TWI322589B - Dynamic space-time coding for a communication system - Google Patents
Dynamic space-time coding for a communication system Download PDFInfo
- Publication number
- TWI322589B TWI322589B TW95109273A TW95109273A TWI322589B TW I322589 B TWI322589 B TW I322589B TW 95109273 A TW95109273 A TW 95109273A TW 95109273 A TW95109273 A TW 95109273A TW I322589 B TWI322589 B TW I322589B
- Authority
- TW
- Taiwan
- Prior art keywords
- time
- space
- code
- data
- stream
- Prior art date
Links
Landscapes
- Radio Transmission System (AREA)
Description
九、發明說明: 【發明所屬之技術領域】 本揭示案大體而言係關於通信,且更具體言之,本揭示 案係關於用於在通信系統中傳輪資料之技術。 【先前技術】 蜂巢式线為—可與多個終端機(例如,蜂巢式電話)同 時通信之無線多向近接通信系統。蜂巢式系統可使用一空 間對時間編碼以便達⑽於向—終端機之傳輸的㈣及時 間分集。空間對時間編碼指資料(例如,調變符號)之處理 以使得資料經由多個實體天線且跨越時間發送以達成空間 料間分集。舉例而言,第三代蜂巢式Μ可使P ^ 門重士時間傳輸分集(STTD)或正交傳輸分集(OTD)之 /對時間編碼機制來在兩個符號週期内自兩個天線傳輸 每對符號。STTM〇TD為用於在兩個符號週期内將兩個 號映射至兩個天線之不同的但固定的機制及 〇™在不使用空間對時間編碼之情況下可大體改良效能。 ’’二而STTD及〇TD具有若干主要缺點。第一,STTD及 L吊在時間分散多路徑環境中經受效能損失,其引起 '員率、擇性衰減及正交性損失。第二,STTD及OTD限於 在兩個傳輸天線上操作。第三,STTM 〇td為固定空間 2 Z間碼。在某些情形中,諸如對於一固定或慢移動終端 和。,無線通道可處於一未與用於STTD或OTD之固定 子了間碼很好匹配之狀態中且可在此不良狀態中保持 一延長時間段 所有此等缺點限制STTD及OTD的使用及/ 109672.doc 或防礙STTD及OTD之效能。 因此,此項技術中需要在多路徑環境中提供良好效能之 傳輸技術。 【發明内容】 本文描述用於使用動態空間對時間編碼傳輸資料的技 此等技術可提供用於至接收器之資料傳輸的較高度分 器之較少量反饋。^之任何反饋或僅使用來自接收 根據本發明之-實施例,描述一種裝置,該裝置包括至 >、一個處理器及一記憶體。該至 個處理益產生至少一 個貧料流且以動態方式(例如,時變 ·* / 式)對該至少一個資 =執行空間對時間編碼’以產生自至少兩個天線傳輸之 夕兩個輸出流。記憶體儲存 及/或程式碼。 b㈤處心之資料 根據另一實施例,提供— 法。接签、 產生至少一個資料流之方 接者’以一動態方式對嗲小一 ^ 時間編碼,以產生自至〜 育料流執行空間對 流。 至乂兩個天線傳輸之至少兩個輸出 根據另一實施例’描— 生至,1、 之種裝置,該裝置包括:用: 生至個資料流之構 用於產 —個資料流執行空間於以一動態方式對該至少 傳輸之至少兩個輪碼’以產生自至少兩個天線 根據另一實施例, 處理器及-記憶體1二種2 ’該裝置包括至少-個 至乂 —個處理器使至少—個接收天 109672.doc 1322589 線獲得至少—個所接收符號流,且對該至 號流執行空間對時間解 夕固所接收符 碼之符號流,-為使Π, 個經空間對時間解 -為使用動.4空間對時間編 鮮 個資料流之估計。六門 得輸之至少一 補。記憶體儲存用於至 _間編碼互 碼。 個處理15之資料及/或程式 根據另-實施例,提供一種方法,宜中至小 「線獲得至少-個所接收符號流。接/,、以—二個接收天 •行之動態空間對時間編 、傳輪器執 符號流執行空間對時間解碼*二=少:個所接收 間解碼之符號流。 夕個經空間對時 根據另-實施例,描述_種袭置,該 至少一個接收天線辑、包括·用於使 用", 個所接收符號流的構件·及 用於以-與由^皇32 +1 十, 興由傳輸器執行之動態空間 式對該至少一個所接此兮咕A ],為碼互補之方 Π,、相 收符就流執行空間對時間解碼,以獲 仔至少一個經空間對時間解碼之符號流之構件。乂獲 下文將進—步詳細描述本發明之多種 【實施方式】 〜、樣及貫把例。 本文所使用之詞語,,例示 說明,,。不必將本文中m":…當一貫例、例子或 町+ 乂 γ抱述為"例示 — 為相對於其它實施例較佳或有利。 彳貫施例理解 術本二?!用於使用動態空間對時間編碼傳輸資料之技 間對時間編碼指基於-以動態方式變化之映射 機制之跨越空間及時間維 厪之貧科映射。舉例而言,映射 109672.doc 1322589 機制可藉由在不同時間間隔中使用不同空間對時間碼來 二:時變方式變化,其中可使用或不使用來自接收器之反 饋來所選空間對時間碼。你 下事伴之映射機制基於以 :現而變化,例如,計時器過期,諸如増加的封 # μ 映射機制亦可精由使用用於不同 傳輸天線之不同碣(例如,技 μ例如,捲積碼或渦輪碼)來以一 式變化。下文將詳細描述可動1^方 ^ _ 初忍燹化工間對時間編碼之多 種方法。 本文所描述之技術可用於多輸入多輸出(μ 入單輸出⑽so)之傳輪。職⑽輸為自多個 = 線至多個(R>1)接收天後值 專輸天 、严收天線之傳輸’so傳輸為自多個( 傳輸天線至皁個(R=1)接收 t ) ^ 一 線之傳輸。使用此等技術將 —或多個貧料流自一傳輸器發 W <王 接收|§。藉由值齡 器處之天線數目⑺及终端機 稭由傳輸 時發,“ ^ 線數目(R)判定可同 二發送至一給定接收器之資料流數目⑼或D一,IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present disclosure relates generally to communications, and more particularly to techniques for transmitting data in a communication system. [Prior Art] A cellular line is a wireless multi-directional proximity communication system that can communicate with a plurality of terminals (e.g., a cellular phone). The cellular system can use a space-to-time encoding to achieve (4) time-division diversity for transmission to the terminal. Space-to-time coding refers to the processing of data (e.g., modulation symbols) such that data is transmitted across multiple physical antennas and across time to achieve spatial inter-diversity diversity. For example, the third generation of cellular chirps can enable P^ gated heavy time transmission diversity (STTD) or orthogonal transmission diversity (OTD)/time coding mechanisms to transmit from two antennas in two symbol periods. Pair of symbols. STTM 〇 TD is a different but fixed mechanism for mapping two numbers to two antennas in two symbol periods and 〇TM can substantially improve performance without space-to-time coding. The STTD and the TD have several major drawbacks. First, STTD and L-hang are subject to performance loss in a time-spread multipath environment, which causes 'rate, selective attenuation, and orthogonality loss. Second, STTD and OTD are limited to operating on two transmit antennas. Third, STTM 〇td is a fixed space 2 Z code. In some cases, such as for a fixed or slow mobile terminal and . The wireless channel may be in a state that is not well matched to the fixed code for STTD or OTD and may remain in this bad state for an extended period of time. All such shortcomings limit the use of STTD and OTD and / 109672 .doc or hinder the performance of STTD and OTD. Therefore, there is a need in the art for transmission techniques that provide good performance in a multi-path environment. SUMMARY OF THE INVENTION Described herein is a technique for transmitting data using time-coded coding using dynamic space. Such techniques may provide less amount of feedback for higher-level distributors of data transmissions to the receiver. Any feedback or use only from receiving an embodiment according to the present invention describes a device comprising to > a processor and a memory. The at least one lean stream produces at least one lean stream and encodes the at least one asset = space-time encoding in a dynamic manner (eg, time-varying **) to generate two outputs from at least two antenna transmissions flow. Memory storage and / or code. b (5) Information on the Center According to another embodiment, the method is provided. The receiver, which generates at least one data stream, encodes the time of the small one in a dynamic manner to generate spatial convection from the cultivating stream. At least two outputs of the two antenna transmissions are described in accordance with another embodiment, and the apparatus includes: generating: a data stream to generate a data stream execution space Translating at least two wheel codes in a dynamic manner to generate at least two antennas. According to another embodiment, the processor and the memory 1 are 2'. The device includes at least one to one. The processor obtains at least one received symbol stream for at least one receiving day 109672.doc 1322589 line, and performs a space-to-time solution to the symbol stream of the received symbol for the to-number stream, - for Π, space The solution to the time - an estimate of the use of the .4 space to time the data stream. At least one of the six gates has to lose. The memory is stored for the inter-coded mutual code. According to another embodiment, a data and/or program provides a method for medium to small "line to obtain at least one received symbol stream. Connect /, , and - two receive days and lines of dynamic space versus time The codec performs the symbol stream execution space-to-time decoding*2=small: the symbol stream of the decoded between the receivers. The space-time pairing according to another embodiment, the description _ seeding, the at least one receiving antenna , including: for using ", the component of the received symbol stream, and for the use of - and by the emperor 32 +1 ten, the dynamic space type performed by the transmitter to the at least one of the 兮咕A] For the complementary side of the code, the phase-receiver performs space-to-time decoding to obtain at least one spatially-time-decoded symbol stream. The following will be described in detail in the present invention.实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Preferred or advantageous in other embodiments彳 施 施 理解 ! ! ! ! ! ! ! ! ! ! ! ! ! ! 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于 用于In other words, the mapping 109672.doc 1322589 mechanism can be changed by using different spatial versus time codes in different time intervals: time varying mode, where the spatial versus time code can be selected with or without feedback from the receiver. The mapping mechanism of your partner is based on: now, for example, the timer expires, such as the addition of the # μ mapping mechanism can also be used to use different 碣 for different transmission antennas (for example, technology μ, for example, convolution The code or turbo code is changed in a one-to-one manner. The following describes in detail the various methods of time coding for the mobile unit. The technique described in this paper can be used for multiple input and multiple output (μ input to single output (10) so). The transmission (10) is from multiple = line to multiple (R > 1) receiving days after the value of the day, the transmission of the antenna is 'so transmitted from multiple (transmission antenna to soap) (R = 1) Receive t) ^ One-line transmission. Use these techniques to send - or multiple lean streams from a transmitter to W < Wang Receive | §. By the number of antennas at the age device (7) and terminal stalks When transmitting, the number of ^ lines (R) can be determined by the number of streams (9) or D1 sent to a given receiver.
本文所描述之技術可用於在下行鏈路及上行鏈路上之傳 打鏈路(或前向鏈路)指自-基地台至-終端機之通 t鍵路,且上行鏈路(或反向鏈路)指自-終端機至-基地 D之通信鏈路。基地台通常為一固定A 3|系冲 D且可柄為基地收發 盗系統(BTS)、郎點B、存取點或某 盔m — a 1 ~ 他術5吾。終端機可 為固疋的或行動的且可為無線器件、 .L 蟬巢式電話、個人數 位助理(PDA)、無線數據機卡等。 、+. m 马/月晰之目的,下文描 迷用於在下行鏈路上傳輸之技術。 109672.doc 1322589 圖1展示在無線通信系統1 00中之一基地台1 i 〇及兩個終 端機150χ及150y之貫施例的方塊圖。基地台配備有多 個(T>1)天線134a至134,終端機150χ配備有單個(R=1)天線 152x,且終端機150y配備有多個(R>1)天線152ai152r。為 簡明之目的,圖1僅展示用於下行鏈路上資料傳輸及上行 鏈路上訊號傳輸的處理單元。 在基地台110處,傳輸(TX)資料處理器12〇接收來自一資 料源112之訊務資料,處理(例如,通道編碼、交錯及調變) 訊務資料,且產生一或多個(Dy)資料流。可基於捲積 碼、渦輪碼、區塊碼或其組合分別對每一資料流進行通道 編碼。或者,可對單個輸入流進行通道編碼且接著解多工 為D個資料流。如下文所描述,空間對時間編碼器13〇❹ 個資料流執行^對_編碼,且將多個(墙出流提件 至τ個傳輸器(而叫仏至132t。可選擇性地執行空間對 時間編碼(例如,針對某些終端m類型之資料 些實體通道、某些時槽、某些通道條件等)或可始終執行 空間對時間編碼。對;^ I 1 d a 0 It —亦可以相同二及多天線終端機 J次不同方式執仃空間對時間編碼。 -傳輸器132處理(例如,轉 :上轉換)其輸出流且產生-射頻二::及: =線⑽至咖傳輪來自傳輸器仙至⑽之奸調變」 在每一終端機150處 號,且每一天線將一 ’ 一或多個天線152接收所傳輪訊 所接收訊號提供至一個別接收器 I09672.doc 1322589 (RCVR)154。每一接收器154處理(例如,據波、於士 率向下轉換、數位化、大致均衡)其所接收訊 、頻 接收符號流。對於單天線終端機2供所 解碼器副讀所接㈣號執行且提供= 間對時間解碼之符號。亦可使用均衡器組合空間對時間解 碼。接收(RX)資料處判17崎著處理(解調變、解交^ 及通道解碼)經空間對時間解瑪之符號且將經解竭資料‘ 供至資料槽〗72x。對於多天線終端機】5〇y而言,空間對時 間解碼Hl6Gy對所接收錢執行m對㈣解碼且提供經 空間對時間解碼之符號。RX資料處理器my接著處理經 空間對時間解碼之符號且將經解碼資料提供至資料槽 172y。 ' 終端機150x及/或15时可向基地台u〇發送訊號。對於每 一終端機而言,TX訊號處理器184可接收來自一控制器/處 理器180之訊號且接著可根據一所選訊號機制處理訊號。 • 藉由一或多個傳輸器調節經處理訊號且經由一或多個 天線152傳輸。在基地台11〇處,來自終端機Mb及/或 150y之訊號係藉由天線134a至134t接收,由接收器132a至 132t處理,且由RX訊號處理器Μ#進一步處理以恢復由終 端機150x及/或150y所發送之訊號(若存在广控制器/處理 器140可基於所恢復訊號控制向終端機。(^及/或15〇y之資 料傳輸。 控制器/處理器140、180x及180y分別控制位於基地台 110及終端機150x及150y處之多種處理單元的操作。記憶 109672.doc 1322589 體142、i 82乂及丨82y分別儲存用於基地台!丨〇及終端機丨5〇χ 及150y之資料及程式碼。 基地台110可利用空間對時間編碼來改良向單天線終端 機l5〇x及多天線終端機15时之資料傳輪的效能。在一實施 例中’基地台11G基於—或多個陳丨)空間對時間碼集執行 空間對時間編碼。每-碼集包括多個空間對時間碼。每一 空間對時間碼定義一符號至傳輸天線及符號週期之特定映 φ射。如下文所描述,基地台11〇可以多種方式執行空間對 時間編碼。 固Ζ欣不在無任何 。一 -----叫";——1回頁料流之動 L空間對時間編碼之傳輪應在丨 , 得翰機制200。在空間對時間編碼器 13〇a(其為圖1中之空間對睹 〇 吟間,4馬益130之一實施例)内, 記憶體240儲存一含有多個( 隹# υ υ二間對時間(ST)碼之碼 …工器(MUX)242接收Ν個空間對時間碼且基於一來自 一控制單元244之選擇訊號提❹個空間對時間碼之一者。 母一所選空間對時間碼用於— 員疋吁間間隔中之空間對時 間編碼。空間對時間編碼器2 接收來自ΤΧ資料虛理51 120之資料流及來自多 貢科處理器 盗242之所選空間對時間碼,使用 所選空間對時間碼對資料 1主丁貝科"丨L執行空間對睹 多個(Τ)輸出流。進一步 .....煶供 +嫂廣认 周郎该τ個輸出流且經由丁個傳輸 天線傳輸至終端機150,苴 傅輸 線終端機叫。 ’、為早天線終端機150Χ或多天 對於圖2中所示之實施例, ^ ώ Α , …、來自終端機150之反饋情 況下由基地台1】〇選擇空 mif 对時間碼。控制單元244可以一 I09672.doc 循環方式(例如,選擇sw,接著灯碼2The techniques described herein can be used for the downlink (and forward link) on the downlink and uplink to refer to the t-way from the base-to-terminal, and the uplink (or reverse) Link) refers to the communication link from the terminal to the base D. The base station is usually a fixed A 3 | system D and can be used as a base transceiver system (BTS), a point B, an access point or a helmet m - a 1 ~ he 5. The terminal can be fixed or mobile and can be a wireless device, a .L cell phone, a personal digital assistant (PDA), a wireless data card, and the like. , +. m horse / month clear purpose, the following describes the technology used for transmission on the downlink. 109672.doc 1322589 FIG. 1 shows a block diagram of one embodiment of a base station 1 i 〇 and two terminal units 150 χ and 150 y in a wireless communication system 100. The base station is equipped with a plurality of (T > 1) antennas 134a to 134, the terminal unit 150 is equipped with a single (R = 1) antenna 152x, and the terminal 150y is equipped with a plurality of (R > 1) antennas 152ai 152r. For the sake of brevity, Figure 1 shows only the processing unit for data transmission on the downlink and signal transmission on the uplink. At base station 110, a transmit (TX) data processor 12 receives the traffic data from a data source 112, processes (e.g., channel codes, interleaves, and modulates) the traffic data, and generates one or more (Dy) ) data flow. Each data stream can be channel coded separately based on a convolutional code, a turbo code, a block code, or a combination thereof. Alternatively, a single input stream can be channel encoded and then multiplexed into D data streams. As described below, the space-to-time encoder 13 data streams are subjected to ^-_ encoding, and a plurality of (wall outflows are extracted to τ transmitters (called 132 to 132t. The space can be selectively executed) For time coding (for example, some physical channels for certain terminal m types, certain time slots, certain channel conditions, etc.) or space-to-time coding can always be performed. For; ^ I 1 da 0 It - can also be the same Two and multiple antenna terminals J different times to perform space-to-time coding. - Transmitter 132 processes (eg, converts: upconverts) its output stream and generates - RF 2:: and: = line (10) to the coffee pass from The transmitter is tuned to each terminal 150, and each antenna receives one or more antennas 152 to receive the received signals from the transmitted radio to a receiver I09672.doc 1322589 (RCVR) 154. Each receiver 154 processes (e.g., waves, slash down, digitizes, substantially equalizes) the received signal and frequency received symbol streams. For a single antenna terminal 2, the decoder is provided. The secondary reading is executed by (4) and provides = inter-time decoding. No. It is also possible to use the equalizer combination space to decode the time. The receiving (RX) data is judged by the 17-seven processing (demodulation, de-intersection, and channel decoding) by the space-to-time symbol and the decommissioned data. 'Supply to data slot〗 72x. For multi-antenna terminal 5 yy, space-to-time decoding Hl6Gy performs m-pair (four) decoding on received money and provides space-to-time decoded symbols. RX data processor my The spatially time-decoded symbols are processed and the decoded data is provided to the data slot 172y. The terminal 150x and/or 15 can transmit signals to the base station u. For each terminal, the TX signal processor 184 The signal from a controller/processor 180 can be received and then processed according to a selected signal mechanism. • The processed signal is adjusted by one or more transmitters and transmitted via one or more antennas 152. At 11 ,, the signals from the terminals Mb and/or 150y are received by the antennas 134a to 134t, processed by the receivers 132a to 132t, and further processed by the RX signal processor Μ# to recover by the terminal 150x and/or 150y The signal sent (if there is a wide controller/processor 140 can control the data to the terminal based on the recovered signal. (^ and / or 15〇y data transmission. The controller/processors 140, 180x and 180y are respectively controlled at the base station Operation of various processing units at 110 and terminals 150x and 150y. Memory 109672.doc 1322589 Body 142, i 82乂 and 丨82y respectively store data for base station 丨〇 and terminal units 丨 5〇χ and 150y and The base station 110 can utilize space-to-time coding to improve the performance of the data transfer to the single-antenna terminal l5〇x and the multi-antenna terminal 15. In an embodiment, the base station 11G performs space-to-time coding on the time code set based on - or a plurality of locations. The per-code set includes multiple spatial versus time codes. Each space defines a symbol to the time code to the transmission antenna and the particular mapping of the symbol period. As described below, the base station 11 can perform spatial-to-time coding in a variety of ways. Gu Xinxin is not without any. One -----called "; - 1 page flow of the movement L space to the time coding of the transmission wheel should be in the 丨, Dehan mechanism 200. In the space-to-time encoder 13A (which is an embodiment of the space pair in FIG. 1 , 4 Ma Yi 130), the memory 240 stores a plurality of (隹# υ υ2 pairs) The code of the time (ST) code, the MUX 242 receives the space-to-time code and extracts one of the space-to-time codes based on a selection signal from a control unit 244. The code is used to encode the space in the interval between the members and the caller. The space-to-time encoder 2 receives the data stream from the data source 51 120 and the selected space pair time code from the Dogon processor 242. Use the selected space pair time code pair data 1 main Dingbeco "丨L to perform space pairing multiple (Τ) output streams. Further ..... 煶 嫂 嫂 嫂 周 周 该 τ τ τ τ 输出 输出 output output It is transmitted to the terminal 150 via a transmission antenna, and the terminal is called. ', the early antenna terminal 150 or more days. For the embodiment shown in FIG. 2, ^ Α Α , ..., from the terminal 150 In the case of feedback, the base station 1 〇 selects the empty mif pair time code. The control unit 244 can I09672.doc robin fashion (e.g., selecting sw, followed lamp yard
碼N,接# y 于寻’然後ST 。至ST碼1等)循環N個空間對 單元244亦可以一偽隨機方式(例如,基於隨㈣控制 序列)選擇空間對時間碼。控制單元244亦可以遺:數⑽) 選擇空間對時間碼 ,^ 法 其他方式Code N, connect # y to find 'and then ST. Looping N space pair units 244 to ST code 1 or the like may also select a spatial versus time code in a pseudo-random manner (e.g., based on a (4) control sequence). The control unit 244 can also leave: number (10)) select space to time code, ^ method other way
Bf間碼。在任一情況下,均以—確 (即,土地台11〇及終端機15〇兩知工 時間碼。因此,終端機15。知道用於每—時=空間對 間對時間碼。 ]間IW中之空 可以多種方式定義碼集中之空間對時間碼 中,碼集包括用於所右T姻傕私知 貫把例 碼。在另—實n 不同空間對時間 另霄施例中,碼集包括用 空間對時間碼。在另遣目傳輸天線之 波束之m 碼集包括具有不同天線 =束:二間對時間碼。天線波束係藉由使 之祓合增盔φ也丨a # 吁刊〗八綠 ]疋。猎由將不同複合增益集應用於T個傳 輸天線可形成不同天線波束個傳 期望通道條件之更^ 十工間對時間碼以提供Bf code. In either case, the exact time code is used (ie, land station 11 and terminal 15). Therefore, terminal 15 is known to use for each time-space pair to time code. The space can define the space in the code set in a variety of ways, and the code set includes the case code for the right T marriage. In another case, the different sets of time and time, the code set Including space-to-time code. The m-code set of the beam of the transmission antenna in the other direction includes different antennas = beam: two pairs of time codes. The antenna beam is made by combining it with the helmet φ. 〗 〖Eight green] 猎. Hunting by applying different composite gain sets to T transmission antennas can form different antenna beams and transmit the desired channel conditions.
的效旎。舉例而言,比STTD或0TD 間碼可經==路徑分佈(muhipath帅fiie)之空間對時 性空二:碼用於空間對時間編碼。下文描述*些例示 ^ ^ , _ 二4對時間編碼之傳輸機制300。對於 隼中·登摆4實^例而言,慢反饋自可使用之多個(M>1)碼 呆1f選擇一個碼集。 在空間對時間編碼器13〇b(其為圖1中之空間對時間編碼 109672.doc 等Ζ;)内’記憶體340儲存M個鳴集,每-碼 制二一個(㈣空間對時間碼。在-實施例中,控 隹早為終端機㈣選擇-與通道分佈最佳匹配之碼 集。通道分佈指示4線“夕η 取㈣配之碼 ^ "、之長期特徵,例如,盔線通 ===的長㈣間平均能量。多工器⑷接^用於 之==對時間碼且基於-來自-控制單元-選擇訊號提供前個空間對時間碼之 序方式、偽隨機方式等循環所選碼集:二 =1Γ碼。每一所選空間對時間碼用於-預定時間 心之空間對時間編碼。空間對時間編碼器330接收資料 :及所選空間對時間碼’使用所選空間對時間碼對資料流 :行空間對時間編碼,且將提供多個⑺輸出流以經由τ個 傳輸天線傳輸至終端機丨5〇。 可設計Μ個碼集以提供用於不同通道分佈之良好效能。 可以多種方式定義該等碼集。 在:實施例中,定義用於不同數目傳輸天線之碼集。舉 例而言’可定義-或多個碼集以用於可用於基地台HO處 之所有Τ個天線’且可定義一或多個碼集以用於少於τ個天 線之天線°在具有低訊雜比(SNR)之不良通道環境中,藉 由自較少天線傳輸可達成較佳效能,其使得自主動天^ (:ive antenna)發送之傳輸中產生的串音較少。舉例而 言,對於SNR處於_特定隱臨限值之下之情況,希望可 使用少數(例如,-個或者兩個)天線執行空間對時間編 碼。在具有高SNR之良好通道環境中,藉由自較多天線傳 109672.doc • 14- 1322589 輸來達成較大空間分集’可達成較佳效能。在任—情況 下’藉由選擇一用於空間對時間編碼之適當碼集可達成傳 輸天線數目之動態選擇。 在另一實施例中,定義該等碼集以用於不同行動性環 境。舉例而言’可定義一或多個碼集以用於所有固定或低 行動性環境’且可定義一或多個碼集以用於高行動性(例 如,高都卜勒(Doppler))環境。不同行動性環境可具有不 φ 同通道特徵。可定義碼集以提供用於不同行動性環境之良 好效能。 在另一實施例中,定義該等碼集以具有不同天線波束。 舉例而言,可定義該等碼集之一或多個,使得空間對時間 碼有效地形成天線波束。可選擇具有與當前通道分佈良好 匹配之天線波束的碼集來使用。在一所選碼集内,可確定 天線波束較佳之時間間隔,且可在此等時間間隔期間將資 料發送至終端機。 鲁 可以多種方式達成一與當前通道分佈良好匹配之碼集的 選擇。在一實施例中,終端機150確定其通道分佈,選擇 一與通道分佈良好匹配之碼集,且向基地台11〇發送訊號 以才曰不6亥所選碼集。在另一實施例中基地台1丨〇接收來 自終端機150之反饋且基於所接收反饋選擇最佳匹配碼 集在另—實施例中,基地台11 〇循環用於傳輸至終端機 15〇之資料傳輸的M個碼集,接收來自終端機15〇之反饋, 且基於所接收反饋選擇最佳匹配碼集。可以多處形式(諸 通I質指示器(CQI)、SNR估計、資料速率、用於 109672.doc 15 1322589 由終端機150正確解碼之封包的應答(ACK)、用於經錯誤解 碼之封包的否定應答(NAK)等)來給出反饋。CQI、snr估 計及資料速率指示終端機15〇處之所接收訊號之品質,其 可基於—由基地台110發送之導頻訊號得以確定。亦可以 其他方式選擇最佳匹配碼集。 在具有慢反饋之空間對時間編碼之另一實施例中,使用 -空間對時間碼集,且基於慢反饋發送資料。舉例而言, 可如上文針對圖2所描述㈣_空間對時間^具有連續 變化之空間對時間碼之動態空間對時間編碼將人工時間 ㈣ficia! time)變量引入於一包含空間對時間編碼器及益 線通道之有效通道中。終端機可判定在一或多個空間對時 間碼與當前通道條件最佳 取丨王L配之Bf間間隔,且可將此 報告至基地台。基地么。 料傳輸之終端機進行排鋥,& 1用於貝 益。 卩排私’其可改良下行鏈路上之排程增 圖續示在具有來自終端機15〇之快反饋情況下 於一個資料流之動離办 之用用 m .s遲h 。工b1對時間編碼之傳輸機制400,宜 亦稱為選擇性空間對時 '、 施例而言,一個碼隹田 之實 個瑪集用於空間對時間編碼, 碼集中之多個空間對_ 、反饋自该 對時間碼中選擇-特定空間對時門踩 在空間對時間編碼器 Π ft時間碼。 器1 3 0之另一實施例)肉 、時間,.扁碼 1歹J )内’記憶體44〇儲在 空間對時間碼,且容 $集之夕個(N> 1) 且夕工益442基於一來白一 選擇訊號提供N個*門斜t 自控制早元444之 丨回二間對時間碼之_ 或夕個。控制單元444 109672.doc 16 接收來自終端機150之反饋。此反饋可指示該碼集中之空 =時間碼的哪—個或哪些與當前通道條件最佳匹配。控 ’早^444接著引導多工器442來提供所選空間對時間碼。 鉻^忠Ϊ分適應性傳輸機制中,終端機可基於所觀察通道 而疋義空間對時間碼。在終端機不定義空間對 而是自預定蠢★ „ es 義工間對時間碼中選擇最佳匹配碼方面,傳輪 機制400不同於充分 “傳輸機制。因此’終端機無需 疋義空間對時間碼,其 對睥fm、, 其簡化知作’且無需將所定義之空間 對時間碼發送至基地a, 發 D八減〉、訊號。替代地,終端機可 么运才日不所選空間對時 空間料門踩 #P1 ‘胃之較少减號^對於每-所選 元, m如「㈣2ni個位元—樣少的位 運皙r . " ;或大於x之整數值的上方值 運 τ (ceillng operation)。 藉由使用較快但有限的 ^ -S -¾ Jtr 貝,傳輸機制400允許對於去 月丨J通道條件之較快適應性。 ' 要求可相對不重要。 由於發回較少量訊號故反饋 傳輸機制基於快反饋與慢 8# n ^ = 、 貝之、,且合可執行動態空間對 時間編碼。慢反饋可基於通 .^ k 佈自多個可用碼隼中撰摆 -個碼集。快反饋可所選 $集中選擇 ! 4·,夕加… T之夕個空間對時間碼中遗 擇-或多個空間對時間碼。由 …選 僅需評估Ν個不同*門龍ηΆ機針對母-時間間隔 「J工間對時間碼(而 間碼)’故簡化了操作。由於終;"Ν個工間對時 間碼發回「log2 Ν]個位元(而 子一所選空間對時 少了訊號。 疋「1〇_娜固位元),故亦減 109672.doc 1322589 傳輸機制200、300及400使用空間對時間編碼自多個(τ) 天線傳輸單個資料流以達成空間及時間分集。亦可將多個 資料流同時發送至多天線終端機15〇y或至多個終端機。可 發送一 ΜΙΜΟ傳輸以用於具有高SNR之良好通道環境。 圖5展示在無任何反饋情況下使用用於多個(D>1)資料流 之動態空間對時間編碼的傳輸機制5〇〇 ^在空間對時間編 碼器130ci(其為圖i中之空間對時間編碼器13〇之另—實施 φ 例)内,D個記憶體54〇3至54〇d儲存用於D個資料流之ϋ個 碼集。每一碼集含有一或多個(N>1)空間對時間碼^ D個多 工器542a至542d分別耦接至D個記憶體54〇&至54叼。每― 多工器542接收來自一相關記憶體54〇之]^個空間對時間碼 且基於一來自一控制單元544之選擇訊號提供該等N個空間 對時間碼之—者。控制單元544可以—循環/順序方式、爲 Ik機方式等循環每一碼集中之N個空間對時間碼。 D個空間對時間編碼器53〇&至53〇d分別接收來自圖i中之 • TX資料處理器120之資料流丨至資料流e^此等資料流可在 非通道化情況下發送或可使用不同通道化碼(例如,沃爾 什碼或OVSF碼)來通道化以減少:身料流之間的干擾,或可 藉由再使用相同通道化碼來通道化。空間對時間編碼器 530a至530d亦分別接收來自多工器“。至542d之所選空間 對時間碼。每一空間對時間編碼器53〇使用其所選空^ 時間碼對其資料流執行空間對時間編碼,且提供多個⑺ 經編碼流。加法器532ai 532t接收來自所有〇個空間對時 間編碼器530a至530d之T個經編碼流。每一加法器532將來 109672.doc -18- 、们工間對時間編碼器5303至5则之0個經編碼流相加 、用於相關天線且提供一用於彼天線之輸出流。 可以多種方式定義〇個媽集。可使用上文針對圖2中之 輸機制200所述之實施例之任一者來定義每一碼集。在一 I施例中’ ^義N個空間對時間碼之單個集合,且藉由此 ^個二間對時間碼之不同置換形成D個碼集之每一者。 在另貝施例中,定義D個碼集以用於可用傳輸天線之不 :分區’其可減少資料流之間的干擾。舉例而t,可定義 母-奇數碼集以用於奇數傳輸天線,且可定義每—偶數碼 集乂用於偶數傳輸天線。在另一實施例中,定義〇個碼集 以用於傳輸天線之不同組合。舉例而t ’可定義碼集 用於所有四個天線中之傳輸天線2、3及4,可^義碼集2以 用於傳輪天線1、3及4,可定義碼集3以用於傳輸天線卜2 及4,且可疋義碼集4以用於傳輸天線丨、2及3。大體而 言’ D個碼集可包括相同或不同數目空間對時間碼及相同 或不同空間對時間碼。 圖6展示在慢反饋情況下使用用於多個(D>i)資料流之動 態空間對時間編碼的傳輸機制6〇〇。對於圖6中所示之實施 例,每一資料流之慢反饋自可用於彼資料流之多個 碼集中選擇一個碼集。 在空間對時間編碼器13〇e(其為圖】中之編碼器13〇之另 一實施例)内,D個記憶體64(^至64〇(1儲存用於1)個資料流 之碼集。每一記憶體640儲存用於一個資料流之多個(M>1) 碼集,每一碼集含有一或多個(Ny)空間對時間碼。控制 109672.doc •19- 單元646接收來自終端機15〇 之踢集中選擇一用於彼資料*饋且自可用於每-資科流 亓一, 之碼集。舉例而言,控制單 46可選擇一與由終端機〗5〇 止 夕氣^ Ll 斤報σ之通道分佈最佳匹配 之每一資料流的碼集。 D個多工器642a至642d ^Λ」 > 〜祸接至D個記憶體64〇a至 :母一多工器642接收來自-相關記憶體64。之所選媽 集之_”對時間碼且基於一來自—控制單元⑷之選擇 訊就提供該等N個空間對時間碼之—者。控制單元_可以 一循環/順序方式、偽隨機方式等循環每—碼集中之n個空 間對時間碼。D個空間對時間編碼器伽至63〇d分別接收 資料流!至:#料流D以及分別來自多卫器他至642d之所選 空間對時間碼。空間對時間編碼器630a至630(1及加法器 632a至632t如上文針對圖5中之空間對時間編碼器53〇a至 530d及加法器5323至5321所描述而操作。 如上文針對圖3中之傳輸機制3〇〇所描述,可設計用於每 -資料流之Μ個碼集以為不同通道分佈提供良好效能。使 用用於傳輸機制300之上述實施例之任一者可選擇用於每 一貧料流之碼集。可例如基於用於此等資料流之通道條件 及/或效能單獨選擇用於0個資料流之碼集。亦可例如基於 用於所有D個資料流之來自終端機的單個反饋聯合地選擇 用於D個資料流之碼集。 圖7展示在具有快反饋情況下使用用於多個(D>1)資料流 之動態空間對時間編碼的傳輸機制7〇〇。對於圖7中所示之 實施例而言,可使用一個瑪集用於每一資料流之空間對時 109672.doc -20· ^22589 間編碼,χ用於每一資料流之快反冑自用於彼資料流之碼 集中之多個空間對時間碼中選擇一特定空間對時間碼。 在空間對時間編碼器l30f(其為圖】中之編碼器13〇之另 實施例)内,記憶體74〇a至74〇d儲存用於〇個資料流之空 間對時間碼之Ν個集合。多工器742&至742(1分別耦接至: 憶體740a至740d。每-多工器742基於—用於相關資料流 之選擇訊號提供用於彼資料流之!^個空間對時間碼之一或 多個。控制單元744接收來自終端機15〇之反饋。對於每一 資料流而言,此反饋可指示用於彼資料流之碼集中之空間 對時間碼的哪一個或哪些與當前通道條件最佳匹配。控制 單元744接著引導每一多工器742來提供用於相關資料:的 所選空間對時間碼。 藉由使用較快但有限的反饋,傳輸機制7〇〇支援多個資 料流且允許對於當前通道條件之較快適應性。傳輸機制 具有上文針對圖4中之傳輸機制4〇〇所描述的優點。 每一資料流之空間對時間編碼為彼資料流提供平均效 應。此外,歸因於平均效應,多個並行資料流之空間對時 間編碼(其為高SNR的MIM〇情況中的目標)使得此等資料 流達成相似S N R。可利用相似s N R來減少來自終端機之用 於夕個資料流之資料速率控制之反饋速率。 >圖8A展示用於一個資料流之空間對時間編碼器800之實 施例。空間對時間編碼器8〇〇可用於圖2至 -a ,〜工间對 “編碼器230、330、430、530、630及730。在空間對時 間編碼器_内’區塊分段單元接收資料流且將其分割 109672.doc 1322589 為區塊。每一區塊可含有預定數目資料符號(例如,p個資 料符號,其中P21)。視丁乂資料處理器12〇所執行之處理而 定,資料符號可為一基於一調變機制所產生之調變符號、 一在通道化(即,展頻)及/或擾頻之後所產生之資料碼片或 某些其他資料單元。 映射單元820基於一映射機制將每一區塊中之資料符號 映射至不同符號週期及天線且為τ個傳輸天線提供碼符 • 號。映射單元820可直接映射資料符號或可在映射之前對 資料符號執行演算及/或其他操作。映射單元82〇可為每一 天線產生相同數目之碼符號(例如Q個資料符號,其中 QH)’在此情況中’碼速率為P/Q。使料同映射機制可 靈活地獲得為1、大於i及小於】之碼速率。相反,町〇及 OTD具有為!之以碼速率。或者,映射單元㈣可為不同 天線產生不同S目之碼符號。舉例而言,映射單元82〇可 接收3個資料符號區塊且為天線!產生8個碼符號,為天❸ •我產生5個碼符號,為天線3產生8個碼符號等β在任一情 況下’對於每—資料符號區塊而言,映射單元820為Τ個天 線提供Τ個碼符號序列(或Τ個碼字組)。 可使用多種映射機制將資料符號映射至符號週期及天 線。此等映射機制可使用線性映射、非線性映射或兩者。 下文描述一例示性映射機制。 圓啊示具有四個傳輪天線之兩個空間對時間碼的例示 性映射機制。對於此實例,區塊分段單元料流分 割為具有四個資料符號之區塊。基於一特定映射將每一區 109672.doc •22· 1322589 塊中之資料符號映射至每一傳輸天線。每一空間 將不同映射集合用於四個傳輪天線。在圖 ^例 :,:每-空間對時間碼而言,用於四個傳輸天 可使付.(1)在-4符號間隔中發送每一資料符號區塊 在4符號間隔期間自所有四個傳輪天線發送區塊中之每一 資料符號;及(3)在4符„隔中自每—傳輪天線發送四個 貢料符號。在一給定符號週期中可自四個傳輸天線發送所 有四個資料符號。在-個符號週期中亦可自多個傳輸天線 發送-給定資料符號。可選擇用於不同空間對時間媽之不 同映射以(例如)在不同操作情況下達成良好效能。 對於圖8B中所示之例示性空間對時間碼而言,對於傳輸 器所發送之每-資料符號區塊,接收器可在一4符號間隔 中自每一接收天線獲得四個所接收符號{ri、O' 〇及〜卜 ,天線接收器可基於四個所接收符號之不同線性組合恢復 每一所傳輸資料符號。單天線接收器可基於所接收符號之 四個不同公式(equation)恢復四個傳輸資料符號{〜、s2、s3 及%}。多天線接收器可基於所有接收天線之所接收符號 之不同線性組合恢復每一所傳輸資料符號。藉由傳輸器用 於發送資料符號之映射判定每一接收器用於恢復所傳輸資 料符號之公式/線性組合。接收器可導出傳輸天線與接收 天線之間的通道增益的估計且可使用通道增益估計來在組 合之前調整所接收符號。接收器亦可使用非線性技術恢復 所傳輸資料符號。舉例而言,接收器可執行最大可能性偵 測且評估所傳輸資料符號之所有可能組合。接收器可基於 109672.doc •23- 1J22589 傳輸益所使用之(若干)ST碼建構用於所傳輸資料符號之不 1 D之叙疋接收訊號,將所接收訊號與假定接收訊號進 行比較,且基於比較結果判定最可能已被傳輸之資料符於 的組合。 〜 圖9展示用於一個資料流之空間對時間編碼器900之實施 例。空間對時間編碼器9〇〇亦可用於圖2至圖7中之空間對 時間編碼器230、330、43〇、53〇、63〇及73〇。空間^間 編碼器900包括τ個子編碼器(c〇nsthuent _〇叫9…至 91 〇t及τ個交錯器9心至92㈣用於了個傳輸天線。在空間 對時間編碼器900内,將資料流提供至所有Τ個子編碼器 至9l〇t。每-子編碼器91〇基於一為彼子編碼器所選 之多項式產±器而對其輸入符號進行編碼,且將碼符號提 供至一相關交錯器920。可選擇用於丁個子編碼器910a至 9l0t之產生器多項式以提供良好效能。每—交錯器92〇基 於—特定交錯機制交錯(或重排序)其碼符號,且為一相關 傳輸天線提供交錯符號。 圖9中之空間對時間編碼類似於ι/τ速率之渴輪編碼。在 另貫鉍例中,可省去交錯器920b至920t,且資料流提供 斤有T個子編碼器91 〇a至9! 0t。此實施例之空間對時間 編碼接著類似速率之捲積編碼。使用不同產生器多項 式及/或將產生益多項式指派至天線之不同指派可獲取不 同空間對時間碼β 可以其他方式定義空間對時間碼,且此在本發明之範疇 内。 109672.doc -24 - 叫2589 對於上述實施例而言,空間對時間碼為預定的且為靜態 的,且對於基地台及終端機兩者而言皆為已知的。在其他 實施例中,例如藉由接收終端機基於通道分佈可定義空間 對時間碼。相對長時間段上可定義可提供良好 效能之良好空間對時間碼’且將其發送至基地台。空間對 時間碼之此動態定義在空間對時間碼在相對長時間段中沒Effect. For example, the space between the STTD or the 0TD can be verified by the == path distribution (muhipath handsome fiie). The space is two: the code is used for space-to-time coding. The following describes some of the transmission mechanisms 300 for ^ ^ , _ 2 pairs of time coding. For the case of 隼中·登摆4, the slow feedback is from a plurality of (M>1) codes that can be used to select a code set. In the space-to-time encoder 13〇b (which is the space-to-time code 109672.doc in Fig. 1;), the memory 340 stores M ringtones, one for each code system ((4) space versus time) In the embodiment, the control selects the code set that best matches the channel distribution as early as the terminal (4). The channel distribution indicates the long-term characteristics of the 4-line "Xi η (4) with the code ^ ", for example, The average energy of the long (four) of the helmet line pass ===. The multiplexer (4) is used for the == time code and based on the -from-control unit-selection signal to provide the previous space to the time code sequence, pseudo-random The mode selects the selected code set: two = 1 code. Each selected space pair time code is used for the space-time encoding of the predetermined time center. The space-to-time encoder 330 receives the data: and the selected space pair time code ' Use the selected space pair timecode pair data stream: line space to time encoding, and will provide multiple (7) output streams for transmission to the terminal frame via τ transmission antennas. One code set can be designed to provide different Good performance of channel distribution. These code sets can be defined in a variety of ways. Medium, defining a code set for a different number of transmit antennas. For example, 'definable- or multiple code sets for all antennas available at the base station HO' and one or more code sets can be defined For antennas with less than τ antennas, in a poor channel environment with low signal-to-noise ratio (SNR), better performance can be achieved by transmitting from fewer antennas, which enables the transmission from the active antenna (:ive antenna) There is less crosstalk generated in the transmission. For example, for the case where the SNR is below the _specific implicit threshold, it is desirable to perform spatial-to-time coding using a few (eg, - or two) antennas. In a good channel environment with high SNR, a larger space diversity can be achieved by transmitting more than 109672.doc • 14-1322589 to achieve better performance. In case of - by using one for space versus time The appropriate set of codes can achieve a dynamic selection of the number of transmit antennas. In another embodiment, the sets of codes are defined for different mobility environments. For example, one or more code sets can be defined for all Fixed or low mobility environment' And one or more code sets can be defined for high mobility (eg, high Doppler) environments. Different mobile environments can have non-φ channel features. Definable code sets can be provided for different actions Good performance of the sexual environment. In another embodiment, the sets of codes are defined to have different antenna beams. For example, one or more of the sets of codes may be defined such that the space effectively forms an antenna beam for the time code A code set having an antenna beam that is well matched to the current channel distribution can be selected for use. Within a selected code set, a preferred time interval of the antenna beam can be determined and data can be sent to the terminal during such time intervals. Lu can achieve a choice of code sets that match the current channel distribution in a number of ways. In one embodiment, the terminal 150 determines its channel distribution, selects a code set that matches the channel distribution, and sends a signal to the base station 11 to select the selected code set. In another embodiment, the base station 1 receives feedback from the terminal 150 and selects the best match code set based on the received feedback. In another embodiment, the base station 11 〇 cycles for transmission to the terminal 15 The M code sets of the data transmission receive feedback from the terminal 15 and select the best matching code set based on the received feedback. It can be in multiple forms (CQI), SNR estimation, data rate, acknowledgment (ACK) for packets correctly decoded by terminal 150 from 109672.doc 15 1322589, for erroneously decoded packets Negative response (NAK), etc.) to give feedback. The CQI, snr estimate and data rate indicate the quality of the received signal at the terminal 15 which can be determined based on the pilot signal transmitted by the base station 110. You can also choose the best match code set in other ways. In another embodiment of space-to-time coding with slow feedback, a space-to-time code set is used and the data is transmitted based on slow feedback. For example, as described above with respect to FIG. 2, (iv) space-to-time has a continuously changing space-to-time code, dynamic space-to-time coding, and artificial time (four) ficia! time) variables are introduced into a space-to-time encoder and In the effective channel of the benefit line channel. The terminal can determine the interval between one or more spatial pair time codes and the current channel conditions to take the Bf interval, and can report this to the base station. Base? The terminal of the material transmission is drained, and & 1 is used for the benefit.卩 卩 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The transmission mechanism 400 of the time b1 to the time code is also referred to as a selective space pairing time. For the example, a real code set of a coded field is used for space-to-time coding, and multiple spatial pairs in the code set. Feedback is selected from the pair of time codes - the specific space pair gate is stepped on the space to time encoder Π ft time code. Another embodiment of the device 1 3 0) meat, time, .flat code 1歹J) inner memory 44 is stored in space versus time code, and accommodates the set of money (N> 1) and Xigongyi 442 based on a white one selection signal to provide N * door oblique t self-control early 444 back to the two pairs of time code _ or eve. Control unit 444 109672.doc 16 receives feedback from terminal 150. This feedback can indicate which of the nulls in the code set = or which of the time codes best match the current channel conditions. The control '444 then directs the multiplexer 442 to provide the selected space versus time code. In the chrome ^ loyalty sub-adaptive transmission mechanism, the terminal can deny the space-to-time code based on the observed channel. The terminal mechanism 400 is different from the full "transmission mechanism" in that the terminal does not define the space pair but rather the scheduled stupid ★ „ es volunteers select the best match code in the time code. Therefore, the terminal does not need to use the space-to-time code, and it simplifies the knowledge of 睥fm, and does not need to send the defined space-to-time code to the base a, and sends the signal to the base a. Alternatively, the terminal can be shipped to the day without selecting the space to time the space door to step on #P1 'the stomach is less minus ^ for each - selected element, m such as "(4) 2ni bits - less bit traffic皙r . "; or the upper value of the integer value greater than x ce (ceillng operation). By using the faster but limited ^ -S -3⁄4 Jtr, the transmission mechanism 400 allows for the J channel condition Faster adaptability. 'Requirement can be relatively unimportant. Since the feedback signal is sent back, the feedback transmission mechanism is based on fast feedback and slow 8# n ^ = , and it can perform dynamic space-to-time coding. Slow feedback It can be based on the .^ k cloth from a number of available pallets - a set of codes. Quick feedback can be selected for the centralized selection! 4·, 夕加... T 夕 space to the time code - or more Space-to-time code. It is only necessary to evaluate a different *menlong ηΆ machine for the mother-time interval "J-work to time code (and the code)" so the operation is simplified. Because of the end; The station sends back "log2 Ν" bits to the time code (the sub-selected space has fewer signals. 疋"1〇_娜固Yuan), therefore also reduced 109672.doc 1322589 Transmission mechanisms 200, 300 and 400 use space-to-time coding to transmit a single data stream from multiple (τ) antennas to achieve spatial and temporal diversity. Multiple streams can also be sent simultaneously Antenna terminals 15 〇 y or to multiple terminals. One transmission can be transmitted for a good channel environment with high SNR. Figure 5 shows the use of multiple (D > 1) data streams without any feedback. Dynamic space-to-time coding transmission mechanism 〇〇^ In the space-to-time coder 130ci (which is another example of the space-to-time coder 13 in Figure i), D memory 54〇3 to 54〇d stores a set of codes for D data streams. Each code set contains one or more (N>1) spatial versus time codes ^ D multiplexers 542a to 542d are respectively coupled to D memories The body 54 〇 & to 54 叼. Each multiplexer 542 receives a space-to-time code from a related memory 54 and provides the N space-to-times based on a selection signal from a control unit 544. The control unit 544 can be in a loop/sequence manner, N space-to-time codes in each code set are cycled for Ik mode, etc. D space-to-time encoders 53〇& to 53〇d receive data streams from the TX data processor 120 in FIG. To the data stream e^ such data streams may be sent in unchannelized situations or may be channelized using different channelization codes (eg, Walsh codes or OVSF codes) to reduce interference between body streams, or Channelization can be achieved by using the same channelization code again. Space-to-time encoders 530a through 530d also receive selected spatial versus time codes from multiplexer ". to 542d, respectively. Each spatial-to-time encoder 53 uses its selected null time code to perform space on its data stream. The time is encoded and a plurality of (7) encoded streams are provided. The adder 532ai 532t receives the T encoded streams from all of the spatial pair time encoders 530a through 530d. Each adder 532 will be 109672.doc -18-, We add up to 0 encoded streams of time encoders 5303 to 5 for the associated antenna and provide an output stream for the antenna. The set of moms can be defined in a variety of ways. Any of the embodiments described in the transport mechanism 200 of 2 defines each code set. In an embodiment I defines a single set of N space-to-time codes, and by means of the two pairs Different permutations of time codes form each of the D code sets. In another example, D code sets are defined for use with the available transmit antennas: partitions 'which reduce interference between data streams. t, a mother-odd digital set can be defined for the odd-numbered transmit antenna, An even-even digital set can be defined for even-numbered transmit antennas. In another embodiment, a set of codes is defined for different combinations of transmit antennas. For example, a 't-definable code set is used for all four antennas. The transmission antennas 2, 3 and 4 can be used for the relay antennas 1, 3 and 4, the code set 3 can be defined for the transmission antennas 2 and 4, and the code set 4 can be Used to transmit antennas 2, 2, and 3. In general, 'D code sets may include the same or different number of spatial versus time codes and the same or different spatial versus time codes. Figure 6 shows the use of multiple feedbacks for slow feedback. (D>i) dynamic space-to-time coding transmission mechanism of the data stream. For the embodiment shown in Figure 6, the slow feedback of each data stream is selected from a plurality of code sets available for the data stream. In the space-to-time encoder 13〇e (which is another embodiment of the encoder 13 in the figure), D memory 64 (^ to 64 〇 (1 stored for 1) data) a set of streams of code. Each memory 640 stores a plurality of (M>1) code sets for one data stream, each code set containing one Multiple (Ny) space versus time code. Control 109672.doc • 19- Unit 646 receives the call from the terminal set 15 选择 Select one for the data* feed and from the code available for each For example, the control unit 46 may select a code set for each data stream that best matches the channel distribution of the terminal 气 气 ^ 。 。 。 。 。 。 。 。 642 642 642 642 642 642 642 642 642 642 ^Λ" > ~ to the D memory 64〇a to: the parent-multiplexer 642 receives the from-related memory 64. The selected mom set _" to the time code and based on a from - control unit (4) The selection message provides the N space-to-time codes. The control unit_ can cycle through n space-to-time codes in each code set in a cyclic/sequential manner, a pseudo-random manner, and the like. D space-to-time encoder gamma to 63〇d receives data streams separately! To: #流流D and the space to time code from the multi-guard to him from 642d. Space-to-time encoders 630a through 630 (1 and adders 632a through 632t operate as described above for space-to-time encoders 53a through 530d and adders 5323 through 5321 in Figure 5. As above for Figure 3 The transmission mechanism can be designed to provide a good performance for each channel distribution to provide good performance for different channel distributions. Any of the above embodiments for the transmission mechanism 300 can be selected for each A code set of lean streams. The code set for 0 data streams can be individually selected, for example based on channel conditions and/or performance for such data streams. It can also be based, for example, on terminals from all D data streams. The individual feedbacks jointly select the code set for the D data streams. Figure 7 shows the transmission mechanism for dynamic space-to-time coding for multiple (D > 1) data streams with fast feedback. For the embodiment shown in Figure 7, a set of horses can be used for the spatial correlation of 109672.doc -20·^22589 for each data stream, and is used for each data stream. Multiple spatial pairs in the code set of the data stream A specific space pair time code is selected among the inter-codes. In the space-to-time encoder l30f (which is another embodiment of the encoder 13 in the figure), the memories 74〇a to 74〇d are stored for one. A set of space-to-time code of the data stream. The multiplexers 742 & 742 (1 are respectively coupled to: the memory bodies 740a to 740d. The per-multiplexer 742 is based on - the selection signal for the relevant data stream is provided. One or more of the spatial versus time codes are received by the control unit 744. The feedback from the terminal 15 is received. For each data stream, the feedback may indicate the code set for the data stream. The space to which one or which of the time codes best matches the current channel condition. Control unit 744 then directs each multiplexer 742 to provide the selected space versus time code for the associated material: by using faster but With limited feedback, the transport mechanism 7 supports multiple data streams and allows for faster adaptation to current channel conditions. The transport mechanism has the advantages described above for the transport mechanism 4 in Figure 4. Each data stream The space is time coded as The data stream provides an averaging effect. Furthermore, due to the averaging effect, spatially-time encoding of multiple parallel data streams (which are targets in the case of high SNR MIM〇) allows these data streams to achieve similar SNR. Similar s can be utilized NR to reduce the feedback rate from the terminal for data rate control of the data stream. > Figure 8A shows an embodiment of a space-to-time encoder 800 for a data stream. Space to Time Encoder 8 Can be used in Figures 2 to -a, ~ workstation pair "encoders 230, 330, 430, 530, 630 and 730. In the space-to-time encoder_inside" block segmentation unit receives the data stream and splits it 109672. Doc 1322589 is a block. Each block may contain a predetermined number of data symbols (e.g., p data symbols, where P21). Depending on the processing performed by the data processor 12, the data symbols may be modulated symbols generated based on a modulation mechanism, one generated after channelization (ie, spread spectrum) and/or scrambling. The data chip or some other data unit. Mapping unit 820 maps the data symbols in each block to different symbol periods and antennas based on a mapping mechanism and provides code symbols for τ transmission antennas. Mapping unit 820 can map the data symbols directly or can perform calculations and/or other operations on the data symbols prior to mapping. Mapping unit 82A may generate the same number of code symbols (e.g., Q data symbols, where QH)' in this case' the code rate is P/Q for each antenna. The material-to-mapping mechanism can flexibly obtain a code rate of 1, greater than i, and less than. On the contrary, Machi and OTD have it! At the code rate. Alternatively, the mapping unit (4) may generate different S-code symbols for different antennas. For example, mapping unit 82 can receive 3 data symbol blocks and be an antenna! Generate 8 code symbols for Scorpio • I generate 5 code symbols, generate 8 code symbols for antenna 3, etc. β In either case, for each data symbol block, mapping unit 820 provides for each antenna序列 A sequence of code symbols (or 码 codeword groups). Data symbols can be mapped to symbol periods and antennas using a variety of mapping mechanisms. These mapping mechanisms can use linear mapping, non-linear mapping, or both. An exemplary mapping mechanism is described below. The circle shows an exemplary mapping mechanism for two space-to-time codes with four transmitting antennas. For this example, the tile segmentation unit stream is divided into blocks with four data symbols. The data symbols in each of the 109672.doc •22· 1322589 blocks are mapped to each transmit antenna based on a particular mapping. Each space uses a different mapping set for the four transmit antennas. In the example:,: per-space versus time code, for four transmission days can be paid. (1) Send each data symbol block in the -4 symbol interval during all four periods from 4 symbol intervals Each of the data elements in the transmission antenna block; and (3) four tributary symbols are transmitted from each of the four-way transmission antennas. Four transmission antennas are available in a given symbol period. Sends all four data symbols. It can also be sent from multiple transmit antennas in a single symbol period - given data symbols. You can choose different mappings for different spaces to time to achieve good results, for example, under different operating conditions. For the exemplary spatial versus time code shown in Figure 8B, for each per-symbol block transmitted by the transmitter, the receiver can obtain four received symbols from each receive antenna in a 4-symbol interval. {ri, O' 〇 and 〜, the antenna receiver can recover each transmitted data symbol based on different linear combinations of the four received symbols. The single antenna receiver can recover four based on four different equations of the received symbols. Transmission Symbols {~, s2, s3, and %}. The multi-antenna receiver can recover each transmitted data symbol based on different linear combinations of received symbols of all receiving antennas. Each transmission is determined by the transmitter for transmitting data symbol mapping. The equation is used to recover the formula/linear combination of transmitted data symbols. The receiver can derive an estimate of the channel gain between the transmit and receive antennas and can use channel gain estimates to adjust the received symbols prior to combining. The receiver can also use non- The linear technique recovers the transmitted data symbols. For example, the receiver can perform the maximum likelihood detection and evaluate all possible combinations of transmitted data symbols. The receiver can be used based on 109672.doc •23- 1J22589 transmission benefits (several The ST code constructs a sequenced reception signal for the transmitted data symbol, compares the received signal with the assumed received signal, and determines a combination of the most likely transmitted symbols based on the comparison result. 9 shows an embodiment of a space-to-time encoder 900 for a data stream. Space-to-time encoder 9〇 It can also be used for the space-to-time encoders 230, 330, 43〇, 53〇, 63〇 and 73〇 in Figures 2 to 7. The inter-channel encoder 900 includes τ sub-encoders (c〇nsthuent_〇9 ...to 91 〇t and τ interleavers 9 to 92 (4) for a transmission antenna. In the space-to-time encoder 900, the data stream is supplied to all sub-encoders to 9l〇t. Per-sub-encoder 91〇 encodes its input symbols based on a polynomial selected for the sub-encoder, and provides the code symbols to a correlation interleaver 920. The generators for the sub-encoders 910a through 910t can be selected. The polynomial provides good performance. Each interleaver 92 interleaves (or reorders) its code symbols based on a particular interleaving mechanism and provides interlaced symbols for an associated transmit antenna. The space-to-time coding in Figure 9 is similar to the thirteen wheel coding of the ι/τ rate. In another example, the interleaver 920b to 920t may be omitted, and the data stream provides T sub-encoders 91 〇a to 9! 0t. The space-to-time coding of this embodiment is followed by convolutional coding of similar rates. The use of different generator polynomials and/or different assignments that assign a benefit polynomial to the antenna can obtain different spaces. The time code β can define spatial versus time codes in other ways, and this is within the scope of the present invention. 109672.doc -24 - 2589 For the above embodiment, the space versus time code is predetermined and static, and is known to both the base station and the terminal. In other embodiments, the spatial versus time code may be defined based on the channel distribution, e.g., by the receiving terminal. A good space-to-time code' that provides good performance can be defined over a relatively long period of time and sent to the base station. The space-to-time code is dynamically defined in the space-to-time code in the relatively long period of time.
有變化之情形(❹,當終端機在長時間段中在同一位置 固定)中可為有利的。 在排程終端機以用於資料傳輸中,可利用自使用不同空 間對時間碼產生之不同有效通道。舉例而t,希望資料傳 輸之每-終端機在每-時間間隔中可估計所接收訊號之品 質。歸因於不同空間對時間碑之使用,所接收訊號之品質 :針對每-終端機在不同間隔中變化。每—終端機可⑴在 每一時間間隔中發送一 COT 5 I a t Q至基地σ,(2)發送一關於哪些It may be advantageous to have a change (i.e., when the terminal is fixed at the same location for a long period of time). In the scheduling terminal for data transmission, different effective channels generated from the use of different spaces to the time code can be utilized. For example, t, each terminal that wishes to transmit data can estimate the quality of the received signal in every-time interval. Due to the use of time stamps by different spaces, the quality of the received signals: varies for each terminal at different intervals. Each terminal can (1) send a COT 5 I a t Q to the base σ in each time interval, and (2) send one about which
時間間隔或哪1哪些)空間對時間碼將產生最佳接收訊號 品質之指示,或(3)發送其他某些類型反饋。對於每一時間 間隔而言,基地台可某於自& 士 、自所有終為機所接收之反饋,選 擇-或多個終端機以用於資料傳輸。舉例而言,在每一時 間間隔中’基地台可將資料傳輸至在彼時間間隔中具有最 佳接收訊號品質(遵從任何服務品f(Q〇s)要求)之終端機。 以此方式,經由動離空p卩袖_|_。士 a 〜B子時間編碼所達成之空間分集可 用於排程終端機以用於資料傳輸。 ’、 動態空間對時間編碼傳輸資料之傳輸器 (例如,基地所執行的過程胸。初始地,處理(例如, 109672.doc •25· ^2589 通道編碼、交錯及符號映射)資料以產生至少一個資料流 (步驟1〇12)。選擇至少-個空間對時間(ST)碼來使用(步驟 1014)。可多種方式執行灯碼選擇,該等方式諸如⑴以一 無反饋之預定方式,例如藉由循環__碼#中之空間對時間 碼,(2)基於來自接收器之反饋資訊’例如,其可指示一碼 集或-或多個特定空間對時間碼,或(3)兩者之組合,例如 藉由擔環-由反饋資訊所指示之碼集中之空間對時間碼。 基於為每一資料流所選之編碼及調變機制可對彼資料流單 獨進行通道編碼及符號映射。接著’使用至少一個所選空 間對時間碼以一動態(例如,時變)方式對至少—個資^ 執行空間對時間編碼’以產生至少兩個輸出流(步: 厂)。使用用於每一資料流之至少一個空間對時間碼华 =列如’ -或多個空間對時間碼集)執行空間對時間編碼: 二可不使用反饋(例如循環用於每—資料流之空 中^:用慢反饋(例如,自可詩每—資料流之多個碼华 t擇一用於彼資料流之碼集),或使用快反饋(例如,自 於:-貧料流之多個空間對時間媽中選擇一 之空間對時間碼)來執行空間對時間編碼。接著處: 驟1018)。 由至乂兩個天線傳輸該等輸出流(步 展示由用於接收使用動態空間對時間 ,線獲得至少-個的過程·為至少 對至少-個所接收符號.::,(步驟⑴2)。接著, 接收付“執仃空間對時間解碼以獲得至少 109672.doc -26- 丄 2 &空間對時間解碼之符號流(步驟1114卜 空間對時間解碼取決於傳輸器執 與其互補。可以工間對時間編碼且 例中,基於㈣ 聽彳了空間對時間解^在—實施 土'傳輸器所使用之空間對時間 所接收綷铼也/ ^猎由線性組合 苻唬執行空間對時間解碼。 化錯誤量度之最大可能性解 另-實號之不同假定可執行空間對時間解碼。在 號且限制用以評:=l重複地識別高可靠性接收符 在任何情兄下* 數目可執行空間對時間解碼。 仕任m兄下’空間對時間解碼提 時間解碼之符號流,其進一步經、:—空間對 測)以獲得資料符…+,半、處理(例如’解展頻及福 獲仔資枓付谠估計(步驟1116)。 器發送之資料符號之估計且進n十為傳輸 i解乂錯及通道解碼)以獲得至少一個經解碼資料流(步 驟1118)。(例如)藉由針對通道編碼、交錯 , 間對時間編碼執行最大可能“、,及空 對時間解碼及通道解碼。 丁二間 u:二7 碼及/或不同碼集之效能(步驟 可產生Ϊ 供良好效能之碼集及/或空間對時間碼。The time interval or which one) the space-to-time code will produce an indication of the best received signal quality, or (3) send some other type of feedback. For each time interval, the base station may select one or more terminals for data transmission from feedback received from the & For example, in each time interval, the base station can transmit data to a terminal that has the best received signal quality (subject to any service item f (Q〇s) requirements) during that time interval. In this way, via the moving 卩 卩 ___. The spatial diversity achieved by the a-B sub-time coding can be used for scheduling terminals for data transmission. ', a dynamic space-to-time coded transmission of data (eg, a process chest performed by the base. Initially, processing (eg, 109672.doc •25·^2589 channel coding, interleaving, and symbol mapping) data to generate at least one Data stream (steps 1〇12). Select at least one space-to-time (ST) code to use (step 1014). Light code selection can be performed in a variety of ways, such as (1) in a predetermined manner without feedback, such as From the space in the loop __code# to the time code, (2) based on feedback information from the receiver 'e.g., it may indicate a code set or - or a plurality of specific spatial versus time codes, or (3) both The combination, for example, by the duty cycle - the space-to-time code in the code set indicated by the feedback information. Channel coding and symbol mapping can be performed separately on the data stream based on the coding and modulation mechanism selected for each data stream. 'Using at least one selected space to encode the time code in at least one time in a dynamic (eg, time varying) manner to generate at least two output streams (step: factory). Used for each Capital Perform at least one space-to-time code == or multiple space-to-time code sets for the stream to perform space-to-time coding: 2. Do not use feedback (eg loop for each-stream of data streams): use slow feedback (For example, each of the multiple streams of the data stream can be selected for the data set of the data stream), or use fast feedback (for example, from: - a lot of space for the poor stream to the time mom Select a space-to-time code to perform space-to-time coding. Then proceed to: 1018). The output streams are transmitted by the two antennas (steps are shown by the process for receiving the use of dynamic space versus time, the line obtains at least one of the processes) for at least at least one received symbol.::, (step (1) 2). Receiving a "performed space-to-time decoding to obtain at least 109672.doc -26- 丄2 & space-to-time decoded symbol stream (step 1114 spatial-to-time decoding depends on the transmitter being complementary to it. Time coding and in the case, based on (4) listening to the space-to-time solution, the space used by the implementation of the soil transmitter is received by time, and the space is decoded by the linear combination. The maximum likelihood of measurement is different - the difference between the real numbers assumes that the executable space is decoded for time. The number is used and the limit is used to evaluate: = l repeatedly identifies the high reliability receiver under any brother * number of executable space versus time Decoding. Shi Ren m brother under the 'space-to-time decoding time-decoded symbol stream, which further,: - space to measure) to obtain the data symbol ... +, half, processing (such as 'de-spreading and blessing枓谠 estimating (step 1116). The estimate of the data symbols transmitted by the device and the decoding of the data is decoded to obtain at least one decoded data stream (step 1118). (for example) by coding for the channel, Interleaving, inter-time coding performs the maximum possible ",, and space-to-time decoding and channel decoding. D2: u 7 code and / or the performance of different code sets (steps can produce a code set for good performance and / Or space versus time code.
了產生指示所選碼集及/或空間對時間碼之反饋資訊,且 將其發回至傳輸器(步驟1122)。 S 其2所描述之動態空間對時間編碼具有多種所要特徵, 在無來自終端機之反饋或具有來自終端機之極少反饋的 I〇9672.doc •27- 1322589 情況下,簡化操作; 允許使用任意數目夕工^ <天線及兩個以上的傳輸天線, STTD及OTD不支援此情況; ^ 每個傳輸天線支援不间m方 +间竭速率’包括大於或少於一之碼 速率; ” 避免接收器導出空間對牲 ]對時間碼之需要,其可能為不 的; 戈 歸因於連續變化空間對時 耵呀間碼之使用,即使終端機 定的或緩慢行動,亦可槪& + 刀了避免在一延長時間段中之不 的"相對於空間對時間碼之通道狀態,,情形; 义 將人工時間變量引入於用於終端機之有效通道中,复可 用於排程終端機以進行資料傳輸; 歸因於不同空間對時間碼使用而提供—鏈路品質之平均 效應,其可導致用於資料傳輸之額外分集;及 歸因於平均效應’使得可為同時發送之多個資料流達成 相似SNR,其潛在地減小用於多個資料流之資料速率控制 之反饋速率。 當空間對時間碼與通道狀態不匹配時,不良的”相對於 空間對時間碼之通道狀態"情形現,且導致不良效能。 本文所描述之用於使用動態空間對時間編碼傳輸資料之 技術可用於多種通信系統,諸如蜂巢式系統、廣域系統、 區域系統等》蜂巢式系統可使用劃碼多向近接(CD·)、 劃時多向近接(TDMA)、㈣多向近接(FDMA)或正交劃頻 多向近接(OFDMA)或某些其他多向近接機制。cdma系統 I09672.doc •28- 1322589 可實施一或多個CDMA無線電技術,諸如寬頻CDMA(W-CDMA)、cdma2000 等。cdma2000 包含 IS-2000、IS-856 及 IS-95標準。TDMA系統可實施一或多個TDMA無線電技 術,諸如全球行動通信系統(GSM) '數位式進階行動電話 系統(D-AMPS)等。此項技術中已知此等多種無線電技術 及標準。W-CDMA及GSM描述於來自一名為"3rd Generation Partnership Project”(3GPP)之組織之文獻中。 | cdma2000 描述於來自一名為"3rd Generation Partnership Project 2”(3GPP2)之組織之文獻中。(例如)經由ETSI、TIA 及其他標準化實體,3GPP及3GPP2文獻為公開可用的。 可以多種方法實施本文所描述之技術。舉例而言,可以 硬體、軟體、韌體或其組合實施此等技術。對於一硬體實 施而言,可將傳輸器處之空間對時間編碼實施於一或多個 特殊應用積體電路(ASIC)、數位訊號處理器(DSP)、數位 訊號處理器件(DSPD)、可程式化邏輯器件(PLD),場可程 φ 式化閘陣列(FPGA)、處理器、控制器、微控制器、微處理 器、電子器件、設計來執行本文所描述之功能之其他電子 單元或其組合中。亦可將接收器處之空間對時間解碼實施 於一或多個ASIC、DSP、處理器等中。 對於一軟體及/或韌體實施,可使用執行本文所描述之 功能之模組(例如,程序、函式等)實施本文所描述之技 術。軟體/韌體碼可儲存於記憶體(例如,圖1中之記憶體 142、182x或182y)中且可藉由一處理器(例如,處理器 140、180x或180y)執行。記憶體可於處理器内或處理器外 109672.doc -29- 1322589 部實施,在處理器外部實施情況下可經由此項技術中已知 之多種方法將記憶體通信地耦接至處理器。 提供所揭示之實施例之先前描述以使得熟習此項技術者 製造或使用本發明。熟習此項技術者將易明白此等實施例 之多種修改,且在不偏離本發明之精神或範疇情況下,本 文所定義之一般原理可應用於其他實施例。因此,並不希 望本發明限於本文所示之實施例,而希望其符合與本文所 • 揭示之原理及新穎特徵一致之最廣泛範疇。 【圖式簡單說明】 圖1展示一基地台及兩個終端機之方塊圖。 圖2展示在無反饋情況下用於—個資料流之空間對時間 編碼。 圖3展不在具有慢反饋情況下用於一個資料流之空間對 時間編碼。 圖4展示在具有快反饋情況下用於—個資料流之空間對 _ 時間編碼。 圖5展示在無反饋情況下用於多個資料流之空間對時間 編碼β 圖6展示在具有慢反饋情況下用於多個資料流之空間對 時間編碼。 圖7展不在具有快反饋情況下用於多個資料流之空間對 時間編碼。 圖8Α展示用於一個資料流之空間對時間編碼器。 圖8Β展示兩個例示性空間對時間碼。 109672.doc •30- 1322589 程Feedback information indicative of the selected code set and/or space versus time code is generated and sent back to the transmitter (step 1122). S The dynamic space described in 2 has a variety of desirable features for time coding, simplifying operation without feedback from the terminal or with minimal feedback from the terminal, I〇9672.doc • 27-1322589; The number of antennas ^ < antenna and more than two transmission antennas, STTD and OTD do not support this situation; ^ each transmission antenna supports no m-square + exhaust rate 'including code rate greater than or less than one; ― avoid The receiver derives the space requirement for the time code, which may be no; Ge is attributed to the continuous change of space to the use of the time code, even if the terminal decides or moves slowly, it can also be & The knife avoids the channel state relative to the space-to-time code in an extended period of time, and the situation; the artificial time variable is introduced into the effective channel for the terminal, and the complex can be used for the scheduling terminal. For data transmission; due to the use of timecode for different spaces - the average effect of link quality, which can lead to additional diversity for data transmission; and due to the average effect' Enabling similar SNRs to be achieved for multiple streams simultaneously transmitted, potentially reducing the rate of feedback for data rate control of multiple streams. When space versus time code does not match channel state, the bad The channel state of space vs. time code is now and leads to poor performance. The techniques described herein for transmitting data using dynamic space versus time encoding can be used in a variety of communication systems, such as cellular systems, wide area systems, regional systems, etc. Honeycomb systems can use coded multidirectional proximity (CD·), Time-based multi-directional proximity (TDMA), (d) multi-directional proximity (FDMA) or quadrature-frequency multi-directional proximity (OFDMA) or some other multi-directional proximity mechanism. Cdma system I09672.doc • 28-1322589 One or more CDMA radio technologies, such as Wideband CDMA (W-CDMA), cdma2000, etc., may be implemented. Cdma2000 includes IS-2000, IS-856 and IS-95 standards. The TDMA system can implement one or more TDMA radio technologies, such as the Global System for Mobile Communications (GSM) 'Digital Advanced Mobile Phone System (D-AMPS). These various radio technologies and standards are known in the art. W-CDMA and GSM are described in a document from an organization that is a "3rd Generation Partnership Project" (3GPP). | cdma2000 is described in a document from an organization that is "3rd Generation Partnership Project 2" (3GPP2) in. The 3GPP and 3GPP2 documents are publicly available, for example, via ETSI, TIA, and other standardization entities. The techniques described herein can be implemented in a variety of ways. For example, such techniques can be implemented in hardware, software, firmware, or a combination thereof. For a hardware implementation, the space-to-time encoding at the transmitter can be implemented in one or more special application integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), Programmable logic device (PLD), field-programmable gate array (FPGA), processor, controller, microcontroller, microprocessor, electronics, other electronic unit designed to perform the functions described herein or In its combination. The space-to-time decoding at the receiver can also be implemented in one or more ASICs, DSPs, processors, and the like. For a software and/or firmware implementation, the techniques described herein can be implemented using modules (e.g., programs, functions, etc.) that perform the functions described herein. The software/firmware code can be stored in a memory (e.g., memory 142, 182x or 182y in Figure 1) and can be executed by a processor (e.g., processor 140, 180x or 180y). The memory can be implemented within the processor or external to the processor 109672.doc -29- 1322589, and the memory can be communicatively coupled to the processor via a variety of methods known in the art, in the context of external implementation of the processor. The previous description of the disclosed embodiments is provided to enable a person skilled in the art to make or use the invention. Various modifications to the embodiments are readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention is not intended to be limited to the embodiments shown herein. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a block diagram of a base station and two terminals. Figure 2 shows the space-to-time coding for a data stream without feedback. Figure 3 shows the spatial-to-time coding for a data stream without slow feedback. Figure 4 shows the spatial versus _ time coding for a data stream with fast feedback. Figure 5 shows space-to-time coding for multiple data streams without feedback. Figure 6 shows spatial-to-time coding for multiple data streams with slow feedback. Figure 7 shows the spatial-to-time coding for multiple data streams without fast feedback. Figure 8 shows a space-to-time encoder for a data stream. Figure 8A shows two exemplary spatial versus time codes. 109672.doc •30-1322589
圖9展不用於1貝㈣之另一個空間對時間編碼器。 圖i 0展示用於使用1間對時間編蜗傳輸之過程。 圖11展示用於接收使用空間對時間組级牌认 1編碼傳輸之資料之過 【主要元件符號說明】 100 無線通信系統 110 基地台 112 資料源 120 tx資料處理器 130 空間對時間編碼器 130a 空間對時間編碼器 130b 空間對時間編碼器 130c 空間對時間編碼器 130d 空間對時間編碼器 130e 空間對時間編碼器 130f 空間對時間編碼器 132 傳輪器 132a, 132t 傳輪器 134a,134t 天線 140 控制器/處理器 142 記憶體 144 RX訊號處理器 150 終蠕機 150x 單天線终端機 109672.doc •31 · 1322589Figure 9 shows another space-to-time encoder for 1 (4). Figure i 0 shows the process for using one pair of time cochlear transmissions. Figure 11 shows the data used to receive the use of space-to-time group-level card-encoded transmission. [Main component symbol description] 100 Wireless communication system 110 Base station 112 Data source 120 tx Data processor 130 Space-to-time encoder 130a Space Pair time encoder 130b Space to time encoder 130c Space to time encoder 130d Space to time encoder 130e Space to time encoder 130f Space to time encoder 132 Wheels 132a, 132t Wheels 134a, 134t Antenna 140 Control Processor/processor 142 memory 144 RX signal processor 150 terminal worm 150x single antenna terminal 109672.doc •31 · 1322589
152 天線 152a, 152r 天線 1 52x 天線 154 接收器 160x 空間對時間解碼器 160y 空間對時間解碼器 170x RX資料處理器 170y RX資料處理器 172x 資料槽 172y 資料槽 180x 控制器/處理器 180y 控制器/處理器 182x 記憶體 182y 記憶體 184y 訊號處理器 200 傳輸機制 230 空間對時間編碼器 240 記憶體 242 . 多工器 244 控制單元 300 傳輸機制 330 空間對時間編碼器 340 記憶體 342 多工器 109672.doc ·32· 1322589 344 控制單元 346 控制單元 400 傳輸機制 430 空間對時間編碼器 440 記憶體 442 多工器 444 控制單元 500 傳輸機制 530a, 530d 空間對時間編碼器 532a, 532t 加法器 540a, 540d 記憶體 542a, 542d 多工器 600 傳輸機制 630a, 630d 空間對時間編碼器 632a, 632t 法器 640a, 640d 記憶體 642a, 642d 多工器 644 控制單元 646 控制單元 700 傳輸機制 730 空間對時間編碼器 740a, 740d 記憶體 742a, 742d 多工器 744 控制單元 109672.doc -33 · 1322589 800 空間對時間編碼器 810 區塊分段單元 820 映射單元 900 空間對時間編碼器 910a, 910t 子編碼is 920a, 920t 交錯器152 Antenna 152a, 152r Antenna 1 52x Antenna 154 Receiver 160x Space-to-Time Decoder 160y Space-to-Time Decoder 170x RX Data Processor 170y RX Data Processor 172x Data Slot 172y Data Slot 180x Controller/Processor 180y Controller/ Processor 182x memory 182y memory 184y signal processor 200 transmission mechanism 230 space to time encoder 240 memory 242. multiplexer 244 control unit 300 transmission mechanism 330 space to time encoder 340 memory 342 multiplexer 109672. Doc · 32· 1322589 344 Control unit 346 Control unit 400 Transmission mechanism 430 Space to time encoder 440 Memory 442 Multiplexer 444 Control unit 500 Transmission mechanism 530a, 530d Space to time encoder 532a, 532t Adder 540a, 540d Memory Body 542a, 542d multiplexer 600 transmission mechanism 630a, 630d space-to-time encoder 632a, 632t 640a, 640d memory 642a, 642d multiplexer 644 control unit 646 control unit 700 transmission mechanism 730 space-to-time encoder 740a , 740d memory 742a, 742d Worker 744 Control Unit 109672.doc -33 · 1322589 800 Space-to-Time Encoder 810 Block Segmentation Unit 820 Mapping Unit 900 Space-to-Time Encoder 910a, 910t Sub-Coded is 920a, 920t Interleaver
109672.doc -34-109672.doc -34-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66351605P | 2005-03-18 | 2005-03-18 | |
US71042005P | 2005-08-22 | 2005-08-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200701672A TW200701672A (en) | 2007-01-01 |
TWI322589B true TWI322589B (en) | 2010-03-21 |
Family
ID=45073961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95109273A TWI322589B (en) | 2005-03-18 | 2006-03-17 | Dynamic space-time coding for a communication system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI322589B (en) |
-
2006
- 2006-03-17 TW TW95109273A patent/TWI322589B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200701672A (en) | 2007-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5823129B2 (en) | Dynamic space-time coding for communication systems | |
JP5174923B2 (en) | Periodic / aperiodic channel state information transmission / reception method | |
KR101633326B1 (en) | Method of transmission | |
JP5442437B2 (en) | Feedback of precoding control indication (PCI) and channel quality indication (CQI) in a wireless communication system | |
KR100850990B1 (en) | Method for transmitting/receiving signal in mimo system | |
KR101542384B1 (en) | Method For selecting PMI for non-adaptive HARQ operation in MIMO wireless communication systems | |
US20020150065A1 (en) | Communications systems | |
EP2901596B1 (en) | Encoding hybrid automatic repeat request acknowledgements in a multi-antenna wireless communications system | |
TW200820651A (en) | Codeword permutation and reduced feedback for grouped antennas | |
CN101997651B (en) | Method and device for transmitting control information of uplink multiaerial system | |
CN102106098B (en) | Information transmission method and device | |
KR101013652B1 (en) | Method for transmitting signal in wireless communication system | |
TWI322589B (en) | Dynamic space-time coding for a communication system | |
CN103427959B (en) | Transmitting and detection in multi-aerial transmission system | |
KR20180054150A (en) | Apparatus and method for generating and transmitting cqi in a wireless network | |
JP4478150B2 (en) | Method for transmitting data in a MIMO telecommunication system providing high diversity as seen from the receiving end | |
CN102804628B (en) | Station and the method launched from which including at least two transmitting antennas | |
Zou et al. | Limited feedback MIMO precoding via alternating multiple differential codebooks | |
Mishra et al. | Link level performance of multiple input multiple output (MIMO) system | |
JP2001211144A (en) | Device and method for repetitive transmission and reception for non-memory error correction channel coding | |
Wang et al. | A Novel Linear Precoding Scheme for Multi-user Generalized Space Modulation System | |
CN101098300A (en) | Data reception to apply adaptive encoding radio through wireless network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |