TWI323551B - Synchronous rectification circuit for power converters - Google Patents

Synchronous rectification circuit for power converters Download PDF

Info

Publication number
TWI323551B
TWI323551B TW95135703A TW95135703A TWI323551B TW I323551 B TWI323551 B TW I323551B TW 95135703 A TW95135703 A TW 95135703A TW 95135703 A TW95135703 A TW 95135703A TW I323551 B TWI323551 B TW I323551B
Authority
TW
Taiwan
Prior art keywords
signal
voltage
control signal
circuit
period
Prior art date
Application number
TW95135703A
Other languages
Chinese (zh)
Other versions
TW200816613A (en
Inventor
Ta Yung Yang
Original Assignee
System General Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44769154&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI323551(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by System General Corp filed Critical System General Corp
Priority to TW95135703A priority Critical patent/TWI323551B/en
Publication of TW200816613A publication Critical patent/TW200816613A/en
Application granted granted Critical
Publication of TWI323551B publication Critical patent/TWI323551B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發明涉及功率轉換器,且更明確地說涉及切換式功率轉換器的控 制電路。 【先前技術】IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present invention relates to power converters and, more particularly, to a control circuit for a switched power converter. [Prior Art]

明參閱第一圖習知具有可改進功率轉換效率的同步整流器的功率 轉換益之電路圖。如圖所示,雜裝置例如賴器1()包含—次側繞組 和=次側繞組队。開關15連接到一次側繞組心以切換變壓器和調 即功率轉換器的輪出c次側雜崎過電關關加和電容器洲輕合 到功率轉換11的輪出。電關關20及其主體二減25作制步整流器 ,操作。在磁化週期期間根據開M 15料通將電壓%施加到一次側繞 Np因此’充電電流Ic將根據電壓Ve和一次側繞側繞組Np的電感係 ,而f生。同時’在二次侧繞組Ns產生磁化電s Vs。-旦開關15斷開, Μ器10 U將通過二次側繞組⑷和電源開關2〇傳送到功率轉換器 ,輸出端。因此在去磁週期_去磁電壓(輸出電壓v。)將被施加到二 人側’、〜且Ns»放電電流Id將根據去磁電壓和二次側繞組爪的電感係數而 產生。充電電流I。與放電電流Id可由方程式⑴⑵分別得知: V〇 "j~ x Tdischarge — _ (2) 八中Lp和Ls刀別為變壓器1Q的―次側繞組Np和二次側繞組仏的電 感係數。Τ_Ε為磁化週期;且Td_ge為去磁週期。 在連續電賴式(c:Qntin_s瓣ntmQde ;(ΧΜ)操料變壓㈣ 完全去社前關15將⑻在非連續電流模式(discGnti_s encode ;廳)操作中,在下一切換週期開始之前變壓器10中的 1323551 能量完全去磁。 請參閱第二A圖和第二B圖連續電流模式和非連續電流模式的波形 圖。如果在變壓器10完全去磁之後電源開關20沒有斷開,那麼一個反 向電流(reverse current)將透過電源開關20對電容器30進行放電。此 反向電流降低了功率轉換器的效率。為了避免反向電流,常規技術’例 如在Yang等人的美國專利第6, 995, 991號“PWM controller for synchronous rectifier of flyback power converter” 中所述,利用 電阻器40及控制電路45在放電電流ID低於臨界值時斷開電源開關20 的同步整流方法。以及,在連續電流模式操作期間,鎖相電路在下一切 換週期開始之前斷開電源開關20。然而,電流感應電路和鎖相電路將產 生功率損失並增加系統的複雜性。另外,寬變頻系統(wide-variable frequency system)例如’諧振式功率轉換器(resonant p0wer converter) 將引起鎖相的問題。 【發明内容】 本發明提供一種同步整流電路’其適用於在固定頻率和/或可變頻率 下操作的功率轉換器。本發明之同步整流電路不需要電流感應電路或鎖 相電路。本發明之同步整流電路包括:電源開關,其耦合到變壓器(磁 性裝置)以用於整流。訊號產生電路,用於根據變壓器的磁化電壓、變 壓器的去磁電壓和變壓器的磁化週期而產生控制訊號。控制訊號經耦合 以控制電源開關導通。控制訊號的啟用週期與變壓器的去磁週期相關。 另外,控制訊號根據磁化電壓的增加而增加。控制訊號根據變壓器的磁 化週期的減小而減小。除此之外,控制訊號回應去磁電壓的增加而減小。 炫為使貴審查委員對本發明之結構特徵及所達成之功效更有進一步 之瞭解與認識,謹佐以較佳之實施姻及配合詳細之說明,說明如後。 【實施方式】 π參閱第三圖包含本發明同步整流電路較佳實施例的切換式功率 轉換盗之電路圖。此同步整流電路適用於在固定頻率和/或可變頻率下 1323551 操作的功率轉換器,且不需要電流感應電路或鎖相電路。切換式功率轉 換器中的電源開關20耦合到變壓器(磁性裝置)10以用於整流。切換 控制電路100根據變壓器10的磁化電壓(magnetized V0ltage )Vs、去 磁電壓(demagnetized voltage)和磁化週期(magnetized time)產生由輸 出端OUT輸出的控制訊號s,。控制訊號經耦合以導通(turn 〇n)電源 開關2〇。其中控制訊號S»的啟用週期(enable period)與變壓器的去磁 週期(demagnetized time)相關。 當開關15導通時,在二次側繞組Ns與電源開關2〇之間產生電壓 Vos(圖中未顯不)。電壓Vds與變壓器1Q的磁化電壓%有關。磁化電壓^ 可由方程式(3)得知:Referring to the first figure, a circuit diagram of a power conversion benefit of a synchronous rectifier having improved power conversion efficiency is known. As shown, the hybrid device, such as the loader 1 (), includes a secondary side winding and a secondary side winding. The switch 15 is connected to the primary side winding core to switch the transformer and the power converter's turn-out c-side side miscellaneous over-current shut-off plus capacitors to the turn-off of the power conversion 11. The electric shutdown 20 and its main body are reduced by 25 for the step rectifier, operation. The voltage % is applied to the primary side winding Np according to the opening M 15 during the magnetization period. Therefore, the charging current Ic will be generated according to the voltage Ve and the inductance of the primary side winding side winding Np. At the same time, magnetization electric power s Vs is generated in the secondary side winding Ns. Once the switch 15 is open, the buffer 10 U will be transmitted to the power converter through the secondary winding (4) and the power switch 2 , to the output. Therefore, the demagnetization period _ demagnetization voltage (output voltage v.) will be applied to the two-person side, and the Ns» discharge current Id will be generated according to the demagnetization voltage and the inductance of the secondary side winding claw. Charging current I. The discharge current Id can be obtained from equations (1) and (2), respectively: V〇 "j~ x Tdischarge — _ (2) The eight Lp and Ls cutters are the inductance coefficients of the secondary side winding Np and the secondary side winding 变压器 of the transformer 1Q. Τ_Ε is the magnetization period; and Td_ge is the demagnetization period. In the continuous electric circuit (c: Qntin_s flap ntmQde; (ΧΜ) the material is transformed (4) completely before the closing of the 15 will (8) in the discontinuous current mode (discGnti_s encode; hall) operation, before the start of the next switching cycle transformer 10 The 1323551 energy is completely demagnetized. Please refer to the waveform diagrams of continuous current mode and discontinuous current mode in Figure 2A and Figure 2. If the power switch 20 is not disconnected after the transformer 10 is completely demagnetized, then a reverse The reverse current will discharge capacitor 30 through power switch 20. This reverse current reduces the efficiency of the power converter. To avoid reverse current, conventional techniques are described, for example, in U.S. Patent No. 6,995 to Yang et al. As described in "PWM controller for synchronous rectifier of flyback power converter", the resistor 40 and the control circuit 45 are used to turn off the synchronous rectification method of the power switch 20 when the discharge current ID is lower than the critical value. And, in the continuous current mode. During operation, the phase-locked circuit turns off the power switch 20 before the start of the next switching cycle. However, the current sensing circuit and the phase-locked circuit will be produced. Power loss increases the complexity of the system. In addition, a wide-variable frequency system such as a 'resonant p0wer converter' will cause a phase locking problem. SUMMARY OF THE INVENTION The present invention provides a synchronous rectification The circuit 'is suitable for a power converter operating at a fixed frequency and/or a variable frequency. The synchronous rectification circuit of the present invention does not require a current sensing circuit or a phase lock circuit. The synchronous rectification circuit of the present invention includes: a power switch coupled To the transformer (magnetic device) for rectification. The signal generating circuit is configured to generate a control signal according to the magnetization voltage of the transformer, the demagnetization voltage of the transformer and the magnetization period of the transformer. The control signal is coupled to control the power switch to be turned on. The enable period is related to the demagnetization period of the transformer. In addition, the control signal is increased according to the increase of the magnetization voltage. The control signal is reduced according to the decrease of the magnetization period of the transformer. In addition, the control signal responds to the increase of the demagnetization voltage. And reduce. Hyun makes the review board of the invention Further understanding and understanding of the structural features and the achieved efficiencies will be provided with better implementation and detailed explanations, as explained below. [Embodiment] π Referring to the third figure, the preferred embodiment of the synchronous rectification circuit of the present invention is included. Example of a switched power conversion pirate circuit diagram. This synchronous rectification circuit is suitable for a power converter operating at a fixed frequency and/or a variable frequency of 1323551, and does not require a current sensing circuit or a phase-locked circuit. The power switch 20 is coupled to a transformer (magnetic device) 10 for rectification. The switching control circuit 100 generates a control signal s outputted from the output terminal OUT in accordance with the magnetization voltage (Vs) of the transformer 10, the demagnetized voltage, and the magnetized time. The control signal is coupled to turn on the power switch 2〇. The enable period of the control signal S» is related to the demagnetized time of the transformer. When the switch 15 is turned on, a voltage Vos (not shown) is generated between the secondary winding Ns and the power switch 2A. The voltage Vds is related to the magnetization voltage % of the transformer 1Q. The magnetization voltage ^ can be known from equation (3):

Vs = Vds - Vo ^ (3) s開關15斷開(turn 0ff)時,輸出電壓v〇施加到二次側繞組爪 以用於去磁。因此輸出電壓v。與變壓器1G的去磁電壓相關。切換控制 電路100的輸入端S“_合通過電阻器50和55檢測電墨I。二極體 60進-步耗合到二次側繞組⑴以加速對電壓㈣檢測。另—輸入端& 耦合到功率轉換器的輪出以用於接收輸出電壓V。。 變壓器的,等於去磁通量仏可由下列方程式得知, Φ = Β ^ Ac _______ N (5)Vs = Vds - Vo ^ (3) When the s switch 15 is turned off (turn 0ff), the output voltage v〇 is applied to the secondary side winding claws for demagnetization. Therefore, the output voltage v. It is related to the demagnetization voltage of the transformer 1G. The input terminal S of the switching control circuit 100 detects the ink I through the resistors 50 and 55. The diode 60 is stepped into the secondary winding (1) to accelerate the detection of the voltage (4). The other input & The turn-off coupled to the power converter for receiving the output voltage V. The transformer, equal to the demagnetizing flux, is known by the following equation, Φ = Β ^ Ac _______ N (5)

VeVe

VoVo

^-XTCHARGE =^7"XTDISCI^-XTCHARGE =^7"XTDISCI

NsNs

CHARGE (6)CHARGE (6)

V E x T CHARGE N,Nl x v,V E x T CHARGE N, Nl x v,

TT

DISCHARGE (7)DISCHARGE (7)

VeVe

Vs----Vs----

NpNp

Ns Γ 8 ) f中B為通量密度,Ae為變壓器的橫戴面 area) ’ T為變壓器的磁化週期(Tc瞧)或 ^ 壓器的繞組的隨。 週』(Tm_E),N為變 根據方程式⑺*⑻可獲得變壓器1〇的去磁週期㈤赚)。 7 (9)Ns Γ 8 ) f is the flux density, and Ae is the cross-sectional area of the transformer.) 'T is the magnetization period of the transformer (Tc瞧) or the winding of the voltage regulator. Week (Tm_E), N is variable According to equation (7)*(8), the demagnetization period of the transformer 1〇 (five) can be obtained. 7 (9)

Tdischarge =-^-xTcHARGETdischarge =-^-xTcHARGE

Vo 可預由磁化電壓Vs、去磁電壓v。和磁化週期(w) 可重新以方Γ 。根據方程式(3)和(9),去磁週期(τ_瓶) 可重新以方程式(10)表示如下:Vo can be pre-determined by the magnetization voltage Vs and the demagnetization voltage v. And the magnetization cycle (w) can be repeated. According to equations (3) and (9), the demagnetization period (τ_bottle) can be re-expressed as equation (10) as follows:

Tdischarge = V°)Tdischarge = V°)

VoVo

X TcHARGE (10) 根據變壓益l〇的去磁週期(T_RGE)產生控制訊號&的啟用週期。 因此’控制訊號Sw的啟用週期根據磁化電壓Vs的增加而增加。控制訊號 S,的啟用職根據變顧1G魏週期(τ_)的減小而減小。除此之 外’控制訊號S»的啟用週期根據去磁電壓Vg的增加而減小。 請參閱第賴本發”浦控制電路⑽的較佳實施例之電路圖。 如圖所示,切換控制電路100的輸入電路是由運算放大器11〇、12〇,二 極體115、125 ’電壓-電流轉換電路14〇、15〇,阻抗裳置m、1〇2和 遲滯緩衝器電路180所組成。運算放大器削和二極體115形成第一單 位增益緩肺。參考减Vr提供至第—輕料緩魅。運算放大器 120和二極體125形成第二單位增益緩衝器。第二單位增益緩衝器通過 阻抗裝置101和102麵合到輸入端S2。第一單位增益緩衝器的輸出與第 二單位增益緩衝器的輸出結合在-起而產生訊號Vb。訊號%的最小值受 參考訊號VR箝制。訊號VB連接到電壓—電流轉換電路15〇以根據輸出電 壓V。產生第二訊號I2和第三訊號I3。第二訊號Iz的最小值籍制於一限 制值。輸入端S,產生電壓訊號Va,其連接到電壓_電流轉換電路14〇以 根據電壓Vds產生第一訊號L·。另外,遲滯緩衝電路18〇耦合到輸入端 S,以根據變壓器10的磁化週期產生切換訊號Sgn。第一訊號h、第二訊 號h、第三訊號I3和切換訊號Son耦合到訊號產生電路2〇〇以產生控制 訊號S,。請參閱第五、六圖,第五、六圖分別為本發明中電壓_電流轉 換電路140和150之較佳實施例的電路圖。請參閱第五圖,電壓Va 丄奶551 到運算放大器141。運算放大器141連接到電晶體143和電阻器142以 根據電壓VA產生電流Im。電流U連接到電晶體145和146以產生第 —訊號L·。請參閱第六圖,電壓VB連接到運算放大器151。運算放大器 151連接到電晶體153和電阻器152 ’以根據電壓Vb產生電流Ii53。電流 I!53連接到電晶體155和156以產生電流1156。電流1,56進一步連接到電 晶體157、158和159以用於產生第二訊號ι2和第三訊號丨3。因此第一 電流[根據電壓VA而產生。第二訊號ι2和第三訊號h根據電壓Vb而產 生。X TcHARGE (10) Generates the activation period of the control signal & according to the demagnetization period (T_RGE) of the transformer. Therefore, the enable period of the control signal Sw increases in accordance with an increase in the magnetization voltage Vs. The activation of the control signal S, is reduced according to the decrease of the 1G Wei period (τ_). In addition to this, the enable period of the 'control signal S» is decreased in accordance with the increase in the demagnetization voltage Vg. Please refer to the circuit diagram of the preferred embodiment of the sigma control circuit (10). As shown, the input circuit of the switching control circuit 100 is operated by the operational amplifiers 11〇, 12〇, the diodes 115, 125' voltage-current conversion The circuit 14〇, 15〇, the impedance skirt m, 1〇2 and the hysteresis buffer circuit 180. The operational amplifier and the diode 115 form a first unit gain slow lung. The reference minus Vr is provided to the first light weight The second unity gain buffer is formed by the operational amplifier 120 and the diode 125. The second unity gain buffer is coupled to the input terminal S2 through the impedance devices 101 and 102. The output of the first unity gain buffer and the second unity gain The output of the buffer is combined to generate a signal Vb. The minimum value of the signal % is clamped by the reference signal VR. The signal VB is connected to the voltage-current conversion circuit 15 to generate the second signal I2 and the third signal according to the output voltage V. I3. The minimum value of the second signal Iz is determined by a limit value. The input terminal S generates a voltage signal Va, which is connected to the voltage_current conversion circuit 14 to generate a first signal L· according to the voltage Vds. The buffer circuit 18 is coupled to the input terminal S to generate the switching signal Sgn according to the magnetization period of the transformer 10. The first signal h, the second signal h, the third signal I3, and the switching signal Son are coupled to the signal generating circuit 2 to generate Control signal S. Please refer to the fifth and sixth figures, and the fifth and sixth figures are respectively circuit diagrams of the preferred embodiments of the voltage-current conversion circuits 140 and 150 of the present invention. Please refer to the fifth figure, voltage Va 丄 milk 551 To the operational amplifier 141. The operational amplifier 141 is connected to the transistor 143 and the resistor 142 to generate a current Im according to the voltage VA. The current U is connected to the transistors 145 and 146 to generate a first signal L. See Fig. 6, voltage VB Connected to operational amplifier 151. Operational amplifier 151 is coupled to transistor 153 and resistor 152' to generate current Ii53 from voltage Vb. Current I! 53 is coupled to transistors 155 and 156 to generate current 1156. Current 1, 56 is further connected to The transistors 157, 158, and 159 are used to generate the second signal ι2 and the third signal 丨 3. Therefore, the first current [is generated according to the voltage VA. The second signal ι2 and the third signal h are generated according to the voltage Vb.

請參閱第七圖本發明的訊號產生電路2〇〇的較佳實施例之電路圖。 電容器220用來決定控制訊號S»的週期。第一開關21〇耦合在第一訊號 Ιι與電容器220之間。第二開關215耦合在第二訊訊號ι2與電容器220 之間。第一比較器230耦合到電容器220以在電容器220的電壓高於第 一參考電壓VR1時,在第一比較器23〇的輸出端產生第一控制訊號。由Please refer to the seventh circuit diagram of a preferred embodiment of the signal generating circuit 2 of the present invention. Capacitor 220 is used to determine the period of control signal S». The first switch 21 is coupled between the first signal 电容器 and the capacitor 220. The second switch 215 is coupled between the second signal ι2 and the capacitor 220. The first comparator 230 is coupled to the capacitor 220 to generate a first control signal at the output of the first comparator 23A when the voltage of the capacitor 220 is higher than the first reference voltage VR1. by

反相器231和AND閘232形成的輸出電路經耦合以根據第一控制訊號的 啟用和切換訊號5(«的禁用在AND閘232的輸出端產生第一放電訊號。 切換讯號S™進一步經耦合以控制第一開關21〇。第一開關21〇根據切換 訊號Son的啟用而導通。第一放電訊號經耦合以控制第二開關215。第二 開關215根據第-放電訊號的啟用而導通。第一訊號L用於對電容器 220進行充電。第二訊號h用於對電容器22〇進行放電。第三訊號Ia 進一步耗合到第一訊號Ιι以減小第一訊號h的值。 klx 電壓Vds決定第一訊號h。第―The output circuit formed by the inverter 231 and the AND gate 232 is coupled to generate a first discharge signal at the output of the AND gate 232 according to the activation of the first control signal and the switching signal 5 (the disablement of the switching gate STM). Coupling to control the first switch 21A. The first switch 21A is turned on according to the activation of the switching signal Son. The first discharge signal is coupled to control the second switch 215. The second switch 215 is turned on according to the activation of the first discharge signal. The first signal L is used to charge the capacitor 220. The second signal h is used to discharge the capacitor 22A. The third signal Ia is further consumed by the first signal 以ι to reduce the value of the first signal h. klx voltage Vds Decide on the first signal h.

Yds Rl42 訊號l·可以方程式(11)表示為-----------------------(11) 輸出電壓V。決定的第二訊號l2和第三訊號h可以方程式⑽、⑴) 表示如下: h = k2 > Vo < - Rl52 sS--- L· = k3 x Vo RlS2 電容器220上的電壓可以方程式⑽表示為: kl x Yds (12) (13)Yds Rl42 signal l· can be expressed as equation (11) as ----------------------- (11) Output voltage V. The determined second signal l2 and the third signal h can be expressed by the following equations (10), (1)): h = k2 > Vo < - Rl52 sS--- L· = k3 x Vo RlS2 The voltage on the capacitor 220 can be expressed by equation (10) For: kl x Yds (12) (13)

Vc = II b c x Ton =Vc = II b c x Ton =

Rl42 kl^V〇Rl42 kl^V〇

xT〇N (14)^23551 、其中W、k2和k3為常數,例如阻抗裝置的比率和/或電流鏡的增 益’C為電容器220的電容值,T()N為切換訊號Sw的啟用時間(電容器 220的充電時間),Rl42為電阻器142的電阻值,“為電阻器152的電 I5且值。電容器220的放電時間T〇FF由下式表示為:xT〇N (14)^23551, where W, k2, and k3 are constants, such as the ratio of the impedance device and/or the gain of the current mirror 'C is the capacitance value of the capacitor 220, and T()N is the activation time of the switching signal Sw (Charging time of the capacitor 220), Rl42 is the resistance value of the resistor 142, "is the electric I5 of the resistor 152 and the value. The discharge time T〇FF of the capacitor 220 is expressed by the following equation:

Toff =Toff =

Cx Vc C x Vc h k2xCx Vc C x Vc h k2x

Vo Rl52 (15)Vo Rl52 (15)

通過適當選擇Id、k2、k3、“和Rl52,電容器22Q的放電時間 可根據方程式(14)和(15)重新整理為方程式(16By appropriately selecting Id, k2, k3, "and Rl52, the discharge time of capacitor 22Q can be rearranged to equation (16) according to equations (14) and (15).

Vds Vo Toff = K x—--xTon Vo (16) 因此電容器220的放電時間T〇F#變壓器1〇的去磁週期7_咖相 關。去磁週期Tdischarge可以方程式(17)表示為: TDISCHARGE = K :Vds Vo Toff = K x—xTon Vo (16) Therefore, the discharge time of the capacitor 220 T〇F# transformer 1〇 demagnetization period 7_caffe correlation. The demagnetization period Tdischarge can be expressed by equation (17) as: TDISCHARGE = K :

VsVs

X TcHARGE 其中K為常數。 第二比較器240耦合到電容器220以用於在電容器 ---------(17) 220的電壓高於 第一參考電壓VR2時’在第二比較器240的輸出端產生第二控制訊號。X TcHARGE where K is a constant. The second comparator 240 is coupled to the capacitor 220 for generating a second at the output of the second comparator 240 when the voltage of the capacitor --- (17) 220 is higher than the first reference voltage VR2 Control signal.

由反相器241和腦250形成的另一輸出電路經麵合以根據第二控制 訊號的啟用以及切換訊號Son的禁用而在AND閘25〇的輸出端產生第二 放電訊號。控制訊號S»可根據第—放電訊號或第二放電訊號而產生。在 此實施例中,第二放電訊號用於產生控制訊號&。第二參考電壓〜高 於第-參考電壓VR1。因此’在變壓器1()進行磁化之前,控制訊號&禁 用,且電源開關20斷開。 π 參看方程式(16)和第八圖的同步整流電路的波形,控制訊號&的 週期由電容器22G (電壓V。)的放電時間T()FF控制。控制訊號&的週期 根據電容H 220的充電時間Tdn的減小而減小。控制訊號Sw的週期根據 輸出電壓V。的減小而增加。充電時間T〇N由切換魏s〇n的啟㈣間來控 制。切換訊號Son的啟用時間來控制與磁化週期(Tcharge)相關。 ^^551 國專ίΐΐΓΓ—具掏紐、進步性及可供產業上者,應符合我 准專她提出發明術請,祈釣局早日踢 私明宭所述者’僅為本發明—較佳實施例而已,並非用來限定本 發月貫就滅’故舉凡依本發明申請專利細 及精神所权解魏娜飾,觸包胁树狀帽翻=内特徵 1323551 【圖式簡單說明】 第一圖為習知具有同步整流器的功率轉換器之電路圖。 第二A與第二B圖分別為連續電流模式和非連續電流模式的波形 圖。 第二圖為包含本發明同步整流電路較佳實施例的切換式功率轉換 器之電路圖。 、 第四圖為本發明之切換控制電路之較佳實施例的電路圖。 第五圖和第六圖分別為為本發明之電壓_電流轉換電路之較佳實施 例的電路圖。 第七圖為本發明之訊號產生電路之較佳實施例的電路圖。 第八圖為本發明較佳實施例的同步整流電路的波形圖。Another output circuit formed by the inverter 241 and the brain 250 is coupled to generate a second discharge signal at the output of the AND gate 25A in accordance with the enable of the second control signal and the disable of the switching signal Son. The control signal S» can be generated according to the first discharge signal or the second discharge signal. In this embodiment, the second discharge signal is used to generate a control signal & The second reference voltage ~ is higher than the first reference voltage VR1. Therefore, before the transformer 1 () is magnetized, the control signal & disable, and the power switch 20 is turned off. π Referring to the waveforms of the synchronous rectification circuits of equations (16) and 8, the period of the control signal & is controlled by the discharge time T() FF of the capacitor 22G (voltage V.). The period of the control signal & is reduced in accordance with the decrease in the charging time Tdn of the capacitor H220. The period of the control signal Sw is based on the output voltage V. The decrease is increased. The charging time T〇N is controlled by switching between the start and the fourth (four). The enable time of the switching signal Son is controlled to be related to the magnetization period (Tcharge). ^^551 Guozhan ΐΐΓΓ ΐΐΓΓ 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏 掏The embodiment is not intended to limit the use of the present invention. The invention is based on the fineness and spirit of the patent application of the present invention. The Wei Na decoration, the touch of the tree cap flip = the internal feature 1323551 [Simple description of the figure] It is a circuit diagram of a conventional power converter with a synchronous rectifier. The second A and second B graphs are waveform diagrams of the continuous current mode and the discontinuous current mode, respectively. The second figure is a circuit diagram of a switched power converter incorporating a preferred embodiment of the synchronous rectification circuit of the present invention. The fourth figure is a circuit diagram of a preferred embodiment of the switching control circuit of the present invention. The fifth and sixth figures are circuit diagrams of a preferred embodiment of the voltage-current conversion circuit of the present invention, respectively. Figure 7 is a circuit diagram of a preferred embodiment of the signal generating circuit of the present invention. Figure 8 is a waveform diagram of a synchronous rectification circuit in accordance with a preferred embodiment of the present invention.

【主要元件符號說明】 10變壓器 30電容器 15開關 40電阻器 55電阻器 100控制電路 110運算放大器 101阻抗裝置 140電壓-電流轉換電路 141運算放大器 143電晶體 146電晶體 2〇電源開關 45控制電路 25二極體 50電阻器 60二極體 102阻抗裝置 125二極體 115二極體 120運算放大器 142電阻器 145電晶體 ^0電壓·電流轉換電路 1323551[Main component symbol description] 10 transformer 30 capacitor 15 switch 40 resistor 55 resistor 100 control circuit 110 operational amplifier 101 impedance device 140 voltage-current conversion circuit 141 operational amplifier 143 transistor 146 transistor 2 power switch 45 control circuit 25 Diode 50 Resistor 60 Diode 102 Impedance Device 125 Diode 115 Diode 120 Operational Amplifier 142 Resistor 145 Transistor ^0 Voltage · Current Conversion Circuit 1323551

151運算放大器 153電晶體 156電晶體 158電晶體 180遲滞緩衝器電路 210第一開關 220電容器 231反向器 240第二比較器 250 AND 閘 12第二訊號 Ic充電電流 1143電流 1156電流 NS 二次側繞組 S2輸入端 Sw控制訊號 Vb電壓 V〇輸出電壓 VR1第一參考電壓 Vs磁化電壓 GND接地端 152電阻器 155電晶體 157電晶體 159電晶體 200訊號產生電路 215第二開關 230第一比較器 232 AND 閘 241反向器 I!第一訊號 13第三訊號 Id放電電流 Il53電流 Np —次側繞組 Si輸入端 S〇N切換訊號 vA電壓 Ve電壓 VR參考訊號 VR2第二參考電壓 OUT輸出端 13151 operational amplifier 153 transistor 156 transistor 158 transistor 180 hysteresis buffer circuit 210 first switch 220 capacitor 231 inverter 240 second comparator 250 AND gate 12 second signal Ic charging current 1143 current 1156 current NS secondary Side winding S2 input terminal Sw control signal Vb voltage V 〇 output voltage VR1 first reference voltage Vs magnetization voltage GND ground terminal 152 resistor 155 transistor 157 transistor 159 transistor 200 signal generation circuit 215 second switch 230 first comparator 232 AND gate 241 inverter I! first signal 13 third signal Id discharge current Il53 current Np - secondary winding Si input terminal S〇N switching signal vA voltage Ve voltage VR reference signal VR2 second reference voltage OUT output terminal 13

Claims (1)

4月尹修正替換頁 ->- ;1 十、申請專利範圍: 1. 一種功率轉換器的同步整流電路,其包括: 一電源開關’其相合到—變壓器以用於整流;以及 "刀換控寺丨电路,其根據該變壓器的一磁化電壓、該變壓器的一去磁 電廢和該Μ器的—磁化週期產生—控制訊號,其中該控制訊號經搞合 以控制該電源開關’且該控制訊號的—啟用週期與該魏器的一去磁週 期相關。 2·如申β月專利範圍帛i項所述之同步整流電路,其中雜制訊號的該啟 用週期根據該磁化電壓的增加而増加,該控制訊號的該啟用週期根據該 兔壓的該磁化週期減小而減小,該控制訊號的該啟用週期相應於該去 磁電壓的增加而減小。 3·如U利範U第1項所述之同步整流電路’其巾該切換控制電路 括: -輸入電路,其產生—第__訊號、—第二訊號、—第三訊號和—切 換訊號;以及 一汛號產生電路,其耦合該一輸入電路以產生該控制 訊號; 其中該第一訊號與該變壓器的電壓相關,該第二訊號、該第 二訊號與該功率轉換器的輸出電壓相關,且該切換訊號根據該變 壓器的該磁化週期而產生。 4.如申請專利顧S3項所述的畔整親路,其巾魏號產生電路勺 括: 一電容器; 一第一開關’其耦合在該第一訊號與該一電容器之間; 一第二開關,其耦合在該第二訊號與該電容器之間; 一第一比較器,其耦合到該電容器,並在該電容器的電壓高於 第一參考電壓時產生一第一控制訊號 ;以及 一輸出電路,其經耦合以根據該第一控制訊號的啟用和該切換訊 號的禁用而產生一第一放電訊號; 其中該第一開關根據該切換訊號的啟用而導通,該第二開關根據 該第一放電訊號的啟用而導通;該第一訊號對該電容器進行充電,該 第二訊號對該電容器進行放電,且該第三訊號進一步耦合到該第一訊 號以減小該第一訊號的值。 5. 如申請專利範圍第4項所述的同步整流電路’其中該訊號產生電路進 一步包括: 一第二比較器,其耦合到該電容器以在該電容器的該電壓高於— 第二參考電壓時產生一第二控制訊號,其中該控制訊號是根據該第— 放電訊號或第二放電訊號而產生。 6. 如申請專利範圍第1項所述的同步整流電路,其中該電源開關在該 變壓器磁化之前斷開。 7. 如申凊專利範圍第3項所述的同步整流電路,其中該第二訊號的最 小值被箝位在一限制值。 8. —種功率轉換器的同步整流裝置,其包括: 一電源開關,其耦合到一磁性裝置用於整流,·以及 一切換控制電路’其根據該磁性裝置的一磁化電壓和該磁性裝置的 磁化週期產生一控制訊號,该控制訊號經輕合控制該電源開關; 其中該控制訊號的一啟用週期與該磁性裝置的一去磁週期相關。 9. 如申請專利範圍第8項所述的同步整流裝置,其中該磁性農置的一 去磁電壓進一步用於確定該控制訊號的該啟用週期。 10·如申請專利範圍第8項所述的同步整流裝置,其中該控制訊號的該 啟用週期根據該磁化電壓的增加而增加,該控制訊號的該啟用週期根據 該磁性裝置的該魏職_小喊小,且該控籠號的該則週期根 據該去磁電壓的增加而減小。 11.如申請專利範圍第8項所述的同步整流裝置,其中該電源開關在該磁性 裝置磁化之前斷開。April Yin Correction Replacement Page->-;1 X. Patent Application Range: 1. A synchronous rectifier circuit for a power converter, comprising: a power switch 'which is coupled to a transformer for rectification; and a "knife a control temple circuit, which generates a control signal according to a magnetization voltage of the transformer, a demagnetization waste of the transformer, and a magnetization period of the transformer, wherein the control signal is engaged to control the power switch' The enable period of the control signal is related to a demagnetization period of the Weiler. 2. The synchronous rectification circuit of claim 7, wherein the enable period of the miscellaneous signal is increased according to the increase of the magnetization voltage, and the enable period of the control signal is according to the magnetization period of the rabbit voltage Decreasing and decreasing, the enable period of the control signal decreases corresponding to an increase in the demagnetization voltage. 3. The synchronous rectification circuit as described in U.S. U. 1, the switch control circuit includes: - an input circuit, which generates - a __ signal, a second signal, a third signal, and a - switching signal; And a nickname generating circuit coupled to the input circuit to generate the control signal; wherein the first signal is related to a voltage of the transformer, and the second signal and the second signal are related to an output voltage of the power converter, And the switching signal is generated according to the magnetization period of the transformer. 4. As claimed in the patent application S3, the towel generation circuit includes: a capacitor; a first switch 'coupling between the first signal and the capacitor; a second a switch coupled between the second signal and the capacitor; a first comparator coupled to the capacitor and generating a first control signal when the voltage of the capacitor is higher than the first reference voltage; and an output a circuit that is coupled to generate a first discharge signal according to the activation of the first control signal and the disable of the switching signal; wherein the first switch is turned on according to the activation of the switching signal, and the second switch is based on the first The first signal transmits the capacitor, the second signal discharges the capacitor, and the third signal is further coupled to the first signal to reduce the value of the first signal. 5. The synchronous rectification circuit of claim 4, wherein the signal generation circuit further comprises: a second comparator coupled to the capacitor to be higher than the second reference voltage when the voltage of the capacitor is higher than the second reference voltage A second control signal is generated, wherein the control signal is generated according to the first discharge signal or the second discharge signal. 6. The synchronous rectification circuit of claim 1, wherein the power switch is turned off before the transformer is magnetized. 7. The synchronous rectification circuit of claim 3, wherein the minimum value of the second signal is clamped to a limit value. 8. A synchronous rectifying device for a power converter, comprising: a power switch coupled to a magnetic device for rectification, and a switching control circuit 'based on a magnetizing voltage of the magnetic device and the magnetic device The magnetization cycle generates a control signal, and the control signal is lightly controlled to control the power switch; wherein an enable period of the control signal is related to a demagnetization period of the magnetic device. 9. The synchronous rectifying device of claim 8, wherein a demagnetization voltage of the magnetic farm is further used to determine the activation period of the control signal. The synchronous rectifying device of claim 8, wherein the activation period of the control signal is increased according to the increase of the magnetization voltage, and the activation period of the control signal is small according to the Wei apparatus of the magnetic device. The shout is small, and the period of the control cage number is decreased according to the increase of the demagnetization voltage. 11. The synchronous rectifying device of claim 8, wherein the power switch is turned off before the magnetic device is magnetized.
TW95135703A 2006-09-27 2006-09-27 Synchronous rectification circuit for power converters TWI323551B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95135703A TWI323551B (en) 2006-09-27 2006-09-27 Synchronous rectification circuit for power converters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95135703A TWI323551B (en) 2006-09-27 2006-09-27 Synchronous rectification circuit for power converters

Publications (2)

Publication Number Publication Date
TW200816613A TW200816613A (en) 2008-04-01
TWI323551B true TWI323551B (en) 2010-04-11

Family

ID=44769154

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95135703A TWI323551B (en) 2006-09-27 2006-09-27 Synchronous rectification circuit for power converters

Country Status (1)

Country Link
TW (1) TWI323551B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555320B (en) * 2014-01-27 2016-10-21 葉文中 Method for providing switch-timing, synchronous rectifier controller, and adaptive timing controller

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558077B (en) 2015-08-10 2016-11-11 杰力科技股份有限公司 Power conversion apparatus
CN108075664B (en) * 2016-11-07 2020-06-26 台达电子工业股份有限公司 Converter and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555320B (en) * 2014-01-27 2016-10-21 葉文中 Method for providing switch-timing, synchronous rectifier controller, and adaptive timing controller

Also Published As

Publication number Publication date
TW200816613A (en) 2008-04-01

Similar Documents

Publication Publication Date Title
TWI356570B (en) Offline synchronous switching regulator
CN104660022B (en) The system and method that overcurrent protection is provided for supply convertor
CN103944392B (en) For the secondary controller used in synchronous flyback converter
Tang et al. A bridgeless totem-pole interleaved PFC converter for plug-in electric vehicles
Hsieh et al. An interleaved flyback converter featured with zero-voltage transition
CN107769567A (en) Burst mode control in resonance converter
US7570497B2 (en) Discontinuous quasi-resonant forward converter
US8988901B2 (en) Switching power supply device
JP4013898B2 (en) Power supply device startup method, power supply device startup circuit, and power supply device
US7440298B2 (en) Synchronous rectification circuit for power converters
US8072787B2 (en) Synchronous rectifying for soft switching power converters
TW200917637A (en) Synchronous rectifying method and apparatus
TWI374603B (en) Synchronous rectifying circuit of soft switching power converter
TW201136123A (en) Bidirectional signal conversion
US8115466B2 (en) Converter and driving method thereof
TW202038539A (en) Synchronous rectifier control for switched mode power supplies and method therefor
TWI323551B (en) Synchronous rectification circuit for power converters
US20050041440A1 (en) Switching power supply circuit capable of reducing switching loss and control method used therein
CN111585441B (en) Control system and method for primary side regulation active clamping flyback converter
JP2011050218A (en) Dc power supply device
KR20170049503A (en) Method for controlling a battery charger having series resonant converter
CN110868081A (en) Special power supply for ozone generator
TW525337B (en) Method to start a switching power-supply and said switching power-supply with a starting-circuit
US20080192512A1 (en) Direct current to direct current converter
JP2008086114A (en) Switching power supply and voltage detection circuit