TWI323112B - Ofdm receiver and co-channel interference detecting method - Google Patents

Ofdm receiver and co-channel interference detecting method Download PDF

Info

Publication number
TWI323112B
TWI323112B TW95144775A TW95144775A TWI323112B TW I323112 B TWI323112 B TW I323112B TW 95144775 A TW95144775 A TW 95144775A TW 95144775 A TW95144775 A TW 95144775A TW I323112 B TWI323112 B TW I323112B
Authority
TW
Taiwan
Prior art keywords
frequency domain
error value
signal
estimated error
secondary carrier
Prior art date
Application number
TW95144775A
Other languages
Chinese (zh)
Other versions
TW200826580A (en
Inventor
Wen Sheng Hou
Original Assignee
Silicon Integrated Sys Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Integrated Sys Corp filed Critical Silicon Integrated Sys Corp
Priority to TW95144775A priority Critical patent/TWI323112B/en
Publication of TW200826580A publication Critical patent/TW200826580A/en
Application granted granted Critical
Publication of TWI323112B publication Critical patent/TWI323112B/en

Links

Landscapes

  • Noise Elimination (AREA)

Description

1323112 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種正交分頻多工(0rth〇g〇nal frequency division multiplexing,OFDM)接收器,特別是關 於一種應用於數位電視地面廣播(Digita丨Video Broadcasting—Terrestria卜DVB-T)系統的正交分頻多工接 收器。 【先前技術】 在數位通訊的領域中,編碼正交分頻多工的調變技術 係被廣泛地使用於各種應用之中。 第1圖係顯示一般應用於數位地面傳輸(Digital Terrestrial Transmission,DTT)的一種數位電視地面廣播系 統10之示思圖。數位電視地面廣播系統丨〇包含—正交分 頻多工傳輸糸統(OFDM transmission system) 11與一正交 分頻多工接收器12。在數位電視地面廣播系統1 〇進行地 面傳輸的期間’常常會發生多重路徑衰減(multi_path fa ding)與同頻道干擾(Co-Channel Interference,CCI),而 導致正父为頻多工傳輸系統之發射信號(emittecl signai)s(t) 的失真。舉例而吕,請參考第2 A圖,當一類比的廣播電 視信號(TV signal)與一正交分頻多工信號s(t)共同存在於 同一頻帶時’兩個信號便可能會相互干擾、而導致失真的 同頻道干擾波形出現,如第2B圖所示。 由於同頻道干擾係屬於典型的窄頻帶干擾 (narrow-band interference),因此便有人在正交分頻多工接 收器12 巾設置—陆 fn 、5 口 波濾波器(time-domain notch filter)121來消除時域中 τ垃收μ + Τ的门頻遏干擾。然而,正交分頻多 接收益12在時域中|正成祐、, 、 要確預測出同頻道干擾的時間 ‘.』、以及辨識出同頻道干 役的頻增(spectrum),卻非常地 困難,另一方面,正;〇:八1323112 IX. Description of the Invention: [Technical Field] The present invention relates to an orthogonal frequency division multiplexing (OFDM) receiver, and more particularly to a terrestrial television terrestrial broadcast ( Digita丨Video Broadcasting—Terrestria DVB-T) Orthogonal Frequency Division Multiplexer Receiver. [Prior Art] In the field of digital communication, modulation and modulation techniques for orthogonal frequency division multiplexing are widely used in various applications. Fig. 1 is a diagram showing a digital television terrestrial broadcasting system 10 generally applied to Digital Terrestrial Transmission (DTT). The digital television terrestrial broadcasting system includes an OFDM transmission system 11 and an orthogonal frequency division multiplexing receiver 12. During digital terrestrial broadcasting system 1 地面 during terrestrial transmission, multi-path fading and co-channel interference (CCI) often occur, resulting in the transmission of the patriarchal transmission system. Distortion of the signal (emittecl signai) s(t). For example, please refer to Figure 2A. When an analog TV signal (TV signal) and a quadrature frequency division multiplexing signal s(t) coexist in the same frequency band, the two signals may interfere with each other. The co-channel interference waveform that causes distortion appears, as shown in Figure 2B. Since the co-channel interference is a typical narrow-band interference, it is set up in the orthogonal frequency division multiplexing receiver 12-time fn, time-domain notch filter 121 To eliminate the gate frequency rejection interference of τ 收 μ + Τ in the time domain. However, the orthogonal frequency division multiple reception benefit 12 in the time domain | Zheng Chengyou, , to accurately predict the time of the same channel interference '.』, and identify the frequency of the co-channel duty, but very Difficulties, on the other hand, positive; 〇: eight

Mr ^ 刀,、夕工傳輸系統11亦可能將發 u s()傳輸至具有多重路徑衰減的通道中。因此,要 設計一個適當之時域陷油,虚冰 皮/慮波β 1 2 1的難度與複雜度相當 地高'且亦因此將導致生產成本提高1以利科域陷波 濾波益m來消除同頻道干擾,將造成數位電視地面廣播 系統10的接收品質難以提升。 【發明内容】 因此’本發明之目的之_一 J- 10 . ^ 係在知供一種應用於數位電 視地面廣播的正交分頻容t妓,丨A 33; 乂刀頭夕工接收态,而可免除同頻道干擾 之問題。 本發明之一實施例提供了一種正交分頻多工接收 器。該正交分頻多工接收器包含一同頻道干擾偵測器 (co-channel interference detect〇r’ CCI detect〇r)與一頻域 波遽波益(frequency-domain notch filter)。 同頻道干擾偵測器係用以接收一頻域信號 (frequency-domain signal),且產生一估計誤差值(esUmated error)。其中,該頻域信號包含位於頻率領域的多數個次載 波(sub-carrier),且g亥些次載波包含多數個分散引導信號 (scattered pilot)。而估計誤差值係利用相距一預設時間的 一第一分散引導信號與一第二分散引導信號來計算出。之 印3112 後’同頻道干擾偵測器再將估計誤差值與一預設臨界值 (pre-set threshold)進行比較,以產生一比較結果。 頻域陷波濾波器係用以接收頻域信號,且根據上述比 較結果產生一陷波頻域信號。其中該陷波頻域信號具有多 數個次載波’且母一個次載波包含有陷波頻域貢料。其 中’當估計誤差值大於該預設臨界值時,該頻域陷波濾波 器便減少被選擇的第一與第二分散引導信號所在之次載Mr ^ Knife, Xigong Transmission System 11 may also transmit u s() to a channel with multiple path attenuation. Therefore, to design an appropriate time domain oil trap, the difficulty and complexity of the virtual ice skin/wave wave β 1 2 1 is quite high' and thus will lead to an increase in production cost 1 to the Lecco domain notch filter Eliminating co-channel interference will make it difficult to improve the reception quality of the digital television terrestrial broadcasting system 10. SUMMARY OF THE INVENTION Therefore, the object of the present invention is to provide an orthogonal frequency division capacity for digital television terrestrial broadcasting, 丨A 33; It can eliminate the problem of co-channel interference. One embodiment of the present invention provides an orthogonal frequency division multiplexing receiver. The orthogonal frequency division multiplexing receiver includes a co-channel interference detect 〇r' CCI detect 〇r and a frequency-domain notch filter. The co-channel interference detector is configured to receive a frequency-domain signal and generate an estimated error value (esUmated error). Wherein, the frequency domain signal comprises a plurality of sub-carriers located in the frequency domain, and the sub-carriers of the g-sub-carriers comprise a plurality of scattered pilots. The estimated error value is calculated using a first dispersion pilot signal and a second dispersion pilot signal separated by a predetermined time. The post-3112 'co-channel interference detector' compares the estimated error value with a pre-set threshold to produce a comparison result. The frequency domain notch filter is configured to receive the frequency domain signal and generate a notch frequency domain signal based on the comparison result. The notch frequency domain signal has a plurality of subcarriers ' and the parent one subcarrier contains a notch frequency domain tribute. When the estimated error value is greater than the preset threshold, the frequency domain notch filter reduces the second load of the selected first and second scattered pilot signals.

波的權重係數大小、及/或減少該次載波鄰近之次載波的權 重係數大小;相對地’當該估計誤差值小於該預設臨界值 時’頻域陷波濾波器增大被選擇的第一與第二分散引導信 號所在之次載波的權重係數大小 '及/或增大該次載波鄰近 之次載波的權重係數大小’或是頻域陷波遽波器將被選擇 的第一與第二分散引導信號所在之次載波的權重係數、及 /或該次載波鄰近之次載波的權重係數設為1。 本發明一實施例之正交分頻多工接收器之同頻道干 擾偵測器可有效地偵測出同頻道干擾是否存在於任—個 次載波中,且可達成將因同頻道干擾而造成失真的次载波 (通道)、及/或該失真次載波(通道)鄰近可能失真之次載波 (通道)的權重減小之功效,而解決習知技術之問題。 再者,本發明之一實施例提供了一種偵測同頻道干样 的方法,該方法包含下列步驟:首先,接收包含多數個^ 栽波之頻域信號。接著,由相距一預設時間的—笛 v 乐—分散 引導信號與一第二分散引導信號計算出一估計誤差值。最 後,根據該估計誤差值調整被選擇的第一與第二分散弓丨、 1323112 信號所在之次载波的權重係數大小、及/或調整該次載波鄰 近之次載波的權重係數大小。 【實施方式】 第3 C圖係顯示本發明一實施例之數位電視地面廣播 接收器(DVB-T receiver)32之示意圖。而第3A圖係顯示一 習知數位電視地面廣播傳輸器(DVB_t transmiUer)1丨之示 思圖。一數位電視地面廣播系統通常包含有數位電視地面 廣播接收器32與數位電視地面廣播傳輸器丨丨,且兩者均 以正交分頻多工(OFDM)的方式運作。該運作方式包含有内 部約定編碼(inner conventional code)、外部羅德索羅門編 碼(outer Reed-Solomon,RS code)、以及不同的調變星象 圖(different modulation constellation choices)。調變星象圖 可為 4 重相位反轉調變(Quadrature Phase Shift Keying, QPSK)、16 進制正交幅度調變(16 Quadrature Amplitude Modulation,16QAM)、或64進制正交幅度調變(64The magnitude of the weight coefficient of the wave, and/or the magnitude of the weighting coefficient of the secondary carrier adjacent to the secondary carrier; relatively 'when the estimated error value is less than the predetermined threshold value, the frequency domain notch filter is increased by the selected number The weight coefficient size of the secondary carrier where the first and second dispersed pilot signals are located, and/or the weighting factor size of the secondary carrier adjacent to the secondary carrier, or the first and the first of the frequency domain notch choppers to be selected The weight coefficient of the secondary carrier where the second distributed pilot signal is located, and/or the weight coefficient of the secondary carrier adjacent to the secondary carrier is set to 1. The co-channel interference detector of the orthogonal frequency division multiplexing receiver according to an embodiment of the present invention can effectively detect whether co-channel interference exists in any of the sub-carriers, and can be caused by co-channel interference. The problem of the prior art is solved by the effect of the distorted subcarrier (channel), and/or the distorted subcarrier (channel) adjacent to the weight of the subcarrier (channel) that may be distorted. Furthermore, an embodiment of the present invention provides a method for detecting a co-channel dry sample, the method comprising the steps of: first, receiving a frequency domain signal including a plurality of carrier waves. Next, an estimated error value is calculated from the flute v-dispersion pilot signal and a second dispersion pilot signal separated by a predetermined time. Finally, the weight coefficients of the secondary carriers in which the selected first and second dispersions, the 1323112 signal is located, and/or the weight coefficients of the secondary carriers adjacent to the secondary carrier are adjusted according to the estimated error value. [Embodiment] FIG. 3C is a diagram showing a digital television terrestrial broadcast receiver (DVB-T receiver) 32 according to an embodiment of the present invention. The 3A diagram shows a conventional digital terrestrial broadcast transmitter (DVB_t transmiUer). A digital television terrestrial broadcast system typically includes a digital television terrestrial broadcast receiver 32 and a digital television terrestrial broadcast transmitter, both of which operate in an orthogonal frequency division multiplexing (OFDM) manner. The mode of operation includes an inner conventional code, an outer Reed-Solomon (RS code), and different modulation constellation choices. The modulated astrological map can be Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (16QAM), or 64-ary Quadrature Amplitude Modulation (64)

Quadrature Amplitude Modulation,64QAM)。 請參考第3 A圖,數位電視地面廣播傳輸器丨丨包含有 一引導信號插入單元(pilot insert unit) 11 2、一傅立葉反轉 換電路(Inverse Discrete Fourier Transform circuit,IDFT circuital 13、一保護區間(Guard Interval,GI)插入單元 114、 一 數位 / 類比轉換為(Digital to Analog Converter,DAC) 115、 一射頻調變器(Radio Frequency modulator,RF modulator) 116。該引導信號插入單元112接收編碼資料 CDA’並根據一預設的方式在編碼資料CDA中插入連續 丄如112Quadrature Amplitude Modulation, 64QAM). Referring to FIG. 3A, the digital television terrestrial broadcast transmitter 丨丨 includes a pilot insert unit 11 2. an inverse discrete Fourier Transform circuit (IDFT circuital 13 and a guard interval (Guard) Interval, GI) insertion unit 114, a digital to analog converter (DAC) 115, a radio frequency modulator (RF modulator) 116. The pilot signal insertion unit 112 receives the encoded data CDA' And insert a continuous icon such as 112 in the encoded data CDA according to a preset manner.

引導信號(continual Pil0t)或分散引導信號(scauered)來產 生一傳輸符元(transmission symbol)C(n,k)。接著,引導信 \插入單元1丨2將傳輸符元c(n,k)輸出至傅立葉反轉換電 3以進行傅立葉反轉換處理。藉此,頻域資料信號 將被轉換為時域資料信號。接著,保護區間插入單元11 4 插入保護區間至傅立葉反轉換電路丨13的輸出,而可增加 信號對多重路徑衰減的抵抗能力。之後,數位/類比轉換器 U5將上述處理後之資料信號進行數位至類比轉換,再透 過射頻調變器丨16調變轉換後之資料信號,以產生一發射 信號s(t)。最後,由天線將發射信號s(t)發射出去。 该發射信號s(t)為一正交分頻多工信號,其包含有大 量各自經過調變(separate丨y_modulated)的次載波。該些次 載波可以々G [尺min ’ "^max ]炎矣千士主奋土哲 术录不。咕參考弟3B圖,舉例來說, 該κ‘之數值係設定為〇,而該Kmax之數值在2k模式 (_心)等於W04、在8k模式等於6816。再者,專用的同 步符元(dedicated synchronization symb〇1)p(n,k)亦被嵌入 至正交为頻多工資料流(發射信號s(t))中。該圖中之分散引 導信號成串之符元則形成一周期性的圖案 pattern)。其中’分散引導信號之符元的排列係以每隔—個 時間區間Dt=4(例如圖中的S1與S2之間)來排列,以及以 每隔一個頻率區間Df=12(例如圖中的S1與S3之間)來排 列。連續引導信號與分散引導信號均係以一增壓的能量位 階(boosted P〇wer level)來傳輸,而其對應的調變數值 E{p(n,k)}=±4/3。 1323112 再者,發射信號S(t)係以下式表示: κ„ <〇 = Re =0 ^herei^nk(t) 如〒{卜匕~nTs、 e u nTs <t<(n + \)Ts else 其中,k表示次載波的編號(number) ; n表示正交分頻 鲁 夕工付元的編號,Ts為付元的期間(durati〇n) ; Tu為次載 波間隔的反向間隔(inverse of subcarrier spacing) ; A為保 護區間的期間;fc為射頻信號的中間頻率(central frequency) ; k’為次載波索引,且正相關於中心頻率(center frequency) (k’=k-(Kmax+Kmin)/2) ; Cn,k 為傳輸符元。 接下來’請參考第3C圖。該圖係顯示本發明一實施例 之一種數位電視廣播接收器32。數位電視廣播接收器32 包含有一射頻解調器(RF demodulat〇r)32 1、一類比/數位轉 鲁換器(Analog to Digital Converter,ADC)322、一正交分頻 多工接收器3a、一匹配濾波器(match filter)327、一通道估 計器(channel estimator)328、一軟式位元反向映射器(s〇ft demapper)329、一 維特比解碼器(viterbi dec〇der)33〇、以及 一羅德索羅門解碼器(RS decoder)3 3 1。其中,正交分頻多 工接收器3a包含有一傅立葉轉換電路(Discrete Fourier Transform circuit ’ DFT circuit)323、一保護區間移除單元 (GI removing unit)324 、 一頻域陷波濾波器 (frequency-domain notch filter)325、以及一同頻道干擾偵 1323112A pilot signal (continuous PilOt) or a scattered pilot signal (scauered) is used to generate a transmission symbol C(n, k). Next, the pilot signal \insertion unit 1丨2 outputs the transmission symbol c(n, k) to the Fourier inverse conversion power 3 to perform Fourier inverse conversion processing. Thereby, the frequency domain data signal will be converted into a time domain data signal. Next, the guard interval inserting unit 11 4 inserts the guard interval to the output of the Fourier inverse conversion circuit 丨13, thereby increasing the resistance of the signal to the multipath fading. Thereafter, the digital/analog converter U5 digitally-to-analog-converts the processed data signal, and then modulates the converted data signal through the RF modulator 丨16 to generate a transmitted signal s(t). Finally, the transmitted signal s(t) is transmitted by the antenna. The transmitted signal s(t) is an orthogonal frequency division multiplexing signal containing a plurality of separately modulated sub-carriers. These sub-carriers can be 々G [foot min ’ "^max ]. Referring to the 3B diagram, for example, the value of the κ' is set to 〇, and the value of the Kmax is equal to W04 in the 2k mode (_heart) and equal to 6816 in the 8k mode. Furthermore, the dedicated synchronization symbol (dedicated synchronization symb 〇 1) p(n, k) is also embedded into the orthogonal multiplexed data stream (transmitted signal s(t)). The scattered pilot signals in the figure are in a string of symbols to form a periodic pattern pattern). The arrangement of the symbols of the 'scattered pilot signal is arranged every other time interval Dt=4 (for example, between S1 and S2 in the figure), and every other frequency interval Df=12 (for example, in the figure) Between S1 and S3). Both the continuous pilot signal and the dispersion pilot signal are transmitted at a boosted P〇wer level, and the corresponding modulation value E{p(n, k)} = ±4/3. 1323112 Furthermore, the transmitted signal S(t) is expressed by the following equation: κ„ <〇= Re =0 ^herei^nk(t) 如〒{卜匕~nTs, eu nTs <t<(n + \) Ts else where k is the number of the subcarrier (number); n is the number of the orthogonal frequency division, and Ts is the period of the pay unit (durati〇n); Tu is the reverse interval of the subcarrier spacing ( Inverse of subcarrier spacing) ; A is the period of the guard interval; fc is the intermediate frequency of the RF signal; k' is the subcarrier index and is positively correlated with the center frequency (k'=k-(Kmax) +Kmin)/2); Cn,k is a transmission symbol. Next, please refer to FIG. 3C. This figure shows a digital television broadcast receiver 32 according to an embodiment of the present invention. The digital television broadcast receiver 32 includes a RF demodulator (RF demodulat〇r) 32 1. Analog to Digital Converter (ADC) 322, an orthogonal frequency division multiplexing receiver 3a, and a match filter 327, a channel estimator 328, a soft bit reverse mapper (s〇ft demapper) 329, A Viterbi decoder (Viterbi dec〇der) 33〇, and a RSS decoder 3 3 1. The orthogonal frequency division multiplexing receiver 3a includes a Fourier transform circuit (Discrete Fourier Transform circuit) 'DFT circuit' 323, a guard interval removal unit (GI removal unit) 324, a frequency-domain notch filter 325, and a co-channel interference detector 1323112

測器(CCI detect〇r)326。而該同頻道干擾偵測器(CCI detector)326包含有一計算器(caicuiat〇r)326a與一同頻道 干擾比較單元(CCI comparing unit)326b。 射頻解調器(RF dem〇dUlat〇r)321透過天線接收由數位 電視地面廣播傳輸器丨丨發射出的發射信號s(t),且在解調 後輸出至類比/數位轉換器322進行類比數位轉換,以產生 一輸入信號In(t)。其中該輸入信號In(t)包含在時域中的多Tester (CCI detect〇r) 326. The co-channel interference detector (CCI detector) 326 includes a calculator (caicuiat) 326a and a co-channel interference comparison unit (CCI comparing unit) 326b. The RF demodulator (RF dem〇dUlat〇r) 321 receives the transmitted signal s(t) transmitted by the digital television terrestrial broadcast transmitter through the antenna, and outputs the analogy to the analog/digital converter 322 after demodulation. Digital conversion to generate an input signal In(t). Where the input signal In(t) is included in the time domain

數個次載波。 接下來詳細說明正交分頻多工接收器3a的運作方式。 首先,傅立葉轉換電路323接收輸入信號ln(t),產生 一包含有多數個次載波的頻域信號Y(f)。其中,頻域信號 Y(f)中的每一次載波之頻域資料係可用Y(n,k)來表示⑺與 k為正整數)。而頻域資料Y(n,k)中的資料可包含預設的多 數個連續引導信號’例如第3B圖之Kmin = Q %頻域資料 Y(n,〇);或頻域資料Y(n,k)*的資料可不包含任何引導信 號’例如第3B圖中之k=5的頻域資料γ(η,5);或頻域資 料Y(n,k)中的資料可包含預設的多數個分散引導信號,例 如第3B圖之k=12的頻域資料γ(η,12)。當然上述連^ 弓丨導信號與分散引導信號的排列方式係可依設計之需求 而任意調整。而該頻域資料Y(n,k)可用下列方程式表二. ’表示第n個正交分頻多工符元、 及第k個次載波…(1) ^ 其中,//(«,幻為頻域的通道參數,傳輪 A m ^ ^ 7(«^) 1J23112 保護區間移除單元324係用以移除時域之輸入信號 In(t)的保護區間。 胃而同頻道干擾偵測器326則在頻域信號Y(f)的分散引 V =唬中偵測同頻道干擾之能量。在—實施例中,同頻道 •干擾偵測器326接收頻域信號Y(f),並對兩個分散引導信 號進行後述之運算,以產生-估計誤差值乳其中,該兩 個分散引導信號係如第3B圖中的分散引導㈣S1與 • S2’ S1與S2係位於同一次載波(通道)、且相距一預設時 間隔Dt。之後,同頻道干擾偵測器326將估計誤差值 與一預設臨界值(thresh〇ld)TH進行比較,以產生一比 較結果。且其中’估計誤差值⑽的求得係經由計算器326a 將兩個f域資料Y(n,k)與Y(n-Dt,k)相減後再取絕對值平 方而求得。而頻域資料Y(n,k)與Y(n_Dt,k)中分別包含該兩 個不同的分散引導信號(例如S1#S2)。再者,對於兩個 位於同-欠載波的分散引導信號而言,其所承載的資料會 # 同因此傳輸付兀C(n,k)將等於C(n-Dt,k;),所以將「Y(n,k) "Y(n-Dt,k)相減後再取絕對值平方」將約略等於「將1(4) 與Kn-D^k)相減後再取絕對值平方」。所以估計誤差值^ 的方程式’可以下式表示: • ⑽’八心-印-W},若= c㈣幻 x E{\Kn,k)~I(n-Dt,k)\2} …(2) ^另外,為了求得更準確的估計誤差值 <(幻,本發明—麻 y列之計算n 326a亦可在同—個次載波上針對其他的= 散引u號’即將其他全部相距預設時間Dt的分散引導 信號兩兩進行估計誤差值的計算,最後在計算出的多數個 13 1323112 估計誤差值 <⑷中求屮单於估 ,θ 尺出+均值,而k南同頻道干擾偵測的準 確性。接著,在本發明之—實施例中,同頻道干擾比較單 元326b將求出之估計誤差值⑽與1設臨界& th & 較,以產生-比較結果CR;當然,在另一實施例中同 -頻道干擾比較單元326b亦可利用求出之平均估計誤差值 ί⑷與一預設臨界值TH比較,來產生比較結果。 頻域波濾波為3 2 5為針對每一次載波所設置的單一 _ 抽頭濾波器(one taP出4〇。根據上述比較結果CR ,該頻 - 域陷波濾波态3 2 5在估計誤差值$⑻大於該預設臨界值TH 時(表不該次載波及/或其鄰近之之次載波被同頻道干擾影 響而失真),其將減少分散引導信號所在之次載波及/或其 鄰近之次載波的權重;且在該估計誤差值#㈨小於前述臨界 值TH時,將該分散引導信號所在之次載波及/或其鄰近之 - 次載波的權重設為1(或增加該次載波及/或其鄰近之次載 • 波的權重)。藉此’頻域陷波濾波器325便能夠消除同頻道 _ 干擾對於數位電視廣播接收器32的影響。 舉例而言,頻域陷波濾波器325的權重係數為M(k)。 則頻域陷波濾波器325可依據下列方程式來運作: \〇<M(k)<\ if ξ^) > ΤΗ 1 M(k) = \ if ξ{Κ)<ΤΗ (3) 根據方程式(3),假設估計誤差值以幻大於預設臨界值τη, 則表示第k個次載波失真,所以頻域陷波濾波器3 2 5必須 將其權重係數M(k)設為大於等於0〜小於1之間的數值, 而可減少第k個次載波的權重;另一方面,若估計誤差值 ^幻小於臨界值TH時,則表示第k個次載波沒有失真,所 14 1323112 以頻域陷波濾波器325便將其權重係數M(k)設為1,如此 第k個次載波將不被頻域陷波濾波器325所影響。 再者’若要處理頻域陷波濾波器325之第k個次載波 鄰近的第k’個次載波時,該第k,個次載波的權重係數M(k,) 可以下式表示: • {Q<M{k')<\ if ξ^) > ΤΗ 1 M(k') = \ if ξ{^<ΤΗ (4) 根據方程式(4),假設第k個次載波的估計誤差值f㈨大於 _ 該預設臨界值TH,則頻域陷波渡波器325便將其權重係 ' 數M(k’)設為大於等於〇〜小於1之間的數值,而可減少第 ' k’個次載波的權重;而若第k個次載波的估計誤差值以幻小 於臨界值TH時,則頻域陷波濾波器325便將其權重係數 M(k’)設為1,如此第k’個次載波將不被頻域陷波濾波器 325所影響。 須注意者,當上述權重係數]^(1〇與M(k,)被設定為大 於等於〇〜小於1之間的數值時,該項設定可採用如第4a φ 圖所不之波形A來表示;相對地,當權重係數^4(|^與M(k,) 被設定為1時,該項設定可採用如第4B圖之波形B來表 示0 之後’頻域陷波濾波器325輸出一陷波頻域信號 ‘ Y,⑴’且該陷波頻域信號Y,⑴中的每個次載波的陷波頻 域資料γ,(ηΛ)或Y,(n,k,),係可採用下列方程 Y\n,k) = M(k)Y(n,k) (5) · Y\n,k') = M{k')Y{n,k') 如此,當頻域資料Y(n,k)或Y(n k,w考& A也 )位處的次載波發生失真 1323112 時,頻域陷波濾波器325即可利用調整權重係數M(k)或 M(k’)的方式,將失真的頻域資料Y(n,k)4 Y(nk,)的權重 減小。因此,後續之電路便不會接收到被同頻道干擾所影 響的頻域資料Y(n,k)或Y(n,k,),而只接收到經過處理的陷 波頻域資料Y,(n,k)或Y,(n,k,)。 綜上所述,本發明之正交分頻多工接收器3a可利用同 頻道干擾偵測器326有效偵測出同頻道干擾是否存在於任 何一個次載波中,且可達成將因同頻道干擾而造成失真的 人載;皮(通道)' 及/或s亥失真次載波(通道)鄰近可能失真之 次載波(通道)的權重減小之功效,而解決習知技術之問題。 接下來,將討論正交分頻多工接收器3a後續電路的運 作方式,且為簡化說明將僅以陷波頻域資料來討論。 請參考第3C圖,首先通道估計器328接收陷波頻域 資料r(«,幻,且根據陷波頻域資料r〇?,幻中的多數個分散引 導信號來估計出一通道參數//,(„,々)。該通道參數幻係以 下式表示: H'(n, k) = V'(n, k) / C(n, k) * k) ...(7) 之後,通道估計器328利用其内建的内插處理器 (interpolator)將頻率領域中所有的通道參數作内插 (interpolate),且輸出處理後之通道參數//'(Αα)至匹配濾波 器 327。 "’ 為了增進數位電視地面廣播接收器32之接收效果, 便必須由解調變資料中取得可信度高的軟式判決度量 (soft-decision metric)結果’並將該結果饋入維特比解碼器 1323112 口此根據本發明一實施例之設計,便將處理後之 通道參數㈠輸出至匹配濾波器327。該匹配濾波器327 接收陷波頻域資料r(”,〇,且根據處理後之通道參數厂从幻 來產生一匹配輸出信號(matched 〇utput signa丨) (以)。匹配輸出信號//’’οαγοα)可以下式表示: H (n^)-M2(k)ilH(n,k)\2 C(n,k) + H\n,k)I(n,k)) ...(8) π二L位元反向映射器329接收匹配輸出信號 , 且對匹配輸出信f⑽心)執行符號反向映 射來產生一輸出信號〇。由於匹配輸出信號已 具有通道的可信度(channel reliabiHty),所以可由軟 反向映射器329中得到第k個-欠#、由& 甲付ii弟k個-人載波的位元判決度量值 = drrnmetdCValUe)"°之後’維特比解碼器33。解 馬轉出信號〇’產生一輸出資料〇D。最後羅德 即可得到—不被 偵測同頻道干擾 解碼器33 1再對輪出資料〇D進行解碼 ,、 同頻道干擾影響的解碼資料DDA,。 第5圖係顯示本發明一實施例之— 之方法的流程圖。該方法包含下列步驟 步驟S502 :開始。 步驟S504 :接收—頻域信號,且今喃 在頻率領域的次載波 頻“號包含有多數個 步驟由位於同—线波且相距—預設 分散引導信號與—第二分散引導信 2 ·第— 值。 T开出—估計誤差 步驟S508 :判斷估計誤差值是否大 頂3又界值,若 1323112 是’跳至下一步驟;若否跳至步驟S5 1 2。 步驟S5 1 0 :降低被選擇的第一與第二分散引導信號所在之 次載波的權重係數大小、及/或該次載波鄰近之次載波的權 重係數大小。 步驟S512:將被選擇的第一與第二分散引導信號所在之 次載波的權重係數大小 '及/或該次載波鄰近之次載波的權 重係數大小設為1。Several subcarriers. Next, the operation mode of the orthogonal frequency division multiplexing receiver 3a will be described in detail. First, the Fourier transform circuit 323 receives the input signal ln(t) to generate a frequency domain signal Y(f) containing a plurality of subcarriers. The frequency domain data of each carrier in the frequency domain signal Y(f) can be represented by Y(n, k) (7) and k are positive integers). The data in the frequency domain data Y(n, k) may include a preset plurality of consecutive pilot signals 'for example, Kmin = Q % frequency domain data Y (n, 〇) in FIG. 3B; or frequency domain data Y (n) , k)* data may not contain any pilot signal 'for example, the frequency domain data γ(η, 5) of k=5 in FIG. 3B; or the data in the frequency domain data Y(n, k) may include preset A plurality of scattered pilot signals, such as the frequency domain data γ(n, 12) of k=12 in Fig. 3B. Of course, the above-mentioned arrangement of the signal and the dispersion guide signal can be arbitrarily adjusted according to the design requirements. The frequency domain data Y(n,k) can be expressed by the following equation table 2. 'Expressing the nth orthogonal frequency division multiplex symbol, and the kth subcarrier...(1) ^ where, //(«, illusion For the channel parameters in the frequency domain, the transmission A m ^ ^ 7 («^) 1J23112 guard interval removal unit 324 is used to remove the guard interval of the input signal In(t) in the time domain. Stomach and co-channel interference detection The 326 detects the energy of the co-channel interference in the dispersion V = 唬 of the frequency domain signal Y(f). In the embodiment, the co-channel interference detector 326 receives the frequency domain signal Y(f), and The two decentralized pilot signals are subjected to an operation to be described later to generate an -estimation error value, wherein the two decentralized pilot signals are in the same subcarrier (S) and S2' S1 and S2 are located on the same carrier (channel) as in FIG. 3B. And spaced apart by a predetermined time interval Dt. Thereafter, the co-channel interference detector 326 compares the estimated error value with a predetermined threshold (thresh〇ld) TH to generate a comparison result, and wherein the 'estimation error The value (10) is obtained by subtracting the two f-domain data Y(n, k) from Y(n-Dt, k) via the calculator 326a and then taking the absolute value. And the frequency domain data Y(n, k) and Y(n_Dt, k) respectively contain the two different scattered pilot signals (for example, S1#S2). Furthermore, for two identical-undercarriers For the decentralized pilot signal, the data carried by it will be the same as the transmission C(n, k) will be equal to C(n-Dt, k;), so "Y(n,k) "Y( After n-Dt,k) subtracts and then takes the absolute value squared, it will be approximately equal to "subtract 1(4) and Kn-D^k) and then take the absolute squared". Therefore, the equation 'of the estimated error value ^ can be expressed as follows: • (10) 'eight hearts-print-W}, if = c (four) magic x E{\Kn,k)~I(n-Dt,k)\2} ...( 2) ^ In addition, in order to obtain a more accurate estimation error value < (phantom, the invention - the calculation of the y column y can also be on the same subcarrier for other = scatter u number) The estimated error value is calculated by the scattered pilot signals of the preset time Dt, and finally, in the calculated majority of the estimated error values of 13 1323112 <(4), the average is estimated, θ is measured out + mean, and k is the same The accuracy of the channel interference detection. Next, in the embodiment of the present invention, the co-channel interference comparing unit 326b compares the obtained estimated error value (10) with 1 by the threshold & th & to generate a - comparison result CR Of course, in another embodiment, the same channel interference comparison unit 326b may also use the obtained average estimated error value ί(4) to compare with a predetermined threshold TH to generate a comparison result. The frequency domain filter is 3 2 5 A single _ tap filter set for each carrier (one taP out 4 〇. According to the above comparison result CR, the The frequency-domain notch filter state 3 2 5 is when the estimated error value $(8) is greater than the predetermined threshold TH (which indicates that the subcarrier and/or its adjacent subcarriers are distorted by co-channel interference), Reducing the weight of the secondary carrier where the scattered pilot signal is located and/or its adjacent secondary carrier; and when the estimated error value #(9) is less than the threshold TH, the secondary carrier where the distributed pilot signal is located and/or its neighbors - The weight of the secondary carrier is set to 1 (or the weight of the secondary carrier and/or its adjacent secondary carrier wave is increased). By this, the 'frequency domain notch filter 325 can eliminate the co-channel _ interference for the digital television broadcast receiver. For example, the weight coefficient of the frequency domain notch filter 325 is M(k). The frequency domain notch filter 325 can operate according to the following equation: \〇<M(k)<\ If ξ^) > ΤΗ 1 M(k) = \ if ξ{Κ)<ΤΗ (3) According to equation (3), assuming that the estimated error value is greater than the preset threshold τη, the kth time Carrier distortion, so the frequency domain notch filter 3 2 5 must set its weight coefficient M(k) to be greater than or equal to 0 to less than 1 The value of the k-th subcarrier can be reduced. On the other hand, if the estimated error value is less than the threshold TH, it means that the kth subcarrier has no distortion, and the 14 1323112 is a frequency domain notch filter. 325 sets its weighting factor M(k) to 1, so that the kth secondary carrier will not be affected by the frequency domain notch filter 325. Furthermore, if the k'th subcarrier adjacent to the kth subcarrier of the frequency domain notch filter 325 is to be processed, the weight coefficient M(k,) of the kth subcarrier can be expressed as follows: {Q<M{k')<\ if ξ^) > ΤΗ 1 M(k') = \ if ξ{^<ΤΗ (4) According to equation (4), assume the estimation of the kth subcarrier When the error value f(9) is greater than _ the predetermined threshold TH, the frequency domain trapper 325 sets its weight system 'number M(k') to a value greater than or equal to 〇~ less than 1, and can reduce the number ' The weight of k' subcarriers; if the estimated error value of the kth subcarrier is less than the threshold TH, the frequency domain notch filter 325 sets its weight coefficient M(k') to 1, The k'th subcarrier will not be affected by the frequency domain notch filter 325. It should be noted that when the above weighting factor]^(1〇 and M(k,) are set to a value greater than or equal to 〇~ less than 1, the setting can be performed by waveform A as shown in the 4th φ diagram. In contrast, when the weight coefficient ^4 (|^ and M(k,) is set to 1, this setting can be performed by using waveform B as shown in FIG. 4B to represent 0 after the 'frequency domain notch filter 325 output. A notch frequency domain signal 'Y, (1)' and the notch frequency domain signal Y, (1), the notch frequency domain data γ, (ηΛ) or Y, (n, k,) of each subcarrier Use the following equation Y\n,k) = M(k)Y(n,k) (5) · Y\n,k') = M{k')Y{n,k') So, when frequency domain data The frequency domain notch filter 325 can utilize the adjustment weight coefficient M(k) or M(k' when the subcarrier at the Y(n,k) or Y(nk,w test &A also) position is distorted 1323112. In a way, the weight of the distorted frequency domain data Y(n, k) 4 Y(nk,) is reduced. Therefore, the subsequent circuit will not receive the frequency domain data Y(n,k) or Y(n,k,) affected by the co-channel interference, but only the processed notch frequency domain data Y, ( n, k) or Y, (n, k,). In summary, the orthogonal frequency division multiplexing receiver 3a of the present invention can use the co-channel interference detector 326 to effectively detect whether co-channel interference exists in any one subcarrier, and can achieve interference due to co-channel. The problem of the prior art is solved by the effect of reducing the weight of the subcarrier (channel) which may cause distortion, and the effect of the weight reduction of the subcarrier (channel) which may cause distortion. Next, the operation of the subsequent circuits of the orthogonal frequency division multiplexing receiver 3a will be discussed, and will be discussed only in the notch frequency domain data for the sake of simplicity. Referring to FIG. 3C, first, the channel estimator 328 receives the notch frequency domain data r («, and, according to the notch frequency domain data r〇?, a plurality of scattered pilot signals in the phantom to estimate a channel parameter // , („,々). The channel parameter phantom is expressed as follows: H'(n, k) = V'(n, k) / C(n, k) * k) (7) After the channel The estimator 328 interpolates all channel parameters in the frequency domain using its built-in interpolator and outputs the processed channel parameter //((α) to the matched filter 327. In order to improve the reception performance of the digital television terrestrial broadcast receiver 32, it is necessary to obtain a highly reliable soft-decision metric result from the demodulation data and feed the result into the Viterbi decoder. 1323112 According to an embodiment of the present invention, the processed channel parameter (1) is output to the matched filter 327. The matched filter 327 receives the notch frequency domain data r(", 〇, and according to the processed channel The parameter factory generates a matching output signal (matched 〇utput signa丨) from the illusion The matching output signal //''οαγοα) can be expressed as: H (n^)-M2(k)ilH(n,k)\2 C(n,k) + H\n,k)I(n, k)) (8) The π two L bit inverse mapper 329 receives the matched output signal and performs symbol inverse mapping on the matched output signal f(10) heart to generate an output signal 〇. Since the matching output signal already has channel reliabiHty, the bit decision metric of the kth-ower#, & ke ii k-person carrier can be obtained from the soft inverse mapper 329 Value = drrnmetdCValUe) "° after 'Viterbi decoder 33. The horse exits the signal 〇' to generate an output data 〇D. Finally, Rhodes can get - no co-channel interference is detected. The decoder 33 1 decodes the round-out data 〇D, and the decoded data DDA affected by the same channel interference. Figure 5 is a flow chart showing a method of an embodiment of the present invention. The method includes the following steps: Step S502: Start. Step S504: receiving the frequency domain signal, and the subcarrier frequency "in the frequency domain" includes a plurality of steps consisting of being located in the same line wave and spaced apart from each other - the preset scattered pilot signal and the second scattered pilot signal 2 — Value. T-out—estimation error step S508: judging whether the estimated error value is a large top 3 boundary value, if 1323112 is 'skip to the next step; if no, skip to step S5 1 2. Step S5 1 0: lowering The weight coefficient of the secondary carrier where the selected first and second distributed pilot signals are located, and/or the weight coefficient of the secondary carrier adjacent to the secondary carrier. Step S512: where the selected first and second scattered pilot signals are located The weight coefficient size of the secondary carrier 'and/or the weight coefficient of the secondary carrier adjacent to the secondary carrier is set to 1.

步驟S514··結束。 須注意者,步驟S51〇中被選擇的第一與第二分散引 導信號所在之次載波的權重係數大小、及/或該次載波鄰近 之次載波的權重係數大小係可設定為大於等於〇〜小於1之 間。再者,估計誤差值可為一平均估計誤差值。該平均估 計誤差值係由同一個次載波上針對其他的分散引導信 號,即將其他任意數量、且相距該預設時間的分散引導信 號兩兩進行估計誤差值的計算,最後利用計算出的多數個 估計誤差值所求出之平均值。 再者,上述實施例係採用位於同一次載波之第一與第 一刀政引導k號來作處理,但本發明並不侷限於此;於另 一貫施例中,經過些許改良,太發明之妯 R尽&明之技術亦可採用位於 不同次载波之第一與第二分散引導信號來進行處理。 以上雖以實施例說明本發明 之範圍’只要不脫離本發明之要 變形或變更。 但並不因此限定本發明 ,該行業者可進行各種 1323112 【圖式簡單說明】 第1圖顯示一習知數位電視地面廣播系統之示意圖。 第2A圖顯示習知類比廣播電視信號與正交分頻多工信 號之波形圖。 第2B圖顯示習知同頻道干擾之波形圖。 第3A圖顯示習知數位電視地面廣播傳輸器之示意圖。 第3B圖顯示習知數位電視地面廣播資料傳輸的資料框 架構(frame structure)。 第3C圖顯示本發明一實施例之數位電視地面廣播接收 器之示意圖。 第4A圊顯示本發明一實施例之一權重係數設定方式的 波形圖。 第4B圖顯示本發明一實施例之權重係數設定方式的波 形圖。 第5圖顯示本發明一實施例之偵測同頻道干擾之方法 流程圖。 /的 【主要元件符號說明】 10數位電視地面廣播系統 11正父分頻多工傳輸系統(數位電視地面廣播傳輪 12 正交分頻多工接收器 、)。) 121 時域陷波濾波器 112引導信號插入單元 113 傅立葉反轉換電路 114 保護區間插入單元 115 數位/類比轉換器Step S514·· ends. It should be noted that the weight coefficient of the secondary carrier where the selected first and second distributed pilot signals are located in step S51, and/or the weight coefficient of the secondary carrier adjacent to the secondary carrier may be set to be greater than or equal to 〇~ Less than between 1. Furthermore, the estimated error value can be an average estimated error value. The average estimated error value is calculated by the same subcarrier for other scattered pilot signals, that is, the calculation error value of the other arbitrary number of scattered pilot signals separated by the preset time, and finally using the calculated majority Estimate the average of the error values. Furthermore, the above embodiment uses the first and first knife-instruction k numbers on the same carrier for processing, but the present invention is not limited thereto; in another embodiment, after some improvements, it is too invented. The technique of 尽R尽& Ming can also be processed using the first and second scattered pilot signals located on different subcarriers. The scope of the present invention is described by the embodiments of the present invention as set forth in the appended claims. However, the present invention is not limited thereto, and the industry can perform various kinds of 1323112. [Simplified description of the drawings] Fig. 1 shows a schematic diagram of a conventional digital television terrestrial broadcasting system. Figure 2A shows a waveform diagram of a conventional analog broadcast television signal and an orthogonal frequency division multiplex signal. Figure 2B shows a waveform diagram of conventional co-channel interference. Figure 3A shows a schematic diagram of a conventional digital television terrestrial broadcast transmitter. Figure 3B shows the frame structure of conventional digital television terrestrial broadcast data transmission. Fig. 3C is a view showing a digital television terrestrial broadcast receiver according to an embodiment of the present invention. Fig. 4A is a waveform diagram showing a method of setting a weight coefficient according to an embodiment of the present invention. Fig. 4B is a waveform diagram showing the manner of setting the weight coefficient in an embodiment of the present invention. Figure 5 is a flow chart showing a method of detecting co-channel interference according to an embodiment of the present invention. / [Main component symbol description] 10 digital TV terrestrial broadcasting system 11 positive father crossover multiplex transmission system (digital TV terrestrial broadcast transmission 12 orthogonal frequency division multiplexing receiver,). ) 121 time domain notch filter 112 pilot signal insertion unit 113 FFT inverse conversion circuit 114 guard interval insertion unit 115 digital/analog converter

Claims (1)

、申凊專利範圍·· —種正交分頻多工接收器,包含有: 同頻迢干擾偵測器,係接收一包含有多數個次載波 的頻域k號,以產生一估計誤差值,並比較該估計 5吳差值與一預設臨界值以產生一比較結果,其中每 一次載波包含有多數個分散引導信號,且該估計誤 差值係利用相距一預設時間的第一分散引導信號 與第二分散引導信號進行計算處理而求得;以及 頻域陷波濾波器,係接收前述頻域信號,且根據前 述比較結果產生一陷波頻域信號,該陷波頻域信號 包含有多數個次載波,且每一次載波包含有陷波頻 域資料; 其中’當前述估計誤差值大於前述預設臨界值時,前 述頻域陷波濾波器減少前述分散引導信號所在之 次載波及/或其鄰近之次載波的權重係數大小;且 ^。玄估汁誤差值小於前述預設臨界值時,該頻域陷 波據波器將該分散引導信號所在之次載波及/或其 鄰近之次載波的權重設為1。 如申請專利範圍第1項所述之正交分頻多工接收器, 更包含一傅立葉轉換電路,該傅立葉轉換電路係接收一包含 有在時間領域之多數個次載波的輸入信號,且產生前述頻域 信號。 如申請專利範圍第1項所述之正交分頻多工接收器, 其中在前述估計誤差值大於該預設臨界值時,前述頻 丄丄丄z 域陷波據波器將前述分散引導信號所在之次載波的權 重係數設為大於等於0〜小於1之間。 4.如申:專利範圍第i項所述之正交分頻多工接收器, 其中則述同頻道干擾偵測器包含: 十算器係用以計算前述估計誤差值;以及 同V員遏干擾比較單元,係用以比較前述估計誤差值 /、i述預设臨界值,以產生前述比較結果。 .士申°月專利辜已®帛1項戶斤述之正交分頻多工接收器, 2中則述估計誤差值等於各別包含有前述第一與第二 刀月欠引導H之第一頻域資料與第二頻域資料相減後 再取絕對值平方之值。 6_如申明專利範圍第1項所述之正交分頻多工接收器, 其中刖逑估計誤差值為一平均估計誤差值,該平均估 計誤差值係利用一被選擇的分散引導信號所在之次載 波中之#他多數個相距前述預言史時間㈣散引導信號 兩兩進行計算、並取平均值而求得。 A 7. 如申請專利範圍第i項所述之正交分頻多工接收器, 更包含有一通道估計器,該通道估計器係接收前述陷 波頻域資料’且根據包含在陷波頻域資料中的分散引 導信號來產生一處理後之通道參數。 8. 如申請專利範圍第7項所述之正交分頻多工接收器, 更包含-匹配濾波器,該匹配濾波器係接收前述陷波 頻域資料,且根據前述處理後之通道參數來產生一匹 配輸出信號。 22 9·如申請專利範圍第8項所述之正交分 更包含一救十 、夕工接收器, 器係接收前述匹配衿^ Λ位兀反向映射 W“且對該匹配輪出信號執 订付遽反向映射,以產生一輸出信號。 Μ號執 10.如申請專利範圍第9項所 更尚今一田、, 、又正又刀頻多工接收器, 用以解碼前述軟式位元反向映 號的維特比解碼器。 ㈣之輸出k Ήΐ"Γ圍第:項所述之正交分頻多工接收器, 3 以解碼别述軟式位元反向映射器之輸出俨 號的羅德索羅門解碼器。 ° 12.如申=專利範圍第“所述之正交分頻多工接收器, ’、中4述第一與第二分散引導信號係位於不同符元, 及/或位於同一次載波。 U·如中請專利範圍第丨項所述之正交分頻h接收器, 係應用於數位電視地面廣播系統。 —種正交分頻多工接收器,包含有: 同頻道干擾偵測器,係接收一包含有多數個次载波 的頻域仏虓,並由相距—預設時間的第一分散引導 信號與第二分散引導信號來計算出一估計誤差 值;以及 頻域波濾波器,係根據前述估計誤差值來調整被 選擇的第一與第二分散引導信號所在之次栽波的 權重係數大小、及/或調整該次載波鄰近之次載波 的權重係數大小。 23 1 5 _如申凊專利範圍第14項所述之正交分頻多工接收器, 其中當前述估計誤差值大於—預設臨界值時,前述頻 域陷波濾波器減少前述分散引導信號所在之次載波及/ 或其鄰近之次載波的權重係數大小;且當該估計誤差 值丨於σ亥預设臨界值時,該頻域陷波濾波器將該分散 引導信號所在之次載波及/或其鄰近之次載波的權重係 數設為1。凊 凊 凊 凊 · 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交And comparing the estimated 5 Wu difference with a predetermined threshold to generate a comparison result, wherein each carrier includes a plurality of scattered pilot signals, and the estimated error values are first guided by a predetermined time interval The signal and the second dispersion guide signal are calculated and processed; and the frequency domain notch filter receives the frequency domain signal, and generates a notch frequency domain signal according to the comparison result, where the notch frequency domain signal includes a plurality of subcarriers, and each carrier includes notch frequency domain data; wherein 'when the estimated error value is greater than the preset threshold value, the frequency domain notch filter reduces the subcarrier of the scattered pilot signal and/or The weight coefficient of the secondary carrier or its neighboring carrier; and ^. When the error value of the estimated juice is less than the predetermined threshold, the frequency domain notch has a weight of 1 for the secondary carrier where the distributed pilot signal is located and/or its adjacent secondary carrier. The orthogonal frequency division multiplexing receiver according to claim 1, further comprising a Fourier transform circuit, wherein the Fourier transform circuit receives an input signal including a plurality of subcarriers in a time domain, and generates the foregoing Frequency domain signal. The orthogonal frequency division multiplexing receiver according to claim 1, wherein when the estimated error value is greater than the predetermined threshold, the frequency 丄丄丄z domain notch data filter uses the foregoing scattered pilot signal The weight coefficient of the secondary carrier where it is located is set to be greater than or equal to 0 to less than 1. 4. For application: the orthogonal frequency division multiplexing receiver according to item i of the patent scope, wherein the co-channel interference detector comprises: a calculator for calculating the estimated error value; The interference comparison unit is configured to compare the estimated error value /, the predetermined threshold value to generate the foregoing comparison result.士申°月月辜 辜 帛 帛 帛 项 帛 户 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交 正交After subtracting the frequency domain data from the second frequency domain data, the value of the square of the absolute value is taken. 6_ The orthogonal frequency division multiplexing receiver according to claim 1, wherein the estimated error value is an average estimated error value, and the average estimated error value is determined by using a selected distributed pilot signal. Most of the subcarriers # are separated from the aforementioned prediction history time (four), and the scattered pilot signals are calculated and averaged. A 7. The orthogonal frequency division multiplexing receiver according to claim i, further comprising a channel estimator, the channel estimator receiving the aforementioned notch frequency domain data 'and according to the inclusion in the notch frequency domain The decentralized pilot signal in the data is used to generate a processed channel parameter. 8. The orthogonal frequency division multiplexing receiver according to claim 7, further comprising a matched filter, wherein the matched filter receives the notch frequency domain data, and according to the processed channel parameter A matching output signal is generated. 22 9. If the orthogonal component described in item 8 of the patent application scope further comprises a rescue ten-party receiver, the device receives the aforementioned matching 衿^ Λ position 兀 reverse mapping W” and executes the matching round-out signal The reverse mapping is performed to generate an output signal. The nickname is 10. If the patent application scope is the ninth item, the current Yada, and the positive scallop multiplex receiver is used to decode the aforementioned soft bit. The Viterbi decoder with the inverse of the element. (4) The output k Ήΐ " The orthogonal frequency division multiplexing receiver described in the item: 3, to decode the output nickname of the soft bit reverse mapper The Rod Solomon decoder. ° 12. The application of the Orthogonal Frequency Division Multiplexed Receiver described in the patent scope, ', the first and second distributed pilot signals are located in different symbols, and / or located on the same carrier. U. The orthogonal frequency division h receiver described in the scope of the patent application is applied to a digital television terrestrial broadcasting system. An orthogonal frequency division multiplexing receiver includes: a co-channel interference detector, which receives a frequency domain 包含 including a plurality of subcarriers, and is separated by a preset time by a first dispersed pilot signal and a second dispersion guiding signal to calculate an estimated error value; and a frequency domain wave filter, wherein the weighting coefficient of the secondary carrier in which the selected first and second dispersed guiding signals are located is adjusted according to the estimated error value, and / or adjust the weight coefficient of the secondary carrier adjacent to the secondary carrier. The invention relates to an orthogonal frequency division multiplexing receiver according to claim 14, wherein when the estimated error value is greater than a preset threshold, the frequency domain notch filter reduces the scattered pilot signal. The weight coefficient of the subcarrier and/or its adjacent subcarriers; and when the estimated error value is at a predetermined threshold value, the frequency domain notch filter sets the subcarrier of the decentralized pilot signal and / The weight coefficient of the secondary carrier or its neighbor is set to 1. 16.如申請專利範圍第14項所述之正交分頻多工接收器, /、中在如述估計誤差值大於一預設臨界值時,前述頻 域陷波濾波器將前述分散引導信號所在之次載波及/或 其鄰近之次載波的權重係數大小設為大於等於〇〜小於 1之間。 17.16. The orthogonal frequency division multiplexing receiver according to claim 14, wherein the frequency domain notch filter has the foregoing scattered pilot signal when the estimated error value is greater than a predetermined threshold. The weight coefficient of the secondary carrier and/or its adjacent secondary carrier is set to be greater than or equal to 〇~ less than 1. 17. 如申4專利範圍第丨4項所述之正交分頻多工接收器 其中則述估計誤差值為一平均估計誤差值,該平均估 計誤差值係利用一被選擇的分散引導信號所在之次載 波中之其他多數個相距前述預設時間的分散引導信號 兩兩進行計算、並取平均值而求得。 18.如申請專利範圍第w項所述之正交分頻多工接收器, 其中4述第一與第二分散引導信號係位於不同符元, 及/或位於同一次載波。 一種债測同頻道干擾之方法,包含有: 接收-包含有多數個次載波之頻域信號; 由相距-預设時間的—第一分散引導信號與一第二分 散引導信號計算出一估計誤差值;以及 24 19. 1323112 根據前述估計誤差值調整被選擇的第一與第二分散引 導信號所在之次載波的權重係數大小、及/或調整 該次载波鄰近之次載波的權重係數大小。 20. 如申請專利範圍第19項所述之偵測同頻道干擾之方 法,其中前述第一與第二分散引導信號係位於不同符 元’及/或位於同一次載波。 21. 如申請專利範圍第19項所述之偵測同頻道干擾之方 法’其中當前述估計誤差值大於一預設臨界值時,前 述分散引導信號所在之次載波及/或其鄰近之次載波的 榷重係數大小將被減少;且當該估計誤差值小於該預 設臨界值時,該分散引導信號所在之次載波及/或其鄰 近之次載波的權重係數將被設為1。 22·如申請專利範圍第19項所述之偵測同頻道干擾之方 其中在前述估計誤差值大於一預設臨界值時,前 述分散引導信號所在之次載波及/或其鄰近之次載波的 權重係數大小將被設為大於等於0〜小於1之間。 2 3.如申請專利範圍第19項所述之伯測同頻道干擾之方 法,其φ许、4_、,, 均估計誤計誤差值為一平均估計誤差值’該平 # ..",值係利用一被選擇的分散引導信號所在之 夂戰波中之甘几& U夕數個相距前述預設時間的分散引導 虎兩兩進行計算、並取平均值而求得。 25The orthogonal frequency division multiplexing receiver according to item 4 of claim 4, wherein the estimated error value is an average estimated error value, and the average estimated error value is obtained by using a selected scattered pilot signal. The other plurality of carriers are calculated by calculating the average of the scattered pilot signals of the preset time and averaging them. 18. The orthogonal frequency division multiplexing receiver according to claim w, wherein the first and second distributed pilot signals are located in different symbols, and/or are located on the same subcarrier. A method for detecting co-channel interference in a debt, comprising: receiving a frequency domain signal including a plurality of subcarriers; calculating an estimation error from a first dispersion pilot signal and a second dispersion pilot signal separated by a preset time And the value of the weighting coefficient of the secondary carrier where the selected first and second distributed pilot signals are located, and/or the weighting coefficient of the secondary carrier adjacent to the secondary carrier are adjusted according to the foregoing estimated error value. 20. The method of detecting co-channel interference as described in claim 19, wherein the first and second scattered pilot signals are located at different symbols' and/or on the same secondary carrier. 21. The method for detecting co-channel interference according to claim 19, wherein when the estimated error value is greater than a predetermined threshold, the secondary carrier where the scattered pilot signal is located and/or its adjacent secondary carrier The weight coefficient of the signal will be reduced; and when the estimated error value is less than the predetermined threshold, the weight coefficient of the secondary carrier where the distributed pilot signal is located and/or its adjacent secondary carrier will be set to 1. 22. The method for detecting co-channel interference according to claim 19, wherein when the estimated error value is greater than a predetermined threshold, the secondary carrier where the scattered pilot signal is located and/or its adjacent secondary carrier The weight coefficient size will be set to be greater than or equal to 0 to less than 1. 2 3. If the method of inter-channel co-channel interference described in claim 19 of the patent application scope, the φ, 4, and , and the estimated error error value are an average estimated error value 'the flat # ..", The value is obtained by calculating and averaging the scattered tigers in the battle wave in which the selected scattered pilot signal is located. 25
TW95144775A 2006-12-01 2006-12-01 Ofdm receiver and co-channel interference detecting method TWI323112B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95144775A TWI323112B (en) 2006-12-01 2006-12-01 Ofdm receiver and co-channel interference detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95144775A TWI323112B (en) 2006-12-01 2006-12-01 Ofdm receiver and co-channel interference detecting method

Publications (2)

Publication Number Publication Date
TW200826580A TW200826580A (en) 2008-06-16
TWI323112B true TWI323112B (en) 2010-04-01

Family

ID=44772461

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95144775A TWI323112B (en) 2006-12-01 2006-12-01 Ofdm receiver and co-channel interference detecting method

Country Status (1)

Country Link
TW (1) TWI323112B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559865B2 (en) 2008-07-31 2013-10-15 Qualcomm Incorporated Method and apparatus for providing jammer detection in a receiver

Also Published As

Publication number Publication date
TW200826580A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
US20080084940A1 (en) OFDM receiver
US7664189B2 (en) OFDM demodulator, receiver, and method
JP4299148B2 (en) Receiving apparatus and receiving method
TWI355821B (en) Ofdm receiver and ofdm signal receiving method
TW200847655A (en) Jammer detection and suppression for wireless communication
US8565295B1 (en) Low-complexity channel noise reduction method and apparatus for multi-carrier mode in wireless LANS
US20080175328A1 (en) Power adaptive channel estimation for a multi-path receiving
WO2008077959A1 (en) Method of determining a channel quality and modem
RU2531256C2 (en) Reception device, reception method and programme
JP2011129974A (en) Receiving apparatus and method, program, and receiving system
JP2009188603A (en) Ofdm receiver
US8687749B2 (en) Mobile OFDM receiver
JP2008277936A (en) Ofdm reception device
US9210017B2 (en) Reception device, reception method, and program
JP5433012B2 (en) Receiver having channel estimation circuit
TWI323112B (en) Ofdm receiver and co-channel interference detecting method
Zhang et al. Application of DFT-based channel estimation for accurate signal cancellation in Cloud-Txn multi-layer broadcasting system
US8374261B2 (en) Method and apparatus for Doppler estimation in orthogonal frequency-division multiplexing (OFDM)
JP5110586B2 (en) OFDM demodulating device, OFDM demodulating method, OFDM demodulating program and recording medium recording the program
JP5712698B2 (en) Signal processing apparatus, signal processing method, and program
JP2007202082A (en) Ofdm demodulating device and method
JP2007251435A (en) Ofdm demodulator, ofdm demodulation method, program, and computer-readable recording medium
JP2005191662A (en) Method of demodulating ofdm signal
JP2005184725A (en) Ofdm receiving device and ofdm signal reception method
JP5284891B2 (en) Communication apparatus and delay amount detection method