TWI320840B - Entrained bed gasification system for solid biomass carbonization and the method thereof - Google Patents

Entrained bed gasification system for solid biomass carbonization and the method thereof Download PDF

Info

Publication number
TWI320840B
TWI320840B TW95138895A TW95138895A TWI320840B TW I320840 B TWI320840 B TW I320840B TW 95138895 A TW95138895 A TW 95138895A TW 95138895 A TW95138895 A TW 95138895A TW I320840 B TWI320840 B TW I320840B
Authority
TW
Taiwan
Prior art keywords
gas
carbonization
gasification
solid
biomass energy
Prior art date
Application number
TW95138895A
Other languages
Chinese (zh)
Other versions
TW200819681A (en
Inventor
Jengchyanmuti Lin
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW95138895A priority Critical patent/TWI320840B/en
Publication of TW200819681A publication Critical patent/TW200819681A/en
Application granted granted Critical
Publication of TWI320840B publication Critical patent/TWI320840B/en

Links

Description

九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種挾帶床氣化反應爐,且特別是有 關於-種將粉狀生質能原料進行連續碳化,再將所產生的 - 生質能碳利用高溫缺氧的條件使之氣化生成合成辦氣的 • 固態生質能碳化結合挾帶床氣化系統及其製程。 【先前技術】 # 氣化反應是碳氫化合物在高溫缺氧下的不完全燃燒 反應’煤碳氣化應用已超過百年歷史,初期以提供城市辨 氣(Town Gas)為主’第二次世界大戰期間,德國已用它 來產製運輸用燃料。先進之氣化技術是重要的淨煤技術, 於年代開始於美國發展,主要希望以煤炭來替代易 受短期因素而價格上漲之石油與天然氣;另一個期望則是 • #展較高效率之發電廠,因此方有位於美國加州c〇〇】 φ 5十畫之第一座商業化煤炭氣化發電廠的誕生。煤炭 氣化除發電之外’其氣化合成燃氣,亦可用來生產工業氣 體、化學原料、氫及甲醇燃料等多元化產品。 f來淨煤技術之訴求,以單指環境控髓術,而是 強調高能源效益,並以超低污染為目標。由於氣化技術不 但能多元化應用(例如:電、燃料、化學品),並可利用 各種進料(例如:煤炭、石油焦、生質能及廢棄物)特性, 因此未,應用潛力最被看好。在能源效率的提昇上,則以 新代冋效率整合性能源電廢,即結合煤炭能氣化並搭配 6 1320840 產製液態甲醇燃料製程、高效率氣渴輪為主之複循環發電 及局溫燃料電池之整合性發電廠為目桿。 煤„分為固定床、流化床與挾帶床三種主要 中挾π床屬於效率高而且能源密度最高的氣化反 應爐,而固定床與流化床則較適合中小型的氣㈣用。煤 碳氣化可產生含碳較低的合錢體_,因此相較於直接 燃燒回收能源的方法,暑斜於供比l 疋對於環境較友善的技術,但氣化IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a gasification reactor for a belt bed, and in particular to a continuous carbonization of a powdery biomass energy raw material, which is produced - Biomass carbon can be gasified to produce synthetic gas using high temperature and oxygen-deficient conditions. • Solid biomass energy carbonization combined with belt gasification system and its process. [Prior Art] # Gasification reaction is an incomplete combustion reaction of hydrocarbons under high temperature and oxygen deficiency. 'Coal gasification has been applied for more than 100 years. In the early stage, it provided the city's gas (Town Gas) as the second world. During the war, Germany used it to produce transportation fuel. Advanced gasification technology is an important clean coal technology. It began to develop in the United States in the beginning of the year. It mainly hopes to replace coal and natural gas that is subject to short-term factors and rising prices. Another expectation is that #展展The factory, therefore, the birth of the first commercial coal gasification power plant located in California, USA, φ 5 10 paintings. In addition to power generation, coal gasification can be used to produce a wide range of products such as industrial gases, chemical raw materials, hydrogen and methanol fuels. f comes to the principle of clean coal technology, with single-finger environmental control, but emphasizes high energy efficiency and targets ultra-low pollution. Because gasification technology can not only be diversified (for example: electricity, fuel, chemicals), but also can use various feed (such as: coal, petroleum coke, biomass and waste) characteristics, so the application potential is the most I am optimistic. In terms of energy efficiency improvement, integrated energy and electricity waste with new generation efficiency, that is, combined with coal gasification and with 6 1320840 liquid methanol fuel process, high efficiency gas and thirsty wheel-based re-cycle power generation and local temperature Integrated power plants for fuel cells are the target. Coal „divided into fixed bed, fluidized bed and sling bed. The three main 挟 π beds are high efficiency and high energy density gasification reactor, while fixed bed and fluidized bed are more suitable for medium and small gas (4). Coal-carbon gasification can produce a low-carbon composite body _, so compared to the direct combustion energy recovery method, the summer is inclined to provide a more environmentally friendly technology than the gas, but gasification

會產生黏滯性高、易造成管路堵塞的焦油,會使得合成氣 體的利用與儲存上非常固難,複雜的除焦設備成為氣化生 質能系統的必要。挾帶床氣化反應爐的高溫氣化反應可避 免焦油的產生’是大型煤炭氣化複循環發電廠主要採用的 氣化反應爐。 植物行光合作用每年產生的生質能源約等同於10_ 億噸的煤熱當量,如此大量的生質能源超過世界每年能源 消耗的7倍,目前生質能源是世界上被使用最多的再生能It will produce tar with high viscosity and easy to cause pipeline blockage, which will make the utilization and storage of synthetic gas very difficult. Complex decoking equipment becomes a necessity for gasification biomass energy system. The high-temperature gasification reaction of the gas-bed reactor with 挟 can avoid the generation of tar' is the gasification reactor mainly used in large-scale coal gasification and recirculation power plants. The amount of biomass energy produced by photosynthesis in plants is equivalent to about 100-100 million tons of coal heat equivalent per year. Such a large amount of biomass energy exceeds the world's annual energy consumption by seven times. Currently, biomass energy is the most used renewable energy in the world.

源之一。雖然挾帶床氣化反應爐也具有多元進料的能力, 但若進料熱值低或反應度低,則其高溫氣化的條件將無法 形成6 生質能主要的成份為纖維素與木質素,主要的組成元 素為碳(45%〜50%)、氧(40%〜45%)、氫(5〇/。〜1〇。/0),熱值約 是煤碳的一半(3000Kcal/Kg),能量密度低的特性,使得生 質能在先進的氣化反應爐中較少被使用,然而生質能屬於 自產的再生能源,大量的使用生質能源可以大幅增加台灣 的能源安全並有效降低島内的二氧化碳排放。 1320840 現有的挾帶床氣化反應爐主要是藉由乾式和濕式的 方式’將碳粉與純氧注人爐内,藉由部份燃燒或缺氧燃燒 所釋放出的熱量氣化煤粉產生合成燃氣(例如:C〇、、 ch4)。這種挾帶床氣化反應爐雖錢產生合錢氣供再2利 用’但是’為了提高合成燃氣的氣化效率,因而有以下本 發明之產生。 【發明内容】 因此,本發明之-目的就是在提供一種固體生質能碳 化結合挾帶床氣化系統及其製程’㈣生質能碳化程序, 將熱值低或能源密度低的生質能先轉換成高敎值盘古反 應強度的生質能碳,生質能碳經過研磨到約50微’米:與 純氧同時注入挾帶床氣化爐,進行高效率的氣化反應厂 本發明之另-目的就是在提供一種固體生質能碳化 結合挾帶床氣化系統及其製程,是藉使用生f能碳於挟帶 床氣化爐,提高挾帶床氣化爐的氣化轉換效率與降低空氣 污染排放,因為生質能碳所含雜質低,而且幾乎不ς硫 份,再加上生質能碳的反應強度比化石煤碳高,是挾^床^ 氣化爐的最佳進料源。 本發明之又-目的就是在提供—種固體生質能碳化 結合挾帶床氣化系統及其製程,利用在氣化爐内燃燒生質 能碳化氣體,可在氣化爐内產生高溫的氣化條件,並可造 就更快速的氣減應,也可減少因為減化溫度與長滞留 時間的焦油㈣形成問題’所以可以提高挾帶床氣化反應 8 1320840 爐的氣化反應速率與強度,使合成燃氣(syngas)所含的焦 油(tar)可以大幅減低。 根據本發明之上述目的,提出一種固體生質能碳化結 合挾帶床氣化系統,包含一提供一碳化熱源的生質能氣化 爐、一生質能間接加熱碳化爐、一研磨單元,以及一挾帶 床氣化爐。該生質能間接加熱碳化爐,具有一碳化爐本 體、至少一個將該碳化爐本體區分成互不通連之一第—空One of the sources. Although the 挟-bed gasification reactor also has the ability to feed multiple materials, if the feed heat value is low or the reactivity is low, the conditions of high-temperature gasification will not be formed. 6 The main components of the biomass are cellulose and wood. The main constituent elements are carbon (45%~50%), oxygen (40%~45%), hydrogen (5〇/.~1〇./0), and the calorific value is about half of the coal (3000Kcal/ Kg), the low energy density makes the biomass less used in advanced gasification reactors. However, biomass energy is a self-produced renewable energy source. A large amount of biomass energy can greatly increase Taiwan's energy security. And effectively reduce the carbon dioxide emissions in the island. 1320840 The existing sputum bed gasification reactor mainly uses the dry and wet method to inject carbon powder and pure oxygen into the furnace, and vaporizes the pulverized coal by the heat released by partial combustion or anaerobic combustion. Synthetic gas is produced (for example: C〇, ch4). Such an anthracite bed gasification reaction furnace generates money for a further use. However, in order to increase the gasification efficiency of the synthesis gas, the following invention is produced. SUMMARY OF THE INVENTION Accordingly, the present invention is directed to providing a solid biomass energy carbonization combined with an annulus bed gasification system and a process thereof (4) a biomass energy carbonization process for biomass energy having a low calorific value or a low energy density. First converted into high-energy Pangu reaction intensity of biomass energy carbon, the biomass energy carbon is ground to about 50 micro' meters: simultaneously injected with pure oxygen into the belt bed gasifier for high-efficiency gasification reaction plant. The other purpose is to provide a solid biomass energy carbonization combined with an annulus bed gasification system and a process thereof, which is to increase the gasification conversion of the gasification furnace of the anthracene bed by using the raw carbon energy in the gas bed of the crucible bed. Efficiency and reduction of air pollution emissions, because the biomass energy carbon contains low impurities, and almost no sulfur, and the reaction intensity of biomass carbon is higher than fossil coal, which is the most Good feed source. The present invention is also directed to providing a solid biomass energy carbonization combined with an annulus bed gasification system and a process thereof, which utilizes combustion of biomass energy carbonization gas in a gasification furnace to generate high temperature gas in the gasification furnace. The conditions can be used to create a more rapid gas reduction, and also reduce the formation of tar (4) due to the reduced temperature and long residence time, so the gasification reaction rate and strength of the gasification reaction of the 8 1320840 furnace can be improved. The tar contained in the synthetic gas (syngas) can be greatly reduced. According to the above object of the present invention, a solid biomass energy carbonization combined with an annulus bed gasification system is provided, comprising a biomass gasification furnace providing a carbonization heat source, a biomass indirect heating carbonization furnace, a grinding unit, and a挟With bed gasifier. The biomass can indirectly heat the carbonization furnace, and has a carbonization furnace body, and at least one of the carbonization furnace bodies is separated into one another.

間與一第二空間的區隔部、一將多數碳材原料連續送入該 第一空間的進料口、—供導入該碳化熱源的熱源輸入端、 各自獨立並與該第一空間相通的一氣體輸出端和一固體 輸出端’以及一個與該第二空間相通並遠離該熱源輸出端 的一熱源輸出端。該研磨單元,提供研磨該碳材原料,並a partition between a second space and a feed port for continuously feeding a plurality of carbon material into the first space, a heat source input end for introducing the carbonization heat source, and each independently and in communication with the first space a gas output end and a solid output end 'and a heat source output end communicating with the second space and away from the heat source output end. The grinding unit provides grinding of the carbon material, and

具有-連接於該固體輸出端的進料口,肖一將粉碎後的粉 狀生質能碳料送出的送料口。該挾帶床氣化爐,具有一挾 帶床氣化爐體、-與該氣體輸出端相連接的氣體導入口、 一鄰近於該氣體導入口並與該研磨單元之送料口相連接 的固體導入口、一鄰近於該氣體導入口的第一供氧端、一 鄰近於該固體導入口的第二供氧端、由該氣體導入口、該 固體導入口、該第-供氧端與該第二供氧端所界定出的一 氣體燃燒區,以及一遠離於該氣體導入口與該固體導入口 的燃氣輸出口。藉此,當該第―、二供氧端分別將氧氣送 入軋體燃燒區,以使分別經由該氣體導入口與該固體導入 口導入乳體燃燒區之高溫的氣態、粉狀生質能碳料燃燒, 產出氣化合成燃氣。 9 1320840 根據本發明之上述目的,提出一種固體生質能碳化結 合挾帶床氣化製程,其包含以下製造步驟:(A)分別提供一 碳化熱源和一碳材原料。(B)將該碳化熱源和與碳材原料導 引入一生質能間接加熱碳化爐,以分別產生一高溫碳化氣 體,以及一生質能碳料。(C)將該生質能碳料研磨成微米化 顆粒。(D)將該高溫碳化氣體與微米化的粉狀生質能碳料分 別導入一挾帶床氣化爐内,並且分別在導引入口處加入氧 氣,使高溫碳化氣體與粉狀生質能碳料快速氣化成氣化合 成燃氣(syngas)。 依照本發明一實施例,利用生質能碳化程序,將熱值 低或能源密度低的生質能先轉換成高熱值與高反應強度 的生質能碳,生質能碳經過研磨到約50微米後與純氧同 時注入挾帶床氣化爐,進行高效率的氣化反應。 依照本發明一實施例,是藉使用生質能碳於挾帶床氣 化爐,提高挾帶床氣化爐的氣化轉換效率與降低空氣污染 排放,因為生質能碳所含雜質低,而且幾乎不含硫份,再 加上生質能碳的反應強度比化石煤碳高,是挾帶床氣化爐 的最佳進料源。 依照本發明一實施例,利用在氣化爐内燃燒生質能碳 化氣體,可在氣化爐内產生高溫的氣化條件,並可造就更 快速的氣化反應,也可減少因為低氣化溫度與長滯留時間 的焦油(tar)形成問題,所以可以提高挾帶床氣化反應爐的 氣化反應速率與強度,使合成燃氣(syngas)所含的焦油(tar) 可以大幅減低。 10 132ΌΜΌ f獅7朗城作力正替The feed port is connected to the solid output end, and the feed port of the pulverized powdery biomass carbon material is sent out. The belt bed gasification furnace has a gas bed with a gas bed, a gas inlet connected to the gas output end, and a solid adjacent to the gas inlet and connected to the feed port of the grinding unit a inlet, a first oxygen supply end adjacent to the gas introduction port, a second oxygen supply end adjacent to the solid introduction port, the gas introduction port, the solid introduction port, the first oxygen supply end, and the a gas combustion zone defined by the second oxygen supply end, and a gas outlet port remote from the gas introduction port and the solid introduction port. Thereby, the first and second oxygen supply ends respectively send oxygen into the rolling body combustion zone, so that the high-temperature gaseous and powdery biomass energy introduced into the milk combustion zone through the gas introduction port and the solid introduction port respectively The carbon material is burned to produce gasified synthetic gas. 9 1320840 In accordance with the above objects of the present invention, a solid biomass energy carbonization bonded crucible bed gasification process is provided which comprises the following manufacturing steps: (A) providing a carbonization heat source and a carbon material feedstock, respectively. (B) introducing the carbonization heat source and the carbon material into a biomass to indirectly heat the carbonization furnace to respectively generate a high temperature carbonized gas and a biomass carbon material. (C) grinding the biomass carbon material into micronized particles. (D) introducing the high-temperature carbonized gas and the micronized powdered biomass carbon material into a gas-bed bed gasifier respectively, and respectively adding oxygen at the inlet of the guide to enable high-temperature carbonized gas and powdery biomass The carbon material is rapidly gasified into a gasified synthetic gas (syngas). According to an embodiment of the present invention, the biomass energy having a low calorific value or a low energy density is first converted into a biomass energy having a high calorific value and a high reaction intensity by using a biomass carbonization program, and the biomass carbon is ground to about 50. After the micrometer, it is injected into the gasifier with a pure bed of oxygen at the same time to carry out a high-efficiency gasification reaction. According to an embodiment of the present invention, the gasification conversion efficiency of the gasification furnace of the anthracene bed bed is improved and the air pollution emission is reduced by using the biomass energy carbon in the gas bed furnace, because the biomass carbon has low impurities. It is almost free of sulfur, and the reaction strength of biomass carbon is higher than that of fossil coal. It is the best source of feed for gas beds. According to an embodiment of the present invention, by burning a biomass gas in a gasification furnace, high-temperature gasification conditions can be generated in the gasification furnace, and a faster gasification reaction can be achieved, and the gasification can be reduced because of low gasification. The temperature and the long residence time of the tar (tar) form a problem, so the gasification reaction rate and strength of the gas bed reactor can be increased, so that the tar contained in the synthetic gas (syngas) can be greatly reduced. 10 132ΌΜΌ f 狮7朗城作力正正

根據上述可知本發明之固體生質能碳化結合挟帶床 氣化系統及其製程可以將熱值僅有煤碳一半的生質能氣 化成高品質的合成燃氣,合成燃氣可以取代日益短少的天 然氣或液化石油氣當做高效率複循環發t㈣ 的使用自產的而且屬-葡山士 碣一軋化奴中的生質能,可有效降低二 氧化碳的排放並增加能源自主的能力。 【實施方式】 參照第1圖是一系統組合圖,係繪示本發明的一實施 例之固體生質能碳化結合挾帶床氣化系統的實施例。 參照第1圖,本發明的一實施例之固體生質能碳化結 合挾帶床氣化系統,包含―生質能氣化爐丨⑼、—生質能 間接加熱碳化爐200、一研磨單元300、一儲槽400、一泵 浦500 ’以及一挾帶床氣化爐6〇〇。 參照第2圖,係繪示本發明之該生質能氣化爐1〇〇與 高壓送風機140之詳細結構圖》 參照第3圖,係繪示該生質能氣化爐與原料供應桶供 應料源進入生質能加熱碳化爐的局部放大圖。 參照第1圖、第2圖與第3圖。該生質能氣化爐1〇〇 具有—氣化爐體110、一内藏式(embedded)燃燒管120、一 氣化空氣管130,以及一高壓送風機14〇。生質能燃料是 從上方的一生質能進料口 111進入圓柱型的氣化爐内。位 於底部一排灰柵攔116支撐著整個反應爐。在燃燒過程 中’生質能燃料藉重力依序通過一乾燥區112、一熱裂解 區113及一還原區114,最後的餘炭(char)則在爐底的一燃 燒區115中與空氣充分混合,直到餘炭(char)完全燃燒成灰 後掉入底層的一儲灰桶117。 該生質能氣化爐100是藉由高壓送風機14〇抽風,經 由氣化空氣管130在爐床的上面沿著柱狀面分散地向中心 強迫送入氣化空氣提供燃燒區115餘碳燃燒所需之空氣。 而該生質能氣化爐100内燃燒管122所需的燃燒空氣也是 由高壓送風機140通入燃燒空氣,與來自爐内之氣化燃氣 混合並完全燃燒後排出。在還原區114與熱裂解區〗13所 產生的合成燃氣經由内藏式燃燒管12〇下半壁的複數孔隙 121進入此内藏式燃燒管丨2〇中。該内藏式燃燒管12〇不 僅是提供合成燃氣經由排氣管123排出氣化爐的通道,也 是合成氣化燃氣的燃燒室。合成氣化燃氣在内藏式燃燒管 12 0中與外部引入的二次燃燒空氣混合並完全燃燒成高溫 而且潔淨的排氣,而此排氣的主要成份為二氧化碳(c〇2) 與水(HA)與氮(nj,過剩氧可以控制在很低的程度,排 氣中不含焦油與飛灰。 本發明的生質能氣化爐1〇〇,採以生質能燃料向下移 動而氣化合成氣體逆流向上的燃燒方式,生質能燃燒在乾 燥區112被乾燥,在缺氧高溫的熱裂解區113被熱裂解, 以產生熱裂解燃氣與餘炭(char),乾燥與熱裂解所需要的 熱能主要是由爐床燃燒區115燃燒餘炭的排氣所提供,燃 燒區U5的輻射熱也有部份的貢獻。在還原區114中,C02 與H2〇被餘厌藉多布爾(B〇und〇urarcj)反應與水氣化 12 1320840 (water-shift)反應’而還原產生c〇與Η2,最後的餘炭則在 爐底的燃燒區115中與空氣充分混合,直到餘炭完全燃燒 成灰後掉入底層的儲灰桶117。According to the above, the solid biomass energy carbonization combined with the belt bed gasification system of the present invention and the process thereof can vaporize the biomass energy having half of the coal value into high quality synthetic gas, and the synthetic gas can replace the increasingly short The use of natural gas or liquefied petroleum gas as a high-efficiency recirculation t (four) is self-produced and belongs to the biomass energy of the Portuguese-salmon, which can effectively reduce carbon dioxide emissions and increase energy autonomy. [Embodiment] FIG. 1 is a system combination diagram showing an embodiment of a solid biomass energy carbonization bonded crucible bed gasification system according to an embodiment of the present invention. Referring to Fig. 1, a solid biomass energy carbonization combined with an annulus bed gasification system according to an embodiment of the present invention comprises a biomass gasifier (9), a biomass indirect heating carbonization furnace 200, and a grinding unit 300. , a storage tank 400, a pump 500 ' and a 挟 belt bed gasifier 6 〇〇. Referring to Fig. 2, a detailed structural diagram of the biomass gasifier 1〇〇 and the high pressure blower 140 of the present invention is shown. Referring to Fig. 3, the supply of the biomass gasifier and the raw material supply tank is shown. A partial enlargement of the feedstock entering the biomass to heat the carbonization furnace. Refer to Figure 1, Figure 2 and Figure 3. The biomass gasifier 1 has a gasification furnace body 110, an embedded combustion tube 120, a gasification air tube 130, and a high pressure blower 14A. The biomass fuel enters the cylindrical gasifier from the upper biomass feed port 111. A row of gray grid barriers 116 at the bottom supports the entire reactor. During the combustion process, the biomass fuel passes through a drying zone 112, a thermal cracking zone 113 and a reduction zone 114 by gravity, and the last char is fully in the combustion zone 115 of the furnace bottom and the air. Mix until the char is completely burned to ash and then dropped into a ash tank 117 of the bottom layer. The biomass gasifier 100 is evacuated by a high-pressure blower 14 to provide a combustion zone 115 for combustion of carbon through a gasification air tube 130 on the upper surface of the hearth along the columnar surface to forcefully feed the gasification air toward the center. The air needed. The combustion air required for the combustion tube 122 in the biomass gasification furnace 100 is also introduced into the combustion air by the high-pressure blower 140, mixed with the gasification gas from the furnace, and completely burned and discharged. The synthetic gas produced in the reduction zone 114 and the pyrolysis zone 13 enters the built-in combustion tube through the plurality of pores 121 of the lower half of the inner combustion tube 12. The built-in combustion tube 12 is not only a passage for supplying synthetic gas to the gasification furnace via the exhaust pipe 123, but also a combustion chamber for synthesizing gasification gas. The synthetic gasification gas is mixed with the externally introduced secondary combustion air in the internal combustion pipe 120 and completely burned into a high temperature and clean exhaust gas, and the main component of the exhaust gas is carbon dioxide (c〇2) and water. (HA) and nitrogen (nj, excess oxygen can be controlled to a very low degree, and the exhaust gas contains no tar and fly ash. The biomass gasifier of the present invention is 1 〇〇, and the biomass fuel is moved downward. While the gasification synthesis gas is in a countercurrent upward combustion mode, the biomass combustion is dried in the drying zone 112, and is thermally cracked in the thermal cracking zone 113 of the anoxic high temperature to generate pyrolysis gas and char, drying and The thermal energy required for thermal cracking is mainly provided by the exhaust gas from the combustion of the charcoal in the hearth combustion zone 115, and the radiant heat of the combustion zone U5 also contributes partially. In the reduction zone 114, the C02 and H2 are borrowed from the multi-boolean (B〇und〇urarcj) The reaction reacts with water vaporization 12 1320840 (water-shift) to reduce c产生 and Η2, and the final residual carbon is thoroughly mixed with air in the combustion zone 115 of the bottom of the furnace until the charcoal After completely burning into ash, it falls into the ash storage tank 117 of the bottom layer.

此外,本發明在熱裂解區113中置入内藏式燃燒管 120,此内藏式燃燒管120提供氣化爐内部不經過除焦的 過程將合成燃氣直接燒掉’合成燃氣因為含有豐富的C〇 與Η。因此燃燒強度高,高溫的排氣與燃燒管可維持熱裂 解區113所需要的高溫環境,生質能燃料的熱裂解強度與 溫度皆可以比傳統的固定氣化爐要提高許多。 參照第4圖’係繪示生質能間接加熱碳化爐2〇〇、研 磨單元300與儲槽400的局部放大圖。 參照第1圖與第4圖。該生質能間接加熱碳化爐2〇〇 具有一碳化爐本體210、一個將該碳化爐本體21〇區分成 互不通連之一第一空間211與一第二空間212的區隔部 220、一將多數碳材原料23〇連續送入該第一空間2ιι的進 料口 240、一供導入該碳化熱源1〇1的熱源輸入端250、In addition, the present invention places a built-in combustion tube 120 in the thermal cracking zone 113, and the built-in combustion tube 120 provides a process in which the synthetic gas is directly burned off without decoking inside the gasification furnace. Rich C〇 and Η. Therefore, the combustion intensity is high, and the high-temperature exhaust gas and the combustion tube can maintain the high temperature environment required for the thermal cracking zone 113. The thermal cracking strength and temperature of the biomass fuel can be much higher than that of the conventional fixed gasifier. Referring to Fig. 4, a partial enlarged view of the indirect heating of the carbonization furnace 2, the grinding unit 300, and the storage tank 400 is shown. Refer to Figures 1 and 4. The biomass can indirectly heat the carbonization furnace 2, and has a carbonization furnace body 210, and a compartment 220 that divides the carbonization furnace body 21 into one of the first space 211 and the second space 212. A plurality of carbon material raw materials 23 〇 are continuously fed into the feed port 240 of the first space 2 ι, a heat source input end 250 for introducing the carbonization heat source 〇1,

各自獨立並與該第一空間211相通的一氣體輸出端26〇和 一固體輸出端270,以及一個與該第二空間212相通並遠 離該熱源輸入端250的一熱源輸出端280 ^此外,在本實 施例中,該生質能間接加熱碳化爐2〇〇是一環狀桶體,而 該區隔部220是一用以分隔該第一、二空間2U、212的環 圈體。 該研磨單元300用以將該固體輪出端27〇產生之生質 月匕碳230磨成微米級顆粒(5〇微米左右卜該研磨單元 13 1320840a gas output end 26 and a solid output end 270, each of which is independent of the first space 211, and a heat source output end 280 that communicates with the second space 212 and away from the heat source input end 250. In this embodiment, the biomass indirect heating carbonization furnace 2 is an annular barrel, and the partition 220 is a ring body for separating the first and second spaces 2U, 212. The grinding unit 300 is used for grinding the raw lunar carbon 230 produced by the solid wheel outlet 27 into micron-sized particles (about 5 micrometers). The grinding unit 13 1320840

具有一導入該固體輸出端270產出之生質能碳料230’的進 料口 310,與一將粉碎後的粉狀生質能碳料230”送出的送 料口 320。 參照第5圖,係繪示粉狀與氣化生質能同時加氧送入 挾帶床氣化爐的局部放大圖。 參照第1圖與第5圖。該泵浦500係連接在該研磨單 元300的送料口 320與該挾帶床氣化爐600的固體導入口 630之間,用以將微米級的粉狀生質能碳料230”泵送入該 挾帶床氣化爐600中。 參照第1圖與第4圖。該儲槽400是連接在該研磨單 元300與該泵浦500之間,用以儲置研磨後的粉狀生質能 碳料230”。 參照第1圖與第5圖。該挾帶床氣化爐600具有一挾 帶床氣化爐體610、一與該氣體輸出端280相連接的氣體 導入口 620、一鄰近於該氣體導入口 620並與該研磨單元 300之送料口 320相連接的固體導入口 630、一鄰近於該 氣體導入口 620的第一供氧端640、一鄰近於該固體導入 口 630的第二供氧端650、一遠離於該氣體導入口 620與 該固體導入口 630的燃氣輸出口 670,以及位於該氣體導 入口 620、該固體導入口 630、該第一供氧端640與該第 二供氧端650之間的一氣體燃燒區660。當該第一、二供 氧端640、650分別將氧氣(02)送入該氣體燃燒區660,高 溫的氣態、粉狀生質能碳料230”瞬間部分燃燒(該氣體燃 燒區600的溫度高達攝氏1400°C左右),以快速產出高品 14 1320840 货年/巧:丨 」 質的氣化合成燃氣(syngas)。此外,該挾帶床氣化爐600 所產生的氣化合成燃氣(syngas)則導引至後端的淨化單元 (圖未揭示)處理。 參照第6圖之方塊流程圖,係繪示本發明的一實施例 之固體生質能碳化結合挾帶床氣化製程的步驟流程。 參照第1圖與第6圖,至於本發明固體生質能碳化結 合挾帶床氣化製程,包含有下列步驟: 步驟一:如流程801,經由該生質能氣化爐100產出該 碳化熱源101。如流程802,再經一原料供應桶700供應 該碳材原料230,先作該碳化熱源101和該碳材原料230 之備料動作。 步驟二:如流程803,將該碳化熱源101送入該生質能 間接加熱碳化爐200的第二空間212。而將該碳材原料230 導引入該生質能間接加熱碳化爐200的第一空間211,藉 由區隔部220作高溫間接加熱之處理,以分別產生高溫碳 化氣體以及生質能碳料230’。 步驟三:如流程804,利用該研磨單元300將生質能碳 料230’研磨成顆粒約50微米的粉狀生質能碳料230”,並 且儲置於該儲槽400中。 步驟四:如流程804,藉由該泵浦500將微米化的該粉 狀生質能碳料230”經由固體導入口 630泵入該挾帶床氣 化爐600中。如流程805,而將該氣體輸出端620產出的 高溫碳化氣體經氣體導入口 620導引入該挾帶床氣化爐 600中。如流程806、流程807與流程808,該粉狀生質能 15 1320840 碳料230”與高溫碳化氣體同時導引入該挾帶床氣化爐600 時,亦在導引入口處即該第:一、二供氧端640、650分別 加入氧氣(02),使高溫碳化氣體與粉狀生質能碳料230” 在氣體燃燒區660快速且瞬間部分燃燒成氣化合成燃氣 (syngas)。如流程809,最後將此合成燃氣(syngas)由燃氣 輸出口 670輸出。該氣體燃燒區660的溫度高達攝氏1400 °C左右,且高溫碳化氣體的主要成分為H20與co2的組合。 此二成份與所注入的生質能碳料分別發生多布爾 (Boudourard)反應與水氣化(water-shift)反應,反應式如式 (1)與式(2): C02 氣化反應(Boudouard reaction): C (biocarbon) + C〇2 &lt;-&gt; 2CO (1) H20 氣4匕反應(water gasification reaction): C (biocarbon) + H2O ·〇· CO + H2 (2) 據上,在挾帶床氣化爐600内燃燒生質能間接加熱碳 化爐200内所產生的碳化氣體,可在挾帶床氣化爐600内 產生高溫的氣化條件,不但能造就更快速的氣化反應,也 可減少因為低氣化溫度與長滯留時間的焦油(tar)形成問 題,故本發明因而可提高挾帶床氣化反應爐的氣化反應速 率與強度,合成燃氣(syngas)所含的焦油(tar)將可大幅減 低。 歸納上述,本發明的固體生質能碳化結合挾帶床氣化 系統及其製程確實具有以下功效及優點: 16 1320840 一、相較於現有挾帶床氣化反應爐是藉由乾式和濕式 的方式將碳粉與純氧注入爐内’僅藉由部份燃燒或缺氧燃 燒所釋放出的熱量氣化煤粉產生合成燃氣(c〇、H2、CH4 等)’導致合成燃氣的品質不佳的缺點。本發明將生質能間 接加熱碳化爐200所產生的高熱值碳化氣體(即高溫碳化 氣體)與乳氣(〇2)注入氣體燃燒區600,藉由該氣體燃燒區 600以攝氏1400t:左右之高溫快速瞬間部分燃燒,以快速 產生效率咼且雨品質(純度高)的氣化合成燃氣(syngas),故 可提高挾帶床氣化反應爐的氣化反應速率與強度,以大幅 減低合成燃氣(syngas)内所含的焦油(tar)數量。 一本發明採用生質能間接加熱碳化爐200以碳化熱 源101對碳材原料230作間接加熱的碳化型式,可以提高 收碳率與碳化氣體熱值。此外,在本實施例中,該生質= 間接加熱碳化爐200係呈螺旋轉軸(圖未揭示)攪動,並^ 動生質能碳料230,往固體輸出端27〇移動,以連續進料與 連續出料使用連動的雙層匣門來達成,故本發明具有產速 快’而可提高產量。 三、利用生質能碳化程序’將熱值低或能源密度低的 生質能先轉換成高熱值與高反應強度的生質能碳,生質能 碳經過研磨到約50微米後,可暫存於儲槽400,或是直2 與純氧(〇2)同時注入挾帶床氣化爐6〇〇,進行高效率的氣 化反應,以期達到預期的燃氣效率與品質。 β四、將生質能碳料注入於挾帶床氣化爐3〇〇,不但可 提高挾帶床氣化爐_的氣^轉換效率與降低空氣污染排 ψί-ί^Ά 放,且因生質能碳料所含雜質低,而且幾乎不含硫份,再 加上生質能碳料的反應強度比化石煤碳高,所以本發明利 用尚溫碳化且微米化的粉狀生能質碳料23〇,,導入挾帶床 氣化爐600内作氣化反應,是一最佳進料源。 因此’本發明之固體生質能碳化結合挾帶床氣化系統 及其製程可以將熱值僅有煤碳一半的生質能氣化成高品 質的合成燃氣,此合成燃氣可以取代日益短少的天然氣或 液化石油氣,作為高效率複循環發電的燃料,藉大量使用 自產的’而且屬二氧化碳中的生質能,可有效降低二氧化 碳的排放並增加能源自主的能力。 雖然本發明已以一實施例揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖是繪示本發明一實施例的固體生質能碳化結合 挾帶床氣化系統的設備組合之流程圖。 第2圖是繪示該實施例之生質能氣化爐的詳細結構 圖。 第3圖是繪示該實施例之生質能氣化爐與原料供應桶 的局部放大圖。 第4圖是㈣該實施例之生質能間接加熱碳化爐及研 磨單元與儲桶的局部放大圖。 第5圖是繪示該實施例之挾帶床氣化爐與泵浦的局 放大圖。 第6圖是繪示本發明一實施例的固體生質能碳化結人 挾帶床氣化製程的步驟流程圖。 。〇 【主要元件符號說明】 100 : 生質能氣化爐 101 :碳化熱能 110 : 氣化爐體 111 :生質能進料口 112 : 乾燥區 113 :熱裂解區 114 : 還原區 115 :燃燒區 116 : 排灰柵攔 117 :儲灰桶 120 : 内藏式燃燒管 121 :孔隙 122 : 燃燒管 123 :排氣管 140 : 高壓送風機 130 :氣化空氣管 200 : 生質能間接加熱碳化爐210 :碳化爐本體 211 : 第一空間 212 :第二空間 220 : 區隔部 2 3 0 :碳材原料 230’ :生質能碳料 230’’ :粉狀生質能碳料 240 : 進料口 250 :熱源輸入端 260 : 氣體輸出端 270 :固體輸出端 1320840There is a feed port 310 for introducing the raw biomass carbon material 230' produced by the solid output end 270, and a feed port 320 for feeding the pulverized powdery biomass carbon material 230". Referring to Figure 5, A partial enlarged view showing the simultaneous addition of powdered and gasified biomass to the gasification furnace of the belt bed. Referring to Figures 1 and 5, the pump 500 is connected to the feed port of the grinding unit 300. 320 is interposed between the solid introduction port 630 of the crucible bed gasification furnace 600 for pumping micron-sized powdery biomass carbon material 230" into the crucible bed gasification furnace 600. Refer to Figures 1 and 4. The storage tank 400 is connected between the polishing unit 300 and the pump 500 for storing the ground powdery biomass carbon material 230". Referring to Figures 1 and 5, the belt bed gas The furnace 600 has a gas bed furnace body 610, a gas inlet port 620 connected to the gas output end 280, and a gas inlet port 620 adjacent to the gas inlet port 620 and connected to the feed port 320 of the grinding unit 300. a solid inlet 630, a first oxygen supply end 640 adjacent to the gas introduction port 620, a second oxygen supply end 650 adjacent to the solid introduction port 630, a gas inlet port 620 and the solid introduction port. a gas outlet 670 of the 630, and a gas combustion zone 660 between the gas introduction port 620, the solid introduction port 630, the first oxygen supply end 640 and the second oxygen supply end 650. When the first The two oxygen supply ends 640 and 650 respectively send oxygen (02) into the gas combustion zone 660, and the high temperature gaseous and powdery biomass energy carbon material 230" is instantaneously partially burned (the temperature of the gas combustion zone 600 is as high as 1400 °C). C or so), to quickly produce high-quality 14 1320840 cargo year / Qiao: 丨 quality Gasification Synthesis gas (syngas). In addition, the gasification syngas produced by the crucible bed gasifier 600 is directed to a purification unit (not shown) at the rear end for processing. Referring to the block diagram of Fig. 6, a flow chart of the gasification process of the solid biomass energy carbonization combined with the belt bed according to an embodiment of the present invention is shown. Referring to Figures 1 and 6, the solid biomass carbonization combined with an annulus bed gasification process of the present invention comprises the following steps: Step 1: As in Process 801, the carbonization is produced via the Biomass Gasifier 100. Heat source 101. In the process 802, the carbon material raw material 230 is supplied through a raw material supply tank 700, and the preparation operation of the carbonization heat source 101 and the carbon material raw material 230 is first performed. Step 2: According to the process 803, the carbonization heat source 101 is sent to the second space 212 of the biomass energy indirect heating of the carbonization furnace 200. The carbon material raw material 230 is introduced into the first space 211 of the carbonization furnace 200 by indirect heating, and the high temperature carbonization gas and the biomass energy carbon material are respectively generated by the high temperature indirect heating treatment by the partition portion 220. 230'. Step 3: As in Process 804, the grinding energy unit 230' is used to grind the biomass energy carbon material 230' into a powdery biomass carbon material 230" having a particle size of about 50 microns, and is stored in the storage tank 400. Step 4: In step 804, the micronized powdered biomass carbon material 230" is pumped into the ankle belt bed gasifier 600 via the solids introduction port 630 by the pump 500. As in flow 805, the high temperature carbonized gas produced at the gas output 620 is introduced into the annuncleated bed gasifier 600 through the gas introduction port 620. As in the process 806, the flow 807 and the flow 808, when the powdery biomass 15 1320840 carbon material 230" is simultaneously introduced into the 挟 belt bed gasifier 600 and the high temperature carbonized gas, the guide is also at the inlet: The first and second oxygen supply ends 640 and 650 are respectively added with oxygen (02), so that the high temperature carbonized gas and the powdery biomass energy carbon material 230" are rapidly and instantaneously partially burned into gasified synthetic gas (syngas) in the gas combustion zone 660. As in flow 809, the synthetic gas (syngas) is finally output from the gas outlet 670. The temperature of the gas combustion zone 660 is as high as about 1400 ° C, and the main component of the high temperature carbonized gas is a combination of H20 and co2. The two components react with the injected bioenergy carbon material in a Boulderour reaction and a water-shift reaction, respectively, and the reaction formula is as shown in formula (1) and formula (2): C02 gasification reaction (Boudouard) Reaction): C (biocarbon) + C〇2 &lt;-&gt; 2CO (1) H20 gas 4 gas reaction reaction: C (biocarbon) + H2O · 〇 · CO + H2 (2) According to The combustion biomass in the gas-bedded gasifier 600 can indirectly heat the carbonized gas generated in the carbonization furnace 200, and can generate high-temperature gasification conditions in the gas-bedded gasifier 600, which can not only produce a faster gasification reaction. The problem of formation of tar due to low gasification temperature and long residence time can also be reduced, so that the present invention can improve the gasification reaction rate and strength of the gasification reactor of the bismuth bed, and the synthesis gas (syngas) The tar (tar) will be greatly reduced. In summary, the solid biomass energy carbonization combined with the belt bed gasification system of the present invention and the process thereof have the following effects and advantages: 16 1320840 1. Compared with the existing anthracite bed gasification reactor is by dry and wet The way to inject carbon powder and pure oxygen into the furnace 'only use the heat released by partial combustion or anaerobic combustion to gasify the pulverized coal to produce synthetic gas (c〇, H2, CH4, etc.) The disadvantage of poor quality. The present invention injects the high calorific value carbonized gas (i.e., high temperature carbonized gas) and the milk gas (〇2) generated by the biomass indirectly by the carbonization furnace 200 into the gas combustion zone 600, and the gas combustion zone 600 is at about 1400 t: High-temperature rapid and instantaneous partial combustion, in order to quickly produce gasification and syngas with high efficiency and high purity (purity), it can improve the gasification reaction rate and strength of the gasification reactor of the belt bed, so as to greatly reduce the synthesis. The amount of tar contained in the gas (syngas). In the present invention, the carbonization type in which the carbonization furnace 200 is indirectly heated by the carbonization heat source 101 by the biomass energy can increase the carbonization rate and the calorific value of the carbonized gas. In addition, in the present embodiment, the biomass = indirect heating carbonization furnace 200 is agitated by a spiral shaft (not shown), and the biomass carbon material 230 is moved to the solid output end 27〇 for continuous feeding. The double-layered door that is linked with the continuous discharge is used, so the invention has a fast production speed and can increase the output. Third, the use of biomass energy carbonization program 'will be low calorific value or low energy density of biomass can be converted into high calorific value and high reaction intensity of biomass energy carbon, biomass energy carbon after grinding to about 50 microns, can be temporarily It is stored in the storage tank 400, or directly injected into the gasification furnace of the belt bed with pure oxygen (〇2) to carry out high-efficiency gasification reaction in order to achieve the expected gas efficiency and quality.四4. Injecting the raw material energy carbon material into the 挟 belt bed gasifier 3〇〇, not only can improve the gas conversion efficiency of the 挟 belt bed gasifier _ 降低 降低 降低 降低 ψ ψ The raw material carbon material contains low impurities and contains almost no sulfur, and the reaction strength of the raw material carbon material is higher than that of the fossil coal. Therefore, the present invention utilizes the powdered biomass which is carbonized and micronized at room temperature. The carbon material is 23 〇, and it is introduced into the 挟 belt bed gasifier 600 for gasification reaction, which is an optimal feed source. Therefore, the solid biomass energy carbonization combined with the belt bed gasification system of the present invention and the process thereof can vaporize the biomass energy having half of the carbon value into high-quality synthetic gas, and the synthetic gas can be replaced by the increasingly short Natural gas or liquefied petroleum gas, as a fuel for high-efficiency double-cycle power generation, borrows a large amount of self-produced 'and is the biomass energy in carbon dioxide, which can effectively reduce carbon dioxide emissions and increase energy autonomy. Although the present invention has been disclosed in an embodiment of the present invention, it is not intended to limit the present invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A flow chart of a combination of equipment for biomass carbonization combined with an annulus bed gasification system. Fig. 2 is a view showing the detailed structure of the biomass gasifier of this embodiment. Fig. 3 is a partially enlarged view showing the biomass gasification furnace and the raw material supply tank of the embodiment. Fig. 4 is a partially enlarged view showing the (4) indirect heating of the carbonization furnace and the grinding unit and the storage tank of the biomass in this embodiment. Fig. 5 is a partially enlarged view showing the belt bed gasifier and the pump of the embodiment. Fig. 6 is a flow chart showing the steps of a gasification process for a solid biomass energy carbonization knotted mantle belt bed according to an embodiment of the present invention. . 〇【Main component symbol description】 100 : Biomass gasifier 101 : Carbonization heat 110 : Gasifier body 111 : Biomass energy feed port 112 : Drying zone 113 : Thermal cracking zone 114 : Reduction zone 115 : Combustion zone 116 : Ash gate 117 : Ash storage bucket 120 : Built-in combustion pipe 121 : Pork 122 : Burning pipe 123 : Exhaust pipe 140 : High pressure blower 130 : Gasified air pipe 200 : Biomass energy indirectly heats the carbonizing furnace 210 :Carbide body 211 : First space 212 : Second space 220 : Zone 2 3 0 : Carbon material raw material 230 ': Biomass carbon material 230'': Powdery biomass carbon material 240 : Feed port 250: heat source input 260: gas output 270: solid output 1320840

280 : 熱源輸出端 300 : 研磨單元 310 : 進料口 320 : 出料口 400 : 儲槽 500 : 栗浦 600 : 挾帶床氣化爐 610 : 挾帶床氣化爐體 620 : 氣體導入口 630 : 固體導入口 640 : 第一供氧端 650 : 第二供氧端 660 : 氣體燃燒區 670 : 燃氣輸出口 700 : 原料供應桶 801 : 流程 802 : 流程 803 : 流程 804 : 流程 805 : :流程 806 : 流程 807 : :流程 808 : 流程 809 : :流程 20280: heat source output terminal 300: grinding unit 310: inlet port 320: discharge port 400: storage tank 500: Lipu 600: 挟 belt bed gasifier 610: 挟 belt bed gasification furnace body 620: gas inlet port 630 : Solids inlet 640 : First oxygen supply end 650 : Second oxygen supply end 660 : Gas combustion zone 670 : Gas outlet 700 : Raw material supply tank 801 : Process 802 : Process 803 : Process 804 : Process 805 : : Process 806: Process 807:: Process 808: Process 809: : Process 20

Claims (1)

1320840 十、申請專利範圍: 種固體生質能碳化結合挾帶床氣化系統,包含: 生質此氣化爐’提供一碳化熱源; 生質邊間接加熱碳化爐,具有一碳化爐本體、至少 一個將該碳化爐本體區分成互不通連之一第一空間與一 第二空間的區隔部、一將多數碳材原料連續送入該第一空 間的進料口、一供導入該碳化熱源的熱源輸入端、各自獨 立並與§玄第一空間相通的一氣體輸出端和一固體輸出 端,以及一個與該第二空間相通並遠離該熱源輸入端的一 熱源輸出端; 一研磨單元,具有一導入該固體輸出端產出之生質能 碳料的進料口’與一將粉碎後的粉狀生質能碳料送出的送 料口;以及 一挾帶床氣化爐,具有一挾帶床氣化爐體、一與該氣 體輸出端相連接的氣體導入口、一鄰近於該氣體導入口並 與該研磨單元之送料口相連接的固體導入口、一鄰近於該 氧體導入口的第一供氧端、一鄰近於該固體導入口的第二 供氧端、一遠離於該氣體導入口與該固體導入口的燃氣輸 出口 ’以及位於該氣體導入口、該固體導入口、該第一供 氧端與該第二供氧端之間的一氣體燃燒區; 藉此,當該第一、二供氧端分別將氧氣送入氣體燃燒 區,以使分別經由該氣體導入口與該固體導入口導入氣體 燃燒區之高溫的氣態、粉狀生質能碳料部分燃燒,產出氣 21 化合成燃氣。 2·如申請專利範圍第1項所述之固體生質能碳化結合 挟帶床氣化系統,更包含一泵浦。 3·如申請專利範圍第2項所述之固體生質能碳化結合 挟帶床氣化系統’該泵浦連接在該研磨單元的送料口與該 挾帶床氣化爐之固體導入口之間。 4·如申請專利範圍第1項所述之固體生質能碳化結合 挟帶床氣化系統,其中該研磨單元將生質能碳料研磨成微 米級顆粒。 5.如申請專利範圍第4項所述之固體生質能碳化結合 挾帶床氣化系統’該研磨單元將生f能碳料研磨成5〇微 米後送入該挾帶床氣化爐中。 6·如申請專利範圍第5項所述之固體生質能碳化結合 挾帶床氣化系統,更包含—儲槽,研磨後的粉狀生質能碳 料係儲置於該儲槽中。 7.如申請專利範圍第1項所述之固體生質能碳化結合 扶帶床氣化系統,其t該氣㈣燒區的溫度為攝氏1400 °C左右。 22 8·如申請專利範圍第1項所述之固體生質能碳化結合 挟帶床氣化系統’其中該生質能間接加熱碳化爐是環狀桶 體,而該區隔部是用以分隔該第一、二空間的一環圈體。 9·如申請專利範圍第1項所述之固體生質能碳化結合 挟帶床氣化系統’其中該生質能氣化爐具有一氣化爐體、 一内藏式燃燒管,以及一氣化空氣管,該氣化爐體具有一 生質能進料口與一燃燒區。 10.如申請專利範圍第9項所述之固體生質能碳化 結合挟帶床氣化系統,該氣化爐體更具有一乾燥區,且該 乾燥區位於該燃燒區上方。 11·如申請專利範圍第10項所述之固體生質能碳化 、’· ° σ挟帶床氣化系統,該氣化爐體更具有一熱裂解區,該 熱裂解區位於該乾燥區與該燃燒區之間。 12. 如申請專利範圍第11項所述之固體生質能碳化 結合挾帶床氣化系統,該氣化爐體更具有一還原區,該還 原區位於該熱裂解區與該燃燒區之間。 13. 如申請專利範圍第12項所述之固體生質能碳化 結合挟帶床氣化系統,該氣化爐體更具有一儲灰桶,該儲 23 灰桶位於該還原區下方。 14.如申請專利範圍第9項所述之固體生質能碳化 結合挾帶床氣化系統,該内藏式燃燒管兩端分別連接一燃 燒管與一排氣管。 15'如申請專利範圍第9項所述之固體生質能碳化 結合挾帶床氣化系統,該生質能氣化爐更具有一高壓送風 機,該咼壓送風機與該内藏式燃燒管及該氣化空氣管連 接。 16·如申請專利範圍第9項所述之固體生質能碳化 結合挾帶床氣化系、统’該氣化爐體更具有一熱裂解區,該 内藏式燃燒管具有多數個貫穿管壁的孔隙,且該等孔隙與 該熱裂解區相連通。 1?·—種固體生質能碳化結合挾帶床氣化製程’包含 以下製造步驟·· (A) 分別提供一碳化熱源和一碳材原料; (B) 將該碳化熱源和與碳材原料同時導引入一生質能間 接加熱奴化爐,以分別產生一高溫碳化氣體,以及一生質 月&amp;石反料; ' (C) 將該生質能碳料研磨成微米化顆粒;以及 (D) 將該高溫碳化氣體與微米化的粉狀生質能碳料分 1320840 別導入—抉帶床氣化爐内,並且分別在導引人口處加入氧 氣’使高溫碳化氣難純生質能销快速氣化成氣化合 成燃氣。 18. 如申睛專利範圍第17項所述之固體生質能碳化 結合挾帶床氣化製程’在步驟⑼之前,利用―栗浦將粉狀 生質能碳料泵入該挾帶床氣化爐中。 19. 如申請專利範圍第17項所述之固體生質能碳化 結合挾帶床氣化製程’該碳化熱源是由一生質能氣化爐所 產出。 251320840 X. Patent application scope: A kind of solid biomass energy carbonization combined with an annulus bed gasification system, comprising: raw material, the gasification furnace provides a carbonization heat source; the raw material side indirectly heats the carbonization furnace, has a carbonization furnace body, at least a partitioning portion for dividing the carbonization furnace body into a first space and a second space, a feed port for continuously feeding a plurality of carbon material raw materials into the first space, and a feeding source for introducing the carbonization heat source a heat source input end, a gas output end and a solid output end respectively connected to the first space of the first space, and a heat source output end communicating with the second space and away from the input end of the heat source; a feed port for introducing the raw material carbon material produced at the solid output end and a feed port for discharging the pulverized powdery biomass carbon material; and a belt bed gasifier having a sling band a gasification furnace body, a gas inlet port connected to the gas output end, a solid inlet port adjacent to the gas inlet port and connected to the feed port of the grinding unit, adjacent to the oxygen a first oxygen supply end of the inlet, a second oxygen supply end adjacent to the solid introduction port, a gas outlet port remote from the gas introduction port and the solid introduction port, and a gas inlet port, the solid a gas combustion zone between the inlet, the first oxygen supply end and the second oxygen supply end; thereby, when the first and second oxygen supply ends respectively send oxygen into the gas combustion zone, respectively The gas introduction port and the high-temperature gaseous and powdery biomass carbon material introduced into the gas combustion zone by the solid introduction port are partially burned, and the produced gas 21 is synthesized into a gas. 2. The solid biomass energy carbonization combined with the belt bed gasification system as described in claim 1 of the patent application includes a pump. 3. The solid biomass energy carbonization combined with a belt bed gasification system as described in claim 2, wherein the pump is connected between the feed port of the grinding unit and the solid introduction port of the belt bed gasifier . 4. The solid biomass energy carbonization combined with a belt bed gasification system as described in claim 1, wherein the grinding unit grinds the biomass energy carbon material into micron-sized particles. 5. The solid biomass energy carbonization combined with an annulus bed gasification system as described in claim 4, wherein the grinding unit grinds the raw f energy carbon material into 5 〇 micrometers and then feeds into the 挟 belt bed gasifier. . 6. The solid biomass energy carbonization combined with the belt bed gasification system as described in claim 5, further comprising a storage tank, wherein the ground powdery biomass energy carbon material is stored in the storage tank. 7. The solid biomass energy carbonization combined with the bed gasification system as described in claim 1 of the patent scope, wherein the temperature of the gas (four) burning zone is about 1400 °C. 22 8. The solid biomass energy carbonization combined with the belt bed gasification system as described in claim 1 wherein the biomass indirect heating carbonization furnace is an annular barrel, and the partition is used to separate a ring body of the first and second spaces. 9. The solid biomass energy carbonization combined with an annulus bed gasification system as described in claim 1, wherein the biomass gasification furnace has a gasification furnace body, a built-in combustion tube, and a gasification An air tube having a raw material feed inlet and a combustion zone. 10. The solid biomass carbonization combined crucible bed gasification system of claim 9, wherein the gasification furnace body further has a drying zone, and the drying zone is located above the combustion zone. 11. The solid biomass energy carbonization, '·° σ挟 bed gasification system according to claim 10, wherein the gasification furnace body further has a thermal cracking zone, wherein the thermal cracking zone is located in the drying zone Between the burning zones. 12. The solid biomass energy carbonization combined with an annulus bed gasification system according to claim 11, wherein the gasification furnace body further has a reduction zone, the reduction zone being located between the thermal cracking zone and the combustion zone . 13. The solid biomass energy carbonization combined with an annulus bed gasification system according to claim 12, wherein the gasification furnace body further has an ash storage tank, and the storage ash tank is located below the reduction zone. 14. The solid biomass energy carbonization combined crucible bed gasification system according to claim 9, wherein the combustion tube is connected to a combustion tube and an exhaust tube respectively. 15' The solid biomass energy carbonization combined with the belt bed gasification system according to claim 9 of the patent application scope, wherein the biomass gasification furnace further comprises a high pressure blower, the pressure blower and the built-in combustion tube and The gasification air tube is connected. 16· The solid biomass energy carbonization combined with the belt gasification system according to claim 9 of the patent scope, the gasification furnace body further has a thermal cracking zone, and the built-in combustion pipe has a plurality of through pipes The pores of the wall, and the pores are in communication with the pyrolysis zone. 1?·—A kind of solid biomass energy carbonization combined with a belt gasification process' includes the following manufacturing steps (A) providing a carbonization heat source and a carbon material raw material respectively; (B) the carbonization heat source and the carbon material At the same time, a primary inductive energy is introduced to indirectly heat the liquefaction furnace to respectively generate a high-temperature carbonized gas, and a primary biomass &amp; stone counter material; '(C) grinding the biomass carbon material into micronized particles; and (D) The high-temperature carbonized gas and the micronized powdered biomass energy carbon material 1320840 are introduced into the 抉-bed gasification furnace, and oxygen is added to the guiding population, respectively, so that the high-temperature carbonized gas is difficult to be purely produced. Gasification into gasification synthesis gas. 18. For the solid biomass energy carbonization combined with the belt gasification process as described in Item 17 of the scope of the patent application, before the step (9), the powdered biomass energy carbon material is pumped into the belt bed gas using the Lipu pump. In the furnace. 19. The solid biomass energy carbonization combined with the belt bed gasification process as described in claim 17 of the patent application. The carbonization heat source is produced by a biomass gasifier. 25
TW95138895A 2006-10-20 2006-10-20 Entrained bed gasification system for solid biomass carbonization and the method thereof TWI320840B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95138895A TWI320840B (en) 2006-10-20 2006-10-20 Entrained bed gasification system for solid biomass carbonization and the method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95138895A TWI320840B (en) 2006-10-20 2006-10-20 Entrained bed gasification system for solid biomass carbonization and the method thereof

Publications (2)

Publication Number Publication Date
TW200819681A TW200819681A (en) 2008-05-01
TWI320840B true TWI320840B (en) 2010-02-21

Family

ID=44769887

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95138895A TWI320840B (en) 2006-10-20 2006-10-20 Entrained bed gasification system for solid biomass carbonization and the method thereof

Country Status (1)

Country Link
TW (1) TWI320840B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107746729A (en) * 2017-09-18 2018-03-02 福建省爱善环保科技有限公司 A kind of full gasifying electricity generation technique of rubbish and sludge

Also Published As

Publication number Publication date
TW200819681A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
Udomsirichakorn et al. Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification
KR101445205B1 (en) Process and ststem for producing synthesis gas from biomass by pyrolysis
CN101412929B (en) High temperature gasification technological process and system for preparing synthesis gas by using biomass
CN101818081B (en) Process and system for manufacturing synthesis gas from biomass by carbonization
CN102329651B (en) Three-stage gasification device for producing synthesis gas through biomass pyrolysis and gasification
CN101418239B (en) High temperature gasification technological process and system for preparing synthesis gas by using biomass
CN102849676B (en) High-temperature water vapor pyrolysis-cracking-gasification device and method for solid fuel
CN101418240B (en) High temperature gasification technological process and system for preparing synthesis gas by using biomass
PL224909B1 (en) Method and system for the production of biomethane, ecomethane as well as electric power and heat energy
Matamba et al. A progress insight of the formation of hydrogen rich syngas from coal gasification
JP2010533769A (en) Steam hydrogenation gasification method and apparatus with increased conversion time
Lv et al. Steam co-gasification of different ratios of spirit-based distillers’ grains and anthracite coal to produce hydrogen-rich gas
CN102530859A (en) External-heating-type microwave plasma gasification furnace and synthesis gas production method
CN102786994A (en) Method for preparing methane-rich gas through autocatalytic gasification of biomass
CN104910986B (en) A kind of biomass double fluidized-bed vaporizing system gas plant and technique
PL231090B1 (en) Method and the system for the production of biomethane and ecomethane
KR20100048452A (en) Method of transforming combustible wastes into energy fuel and gasification system of combustible wastes
US20150005399A1 (en) Method and device for producing synthetic gas and method and device for synthesizing liquid fuel
CN101418238B (en) High temperature gasification technological process and system for preparing synthesis gas by using biomass
CN105623685A (en) Method and equipment for continuous co-production of gas and charcoal through biomass material in-situ catalytic cracking
CN205740917U (en) A kind of solid waste three combination pyrolytic gasification and coke tar cracking integral system
TWI320840B (en) Entrained bed gasification system for solid biomass carbonization and the method thereof
CN106635171A (en) Method and equipment for producing coal gas through biomass pressurized gasification
CN203513601U (en) Biomass gasification and pyrolysis reactor
KR20100102569A (en) Method of transforming combustible wastes into energy fuel and gasification system of combustible wastes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees