TWI320854B - Magnetic data processing device, magnetic data processing method, magnetic data processing program product, and magnetic measurement apparatus - Google Patents

Magnetic data processing device, magnetic data processing method, magnetic data processing program product, and magnetic measurement apparatus Download PDF

Info

Publication number
TWI320854B
TWI320854B TW096107901A TW96107901A TWI320854B TW I320854 B TWI320854 B TW I320854B TW 096107901 A TW096107901 A TW 096107901A TW 96107901 A TW96107901 A TW 96107901A TW I320854 B TWI320854 B TW I320854B
Authority
TW
Taiwan
Prior art keywords
offset
magnetic
statistical
data set
vector
Prior art date
Application number
TW096107901A
Other languages
Chinese (zh)
Other versions
TW200741235A (en
Inventor
Ibuki Handa
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006061605A external-priority patent/JP4844179B2/en
Priority claimed from JP2007016320A external-priority patent/JP2007327934A/en
Application filed by Yamaha Corp filed Critical Yamaha Corp
Publication of TW200741235A publication Critical patent/TW200741235A/en
Application granted granted Critical
Publication of TWI320854B publication Critical patent/TWI320854B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

In a magnetic data processing device, an input part sequentially inputs magnetic data outputted from a two-dimensional or three-dimensional magnetic sensor. The magnetic data is two-dimensional or three-dimensional vector data that is a linear combination of a set of fundamental vectors. The magnetic data processing device stores a plurality of the inputted magnetic data as a data set of statistical population in order to update an old offset of the magnetic data with a new offset. An offset derivation part derives the new offset based on the old offset and the data set of statistical population under a constraint condition that the new offset be obtained as the sum of the old offset and a correction vector.

Description

九、發明說明: 【發明所屬之技術領域】 本發明係關於一種磁性資料處理裝置、磁性資料處理方 法及磁性資料處理程式,且更特定言之係關於一種用於校 正二維及三維磁性感測器之一偏移之技術。 【先前技術】 固疋在一移動主體(例如一行動電話或一車輛)上的一傳 統磁性感測器偵測地球磁場或地磁之方向。該磁性感測器 包括一組磁性感測器模組,用以偵測磁場向量在相互正交 方向上的純量分量。從磁性感測器所輸出的磁性資料由該 4磁性感測器模組之一輸出組合組成,因而該磁性資料係 作為相互正交單元向量(基本向量)之—線性組合的向量資 料。該磁性資料之方向及數量對應於磁性感測器所偵測之 一磁場之方向及數量。當基於磁性感測器之輸出來指定地 球磁場之方向或數量時,必需執行一用於校正磁性感測器 之輸出之程序,以便消除由於移動主體之磁化或磁性感測 器之固有溫度特徵所引起之測量誤差。此校正程序之一控 制值係稱為一偏移而一用於推導偏移之程序係稱為校準 (例如參見國際專利公告案第2004_003476號)。當外部磁場 強度為零時,偏移也係向量資料並定義為從磁性感測器所 輸出之磁性資料。此類測量誤差係藉由將偏差從輸出自磁 性感測器之磁性資料中減去來消除。在一二維(2D)磁性感 測器中,偏移對應於-其上分佈一磁性資料集之圓圈之中 心的-位置向量。然而,實際上’輸出自扣磁性感測器的 114821.doc 1320854 磁性貝料集之分佈不會形成一完美圓圏。原因在於,磁 4 &感測11模組之輸出遵循高斯分佈固有地具有測量誤差, 2D磁性感測器所測量的一磁場在一儲存一統計母體資料集 乂汁算偏移的週期期間變化,由於實際上不存在完全均勻 的磁場,且在AD轉換期間會出現計算誤差。 磁I1生感/則器輸出推導偏移所需的一統計母體資料集, •同時包括固定其上之2D磁性感測器的一移動主體會旋轉, φ 使得該2D磁性感測器圍繞一旋轉軸旋轉,該旋轉軸平行於 與其磁性感測器模組之正交感應方向垂直的方向。為了依 此方式移動一移動主體(例如可三維移動的一行動電話或 一車輛)’必需讓使用者有意地操作該移動主體,使其依 此方式移動。因此,—種用於推導一 2D磁性感測器之偏移 之一磁性資料處理裝置的偏移推導演算法係在使用者係明 確被通知校準開始且使用者適當操作移動主體之假設下來 设计。然而,讓使用者執行校準操作較麻煩且複雜。在傳 • 統校準方法中,透過二進制決策來決定是否已儲存一可靠 的統計母體資料集,故當使用者未曾正確執行校準操作 時,該校準失敗而不會儲存一可靠的統計母體資料集。此 點要求使用者重複該操作以儲存一可靠的統計母體資 集。 固定在一移動主體(例如一行動電話或一車輛)上的一傳 統三維(3D)磁性感測器偵測地球磁場之方向。該磁性感 測器包括三個磁性感測器模組,用以偵測磁場向量在三個 正交方向上的純量分量。從該3D磁性感測器所輸出的磁性 114821.doc 1320854 資料由該等三個磁性感測器模組之一輸出組合組成,因而 該磁性資料係作為相互正交單元向量(基本向量)之一線性 組合的3D向量資料》該磁性資料之方向及數量對應於該 3D磁性感測器所偵測之一磁場之方向及數量。當基於該 3 D磁性感測器之輸出來指定地球磁場之方向或數量時,必 需執行一用於校正該3D磁性感測器之輸出之程序,以便消 除由於移動主體之磁化或該磁性感測器之固有溫度特徵所IX. Description of the Invention: [Technical Field] The present invention relates to a magnetic data processing device, a magnetic data processing method, and a magnetic data processing program, and more particularly to a method for correcting two-dimensional and three-dimensional magnetic sensing One of the techniques of offset. [Prior Art] A conventional magnetic sensor that is fixed on a moving body (e.g., a mobile phone or a vehicle) detects the direction of the earth's magnetic field or geomagnetism. The magnetic sensor includes a set of magnetic sensor modules for detecting scalar components of magnetic field vectors in mutually orthogonal directions. The magnetic data outputted from the magnetic sensor is composed of one output combination of the four magnetic sensor modules, and thus the magnetic data is used as a linear combination of mutually orthogonal unit vectors (basic vectors). The direction and number of the magnetic data correspond to the direction and number of a magnetic field detected by the magnetic sensor. When specifying the direction or number of the earth's magnetic field based on the output of the magnetic sensor, it is necessary to perform a procedure for correcting the output of the magnetic sensor in order to eliminate the inherent temperature characteristics of the magnetic body due to the moving body or the magnetic sensor. The measurement error caused. One of the calibration procedures is called an offset and the procedure used to derive the offset is called calibration (see, for example, International Patent Publication No. 2004_003476). When the external magnetic field strength is zero, the offset is also the vector data and is defined as the magnetic data output from the magnetic sensor. Such measurement errors are eliminated by subtracting the deviation from the magnetic data output from the magnetic sensor. In a two-dimensional (2D) magnetic sensor, the offset corresponds to a - position vector of the center of the circle on which a magnetic data set is distributed. However, in fact, the distribution of the magnetic bead set of the 114821.doc 1320854 output self-pinning magnetic sensor does not form a perfect circle. The reason is that the output of the magnetic 4 & sensing 11 module inherently has a measurement error following the Gaussian distribution, and a magnetic field measured by the 2D magnetic sensor changes during the period in which the statistical data set of the statistical data set is stored. Since there is virtually no completely uniform magnetic field, a calculation error occurs during AD conversion. A statistical matrix data set required to derive the offset of the magnetic I1/sensor output, • a moving body including the 2D magnetic sensor fixed thereon is rotated, and φ causes the 2D magnetic sensor to rotate around The axis rotates parallel to a direction perpendicular to the direction of orthogonal sensing of the magnetic sensor module. In order to move a moving subject (e.g., a mobile phone or a vehicle that can be moved three-dimensionally) in this manner, it is necessary for the user to intentionally operate the moving subject to move in this manner. Therefore, the offset-pushing algorithm for deriving a shift of a 2D magnetic sensor is designed based on the assumption that the user is notified of the start of calibration and the user appropriately operates the moving subject. However, it is cumbersome and complicated for the user to perform the calibration operation. In the standard calibration method, a binary statistical decision is made to determine whether a reliable statistical parent data set has been stored. Therefore, when the user has not performed the calibration operation correctly, the calibration fails without storing a reliable statistical parent data set. This requires the user to repeat the operation to store a reliable statistical parent asset. A conventional three-dimensional (3D) magnetic sensor fixed to a moving body (e.g., a mobile phone or a vehicle) detects the direction of the earth's magnetic field. The magnetic sensor includes three magnetic sensor modules for detecting scalar components of the magnetic field vector in three orthogonal directions. The magnetic material 114821.doc 1320854 outputted from the 3D magnetic sensor is composed of one output combination of the three magnetic sensor modules, and thus the magnetic data is taken as one of the mutually orthogonal unit vectors (basic vectors). The 3D vector data of the sexual combination means that the direction and the number of the magnetic data correspond to the direction and quantity of one of the magnetic fields detected by the 3D magnetic sensor. When specifying the direction or number of the earth's magnetic field based on the output of the 3D magnetic sensor, it is necessary to perform a procedure for correcting the output of the 3D magnetic sensor to eliminate the magnetization or the magnetic sensing due to the moving body. Inherent temperature characteristics

引起的測量誤差。此校正程序之一控制值係稱為一偏移。 該偏移係指示由該3 D磁性感測器所倘測的移動主體之磁化 分量所引起之一磁場的向量資料。此類測量誤差係藉由將 該偏差從輸出自該3D磁性感測器之磁性資料中減去來消 除。可能藉由獲得一其上分佈一磁性資料集之球形表面之 中心來計算該偏移。 然而’實際上’磁性資料之分佈不會形成一完美球形。The measurement error caused. One of the control values of this calibration procedure is called an offset. The offset is indicative of vector data of one of the magnetic fields caused by the magnetization component of the moving body as a function of the 3D magnetic sensor. Such measurement errors are eliminated by subtracting the deviation from the magnetic material output from the 3D magnetic sensor. It is possible to calculate the offset by obtaining the center of a spherical surface on which a magnetic data set is distributed. However, the distribution of 'actual' magnetic data does not form a perfect sphere.

原因在=,遵循高斯分佈,該3D磁性感測器之輸出固有地 具有測!⑥差,該3D磁性感測器所測量的—磁場在儲存計 算偏,所需之磁性資料之—週期期間變化,由於實際上不 句勻的磁場’且計算誤差會發生,直到從該3D域 性感測器之輸出獲得數位值。 性資料並透過該儲存V二……儲存大量❸ 磁性資料之一統計程序來推導名 體之姿勢或2 =方法_ ’除非使用者有意地改變移動j 料集,且:更:偏確更新偏移所需的一磁性1 移之*要出現後,要求一較長時間來更 I14821.doc 1320854 新偏移。通常’僅以二維分佈之磁性資料係儲存,由於在 車輛上固定的磁性感測器之明顯三維姿態變化較為少見。 因而,不需等到儲存在一球形表面上均勻分佈的一磁性資 料,以便精確地更新固定在車輛上的磁性感測器之偏移。The reason is =, following the Gaussian distribution, the output of the 3D magnetic sensor is inherently measured! 6 difference, measured by the 3D magnetic sensor - the magnetic field is stored during the calculation of the bias, the required magnetic data - during the period, due to the fact that the magnetic field is not uniform - and the calculation error will occur until the 3D domain The output of the sexy sensor obtains a digital value. Sexual data and through the storage V 2 ... store a large number of 磁性 magnetic data statistics program to derive the posture of the name or 2 = method _ ' unless the user intentionally changes the mobile j material set, and: more: partial update bias After shifting a magnetic 1 shift* to appear, it takes a longer time to get a new offset of I14821.doc 1320854. Usually, the magnetic data is stored only in two-dimensional distribution, and the apparent three-dimensional posture change of the magnetic sensor fixed on the vehicle is relatively rare. Thus, it is not necessary to wait until a magnetic material uniformly distributed on a spherical surface is stored in order to accurately update the offset of the magnetic sensor fixed to the vehicle.

國際專利公告案2005-061990已揭示一種即便在一磁性 >料集之分佈係一維之情況下仍能校正偏移之演算法。然 而,由於其較複雜,因此難以依據國際專利公告案第 2〇05-061990號所述之演算法來實施一程序。 【發明内容】 維(2D)磁性感測器與三維 冬發明之一目的在於改良 (3D)磁性感測器之可用性。 本發明之另一目的在於提供一種磁性資料處理装置、磁 性資料處理方法及磁性資料處理程序及一 備,其可透過-簡單程序,使用一儲存的磁性資料^校 正一偏移’不論統計母體資料集之分佈如何。International Patent Publication 2005-061990 has disclosed an algorithm that corrects the offset even if the distribution of the magnetic > material set is one dimension. However, due to its complexity, it is difficult to implement a procedure in accordance with the algorithm described in International Patent Publication No. 2-05-061990. SUMMARY OF THE INVENTION One of the goals of the dimensional (2D) magnetic sensor and the three-dimensional winter invention is to improve the usability of the (3D) magnetic sensor. Another object of the present invention is to provide a magnetic data processing device, a magnetic data processing method, and a magnetic data processing program, and a device capable of correcting an offset using a stored magnetic data through a simple program, regardless of statistical parent data. What is the distribution of the collection.

在本發明之-第-方面,—種用於實現上述目的之磁性 資料處理裝置包含··輸入構件’其用於連續地輸入從一二 W2D)磁性m所㈣之磁性f料,該磁性資料係作為 -組第-基本向量之一線性組合的2D向量;儲存構件其 用於儲存複數個輸人的磁性資料作為_統計母體資料集, 以便使用-新㈣來請制性諸之—舊偏移;及偏移 =導構m於在該新偏移係作為該舊偏移與—校正向 ^和而獲得的—約束條件下,基㈣舊偏移與該統計母 體資料集來推導該新偏移,彡中該校正向量係在該統計母 114821.doc 1320854In a first aspect of the invention, a magnetic data processing apparatus for achieving the above object comprises: an input member for continuously inputting a magnetic material from (a) two magnetic waves (m), the magnetic material A 2D vector linearly combined as one of the -group-basic vectors; a storage component for storing a plurality of input magnetic data as a statistic parent data set, so as to use the new (four) to request the system - the old bias And the offset = the derivative m is derived from the new offset system as the old offset and the correction to ^ and the constraint, the base (four) old offset and the statistical parent data set to derive the new Offset, the correction vector is in the statistician 114821.doc 1320854

基本向量之一線性組合。 ί 在本發明之一第二方面,一毛 資料處理裝置包含··輸入構件, 一種用於實現上述目的之磁性 件,其用於連續地輸入從一三 維(3D)磁性感j則器所輸出之磁性資料,該磁性資料係作為 一組第一基本向量之一 線性組合的3 D向量資料;儲存構 件,其用於儲存複數個輸入的磁性資料作為一統計母體資 料集以便使用一新偏移來更新該磁性資料之一舊偏移; 及偏移推導構件,其用於在該新偏移係作為該舊偏移與一 校正向量之和而獲得的一約束條件下, 基於該舊偏移與該 • 統計母體資料集來推導該新偏移,其中該校正向量係在該 統計母體資料集之分佈之主軸方向上定義的一組第二基本 向量之一線性組合,且表示該校正向量之該等第二基本向 量之線性組合之個別係數係藉由依據該統計母體資料集之 分佈之一主值比率來加權一臨時偏移相對於該舊偏移之一 位置向量之個別係數來獲得,該臨時偏移係推導自該統計 母體資料集而不使用該舊偏移,該臨時偏移之位置向量係 該等第二基本向量之一線性組合。【實施方式】 114821.doc •9- 下面參考圖l來詳細地說明用於本發明之第—方面之一 原理及演算法。此演算法之關鍵點在於,在一具有更大散 佈之主軸方向上分佈的一磁性資料集係估計成為用於更新 偏移之更明顯統汁母體元素,而在一具有更小散佈之主軸 方向上77佈的一磁性寊料集係估計成為用於更新偏移之較 不明顯元素。對應於終點"g”相對於原點"〇”之一位置向量 的舊偏移C G、新偏移C及臨時偏移之各偏移係作為一組磁 性資料基本向量之一線性組合的20位置資料。即,該等偏 移之各偏移係在xy座標系統内表示的向量資料。該新偏移 C係基於舊偏移c〇及一磁性資料集來推導,該磁性資料集 係儲存用以使用新偏移c來更新舊偏移c〇 β 作為儲存用以使用新偏移c來更新該舊偏移之磁性資料 集的統什母體資料集可包括一在一預定時間週期已儲存的 一磁性資料集並可包括一包括一預定數目磁性資料的磁性 資料集且還可包括一包括在一特定時間(例如在提出一偏 移更新請求時)已儲存之任一數目磁性資料的磁性資料 集舊偏移以可使用與新偏移c相同的方法來推導並還可 加以預定。 儘管該臨時偏移係定義成用以從該統計母體資料集來推 導而不使用舊偏移c〇,此定義係引入以定義推導新偏移e 所採用之約束條件而該臨時偏移實際上並非必須推導之資 料°若該臨時偏移係實際上從該統計母體資料集來推導而 不使用舊偏移Cq ’則該臨時偏移係其附近分佈該統計母體 資料集之一圓周之中心的-位置向量。然而,若該統計母 114821.doc 2料㈣不W地分佈在—作為從該統計母體資料集所 母體—部分的狹窄中心角弧度附近’則在該統計 -貝料集之各兀素内包括的一誤差會較大程度上影響該 :之推導結果’制而可能會推導出一遠離真實偏移之 一偏2。例如’考量—統計母體資料集係不均勻地分佈 狹乍中心角弧度附近且該統計母體資料集之相互正交 特试向S係uAu2,如圖i所示。在此情況下,由於該統計 :體資料集之變數係在對應於更小主值的該分佈之特徵向 曰2之方向上較小,因此存在較高機率從該統計母體資料 集所推導的一臨時偏移係在特徵向量…之方向上遠離真實 偏移。另一方面,在此情況下,由於該統計母體資料集之 變數係在該分佈之特徵向量Ul之方向上較大,因此存在較 高機率從該統計母體資料集所推導的一臨時偏移係在特徵 向量U2之方向上在真實偏移附近。 由於在該分佈之主軸方向上的該等變數可使用該分佈之 該等主值λ〗&λ2來表述成該分佈之指標,因此該裝置依據 該等主值λ〗及λ2之比率來估計在分別對應於該等主值之方 向上分佈的統計母體元素。明確而言,首先,作為新偏移 C相對於舊偏移Co之一位置向量的一校正向量f與作為該臨 時偏移相對於舊偏移C〇之一位置向量的一臨時位置向量g 可疋義於具有與該分佈之主轴方向相一致之座標轴α及β 的座標系統内。即’校正向量f及臨時位置向量g之各向量 均可疋義成為5玄々佈之主轴方向之基本向量之一線性組 合。此點對應於成為主軸值之轉換。若校正向量f之分量& 114821.doc 丄⑽854 及fp係藉由依據該分佈之該等對應主值U丨及u 2之測量加權 該臨時偏移相對於舊偏移4之位置向量g之分量“及踟來推 導,則可能藉由增加在一具有較大散佈之方向上的統計母 體元素之可靠性並減小在一具有較小散佈之方向上的統計 母體元素之可靠性來推導校正向量卜然而,校正向量£及 臨時位置向量g之此類定義係還引入以定義推導新偏移c*One of the basic vectors is a linear combination. In a second aspect of the present invention, a hair data processing apparatus includes an input member, a magnetic member for achieving the above object, and is used for continuously inputting from a three-dimensional (3D) magnetic sensor. The magnetic data is a 3D vector data linearly combined as one of a set of first basic vectors; a storage component for storing a plurality of input magnetic data as a statistical parent data set to use a new offset Updating an old offset of the magnetic data; and an offset deriving component for using the old offset based on the constraint that the new offset is obtained as the sum of the old offset and a correction vector And the statistical matrix data set to derive the new offset, wherein the correction vector is linearly combined with one of a set of second basic vectors defined in a major axis direction of the distribution of the statistical parent data set, and represents the correction vector The individual coefficients of the linear combination of the second basic vectors are weighted by a primary value ratio according to a distribution of the statistical base data set relative to the old offset Obtained by an individual coefficient of a position vector derived from the statistical parent data set without using the old offset, the temporary offset position vector being linearly combined with one of the second basic vectors. [Embodiment] 114821.doc • 9- The principle and algorithm for the first aspect of the present invention will be described in detail below with reference to FIG. The key point of this algorithm is that a magnetic data set distributed in the direction of a major axis with a larger dispersion is estimated to be the more prominent precursor element for updating the offset, and in the direction of the major axis with a smaller dispersion. A magnetic data set on the upper 77 cloth is estimated to be a less obvious element for updating the offset. The offsets corresponding to the old offset CG, the new offset C, and the temporary offset of the position vector of the end point "g" relative to the origin "〇" are linearly combined as one of a set of magnetic data base vectors 20 location information. That is, the offsets of the offsets are vector data represented within the xy coordinate system. The new offset C is derived based on the old offset c〇 and a magnetic data set stored to update the old offset c〇β using the new offset c as a store to use the new offset c. The master data set for updating the old offset magnetic data set may include a magnetic data set stored for a predetermined period of time and may include a magnetic data set including a predetermined number of magnetic data and may further include a magnetic data set The magnetic data set old offset including any number of magnetic data that has been stored at a particular time (e.g., when an offset update request is made) can be derived and can also be predetermined using the same method as the new offset c. Although the temporary offset is defined to be derived from the statistical parent data set without using the old offset c, this definition is introduced to define the constraints used to derive the new offset e and the temporary offset is actually Data that does not have to be derived. If the temporary offset is actually derived from the statistical parent data set without using the old offset Cq ', then the temporary offset is distributed near the center of one of the circumferences of the statistical parent data set. - position vector. However, if the statistician 114821.doc 2 (4) is not distributed in the vicinity of the narrow central angle of the parent-part of the statistical data set, then it is included in each element of the statistical-beauty set. An error will affect this to a large extent: the derivation result may result in a deviation from the true offset of one. For example, the 'consideration-statistical maternal data set is unevenly distributed near the narrow central angle arc and the statistical maternal data set is mutually orthogonal to the S-system uAu2, as shown in Figure i. In this case, due to the statistic: the variable of the volume data set is smaller in the direction of the 对应2 corresponding to the feature of the distribution corresponding to the smaller main value, so there is a higher probability derived from the statistic parent data set. A temporary offset is away from the true offset in the direction of the feature vector. On the other hand, in this case, since the variable of the statistical matrix data set is larger in the direction of the feature vector U1 of the distribution, there is a higher probability that a temporary offset system derived from the statistical parent data set is derived. It is near the true offset in the direction of the feature vector U2. Since the variables in the direction of the major axis of the distribution can be expressed as indices of the distribution using the principal values λ & λ 2 of the distribution, the apparatus estimates based on the ratio of the principal values λ ′ and λ 2 Statistical parent elements distributed in directions corresponding to the primary values, respectively. Specifically, first, a correction vector f as a new offset C relative to a position vector of the old offset Co and a temporary position vector g as a temporary shift relative to the position vector of the old offset C〇 may be It is defined in a coordinate system having coordinate axes α and β that coincide with the direction of the major axis of the distribution. That is, each vector of the correction vector f and the temporary position vector g can be a linear combination of one of the basic vectors of the principal direction of the five mysterious cloth. This point corresponds to the transition to the spindle value. If the component & 114821.doc 丄(10) 854 and fp of the correction vector f are weighted by the measurement of the corresponding main values U 丨 and u 2 of the distribution, the temporary offset is relative to the position vector g of the old offset 4 By deriving the component "and", it is possible to derive the correction by increasing the reliability of the statistical parent element in a direction with a larger spread and reducing the reliability of the statistical parent element in a direction with a smaller spread. Vector, however, such definitions of the correction vector £ and the temporary position vector g are also introduced to define a new offset c*

採用之約束條件且校正向量f及臨時位置向量吕之各向量實 際上均非需要推導之資料。 藉由在新偏移c係作為舊偏移Co與如上定義之校正向量厂 之和而獲得之一約束條件下推導新偏移c,不論該統計母 體分佈資料集之分佈如何,可在估計分佈於—具有較大散 之主軸方向上的一磁性資料集係更明顯統計母體元素而 分佈於-具有更小散佈之主軸方向上的—磁性賴係較不 明顯統計母體元素時推導新偏移。-㈣於依此方式推導The constraints are used and the vectors of the correction vector f and the temporary position vector Lu actually do not need to be deduced. Deriving a new offset c by obtaining a new constraint c as the sum of the old offset Co and the correction vector factory as defined above, regardless of the distribution of the statistical parent data set, can be estimated in the distribution A magnetic data set in the direction of the main axis with larger dispersion is more statistically distributed to the parent element and distributed in the direction of the main axis with smaller dispersion - the magnetic retraction is less obvious when the parent element is not statistically significant. - (d) in this way

,偏移之範例性技術係將該分佈用公式表示為―最佳化問 碭。不論使用者執行何種校準操作,此裝置可推導從一實 際執行操作中可推導的最可能新偏移,並因而不需要使用 者執行一預定操作。 ^發明磁性資料處理裝置中,該約束條件可以係在該 預:t一更小主值與一更大主值之-比率係等於或小於 一預定臨界值之情、、ff T m 匱况下,用於在對應於該等主 值之主軸方向上的笛H 寸值之更小主 一加避m& 第—基本向量之係數的臨時位置向量之 加權因數為零。 此裝置離散地估計 該統計母冑資料集之分佈I依據該離 114821.doc • 12- 丄 • 冑估=結果來離散地加權該臨時偏移相對於舊偏移。。之位 • £向量之該等係數。明確而言,在該分佈之值係相對較小 之方向上的臨時位置向量§之係數之權重係。即,在該 分佈之值係小於一臨界值之方向上,沒有任何統計母體資 料集係估計。 在本發明磁性資料處理裝置中,㈣束條件可以係該校 正向量之係數係藉由將該臨時位置向量之該等係數加權連 籲續對應於該統計母體資料集之分佈之該等主值比率的加權 因數而獲得之值。 *此裝置可增加統計母體資料集之實質使用效率,由於該 等加權因數與該分佈具有連續的相關性。此外,該裝置‘ 簡化該偏移更新程序,由於可依據該統計母體資料集之分 佈來推導新偏移而不改變該程序。 在本發明磁性資料處理裝置中,用於該臨時位置向量之 係數的該等個別加權因數可藉由將用於在對應於更大主值 •之主軸方向上的第二基本向量之係數的加權因數設定為一 來正規化。 在除該分佈之該等主值之外的統計母體資料集分佈之估 计扣钛係引入之情況下,不必藉由設定更大加權因數為一 來正規化該等加權因數。例如,最大加權因數可基於該統 計母體資料集,依據在-對應於更大主值之主轴方向(即 主方向)上在磁性資料之間的最大距離與一已推導為一圓 周(具有一附近分佈一統計母體資料集之部分)之圓圈之半 徑的比率而設定為小於一。 114821.doc -13- 在用於實現上述目 偏移推導構件可推導 目標函數f(c) ·· 二,本發明磁性資料處理裝置中,該 其在該約束條件下最小化下列 9 ^c)-{Xc-j)T{xc .)表示時, 由 qi=(qix,qiy)(i=〇, 1,2, 其中在磁性資料係 X"及"j"係如下:The exemplary technique of offset is to formulate the distribution as an "optimized question." Regardless of the calibration operation performed by the user, the device can derive the most likely new offset that can be derived from an actual execution operation and thus does not require the user to perform a predetermined operation. In the magnetic data processing apparatus of the invention, the constraint may be based on the fact that the ratio of the t-th main value to a larger main value is equal to or less than a predetermined threshold value, ff T m The weighting factor of the temporary position vector for the coefficient of the smaller main-sense plus m&-the basic vector in the direction of the main axis corresponding to the main values is zero. The apparatus discretely estimates the distribution I of the statistical dataset to discretely weight the temporary offset relative to the old offset based on the deviation. . Bits • These coefficients of the £ vector. Specifically, the weight of the coefficient of the temporary position vector § in the direction in which the value of the distribution is relatively small is. That is, there is no statistical maternal data set estimate in the direction that the value of the distribution is less than a critical value. In the magnetic data processing apparatus of the present invention, the (4) beam condition may be such that the coefficients of the correction vector are weighted by the coefficients of the temporary position vector, and the ratios of the principal values corresponding to the distribution of the statistical matrix data set are successively appealed. The value obtained by the weighting factor. * This device increases the substantial efficiency of the statistical maternal data set, since these weighting factors have a continuous correlation with the distribution. In addition, the apparatus simplifies the offset update procedure since the new offset can be derived from the distribution of the statistical parent data set without changing the program. In the magnetic data processing apparatus of the present invention, the individual weighting factors for the coefficients of the temporary position vector may be weighted by coefficients for the second basis vector in the direction of the major axis corresponding to the larger principal value. The factor is set to one to normalize. In the case where the estimation of the statistical matrix data set distribution other than the primary values of the distribution is introduced, it is not necessary to normalize the weighting factors by setting a larger weighting factor to one. For example, the maximum weighting factor may be based on the statistical matrix data set, based on the maximum distance between the magnetic data in the direction of the major axis corresponding to the larger principal value (ie, the main direction) and one has been derived as a circumference (having a vicinity) The ratio of the radius of the circle of the distribution of a part of the statistical maternal data set is set to be less than one. 114821.doc -13- In the magnetic data processing apparatus of the present invention, the magnetic parameter processing apparatus of the present invention minimizes the following 9 ^c) in order to realize the above-described objective offset derivation member derivable objective function f(c) -{Xc-j)T{xc .) is represented by qi=(qix,qiy)(i=〇, 1,2, where the magnetic data systems X" and "j" are as follows:

- R r qX 1 分丨7V丨-及 W2~qf • · y =-2 孕2分2 ~及 k.-g'fj » · · βΝ-\ 9n.\ -'R 在此說明書中,所有向量 述為行向量之轉置矩陣。二=^量而列向量係均表 係在各轉置矩p車女卜 側==著至各轉置矩陣[即採用()τ之形式]。 來推導用Γ束條件作為該分佈之-最佳化問題 程來推導新偏移,如在1體實=解答簡單聯立線性方 M m ,、體實轭例中稍後所述。即,盔論 此的新偏移’其可從統計母體資料集來推導。 :括=發明之裝置内的複數個構件之各構件之 其功能由其結構指定的硬體資源…功能由-程式 來一硬體資源或該些資源之―組合來實 : 114821.doc 14 構件之各構件之功能不一定由一實 I髖獨立硬體資源來實 現。本發明不僅可由一裝置來指定,而且還可由—程式、 一上面記錄該程式之記錄媒體及一方法來指定。假存 在技術障礙,申請專利範圍内所述之方法之操作不—定按子 照申請專利範圍内所述之次序來執行,而可按照任一其他 次序或同時來執行。- R r qX 1 分丨7V丨- and W2~qf • · y =-2 Pregnancy 2 points 2 ~ and k.-g'fj » · · βΝ-\ 9n.\ -'R In this manual, all The vector is described as the transpose matrix of the row vector. The two = ^ quantity and the column vector system are in the respective transposition moments p car female side == to each transposed matrix [that is, using the form of () τ]. The new offset is derived by deriving the Γ beam condition as the distribution-optimization problem, as in the case of the 1 body = solution simple simultaneous linear square M m , which is described later in the body yoke example. That is, the new offset of the helmet can be derived from the statistical maternal data set. Included: The hardware resources of the components of the plurality of components in the device of the invention are functionally specified by their structure... The function is a combination of a hardware resource or a combination of these resources: 114821.doc 14 The function of each component is not necessarily achieved by a real I hip independent hardware resource. The present invention can be specified not only by a device but also by a program, a recording medium on which the program is recorded, and a method. In the case of technical deficiencies, the operation of the methods described in the patent application is not performed in the order stated in the scope of the patent application, but may be performed in any other order or simultaneously.

將按下列次序來說明本發明之第一方面之多個具體實施 例0 A.第一具體實施例 [1.概述] 1-1·硬體結構 1- 2·軟體結構 [2.程序] 2 -1.整體流程A plurality of specific embodiments of the first aspect of the present invention will be described in the following order. A. First embodiment [1. Overview] 1-1. Hardware structure 1- 2·Soft structure [2. Program] 2 -1. Overall process

2- 2.緩衝器更新 2 - 3 ·分佈估計 2-4.透過最佳化問題推導新偏移 2-5.當分佈係二維時推導新偏移 2·6·當分佈係實質上一維時推導新偏移 2-7.概要 Β ·第二具體實施例 •概覽 •分佈估計 •推導新偏移 114821.doc •15- 1320854 c.其他具體實施例 [i‘概述] 1-1.硬體結構 圖2係作為一應用本發明之移動主體之一範例的一汽車2 之一外觀之一示意圖。汽車2包括一 2維(2D)磁性感測器 4 2 D磁性感測器4藉由偵測磁場在兩個正交方向(X,y)上的 個別強度來偵測一磁場之方向及強度。組成一固定在汽車 2上之導航系統之一部分的2D磁性感測器4係用於指定汽車 2之行駛方向。 圖3係一磁性測量裝置之一方塊圖,其包括一 2d磁性感 測器4及一磁性資料處理裝置i。2D磁性感測器4包括X及y 轴感測器3 0及3 2 ’其债測由於陸地磁力所引起之一磁場向 量之X及y方向分量。X及y軸感測器30及32之各感測器包括 一磁阻元件、一霍爾感測器或類似物,其可以係任一類型 的一維磁性感測器(假定其具有方向性)。X及y轴感測器3〇 及32係固定’使得其感應方向係相互垂直β X及y軸感測器 3 0及3 2之輸出係時間分割並輸入至一磁性感測器介面 (I/F)22。在放大來自該等X及y轴感測器3〇及32之輸入之 後’磁性感測器介面2 2類比至數位轉換該等輸入。從磁性 感測器介面22所輸出之數位磁性資料係透過一匯流排$而 輸入至磁性資料處理裝置1 » 磁性資料處理裝置1係一電腦,其包括一 cpu 4〇、一 ROM 42及一 RAM 44。CPU 40控制(例如)該導航系統之整 體操作。ROM 42係一非揮發性儲存媒體,其儲存一磁性 114821.doc • 16· 1320854 用於實施該導航系統 資料處理程式或各種由CPU 4 0執行的 之功能的程式。RAM 44係—揮發性儲存媒體,其臨時地 儲存資料以供CPU爾理。磁性f料處理裝置磁性 感測器4可構造成一單晶片磁性測量裝置。 1-2.軟體結構2- 2. Buffer update 2 - 3 · Distribution estimation 2-4. Deriving a new offset through the optimization problem 2-5. Deriving a new offset when the distribution is two-dimensionally 2. 6 · When the distribution is substantially one Dimensional Derivation of New Offsets 2-7. Summary 第二 · Second Specific Embodiments • Overview • Distribution Estimation • Derivation of New Offset 114821.doc • 15-1320854 c. Other Specific Examples [i' Overview] 1-1. The hardware structure diagram 2 is a schematic view showing one of the appearances of a car 2 as an example of a mobile body to which the present invention is applied. The car 2 includes a 2-dimensional (2D) magnetic sensor 4 2 D magnetic sensor 4 detects the direction and intensity of a magnetic field by detecting the individual intensity of the magnetic field in two orthogonal directions (X, y) . A 2D magnetic sensor 4 constituting a part of the navigation system fixed to the car 2 is used to specify the traveling direction of the car 2. Figure 3 is a block diagram of a magnetic measuring device including a 2d magnetic sensor 4 and a magnetic data processing device i. The 2D magnetic sensor 4 includes X and y-axis sensors 30 and 3 2 ' which measure the X and y-direction components of one of the magnetic field vectors due to the terrestrial magnetic force. Each of the X and y-axis sensors 30 and 32 includes a magnetoresistive element, a Hall sensor, or the like, which can be any type of one-dimensional magnetic sensor (assuming it is directional) ). The X and y-axis sensors are fixed in the '3' and 32-series' so that the sensing directions are perpendicular to each other. The output of the beta X and y-axis sensors 3 0 and 3 2 is time-divided and input to a magnetic sensor interface (I /F) 22. After amplifying the inputs from the X and y-axis sensors 3 and 32, the magnetic sensor interface 2 2 analog to digitally converts the inputs. The digital magnetic data outputted from the magnetic sensor interface 22 is input to the magnetic data processing device through a bus bar. The magnetic data processing device 1 is a computer including a CPU 4A, a ROM 42 and a RAM. 44. The CPU 40 controls, for example, the overall operation of the navigation system. The ROM 42 is a non-volatile storage medium that stores a magnetic 114821.doc • 16·1320854 program for implementing the navigation system data processing program or various functions executed by the CPU 40. RAM 44 is a volatile storage medium that temporarily stores data for CPU management. Magnetic f-processing device The magnetic sensor 4 can be constructed as a single-wafer magnetic measuring device. 1-2. Software structure

圖4係-磁性資料處理程式9〇之一方塊圖。磁性資料處 理程式90係儲存於R0M 42内以向—定位器%提供方位資 料。該方位資料係2D向量資料’其表示地球磁場之方位。 磁性資料處理程式90係構造成一模組群組,例如一緩衝器 管理模組92、一偏移推導模組94及一方位推導模組%。 緩衝器管理模組92係一程式部分,其接收從磁性感測器 4連續輸出的複數個磁性資料並在一緩衝器内儲存該接收 到的資料,以便在偏移更新時使用該磁性資料。緩衝器管 理模組92允許CPU 40、RAM 44及ROM 42用作輸入構件及 儲存構件。此緩衝器可不僅採用硬體來具體化,而且可採 用軟體來具體化》現將儲存於此緩衝器内的一磁性資料集 稱為一統計母體資料集。 偏移推導模組94係一程式部分,其基於缓衝器管理模組 92所保持之一統計母體資料集及偏移推導模組94所保持之 一舊偏移來推導一新偏移並使用該新偏移來更新該舊偏 移°偏移推導模組94允許CPU 40、RAM 44及ROM4 2用作 偏移推導構件。由於使用新偏移來更新舊偏移會引起新偏 移變成一舊偏移,因此在不會引起誤解之背景下將"舊偏 移"簡稱為一"偏移,•。實際上,一用於方位資料校正之偏 114821.doc 17 移係採用一變數來設定且新偏移係作為一不同於該變數之 變數來推導。當該新偏移絲導時,其係採用用於方位資 料校正之變數來設定。因此,用於方位資料校正之變數係 其中健存舊偏移之變數。 方位推導模組96係一程式部分,其使用偏移推導模組94 所保持之偏移來校正從該磁性感測器所連續輸出之磁性資 料以產生方位資料。明確而言方位推導模組%作為方位 資料來輸出資料’㉟資料包括藉由將該偏移之該等分量從 作為2D向量資料之磁性資料之該等分量中減去而獲得的兩 個分量。 疋位态98係一已知程式’其透過自動導航來指定汽車2 ,目則位置。明確而言’定位器98基於該方位資料來指定 車2之行駛方向並基於行駛方向與行駛距離二者來指定 >飞車2相對於一基點之位置。該 幕上藉由字元或箭頭顯示北、南 在螢幕上的地圖之前進地圖處理 方位資料可不僅用於在螢 、東及西並還可用於顯示 [2.程序] 2·ι·整體流程 圖5係說明一新偏移推導窓 ..^ _ ., 尹守杈序之一流程圖。當已提出一 偏移更新請求時,CPU & 藉由執行緩衝器管理模組及偏移 推導模組94來執行圖5之轺& ^ &序。該偏移更新請求可在預定 時間間隔提出並還可藉由絮點吕 秸田烏駛員之一明確指示來提出。 2-2.緩衝器更新 在步驟議,刪除所㈣存於緩衝器内的磁性資料,在 114821.doc 該緩衝器内儲存一用於推導一新偏移之磁性資料集(統計 母體資料集)。由此,在此程序中,一用於推導舊偏移之 統計母體資料集係刪除。 在步驟S 1 02,用於推導一新偏移之磁性資料係輸入並儲 存於該緩衝器内。當複數個磁性資料係連續地從磁性感測 器4輸入而無任何汽車2之行駛方向變化時,在兩個連續輸 入磁性資料(或值)之間的距離係較小。在一有限容量之缓 衝器内儲存複數個新磁性資料會浪費記憶體資源並引起不 必要的緩衝器更新程序。此外’若一新偏移係基於一組新 磁性資料集來推導,則存在一可能性,即一不精確新偏移 係基於一不均勻分佈的統計母體資料集來推導。是否必需 更新緩衝器可按下列方式來決定。例如,若在最後輸入磁 性資料與恰在該最後輸入磁性資料之前在緩衝器内儲存的 磁性資料之間的距離係小於一給定臨界值,則決定不必更 新該緩衝器並放棄該最後輸入磁性資料而不儲存在該緩衝 器内。 在步驟S1 04,決定推導一精確新偏移所需之一指定數目 磁性資料是否已儲存在該緩衝器内。即,該統計母體資料 集之元素數目係預定。設定一小量統計母體資料集元素改 良對偏移更新請求之回應。步驟81〇2及sl〇4之程序係重 複’直到特定數目之磁性資料係儲存於該缓衝器内。 2 -3.分佈估計 一旦特定數目的磁性資料係儲存於該緩衝器内,該統計 母體資料集之分佈係估計(S106)。該分佈係基於該分佈之 114821.doc 19 丄:>/)4 主值來估計。當該磁性資料集係藉由下列方程⑴來表述 時,該分佈之該等主值係一對稱矩陣A之特徵向量,該對 稱矩陣A使用從該統計母體資料集之一中心(平均值)開始 並以個別磁性資料結束的向量之和,由方程(2)、(3)及(4) 來定義。 qi = Uix,qiy)(i=〇, 1,2,· . ·⑴Figure 4 is a block diagram of a magnetic data processing program. The magnetic data processing program 90 is stored in the ROM 42 to provide orientation information to the locator %. The position data is a 2D vector data 'which indicates the orientation of the earth's magnetic field. The magnetic data processing program 90 is constructed as a group of modules, such as a buffer management module 92, an offset derivation module 94, and an orientation derivation module %. The buffer management module 92 is a program portion that receives a plurality of magnetic data continuously outputted from the magnetic sensor 4 and stores the received data in a buffer for use in the offset update. The buffer management module 92 allows the CPU 40, the RAM 44, and the ROM 42 to function as input members and storage members. This buffer can be embodied not only by hardware, but also by software to embody a magnetic data set that is now stored in this buffer as a statistical parent data set. The offset derivation module 94 is a program portion that derives a new offset based on an old offset of one of the statistical parent data set and the offset derivation module 94 held by the buffer management module 92. The new offset to update the old offset ° offset derivation module 94 allows the CPU 40, RAM 44, and ROM 42 to function as an offset derivation. Since updating the old offset with a new offset causes the new offset to become an old offset, "old offset" is simply referred to as an "offset,• in the context of no misunderstanding. In fact, a shift for orientation data correction is set using a variable and the new offset is derived as a variable different from the variable. When the new offset is guided, it is set using a variable for orientation data correction. Therefore, the variable used for orientation data correction is the variable in which the old offset is stored. The azimuth derivation module 96 is a program portion that uses the offset maintained by the offset derivation module 94 to correct the magnetic material continuously output from the magnetic sensor to produce orientation data. Specifically, the azimuth derivation module % is used as the azimuth data to output the data '35 data including two components obtained by subtracting the components of the offset from the components of the magnetic data as the 2D vector data. The 疋 position 98 is a known program that specifies the position of the car 2 by automatic navigation. Specifically, the positioner 98 specifies the direction of travel of the vehicle 2 based on the orientation data and specifies the position of the "speed 2 relative to a base point based on both the direction of travel and the distance traveled. The screen displays the north and south maps on the screen by characters or arrows. The orientation data can be used not only for Firefly, East and West but also for display [2. Program] 2·ι·Overall flow Figure 5 is a flow chart showing a new offset derivation 窓..^ _ ., Yin Shouqian. When an offset update request has been made, the CPU & executes the buffer management module and the offset derivation module 94 to execute the sequence & ^ & The offset update request can be made at a predetermined time interval and can also be made by a clear indication from one of the drivers of the stalker. 2-2. Buffer update In the step of discussion, delete the magnetic data stored in the buffer (4), and store a magnetic data set (statistical parent data set) for deriving a new offset in the buffer 114842.doc. . Thus, in this procedure, a statistical parent data set for deriving the old offset is deleted. In step S102, a magnetic data input for deriving a new offset is stored in the buffer. When a plurality of magnetic data are continuously input from the magnetic sensor 4 without any change in the traveling direction of the automobile 2, the distance between the two consecutive input magnetic data (or values) is small. Storing a plurality of new magnetic data in a limited-capacity buffer wastes memory resources and causes unnecessary buffer update procedures. Furthermore, if a new offset is derived based on a new set of magnetic data sets, there is a possibility that an inaccurate new offset is derived based on an unevenly distributed statistical matrix data set. Whether it is necessary to update the buffer can be determined in the following manner. For example, if the distance between the last input magnetic data and the magnetic data stored in the buffer just before the last input magnetic data is less than a given threshold, then it is decided that the buffer does not have to be updated and the last input magnetic is discarded. The data is not stored in the buffer. In step S104, it is determined whether a specified number of magnetic data required to derive a precise new offset has been stored in the buffer. That is, the number of elements of the statistical parent data set is predetermined. Set a small amount of statistic dataset element to improve the response to the offset update request. The procedures of steps 81〇2 and sl〇4 are repeated until a certain number of magnetic data are stored in the buffer. 2 - 3. Distribution Estimation Once a certain number of magnetic data is stored in the buffer, the distribution of the statistical parent data set is estimated (S106). The distribution is estimated based on the main value of the distribution of 114821.doc 19 丄:>/)4. When the magnetic data set is expressed by the following equation (1), the main values of the distribution are eigenvectors of a symmetric matrix A using a center (average value) from one of the statistical matric data sets. The sum of the vectors ending with individual magnetic data is defined by equations (2), (3), and (4). Qi = Uix,qiy)(i=〇, 1,2,· . ·(1)

…⑷ 由於矩陣A還可重新寫作方程(5),故矩陣A對應於一變 數共變數矩陣的]^倍。 • · · (5) 讓λ丨與λ2以遞增次序成為矩陣a之特徵值。讓⑴與以成為 對應於人丨與人2並已正規化為大小1的相互正交特徵向量。 在此具體實施例中,假定矩陣A係非奇異而λ1&λ2的範圍 114821.doc -20· 1320854 係λ丨>〇且入2>0。當矩陳八夕宙, 單A之更小特徵向量入2係零時,即矩 陣A之秩係一或更小時, 不而要考置矩陣A,由於統計母 體育料集元素數目係—或該分德 及°豕刀佈係一完美直線。該等特徵 值之各特徵值必須為零或— 正實數,由於根據矩陣A定 義’矩陣A係一半正定矩(j車。 5玄統s十母體資料集之公$ 刀佈係基於更小特徵值與更大特徵 值之比率1:!/人1來估計。...(4) Since matrix A can also rewrite equation (5), matrix A corresponds to a multiple of a variable covariate matrix. • · · (5) Let λ丨 and λ2 become the eigenvalues of matrix a in ascending order. Let (1) and become the mutually orthogonal feature vectors that correspond to the person and the person 2 and have been normalized to size 1. In this embodiment, it is assumed that the matrix A is non-singular and the range of λ1 & λ2 is 114821.doc -20· 1320854 is λ丨> and 2> When the moment is smaller, the smaller eigenvector of the single A enters the 2 system zero, that is, the rank of the matrix A is one or less, and the matrix A is not considered, because the number of elements of the statistic sports material set is - or The division and the 豕 knife cloth are a perfect straight line. The eigenvalues of the eigenvalues must be zero or - positive real numbers, since the matrix A is defined by the matrix A is half positive definite moment (j car. 5 syllabary s ten parent data set of the public $ knife cloth based on smaller features The ratio of the value to the larger eigenvalue is 1:!/person 1 to estimate.

在步驟SH)6,決定該統計母體資料集之分佈是否係充分 一維。明確而言,當下列條件(6)係滿足時該決策係肯定而 當其不滿足時為否定。 λ2/λι>ΐ...(6) 當該統計母體請集係沿—特定圓周較大範圍地分佈 時’條件(6)係滿足。 若步驟S106之決策係否定,則該統計母體資料集之分佈 係實f上—維。當該統計母體資料集係不均句地分佈在該 特定圓周之—狹窄中心、角弧度上時,該統計母體資料集之 分佈係實質上一維。 2-4.透過最佳化問題推導新偏移 •現在將說明一用於推導一新偏移之最佳化問題。 田統计母體-貝料集包括二個不存在於相同線上的磁性資 料時,#上分佈該統計母體資料集之圓周係唯—地指定 而不使用-統計技術。此圓周之中心之一位置向量吨, 〜)係藉由解答聯立方程⑺來獲得^管三個平等約束存 在用於兩個變數’但方程⑺必須具有—解答,由於三個平 114821.doc •21 · 1320854 等約束之一平等約束係冗餘In step SH) 6, it is determined whether the distribution of the statistical parent data set is sufficiently one-dimensional. Specifically, the decision is affirmative when the following condition (6) is satisfied and negative when it is not satisfied. Λ2/λι> ΐ (6) When the statistical matrix is collected in a large extent along a specific circumference, the condition (6) is satisfied. If the decision in step S106 is negative, the distribution of the statistical parent data set is f-dimensional. When the statistical matric data set is unevenly distributed on the narrow circumference and the angular arc of the specific circumference, the distribution of the statistical maternal data set is substantially one-dimensional. 2-4. Deriving a new offset through optimization issues • An optimization problem for deriving a new offset will now be described. When the statistic parent-beat set includes two magnetic materials that do not exist on the same line, the circumstance of the statistic parent data set is assigned to the local system without the use of statistical techniques. The position of one of the centers of this circle is ton, ~) is obtained by solving the simultaneous equation (7) to obtain three equality constraints exist for two variables 'but equation (7) must have - answer, due to three flat 114821.doc •21 · 1320854 and other constraints are equal constraint redundancy

C 2 9\~~R 殳2殳2 ~及 其中 (7) 1 Λ^-1 7V /=〇 τ <h • (8) 2 9〇~-jR.々'-R 分2分2 一及 βN-' qΝ_'- r (9) 解==用r"之聯立線性方程〇。)具有-解答,則該 “ 上分佈該統計母體資料集之圓周之。C 2 9\~~R 殳2殳2 ~ and its middle (7) 1 Λ^-1 7V /=〇τ <h • (8) 2 9〇~-jR.々'-R points 2 points 2 And βN-' qΝ_'- r (9) solution == using r" the simultaneous linear equation 〇. ) with -answer, then the distribution of the statistic parent data set on the circumference.

Xc=j- (10) 然而,4t 土 Θ 右亏量2D磁性感測考4之_田‘ 際上盔法祜+ a刊益4之固有測量誤差,則實 …、去使方裎(10)具有一解答。下列士 —向量"e··俜引 彳方程(11)所定義之 解決方案人過—統計技術來獲得—似是而非的 ^^l.doc -22- 丄训854 e=Xc'j ... (11) 6最小化"e"22 (即eTe)之"c"可似是而非地視為最靠近該 時,十母體貝料集分佈之—圓周之中心。在矩陣八係非奇異 用於咢找最小化丨丨e丨丨z2之值"c"的問題係一用於最小 化下列方程(12)之一目標函數的最佳化問題。 f(c) = {Xc - j)T [χ〇 _ Λ J 1 ··. (12)Xc=j- (10) However, 4t bandits right loss 2D magnetic sexy test 4 _ Tian ' 上 盔 祜 祜 + a journal benefit 4 inherent measurement error, then ..., to make Fang Wei (10 ) has a solution. The solution defined by the following - vector "e··俜引彳 equation (11) is over-statistical technology to obtain - plausible ^^l.doc -22- 丄 854 e=Xc'j ... (11) 6 Minimize "e"22 (ie eTe)"c" can be plausibly regarded as the center of the circumference of the distribution of the ten parent body. The problem of minimizing the value of 丨丨e丨丨z2 "c" is a problem for minimizing the objective function of one of the following equations (12). f(c) = {Xc - j)T [χ〇 _ Λ J 1 ··. (12)

2 5· §分佈係二維時推導新偏移 如圖6所示’當統計母體資料集之分佈係二維時,該統 計母體資料集係整體充分可靠,因此—新偏移係藉由獲得 最小化方程⑴)之目標函數f(c)而不需任何約束條件之"C" 來推導(S 1 G8)。當在此具體實施例中假定的χΤχ係非奇異 時,不需*何'約束條件來最小化目標函數f⑷之值,,c"^ 作方程(13)。2 5· § When the distribution is two-dimensional, the new offset is derived as shown in Fig. 6. 'When the distribution of the statistical maternal data set is two-dimensional, the statistical matrix data set is fully reliable as a whole, so the new offset is obtained by Minimize the objective function f(c) of equation (1) without deriving (S 1 G8) with any constraint of "C". When the tether is assumed to be non-singular in this embodiment, there is no need for a constraint to minimize the value of the objective function f(4), c"^ is equation (13).

C = {xTx)~lXTj …(13) 當已推導滿足方程⑼之,V,時,可藉由在兩個方向上校 正舊偏移而獲得的-新偏㈣基於統計母㈣料集來 而不使用舊偏移。 等 W虮—ST π遯貢料集 使用舊偏移。-用於基於統計母體資料集來推導 而不使用舊偏移之演算法可以係(如在此具體實施— 使用已經提出的各種統計技術之—的演算法並還可 114821.doc •23· 1320854 使用任何統計技術的一演算法。 • 2_6.當分佈係實質上一維時推導新偏移 如圖7所示,當統計母體資料集係分佈於特定圓周之一 狹窄中心角弧度上並因而該統計母體資料集之分佈係 上一維(即線性)時,一新偏移係藉由將校正舊偏移之方向 p艮定為該分佈之-主方向來推導(SUG)。當該統計母體資 Μ係、分佈在-特定線附近時’在該線方向上的統計母體 • f料集之分佈係充分可靠’而在其他方向上的統計母體資 料集分佈係不可靠。在此情況下,在除該線方向之外的方 向上,舊偏移係不校正,從而防止基於不可靠資訊來更新 偏移。 當統計母體資料集係分佈在一特定線附近時,該線之方 向係與一對應於更大特徵值Al之特徵向量…之方向(即主方 向)相一致且一對應於更小特徵值心之特徵向量h之方向係 垂直於該線。因此,為了僅在該線之方向上推導一新值, • 最小化方程(12)之目標函數的一新偏移c係在一由下列方程 (14)所表述之約束條件下得到。 u2 (c — c0) = 0 ... (14} 用於在方程(14)之約束條件下解答方程(12)之最佳化問 題之方程可使用拉格朗日乘數法來修改成其等價聯立方 程。當一未知怪定乘數p係引入且1"係藉由下列方程(Μ) 來定義時,"X"之聯立線性方程(16)係上述聯立方程。 114821.doc -24· c ;c =P ... (15) B3x =、 其中 ... (16) B3C = {xTx)~lXTj (13) When the V, which satisfies the equation (9), is derived, the new offset (4) obtained by correcting the old offset in both directions is based on the statistic (four) material set. Do not use old offsets. Wait for the W虮-ST π遁 tribute set to use the old offset. - Algorithms for deriving based on statistical matric data sets without using old offsets can be implemented (as embodied here - using the various statistical techniques already proposed) and can also be 114821.doc • 23· 1320854 An algorithm using any statistical technique. • 2_6. Deriving a new offset when the distribution is essentially one-dimensional as shown in Figure 7, when the statistical matric data set is distributed over a narrow central angular arc of a particular circumference and thus When the distribution of the statistical maternal data set is one-dimensional (ie, linear), a new offset is derived (SUG) by determining the direction p of the corrected old offset as the main direction of the distribution. When the system is distributed near the specific line, the 'statistical matrix in the direction of the line•the distribution of the f-set is sufficiently reliable' and the distribution of the statistical matrix dataset in other directions is unreliable. In this case, In the direction other than the direction of the line, the old offset is not corrected, thereby preventing the offset from being updated based on unreliable information. When the statistical matrix data set is distributed near a specific line, the direction of the line is one correspond The direction of the feature vector of the larger feature value A1 (ie, the main direction) coincides and the direction of the feature vector h corresponding to the smaller feature value is perpendicular to the line. Therefore, in order only in the direction of the line Deriving a new value, • Minimizing a new offset c of the objective function of equation (12) is obtained under the constraints expressed by the following equation (14). u2 (c – c0) = 0 ... ( 14} The equation for solving the optimization problem of equation (12) under the constraint of equation (14) can be modified into its equivalent simultaneous equation using the Lagrangian multiplier method. When the number p is introduced and 1" is defined by the following equation (Μ), the simultaneous linear equation (16) of "X" is the above simultaneous equation. 114821.doc -24· c ;c =P .. (15) B3x =, where... (16) B3

A iTjl"A0 ... (17) (18) 從上述說明中應明白,若統計母體資料集之分佈係實質 上維,則在步驟S110用於推導新偏移之程序係用於解答 聯立線性方程(16)。解答”χ”必須唯一地指定,由於矩陣B3 之秩必須為3。 2·7·概述 現在將參考圖6及7 ’使用空間概念來說明步驟S108及 H之°若假定統計母體資料錢完全可#,則新偏 從該統見為舊偏移a與相對於舊偏移c。的僅 ?統计母體貧料集所推導 (即臨時位置向量) τ町位置向1 — 之和,由下列方程(19)來定義。 C ~ c〇 + g ... (19) 新偏移之位置向量” 不為舊偏移"c0"與一校正向量,,f" I14821.doc •25- 之和該校正向$”1在錢 方向上的基本向量之—… 之特徵向相同 於兮6" 線性組合。因此,對應於依據對岸 於錢計母體資料集之中心的 = 個別可靠度根據位置向量,v•妨T g之-亥專刀里之 可藉由依據在對應於主軸方:上:一向量的校正向量"f” 向上的統叶母體資料集之個別 罪度加權位置向量v之係數^及以來獲得。 :圖6所不’在該統計母體資料集之分佈係充分二維時 執行的步驟S108之程岸φ,券, ""r從 私序中’帛小化方程(12)之目標函數之 ^係獲得而不需任何上述約束條件。“,可認為此程 序係在新偏移"c"係作為舊偏移。。與校正向量"f"之和而獲 得之-約束條件下來執行,校正向量U由將在該分佈又 之兩個主軸方向上的臨時位置向量"g"之分量§為二者加 權一加權因素T而獲得。在圖6中,校正向量"f"係未顯 示,由於其與位置向量,,g"相一致。 如圖7所在統計母體資料集之分佈係實質上-維時 執行的㈣S11G之㈣m彳㈣條件係在基於舊偏移 c。與該統計母體資料集來推導—新偏移時強加。該約束條 件係新偏移e係作為舊偏移c。與一校正向量"f”之和而獲 得,該校正向量"f"係藉由將在對應於該分佈之更大主值 (即對應於更大特徵值λι)的該分佈之一主轴方向(或一主方 向)上的臨時位置向量"g"之一係數匕加權臨時位置向量"g,, 之-加權目素”"並將在對應於該分佈 < 最小主值(即對應 於更小特徵值λ2)的該分佈之—主軸方向上的__係數別加權 位置向量"g "之一加權因素"〇 "而獲得。 114821.doc •26- 在此具體實施例中的演算法之關鍵 (12^ H ^ ^ 、攻小化方程 2)之目“數之,v,係在以下—約束條件 母體資料隼之八处 于·在,,先3十 ”t”之m 主值之間的㈣係大於—敎臨界值 數係二I,’,用於臨時位置向量V之兩個分量之加權因 屮:疋…1以及在統計母體資料集之分佈之主值之間 :比率係小於或等於預定臨界值"t”之情況下,用於在該分 ::主方向上的臨時位置向量”g"之分量的一加權因數係 °又疋為1且用於具有-更小分佈位準的該分佈之一主軸 •方,向上的臨時位置向量"g"之分量的-加權因數係設定為 0 ’’ 〇 Β·第二具體實施例 *概覽 在第一具體實施例中,當統計母體資料集之分佈係充分 二維時以及當該分佈係實質上一維時,該分佈係離散地估 計且新偏移”c"係使用不同技術來推導。在第二具體實施 例中,將提供一種簡單、高度精確演算法之一說明,其可 排除如在第一具體實施例中依據該分佈之估計來執行不同 程序之需要並還可有效率地使用統計母體資料集來推導— 更可能的新偏移。 圖8係說明一新偏移推導程序之一流程圖。採用與第一 具體實施例相同的方式,在已提出一偏移更新請求時, CPU 40藉由執行偏移推導模組94來執行圖8之程序。步帮 S200之程序與在第一具體實施例中上述之步驟sl〇〇之程序 相同。步驟S2〇2之程序與在第一具體實施例中上述之步驟 114821.doc •27· 1320854 具體實施例中 S1〇2之程序相同。步驟S204之程序與在第 上述之步驟S104之程序相同。 •分佈估計 在步驟讓,統計母體資料集之—分佈指標係推導 確而言,統計母體資料集之分佈係、藉由推導由下列方程 (2〇)所定義之叫作為一分佈指標而作為連續值來估計。A iTjl"A0 (17) (18) It should be understood from the above description that if the distribution of the statistical parent data set is substantially dimensional, the program for deriving the new offset in step S110 is used to solve the simultaneous connection. Linear equation (16). The answer "χ" must be uniquely specified, since the rank of matrix B3 must be 3. 2·7·Overview Now, reference will be made to Figures 6 and 7 using the space concept to illustrate steps S108 and H. If the statistical parent data is fully available, then the new bias is the old offset a and relative to the old one. Offset c. Only the statistical maternal lean set derivation (ie, the temporary position vector) τ machi position to the sum of 1 — is defined by the following equation (19). C ~ c〇+ g ... (19) The new offset position vector" is not the old offset "c0" and a correction vector, f" I14821.doc •25- and the correction to $"1 The basic vector in the direction of money - ... is characterized by the same linearity as 兮6". Therefore, corresponding to the center of the maternal data set based on the opposite side = individual reliability according to the position vector, v can be used in the corresponding knife on the main axis: upper: a vector Correction vector "f" The coefficient of the individual sin-weighted position vector v of the upward mutated maternal data set ^ and the obtained coefficient: Figure 6 is not the steps performed when the distribution of the statistic parent data set is sufficiently two-dimensional S108's Cheng φ, vouchers, ""r is obtained from the objective function of the simplification equation (12) in the private sequence without any of the above constraints. ", this program can be considered as a new bias. Move "c" as the old offset. . Executed with the constraint vector "f" - the constraint is executed, and the correction vector U is weighted by weighting the temporary position vector "g" of the two main axes of the distribution Obtained by factor T. In Figure 6, the correction vector "f" is not shown, since it is consistent with the position vector, g". The distribution of the statistical matrix data set in Figure 7 is essentially - dimension-time (4) S11G (4) m彳 (4) conditions are based on the old offset c. And the statistical maternal data set to derive - the new offset is imposed. This constraint condition is the new offset e as the old offset c. Obtained from the sum of a correction vector "f" by which one of the principals of the distribution will correspond to a larger principal value corresponding to the distribution (i.e., corresponding to a larger eigenvalue λι) The temporary position vector in the direction (or a main direction) "g" one coefficient 匕 weighted temporary position vector "g,, the -weighted pixel"" and will correspond to the distribution < minimum primary value ( That is, the distribution of the __ coefficient corresponding to the smaller eigenvalue λ2) is not obtained by weighting the position vector "g " a weighting factor "〇". 114821.doc •26- The key to the algorithm in this particular example (12^H^^, attacking the equation 2) is “the number, v, is below—the constraint parent data is at eight ·,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Between the main values of the distribution of the statistical maternal data set: in the case where the ratio is less than or equal to the predetermined critical value "t", one of the components of the temporary position vector "g" in the main direction:: main direction The weighting factor is again set to 1 and is used for one of the main axes of the distribution with a smaller distribution level, and the weighting factor of the component of the upward temporary position vector "g" is set to 0 '' Second Specific Embodiment * Overview In the first embodiment, when the distribution of the statistical parent data set is sufficiently two-dimensional and when the distribution is substantially one-dimensional, the distribution is discretely estimated and new offset" c" uses different techniques to derive. In a second embodiment, an explanation will be provided of a simple, highly accurate algorithm that eliminates the need to perform different procedures based on the estimation of the distribution as in the first embodiment and can also be used efficiently The maternal data set is statistically derived to derive - a more likely new offset. Figure 8 is a flow chart showing one of the new offset derivation procedures. In the same manner as the first embodiment, when an offset update request has been made, the CPU 40 executes the program of Fig. 8 by executing the offset derivation module 94. The procedure of the step S200 is the same as the procedure of the above-described step sl1 in the first embodiment. The procedure of step S2〇2 is the same as the procedure of S1〇2 in the specific embodiment of the above-described step 114821.doc •27· 1320854 in the first embodiment. The procedure of step S204 is the same as the procedure of step S104 described above. • Distribution estimation in the step, the statistical matrix data set-distribution indicator is derived. In fact, the distribution of the parent matric data set is derived as a continuous indicator by the following equation (2〇). Value to estimate.

A Λ \*2A Λ \*2

J •_· (20) 此處’ "k,係一預定正常數。 關性與統計母體資料集之對應主 "m,必須滿足下列條件(2”。 〇^m2<l...(21) 現在將參考圖i來說明m2之空間概念。當在該分佈之主J •_· (20) where ' "k is a predetermined normal number. The corresponding main "m of the relational and statistical parent data sets must satisfy the following conditions (2". 〇^m2<l...(21) The spatial concept of m2 will now be explained with reference to Figure i. the Lord

匕之值決定主值之間的相 軸方向之可靠度。此處, 軸方向上的臨Θ夺位置向1 g之該等分量之係數係以該等對 應主值之遞減次序由g«及gp來表示而在該分佈之主轴方向 上的位置向量f之該等分量之係數係以該等對應主值之遞 減,序由。及。來表示時,在此具體實施例中在臨時位置 向里g、校正向量£及叫之間的關係係由下列方程及 (23)來表述。 ΛThe value of 匕 determines the reliability of the phase direction between the main values. Here, the coefficients of the equal-capturing position in the axial direction to the components of 1 g are represented by g« and gp in descending order of the corresponding principal values, and the position vector f in the main axis direction of the distribution The coefficients of the equal components are decremented by the corresponding principal values. and. In the present embodiment, the relationship between the temporary position in the temporary position, the correction vector £ and the call in this embodiment is expressed by the following equations and (23). Λ

Sa (22) II482I.doc 2S- ... (23) 1320854 Λ t m2Sa (22) II482I.doc 2S- ... (23) 1320854 Λ t m2

Λ'LV m2 it m2Λ'LV m2 it m2

與對應於最大主值之主軸方向之分量相關聯的加權因數 fa/ga可设定為小於"1%此外,若該等下列條件係滿足, 則可為決定的”ΓΠ2"作出任一定義,使得該等加權因數連續 地對應於該等主值比率而不限於方程(2〇)之定義。 • Π12之值範圍係[0,1;|或其子集。 •當人2/入1=1 時 。 •若λ2 = 0係許可,則當= 。 •廣義上m2隨增加而單調地減小。 明確而言,m2可(例如)藉由下列方程(24)來定義。The weighting factor fa/ga associated with the component corresponding to the major axis direction of the maximum principal value may be set to be less than "1%. Further, if the following conditions are satisfied, any definition may be made for the determined "ΓΠ2" , such that the weighting factors continuously correspond to the ratio of the principal values and are not limited to the definition of equation (2〇). • The range of values of Π12 is [0, 1; | or a subset thereof. • When person 2/into 1 =1. • If λ2 = 0 is permitted, then =. • In general, m2 decreases monotonically with increasing. Specifically, m2 can be defined, for example, by the following equation (24).

1 1 mi ~~r--sgn- 2 5 一 1 2 s 2 2 、七 1 ... (24) 其中"S"及”k”係非負實數而"Sgn"係由下列方程所表述之 一符號函數。 sgn(;c) lfe〇) -〇(x = 〇) ··· (25) <χ<〇) 由於推導由方程(24)所定義之叫需要極大量的計算,因 此具有輸入人1及人2之方程(24)之計算結果可儲存在一2d杳 114821.doc -29· 1320854 找表内且然後一 ΙΠ2之近似值可參考該2D查找表來推導。 . 該等指數”s"及"k"係取決於具體實施例而設定,由於加 權效果取決於其值而變化。圖9及1〇係表示取決於指數%,, 及"k"而變化之加權效果之曲線圖。圖9顯示在方程中 s係固定為"1"而"k"係設定為1 /4、1及4時在特徵值比率 (λ^λΟ與加權因數叫之間的關係。圖1〇顯示在方程中 "k"係固定為"1/4"而"s"係設定為1/2、在特徵值比率 鲁 (、/λι)與加權因數m;2之間的關係。 當一磁性感測器係固定在一姿勢或姿態以一較高速度或 速率變化之移動主體或物體(例如一行動電話或一個人數 位助理(PDA))上時,可期望在一特定時間週期儲存的一磁 性資料集之分佈將平均相對較寬。在磁性資料分佈係不太 寬之情況下,若偏移校正係藉由明顯評估具有較小主值之 主軸方向之磁性資料群組來實施,則偏移精度將會相對劣 化,由於一磁性資料群組具有較低可靠性。因此,在本發 _ 月係應用於移動物體之情況下,其中磁性資料群組之分 佈傾向於變得相對較寬,該等參數s及k之值將設定,使得 僅在磁性資料之分佈係相當較寬之情況下,具有較小主值 之主軸方向之磁性資料群組係明顯評估。此處,隨著方程 (24)中的仏值變得越小,意味著具有較小主值之分佈之主 轴方向上的權重變得更越大。因此,在方程(24)係應用於 、較陕角速率改變其姿態之移動物體之情況下,需要 使用相對較大值來設定參數s並使用相對較小值來設定 參數k。 114821.doc 1320854 在另一方面’當一磁性感測器係姿勢或姿態以 一較低角速度變化之移動主體或物體(例如一汽車)上時, 假定在-特料間週期儲存的—磁性資料集之分佈將會平 均較狹窄。在此情況下,當磁性資料之分佈係不太寬時, 在不使用-較重權重來評估具有較小主值之主轴方向之磁 性資料群組時實施偏移校正之情況下,偏移精度將會等到 改良,儘管此類磁性資料群組係不太可靠。因此,在方程 (24)係應用於一以一較慢角速率改變其姿態之移動物體之 情況下,需要使用一相對較小值來設定參數s並使用相對 較大值來設定參數k。 •推導新偏移 當難以在一特定約束條件下推導該最佳化問題之一解答 時,可引入一用於藉由鬆弛約束條件來解答該最佳化問題 之鬆弛問題。藉由應用此鬆弛問題,此具體實施例實現一 用於作為舊偏移C()與一校正向量f之和來推導一新偏移Ct 程序,該校正向量f係藉由將上述臨時位址向量g之係數如 及g〆參見圖1)加權連續對應於統計母體資料集之分佈之主 值比率的加權因數來獲得。下列係此程序之細節。 一未知恆定乘數P係定義為在該程序期間計算所需之一 變數而C及p係聚集在一起成為一向量"χ”,其係由下列方 程(26)來定義。1 1 mi ~~r--sgn- 2 5 1 1 2 s 2 2 , 7 1 (24) where "S" and "k" are non-negative real numbers and "Sgn" is expressed by the following equation One of the symbol functions. Sgn(;c) lfe〇) -〇(x = 〇) ··· (25) <χ<〇) Since the derivation defined by equation (24) requires a very large number of calculations, it has input 1 and The calculation result of equation 2 of human 2 can be stored in a 2d 杳 114821.doc -29· 1320854 lookup table and then an approximation of ΙΠ 2 can be derived by referring to the 2D lookup table. The indices "s" and "k" are set depending on the specific embodiment, since the weighting effect varies depending on its value. Figures 9 and 1 show that depending on the index %, and "k" The graph of the weighted effect of the change. Figure 9 shows that in the equation s is fixed to "1" and "k" is set to 1/4, 1 and 4 in the eigenvalue ratio (λ^λΟ and weighting factor called The relationship between Figure 1 is shown in the equation where "k" is fixed to "1/4" and "s" is set to 1/2, at the eigenvalue ratio Lu (, /λι) and weighting factor Relationship between m; 2. When a magnetic sensor is attached to a moving subject or object (such as a mobile phone or a PDA) that changes at a higher speed or rate in a posture or posture, It can be expected that the distribution of a magnetic data set stored over a certain period of time will be relatively wide on average. In the case where the magnetic data distribution is not too wide, if the offset correction is made by significantly estimating the principal axis direction having a smaller main value When the magnetic data group is implemented, the offset accuracy will be relative Therefore, since a magnetic data group has low reliability, in the case where the present invention is applied to a moving object, the distribution of the magnetic data group tends to become relatively wide, and the parameters s and The value of k will be set so that the magnetic data group with the smaller principal direction of the major axis is clearly evaluated only if the distribution of the magnetic data is relatively wide. Here, with the 方程 in equation (24) The smaller the value becomes, the greater the weight in the direction of the major axis with the distribution of the smaller principal values becomes. Therefore, the equation (24) is applied to the case where the moving object of the attitude is changed at a higher angular rate. Next, you need to use a relatively large value to set the parameter s and use a relatively small value to set the parameter k. 114821.doc 1320854 On the other hand 'when a magnetic sensor moves or moves at a lower angular velocity When the subject or object (such as a car) is on, it is assumed that the distribution of the magnetic data set stored in the period between the special materials will be narrower on average. In this case, when the distribution of the magnetic data is not too wide, use - In the case of weight correction to evaluate the magnetic data group with a smaller principal value in the direction of the main axis, the offset accuracy will be improved, although such magnetic data groups are less reliable. In the case where equation (24) is applied to a moving object whose attitude is changed at a slower angular rate, a relatively small value is required to set the parameter s and a relatively large value is used to set the parameter k. • Derivation of new Offset When it is difficult to derive one of the optimization problems under a particular constraint, a relaxation problem for solving the optimization problem by relaxation constraints can be introduced. By applying this relaxation problem, this The specific embodiment implements a program for deriving a new offset Ct as a sum of the old offset C() and a correction vector f, the correction vector f being obtained by the coefficient of the temporary address vector g See Figure 1) The weighting factors that are weighted consecutively corresponding to the ratio of the principal values of the distribution of the statistical maternal data sets are obtained. The following are the details of this procedure. An unknown constant multiplier P is defined as the calculation of one of the required variables during the program and the C and p systems are grouped together into a vector "χ, which is defined by the following equation (26).

jc = C LPJ ...⑽ 114821.doc 丄)鄕54 此外’一矩陣”B”係由方程(27)來定義而一向量"b"係由 方裎(28)來定義。 ...(27)Jc = C LPJ ... (10) 114821.doc 丄) 鄕 54 In addition, the 'one matrix' B' is defined by equation (27) and the vector "b" is defined by the square (28). ...(27)

XT] w2i//c〇 …(28)XT] w2i//c〇 ...(28)

在步驟S208該用於推導一新偏移之程序係用於找到下列 聯立方程(29)之一解答。向量x係唯一指定,由於矩陣 須係非奇異性。The program for deriving a new offset is used to find one of the following simultaneous equations (29) in step S208. The vector x is uniquely specified, since the matrix must be non-singular.

Bx=b ... (29)Bx=b ... (29)

一找到聯立方程(29)之一解答係等價於在一新偏移係作為 舊偏移Co與一校正向量f之和而獲得的一約束條件下解答用 於最小化方程(12)之目標函數之最佳化問題,該校正向量f 之分量係藉由將在對應於該等主值的該分佈之主軸方向上 的位置向量g之係數加權連續對應於統計母體資料集之分 佈之主值比率的因數fa/ga&fp/gp而獲得之值。 刀 在該第二具體實施例中,較容易發展或改良偏移推導模 組94且還減小偏移推導模組94之資料大小,由於依據上述 統計母體請集分佈,^要分支㈣偏移料程序。此 外:該第二具體實施例增加偏移推導模組%使用統計母體 資料集之使用效率並還允許該方位推導模組使用最可能的 偏移來校正磁性資料,由於舊偏移可在該分佈之主轴方向 114821.doc •32- 上校正連續對應於統計母體 非該等主值之任一者係零。 C.其他具體實施例 資料集之主值比率的距離 除 本發明之第-方面係不限於上述具體實施例且各種且體 實施例均可行而不脫離本發明之精神。例如,本發明:第 一方面還可顧於Μ在_PDA、—行動電話、—雙輪摩 托車 輪船或類似物上的一磁性感測器。A solution to find a simultaneous equation (29) is equivalent to solving a minimum offset equation (12) under a constraint obtained by summing a new offset system as the sum of the old offset Co and a correction vector f. An optimization problem of the objective function, the component of the correction vector f being weighted continuously by the coefficient of the position vector g in the direction of the major axis of the distribution corresponding to the principal values corresponding to the distribution of the statistical matrix data set The value obtained by the factor fa/ga & fp/gp. In the second embodiment, it is easier to develop or improve the offset derivation module 94 and also reduce the data size of the offset derivation module 94. Since the statistical matrix is distributed according to the above, the branch (four) is offset. Material program. In addition, the second embodiment increases the efficiency of the use of the statistical matrix data set by the offset derivation module % and also allows the azimuth derivation module to correct the magnetic data using the most probable offset, since the old offset can be in the distribution The main axis direction 114821.doc • 32- The upper correction corresponds to the statistical matrix that none of the main values is zero. C. Other Embodiments The distance of the main value ratio of the data set. The first aspect of the present invention is not limited to the above specific embodiments and various and practical embodiments can be made without departing from the spirit of the present invention. For example, the present invention: the first aspect can also be applied to a magnetic sensor on a _PDA, a mobile phone, a two-wheeled motor boat or the like.

接著,下面參考圖11詳細地說明用於本發明之第二方面 的一原理及演算法。此演算法之關鍵點在於,在一具有更 大散佈之主軸方向上分佈的一磁性資料集係估計為用於更 新偏移之更明顯統計母體元素而在一具有更小散佈之主軸 方向上分佈的一磁性資料集係估計為用於更新偏移之較不 明顯統計母體元素。細節係如下。對應於終點"g,,相對於 原點"〇"之位置的舊偏移CQ、新偏移C及臨時偏移之各偏移 係作為一磁性資料基本向量集之一線性組合的3D位置向Next, a principle and algorithm for the second aspect of the present invention will be described in detail below with reference to FIG. The key point of this algorithm is that a magnetic data set distributed in the direction of a major axis with a larger spread is estimated to be a more pronounced statistical parent element for updating the offset and distributed in the direction of the major axis with a smaller spread. A magnetic data set is estimated to be a less obvious statistical parent element for updating the offset. The details are as follows. Corresponding to the end point "g, the offsets of the old offset CQ, the new offset C, and the temporary offset relative to the position of the origin "〇" are linearly combined as one of the basic data sets of the magnetic data. 3D position

量°即’該等偏移之各偏移係在xyz座標系統内表示的向 量資料。該新偏移c係基於舊偏移CG及一磁性資料集來推 導’該磁性資料集係儲存用以使用新偏移C來更新舊偏移 c〇 0 磁性資料集係儲存用以使用新偏移C來更新舊偏移的統 計母體資料集可包括一在一預定時間週期已儲存的磁性資 料集並可包括一包括預定數目磁性資料之磁性資料集並還 可包括一包括在一定時間(例如在提出一偏移更新請求時) 已儲存之任一數目磁性資料之磁性資料集。 114821.doc -33· 丄環54 舊偏移C〇可使用與新偏移C相同的方法來推導並還可加 • 以預定。 儘管該臨時偏移係定義成用以從統計母體資料集來推導 而不使用舊偏移C〇 ’但此定義係引入以定義推導新偏移c 所採用之約束條件且該臨時偏移實際上並非必需推導之資 料。若該臨時偏移實際上從統計母體資料集來推導而不使 用舊偏移C〇,則該臨時偏移係一附近分佈該統計母體資料 φ 集之球形表面之中心之—位置向量。然而,若統計母體資 料集係不均勻地分佈在推導自該統計母體資料集之球形表 面之一部分上,則在該統計母體資料集之各元素中所包括 的一誤差會較大程度地影響該球形表面之推導結果,因此 有可能推導一遠離真實偏移的臨時偏移。例如,考量一統 計母體資料集係採用具有相互正交特徵向量U1、“及…之 圓環狀分佈而分佈且該統計母體資料集之變數係在對應於 最小主值之特徵向量U3的方向上最小化,如圖i〗所示。在 • 此情況下,由於該統計母體資料集之變數係在該分佈之特 徵向量U3之方向上較小,因此有較高幾率從該統計母體資 料集所推導之一臨時偏移之位置係在特徵向量4之方向上 況下,由於該統 量W之方向上較 遠離真實偏移之位置。另一方面,在此情況下 計母體資料集之變數係在該分佈之特徵向量 大,因此有較高機率從該統計母體資料集所推導之一臨時The quantities °, i.e., the offsets of the offsets are the vector data represented in the xyz coordinate system. The new offset c is derived based on the old offset CG and a magnetic data set. The magnetic data set is stored to update the old offset using the new offset C. The magnetic data set is stored for use with the new bias. Moving the C to update the old offset statistical data set may include a magnetic data set that has been stored for a predetermined period of time and may include a magnetic data set including a predetermined number of magnetic data and may also include one included at a time (eg, A magnetic data set of any number of magnetic data that has been stored when an offset update request is made. 114821.doc -33· 丄 Ring 54 The old offset C〇 can be derived using the same method as the new offset C and can also be added. Although the temporary offset is defined to be derived from the statistical parent data set without using the old offset C〇', this definition is introduced to define the constraints used to derive the new offset c and the temporary offset is actually It is not necessary to derive the information. If the temporary offset is actually derived from the statistical parent data set without using the old offset C, then the temporary offset is a vicinity of the position vector of the center of the spherical surface of the statistical parent data φ set. However, if the statistical maternal data set is unevenly distributed over a portion of the spherical surface derived from the statistical maternal data set, an error included in each element of the statistical maternal data set will greatly affect the The derivation of the spherical surface, so it is possible to derive a temporary offset away from the true offset. For example, consider that a statistic parent data set is distributed in a circular distribution with mutually orthogonal eigenvectors U1, "and... and the statistic parent data set is in the direction of the eigenvector U3 corresponding to the smallest principal value. Minimized, as shown in Figure i. In this case, since the variable of the statistical parent data set is smaller in the direction of the feature vector U3 of the distribution, there is a higher probability from the statistical data set. The position of one of the temporary offsets is derived in the direction of the feature vector 4, since the direction of the system W is farther away from the true offset. On the other hand, in this case, the variable of the parent data set is The eigenvectors in the distribution are large, so there is a higher probability of deriving one from the statistic parent data set.

114821.doc 便用該分佈之主值 因此此裝置依據該等 -34- 1320854 主值λι、λ2及λ3之比率來估計在 仕刀別對應於該等主值之方 - 向上分佈的統計母體元素。明硿品4 ,^ .. 月確而言,首先,作為新偏移 C相對於售偏移C〇之一位置向量 ^ 校正向量f與該臨時偏 移相對於舊偏移CG的一位置向 里g了疋義於具有與該分佈 之主轴方向相一致之座標轴 β及γ的一座標系統内。 即,校正向量f及位置向量之么 §您各向量均可定義成該分佈之 主轴方向之基本向量之一線性 技A 啄改,,且合。此點對應於成為主軸 值之轉換。若校正向量f之分吾f „ Φ 里fa,6及6係藉由依據該分佈 之該等對應主值U,、…及u,之,,目丨丨θ l也 之測夏加權該臨時偏移相對於 舊偏移C〇之位置向量g之分晉 ga,gP及^來推導,則可能藉 由增加在一具有較大散佈之方向 、… 万门上的統計母體元素之可靠 性並減小在一具有較小散佑夕士 π们散佈之方向上的統計母體元素可靠 性來推導校正向量f。然而, — 仪正向If與位置向量g之此類 疋義係還引入以定義推導新值狡 我雅导祈偏移C所採用之約束條件且校 正向量f及位置向量g之各向詈竇 貫際上均非必需推導之資 • 料。 藉由在新偏移C係作為舊偏移c。與如上定義之校正向量f 之和而獲得之-約束條件下推導新偏移c,可推導新偏 移i同時估計分佈於一具有較大散佈之主軸方向上的-磁 性貝料集係用於更新偏移之統計母體之更明顯元素而分佈 於一具有更小散佈之主軸方向上的一磁性資料集係用於更 2偏移之統計母體之較不明顯元素…種用於依此方式推 導新偏移之範例性技術係將該分佈用公式表示為一最佳化 問題。若-新偏移係使用-約束條件作為該分佈之一最佳 114821.doc -35- 1320854 化門題來推導’則該新偏移可藉由解答簡單聯立線性方程 來推導,如具體實施例中稍後所述。即,無論統計母體資 料集之刀佈如何,可使此裝置透過一簡單程序來推導最可 能的新偏移,其可從統計母體資料集來推導。 在本發明磁性資料處理裝置中,該約束條件可以係在該 等主值之一中間主值與該等主值之一最大主值之一比率係 高於一第一臨界值且最小主值與最大主值之一比率係等於 或小於一第二臨界值之情況下,用於在對應於該等主值之 一最小主值之該等主軸方向之一者上的該等第二基本向量 之一者之係數的位置向量之一加權因數係零以及在該中間 主值與該最大主值之比率係等於或小於該第一臨界值且該 最小主值與該最大主值之比率係等於或小於該第二臨界值 之情況下,用於在對應於該最小主值之主軸方向上的第二 基本向量之係數與在對應於該中間主值之該等主軸方向之 者上的另一第二基本向量之係數二者的位置向量之個別 加權因數係零。 此裝置離散地估計統計母體資料集之分佈並依據該離散 估計結果來離散地加權臨時偏移相對於舊偏移c。之位置向 1之係數。明確而言,在該分佈之值係最小值之方向上的 位置向量g之係數之權重係。在分佈之值係在該方向上 較小之情況下’在該分佈之值係中間值之方向上的位置向 量g之係數之權重係"〇"。即,在該分佈之值係小於一臨界 值之方向上’沒有任何磁性資料集係估計。 在本發明磁性資料處理裝置中,該約束條件可以係該校 114821.doc -36- 1^20854 正向量之係數係藉由將該位置向量之係數加權連續對應於 、洗-十母體資料集分佈之該等主值比率的加權因數而獲得之 值。 此裝置可增加統計母體資料集之實質使用效率,由於該 等加權因數與該分佈具有連續的相關性。此外,該裝置可 簡化偏移更新程序,由於可依據統計母體資料集分佈來推 導新偏移而不改變該程序。 φ 在本發明磁性感測器偏移推導裝置中,用於位置向量之 係數的該等個別加權因數可藉由將用於在對應於最大主值 之主軸方向上的第二基本向量之係數之加權因數設定為一 來正規化。 在除分佈之該等主值外的統計母體磁性資料集分佈之估 4指標係引入之情況下’不必藉由設定最大加權因數為— 來正規化該等加權因數。例如,最大加權因數可基於統計 母體磁性資料集,依據在對應於最大主值之一主軸方向 •(即主方向)上的磁性資料之間的最大距離與一已推導為一 球形表面(具有一附近分佈一統計母體磁性資料集之部分) 之球形之半徑的比率而設定為小於一。 "在本發明磁性資料處理裝置中,該偏移推導構件可推導 C ,其在該約束條件下最小化下列目標函數f(c) 9 /、中在磁性:貝料係由qi = (qix,qiz)(i=〇,L 2,)表示 時,"X"及”j"係如下: 不 114821.doc -37- U20854114821.doc uses the main value of the distribution. Therefore, the device estimates the statistical parent element that is distributed in the direction of the main value according to the ratio of the main values λι, λ2, and λ3 of the -34-1320854. . In the case of a clear product, first, as a new offset C, the position vector of one of the offsets C is corrected vector f and a position of the temporary offset relative to the old offset CG It is defined in a standard system having coordinate axes β and γ that coincide with the direction of the major axis of the distribution. That is, what is the correction vector f and the position vector? § Each vector can be defined as one of the basic vectors of the main axis direction of the distribution. This point corresponds to the conversion to the spindle value. If the correction vector f is in the range of f „ Φ, fa, 6 and 6 are based on the corresponding main values U, ..., and u of the distribution, and the target θ l is also measured by the summer weighting of the temporary The offset is derived relative to the position vector g of the old offset C〇, which may be derived by increasing the reliability of the statistical parent element in a direction with a large spread, ... The correction vector f is deduced by reducing the reliability of the statistical matrix element in a direction with a smaller dispersion of the scatterers. However, the eigenvalues of the instrument forward If and the position vector g are also introduced to define Deriving the new value 狡 雅 导 祈 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移 偏移The old offset c, derived from the sum of the correction vectors f as defined above, derives the new offset c under the constraints, and can derive the new offset i while estimating the distribution of the magnetic shell in the direction of the major axis with a larger spread. The material set is used to update the more obvious elements of the offset statistical parent and is distributed in a smaller A magnetic data set in the direction of the main axis of the dispersion is used for the less obvious elements of the statistical matrix of the 2 offsets. An exemplary technique for deriving a new offset in this way is to formulate the distribution as one of the most If the new offset is used as the best one of the distribution, the new offset can be derived by solving the simple simultaneous linear equation. As described later in the specific embodiment, that is, regardless of the knives of the statistical matric data set, the apparatus can be used to derive the most likely new offset through a simple procedure, which can be derived from the statistical maternal data set. In the magnetic data processing apparatus of the present invention, the constraint may be such that a ratio of an intermediate value of one of the primary values to a maximum primary value of one of the primary values is higher than a first critical value and the minimum primary value is Where the ratio of one of the maximum principal values is equal to or less than a second threshold, the second basis vectors for one of the principal directions corresponding to the smallest principal value of one of the principal values Position vector of one coefficient One of the weighting factors is zero and the ratio of the intermediate primary value to the maximum primary value is equal to or less than the first critical value and the ratio of the minimum primary value to the maximum primary value is equal to or less than the second critical value. In the case, the coefficient of the second basis vector for the direction of the major axis corresponding to the minimum principal value and the coefficient of the second base vector for the other principal direction of the principal direction corresponding to the intermediate principal value The individual weighting factors of the position vector of the person are zero. The device discretely estimates the distribution of the statistical parent data set and discretely weights the position of the temporary offset relative to the old offset c relative to the old offset c according to the discrete estimation result. In the case where the value of the distribution is the weight of the coefficient of the position vector g in the direction of the minimum value, in the case where the value of the distribution is small in the direction, the direction of the value of the distribution is in the direction of the intermediate value. The weight of the coefficient of the position vector g is "〇". That is, there is no magnetic data set estimate in the direction where the value of the distribution is less than a critical value. In the magnetic data processing apparatus of the present invention, the constraint condition may be that the coefficient of the positive vector is 114821.doc -36 - 1^20854 by weighting the coefficients of the position vector continuously corresponding to the distribution of the wash-ten matrix data set. The value obtained by the weighting factor of the ratio of the principal values. This device can increase the substantial efficiency of the statistical maternal data set, since these weighting factors have a continuous correlation with the distribution. In addition, the device simplifies the offset update procedure by deriving a new offset based on the statistical parent dataset distribution without changing the program. φ In the magnetic sensor shift derivation device of the present invention, the individual weighting factors for the coefficients of the position vector may be used by coefficients for the second basis vector in the direction of the major axis corresponding to the maximum principal value. The weighting factor is set to one to normalize. In the case where the estimate of the distribution of the statistical matrix magnetic data set other than the primary values of the distribution is introduced, it is not necessary to normalize the weighting factors by setting the maximum weighting factor to be -. For example, the maximum weighting factor may be based on a statistical matrix magnetic data set, based on a maximum distance between magnetic data corresponding to a major axis direction (ie, the main direction) of one of the largest principal values, and a derived spherical surface (having a The ratio of the radius of the sphere of the portion of the statistical parent magnetic data set distributed nearby is set to be less than one. " In the magnetic data processing apparatus of the present invention, the offset deriving member can derive C, which minimizes the following objective function f(c) 9 / in the constraint condition, in magnetic: the shell system is qi = (qix , qiz) (i = 〇, L 2,) when expressed, "X" and "j" are as follows: No 114821.doc -37- U20854

由於此裝置使用一的 ° 來推導—新Μ,因料該分佈之—最佳化問題 程來推導新偏移,如在如)解答簡單聯立線性方 統計母體資料tot 中稍後所述。即,無論 來推導最可能的新:移,二可使此裝置透過一簡單程序 偏移其可從統計母體資料集來推導。 一本發明磁測量兮偌& 磁性感測器。D ^上述磁性資料處理裝置與該扣 計母體資料集之分佈如何,可使此裝置透過—簡 :導。#導最可能的新偏移’其可從統計母體資料集來 本發明之裝置内的複數個構件之各構件之功能係 :由〜功能由其結構指^的硬體資源、其功能由一程序 資源或該些資源之一組合來實現。該複數個 #之功能不-定由-實體獨立硬體資源來實 發明不僅可由-裝置來指冑,而且還可由-程式、 :上面記錄該程式之記錄媒體及一方法來指定。假設不存 在技術障礙,申請專利範圍内所述之方法之操作不一定按 照申請專利範圍内所述之次序來執行,而可按照任一兑他 114821.doc -38- 1320854 次序或同時來執行。 將按下列次序來說明本發明之第二方面之多個具體實施 例。 A. 第一具體實施例 [1.概述] 1-1.硬體結構 1- 2.軟體結構 [2.程序] 2- 1.整體流程 2-2.緩衝器更新 2-3.分佈估計 2-4.透過最佳化問題推導新偏移 2-5.當分佈係二維時的約束條件 2-6.當分佈係實質上一維時的約束條件 2-7.當分佈係三維時推導新偏移 2-8.概要 B. 第二具體實施例 •概覽 •分佈估計 •推導新偏移 C. 其他具體實施例 [1.概述] 1-1.硬體結構 圖12係作為一應用本發明之移動主體之一範例的一行動 114821.doc -39- 1320854 圖行動電話3包括—场㈣磁 性感測器4。3D磁性感測器4藉由偵測磁場在三個正交方向 (X,y,z)上的個別強度來偵測一磁場之方向及強度。行動 電話3之-顯示器2顯示各種字元或影像資訊。例如,顯示 器2顯示一地圖及一箭頭或表示方位(或方位角)之字元。Since the device uses a ° to derive the new enthalpy, the distribution-optimization problem is used to derive a new offset, as described in the Simple Simultaneous Linear Square Statistic Parent Data tot, as described later. That is, whether or not to derive the most likely new: shift, the device can be derived from the statistical parent data set by a simple program offset. A magnetic measuring 兮偌 & magnetic sensor of the invention. D ^ The distribution of the above magnetic data processing device and the data matrix of the deduction can make the device transparent. #引可能的可能偏'' from the statistical maternal data set to the function of each component of the plurality of components in the device of the present invention: the hardware resource from the function by its structure, its function is one Program resources or a combination of these resources is implemented. The function of the plurality of # is not determined by the entity-independent hardware resource. The invention can be specified not only by the device but also by the program, the recording medium on which the program is recorded, and a method. Assuming that there are no technical obstacles, the operations of the methods described in the patent application are not necessarily performed in the order described in the scope of the patent application, but may be performed in the order of or in addition to the order of 114821.doc - 38 - 1320854. A number of specific embodiments of the second aspect of the invention will be described in the following order. A. First embodiment [1. Overview] 1-1. Hardware structure 1- 2. Software structure [2. Program] 2- 1. Overall flow 2-2. Buffer update 2-3. Distribution estimation 2 -4. Deriving new offsets through optimization problems 2-5. Constraints when the distribution is two-dimensional 2-6. Constraints when the distribution is essentially one-dimensional 2-7. Derivation when the distribution is three-dimensional New offset 2-8. Summary B. Second embodiment • Overview • Distribution estimation • Derivation of new offset C. Other specific examples [1. Overview] 1-1. Hardware structure Figure 12 is used as an application An action of one of the moving subjects of the invention 114821.doc -39 - 1320854 The mobile phone 3 includes a field (four) magnetic sensor 4. The 3D magnetic sensor 4 detects the magnetic field in three orthogonal directions (X The individual strengths on , y, z) are used to detect the direction and intensity of a magnetic field. Mobile Phone 3 - Display 2 displays various character or video information. For example, the display 2 displays a map and an arrow or a character indicating an orientation (or azimuth).

圖U係-磁性測量裝置之一方塊圖,其包括一 3〇磁性感 測器4及-磁性資料處理裳置卜3D磁性感測器4包括X、乂 及z軸感測器30、32及34,其偵測由於陸地磁力所引起之 一磁%向1之X、丫及2方向分量。χ、丫及2軸感測器儿、Μ 及34之各感測器均包括—磁阻元件、—霍爾感測器或類似 物,其可以係任一類型的一維感測器(假定其具有方向 x、y&Z軸感測器30、32及34係固定,使得其感應方 向係相互垂直。X、心軸感測器30、32及34之輸出係時 間分割並輸入至-磁性感測器介面(I/F)22。在放大來自該 等軸感測器3〇、32及34之輸人之後,磁性感測器 介面22類比至數位轉換該等輸人。從磁性感測器介面22所 ]出之數位磁性資料係透過一匯流排5而輸入至磁性資料 處理裝置1。 ! 生資料處理裝置丄係一電腦,其包括一 cpu 、一 及RAM 44 ^ CPU 40控制(例如)行動電話3之整體 操作ROM 42係-非揮發性儲存媒體,其儲存__磁性資 =處理程式或各種用於實施由㈣4()執行的移動主體之功 程式(例如一導航程式)。RAM 44係一揮發性儲存媒 體其臨時地健存資料以供CPU 40處理。磁性資料處理裝 114821.doc 1320854 置1及3D磁性感測器4可構造成一單晶片磁性測量裝置。 1-2.軟體結構 圖14係一磁性資料處理程式9〇之一方塊圖。磁性資料處 理程式90係、儲存μ〇μ 42内以向—導航程式⑽提供方位 資料11亥方位資料係表示地球磁場之方位的3D向量資料。 作為用於(例如)一移動主體之姿態偵測之3D向量資料該 方位-貝料可提供肖於其他應肖。磁性資料處理程式9〇係構 造成一模組群組,例如—緩衝器管理模組92、一偏移推導 模組94及一方位推導模組%。 緩衝器官理模組92係—程式部分,其接收從磁性感測器 4連續輸出之複數個磁性資料並在—緩衝器㈣存該接收 到的磁性資料’以便在偏移更新中使用該磁性資料。緩衝 器g理模組92允許CPU 40、RAM 44及ROM 42用作輸入構 件及儲存構件4緩衝器可^僅㈣硬體來具體化,而且 可採用軟體來具體化。現將儲存於此緩衝器内的一磁性資 料集稱為—統計母體資料集。 偏移推導模組94係—程式部分,其基於緩衝器管理模組 92所保持之一統計母體資料集及偏移推導模組94所保持之 舊偏移來推導一新偏移並使用該新偏移來更新舊偏移。 移推導模組94允許CPU 4〇、ram 44&R〇M 42用作偏移 推導構件。由於使用新偏移來更新舊偏移會引起該新偏移 變成舊偏移,因此在不會引起誤解之背景下將,•舊偏移" 弓再為偏移”。實際上’一用於方位資料校正之偏移係 ,用變數來没定且新偏移係作為不同於該變數之一變數 114821.doc 1320854 來推導。當新偏移係推導時,其係採用用於方位資料校正 之變數來設定。因此,用於方位資料校正之變數係其中儲 存舊偏移的變數。 方位推導模組96係一程式部分,其使用偏移推導模組94 所保持之偏移來校正從該磁性感測器所連續輸出之磁性資Figure U is a block diagram of a magnetic measuring device comprising a 3 〇 magnetic sensor 4 and a magnetic data processing skirt 3D magnetic sensor 4 comprising X, 乂 and z-axis sensors 30, 32 and 34. It detects X, 丫 and 2-direction components of one magnetic % to 1 due to terrestrial magnetic force. Each of the χ, 丫 and 2-axis sensors, Μ and 34 sensors includes a magnetoresistive element, a Hall sensor or the like, which can be any type of one-dimensional sensor (assumed) It has directions x, y & Z-axis sensors 30, 32 and 34 are fixed such that their sensing directions are perpendicular to each other. The outputs of X, mandrel sensors 30, 32 and 34 are time-divided and input to - magnetic Sexy sensor interface (I/F) 22. After amplifying the input from the isometric sensors 3〇, 32, and 34, the magnetic sensor interface 22 converts the analog input to analog input. The digital magnetic data from the interface 22 is input to the magnetic data processing device 1 through a bus bar 5. The raw data processing device is a computer including a cpu, a RAM 34 CPU 40 control (for example The overall operation ROM 42 of the mobile phone 3 is a non-volatile storage medium, which stores __magnetic resources = processing program or various utility programs (for example, a navigation program) for implementing the mobile body executed by (4) 4(). 44 is a volatile storage medium that temporarily stores data for processing by the CPU 40. Processing device 114821.doc 1320854 The 1 and 3D magnetic sensor 4 can be constructed as a single-wafer magnetic measuring device. 1-2. Software structure Figure 14 is a block diagram of a magnetic data processing program 9 magnetic data processing program 90 System, store μ〇μ 42 to provide orientation data to the navigation program (10). 11 Hai position data is a 3D vector data indicating the orientation of the earth's magnetic field. As a 3D vector data for gesture detection of, for example, a moving subject. The azimuth-bean material can be provided in other modes. The magnetic data processing program 9 is constructed as a module group, for example, a buffer management module 92, an offset derivation module 94, and an orientation derivation module %. The buffer official module 92 is a program portion that receives a plurality of magnetic data continuously outputted from the magnetic sensor 4 and stores the received magnetic data in a buffer (4) for use in the offset update. The buffer g-module 92 allows the CPU 40, the RAM 44, and the ROM 42 to be used as an input member and the storage member 4 buffer can be embodied by only (4) hardware, and can be embodied by software. A magnetic data set in the buffer is referred to as a statistical parent data set. The offset derivation module 94 is a program portion based on a statistical parent data set and an offset derivation module 94 held by the buffer management module 92. The old offset is preserved to derive a new offset and the old offset is used to update the old offset. The shifting derivation module 94 allows the CPU 4, ram 44 & R 〇 M 42 to be used as an offset deriving component. A new offset to update the old offset causes the new offset to become the old offset, so the old offset " bow is offset again in the context of no misunderstanding. In fact, an offset system for azimuth data correction is determined by a variable and the new offset is derived as a variable different from the variable 114821.doc 1320854. When the new offset is derived, it is set using the variable used for orientation data correction. Therefore, the variable used for orientation data correction is a variable in which the old offset is stored. The azimuth derivation module 96 is a program portion that uses the offset maintained by the offset derivation module 94 to correct the magnetic output continuously output from the magnetic sensor.

料以產生方位資料。方位推導模組96允許Cpu 40、RAM 44及ROM 42用作方位推導構件。明確而言,方位推導模Material to produce orientation data. The azimuth derivation module 96 allows the CPU 40, RAM 44, and ROM 42 to function as azimuth deriving members. Clearly speaking, the azimuth derivation mode

組96作為方位資料來輸出藉由將偏移分量從作為向量資 料的磁性資料之分量中減去而獲得之該等三個分量之全部 或二者。 導航程式98係—已知程心其搜索一到達目的地之線路 並在一地圖上顯不該線路。由於辨識地圖較為容易,因此 ㈣®係顯示’使地圖方位匹配現實世界方位。因此,例 如田行動電話3係旋轉時,顯示在顯示器2上的地圖係相對 於顯示器2而旋轉’使得該地圖不相對於地球而旋轉。該Group 96 uses as orientation data to output all or both of the three components obtained by subtracting the offset component from the component of the magnetic data as vector data. The navigation program 98 is a known route that searches for a route to a destination and displays the line on a map. Since it is easier to identify the map, the (4)® display shows 'the map orientation matches the real world orientation. Therefore, for example, when the field mobile phone 3 is rotated, the map displayed on the display 2 is rotated relative to the display 2 so that the map does not rotate with respect to the earth. The

方位^料係用於此地_示處理。當然,該方位資料可僅 用於藉由字元或箭頭來顯示北南、東及西。 [2.程序] 2-1.整體流程 圖1 5係說明一新偏移 推導程序之一流程圖。當已提出一 偏移更新請求時’ CPU 40获士批/ 〇稭由執行偏移推導模組94來執行 圖15之程序。 2-2.緩衝器更新 在步驟S100,刪除所 百錯存於緩衝器内的磁性資料,在 114821.doc •42· ==,35㈣存—用於推導—新偏移之磁性資料集(統計 貝料集)。由A,在此程序中,一用於推導舊偏移之 、计母體資料集係刪除。 存^驟S1G2 ’用於推導—新偏移之磁性資料係輸入並儲 器情該緩衝益内。當複數個磁性資料係連續地從磁性感測 ° /入而無行動電話3之任何姿態變化時,在兩個連續輸 入磁性資料(或值)之間的距離係較卜在—有限容量之緩 衝器内儲存複數個新磁性資料會浪費記憶體資源並引起不 要的緩衝器更新程序。此外,若一新偏移係基於一組新 性㈣集來推導’則存在可能性’即一不精確新偏移係 土於不均勻分佈的統計母體資料集來推導。是否必需更 =緩衝益可按下列方式來決定。例如,若在最後輸入磁性 貝料^緊在該最後輸入磁性資料之前在該緩衝器内儲存的 磁吐資料之間的距離係小於一給定臨界值,則決定不必更 新〜緩衝益並放棄該最後輸入磁性資料而不儲存在該緩衝 器内。 在步驟S1 04,決定推導一精確新偏移所需的一指定數目 之磁性資料是否已儲存在該緩衝器内。即,該統計母體資 料集之元素數目係預定。設定較少數目之統計母體資料集 凡素改良對偏移更新請求之回應。步驟81〇2及§1〇4之程序 直到特疋數目之磁性資料係儲存於該緩衝器内。 2-3.分佈估計 一旦特定數目的磁性資料係儲存於該緩衝器内,該統計 母體資料集之分佈係估計(襲及S1Q8)。該分佈係基於該 H4821.doc -43- 1320854 分佈之主值來估計。當該磁性資料集係藉由下列方程(31) 來表述時,該分佈之該等主值係一對稱矩陣A之特徵向 量,對稱矩陣A使用從該統計母體資料集之一中心(平均 值)開始並以個別磁性資料結束的向量之和,由方程(32)、 (33)及(34)來定義。 qi 一(qix,qiy,qiZ)(i = 0,1,2,.. .)...(31) A = XT X ...(32)The orientation data is used for this location. Of course, the orientation data can only be used to display north, east, and west by characters or arrows. [2. Program] 2-1. Overall Flow Figure 1 5 shows a flow chart of a new offset derivation program. When an offset update request has been made, the CPU 40 is executed by the execution of the offset derivation module 94 to execute the procedure of FIG. 2-2. Buffer Update In step S100, the magnetic data stored in the buffer is deleted, and the magnetic data set is stored in 114821.doc • 42· ==, 35 (4) - used to derive the new offset (statistics) Shell material set). From A, in this procedure, one is used to derive the old offset, and the parent data set is deleted. The memory S1G2' is used to derive the new offset magnetic data input and the buffer is within the buffer. When a plurality of magnetic data systems continuously change from the magnetic sensing to the attitude of the mobile phone 3, the distance between the two consecutive input magnetic data (or values) is less than the buffer of the limited capacity. Storing multiple new magnetic data in the device wastes memory resources and causes unwanted buffer updates. In addition, if a new offset is derived based on a set of new (four) sets, then there is a possibility that an inexact new offset is derived from an unevenly distributed statistical matrix data set. Whether it is necessary to be more = buffering benefits can be determined in the following ways. For example, if the distance between the magnetic ejection materials stored in the buffer before the last input magnetic material is less than a given threshold value, it is decided that it is not necessary to update the buffering benefit and discard the Finally, the magnetic data is input and not stored in the buffer. In step S104, it is determined whether a specified number of magnetic data required to derive a precise new offset has been stored in the buffer. That is, the number of elements of the statistical parent data set is predetermined. Set a smaller number of statistical maternal data sets. The vegetarian response improves the response to the offset update request. The procedures of steps 81〇2 and §1〇4 are until the characteristic number of magnetic data is stored in the buffer. 2-3. Distribution Estimation Once a specific number of magnetic data is stored in the buffer, the distribution of the statistical parent data set is estimated (indicated by S1Q8). This distribution is estimated based on the principal value of the H4821.doc -43 - 1320854 distribution. When the magnetic data set is expressed by the following equation (31), the main values of the distribution are the eigenvectors of a symmetric matrix A, and the symmetric matrix A is used from one of the statistical matrix data sets (average value). The sum of vectors starting and ending with individual magnetic data is defined by equations (32), (33), and (34). Qi一(qix,qiy,qiZ)(i = 0,1,2,.. .)...(31) A = XT X ...(32)

其中among them

... (33) ...(34)... (33) ...(34)

矩陣A還可重新寫成方程(3 5)。 /«〇 讓λι、λ2及λ3以遞增次序成為矩陣八之特徵值。讓h 及A成為對應於λι、^及&的相互正交特徵向量並已正規 化成大小1。此說明書所處理之λι、、及人3之範圍係λι>〇、 入2>0及λ3 Μ。當矩陣Α之兩個或更多特徵值係零時,即當 114821.doc •44 · 丄 JZUOJH· 矩陣A之秩係一或更小時, … 兩要考I矩陣A,由於統計 母體資料集之元素數目係一或分 曰 ^刀佈係一完美直線。該等特 徵向篁之各特徵向量必須為零咬— A ^ M 及正實數,由於根據矩陣 A之定義,矩陣A係一半正定矩陣。 該統計母體賴集之分佈係基於最小㈣值與最大特徵 值之比率⑽及-中間特徵值與最大特徵值之比率从來 估計。 名步驟Sl〇6,決定該統計母體 一 體資枓集之分佈是否係充分 二維。明確而言,當下列條株 J條件(36)係滿足時該決策係肯定 而當其不滿足時為否定。 Μ/λι〉。且 ... (36) 此處,,V,及,V,係預定怪定值。如何設定值tjt2之值 係一設計選項且其還可基於如何決定偏移之推導特徵來視 /需要地設定。當條件(36)係滿足時,該統計母體資料集係 從該統計母體資料焦由、、# . 貧抖集之中心各向同性地分佈。該統計母體 資料集圍繞該中心之各向同性分佑 _ ^ J『刀佈扣不該統計母體資料集 係在一特定球形表面均勻地分佈。 一在步驟議,決定該統計母體資料集之分佈是否係充分 維月碑而。,當下列條件(37)係滿足時該決策係肯定 而當其不滿足時為否定。 入3/入1 Sti 且人2/人1>(2 ·. (37) 當條件(37)係滿足時,該統計母體資料集係在—特定平 面附近限定的-範圍内從該統計母體資料集之中心各向同 性地分佈。該統計母體資料集在一特定平面附近所限定之 114821.doc •45- 1320854 刀佈指示該統計母體資料 表面之一區段圓圈之圓周 一範圍内圍繞該t心之各向同性 集係不均勻地分佈於一特定球形 附近。 若步驟謂之決策係H則該統計母體資料集之 係實質上-維(即線性)。該統計母體f料集之實質上: 分佈指示該統計母體資料集係在—特定球形表面之一區 圓圈之一較短弧度上或在該區段圓圈 又Matrix A can also be rewritten as equation (3 5). /«〇 Let λι, λ2, and λ3 become the eigenvalues of the matrix eight in ascending order. Let h and A be mutually orthogonal feature vectors corresponding to λι, ^, and & and have been normalized to size 1. The range of λι, and person 3 handled by this specification is λι>〇, 2>0, and λ3 Μ. When two or more eigenvalues of the matrix 零 are zero, that is, when the rank of 114821.doc •44 · 丄JZUOJH·matrix A is one or less, ... the two are to be tested I matrix A, due to the statistical maternal data set The number of elements is one or two. The eigenvectors of these features must be zero bite - A ^ M and positive real numbers, since matrix A is a half positive definite matrix according to the definition of matrix A. The distribution of the statistical matrix is based on the ratio of the minimum (four) value to the maximum eigenvalue (10) and the ratio of the intermediate eigenvalue to the maximum eigenvalue. In step S1, it is determined whether the distribution of the statistical maternal body is sufficiently two-dimensional. Specifically, the decision line is affirmative when the following condition J (36) is satisfied and negative when it is not satisfied. Μ/λι>. And ... (36) Here, V, and, V are predetermined predetermined values. How to set the value of value tjt2 is a design option and it can also be set as needed/needed based on how the derivation feature of the offset is determined. When condition (36) is satisfied, the statistical matric data set is isotropically distributed from the center of the statistical parent data, Jiao, and #. The statistical maternal data set is distributed around the center of the isotropic _ ^ J "knife cloth buckle not statistical maternal data sets are evenly distributed on a specific spherical surface. In the next step, it is decided whether the distribution of the statistical maternal data set is sufficient. The decision is affirmative when the following condition (37) is satisfied and negative when it is not satisfied. Enter 3/in 1 Sti and person 2/person 1> (2 · (37) When condition (37) is satisfied, the statistical matrix data set is within the range defined by the - specific plane from the statistical parent data The center of the set is isotropically distributed. The statistical maternal data set is defined by a certain plane near 114821.doc •45-1320854. The knives indicate that the circumference of the circle of the statistical parent data circle surrounds the circle The isotropic set of the heart is unevenly distributed in the vicinity of a specific sphere. If the decision is H, then the statistical matric data set is substantially-dimensional (ie linear). : The distribution indicates that the statistic parent data set is on a shorter arc of one of the circles of a particular spherical surface or in the circle of the segment

均勾地分佈。 _之幻生之兩端上不 2-4.透過最佳化問題推導新偏移 現在將說明一用於推導一新偏移之最佳化問題。 當統計母體資料集包括四個不存在於相同平面上的磁性 資料時’―其上分佈、统計母體資料集之球形表面係唯一地 指定而不使用—統計技術。此球形表面之中心之 吾—ζ 1立置向 =(cx,cy,cz)係藉由解答聯立方程(38)來獲得。儘管四個 平等約束存在用於三個變數,但方程(38)必須具有一解 答,由於四個平等約束之一平等約束係冗餘。 \q〇~q)T~ 9〇Γ^〇 ~ R C^i 9iTq, - R iq2-j)T 2 <h ~ R "9)T_ - R_ 其中All are distributed. _ The end of the illusion is not 2-4. Deriving the new offset through the optimization problem A optimization problem for deriving a new offset will now be explained. When the statistical maternal data set includes four magnetic data that do not exist on the same plane, the spherical surface of the parent data set is uniquely specified without use—statistical techniques. The center of the spherical surface is ζ 1 standing = (cx, cy, cz) is obtained by solving the simultaneous equation (38). Although four equality constraints exist for three variables, equation (38) must have a solution, since one of the four equality constraints is equal constraint redundancy. \q〇~q)T~ 9〇Γ^〇 ~ R C^i 9iTq, - R iq2-j)T 2 <h ~ R "9)T_ - R_ where

H4821.doc -46- ... (39) ··· (38) 田。亥統汁母體資料集之元素數目係5或更多時,"j "係藉 由下列方程(40)來定義。H4821.doc -46- ... (39) ··· (38) Tian. When the number of elements in the mother's data set is 5 or more, "j " is defined by the following equation (40).

^Tgl -R 92Tq2 -R^Tgl -R 92Tq2 -R

βΝ-\Τ(ΐΜ-\ -R ... (40) 此處,若用於"c"之聯立線性方程(41)具有一解答,則該 解答係一其上分佈該統計母體資料集之球形表面之中心。 Xc=j ... (41) 然而,若考量3D磁性感測器4之一固有測量誤差,則實 際上方程(41)無法具有—解答。下列方程(42)所定義之一 向量"e"係引人以透過_統計技術來獲得—似是而非的解 決方案。 e = X°'j ··. (42) 最小化Ne ll22(即eTe)之"c"可似{而非地視為最靠近該統 計母體資料集之分佈的-球形表面之中心。當矩陣 奇異時,一用於找到最小化||e丨丨22之值” 〇"係一用於最^化 下列方程(43)之一目標函數之最佳化問題之問題。 目楳函數:(43) 2-5.當分佈係二維時的約束條件 如圖16所示,當該統計母體資料集之分佈係二 面的)’ 一新偏移係藉由將校正舊偏移 、、'(即平 偏移方向限制為兩個 ll482l.d〇c •47- )4 正交方向來料(s丨i 2)。#該料母料料集 特定平面附近且該分佈係在垂直於 ^離一 L在平行於該平面之—方向上的該統計母 :係充分可靠而在垂直於該平面之方向上的該統計=; 料集之分佈係不可靠。在此情況下,在垂直於該平面之: 向上’舊偏移係不校正,從而防止基於不可靠資訊來更新 偏移。 當該統計母體資料集係分佈於一特定平面附近且該分佈 在垂直於該平面之一方向上離散時,垂直於該平面之方向 係與對應於最小特徵值〜之—特徵向量…之方向相一致而 平行於該平面之正交方向係與分別對應於最大特徵值域 中間特徵值λ2之特徵向量u丨及U2之方向相一致。因此,為 了在垂直於該平面之方向上推導一新偏移而不校正舊偏 移,最小化方程(43)之目標函數之一新偏移(:係在一由下列 方程(44)所表述之約束條件下得到。 c=c〇+plUl + (32U2(Pi、|32 :實數) (44) 方程(44)係等價於下列方程(45)。 …(45) U3T(C~Cq) « 〇 用於在方程(45)之約束條件下解答方程(43)之最佳化問 題之方程可使用拉格朗日乘數法來修改成其等效價聯立方 程°當一未知恆定乘數p係引入且"χ"係藉由下列方程(46) 來疋義時’ "X"之聯立線性方程(47)係上述聯立方程。 H4821.doc -48· …(46) X -1320854 ... (47) β4文=厶4 其中βΝ-\Τ(ΐΜ-\ -R ... (40) Here, if the simultaneous linear equation (41) for "c" has a solution, the solution distributes the statistical parent data The center of the spherical surface is set. Xc=j (41) However, if one considers the inherent measurement error of the 3D magnetic sensor 4, the equation (41) cannot actually have the answer. The following equation (42) Defining one of the vectors "e" is to introduce a plausible solution through _statistical techniques. e = X°'j ··. (42) Minimize Ne ll22 (ie eTe)"c" Similar to {not the center of the spherical surface closest to the distribution of the statistical maternal data set. When the matrix is singular, one is used to find the value of the minimized ||e丨丨22" 〇" The problem of optimization of the objective function of one of the following equations (43) is best solved. Objective function: (43) 2-5. Constraints when the distribution is two-dimensional as shown in Fig. 16, when the statistical matrix The distribution of the data set is two-sided) 'A new offset is obtained by correcting the old offset, '(ie the flat offset direction is limited to two ll482l.d〇c •47-) 4 The direction of incoming material (s丨i 2). The masterbatch is located near a particular plane and the distribution is perpendicular to the direction of the L from parallel to the plane: the statistic is sufficiently reliable The statistics in the direction perpendicular to the plane = the distribution of the material set is unreliable. In this case, perpendicular to the plane: the upward 'old offset is not corrected, thus preventing updates based on unreliable information Offset. When the statistical matrix data set is distributed near a specific plane and the distribution is discrete in a direction perpendicular to one of the planes, the direction perpendicular to the plane is corresponding to the minimum eigenvalue ~ eigenvector... The directions in which the directions are coincident and parallel to the plane are consistent with the directions of the feature vectors u丨 and U2 respectively corresponding to the intermediate feature values λ2 of the maximum eigenvalue range. Therefore, in order to derive a direction perpendicular to the plane The new offset does not correct the old offset, minimizing one of the objective functions of equation (43), the new offset (: is obtained under the constraints expressed by the following equation (44). c=c〇+plUl + (32U2 (Pi, |32: real number (44) Equation (44) is equivalent to the following equation (45). (45) U3T(C~Cq) « 〇 is used to solve the optimization problem of equation (43) under the constraint of equation (45) The equation can be modified to its equivalent valence equation using the Lagrangian multiplier method. When an unknown constant multiplier p is introduced and "χ" is depreciated by the following equation (46) ' &quot The simultaneous linear equation (47) of X" is the above simultaneous equation. H4821.doc -48· ...(46) X -1320854 ... (47) β4文=厶4

B 4 b4 2A «3 W3r Ο 2Χ τ τ _Μ3 & (48) (49) 從上述說明中應明白,若統 也,^ T母體資料集之分佈係二 維,則在步驟S112用於推導新偏移 梅移之程序係用於解答聯立 線性方程(47)。解答"X"必須唯—地… 肛知疋,由於矩陣Β4之秩 必須為4。 f π 2-6.當分佈係實質上一維時的約束條件 如圖1 7所示,當該統計母體資料 只π*果之分佈係實質上一維 (即線性),-新偏移係藉由校正舊偏移之方向限制為該分 佈之-主方向來推導(SllG)e #該統計母體資料集係分佈 在-特线附近且該分佈係在該線之方向上離散時在該B 4 b4 2A «3 W3r Ο 2Χ τ τ _Μ3 & (48) (49) It should be understood from the above description that if the distribution of the parent data set is two-dimensional, it is used to derive new in step S112. The offset plume program is used to solve the simultaneous linear equation (47). The answer "X" must be only the ground... Anal knowledge, because the rank of the matrix Β4 must be 4. f π 2-6. When the distribution system is substantially one-dimensional, the constraint condition is shown in Fig. 17. When the statistical matrix data is only π* fruit, the distribution is essentially one-dimensional (ie linear), and the new offset system Deriving (SllG)e by correcting the direction of the old offset to the main direction of the distribution (SllG)e # The statistical matrix data set is distributed near the -spec line and the distribution is discrete in the direction of the line

直線之方向上的該統計母體資料集之分佈係充分可靠,而X 在其他方向上的該統計母體資料集之分佈係不可靠。在 情況下’在除該線之方向外的方向上,該舊偏移係不^ 正,從而防止基於不可靠資訊來更新偏移。 、 114821.doc •49- 當該統計母體資料八 在該線之方向上離料,^於—特定線附近且該分佈係 值…特徵向量方向係與對應於最大特徵 別對應於中間特徵值=致而該等其他方向係與分 之方6相致 小特徵们3之特徵向量— 方程(50)所表述之約束條件下得到 0此^ 了僅在該線之方向上推導一新偏 移,最小化方程⑷)之目標函數之-新偏移e係在-由下列 ί50)所矣沭+从土 a .. ... (50) c = c 〇 + /3 , u 方私(50)係等價於下列方程(51) 用於在方程(51)之約束條件下解答方程(43)之最佳化問 題之方程可使用拉格朗日乘數法來修改成其等價聯立方 程。當一未知恆定乘數Pl及以係引入且"X"係由下列方程 (52)來定義時,"X”之聯立線性方程(53)係上述聯立方程。The distribution of the statistical matric data set in the direction of the line is sufficiently reliable, and the distribution of the statistical maternal data set of X in other directions is not reliable. In the case of 'in the direction other than the direction of the line, the old offset is not correct, thereby preventing the offset from being updated based on unreliable information. , 114821.doc • 49- When the statistic parent data 八 is left in the direction of the line, ^ is near the specific line and the distribution coefficient value...the eigenvector direction corresponds to the largest feature corresponding to the intermediate eigenvalue = Therefore, the other directions are derived from the eigenvectors of the small-scale traits 3, which are represented by the equation (50), and the new offset is derived only in the direction of the line. Minimize the objective function of equation (4)) - the new offset e is in - by the following ί50) + from the soil a .. ... (50) c = c 〇 + /3 , u 方私 (50) The equation is equivalent to the following equation (51). The equation for solving the optimization problem of equation (43) under the constraint of equation (51) can be modified to its equivalent simultaneous equation using the Lagrangian multiplier method. . When an unknown constant multiplier P1 is introduced by the system and "X" is defined by the following equation (52), the simultaneous linear equation (53) of "X is the above simultaneous equation.

A …(52) …(53) P2_ 其中 114821.doc -50- 2^4 u2 ΟA ...(52) ...(53) P2_ where 114821.doc -50- 2^4 u2 Ο

U2TU2T

UU

T 0 M300 • .· (54) 2X~ U2TC〇 M3rC〇 …(55) 從上述說明中應明白,若統計母體資料集之分佈係實質 上一維,則在步驟suo用於推導新偏移之程序係用於解答 聯立線性方程(53)。解答,’χ"必須唯_地指冑,由於矩陣I 之秩必須為5。 2-7.當分佈係三維時推導新偏移 當該分佈係三维時,一新偏移係推導而不限制校正舊偏 移之方向(S114)。當該分佈係三維時,即若當從該統計母 體資料集之中心看時該統計母體資料集係在一特定程度上 分佈在各個方向上,則該統計母體資料集係在各個方向上 充为可罪。因此,在此情況下,為了推導新偏移,不必使 用舊偏移,因此可基於該統計母體資料集來推導新偏移而 不使用舊偏移。一用於基於統計母體資料集而不使用舊偏 移來推導一新偏移之演算法可以係一使用各種已提出統計 技術之一之演算法並還可以係一不使用統計技術之演算法 (如本申請人已申請的曰本專利申請案第2005-337412號及 第 2006-44289號)。 在此具體實施例中,一新偏移係使用一統計技術來推 114821.doc -51 - 1320854 導。即’在步驟s114 ’新偏移,,c"係作為對用於最小化方 ΓΓ)之目標函數之最彳圭化㈣之—解答而不制任何約 束條件來推導。 2-8·概要T 0 M300 • .· (54) 2X~ U2TC〇M3rC〇...(55) It should be understood from the above description that if the distribution of the statistical maternal data set is substantially one-dimensional, then the step suo is used to derive the new offset. The program is used to solve the simultaneous linear equation (53). The answer, 'χ" must be _, because the rank of the matrix I must be 5. 2-7. Deriving a new offset when the distribution is three-dimensional When the distribution is three-dimensional, a new offset is derived without limiting the direction of correcting the old offset (S114). When the distribution is three-dimensional, that is, when the statistical parent data set is distributed in various directions from a center of the statistical matrix data set, the statistical parent data set is filled in all directions. Guilty. Therefore, in this case, in order to derive a new offset, it is not necessary to use the old offset, so a new offset can be derived based on the statistical parent data set without using the old offset. An algorithm for deriving a new offset based on a statistical matric data set without using the old offset can be an algorithm that uses one of the various proposed statistical techniques and can also be an algorithm that does not use statistical techniques ( Patent Application Nos. 2005-337412 and 2006-44289, which are hereby incorporated by reference. In this particular embodiment, a new offset uses a statistical technique to push 114821.doc -51 - 1320854. That is, the 'new offset at step s114', the c" is used as the answer to the finalization of the objective function for minimizing the equation (4) without any constraint conditions. 2-8·Overview

現在將參考圖1、6及7 m間概念來說明步驟 Sl^〇、SU2及S114之程序。若假定統計母體資料集係完全 可靠’則新偏移e係藉由將新偏心視為舊偏移4與相對於 舊偏移c。的僅從該統計母體資料所推導之一球形表面之中 心之-位置向量g之和,由以下方程(56)來定義。 c=c〇+g ... (56) 作為對制於最小化方程(43)之目標聽之—解答而不 使用任何約束條件而推導之位置向量g係在該分佈之特徵 向量ui、U2及U3相同方向上的基本向量之一線性組合。因 此’依據位置向量V之該等分量之個別可#度對應於從 位置向量_’g”所校正之—向量的一校正向量"f"可依據在對 應主軸方向上的該統計母體資料集之個別可靠度,藉由加 權位置向量ng"之係數ga、§(}及以來獲得(參見圖η)。 如圖16所示,在該統計母體資料集之分佈係二維時執行 的步驟SU2之程序中,了列約束條件係在基於舊偏移心 該統計母體資料集來推導—新偏移時強加。該約束條件係 該新偏移C係作為舊偏移C()與一校正向量"f"之和而獲得, 該校正向量"f”係藉由將在對應於該分佈之最大主值(即對 應於更大特徵值人^之該分佈之一主軸方向上的位置向量 ••g"之一係數g«與在對應於該分佈之中間主值(即對應於中 114821.doc •52· 間特徵值λ2)之該分佈之一主軸方向上 位置向旦",, 係數gp二者加權 罝Θ里g"之—加權因素"Γ,並將在對應於該分 主值(即對應於最小特徵值λ3)的該分佈 、 糸數加權位置向量ν之—加權因素"G"而獲得。 如圖17所示,在該統計母體資料集之分佈係實質上 :執行的步驟SUO之程序中,下列約束條件係在基於舊偏 移4與該統計母體資料集來推導_新偏移時強加。該約束 條件係該新偏移。係作為舊偏移與—校正向量,之和而 獲得,該校正向量"Γ係藉由將在對應於該分佈之最大主值 (即對應於更大特徵值λ1)之該分佈之一主軸方向(或一主方 向)上的位置向量"g"之一係數^加權位置向量"g"之-加權 /因數1"並將在對應於該分佈之中間主值(即對應於中間特 徵值λ2)之該分佈之一主軸方向上的一係數gp與在對應於該 分佈之最小主值(即對應於最小主值λ3)之該分佈之一主軸 方向上的一係數gy二者加權位置向量"g"之一加權因數"0" 而獲得。 在統計母體資料集之分佈係三維時執行的步驟suo之程 序中,不強加任何特定約束條件,即,在步驟S110,新偏 移C係作為舊偏移c〇與位置向量"g"之和而獲得,該位置向 1 g"係作為一對用於最小化方程(43)之目標函數之最佳化 問題之一解答而不使用任何約束條件來獲得。 B.第二具體實施例 *概覽 在第一具體實施例例中,統計母體資料集之分佈係離散 114821.doc -53- 1320854 地估计且當該分佈係二維時,新偏移"C"係藉由將在主值 係最小值之主軸方向上的校正向量"f"之分量設定為零來推 導’且當该分佈係一維時,新偏移"c"係藉由將在主值係 中間及最小值之兩個主軸方向上的校正向量"f"之分量設定 為零來推導。在第二具體實施例中,將提供一種簡單、高 度精確演算法之一說明,其可排除如在第一具體實施例中 依據《亥刀佈之估δ十來執行不同程序之需要並還可有效率地 使用統計母體資料集來推導—更可能的新偏移。 圖⑽、說明-新偏移推導程序之一流程圖。採用與第一 具體實施例相同的方式,. 在已提出一偏移更新請求時, CPU 4〇藉由執行偏移推導掇 等模組94來執行圖18之程序。步驟 S200之程序與在第一具體實_始办丨士 貫施例中上述之步驟S100之程序 相同。步驟S202之程序與在第— ^ 具體實施例中上述之步驟 S102之程序相同。步驟§2〇4夕和十κ 叫之知序與在第一具體實 上述之步驟S1G4之程序相同。 遐施例中 •分佈估計 在步驟S206,統計母體資料 即,統計母體資料集之分佈係藉之分佈指標係推導。 (5 8)所定義之叫及叫作為分佈推導由下列方程⑺)及 (λ γ, 而作為連續值來估計 m, =1 ' Ϋ3 (57) 114821.doc -54- (58) % =1 1320854 此處’ "k,及"k,係預定正常數。h及h之值決定主值之 間的相關性與統計母體資料集之對應主軸方向之可靠度。 此處,"m2"及"m3"必須滿足下列條件(59)。 0 sm2<l 且 0 sm3 si ...(59)The procedures of steps S1, SU2, and S114 will now be described with reference to the concepts between Figs. 1, 6, and 7 m. If the statistical matric data set is assumed to be completely reliable, then the new offset e is considered to be the old offset 4 and the old offset c. The sum of the position-g" vector g of a spherical surface center derived from the statistical parent data is defined by the following equation (56). c=c〇+g (56) as the eigenvectors ui, U2 of the distribution, which are derived from the target of the minimum equation (43), without any constraints. Linear combination of one of the basic vectors in the same direction as U3. Therefore, the individual degree of the component according to the position vector V corresponds to the correction vector corrected from the position vector _'g" - a correction vector of the vector can be based on the statistical matrix data set in the corresponding main axis direction. The individual reliability is obtained by weighting the position vector ng" coefficients ga, §(} and since (see Figure η). As shown in Figure 16, step SU2 is performed when the distribution of the statistical matrix data set is two-dimensional. In the program, the column constraint is imposed when the new offset is derived based on the old offset center of the statistical matrix data set. The constraint is the new offset C system as the old offset C() and a correction vector. Obtained by the sum of "f", the correction vector "f" is by the position vector corresponding to the maximum principal value of the distribution (i.e., the principal direction corresponding to one of the distributions of the larger eigenvalues) ••g" one of the coefficients g« and the position in the direction of the main axis of the distribution corresponding to the intermediate value of the distribution (ie corresponding to the eigenvalue λ2 in the middle 114821.doc • 52·), Coefficient gp both weighted 罝Θ g g" And "Γ, and will be obtained by the weighting factor "G" of the distribution, the weighted position vector ν corresponding to the sub-master value (i.e., corresponding to the minimum eigenvalue λ3). The distribution of the statistical parent data set is essentially: in the procedure of the step SUO performed, the following constraints are imposed when the _new offset is derived based on the old offset 4 and the statistical parent data set. The new offset is obtained as the sum of the old offset and the -correction vector, which is to be at the maximum principal value corresponding to the distribution (ie, corresponding to the larger eigenvalue λ1) The position vector "g" one of the coefficients in the main axis direction (or a main direction) is a weighted position vector "g"-weighted/factor 1" and will be in the middle value corresponding to the distribution (ie a coefficient gp in the direction of the major axis of the distribution corresponding to the intermediate feature value λ2) and a coefficient gy in the direction of the main axis of the distribution corresponding to the smallest principal value of the distribution (ie corresponding to the minimum principal value λ3) One of the weighted position vectors "g" The weighting factor "0" is obtained. In the procedure of the step suo performed when the distribution of the parent data set is three-dimensional, no specific constraint is imposed, that is, in step S110, the new offset C is used as the old offset c. Obtained from the sum of the position vector "g", which is obtained as a solution to the optimization problem of the objective function for minimizing equation (43) without using any constraints B. Second Embodiment * Overview In the first embodiment, the distribution of the statistical parent data set is discrete 114821.doc -53 - 1320854 and when the distribution is two-dimensional, the new offset "C" is derived by setting the component of the correction vector "f" in the direction of the major axis of the principal value to zero, and when the distribution is one-dimensional, the new offset "c" The component of the correction vector "f" in the direction of the two main axes of the main value system and the minimum value is set to zero to derive. In a second embodiment, a description will be provided of a simple, highly accurate algorithm that eliminates the need to perform different procedures in accordance with the "Establishment of the Measure" in the first embodiment. Efficient use of statistical matric data sets to derive - more likely new offsets. Figure (10), Description - Flow chart of one of the new offset derivation procedures. In the same manner as the first embodiment, when an offset update request has been made, the CPU 4 executes the program of Fig. 18 by executing the offset derivation module 94. The procedure of step S200 is the same as the procedure of step S100 described above in the first embodiment. The procedure of step S202 is the same as the procedure of step S102 described above in the first embodiment. The steps §2〇4 and κ10 are the same as the procedure of the first step S1G4 described above. In the embodiment, the distribution estimation is performed in step S206, that is, the distribution of the parent data, that is, the distribution of the parent data set is derived. (5 8) Defined as the distribution derivation as the distribution derivation from the following equations (7)) and (λ γ, and as a continuous value to estimate m, =1 ' Ϋ 3 (57) 114821.doc -54- (58) % =1 1320854 where ' "k, and "k are predetermined normal numbers. The values of h and h determine the correlation between the principal values and the reliability of the corresponding principal direction of the statistical parent data set. Here, "m2&quot ; and "m3" must meet the following conditions (59): 0 sm2<l and 0 sm3 si ...(59)

係數h及h之值係依據本發明之具體實施例來充分地決 定’由於加權效果取決於係數1^及h之值。在磁性感測器 係固定在一可攜式物體(例如一以相對較快角速率改變其 姿態之可攜式電話及PDA)上之情況下,期望在一預定時 間間隔累積的一磁性資料群組之一分佈變得平均相對較 寬。在磁性資料之分佈係不太寬之情況下,若偏移校正係 藉由明顯加權具有較小主值之主軸方向之磁性資料群組來 實施,則偏移精度將會相當劣化,由於此類資料群組具有 較低的可靠性。因此,在本發明係應用於一移動物體之情 況下其中磁性^料群組之分佈傾向於變得較寬,該等係 數h及k;之值將設定,使得僅在磁性資料之分佈係相當較The values of the coefficients h and h are adequately determined in accordance with a particular embodiment of the invention 'because the weighting effect depends on the values of the coefficients 1^ and h. In the case where the magnetic sensor is attached to a portable object (for example, a portable telephone and PDA that changes its attitude at a relatively fast angular rate), it is desirable to accumulate a magnetic data group at a predetermined time interval. One of the groups has a distribution that is relatively broad on average. In the case where the distribution of the magnetic data is not too wide, if the offset correction is performed by significantly weighting the magnetic data group having the major axis direction of the main value, the offset accuracy will be considerably degraded due to such Data groups have lower reliability. Therefore, in the case where the present invention is applied to a moving object, the distribution of the magnetic material groups tends to become wider, and the values of the coefficients h and k; will be set so that the distribution only in the magnetic data is equivalent. More

月况下具有較小主值之主轴方向之磁性資料群組係 使用較重權重來評估。 、在另一方面,在磁性感測器係固定在一移動物體(例如 以相對較慢角速率改變其姿態之一汽車)之情況下,期 望在-預定時間間隔累積的一磁性資料群組之一分佈變得 平均相對較狹窄。當磁性資料之分佈係不太寬時,在不使 用一較重權重來評估具有較小主值之主軸方向之磁性資料 :組:實施偏移校正之情況下’偏移精度將不會得到改 -儘官此類磁性資料群組係不太可靠。因此,在本發明 114821.doc -55· 1320854 係應用於一移動物體之情況下,其中磁性資料群組之分佈 傾向於變得較狹窄,該等係數h及h之值應設定,使得即 便在磁性資料之分佈係較狹窄時,具有較小主值之主軸方 向之磁性資料群組係使用較重權重來評估。 現在將參考圖11來說明in2及叫之空間概念。當在該分佈 之主軸方向上的位置向量g之該等分量之係數係以該等對 應主值之遞減次序由ga、§卩及§7來表示而在該分佈之主軸 方向上的位置向量f之該等分量之係數係以該等對應主值 之遞減次序由fa、fp及6來表示時,在位置向量g、校正向 If、m2及叫之間的關係係由下列方程(6〇)、及(62)來 表述。 £〇_ • (60) 8a [±_ S0 — ί,2] U J 2 J m2 - Λ A Λ • (61) Λ 8y λ]A. A. .(62) 決定使得該等加權因數連續對應於主值比率的該等關传 方程不限於方摩)、㈣及(62)。此外,與對應於= 114821.doc -56- 1320854 值之主轴方向之公旦 „ ,相關聯的加權因數fa/ga可設定為低於 •推導新偏移 當難以在一特定约击,& 條件下推導該最佳化問題之一解答 可引入肖於藉由鬆他該約束條件來解答該最佳化問 題之鬆弛問題。藉由座m & 〜此鬆弛問題,此具體實施例實現 =作為舊偏移C。與—校正向量f之和來推導—新偏移C ::,该校正向量m藉由將上述位置向量g(參見圖川 之係數ga、gPAgy加權連續對應於統計母體資料集之 之主值比率的加權因數來獲得。下列係此程序之細節。 未知怪^乘數Ρ,及Ρ2#、在該程序期間中定義^ 一-起聚集成由下列方程〜義的 Λ (63) 2Λ m2u2 1 W3“3 w2m2t 0 0 ~-(m% 2λχ 3 Β 114821.doc ··. (64) -57- ... (65) ... (65) b 2XTj m2U2 C〇 琢用於在步驟S208推導一新低狡— _ ^ 新偏移之程序係用於找到下列 同時方程(36)之一解答。向晉伤 /s〆 Π里係唯一指定,由於矩陣B必 須係非奇異。The magnetic data group with the smaller principal direction of the main axis in the month is evaluated using heavier weights. On the other hand, in the case where the magnetic sensor is fixed to a moving object (for example, a car whose attitude is changed at a relatively slow angular rate), it is desirable to accumulate a magnetic data group at a predetermined time interval. A distribution becomes relatively narrow on average. When the distribution of magnetic data is not too wide, magnetic data with a smaller main value is evaluated without using a heavier weight: Group: In the case of performing offset correction, the offset accuracy will not be changed. - It is not reliable to use such magnetic data groups. Therefore, in the case where the present invention 114821.doc - 55 · 1320854 is applied to a moving object, the distribution of the magnetic data groups tends to become narrower, and the values of the coefficients h and h should be set so that even When the distribution of magnetic data is relatively narrow, the magnetic data group with the main axis direction of the smaller main value is evaluated using heavier weights. The concept of in2 and called space will now be explained with reference to FIG. The coefficient of the equal component of the position vector g in the direction of the major axis of the distribution is represented by ga, § 卩 and § 7 in descending order of the corresponding principal values and the position vector f in the direction of the major axis of the distribution The coefficients of the components are represented by fa, fp, and 6 in descending order of the corresponding principal values. The relationship between the position vector g, the correction to If, m2, and the call is determined by the following equation (6〇). And (62) to express. £〇_ • (60) 8a [±_ S0 — ί,2] UJ 2 J m2 - Λ A Λ • (61) Λ 8y λ]AA . (62) Decide to make these weighting factors continuously correspond to the main value ratio Such pass-off equations are not limited to Fangmo), (4) and (62). In addition, the weighting factor fa/ga associated with the main axis of the spindle corresponding to the value of = 114821.doc -56 - 1320854 can be set lower than • Deriving a new offset when it is difficult to make a specific hit, & Under the condition that one of the optimization problems is deduced, the problem of relaxation of the optimization problem can be solved by loosening the constraint condition. By the m &~ relaxation problem, this embodiment is implemented = As the old offset C. and the sum of the correction vector f to derive a new offset C::, the correction vector m is successively corresponding to the statistical parent data by weighting the above-mentioned position vector g (see the coefficients ga, gPAgy of the graphs) The weighting factor of the ratio of the main values of the set is obtained. The following are the details of this procedure. Unknown blame ^multiplier Ρ, and Ρ2#, defined during the program period ^--aggregation is integrated by the following equations 63) 2Λ m2u2 1 W3"3 w2m2t 0 0 ~-(m% 2λχ 3 Β 114821.doc ··. (64) -57- ... (65) ... (65) b 2XTj m2U2 C〇琢The procedure for deriving a new low 狡 - _ ^ new offset in step S208 is used to find one of the following simultaneous equations (36) to answer. 〆 Π is the only designation, since matrix B must be non-singular.

Bx=b ... (66) 找到聯立方程(66)之—解答係等價於在一新偏移係作為 舊偏移c〇與-校正向量汰和而獲得的一約束條件下解答該 詩最小化絲⑷)之目標函數之最佳化問題,該校正向 if之分量係藉由將在對應於該等主值之該分佈之主軸方 向上的位置向4g之係數加權連續對應 分佈之該等主值比率的因數f/g、f/…:貢:集 ^ Ia/ga fp/gp及心/g丫、及而獲得 之值。 • 在該第二具體實施例中,較容易發展或改良偏移推導模 組94且還減小偏移推導模組糾之資料大小,由於依據上述 統计母體資料集之分佈,不需要分支該新偏移推導程序。 此外,该第二具體實施例增加偏移推導模組94使用該統計 母體資料集之使用效率並還允許該方位推導模組使用最可 能的偏移來校正磁性資料,由於舊偏移可在該分佈之主轴 方向上校正連續對應於該統計母體資料集之主值比率的距 離,除非該等主值之任一者係零。 C.其他具體實施例 114821.doc • 58- 34 34 本發明之第二方面係不限於上述具體實施例且各種具體 實施例均可㈣不脫離本發明之精神。例如,本發 應用於ID定在PDA ±的—磁性感測器或固定在—产直° 的一磁性感測器上。 ’飞旱上 【圖式簡單說明】 圖1係本發明之第一方面之具體實施例之一示意圖。 圖2係本發明之第一方面之具體實施例之一示意圖。 圖3係本發明之第一方面之具體實施例之一方塊圖。 圖4係本發明之第一方面之具體實施例之—方塊圖。 圖5係本發明之第-方面之第一具體實 。 夂程 圖6係 圖 本發明之第一方面之第一具體實施一 不意 圖7係 本發明之第一方面之第一具體實 — J ^ 不意 圖8係 本發明之第一方面之第二具體實施 成程 圖9係與本發明之第一方 回I罘一,、體實施例相關 曲線圖。 坪之 圖10係與本發明之第一方 即心乐一,、餸實施例相關聯> 曲線圖。 娜之 圖11係本發明之第二方面之具體實施例之一示意圖 圖12係本發明之第二方面之具體實施例之一示专圖 圖13係本發明之第二方面之具體實施例之—方塊^ 114821.doc -59- 1320854 圖14係本發明之第二方面之具體實施例之一方塊圖。 圖15係本發明之第二方面之第一具體實施例之一流程 圖。 圖16係本發明之第二方面之第一具體實施例之一示意 圖。 圖17係本發明之第二方面之第一具體實施例之一示意 圖。 圖18係本發明之第二方面之第二具體實施例之一流程 圖。 【主要元件符號說明】 1 磁性資料處理裝置 2 汽車/顯示器 3 行動電話 4 2維(2D)磁性感測器/3維(3D)磁性感測器 5 匯流排 22 磁性感測器介面(I/F) 30 X軸感測器 32 y軸感測器 34 z軸感測器 40 CPU 42 ROM 44 RAM 90 磁性資料處理程式 92 緩衝器管理模組 114821.doc -60- 1320854 94 偏移推導模組 96 方位推導模組 98 定位器/導航程式Bx=b (66) Finding the simultaneous equation (66) is equivalent to answering a constraint obtained by the new offset system as the old offset c〇 and the correction vector. The optimization of the objective function of the poem minimizing the filament (4)), the correction to the component of if by weighting the position in the direction of the major axis of the distribution corresponding to the principal values to the coefficient of 4g continuously correspondingly distributed The factors of the main value ratios f/g, f/...: tribute: the set ^ Ia / ga fp / gp and the heart / g 丫, and the value obtained. • In the second embodiment, it is easier to develop or improve the offset derivation module 94 and also reduce the data size of the offset derivation module. Since the distribution of the statistical matrix data set is not required, the branching is not required. New offset derivation program. In addition, the second embodiment increases the efficiency of the use of the statistical matrix data set by the offset derivation module 94 and also allows the azimuth derivation module to correct the magnetic data using the most probable offset, since the old offset can be used in the The distance in the direction of the major axis of the distribution contiguously corresponds to the ratio of the principal values of the statistical matric data set, unless either of the principal values is zero. C. Other Embodiments 114821.doc • 58-34 34 The second aspect of the present invention is not limited to the specific embodiments described above, and various specific embodiments can be used without departing from the spirit of the invention. For example, the present invention is applied to a magnetic sensor in which the ID is set to PDA ± or a magnetic sensor that is fixed to the straight line. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a specific embodiment of the first aspect of the present invention. Figure 2 is a schematic illustration of one embodiment of the first aspect of the invention. Figure 3 is a block diagram of a particular embodiment of the first aspect of the invention. Figure 4 is a block diagram of a particular embodiment of the first aspect of the invention. Figure 5 is a first embodiment of the first aspect of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 6 is a first embodiment of the first aspect of the present invention, and is not intended to be the first embodiment of the first aspect of the present invention. FIG. 9 is a graph showing a correlation between the first embodiment and the first embodiment of the present invention. Fig. 10 is a graph associated with the first party of the present invention, namely, the heart, and the embodiment. Figure 11 is a schematic view of a specific embodiment of the second aspect of the present invention. Figure 12 is a schematic view of a specific embodiment of the second aspect of the present invention. Figure 13 is a specific embodiment of the second aspect of the present invention. - Blocks ^ 114821.doc - 59 - 1320854 Figure 14 is a block diagram of a particular embodiment of the second aspect of the invention. Figure 15 is a flow chart showing a first embodiment of the second aspect of the present invention. Figure 16 is a schematic illustration of a first embodiment of a second aspect of the invention. Figure 17 is a schematic illustration of a first embodiment of a second aspect of the invention. Figure 18 is a flow chart showing a second embodiment of the second aspect of the present invention. [Main component symbol description] 1 Magnetic data processing device 2 Car/display 3 Mobile phone 4 2D (2D) magnetic sensor/3D (3D) magnetic sensor 5 Busbar 22 Magnetic sensor interface (I/ F) 30 X-axis sensor 32 y-axis sensor 34 z-axis sensor 40 CPU 42 ROM 44 RAM 90 magnetic data processing program 92 buffer management module 114821.doc -60- 1320854 94 offset derivation module 96 azimuth derivation module 98 locator / navigation program

114821.doc -61 -114821.doc -61 -

Claims (1)

1320854 第096107901號專利申請案 ⑸ 中文申請專利範圍替換本(98年丨〇月^ 十、申請專利範圍: i · 種磁性資料處理裝置,其包括: 輸入構件’其用於連續地輸入從一二維(2D)磁性感測 盜所輸出之磁性資料,該磁性資料係作為一組第一基本 * 向量之一線性組合的2d向量資料; 儲存構件,其用於將複數個輸入的磁性資料儲存作為 一統計母體資料集,以便使用一新偏移來更新該磁性資 料之一舊偏移;以及 鲁料推導構件,纟用於在該新偏移係作為㈣偏移與 一扠正向量之和而獲得的一約束條件下,基於該舊偏移 及該統計母體資料集來推導該新偏移, 其中該校正向量係該統計母體資料集之分佈之主軸方 向上所定義的一組第二基本向量之一線性組合,且表示 该校正向量之該等第二基本向量之線性組合之個別係數 係藉由依據該統計母體資料集之分佈之一主值比率加權 一臨時偏移相對於舊偏移之一臨時位置向量之個別係數 來獲得,該臨時偏移係從該統計母體資料集來推導而不 使用該舊偏移,該臨時位置向量係該等第二基本向量之 一線性組合。 2·如請求項丨之磁性資料處理裝置,其中該約束條件係在 該等主值之一更小主值與一更大主值之一比率係等於或 小於一預定臨界值之情況下,用於在對應於該等主值之 -更小主值之主軸方向上的第二基本向量之係數的該臨 時位置向量之一加權因數為零。 114821 -981002.doc 3.如請求们之磁性資料處理裝置,其中該約束條件係該 校正向量之係數係藉由將該臨時位置向量之係數加權連 續對應於該統計母體資料集分佈之該等主值比率之加權 因數而獲得之值。 4. 如請求項1至3中任一項之磁性資料處理裝置其中用於 該臨時位置向量之該等係數之個別加權因數係參考一加 權因數而正規化,該加權因數係用於在對應於該更大主 值,主軸方向上的第二基本向量之係數並設定為一。 5. 如請求項丨至3中任一項之磁性資料處理裝置,其中該偏 移推導構件推導一值”c",其在該約束條件下最小化下列 目標函數f(c): ί卜f Γ 9〇y〇-R 1 -q) 7=2 q2 -R • · - qj • ·» .Uah ~及1320854 Patent Application No. 096,107,901 (5) Chinese Patent Application Substitute Replacement (98 丨〇月^10, Patent Application Range: i) A magnetic data processing apparatus comprising: an input member' for continuously inputting one or two The magnetic data output by the dimensional (2D) magnetic sensing thief, the magnetic data is a 2d vector data linearly combined as one of a set of first basic * vectors; a storage component for storing a plurality of input magnetic data as a statistical matric data set to update an old offset of the magnetic data using a new offset; and a lure deriving component for use as the sum of the (four) offset and the bifurcation positive vector in the new offset system Obtaining a new offset based on the old offset and the statistical parent data set, wherein the correction vector is a set of second basic vectors defined in a major axis direction of the distribution of the statistical parent data set One of the linear combinations, and the individual coefficients representing the linear combination of the second basic vectors of the correction vector are based on the distribution of the statistical parent data set The principal value ratio weighting a temporary offset is obtained relative to an individual coefficient of one of the old offset temporary position vectors derived from the statistical parent data set without using the old offset, the temporary position vector system One of the second basic vectors is linearly combined. 2. The magnetic data processing apparatus of claim 1, wherein the constraint is equal to a ratio of a smaller primary value to a larger primary value of the primary values Or less than a predetermined threshold value, one of the temporary position vectors for the coefficient of the second basic vector in the direction of the major axis corresponding to the smaller principal value of the primary values is zero. 114821 - 981002.doc 3. The magnetic data processing apparatus of claimant, wherein the constraint is that the coefficient of the correction vector is weighted by the coefficient of the temporary position vector continuously corresponding to the ratio of the main values of the statistical data set distribution The value obtained by the weighting factor. 4. The magnetic data processing apparatus according to any one of claims 1 to 3, wherein the individual weighting factors of the coefficients for the temporary position vector are The normalization is performed with reference to a weighting factor for the coefficient of the second basic vector in the direction of the major axis corresponding to the larger principal value and is set to one. 5. If any of the claims 丨 to 3 A magnetic data processing apparatus, wherein the offset deriving member derives a value "c", which minimizes the following objective function f(c) under the constraint: ί卜f Γ 9〇y〇-R 1 -q) 7 =2 q2 -R • · - qj • ·» .Uah ~ and 其中among them 114821-981002.doc -2 1320854 6·如請求項4之磁性資料處理裝置,其中該偏移推導構件 推導一值"c”,其在該約束條件下最小化下列目標函數 f(c): fip) = {Xc^j)T[xc^j) f 其中在磁性資料係由qi = (qix,qiy)(i = 〇,1,2,. · ·)表示 時’ "X"及,,j"係如下: / —y j, - Qo -R X.= Η .1 T ^ m-.v 1 二— 2 ^9n-\ • · » βΝ-\ 9 ff-\ ~ 其中 1 N~\ ι·=0 〇 7· 一種磁性測量設備,其包含: 依據請求項1至6中任一項之磁性資料處理裝置;以及 該2D磁性感測器。 8. 一種磁性資料處理方法,其包含: 連續地輸入從一二維(2 D )磁性感測器所輪出之磁性資 料,該磁性資料係作為一組第一基本向量之一線性組合 的2D向量資料; 將複數個輸入的磁性資料儲存為一統計母體資料集, 以便使用一新偏移來更新該磁性資料之一雀 屬偏移;以及 114821-981002.doc 在該新偏移係作為該舊偏移與一校正向量之和而獲得 的、力束條件下,基於該舊偏移及該統計母體資料集來 推導該新偏移, 〃 其中該校正向量係該統計母體資料集之分佈之主轴方 向上所定義的—組第二基本向量之一線性組合且表示 該才义正向置之該等第1基本向量之線性組合之個別係數 係藉由依據該統計母體資料集之分佈之一主值比率加權 一臨時偏移相對於該舊偏移之-臨時位置向量之個別係 數來獲得’該臨時偏移係從該統計母體資料集來推導而 不使用該舊偏移’該臨時位置向量係該等第二基本向量 之一線性組合。 一種磁性資料處理程式產品,其允許—電腦用作: 輸入構件,其用於連續地輸入從一 輯輸出之磁性資料,該磁性資料係作為—組第一= 向里之一線性組合的2D向量資料; 儲存構件’其用於將複數個輸入的磁性資料儲存作為 一統計母體資料集,以便使用-新偏移來更新該磁性資 料之—舊偏移;以及 偏移推導構件,其用於在該新偏移係作為該舊偏移與 杈正向1之和而獲得的一約束條件下,基於該舊偏移 及該統計母體資料集來推導該新偏移, 其中s亥校正向量係 向上所定義的一組第 該校正向量之該等第 該統計母體資料集之分佈之主軸方 二基本向量之一線性組合,且表示 二'基本向量之線性組合之個別係數 H4821-981002.doc 係藉由依據該統計母體資料集之分佈之一主值比率加權 ^時偏移相對於該舊偏移之一臨時位置向量之個別係 數來獲得’該臨時偏移係從該統計母體資料集來推導而 不使用該舊偏移’該臨時位置向量係該等第二基本向量 之一線性組合。 10. 一種磁性資料處理裝置,其包含: 輸入構件,其用於連續地輸入從一三維(3D)磁性感測 器所輸出之磁性資料,該磁性資料係作為一組第一基本 向2:之一線性組合的3 d向量資料; 儲存構件其用於將複數個輸入的磁性資料儲存作為 一統計母體資料集,以便使用—新偏移來更新該磁性資 料之一舊偏移;以及 偏移推導構件,其用於在該新偏移係作為該舊偏移與 一校正向量之和而獲得的—約束條件下,基於該舊偏移 及該統計母體資料集來推導該新偏移, 其中該校正向量係該統計母體資料集之分佈之主轴方 向上職義的-組第:基本向量之—線性組合,且表示 該权正向量之該等第二基本向量之線性組合的個別係數 係藉由依據該統計母體資料集之分佈之—主值比率加權 -臨時偏移相對於該舊偏移之—位置向量之個別係數來 獲得,該臨時偏移係從該統計母體資料集來推導而不使 用該舊偏移,該臨時偏移之位置向量係該等第二基本向 量之一線性組合。 該約束條件係在該等 11.如請求項1 〇之磁性資料處理裝置 M4821-98I002.doc 主值之一中間主值與該等主值之一最大主值之一比率係 南於一第一臨界值且該最小主值與該最大主值之一比率 等於或小於一第二臨界值之情況下’用於在對應於該等 主值之一最小主值之該等主轴方向之—者上的該等第二 基本向量之一者之係數的該位置向量之一加權因數係零 以及在該中間主值與該最大主值之比率係等於或小於該 第一臨界值且該最小主值與該最大主值之比率係等於或 小於該第二臨界值之情況下,用於在對應於該最小主值 之主軸方向上的第二基本向量之係數與在對應於該中間 主值之該等主軸方向之一者上的另一第二基本向量之係 數的位置向量之個別加權因數係零。 12. 13. 14. 如請求項10之磁性資料處理裝置,其中該約束條件係該 校正向量之該等係數係藉由將該位置向量之該等係數加 權連續對應於該統計母體資料集分佈之該等主值比率之 加權因數而獲得之值。 如4求項10至12中任一項之磁性資料處理裝置,其中用 於該位置向量之該料數之該等個別加權因數係參考該 加權因數而正規化’該加權因數係用於在對應於該更大 主值之主軸方向上的第二基本向量之係數並設定為一。 如請求項10至12中任一項 偏移推導構件推導一值"c 列目標函數f(c):A magnetic data processing apparatus according to claim 4, wherein the offset deriving means derives a value "c" which minimizes the following objective function f(c) under the constraint: Fip) = {Xc^j)T[xc^j) f where the magnetic data is represented by qi = (qix,qiy)(i = 〇,1,2,. · ·)' "X" and, , j" is as follows: / -yj, - Qo -R X.= Η .1 T ^ m-.v 1 2 - 2 ^9n-\ • · » βΝ-\ 9 ff-\ ~ where 1 N~\ ι·=0 〇7· A magnetic measuring device, comprising: the magnetic data processing device according to any one of claims 1 to 6; and the 2D magnetic sensor. 8. A magnetic data processing method, comprising: Continuously inputting magnetic data rotated from a two-dimensional (2D) magnetic sensor, the magnetic data being a linearly combined 2D vector data as one of a set of first basic vectors; storing a plurality of input magnetic data a statistical parent data set to update the magnetic data for one of the bird's offsets using a new offset; and 114821-981002.doc The new offset is used as the sum of the old offset and a correction vector, and under the force beam condition, the new offset is derived based on the old offset and the statistical matrix data set, where the correction vector is the statistical The linear coefficient of one of the second basic vectors defined in the major axis direction of the distribution of the maternal data set and the individual coefficients representing the linear combination of the first basic vectors of the positive sense are based on the statistical matrix One of the distributions of the data sets is weighted by a temporary offset relative to the individual coefficients of the old offset-temporary position vector to obtain 'this temporary offset is derived from the statistical parent data set without using the old bias Shifting the temporary position vector is a linear combination of one of the second basic vectors. A magnetic data processing program product that allows a computer to be used as: an input member for continuously inputting magnetic material output from a series, The magnetic data is used as a 2D vector data linearly combined with one of the first = inward; a storage member 'used to store a plurality of input magnetic data as one Calculating the parent data set to update the old offset of the magnetic data using a new offset; and an offset deriving component for using the new offset as the sum of the old offset and the forward direction 1 Obtaining a new offset based on the old offset and the statistical parent data set, wherein the sigma correction vector is the first statistical data set of the set of the correction vector defined upward One of the basic vectors of the principal axis of the distribution is linearly combined, and the individual coefficients H4821-981002.doc representing the linear combination of the two 'basic vectors are weighted by the ratio of the main values according to the distribution of the statistical data set. Transmitting individual coefficients of the temporary position vector relative to one of the old offsets to obtain 'the temporary offset is derived from the statistical parent data set without using the old offset'. The temporary position vector is the second basic vector One linear combination. 10. A magnetic data processing apparatus, comprising: an input member for continuously inputting magnetic material outputted from a three-dimensional (3D) magnetic sensor, the magnetic data being a group of first basic directions 2: a linearly combined 3 d vector data; a storage component for storing a plurality of input magnetic data as a statistical parent data set to update an old offset of the magnetic data using a new offset; and an offset derivation a means for deriving the new offset based on the old offset and the statistical parent data set under the constraint obtained by the new offset system as the sum of the old offset and a correction vector, wherein the new offset The correction vector is a linear combination of the main sense of the distribution in the main axis direction of the distribution of the statistical matrix data set, and the individual coefficients of the linear combination of the second basic vectors representing the positive vector of the weight are obtained by Obtaining according to the distribution of the statistical matrix data set - the main value ratio weighting - the temporary offset is relative to the individual coefficient of the old offset - the position vector, the temporary offset is from Statistics parent data set the offset is derived without using the old train position vector of the temporary offset to the linear combination of such second one of the basic amount. The constraint is in the first 11. The ratio of the intermediate value of one of the main values of the magnetic data processing device M4821-98I002.doc of claim 1 to one of the main values of one of the main values is one of the first a threshold value and the ratio of the minimum principal value to the one of the maximum principal values being equal to or less than a second threshold value is used for the direction of the principal axes corresponding to the smallest principal value of one of the principal values One of the position vectors of one of the second basic vectors is a weighting factor of zero and the ratio of the intermediate primary value to the maximum primary value is equal to or less than the first critical value and the minimum primary value is The coefficient of the second basic vector in the direction of the major axis corresponding to the minimum principal value and the corresponding to the intermediate principal value in the case where the ratio of the maximum principal value is equal to or smaller than the second critical value The individual weighting factor of the position vector of the coefficient of the other second basic vector on one of the principal axes is zero. 12. The magnetic data processing apparatus of claim 10, wherein the constraint is that the coefficients of the correction vector are weighted continuously by the coefficients of the position vector to correspond to the distribution of the statistical data set. The value obtained by the weighting factor of the ratio of the main values. The magnetic data processing apparatus of any one of clauses 10 to 12, wherein the individual weighting factors for the number of the position vectors are normalized with reference to the weighting factor 'the weighting factor is used for correspondence The coefficient of the second basic vector in the direction of the major axis of the larger principal value is set to one. The offset derivation member derives a value "c column objective function f(c) as claimed in any one of claims 10 to 12: 之磁性資料處理裝置,其中該 1 ’其在該約束條件下最小化下 fic) = {Xc - j)T 114821-981002.doc -6 * 1320854 其中在磁性資料係由qi = (qiX,qiy,qiZ)(i = 〇,l,2,···)表示 時,"X"及”j"係如下: 「ΚΓ 9〇Τ9〇 1 -R x = k-办 上 / =— J 1 q;qi-R U— βΝ-Χ^Ν-λ -R_ 其中a magnetic data processing apparatus, wherein the 1' is minimized under the constraint fic) = {Xc - j)T 114821-981002.doc -6 * 1320854 wherein the magnetic data is determined by qi = (qiX,qiy, When qiZ)(i = 〇,l,2,···) is expressed, "X" and "j" are as follows: "ΚΓ 9〇Τ9〇1 -R x = k-dosing / =— J 1 q ;qi-R U— βΝ-Χ^Ν-λ -R_ where R Τ N A 15.如請求項13之磁性資料處理裝置,其中該偏移推導構件 推導一值"c",其在該約束條件下最小化下列目標函數 f(c): f(c) = (Xc-j)T{Xc-j) f 其中在磁性資料係由qi = (qiX,qiy,qiZ)(i = 〇,l,2,...)表示 時,"X”及"j"係如下: 「ΚΠ V-i 1 / =— 2 n βΝ-Ι^Ν-χ x= 其中 114821-981002.doc 16R N % ia〇 •一種磁性測量設備,其包含: 依據請求項1〇至15中任—項之磁性資料處理裝 該3D磁性感測器。 、 17. 置;以及R Τ NA 15. The magnetic data processing apparatus of claim 13, wherein the offset deriving means derives a value "c", which minimizes the following objective function f(c) under the constraint: f(c) = (Xc-j)T{Xc-j) f where the magnetic data is represented by qi = (qiX,qiy,qiZ)(i = 〇,l,2,...), "X" and "j" is as follows: "ΚΠ Vi 1 / = - 2 n βΝ-Ι^Ν-χ x= where 114821-981002.doc 16R N % ia〇• A magnetic measuring device comprising: according to request 1 to 15 The magnetic data processing of the middle-item is equipped with the 3D magnetic sensor. 一種磁性資料處理方法’其包含: 出之磁性資 —線性組合 連續地輸入從一三維(3 D)磁性感測器所輸 料,該磁性資料係作為一組第一基本向量之 的3 D向量資料; 將複數個輸入的磁性資料儲存作為一統計母體資料 集,以便使用一新偏移來更新該磁性資料之—舊偏移; 以及 ^ 在該新偏移係作為該舊偏移與一校正向量之和而獲得 的、力束條件下,基於該舊偏移及該統計母體資料集來 推導該新偏移, 其中該校正向量係該統計母體資料集之分佈之主軸方 向上所定義的一組第二基本向量之一線性組合且表示 該校正向量之該等第二基本向量之線性組合的個別係數 係藉由依據s玄統計母體資料集之分佈之一主值比率加權 一臨時偏移相對於該舊偏移之一位置向量之個別係數來 獲得,該臨時偏移係從該統計母體資料集來推導而不使 用該舊偏移,該臨時偏移之位置向量係該等第二基本向 114821-98I002.doc -8 - 丄獨854 量之一線性組合。 18. 一種磁性資料處理程式產品,其允許一電腦用作·· 輸入構件,其用於連續地輸入從—三維(3]〇)磁性感測 器所輸出之磁性資料,該磁性資料係作為一組第一基本 向量之—線性組合的3D向量資料; 儲存構件,其用於將複數個輸入的磁性資料儲存為—A magnetic data processing method includes: the magnetic material-linear combination is continuously input from a three-dimensional (3D) magnetic sensor, and the magnetic data is used as a set of first basic vectors of 3D vectors. Data; storing a plurality of input magnetic data as a statistical parent data set to update a new offset of the magnetic data using a new offset; and ^ as the old offset and a correction in the new offset system The new offset is derived based on the old offset and the statistical matrix data set obtained by the sum of the vectors, wherein the correction vector is one defined in the main axis direction of the distribution of the statistical parent data set One of the second basic vectors is linearly combined and the individual coefficients representing the linear combination of the second basic vectors of the correction vector are weighted by a primary value ratio according to a distribution of the s-statistical parent data set. Obtained from the individual coefficients of the position vector of the old offset, the temporary offset is derived from the statistical parent data set without using the old offset, the temporary offset The position vector is a linear combination of the second basic ones of 114821-98I002.doc -8 - 854 854. 18. A magnetic data processing program product, which allows a computer to be used as an input member for continuously inputting magnetic material outputted from a three-dimensional (3) magnetic sensor, the magnetic data being used as a a set of first basic vectors - a linear combination of 3D vector data; a storage component for storing a plurality of input magnetic data as - 統計母體資料集’以便使用—新偏移來更新該磁性資料 之一舊偏移;以及 偏移推導構件,其歸在㈣偏耗作㈣舊偏移與 ΓΡ xin -¾ -V -r- /〇 .. 基於該舊偏移 一校正向量之和而獲得的一約束條件 及該統計母體資料集來推導該新偏移 其中該校正向量係該統計母體資料集之分佈之主軸方 向上所定義的—組第二基本向量之—線性組合,且表示 該校正向量之該等第-其士二θ ^ 基本向置之線性組合的個別係數 係藉由依據該統計母體資料八一 之刀佈之一主值比率加權 一臨時偏移相對於該舊偏 ^ ^ 位置向里之個別#數夾 獲得’該㈣偏移係㈣Η —獸木 攸該統計母體資料集來推導而不使 用該舊偏移,該臨時偏蔣+ / 导而不使 量之一線性組合。 寸;—基本向 114821-981002.docCount the parent data set 'to use - the new offset to update the old offset of one of the magnetic data; and the offset derivation component, which is attributed to (4) partial consumption (4) old offset and ΓΡ xin -3⁄4 -V -r- / 〇.. a constraint based on the sum of the old offset-correction vectors and the statistical matrix data set to derive the new offset, wherein the correction vector is defined by the principal direction of the distribution of the statistical parent data set a linear combination of the second basic vectors of the group, and representing the individual coefficients of the linear combination of the first and second θ^ basic orientations of the correction vector by one of the knives according to the statistical matrix data The main value ratio weighting a temporary offset is obtained from the individual #number clips of the old partial ^^ position inward. The (four) offset system (four) Η - 兽木攸 the statistic parent data set is derived without using the old offset, Temporary partial Chiang + / guide without linearly combining one of the quantities. Inch; - basic to 114821-981002.doc
TW096107901A 2006-03-07 2007-03-07 Magnetic data processing device, magnetic data processing method, magnetic data processing program product, and magnetic measurement apparatus TWI320854B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006061605A JP4844179B2 (en) 2006-03-07 2006-03-07 Magnetic data processing apparatus, method and program
JP2006132026 2006-05-10
JP2007016320A JP2007327934A (en) 2006-05-10 2007-01-26 Magnetic data processing device, method, and program

Publications (2)

Publication Number Publication Date
TW200741235A TW200741235A (en) 2007-11-01
TWI320854B true TWI320854B (en) 2010-02-21

Family

ID=44257179

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096107901A TWI320854B (en) 2006-03-07 2007-03-07 Magnetic data processing device, magnetic data processing method, magnetic data processing program product, and magnetic measurement apparatus

Country Status (2)

Country Link
AT (1) ATE513225T1 (en)
TW (1) TWI320854B (en)

Also Published As

Publication number Publication date
TW200741235A (en) 2007-11-01
ATE513225T1 (en) 2011-07-15

Similar Documents

Publication Publication Date Title
US7532991B2 (en) Magnetic data processing device
JP4844179B2 (en) Magnetic data processing apparatus, method and program
US7676341B2 (en) Magnetic sensor control device
KR101152095B1 (en) Magnetic data processing device, method, and computer readable storage medium
EP2660561B1 (en) Geomagnetic device
CN105526939B (en) Road matching method and device
JP4830441B2 (en) Magnetic sensor control device, method and program
JP6334927B2 (en) Additional information display device and additional information display program
JP6191145B2 (en) Offset estimation apparatus and program
JP2013064695A (en) State estimating device, offset updating method, and offset updating program
CN108267141A (en) Road Point Cloud Processing system
US20130156281A1 (en) Image registration method
JP6019585B2 (en) Terminal device
TWI320854B (en) Magnetic data processing device, magnetic data processing method, magnetic data processing program product, and magnetic measurement apparatus
JP5375394B2 (en) Magnetic data processing apparatus, magnetic data processing method, and magnetic data processing program
Huang et al. Multi-modal medical image registration based on gradient of mutual information and hybrid genetic algorithm
JP2013002908A (en) Geomagnetism measuring device, off-set determination method and off-set determination program
CN108680175A (en) Synchronous superposition method and device based on rodent models
CN113093255A (en) Multi-signal true fusion positioning calculation method, device, equipment and storage medium
JP5375791B2 (en) Magnetic data processing apparatus, method and program
CN103020962A (en) Rapid level detection method of mouse applied to three-dimensional panoramic picture
JP5035448B2 (en) Magnetic sensor control apparatus and method
US20110010121A1 (en) Magnetic data processing device, magnetic data processing method, and magnetic data processing program
JP2011089912A (en) Device, method and program of processing magnetic data
JP2007327934A (en) Magnetic data processing device, method, and program

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees