TWI317188B - Antenna and antenna assembly thereof - Google Patents

Antenna and antenna assembly thereof Download PDF

Info

Publication number
TWI317188B
TWI317188B TW95138882A TW95138882A TWI317188B TW I317188 B TWI317188 B TW I317188B TW 95138882 A TW95138882 A TW 95138882A TW 95138882 A TW95138882 A TW 95138882A TW I317188 B TWI317188 B TW I317188B
Authority
TW
Taiwan
Prior art keywords
radiator
antenna
disposed
electrically connected
feeding
Prior art date
Application number
TW95138882A
Other languages
Chinese (zh)
Other versions
TW200820488A (en
Inventor
Chia-Hao Mei
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95138882A priority Critical patent/TWI317188B/en
Publication of TW200820488A publication Critical patent/TW200820488A/en
Application granted granted Critical
Publication of TWI317188B publication Critical patent/TWI317188B/en

Links

Landscapes

  • Details Of Aerials (AREA)

Description

I317188I317188

109A 第一接地部 八 ’請揭示最錢示發明特徵的化學 式: 無 九、發明說明: 【發明所屬之技術領域】 本發月々及種天線及其組合,尤其涉及一種應用於無線 通訊設備上的天線及其組合。 【先前技術】 無線區域網路「瓜;1 \ Wireless Local Access Network, WLAN) 襄置係工作於中 ,, 效年為2.4GHz及5.0GHz兩個頻段,為使無 踝區域網路裝署 之訊。 j接收中心頻率為2.4GHz及5.0GHz兩個頻段 天線j A許多無線區域網路裝置安裝有複數天線單元以形成一 、’、、、' Q,進而達到多輸入輸出 (Multi Input Multi Output, ΜΙΜΟ)之功絲 ^ 双。如此,不僅需要將每一個天線單元之面積設 計得較小,而日 β 且需要有效隔離每一個天線單元之間的干擾,才 °足‘、’、、線區域網路裝置具有小面積並具有優良之輻射效能 之需求。 【發明内容】 有鐘於 、,Λ, 有必要提供一種天線,以在不影響性能之前提 下具有較小面積。 1317188 ·' . 此外,還需要提供一天線組合,可有效增強多輸入輸出天 -· 線中各天線單元間之隔離度。 - 一種天線設置於一電路板上,該電路板包括一第一表面與 一第二表面,第一表面與第二表面相對。天線包括一饋入部、 -一輻射部、一第一輔助輻射體、一第二輔助輻射體以及一接地 . 部。饋入部包括一第一饋入段與一第二饋入段,分別設置於該 電路板的第一表面與第二表面。輻射部包括一第一輻射體、一 • 第二輻射體、一第三輻射體以及一第四輻射體,其中該第一輻 射體與該第二輻射體設置於該第一表面且與該第一饋入段電 性連接,該第三輻射體與該第四輻射體設置於該第二表面,且 與該第二饋入段電性連接。第一輔助輻射體設置於該第一表 面,與該第一輻射體電性連接,用於增強該第一輻射體的耦 合。第二輔助輻射體設置於該第一表面,與該第二輻射體電性 連接,用於增強該第二輻射體的耦合。接地部包括一第一接地 • 部,設置於該第一表面,以及一第二接地部設置於該第二表面。 一種天線組合,設置於一電路板上,該電路板包括一第一 表面與一第二表面,第一表面與第二表面相對。天線組合包括 一第一天線、一第二天線、一第三天線。第一天線包括一饋入 部與一輻射部,其中,該饋入部包括一第一饋入段與一第二饋 入段,分別設置於該電路板的第一表面與第二表面。輻射部包 括一第一輻射體、一第二輻射體、一第三輻射體以及一第四輻 射體,其中該第一輻射體與該第二輻射體設置於該第一表面且 1317188 - 與該該一饋入段電性連接,該第三輻射體與該第四輻射體設置 , 於該第二表面,且與該第二饋入段電性連接。第二天線與第三 . 天線並行設置於該第一天線的兩侧。 一種天線組合,設置於一電路板上,該電路板包括一第一 表面與一第二表面,該第一表面與該第二表面相對。該天線組 合包括複數天線,且每一天線均包括一饋入部、一輻射部以及 一接地部。該饋入部包括一第一饋入段與一第二饋入段,分別 • 設置於該電路板的第一表面與第二表面。輻射部包括一第一輻 射體、一第二輻射體、一第三輻射體以及一第四輻射體,其中 該第一輻射體與該第二輻射體設置於該第一表面且與該該一 饋入段電性連接,該第三輻射體與該第四輻射體設置於該第二 表面,且與該第二饋入段電性連接。第二天線與第三天線並行 設置於該第一天線的兩侧。 本發明實施方式所提供之天線及其組合,利用輻射體與辅 ® 助輻射體搭配之方式,可有效減小印刷式天線所佔的面積,同 時使得多輸入多輸出天線具有較好的隔離度。 【實施方式】 請參閱圖1,包括圖1A與圖1B。圖1A為天線10在電路 板100的第一表面1001的結構示意圖,圖1B為天線10在電 路板100的第二表面1003的結構示意圖。 電路板100包括一對相對的第一表面1001與第二表面 8 1003。 1317188 天線10包括一饋入部102、一輻射部104、一第一輔助輻 4射體106、一第二辅助輻射體108以及一接地部109。 - 饋入部102用於饋入電磁波訊號,其包括一設置於第一表 面1001的第一饋入段1021與一設置於第二表面1〇〇3的第二 ·-饋入段1023。在本實施方式中,第一饋入段1〇21與第二饋入 段1023均大致呈T字型。 輕射部104包括一第一輻射體1041、一第二輻射體1043、 Φ 一第二輻射體1045以及一第四輻射體1047。 第一輻射體1041與第二輻射體ι〇43設置於第一表面 1〇〇1,呈蜿蜒狀,均與第一饋入段1〇21電性連接,且分設於 第一饋入段1021的兩侧。在本實施方式中,第一輻射體1〇41 與第二輻射體1043的結構相同,且二者以第一饋入段1021相 對稱。 在本實施方式中,第一輕射體1041包括-第-輻射段 • 10411帛一輪射段1〇413、-第三輻射段1〇415以及一第四 輕射段10417。第-輻射段1〇411與第三輻射段ι〇4ΐ5平行設 置。第二輻射段10413電性連接第一轄射段10411與第三輻射 段10415。第四輻射段1〇417與第二輻射段1〇413平行設置, 且二者分別電性連接於第三輻射段1〇415的兩端。 在本實施方式中’第—輻射段lG4u的長度約為^腿, 寬度約為2mm。第二輻射段10413的長度約為4_,寬度約 為1mm。第三輻射段1〇415的長度約為9咖,寬度約為―。 1317188 第四輻射段10417的長度約為6.5mm,寬度約為imm。 第三輻射體1045與第四輻射體1〇47呈蜿蜒狀,且均設置 於第二表面1003,並分別與第二饋入段1〇23電性連接,且分 設置於第二饋入段1023的兩侧。在本實施方式中,第三輻射 體1043與第四輻射體1047的結構相同,且二者關於第二饋入 段1023對稱。 在本實施方式中’第三輻射體1045包括一第五輻射段 • 10451、一第六輻射段10453、一第七輻射段10455、一第一連 接段10452、一第二連接段10454、以及一第三連接段1〇456。 第五輻射段10451與第六輻射段10453以及第七輕射段 10455相互平行。第五輻射段10451的長度約為9mm,寬度約 為2.5mm。第六輕射段10453的長度約為9mm,寬度約為 1mm。第七輻射段10455的長度約為9mm,寬度約為2mm。 第一連接段10452與第二連接段10454以及第三連接段 • 10456相互平行。第一連接段10452電性連接第五輻射段ι〇451 與第六輻射段10453。第二連接段10454電性連接第六輻射段 10453與第七輻射段10455。第三連接段10456電性連接第七 輻射段10455與第二饋入段1023。第一連接段10452的長度約 為1mm,寬度約為lmm。第二連接段10454的長度約為lmm, 寬度約為1mm。第三連接段10456的長度約為3mm,寬度約 為1mm。第一連接段10452與第二連接段10454的距離大致上 等於第六輻射段10453的長度。第二連接段10454與第三連接 1317188 ·_ 段10456的距離大致上等於第七輻射段的長度。 第一輔助輻射體106設置於第一表面1001,且與第一輕射 - 體1041電性連接,用於增強第一輻射體1041的執合。在本實 施方式中’第一輔助輻射體106呈矩形,且與第一輻射段1〇411 平行。 第二輔助輻射體108設置於第一表面1001,且與第二輕射 體1043電性連接,用於增強第二輻射體1〇43的執合。在本實 • 施方式中,第二輔助輻射體1〇8呈矩形,且與第一輔助輕射1〇6 以第一饋入段1021相對稱。 接地部109包括一對設置於第一表面1001的第一接地部 109Α與一設置於第二表面的接地部109Β。第一接地部1〇9Α 為矩形,且對稱設置於第一饋入段1021的兩侧。第二接地部 為矩形’設置於第二表面1023,且與第一接地部1〇9α電性連 接。第二接地部109Β第二饋入段1023電性連接,使得其與第 • 三輻射體1045以及第四輻射體1047分別形成該天線1〇工作 頻率之1/4波長的開路線。 參閱圖2,係本發明實施方式中天線1〇之電壓駐彡皮比 (Voltage Standing Wave Ratio, VSWR)測試圖。横軸係天線 10之工作頻率’縱轴係電壓駐波比值。從圖2可以看出本實施 方式中之天線10工作於2.31-32.66GHZ頻段時,其VSWR小 於2,符合美國電氣電子工程師協會(IEEE) 802.11 b/g應用需求。 同時參閱圖3與圖4,所示分別為經電磁模擬所得本發明109A First grounding part 八' Please reveal the chemical formula of the most expensive invention features: None Nine, invention description: [Technical field of the invention] The present invention relates to a moon antenna and a combination thereof, and particularly to a wireless communication device Antennas and combinations thereof. [Prior Art] Wireless local area network "Mechao; 1 \ Wireless Local Access Network, WLAN" The system works in the middle, and the effective years are two bands of 2.4 GHz and 5.0 GHz, in order to enable the wireless network to be installed. j Receive center frequency is 2.4GHz and 5.0GHz two frequency band antenna j A Many wireless area network devices are equipped with multiple antenna units to form a ',,, 'Q, and thus achieve multiple input and output (Multi Input Multi Output , ΜΙΜΟ) The power of the wire ^ double. So, not only need to design the area of each antenna unit to be smaller, and the day β and need to effectively isolate the interference between each antenna unit, only the ', ', line The area network device has a small area and has excellent radiation performance. [Summary] There is a need to provide an antenna to provide a smaller area without affecting performance. 1317188 ·' . In addition, it is also necessary to provide an antenna combination, which can effectively enhance the isolation between each antenna unit in the multi-input and output days. - An antenna is disposed on a circuit board, and the circuit board includes a first The surface is opposite to the second surface, and the first surface is opposite to the second surface. The antenna includes a feeding portion, a radiation portion, a first auxiliary radiator, a second auxiliary radiator, and a grounding portion. The feeding portion includes a The first feeding portion and the second feeding portion are respectively disposed on the first surface and the second surface of the circuit board. The radiating portion includes a first radiator, a second radiator, a third radiator, and a fourth radiator, wherein the first radiator and the second radiator are disposed on the first surface and electrically connected to the first feeding portion, and the third radiator and the fourth radiator are disposed on the first radiator The second surface is electrically connected to the second feeding portion. The first auxiliary radiator is disposed on the first surface and electrically connected to the first radiator for enhancing coupling of the first radiator. The second auxiliary radiator is disposed on the first surface and electrically connected to the second radiator for enhancing coupling of the second radiator. The ground portion includes a first grounding portion disposed on the first surface, and A second grounding portion is disposed on the second surface. An antenna assembly is disposed on a circuit board, the circuit board includes a first surface and a second surface, and the first surface is opposite to the second surface. The antenna assembly includes a first antenna, a second antenna, and a The third antenna includes a feeding portion and a radiating portion, wherein the feeding portion includes a first feeding portion and a second feeding portion, respectively disposed on the first surface and the second surface of the circuit board The radiation portion includes a first radiator, a second radiator, a third radiator, and a fourth radiator, wherein the first radiator and the second radiator are disposed on the first surface and 1317188 - The third radiating body and the fourth radiating body are disposed on the second surface and electrically connected to the second feeding portion. The second antenna and the third antenna are disposed in parallel on both sides of the first antenna. An antenna assembly is disposed on a circuit board, the circuit board including a first surface and a second surface, the first surface being opposite the second surface. The antenna assembly includes a plurality of antennas, and each of the antennas includes a feed portion, a radiating portion, and a ground portion. The feeding portion includes a first feeding portion and a second feeding portion, respectively disposed on the first surface and the second surface of the circuit board. The radiation portion includes a first radiator, a second radiator, a third radiator, and a fourth radiator, wherein the first radiator and the second radiator are disposed on the first surface and the one The feeding portion is electrically connected, and the third radiator and the fourth radiator are disposed on the second surface and electrically connected to the second feeding portion. The second antenna is disposed in parallel with the third antenna on both sides of the first antenna. The antenna and the combination thereof provided by the embodiments of the present invention can effectively reduce the area occupied by the printed antenna by using the combination of the radiator and the auxiliary radiation aid, and at the same time, the multi-input and multi-output antenna has better isolation. . [Embodiment] Please refer to FIG. 1, including FIG. 1A and FIG. 1B. 1A is a schematic structural view of the antenna 10 on the first surface 1001 of the circuit board 100, and FIG. 1B is a schematic structural view of the antenna 10 on the second surface 1003 of the circuit board 100. The circuit board 100 includes a pair of opposing first and second surfaces 1001, 1003. The antenna 10 includes a feed portion 102, a radiating portion 104, a first auxiliary radiator 106, a second auxiliary radiator 108, and a ground portion 109. The feeding portion 102 is configured to feed the electromagnetic wave signal, and includes a first feeding section 1021 disposed on the first surface 1001 and a second feeding section 1023 disposed on the second surface 1〇〇3. In the present embodiment, the first feeding section 1〇21 and the second feeding section 1023 are both substantially T-shaped. The light-emitting portion 104 includes a first radiator 1041, a second radiator 1043, a Φ-second radiator 1045, and a fourth radiator 1047. The first radiator 1041 and the second radiator ι 43 are disposed on the first surface 1〇〇1, and are formed in a meandering shape, and are electrically connected to the first feeding portion 1〇21, and are respectively disposed on the first feeding portion. Both sides of the segment 1021. In the present embodiment, the first radiator 1〇41 has the same structure as the second radiator 1043, and both are symmetric with the first feeding section 1021. In the present embodiment, the first light projecting body 1041 includes a -th-radiation section 104104, a one-shot section 1〇413, a third radiating section 1〇415, and a fourth light-emitting section 10417. The first radiating section 1〇411 is disposed in parallel with the third radiating section ι〇4ΐ5. The second radiating section 10413 is electrically connected to the first radiating section 10411 and the third radiating section 10415. The fourth radiating section 1〇417 is disposed in parallel with the second radiating section 1〇413, and is electrically connected to both ends of the third radiating section 1〇415. In the present embodiment, the length of the first radiating section lG4u is about 2 legs and the width is about 2 mm. The second radiating section 10413 has a length of about 4 mm and a width of about 1 mm. The third radiant section 1 415 has a length of about 9 coffee and a width of about ―. 