TWI323320B - Functional damping buffer - Google Patents

Functional damping buffer Download PDF

Info

Publication number
TWI323320B
TWI323320B TW96139076A TW96139076A TWI323320B TW I323320 B TWI323320 B TW I323320B TW 96139076 A TW96139076 A TW 96139076A TW 96139076 A TW96139076 A TW 96139076A TW I323320 B TWI323320 B TW I323320B
Authority
TW
Taiwan
Prior art keywords
damper
function
cylinder
flow
functionally
Prior art date
Application number
TW96139076A
Other languages
Chinese (zh)
Other versions
TW200918784A (en
Inventor
Chen Yuan Dung
Original Assignee
Chen Yuan Dung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Yuan Dung filed Critical Chen Yuan Dung
Priority to TW96139076A priority Critical patent/TWI323320B/en
Publication of TW200918784A publication Critical patent/TW200918784A/en
Application granted granted Critical
Publication of TWI323320B publication Critical patent/TWI323320B/en

Links

Landscapes

  • Fluid-Damping Devices (AREA)

Description

1323320 九、發明說明: 【發明所屬之技術領域】 本發明係有關·於一種緩衝器 主動設定阻尼函數之緩衝器。 【先前技術】1323320 IX. Description of the Invention: [Technical Field] The present invention relates to a buffer for actively setting a damping function in a buffer. [Prior Art]

特別係有關於一種可 按,緩衝器係用以吸收動能或緩衝物件撞擊時所產 生的振動,具有平順之減速效果,可應用於高速運作的 自動化機器’如工業設備、電子機械與運輸設備等。傳 統的單管式油壓或氣壓,緩衝器結構整個行程中只有_ 固定截面積的内流道孔,所以於壓縮或回復過程中僅能 提供-單-阻尼值,擊後阻力急、速抵冑,其後隨著行 進速度變小阻力也愈會逐漸變小,這種先硬後軟的反力 特性’產生了極大的反力峰值,是最為人話病的缺點。 再者,習知緩衝器的阻尼值為固定值,所以只能被迫配 合負載行程之大小選擇使用大阻尼或小阻尼,來取得較 佳的性能表現。但因其結構簡單製造成本低廉,目前在 低速衝擊等較低階應用領域仍可見。 因此發展出中高速緩衝器,其多採用雙管多孔或溝 槽結構藉以產生多段阻尼變化的方式改善其性能,如美 國專利5,566,794號專利所揭示者。内套管沿著不同的 行程位置對應複數個油孔或溝槽,當行程前進時,出油 孔或出油溝槽會被活塞逐一戴斷導致出油孔總面積呈 跳躍式階梯狀變小,雖然有先軟後硬的效果,但其阻力 效果仍呈現跳躍式多段波浪狀變化。另内套管中的活塞 5 役合元件(O-ring)長期含、务 種不規則幾何束制的:θ承文内壁中的多孔或溝槽這 漏,而降低緩衝效果:]磨往往易致磨損產生洩 維你Λ 土 s ^ 使其零件壽命減短及拇Λ % ί成本。再者,由於其結構及加工程序複雜“後續 问成本也是使用者的一 雜,相對的 【發明内容】 負擔。 本發明之主要目的在 ^ ^ . 係在於解決上述問題,在盘值 緩衝器,不僅可以提Λ 種可主動設定阻尼函數之 “…縮行程中呈現先軟後硬且“ 無波的元美緩衝阻力。更 硬且連續 &供相應阻尼函數以符合需求。 戰主動的 本發月之—人一目的係在於提供一種可函數 :衝在回復行程中大幅增加内流量,以縮短 緩衝器面對動態負載時的作用空窗期。 數阻尼 案來本實發現明:。1的及解決其技術問題是採用以下技術方 、,。义據本發明揭示之一可主動設定阻尼函數 之緩衝器,主要包今一、士 土 致 罟包3—久缸、一活塞桿以及複數個流量函 柱該活塞桿之一端係為一活塞盤面,可活動於該汽缸 内_<*亥些流量函數柱係設置該汽缸内該些流量函數柱係於 不同行程位置具有如函數般之截面積變化。其中,該活塞盤 面係具有複數個内流道穿孔,當該活塞盤面活動於該汽红内 在不同行程位其内流道穿孔戴面積為固定值,但置其内的流 ^柱截面積卻具有如函數般的截面積變化,兩截面積相 減為產生了内流道截面積-行程函數,相應產生了阻尼-行程 ^23320 函數,也就是說藉由控制流量函數柱之截面積—行程函數即 可決定緩衝器之阻尼-行程函數,這是本發明,,可函數,,之 意函。以目前機械數值控制控制車床加工能力於車製時可 輕易將所需的内流道-行程函數,,寫入,,流量函數柱,產 生相應的阻尼.行程函&。藉此可主動創造出具不同阻尼_ 行程函數值變化之特殊緩衝器或推進器,不再受限單 孔、多孔及溝槽式等傳統内流道結構只能,,被迫接受” # 其既有之阻尼函數。 本發月的目的及解決其技術問題還可採用以下技術 措施進一步實現。 在前述的可函數阻尼緩衝器中,該活塞桿係可具有可 伸縮外露於該汽缸之桿部,每一流量函數柱係具有一第一端 面與帛一端面’可分別固定於汽缸兩端,亦可單端固定。 在前述的可函數阻尼緩衝器中,該些流量函數柱係可 模組化裝設於該汽缸内。 在前述的可函數阻尼緩衝器中,該些流量函數柱於不 同行程位置其載面積係可主動設定各種函數(線性函數、非 ' 線性函數、階梯函數)變化,因應負载需求甚至可主動限制 . 衝擊物緩衝時之運動型態。 在前述的可函數阻尼緩衝器中,可另包含有複數個逆 止閥,係設於該活塞盤面。 在前述的可函數阻尼緩衝器中,每—逆止閥係可包含 -阻塞球、一彈力調整螺釘以及在該阻塞球與該彈力調整螺 釘之間之-逆止彈簧,該彈力調整螺釘係具有一軍向流道 7 孔。 在别述的可函數阻尼 複數個通孔,每一通孔一’° ’該活塞盤面係可具有 另一山达 、孔之一端為—錐形收斂孔,每一通孔之 另 鳊為一具陰螺纹之社人了丨 ,以供該彈力調整螺釘調整逆 彈署彈力時鎖入固定用。 在則述的可函數JJ且圮炫你^丄 数卩尼&衝g巾,該些單向流道孔係可 為六角形孔與習知之角 * U扳手尺寸相符,安裝時只需使用六 ρβ 4藉由鎖人深度設定逆止彈箸之起始彈力。 〃在前述的可函數阻尼緩衝器中,當活塞盤面兩側壓力 千衡時’逆止彈簧之起始彈力會將阻塞球推向收歛孔形成閉 鎖。緩衝器於壓縮行程時阻塞球的彈普側流體呈正壓會將阻 塞球推向收欽孔側致你阳定1 Μ j致使阻塞球與收歛孔錐面相亙干涉產生 止漏的效果。緩衝器於回復行程時阻塞球之收歛孔側流體呈 正壓’其合力遠超過由逆止彈簧所提供的起始彈力,所以阻 塞球會往彈簧側推壓打開流道,收敵孔側的流體即順勢流經 由彈力調整螺釘的單向流道孔流人活塞的L可大幅增 加回復行程時的内流量,有效縮短回復時間。 曰 在前述的可函數阻尼緩衝器中,該活塞桿係可具有可 伸縮外露於該汽缸之桿部,該些錐形收敛孔係朝向該桿部。 在前述的可函數阻尼緩衝器中,可另包含有一磨縮彈 簧,設於該汽缸與該活塞桿之間,可以位在汽缸外部,或可 設於汽缸内部。 在前述的可函數阻尼緩衝器中,該汽紅與該活塞桿可 各設有-第-擋止環與一第二樓止環’用以限制該外部壓縮 1323320 彈簧之兩端。 【實施方式】 依據本發明之一具體實施例並配合第丨及2圖揭 示一種可函數阻尼緩衝器,可運用於特定的壓縮緩衝器 或推進器,本發明以緩衝器為例詳述如後。 ,首先,請參閱第i及2圖所示’一種可函數阻尼緩 衝器100主要包含-汽缸110、一活塞桿12〇以及複數個流 量函數柱mA。如第2及3圖所示,該汽紅11〇内具有一 容置空間111以及-中央通孔112,該容置空間m係可供 容置該活塞桿12〇之活塞盤面121活動以及該些流量函數柱 ΠΟΑ之固定,該中央通孔112係供該活塞桿12〇活動穿設, 其中該中央其内設有活塞桿㈣113, #該活塞桿 120活動時可容置空間U1内的流趙不致由中央通孔ιΐ2與 活塞桿1 2 0之間洩漏。 請參閱第2及3圖所示,該活塞桿⑶之—端係為一活 塞盤面m,當該活塞桿12G作動時,該活塞盤面i2i可活 動:該汽缸m内。該活塞盤面121係嵌入於該汽缸"〇之 該谷置空間111 ’活塞盤面121在與汽虹11〇接觸之外徑面 上係設有-個以上的溝槽以容置一活塞。型環126用以分隔 活塞盤面上下方之流趙不使產生相互間的泡漏。請參閱第2 圖所示,該活塞桿12〇 (另1係為可伸縮外露於該汽虹 110之桿部123 ,作為受力端或作用端。 5月參閱第3圖所示,該此、;&县 二机里函數柱130Α係設置該汽缸 110内,該些流量函數柱】3GA係具有連續變化之截面積。 9 132.3320 該些流量函數柱13〇A所稱之流量函數,係表示在該政流量 函數柱⑽具有的截面積·行桎函數其與内流道穿孔m截 面積差值,也就是内流道載面積,這是決定内流道流量最重 要的參數。就外型而言可為錐形面(―次函數)' 孤形面(二次 函數)...等各種變化。每-流量函數柱13qa係具有—第一端In particular, there is a type of damper that absorbs vibrations generated by kinetic energy or shock absorbers, has a smooth deceleration effect, and can be applied to high-speed operation of automated machines such as industrial equipment, electronic machinery, and transportation equipment. . The traditional single-tube oil pressure or air pressure, the buffer structure has only _ fixed cross-sectional area of the inner flow passage hole in the whole stroke, so only the - single-damping value can be provided during the compression or recovery process, and the resistance after hitting is fast and fast.胄 胄 胄 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着 随着Moreover, the damping value of the conventional buffer is a fixed value, so it can only be forced to match the magnitude of the load stroke to select a large damping or a small damping to achieve better performance. However, due to its simple structure and low manufacturing cost, it is still visible in lower-end applications such as low-speed impact. Thus, a medium and high speed snubber has been developed which utilizes a double tube porous or grooved structure to improve the performance of the multi-stage damper change, as disclosed in U.S. Patent No. 5,566,794. The inner sleeve corresponds to a plurality of oil holes or grooves along different stroke positions. When the stroke advances, the oil outlet hole or the oil discharge groove is broken by the piston one by one, and the total area of the oil outlet hole is slightly stepped and stepped. Although there is a soft and hard effect first, the resistance effect still shows a hopping multi-segment wavy change. In addition, the piston 5 in the inner casing (O-ring) has long-term containment and irregular geometrical bundles: the leakage of the porous or groove in the inner wall of the θ bearing, and the buffering effect is reduced: Causes wear and tear, and you can reduce the life of your parts and the cost of your thumb. Furthermore, due to the complexity of its structure and processing procedures, "the subsequent cost is also a user's miscellaneous, and the corresponding [invention] burden. The main purpose of the present invention is to solve the above problem, in the disk buffer, Not only can you propose a kind of active damping function that can be set to “soften and harder” and “no-wave elemental buffering resistance.” Harder and continuous & for the corresponding damping function to meet the demand. The month-to-person purpose is to provide a function: the impulse increases the internal flow in the recovery stroke to shorten the effect of the buffer on the dynamic load. The number of damping cases is found to be: And solving the technical problem is to adopt the following technical formula, according to one of the disclosed inventions, the buffer capable of actively setting the damping function, mainly including the present one, the Shituo Zhibao 3-long cylinder, a piston rod and a plurality of One end of the piston rod is a piston disk surface, which can be moved in the cylinder. _<*Hai flow function column system sets the flow function column in the cylinder to different stroke positions The utility model has a cross-sectional area change as a function, wherein the piston disk surface has a plurality of inner flow passage perforations, and when the piston disk surface is active in the steam red, the inner perforation wearing area is fixed at different stroke positions, but The cross-sectional area of the flow column in the flow has a cross-sectional area change as a function, and the cross-sectional area of the two cross-sections is reduced to generate the cross-sectional area-stroke function of the inner flow channel, correspondingly generating a damping-stroke ^23320 function, that is, by Control the cross-sectional area of the flow function column—the stroke function determines the damping-stroke function of the buffer. This is the invention, the function, and the meaning of the function. It is easy to control the lathe processing ability with the current mechanical numerical control. The required internal flow path-stroke function, write, and flow function column are generated to generate the corresponding damping. Stroke function &; thereby actively creating a special buffer or thruster with different damping _ stroke function value changes Conventional internal flow path structures such as single holes, porous and grooved are no longer restricted, and are forced to accept "# its own damping function. The purpose of this month and the resolution of its technical problems can be further realized by the following technical measures. In the foregoing functionally damped damper, the piston rod system may have a rod portion that is telescopically exposed to the cylinder, and each flow function column has a first end surface and a first end surface that are respectively fixed to the two ends of the cylinder. Can also be fixed at one end. In the aforementioned functionally damped buffer, the flow function columns can be modularly mounted in the cylinder. In the aforementioned function-function damper buffer, the load-bearing function of the flow function column at different stroke positions can actively set various functions (linear functions, non-linear functions, step functions), and can be actively limited according to load requirements. The type of motion when the impact is buffered. In the foregoing functionally damper damper, a plurality of check valves may be further included on the piston disk surface. In the foregoing functionally damper damper, each of the check valve systems may include a blocking ball, a spring adjusting screw, and a check valve between the blocking ball and the elastic adjusting screw, the elastic adjusting screw having One army has 7 holes in the runner. In other embodiments, a plurality of through holes can be damped, each of the through holes being '°'. The piston disk surface can have another mountain, one end of the hole is a conical convergence hole, and each of the through holes is a yin The threaded person was stunned for the elastic adjustment screw to adjust the rebound force to lock in the fixed position. In the description of the function JJ and 圮 你 丄 丄 丄 & & & & & & & & & & & & & & & & & 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲Six ρβ 4 sets the initial spring force of the magazine by the lock depth. In the aforementioned functionally damped damper, when the pressure on both sides of the piston disk is thousands of wattages, the initial spring force of the back-stop spring pushes the blocking ball toward the convergence hole to form a lock. When the buffer is in the compression stroke, the positive pressure of the fluid on the side of the ball blocking the ball will push the blocking ball to the side of the receiving hole, causing you to make a positive 11, causing the blocking ball to interfere with the conical surface of the converging hole to produce a leak-stopping effect. When the damper stops the stroke, the fluid on the side of the convergence hole of the ball is positive pressure. The resultant force is far beyond the initial spring force provided by the check spring. Therefore, the blocking ball will push the flow path toward the spring side to close the fluid on the side of the enemy hole. That is, the flow of the human piston through the one-way flow passage hole of the elastic adjustment screw can greatly increase the internal flow rate during the recovery stroke, thereby effectively shortening the recovery time. In the aforementioned functionally damper bumper, the piston rod system may have a stem portion that is telescopically exposed to the cylinder, the tapered converging holes being oriented toward the stem portion. In the foregoing functionally damped damper, a retraction spring may be further included between the cylinder and the piston rod, which may be located outside the cylinder or may be disposed inside the cylinder. In the aforementioned functionally damper damper, the steam red and the piston rod may each be provided with a - first stop ring and a second floor stop ring ' to limit the ends of the externally compressed 1323320 spring. [Embodiment] According to an embodiment of the present invention and in conjunction with Figures 2 and 2, a functionally damper buffer is disclosed, which can be applied to a specific compression buffer or propeller. . First, please refer to Figures i and 2. A functional damper buffer 100 mainly comprises a cylinder 110, a piston rod 12 〇 and a plurality of flow function columns mA. As shown in the second and third figures, the steam red 11 has an accommodating space 111 and a central through hole 112, and the accommodating space m is adapted to accommodate the piston disk surface 121 of the piston rod 12 and the movement The flow function is fixed by a column, and the central through hole 112 is configured for the piston rod 12 to be movably disposed, wherein the center is provided with a piston rod (four) 113, and the piston rod 120 can accommodate the flow in the space U1 when the piston rod 120 is active. Leakage between the central through hole ιΐ2 and the piston rod 120. Referring to Figures 2 and 3, the end of the piston rod (3) is a piston disk surface m. When the piston rod 12G is actuated, the piston disk surface i2i can be activated: in the cylinder m. The piston disk surface 121 is embedded in the cylinder chamber. The piston disk surface 121 has more than one groove on the outer diameter surface of the cylinder plate 121 for receiving a piston. The ring 126 is used to separate the flow below the surface of the piston plate so as not to cause mutual bubble leakage. Referring to Fig. 2, the piston rod 12〇 (the other one is telescopically exposed to the rod portion 123 of the steam rainbow 110 as a force receiving end or an acting end. See Figure 3 for May, this is The & county second machine function column 130 is set in the cylinder 110, and the flow function column] 3GA system has a continuously varying cross-sectional area. 9 132.3320 The flow function function of the flow function column 13〇A is Indicates the cross-sectional area of the political flow function column (10) and the difference between the cross-sectional area of the inner flow channel perforation m, that is, the inner flow channel load area, which is the most important parameter determining the flow of the inner flow channel. The type may be a tapered surface ("minor function"), a solitary surface (quadratic function), etc. The per-flow function column 13qa has a first end

面131A^H面132A(如第2圖所示),其係、用以固定 在汽缸no兩端,可以是兩端固定也可以是單端固定另一端 懸空。較佳地,該些流量函數柱13〇A係可模組化裝設於該 汽缸no内。所以當該些流量函數柱13〇A因不同行程或因 應不同需求時,僅需更換另一組流量函數柱13〇B或n〇c(如 第4圖B與C所示)’不需換掉整組緩衝器,具有節省維修 維護之時間、節省成本以及變換流量函數阻尼值之功效。 請參閱第3圖所示,纟中該活塞盤面121係具有複數個 内流道穿孔122,當該活塞盤面i 2 1活動於該汽缸i丨〇内, 於不同行程位置該些内流道穿孔122與對應之該些流量函數 柱130A之孔隙所形成内流道截面積_行程函數決定了該可 函數阻尼緩衝器1 00之阻尼-行程函數。 具趙而言,當該可函數阻尼緩衝器1〇〇作為一避震 器。如第2圖所示’該可函數阻尼緩衝器〗〇〇可另包含有 一壓縮彈簧150,設於該汽缸110與該活塞桿12〇之間,藉 由該壓縮彈簧150於壓縮後釋放位能是該活塞桿12〇回復行 程的主要動力來源❶該汽缸11〇與該活塞桿可各設有一 第一擋止環114與一第二擋止環125,用以限制該壓縮彈簧 1 50之兩端。 10 1323320 較佳地,如第3圖所示,該可函數阻尼緩衝器1〇〇可 另包含有複數個逆止閥140,其係設於該活塞盤面i 2丨,使 該可函數阻尼緩衝器1 〇 〇面對動態負載時的作用空窗期縮到 最短。ό青參閱第3圖所示,每一逆止閥140係可包含一阻塞 球141、一彈力調整螺釘丨42以及在該阻塞球141與該彈力 調整螺釘142之間之一逆止彈簧143,該彈力調整螺釘142 係具有一單向流道孔144。該些單向流道孔144係可為多角 • 形孔,而能方便組裝。請再參閱第3圖所示,該活塞盤面12 i 係可具有複數個通孔124,以供分別容置該些逆止閥丨4〇 ’ 其中每一通孔124之一端為一錐形收斂孔i 24A ,以限制該 些阻塞球141在對應通孔丨24内,每一通孔124之另一端為 一具陰螺紋之結合孔124B,以供該彈力調整螺釘〖42之鎖 入固定》在本實施例中,該些錐形收斂孔i 24A係朝向該桿 部123。因此,在壓縮行程時,該些阻塞球141的彈簧側流 體呈正壓會將阻塞球i 4丨推向收歛孔i 24 A側致使阻塞球 • 141與收欽孔124A錐面相互干涉產生止漏的效果,此時該 些逆止閥140並不會影響内流量,故不會改變壓縮行程之阻 - 尼值。但於回復行程時,阻塞球141之收歛孔124A側流體 • 呈正壓,其合力遠超過由逆止彈簧143所提供的起始彈力, 所以阻塞球141會往彈簧側推壓打開流道,收歛孔124八側 的流體即順勢流經由單向流道孔144流入活塞的另一側形成 複數個旁通流道,可大幅增加内流量,能讓該可函數阻尼緩 衝器1〇〇面對動態負載時的作用空窗期縮到最短。 在本實施例中,請參閱第4圖A所示,該些流量函數柱 1323320 130A係可具有戴面積線性放大之柱體。在不同實施例中, 請參閱第4圖B&c所示,依不同需求可變更為該些流量函 數柱13GB與13QC,具有不同内流道截面積·行程函數之柱 體β參閱第4圖B所式,該些流量函數柱13〇B係可具有 截面積如同對應第一端面131B之柱體,並於接近對應第二 端面132B處快速放大截面積。請參閱第4圖C所示,該些 流量函數柱130C係可具有中段截面積放大之柱體,並具有 一第一端面131C與一第二端面132Ce該些流量函數柱 130A、130B與130C係具有不同的截面積行程函數藉此 可主動創造出具不同阻尼_行程函數值變化之特殊緩衝器或 推進器。 本發明之流量函數柱其内流道截面積_行程函數具有完 美的設定彈性,不僅可以修正傳統衝器(雙管多孔/多溝槽) 机量瞬間阻斷所造跳躍式多段波浪狀阻力變化,達到數學 上的真正的連續”函數(函數之斜率亦呈連續)要求,使該可 函數阻尼緩衝器100產生先軟後硬且連續無波的完美 緩衝阻力以有效地降低衝擊力,亦可藉由該些流量函數 柱130A、130B與130C創造出多種不同的連續阻尼函數以 符合不同的客制化負載需求。另,可藉由該些逆止閥14〇 在回復行程時大幅增加内流量,以使該活塞桿丨2〇快速 復位。此外,本發明之該可函數阻尼緩衝器1 〇〇仍為簡 翠的單管汽缸緩衝結構,故沒有習知多管多孔或槽緩衝 益的密合元件(〇 ring)的不規則到磨問題,無論是製作 的村料成本、加工成本或後續的维護成本’皆優於習知 12 1323320 的缓衝器。 以上所述’僅是本發明的較佳實施例而已,並非對 本發明作任何形式上的限制,雖然本發明已以較佳實施 例揭露如上’然而並非用以限定本發明任何熟悉本專 業的技術人員,在不脫離本發明技術方案範園内,當可 利用上述揭不的技術内容作出些許更動或修飾為等同 變化的等效實施例,但凡是未脫離本發明技術方案的内 容’依據本發明的技術實質對以上實施例所作的任何簡 單修改、等同變化與修飾,均仍屬於本發明技術方案的 範圍内。 【圖式簡單說明】 第1圖:依據本發明之一具體實施例,一種可函數阻尼 緩衝器之立體示意圖。 第2圖:依據本發明之一具體實施例,該可函數阻尼緩 衝器之剖切立體示意圖。 第3圖:依據本發明之一具體實施例,該可函數阻尼緩 衝器之局部特徵剖切立體示意圖。 第4圖··依據本發明之一具體實施例,可適用於該可函 數阻尼緩衝器之流量函數柱之形狀變化立體示意 圖。 【主要元件符號說明】 1〇〇可函數阻尼緩衝器 no汽缸 m容置空間 H2中央通孔 113活塞桿軸封 114第一擋止環 13 1323320 120活塞桿 12 1活塞盤面 122 内流道穿孔 123桿部 124通孔 124A 錐形收斂孔 124B結合孔 125第二擋止環 126 活塞0型環 130A流量函數柱 131A第一端面 132A 第二端面 130B流量函數柱 131B第一端面 132B 第一端面 130C流量函數柱 13 1C第一端面 132C 第一端面 140逆止閥 143逆止彈簧 150壓縮彈簧 1 4 1阻塞球 1 4 4単向流道孔 142 彈力調整螺釘The surface 131A^H surface 132A (as shown in Fig. 2) is fixed at both ends of the cylinder no. It may be fixed at both ends or fixed at the other end and suspended at the other end. Preferably, the flow function columns 13A are modularly mounted in the cylinder no. Therefore, when the flow function column 13A is different in stroke or different requirements, only another group of flow function columns 13〇B or n〇c (as shown in Fig. 4B and C) need to be replaced. The entire set of buffers is lost, which saves maintenance and maintenance time, saves costs, and changes the damping function of the flow function. Referring to FIG. 3, the piston disk surface 121 has a plurality of inner flow passage holes 122. When the piston disk surface i 2 1 is movable in the cylinder block, the inner flow passage holes are pierced at different stroke positions. The inner flow path cross-sectional area_stroke function formed by the apertures of the corresponding flow function column 130A determines the damping-stroke function of the functionally damper buffer 100. For Zhao, when the functionally damped buffer 1〇〇 acts as a shock absorber. As shown in FIG. 2, the functional damper buffer 另 can further include a compression spring 150 disposed between the cylinder 110 and the piston rod 12, by which the compression spring 150 releases the potential energy after compression. Is the main power source of the piston rod 12 〇 return stroke, the cylinder 11 〇 and the piston rod can be respectively provided with a first stop ring 114 and a second stop ring 125 for limiting the two compression springs 150 end. 10 1323320 Preferably, as shown in FIG. 3, the functionally damper buffer 1 〇〇 may further include a plurality of check valves 140 disposed on the piston disk surface i 2 丨 to make the functional damping buffer When the device 1 is facing a dynamic load, the effective window period is minimized. As shown in FIG. 3, each check valve 140 may include a blocking ball 141, a spring adjusting screw 丨42, and a check valve 143 between the blocking ball 141 and the elastic adjusting screw 142. The spring adjustment screw 142 has a one-way flow passage hole 144. The one-way flow passage holes 144 can be multi-angled holes, which can be easily assembled. Referring to FIG. 3 again, the piston disk surface 12 i may have a plurality of through holes 124 for respectively receiving the check valves 丨 4 ′′, wherein one end of each of the through holes 124 is a conical convergence hole. i 24A to limit the blocking balls 141 in the corresponding through holes 24, and the other end of each of the through holes 124 is a female threaded coupling hole 124B for the elastic adjustment screw to be locked and fixed in the present In the embodiment, the tapered converging holes i 24A face the rod portion 123. Therefore, during the compression stroke, the positive pressure of the spring side fluid of the blocking ball 141 pushes the blocking ball i 4 丨 toward the convergence hole i 24 A side, so that the blocking ball 141 interferes with the tapered surface of the receiving hole 124A to generate a leak stop. The effect of the check valve 140 does not affect the internal flow rate at this time, so the resistance value of the compression stroke is not changed. However, during the return stroke, the fluid on the side of the convergence hole 124A of the blocking ball 141 is positively pressurized, and the resultant force far exceeds the initial elastic force provided by the check spring 143, so the blocking ball 141 pushes the spring side to open the flow path, and converges. The fluid on the eight sides of the hole 124, that is, the homeopathic flow flows into the other side of the piston through the one-way flow passage hole 144 to form a plurality of bypass flow passages, which can greatly increase the internal flow rate, and can make the functionally damper buffer 1〇〇 face dynamic The effect of the load on the window is minimized. In the present embodiment, as shown in Fig. 4A, the flow function columns 1323320 130A may have a cylinder with a linear enlargement of the wearing area. In different embodiments, please refer to Figure 4B &c, which can change the flow function columns 13GB and 13QC according to different requirements, and have different internal flow channel cross-sectional area and stroke function. In the formula B, the flow function columns 13A can have a cross-sectional area like the cylinder corresponding to the first end surface 131B, and rapidly enlarge the cross-sectional area near the corresponding second end surface 132B. Referring to FIG. 4C, the flow function column 130C may have a middle section cross-sectional area enlarged column, and has a first end surface 131C and a second end surface 132Ce. The flow function columns 130A, 130B and 130C are With different cross-sectional area travel functions, it is possible to actively create special buffers or thrusters with different damping_stroke function values. The flow function column of the invention has a perfect cross-sectional area _ stroke function with perfect setting elasticity, which can not only correct the change of the hopping multi-segment wave resistance caused by the instantaneous blocking of the traditional punch (double tube porous/multi-groove) To achieve a mathematically true continuous "function (the slope of the function is also continuous), so that the functionally damper buffer 100 produces a soft, continuous and waveless perfect cushioning resistance to effectively reduce the impact force, A plurality of different continuous damping functions are created by the flow function columns 130A, 130B and 130C to meet different customized load demands. In addition, the check valves 14 can greatly increase the internal flow during the return stroke. In order to quickly reset the piston rod 丨2〇. In addition, the functional damper buffer 1 of the present invention is still a simple single-tube cylinder buffer structure, so there is no conventional multi-tube porous or groove buffering. The irregularity of the component (〇ring), whether it is the cost of the village material, the processing cost or the subsequent maintenance cost, is superior to the buffer of the conventional 12 1323320. The present invention has been described with respect to the preferred embodiments of the present invention, and is not intended to limit the scope of the present invention. The equivalents of the technical solutions of the present invention can be modified or modified to the equivalents of the equivalents of the technical solutions of the present invention without departing from the technical scope of the present invention. Any simple modifications, equivalent changes and modifications made by the embodiments are still within the scope of the technical solution of the present invention. [Simplified description of the drawings] FIG. 1 : A functionally damper buffer according to an embodiment of the present invention Fig. 2 is a perspective view showing the function of the damper buffer according to an embodiment of the present invention. Fig. 3 is a view showing the local characteristics of the damper damper according to an embodiment of the present invention. Cutaway perspective view. Fig. 4 is a view of an executable embodiment according to an embodiment of the present invention. Schematic diagram of the shape change of the flow function column of the buffer. [Main component symbol description] 1〇〇Functional function damping buffer no cylinder m accommodating space H2 central through hole 113 piston rod shaft seal 114 first stop ring 13 1323320 120 piston Rod 12 1 piston disk surface 122 inner channel perforation 123 rod portion 124 through hole 124A conical convergence hole 124B coupling hole 125 second stop ring 126 piston 0 type ring 130A flow function column 131A first end face 132A second end face 130B flow function Column 131B First end face 132B First end face 130C Flow function column 13 1C First end face 132C First end face 140 Check valve 143 Backstop spring 150 Compression spring 1 4 1 Blocking ball 1 4 4 単 Flow path hole 142 Elastic adjustment screw

Claims (1)

132.3320 十、申請專利範圍: 1、一種可函數阻尼緩衝器,包含: 一汽缸; 活塞桿,其一 係為一活塞盤面,可活動於該汽缸 内;以及 複數個流量函數柱,係設置該汽紅内,該些流量函數枉 係具有連續變化之截面積; • 其中,該活塞盤面係具有複數個内流道穿孔,當該活塞 盤面活動於該汽缸内,該些内流道穿孔與對應不同行程 位置之該些流量函數柱之孔隙形成如函數般之内流道戴 面積變化。 2如申凊專利範圍第1項所述之可函數阻尼緩衝器,其 中該活塞桿係具有可伸縮外露於該汽缸之桿部,每一流 置函數柱係具有一第一端面與一第二端面,其中該些第 # 一端面係小於該些第二端面且朝向該桿部。 3、如申凊專利範圍第1項所述之可函數阻尼緩衝器,其 中該些流量函數柱係模組化裝設於該汽缸内。 • 4、如申凊專利範圍第1項所述之可函數阻尼緩衝器,其 . S二流量函數柱係具有截面積線性放大之柱體。 5如申請專利範圍第2項所述之可函數阻尼緩衝器,其 中該些流量函數柱係具有戴面積如同對應第一端面之柱 體’並於接近對應第二端面處快速放大截面積。 6、如申清專利範圍第1項所述之可函數阻尼緩衝器,其 中該些机里函數柱係具有十段截面積放大之枉體。 15 7如_ π專利範圍第i項所述之可函數阻尼緩衝器另 包含有複數個逆止閥,係設於該活塞盤面。 8、 如/請專利職第7項所述之可函數阻尼緩衝器,其 >逆止閥係包含一阻塞球、—彈力調整螺釘以及在 • 該阻塞球與該彈力調整螺釘之間之-逆止彈簧,該彈力 調整螺釘係具有一單向流道孔。 9、 如申請專利範圍第8項所述之可函數阻尼緩衝器,其 # 中該活塞盤面係具有複數個通孔,每一通孔之一端為一 錐形收斂孔,以限制該些阻塞球在對應通孔内,每一通 孔之另一端為一結合孔,以供該彈力調整螺釘之固定結 合0 10、 如申請專利範圍第9項所述之可函數阻尼緩衝器,其 中該活塞桿係具有可伸縮外露於該汽缸之桿部,該些錐 形收敛孔係朝向該桿部。 11、 如申明專利範圍第8項所述之可函數阻尼緩 • 中該些單向流道孔係為多角形孔。 12、 如申凊專利範圍第丨項所述之可函數阻尼緩衝器,另 . 包含有一壓縮彈簧,設於該汽缸與該活塞桿之間。 13、 如申凊專利範圍第12項所述之可函數阻尼緩衝器, 其中該汽紅與該活塞桿各設有一第一檔止環與一第二播 止環,用以限制該壓縮彈簧之兩端。 16132.3320 X. Patent application scope: 1. A functional function damping buffer comprising: a cylinder; a piston rod, one of which is a piston disk surface, movable in the cylinder; and a plurality of flow function columns, the steam is set In red, the flow function tethers have a continuously varying cross-sectional area; • wherein the piston disk surface has a plurality of inner flow passage perforations, and when the piston disk surface is active in the cylinder, the inner flow passage perforations are different from the corresponding ones. The pores of the flow function columns of the stroke position form a change in the inner flow path wearing area as a function. 2. The functionally damped damper of claim 1, wherein the piston rod has a rod portion telescopically exposed to the cylinder, each flow function column having a first end surface and a second end surface The first one end face is smaller than the second end faces and faces the rod portion. 3. The functionally damped damper of claim 1, wherein the flow function columns are modularly mounted in the cylinder. • 4. A functionally damped damper as described in claim 1 of the patent scope, wherein the S-flow function column has a column with a linear amplification of the cross-sectional area. 5. The functionally damper damper of claim 2, wherein the flow function columns have a wearing area as the column corresponding to the first end surface and a rapidly magnifying cross-sectional area near the corresponding second end surface. 6. The functionally damped damper of claim 1, wherein the functional column of the machine has a ten-section cross-sectional area magnified body. The functional damper damper as described in item _ π of the _ π patent range further includes a plurality of check valves disposed on the face of the piston. 8. The function-damping damper of claim 7, wherein the check valve comprises a blocking ball, a spring adjusting screw, and between the blocking ball and the elastic adjusting screw. A check spring having a one-way flow passage hole. 9. The functionally damped damper according to claim 8, wherein the piston disk surface has a plurality of through holes, and one end of each of the through holes is a conical convergence hole to limit the blocking balls. In the corresponding through hole, the other end of each of the through holes is a combined hole for the fixed combination of the elastic adjusting screw. The functional damper buffer according to claim 9, wherein the piston rod has Retractable exposed to the stem of the cylinder, the tapered converging holes are oriented toward the stem. 11. The unidirectional flow path holes in the functional damper as described in claim 8 of the patent scope are polygonal holes. 12. The functional damper damper of claim 3, further comprising a compression spring disposed between the cylinder and the piston rod. 13. The damper damper of claim 12, wherein the steam red and the piston rod are each provided with a first stop ring and a second play ring for limiting the compression spring. Both ends. 16
TW96139076A 2007-10-18 2007-10-18 Functional damping buffer TWI323320B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96139076A TWI323320B (en) 2007-10-18 2007-10-18 Functional damping buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96139076A TWI323320B (en) 2007-10-18 2007-10-18 Functional damping buffer

Publications (2)

Publication Number Publication Date
TW200918784A TW200918784A (en) 2009-05-01
TWI323320B true TWI323320B (en) 2010-04-11

Family

ID=44726845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96139076A TWI323320B (en) 2007-10-18 2007-10-18 Functional damping buffer

Country Status (1)

Country Link
TW (1) TWI323320B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448630B (en) * 2010-06-30 2014-08-11 Kayaba Industry Co Ltd Decay valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448630B (en) * 2010-06-30 2014-08-11 Kayaba Industry Co Ltd Decay valve

Also Published As

Publication number Publication date
TW200918784A (en) 2009-05-01

Similar Documents

Publication Publication Date Title
CN107636344B (en) Hydraulic damper for vehicle suspension
US10655700B2 (en) Force limiting device
JP5338841B2 (en) Hydraulic shock absorber
CN201133440Y (en) Elastic colloid buffer
JP5711477B2 (en) Shock absorber
TWI323320B (en) Functional damping buffer
JP2018150952A (en) Pressure shock absorber
CN206458761U (en) A kind of high-effect oil buffer
CN105386729A (en) Sucker rod shock absorber with adjustable damping value
CN113483047A (en) Stepped energy consumption viscous damper
JP6198926B1 (en) Hydraulic shock absorber
CN207814079U (en) A kind of fork truck lifting oil cylinder
JP7461283B2 (en) buffer
CN216242009U (en) Stepped energy consumption viscous damper
JP5970569B2 (en) Shock absorber
CN104895993B (en) A kind of Multicarity recoil damping device
CN207406686U (en) A kind of one-way circulation oil path valve system
JP5946143B2 (en) Hydraulic damper
CN108119590B (en) A kind of damper inspired based on biology
CN118346682B (en) Self-resetting damping cylinder capable of being recovered at high speed
CN217519116U (en) Shock absorber strenghthened type recovers hydraulic buffer structure
TWI222499B (en) Hydraulic damping device
CN203239837U (en) Hydraulic damper of cinquefoil oil hole holding valve
CN207648040U (en) A kind of bilateral side adjustable hydraulic buffer
JP2010107003A5 (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees