29. The system of claim 27, further comprising: the coherence disrupting mechanism comprising an optical delay optical path having a delay length of one of a laser output pulse beam of the seed laser oscillator The coherence is longer. 30. The system of claim 28, further comprising: the coherence disrupting mechanism comprising an optical delay optical path having a delay length that is greater than one of 15 of the laser output pulse beams of the seed laser oscillator The coherence length is longer. 31. The system of claim 29, further comprising: the optical delay optical path is not substantially delayed by the length of the beam in the laser output pulse beam of the seed laser oscillator. 32. The system of claim 30, further comprising: 20 the optical delay optical path is not substantially delayed by the length of the beam in the laser output pulse beam of the seed laser oscillator. 33. The system of claim 27, further comprising: the coherence destruction mechanism comprising a first optical delay optical path of a first length and a second optical delay optical path of a second length, wherein the first optical 214 is The optical retardation of each of the delayed optical path and the second optically delayed optical path exceeds one of the laser output pulse beams of the seed laser oscillator, -4 dry lengths, but does not substantially increase the pulse length, and The difference between the length of the first retarded optical path and the length of the second delayed optical path is more than 5 the coherence length of the pulse. 34. The system of claim 1, further comprising: the coherence disrupting mechanism comprising a first optical length of the first length and an optical path of the second length, the second optically retarded optical path, the photon The optical delay of each of the delayed optical path and the second optical delayed optical path is one pulse of the coherent length of the laser output pulse beam of the seed laser oscillator, but substantially 1 increases the pulse length, and the The difference between the λ^ late optical path length and the second delayed optical path length exceeds the coherence length of the pulse. A narrow line pulsed excimer or molecular fluorine gas discharge laser system comprising: 215 1 seed laser recorder, the production-output containing-laser output pulse beam comprising: a first gas discharge excimer Or a molecular fluorine laser cavity; a narrowing module inside the first oscillator cavity; ": the amplification stage contains an amplification gain medium in a second gas quasi-knife or molecular fluorine laser cavity, which receives the seed The output of the laser oscillating device and amplifying the wheel of the seed laser oscillating device to form a laser system output comprising a laser output pulse beam comprising: - a ring power amplifier stage; 1324423 between the seed laser oscillator And a coherent destruction mechanism between the ring power amplification stage. 36. The system of claim 35, further comprising: the ring power amplification stage comprising: 5 an injection mechanism including a portion of the reflective optical element, through which the injection The mechanism, the seed laser oscillator output beam is injected into the loop power amplification stage. 37. The system of claim 36, further comprising: The dry destruction mechanism includes an optical delay optical path having a delay length that is longer than a coherence length of one of the laser output pulse beams of the seed laser oscillator. 38. The system further comprising: the optical delay optical path is not substantially delayed by the length of the beam in the laser output pulse beam of the seed laser oscillator. 15 39. The system of claim 36, further comprising: The coherence destruction mechanism includes a first optical delay optical path of a first length and a second optical delayed optical path of a second length, wherein an optical delay of each of the first optical delay optical path and the second optical delayed optical path exceeds the seed The laser output of the laser oscillator outputs a pulse length of 20 pulses, but does not substantially increase the pulse length, and the difference between the length of the first delayed optical path and the length of the second delayed optical path exceeds the The length of the coherence of the pulse. 40. The system of claim 36, further comprising: the coherence destruction mechanism comprises a coherent break The bad optical delay junction 216 is configured to generate a plurality of sub-pulses that are sequentially delayed by a single input pulse, and each of the sub-pulses is delayed by more than the coherence length of the pulsed light. Or a molecular fluorine gas discharge laser system comprising: a seed laser oscillator that produces an output comprising a laser output pulse beam comprising: - a first gas discharge excimer or a molecular fluorine laser cavity; - a laser amplification stage An amplification gain medium is included in a second gas electro-molecular or molecular fluorine laser cavity, which receives the seed laser oscillator +~ and amplifies the output of the seed laser oscillator to form a pulse comprising a field shot The laser system output of the beam comprises: - a ring power amplification stage; a coherence destruction mechanism between the seed laser oscillator and the ring power amplification stage. The system of claim 41, further comprising: the ring power amplification stage comprising: an injection mechanism including a portion of the reflective optical element, through which the output beam of the seed laser oscillator is injected into the ring power amplification stage . The system of claim 40, further comprising: the coherence destruction mechanism comprising an optical delay optical path having a delay length compared to a pulse of the laser output pulse beam of the seed laser oscillator Sex length is longer. 217. The system of claim 43, further comprising: the optical retarding optical path is not substantially delayed by the length of the beam in the laser-pulsed beam of the seed laser invigilator. 45. The system of claim 4, further comprising: the coherence disrupting mechanism comprising a first optical delay optical path of a first length and a second optical extended path of the second length, the first optical The optical retardation of each of the delayed optical path and the second optical delayed optical path exceeds the coherence length of one of the laser output pulse beams of the seed laser oscillator, but does not substantially increase the pulse length and the first delay The difference between the length of the optical path and the length of the second delayed optical path is beyond the length of the coherence of the pulse. 46. The system of claim 40, further comprising: the coherence disrupting mechanism comprising a coherent destruction optical delay structure that produces a plurality of sub-pulses sequentially delayed by a single input pulse, wherein each of the sub-pulses The pulse delay is greater than the coherence length of the pulse light. 47_ - A pulsed excimer or molecular gas gas discharge lightning (four) system comprising: a sub-laser vibrator for generating an output comprising a laser output pulse beam comprising: a first gas discharge excimer or molecular fluorine a laser cavity; a laser narrowing module inside a first oscillator cavity; a laser amplification stage comprising an amplification gain medium in a second gas discharge excimer or molecular gas laser cavity, receiving the seed laser The output of the oscillator 'and amplifies the seed laser (4) to form a laser system output comprising a 218 1324423 laser output pulse beam; a coherent destruction mechanism between the seed laser oscillator and the laser amplification stage, Wherein the coherence disrupting mechanism comprises an optical delay optical path that exceeds a coherence length of the seed laser output beam pulse. 5 48. The system of claim 47, further comprising: the amplification stage package - a laser vibrating cavity. 49. The system of claim 47, further comprising: the amplification stage comprising an optical path defining a fixed number of passes through the amplification gain medium. 10 50. The system of claim 47, further comprising: the coherence disrupting mechanism comprising an optical delay optical path having a delay length that is greater than one of a laser output pulse beam of the seed laser oscillator The coherence length is longer. 51. The system of claim 48, further comprising: 15 the coherence disrupting mechanism comprising an optical delay optical path having a delay length that is greater than one of a laser output pulse beam of the seed laser oscillator The coherence length is longer. 52. The system of claim 49, further comprising: the coherence disrupting mechanism comprising an optical delay optical path having a delay length of one of a laser output pulse beam of the seed laser oscillator The coherence is longer. 53. The system of claim 50, further comprising: the optical delay optical path is not substantially delayed by the length of the beam in the laser output pulse beam of the seed laser oscillator. 219 1324423 54. The system of claim 51, further comprising: the optical delay optical path is not substantially delayed by the length of the beam in the laser output pulse beam of the seed laser oscillator. 55. The system of claim 52, further comprising: 5 the optical delay optical path is not substantially delayed by the length of the beam in the laser output pulse beam of the seed laser oscillator. 56. The system of claim 47, further comprising: the coherence destruction mechanism comprising a first optical delay optical path of a first length and a second optical delay optical path of a second length, wherein the first optical 10 The optical retardation of each of the delayed optical path and the second optical delayed optical path exceeds the coherence length of one of the laser output pulse beams of the seed laser oscillator, but does not substantially increase the pulse length, and the first delay The difference between the length of the optical path and the length of the second delayed optical path is beyond the length of the coherence of the pulse. The system of claim 48, further comprising: the coherence disrupting mechanism comprising a first optical delay optical path of a first length and a second optical delay optical path of a second length, wherein the first optical delay The optical delay of each of the optical path and the second optical delay optical path exceeds the coherence length of one of the laser output pulse beams of the seed laser oscillator, but does not substantially increase the pulse length, and the first The difference between the length of the delayed optical path and the length of the second delayed optical path is beyond the length of the coherence of the pulse. 58. The system of claim 49, further comprising: the coherence disrupting mechanism comprising a first optical extension 220 1324423 late optical path and a second optical delay optical path of the first length The optical delay of each of the optical delay optical path and the second optical delayed optical path exceeds the coherence length of one of the laser output pulse beams of the seed laser oscillator, but does not substantially increase the pulse length, and the 5th The difference between the length of the delayed optical path and the length of the second delayed optical path is beyond the length of the coherence of the pulse. 59. The system of claim 47, further comprising: the coherence disrupting mechanism comprising a coherent-damaging optical delay structure that produces a plurality of secondary pulses 10 pulses sequentially delayed by a single input pulse, wherein each The pulse train is delayed by more than the subsequent pulse length by the coherence length of the pulse light. 60. The system of claim 48, further comprising: the coherence disrupting mechanism comprising a coherent-damaging optical delay structure that produces a plurality of secondary pulses 15 sequentially delayed by a single input pulse, wherein each The pulse train is delayed by more than the subsequent pulse length by the coherence length of the pulse light. 61. The system of claim 49, further comprising: the coherence disrupting mechanism comprising a coherent-damaging optical delay structure that produces a plurality of secondary pulses 20 pulses sequentially delayed by a single input pulse, wherein each The pulse train is delayed by more than the subsequent pulse length by the coherence length of the pulse light. 62. A laser source system comprising: a solid-state laser seed source providing a sub-laser optical output; 221 1324423 a frequency conversion stage that converts the seed laser optical output into a suitable excimer or One wavelength of a molecular fluorine gas discharge laser; an excimer or molecular fluorine gas discharge laser gain medium that amplifies the converted seed laser optical output to produce a gas discharge laser output pulse beam of about 5 of the converted wavelength; A coherent destruction mechanism includes an optical delay element having a delayed optical path that is longer than a coherence length of the output pulse. 63. The system of claim 62, further comprising: the excimer or molecular fluorine laser is selected from the group consisting of XeCl, XeF, 10 KrF, ArF, and F2 laser systems. 64. The system of claim 63, further comprising: the laser gain medium comprising a power amplifier. 65. The system of claim 64, further comprising: the power amplifier comprising a single pass amplifier stage. 15 66. The system of claim 64, further comprising: the power amplifier comprising a multi-pass amplifier stage. 67. The system of claim 63, further comprising: the gain medium comprising a ring power amplification stage. 68. The system of claim 67, further comprising ... 20 The ring power amplifier stage comprises a bow tie configuration. 69. The system of claim 62, further comprising: an input/output coupler seed injection mechanism. 70. The system of claim 63, further comprising: an input/output consumable seed injection mechanism. 222 1324423 71. The system of claim 69, further comprising: the coherence destruction mechanism being between the laser seed beam source and the gas discharge laser gain medium. 72. The system of claim 70, further comprising: 5 the coherent destruction mechanism being between the laser seed beam source and the gas discharge laser gain medium. 73. The system of claim 62, further comprising: the solid seed laser beam source comprising a solid-state laser based on Nd. 74. The system of claim 73, further comprising: 10 a frequency multiplying pump pumping the Nd-based solid state laser. 75. The system of claim 73, further comprising: the Nd-based solid state laser comprising a fiber amplifier laser. 76. The system of claim 73, further comprising: the Nd-based solid laser is selected from the group consisting of: 15 Nd:YAG, Nd:YLF, and Nd:YV04 solid state lasers. 77. The system of claim 62, further comprising: the solid seed laser beam source comprising an Er-based solid state laser. 78. The system of claim 77, further comprising: the Er-based solid state laser comprising a fiber laser. 20 79. The system of claim 77, further comprising: the Er-based solid state laser comprising an Er:YAG laser. 80. The system of claim 62, further comprising: the frequency conversion stage comprising a linear frequency converter. 81. The system of claim 80, further comprising: 223 1324423 The linear frequency converter comprises a Ti: sapphire crystal. 82. The system of claim 81, further comprising: the linear frequency converter comprising a crystal containing amethyst. 83. The system of claim 62, further comprising: 5 the frequency conversion stage comprising a nonlinear frequency converter. 84. The system of claim 83, further comprising: the nonlinear frequency converter comprising a second harmonic generator. 85. The system of claim 83, further comprising: the nonlinear frequency converter comprising a sum frequency mixer. 10 86. A laser source system comprising: a solid-state laser seed beam source providing a sub-laser optical output; a frequency conversion stage converting the seed laser optical output into a seed or molecule suitable for seeding One wavelength of a fluorine gas discharge laser; 15 - an excimer or molecular fluorine gas discharge laser gain medium that amplifies the converted seed laser optical output to produce a gas discharge laser output at a wavelength approximately converted, comprising: A ring power amplifier stage. 87. A method of operating a laser source system, comprising: 20 providing a sub-laser optical output using a solid-state laser seed beam source; converting the seed laser optical output frequency to a suitable frequency conversion stage Seeding a wavelength of a quasi-molecular or molecular fluorine gas discharge laser; using a quasi-molecular or molecular fluorine gas discharge laser gain medium, placing 224 1324423 large converted seed laser optical output to generate one of __ Gas discharge laser output. 88. The system of claim 64, wherein the laser gain medium comprises a power oscillating device. 5 89. If the system of claim 66 is included, the step-by-step includes. The ring power amplifier stage includes a - racetrack configuration. 90. A processing machine comprising: a pulsed ultraviolet light-emission-illumination mechanism; an ultraviolet light input opening; 10 a workpiece fixed platform; a coherent destruction mechanism comprising - an optical delay optical path exceeding the ultraviolet The coherence length of the light pulse. 91. The machine of claim 90, further comprising: the optical retarding optical path does not substantially increase the length of the ultraviolet light pulse by 15 degrees. 92. The machine of claim 9, further comprising: the coherence disrupting mechanism comprising a first optical delay optical path having a first length and a second length H optical optical path, the first delayed optical path and The optical delay of each of the second delayed optical paths exceeds the coherence length of the ultraviolet light pulse, but does not substantially increase the length of the pulse 'and the difference between the length of the first delayed optical path and the second delayed optical path exceeds the pulse The length of the coherence. 93. The machine of claim 91, further comprising: the coherence disrupting mechanism comprising a first aperture - a first aperture, a C.1 225 pre-delay optical path, and a second optical delay optical path having a second length The optical delay of each of the first delayed optical path and the second delayed optical path exceeds the coherence length of the ultraviolet light pulse, but does not substantially increase the length of the pulse, and the difference between the length of the first delayed optical path and the second delayed optical path The 5 series exceeds the coherence length of the pulse. 94. The machine of claim 90, further comprising: the one of the first optical delay optical path and the second optical delay optical path further comprising a beam inversion or beam translating mechanism. 95. The machine of claim 91, further comprising: 1 至 at least one of the first optical delay optical path and the second optical delay optical path further comprising a beam inversion or beam translating mechanism. 96. The system of claim 2, wherein the portion of the reflective optical element is assembled by passing at least a portion of the beam from the toroidal power amplification stage. 15 97. The system of claim 96, wherein the beam expander is configured to produce a light beam that exits the ring power amplification stage through the partially reflective optical element, relative to the reflective optical element passing through the portion A net scatter of one of the beams entering the ring power amplifier stage. 98. The system of claim 1, wherein the beam returner is a 20 prism that is configured to move along a first path to pass a beam of the amplification gain medium and along a second The path moves to stagger the beam through one of the amplification gain media. 99. A laser system comprising: a sub-laser oscillator that produces an output comprising a beam of laser output pulses 226; and a laser amplification stage that includes an amplification gain medium for a gas discharge excimer or a molecular fluorine laser cavity that receives the output of the seed laser oscillator and amplifies the output of the seed laser oscillator to form a laser system comprising a thunder (four) pulse beam, a system output, the laser amplification stage A regenerative power amplifier stage is defined that is defined between a portion of the reflective optical element and the beam returner, the beam returner 稜鏡 being configured to move along the first path to pass the amplification gain One of the medium beams and the second path of the edge are moved to be interlaced by one of the amplification gain media. 100. A laser system comprising: a seed-laser oscillator that produces a pulsed seed beam; a laser amplification stage that includes an amplification gain medium-gas discharge quasi-knife or a molecular fluorine laser cavity, Receiving the pulsed seed beam and amplifying the ship's seed beam to form a pulsed laser output beam, the laser amplification stage comprising - a regenerative ring secret, defined as - partially reflected light = element and a beam return 稜鏡And a beam correction system inside the regenerative annular stage, and comprising: a compressor that compresses the pulse seed beam before entering the amplification gain medium; and a frame that expands the pulse beam exiting the amplification gain medium. A laser system comprising: a seed laser oscillator that produces a pulsed seed beam; 1324423 a laser amplification stage that includes an amplification gain medium in a gas discharge excimer or molecular fluorine laser cavity Receiving the pulsed seed beam and amplifying the pulsed seed beam to form a pulsed laser output beam, the laser amplification stage comprising a regenerative annular stage defined by a portion of the reflective optical element 5 and a beam returner edge And a beam correction system between the seed laser oscillator and the laser amplification stage, the beam correction system including a beam expander that expands the pulse seed beam exiting the seed laser oscillator. 102. The laser system of claim 101, wherein the beam expander comprises one or more beam expanders. 228
TW95140194A 2005-11-01 2006-10-31 Laser system TWI324423B (en)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US73268805P 2005-11-01 2005-11-01
US81429306P 2006-06-16 2006-06-16
US81442406P 2006-06-16 2006-06-16
US52183306A 2006-09-14 2006-09-14
US52205206A 2006-09-14 2006-09-14
US52186006A 2006-09-14 2006-09-14
US52183506A 2006-09-14 2006-09-14
US52190506A 2006-09-14 2006-09-14
US52185806A 2006-09-14 2006-09-14
US52190406A 2006-09-14 2006-09-14
US52190606A 2006-09-14 2006-09-14
US52183406A 2006-09-14 2006-09-14
US58479206A 2006-10-20 2006-10-20

Publications (2)

Publication Number Publication Date
TW200737625A TW200737625A (en) 2007-10-01
TWI324423B true TWI324423B (en) 2010-05-01

Family

ID=45074166

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95140194A TWI324423B (en) 2005-11-01 2006-10-31 Laser system

Country Status (1)

Country Link
TW (1) TWI324423B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582410B (en) * 2012-11-29 2017-05-11 克萊譚克公司 Systems,apparatuses,and methods for conditioning a laser cavity
TWI661752B (en) * 2014-04-10 2019-06-01 以色列商奧寶科技有限公司 Method and system for manufaturing pulsed-mode direct-write laser metallization
US10478923B2 (en) 2012-01-18 2019-11-19 Amada Company, Limited Laser machining device and laser oscillation control method
US10537027B2 (en) 2013-08-02 2020-01-14 Orbotech Ltd. Method producing a conductive path on a substrate
RU205423U1 (en) * 2021-04-29 2021-07-14 Федеральное государственное бюджетное учреждение науки Научно-технологический центр уникального приборостроения Российской академии наук (НТЦ УП РАН) Monopulse solid state laser
TWI754854B (en) * 2018-12-17 2022-02-11 日商住友重機械工業股份有限公司 Optical resonator
TWI827565B (en) * 2017-11-17 2024-01-01 立陶宛商布羅利思半導體有限責任公司 Radiant beam combining of multiple multimode semiconductor laser diodes for directional laser beam delivery applications, and methods for achieving and applying the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456853B (en) * 2009-09-30 2014-10-11 Mitsubishi Electric Corp Laser oscillator and laser amplifier
US9678350B2 (en) * 2012-03-20 2017-06-13 Kla-Tencor Corporation Laser with integrated multi line or scanning beam capability
TWI698718B (en) * 2018-08-13 2020-07-11 台灣積體電路製造股份有限公司 Laser system and lithography apparatus
WO2020236647A1 (en) * 2019-05-22 2020-11-26 Cymer, Llc Apparatus for and method of generating multiple laser beams
TW202248769A (en) * 2019-10-16 2022-12-16 美商希瑪有限責任公司 Series of stacked confocal pulse stretchers for speckle reduction
CN114696195B (en) * 2020-12-25 2023-11-14 中国科学院理化技术研究所 Pluggable monolithic annular cavity laser device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10478923B2 (en) 2012-01-18 2019-11-19 Amada Company, Limited Laser machining device and laser oscillation control method
TWI582410B (en) * 2012-11-29 2017-05-11 克萊譚克公司 Systems,apparatuses,and methods for conditioning a laser cavity
US10537027B2 (en) 2013-08-02 2020-01-14 Orbotech Ltd. Method producing a conductive path on a substrate
TWI661752B (en) * 2014-04-10 2019-06-01 以色列商奧寶科技有限公司 Method and system for manufaturing pulsed-mode direct-write laser metallization
TWI827565B (en) * 2017-11-17 2024-01-01 立陶宛商布羅利思半導體有限責任公司 Radiant beam combining of multiple multimode semiconductor laser diodes for directional laser beam delivery applications, and methods for achieving and applying the same
TWI754854B (en) * 2018-12-17 2022-02-11 日商住友重機械工業股份有限公司 Optical resonator
RU205423U1 (en) * 2021-04-29 2021-07-14 Федеральное государственное бюджетное учреждение науки Научно-технологический центр уникального приборостроения Российской академии наук (НТЦ УП РАН) Monopulse solid state laser

Also Published As

Publication number Publication date
TW200737625A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
TWI324423B (en) Laser system
KR101194231B1 (en) Laser system
US8170078B2 (en) Laser system
US7643529B2 (en) Laser system
US7715459B2 (en) Laser system
US7920616B2 (en) Laser system
US7778302B2 (en) Laser system
US20090296755A1 (en) Laser system
US7227881B2 (en) Master oscillator—power amplifier excimer laser system
TWI586058B (en) High power femtosecond laser with variable repetition rate
US7615722B2 (en) Amorphous silicon crystallization using combined beams from optically pumped semiconductor lasers
US7680158B2 (en) LPP type extreme ultra violet light source apparatus and driver laser for the same
US20080267242A1 (en) Laser system
US20090296758A1 (en) Laser system
US20080225908A1 (en) Laser system
US20050002425A1 (en) Master-oscillator power-amplifier (MOPA) excimer or molecular fluorine laser system with long optics lifetime
JP2007529903A (en) LPP EUV light source
JP2004086193A (en) Light source device and light irradiation apparatus
JP2006203008A (en) Two-stage laser system
Ahmad Development of an optically synchronized seed source for a high-power few-cycle OPCPA system
Endo High-brightness solid-state lasers for compact short-wavelength sources
Chi Development of a High Power High Energy Ultrafast Laser