1317188 The fourth radiating section 10417 has a length of about 6.5 mm and a width of about imm. The third radiator 1045 and the fourth radiator 1〇47 are in a meandering shape, and are disposed on the second surface 1003, and are respectively electrically connected to the second feeding section 1〇23, and are respectively disposed on the second feeding. Both sides of the segment 1023. In the present embodiment, the third radiator 1043 has the same structure as the fourth radiator 1047, and both are symmetrical with respect to the second feeding section 1023. In the present embodiment, the third radiator 1045 includes a fifth radiant section 10451, a sixth radiant section 10453, a seventh radiant section 10455, a first connecting section 10452, a second connecting section 10454, and a The third connecting segment is 1 456. The fifth radiant section 10451 is parallel to the sixth radiant section 10453 and the seventh illuminating section 10455. The fifth radiating section 10451 has a length of about 9 mm and a width of about 2.5 mm. The sixth light-emitting section 10453 has a length of about 9 mm and a width of about 1 mm. The seventh radiant section 10455 has a length of about 9 mm and a width of about 2 mm. The first connecting section 10452 is parallel to the second connecting section 10454 and the third connecting section 10456. The first connecting section 10452 is electrically connected to the fifth radiating section ι 451 and the sixth radiating section 10453. The second connecting section 10454 is electrically connected to the sixth radiating section 10453 and the seventh radiating section 10455. The third connecting section 10456 is electrically connected to the seventh radiating section 10455 and the second feeding section 1023. The first connecting section 10452 has a length of about 1 mm and a width of about 1 mm. The second connecting section 10454 has a length of about 1 mm and a width of about 1 mm. The third connecting section 10456 has a length of about 3 mm and a width of about 1 mm. The distance between the first connecting section 10452 and the second connecting section 10454 is substantially equal to the length of the sixth radiating section 10453. The distance between the second connecting section 10454 and the third connecting 1317188 ·_ segment 10456 is substantially equal to the length of the seventh radiating section. The first auxiliary radiator 106 is disposed on the first surface 1001 and electrically connected to the first light emitter 1041 for enhancing the engagement of the first radiator 1041. In the present embodiment, the first auxiliary radiator 106 has a rectangular shape and is parallel to the first radiation segment 1?411. The second auxiliary radiator 108 is disposed on the first surface 1001 and electrically connected to the second light emitter 1043 for enhancing the engagement of the second radiator 1〇43. In the present embodiment, the second auxiliary radiator 1〇8 has a rectangular shape and is symmetrical with the first auxiliary light beam 1〇6 in the first feeding section 1021. The grounding portion 109 includes a pair of first ground portions 109A disposed on the first surface 1001 and a ground portion 109A disposed on the second surface. The first grounding portion 1〇9Α is rectangular and symmetrically disposed on both sides of the first feeding segment 1021. The second ground portion is rectangularly disposed on the second surface 1023 and electrically connected to the first ground portion 1〇9α. The second grounding portion 109 and the second feeding portion 1023 are electrically connected such that they form an open path of the quarter-wavelength of the antenna 1 〇 operating frequency with the third radiator 1045 and the fourth radiator 1047, respectively. Referring to FIG. 2, a voltage standing wave ratio (VSWR) test chart of the antenna 1 in the embodiment of the present invention is shown. The operating frequency of the horizontal axis antenna 10 is the vertical axis voltage standing wave ratio. It can be seen from Fig. 2 that the antenna 10 of the present embodiment operates at a frequency of 2.31-32.66 GHz, and has a VSWR of less than 2, which meets the requirements of the Institute of Electrical and Electronics Engineers (IEEE) 802.11 b/g application. Referring also to FIG. 3 and FIG. 4, the present invention is shown by electromagnetic simulation.

11 (S 1317188 實施方式中天線10工作於2.5GHz頻率與2.4GHz頻率之輻射 : 場方向圖’該方向圖包括水平面方向圖和垂直面方向圖。由圖 可知,本發明實施方式之天線10為全向型天線,其在各角度 之輻射皆比較均勻,且最大增益大於1.5dB。 本發明實施方式所提供之天線10利用輻射體與輔助輻射 體結合之方式,可具有好的全向式輻射特性,而且可以有效減 小天線10所佔的面積。 φ 參閱圖5,所示為本發明實施方式中天線組合20之結構示 意圖。 天線組合20包括三個並行放置的第一天線30、第二天線 40以及第三天線50,該等天線30、40、50的結構均與天線10 相同,因此詳細天線結構不再贅述。第二天線40與第三天線 50分設置於第一天線30的兩侧。在本實施方式中,第二天線 40到第一天線30的距離與第一天線30到第三天線50的距離 • 相等,均為其工作頻率之1/2波長,且該等天線之間的相位差 為0度。 在本發明的其他實施方式中,天線組合20亦可包括複數 天線10,而該等天線之間並行等間距設置於電路板100上。 參閱圖6,所示為本發明實施方式中天線組合20之隔離度 測試圖。 橫軸係天線組合20之工作頻率,縱軸為第一天線30、第二 天線40以及第三天線50之隔離度值。曲線I代表第一天線30 12 1317188 與第二天線40之間的隔離度。曲線II代第二天線40與第三天 線50之間的隔離度。曲線in代表第一天線30與第三天線5〇 之間的隔離度。 從圖6可以看出本實施方式中之天線組合20工作於2 4GHz 頻段時,第一天線30與第二天線40之間的隔離度約為_15dB。 第一天線30與第三天線50之間的隔離度約為-14.5dB。第二 天線40與第三天線50之間的隔離度約為-24.8dB。當天線組 • 合20工作於2.5GHz頻段時,第一天線30與第二天線40之間 的隔離度約為-15.6dB。第一天線30與第三天線50之間的隔 離度約為-15.ldB。第二天線40與第三天線50之間的隔離度 約為-24.9dB。由此可見,天線組合2〇的隔離度平均值小於 -10dB ’ 符合多輸入輸出(Multi Input Multi Output, ΜΙΜΟ )天 線之應用需求,並可實現全場性的接收及發射訊號的功能。 綜上所述’本發明符合發明專利要件,爰依法提出專利申 ^惟’以上所述者僅為本發明之較佳實施方式’舉凡熟悉本 咨技藝之人士,在援依本案發明精神所作之等效修飾或變化’ 應包含於以下之申請專利範圍内。 t圖式簡單說明】 圖1A係本發明實施方式中天線第一表面之結構示意圖。 ® 1B係本發明實施方式中天線第二表面之結構示意圖。 ® 2係經電磁模擬所得本發明實施方式巾天線之電壓駐波 13 1317188 • 比測試圖。 = 圖3係經電磁模擬所得本發明實施方式中天線工作於 -2.4GHz頻率之輻射場方向圖。 圖4係經電磁模擬所得本發明實施方式中天線工作於 ;2.5GHz頻率之輻射場方向圖。 圖5係本發明實施方式中天線組合之結構示意圖。 圖6係圖5中天線組合之隔離度測試圖。 ®【主要元件符號說明】 天線 10 電路板 100 饋入部 102 輻射體 104 第一輔助輻射體 106 第二輔助輻射體 108 接地部 109 第一表面 1001 第二表面 1003 第一饋入段 1021 第二饋入段 1023 第一輻射體 1041 14 1317188 .- 第二輻射體 1043 :第三輻射體 1045 第四輻射體 104711 (S 1317188 In the embodiment, the antenna 10 operates at a frequency of 2.5 GHz and a frequency of 2.4 GHz: a field pattern. The pattern includes a horizontal plane pattern and a vertical plane pattern. As can be seen from the figure, the antenna 10 of the embodiment of the present invention is The omnidirectional antenna has relatively uniform radiation at various angles, and the maximum gain is greater than 1.5 dB. The antenna 10 provided by the embodiment of the present invention can have good omnidirectional radiation by combining the radiator and the auxiliary radiator. The structure of the antenna assembly 20 is shown in FIG. 5. The antenna assembly 20 includes three first antennas 30 placed in parallel. The two antennas 40 and the third antenna 50 have the same structure as the antenna 10, and therefore the detailed antenna structure will not be described again. The second antenna 40 and the third antenna 50 are disposed on the first day. Both sides of the line 30. In the present embodiment, the distance from the second antenna 40 to the first antenna 30 is equal to the distance from the first antenna 30 to the third antenna 50, and is 1/2 of its operating frequency. Wavelength, and so on The phase difference between the lines is 0. In other embodiments of the present invention, the antenna assembly 20 may also include a plurality of antennas 10, and the antennas are equally spaced apart from each other on the circuit board 100. Referring to Figure 6, The isolation test chart of the antenna assembly 20 in the embodiment of the present invention is shown. The horizontal axis is the operating frequency of the antenna combination 20, and the vertical axis is the isolation value of the first antenna 30, the second antenna 40, and the third antenna 50. Curve I represents the isolation between the first antenna 30 12 1317188 and the second antenna 40. The curve II represents the isolation between the second antenna 40 and the third antenna 50. The curve in represents the first antenna 30 and The isolation between the third antenna 5 and the second antenna 40 is about the same when the antenna assembly 20 of the present embodiment operates in the 24 GHz band. _15 dB. The isolation between the first antenna 30 and the third antenna 50 is about -14.5 dB. The isolation between the second antenna 40 and the third antenna 50 is about -24.8 dB. When the 20 is operating in the 2.5 GHz band, the isolation between the first antenna 30 and the second antenna 40 is about -15.6 dB. The isolation between 30 and the third antenna 50 is about -1.ldB. The isolation between the second antenna 40 and the third antenna 50 is about -24.9 dB. It can be seen that the isolation of the antenna combination 2〇 The average value is less than -10dB'. It meets the application requirements of the Multi Input Multi Output (ΜΙΜΟ) antenna, and can realize the function of receiving and transmitting signals in full field. In summary, the present invention meets the requirements of the invention patent, Patent application is filed according to law. The above is only a preferred embodiment of the present invention. 'Equivalent modifications or changes made by the person in charge of the present invention in the spirit of the invention shall be included in the following patent application. Within the scope. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a schematic structural view of a first surface of an antenna in an embodiment of the present invention. ® 1B is a schematic structural view of the second surface of the antenna in the embodiment of the present invention. ® 2 is a voltage standing wave of the towel antenna of the embodiment of the present invention obtained by electromagnetic simulation 13 1317188 • Specific test chart. = Fig. 3 is a radiation field pattern of the antenna operating at -2.4 GHz in an embodiment of the invention obtained by electromagnetic simulation. 4 is a radiation field pattern of an antenna operating at a frequency of 2.5 GHz in an embodiment of the present invention obtained by electromagnetic simulation. FIG. 5 is a schematic structural diagram of an antenna assembly in an embodiment of the present invention. Figure 6 is a graph showing the isolation test of the antenna combination of Figure 5. ® [Main component symbol description] Antenna 10 Circuit board 100 Feeding portion 102 Radiator 104 First auxiliary radiator 106 Second auxiliary radiator 108 Ground portion 109 First surface 1001 Second surface 1003 First feeding portion 1021 Second feeding Incoming section 1023 first radiator 1041 14 1317188 .- second radiator 1043: third radiator 1045 fourth radiator 1047

第一接地部 109AFirst grounding portion 109A

第二接地部 109B 第一輻射段 10411 第二輻射段 10413 » 第三輻射段 10415 第四輻射段 10417 第五輻射段 10451 第六輻射段 10453 第七輻射段 10455 第一連接段 10452 > 第二連接段 10454 第三連接段 10456 15Second grounding portion 109B first radiating section 10411 second radiating section 10413 » third radiating section 10415 fourth radiating section 10417 fifth radiating section 10451 sixth radiating section 10453 seventh radiating section 10455 first connecting section 10452 > second Connection section 10454 third connection section 10456 15

Claims (1)

对年$月·^日修正本 ,1317188 十、申請專利範圍: 1·一種天線,設置於一電路板上,該電路板包括一第一表面與 一第二表面,該第一表面與該第二表面相對,該天線包括: 一饋入部,包括一第一饋入段設置於該第一表面,以及一第 二饋入段設置於該第二表面; 一輻射部,包括一第一輻射體、一第二輻射體、一第三輻射 體以及一第四輻射體,其中該第一輻射體與該第二輻射體設 置於該第一表面且與該第一饋入段電性連接,該第三輻射體 與該第四輻射體設置於該第二表面,且與該第二饋入段電性 連接; 一第一輔助輻射體,設置於該第一表面,與該第一輻射體電 性連接; 一第二輔助輻射體,設置於該第一表面,與該第二輻射體電 性連接;以及 一接地部,包括一對第一接地部,設置於該第一表面,以及 一第二接地部設置於該第二表面。 2. 如申請專利範圍第1項所述之天線,其中,該第一輻射體與 該第二輻射體呈蜿蜒狀,且分別設置於該第一饋入段的兩侧。 3. 如申請專利範圍第2項所述之天線,其中,該第一輻射體與 該第二輻射體結構相同。 4. 如申請專利範圍第3項所述之天線,其中,該第一輻射體與 16 .1317188 碡 該第二輻射體以該第一饋入段相對稱。 • 5.如申請專利範圍第1項所述之天線,其中,該第三輕射體與 該第四輻射體呈蜿蜒狀,且分別設置於該第二饋入段的兩側。 6.如申請專利範圍第5項所述之天線,其中,該第三輻射體與 • 該第四輻射體結構相同。 • 7.如申請專利範圍第6項所述之天線,其中,該第三輻射體與 該第四輻射體以該第二饋入段相對稱。 w 8.如申請專利範圍第1項所述之天線,其中,該第一接地部對 稱設置於該第一饋入段兩側,與該第二接地部電性連接,該 第二接地部與該第二饋入段電性連接。 9. 如申請專利範圍第1項所述之天線,其中,該第一輻射體包 括: 一第一輻射段, ^ 一第二輻射段,電性連接該第一輻射段;. 一第三輻射段與該第一輻射段平行,且電性連接該第二輻射 段; 一第四輻射段與該第二輻射段平行,且電性連接該第三輻射 段與該第一輔助輻射體。 10. —種天線組合,設置於一電路板上,該電路板包括一第一 表面與一第二表面,該第一表面與該第二表面相對,該天線 組合包括: 17 .1317188 .* 一第一天線,包括: • 一饋入部,包括一第一饋入段與一第二饋入段,分別設置於 該電路板的第一表面與第二表面; 一輻射部,包括一第一輻射體、一第二輻射體、一第三輻射 • 體以及一第四輻射體,其中該第一輻射體與該第二輻射體設 • 置於該第一表面且與該該第一饋入段電性連接,該第三輻射 體與該第四輻射體設置於該第二表面,且與該第二饋入段電 •性連接; 一第一輔助輻射體,設置於該第一表面,與該第一輻射體電 性連接; 一第二輔助輻射體,設置於該第一表面,與該第二輻射體電 性連接;以及 一接地部; ^ 一第二天線;以及 一第三天線,其中該第二天線與該第三天線並行設置於該第 一天線的兩侧。 11. 如申請專利範圍第10項所述之天線組合,其中,該第一輻射 體與該第二輻射體呈蜿蜒狀,且分別設置於該第一饋入段的 兩側。 12. 如申請專利範圍第11項所述之天線組合,其中,該第一輻射 體與該第二輻射體結構相同。 18 1317188 - . • a • 13.如申請專利範圍第12項所述之天線組合,其中,該第三輻 • 射體與該第四輻射體結構相同。 14. 如申請專利範圍第13項所述之天線組合,其中,該接地部 更包括一對第一接地部,對稱設置於該第一表面之第一饋入 - 段兩側;與一第二接地部,設置於該第二表面,且該等第一 • 接地部與該第二接地部以及該第二饋入段電性連接。 15. 如申請專利範圍第14項所述之天線組合,其中,該第二天 籲線與該第一天線的結構相同。 16. 如申請專利範圍第14項所述之天線組合,其中,該第三天 線與該第一天線的結構相同。 17. 如申請專利範圍第10項所述之天線組合,其中該第二天線 與該第三天線至該第一天線的距離相等,且為其工作頻率之 1/2波長。 • 18.—種天線組合,設置於一電路板上,該電路板包括一第一 表面與一第二表面,該第一表面與該第二表面相對,該天線 組合包括複數天線,且每一天線均包括: 一饋入部,包括一第一饋入段與一第二饋入段,分別設置於 該電路板的第一表面與第二表面; 一輻射部,包括一第一輻射體、一第二輻射體、一第三輻射 體以及一第四輻射體,其中該第一輻射體與該第二輻射體設 置於該第一表面且與該該第一饋入段電性連接,該第三輻射 19 ,1317188 ♦ 體與該第四輻射體設置於該第二表面,且與該第二饋入段電 • 性連接; 一第一輔助輻射體,設置於該第一表面,與該第一輻射體電 性連接; • 一第二輔助輻射體,設置於該第一表面,與該第二輻射體電 性連接;以及 一接地部。 胃19.如申請專利範圍第18項所述之天線組合,其中,該等天線 之間等間距設置於該電路板上。 20. 如申請專利範圍第19項所述之天線組合,其中,該第一輻 射體與該第二輻射體呈蜿蜒狀,且分別設置於該第一饋入段 的兩側。 21. 如申請專利範圍第20項所述之天線組合,其中,該第一輻 ^ 射體與該第二輻射體結構相同。 22. 如申請專利範圍第21項所述之天線組合,其中,該第三輻 射體與該第四輻射體結構相同。 23. 如申請專利範圍第22項所述之天線組合,其中,該接地部 更包括一對第一接地部,對稱設置於該第一表面之第一饋入 段兩侧;與一第二接地部,設置於該第二表面,且該等第一 接地部與該第二接地部以及該第二饋入段電性連接。 20For the year $月·^日 Revision, 1317188 X. Patent application scope: 1. An antenna disposed on a circuit board, the circuit board including a first surface and a second surface, the first surface and the first The antenna includes: a feed portion including a first feed segment disposed on the first surface, and a second feed segment disposed on the second surface; a radiating portion including a first radiator a second radiator, a third radiator, and a fourth radiator, wherein the first radiator and the second radiator are disposed on the first surface and electrically connected to the first feeding portion, The third radiator and the fourth radiator are disposed on the second surface and electrically connected to the second feeding portion; a first auxiliary radiator disposed on the first surface and electrically connected to the first radiator a second auxiliary radiation body disposed on the first surface and electrically connected to the second radiator; and a ground portion including a pair of first ground portions disposed on the first surface, and a first The two grounding portions are disposed on the second surface. 2. The antenna of claim 1, wherein the first radiator and the second radiator are meandered and disposed on opposite sides of the first feeding section. 3. The antenna of claim 2, wherein the first radiator is identical in structure to the second radiator. 4. The antenna of claim 3, wherein the first radiator is symmetrical with the 16.1317188 碡 the second radiator. 5. The antenna of claim 1, wherein the third light body and the fourth radiator are in a meandering shape and are respectively disposed on both sides of the second feeding section. 6. The antenna of claim 5, wherein the third radiator is identical in structure to the fourth radiator. 7. The antenna of claim 6, wherein the third radiator and the fourth radiator are symmetrical with the second feed segment. The antenna of claim 1, wherein the first ground portion is symmetrically disposed on both sides of the first feeding portion, and is electrically connected to the second ground portion, and the second ground portion is The second feeding section is electrically connected. 9. The antenna of claim 1, wherein the first radiator comprises: a first radiating section, a second radiating section electrically connected to the first radiating section; The segment is parallel to the first radiating segment and electrically connected to the second radiating segment; a fourth radiating segment is parallel to the second radiating segment and electrically connected to the third radiating segment and the first auxiliary radiating body. 10. An antenna assembly disposed on a circuit board, the circuit board including a first surface and a second surface, the first surface being opposite the second surface, the antenna combination comprising: 17 .1317188 .* The first antenna includes: a feed portion including a first feed portion and a second feed portion respectively disposed on the first surface and the second surface of the circuit board; a radiation portion including a first portion a radiator, a second radiator, a third radiation body, and a fourth radiator, wherein the first radiator and the second radiator are disposed on the first surface and the first feeding The third radiating body and the fourth radiating body are disposed on the second surface and electrically connected to the second feeding portion; a first auxiliary radiating body is disposed on the first surface, Electrically connecting with the first radiator; a second auxiliary radiator disposed on the first surface and electrically connected to the second radiator; and a grounding portion; ^ a second antenna; and a third An antenna, wherein the second antenna is disposed in parallel with the third antenna Placed on either side of the first antenna. 11. The antenna assembly of claim 10, wherein the first radiator and the second radiator are serpentine and are respectively disposed on opposite sides of the first feeding section. 12. The antenna assembly of claim 11, wherein the first radiator is identical in structure to the second radiator. The antenna assembly of claim 12, wherein the third radiator is identical in structure to the fourth radiator. The antenna assembly of claim 13, wherein the grounding portion further comprises a pair of first ground portions symmetrically disposed on opposite sides of the first feeding-section of the first surface; and a second The grounding portion is disposed on the second surface, and the first grounding portion is electrically connected to the second grounding portion and the second feeding portion. 15. The antenna assembly of claim 14, wherein the second antenna line is identical in structure to the first antenna. 16. The antenna assembly of claim 14, wherein the third antenna is identical in structure to the first antenna. 17. The antenna assembly of claim 10, wherein the second antenna is equidistant from the third antenna to the first antenna and is 1/2 wavelength of its operating frequency. 18. The antenna assembly is disposed on a circuit board, the circuit board includes a first surface and a second surface, the first surface is opposite to the second surface, the antenna combination includes a plurality of antennas, and each day Each of the wires includes: a feed portion including a first feed segment and a second feed segment respectively disposed on the first surface and the second surface of the circuit board; a radiating portion including a first radiator, a second radiator, a third radiator, and a fourth radiator, wherein the first radiator and the second radiator are disposed on the first surface and electrically connected to the first feeding segment, the first The third radiation 19, 1317188 ♦ the body and the fourth radiator are disposed on the second surface and electrically connected to the second feeding portion; a first auxiliary radiator disposed on the first surface, and the first A radiator is electrically connected; a second auxiliary radiator is disposed on the first surface and electrically connected to the second radiator; and a grounding portion. The antenna assembly of claim 18, wherein the antennas are equally spaced from each other on the circuit board. 20. The antenna assembly of claim 19, wherein the first radiator and the second radiator are serpentine and are disposed on opposite sides of the first feeding section, respectively. 21. The antenna assembly of claim 20, wherein the first radiator is identical in structure to the second radiator. 22. The antenna assembly of claim 21, wherein the third radiator is identical in structure to the fourth radiator. The antenna assembly of claim 22, wherein the grounding portion further comprises a pair of first ground portions symmetrically disposed on opposite sides of the first feeding portion of the first surface; and a second ground The first grounding portion is electrically connected to the second grounding portion and the second feeding portion. 20
TW95138882A 2006-10-20 2006-10-20 Antenna and antenna assembly thereof TWI317188B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95138882A TWI317188B (en) 2006-10-20 2006-10-20 Antenna and antenna assembly thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95138882A TWI317188B (en) 2006-10-20 2006-10-20 Antenna and antenna assembly thereof

Publications (2)

Publication Number Publication Date
TW200820488A TW200820488A (en) 2008-05-01
TWI317188B true TWI317188B (en) 2009-11-11

Family

ID=44770186

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95138882A TWI317188B (en) 2006-10-20 2006-10-20 Antenna and antenna assembly thereof

Country Status (1)

Country Link
TW (1) TWI317188B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201310766A (en) * 2011-08-26 2013-03-01 Yong-Kang Lv Directional digital TV antenna
TWI833487B (en) * 2022-12-06 2024-02-21 啓碁科技股份有限公司 Antenna system

Also Published As

Publication number Publication date
TW200820488A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
TWI548145B (en) Omnidirectional antenna
US8164525B2 (en) MIMO antenna and communication device using the same
CN101165970B (en) Antenna and its combination
US8410982B2 (en) Unidirectional antenna comprising a dipole and a loop
US8786509B2 (en) Multi polarization conformal channel monopole antenna
TWI420743B (en) Printed dual-band antenna for electronic device
US11258171B2 (en) Antenna
US20120062437A1 (en) Antenna system with planar dipole antennas and electronic apparatus having the same
CN104377450B (en) Waveguide trumpet array and method thereof and antenna system
US8648762B2 (en) Loop array antenna system and electronic apparatus having the same
Wójcik et al. High port-to-port isolation dual-polarized antenna array dedicated for full-duplex base stations
Hwang et al. 28 GHz and 38 GHz dual-band vertically stacked dipole antennas on flexible liquid crystal polymer substrates for millimeter-wave 5G cellular handsets
Yetisir et al. Low-profile UWB 2-port antenna with high isolation
CN106953168A (en) A kind of plane millimeter wave mimo antenna
US8525733B2 (en) Low-profile wide-bandwidth radio frequency antenna
Sipal et al. UWB MIMO USB dongle antenna for personal area network application
TWI317188B (en) Antenna and antenna assembly thereof
US7372411B2 (en) Antenna arrangement and method for making the same
Awida et al. Low-cost high-efficiency substrate-integrated cavity-backed single element antenna
TWI292640B (en) Solid flat antenna
TWI451632B (en) High gain loop array antenna system and electronic device
TW538561B (en) Integrated dual polarization printed monopole antenna
CN220324705U (en) Sub6G antenna structure
Alqadami et al. A multi layers polymer bendable multiple input multiple output (MIMO) antenna array on PDMS substrate for 5.8 GHz applications
Koul et al. Gain Switchable Antenna Modules