TWI317125B - Structure of magnetic random access memory using spin-torque transfer writing and method for manufacturing same - Google Patents

Structure of magnetic random access memory using spin-torque transfer writing and method for manufacturing same Download PDF

Info

Publication number
TWI317125B
TWI317125B TW95149214A TW95149214A TWI317125B TW I317125 B TWI317125 B TW I317125B TW 95149214 A TW95149214 A TW 95149214A TW 95149214 A TW95149214 A TW 95149214A TW I317125 B TWI317125 B TW I317125B
Authority
TW
Taiwan
Prior art keywords
hard
magnetic
layer
free layer
ferromagnetic free
Prior art date
Application number
TW95149214A
Other languages
Chinese (zh)
Other versions
TW200828305A (en
Inventor
Chia-Hua Ho
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW95149214A priority Critical patent/TWI317125B/en
Publication of TW200828305A publication Critical patent/TW200828305A/en
Application granted granted Critical
Publication of TWI317125B publication Critical patent/TWI317125B/en

Links

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Description

1317125 、 P950101 21247twf.doc/006 九、發明說明: • 【發明所屬之技術領域】 ’ 本發明大體上是關於磁性隨機存取記憶體元件 (magnetic random access memory,MRAM) ’ 且更明確地 說’疋關於藉由自旋力矩轉移來程式化之磁性隨機存取記 憶體元件之新穎結構’以及製造結構之方法。 【先前技術】 φ 習知非揮發性磁性隨機存取記憶體元件是藉由使用交 叉點磁場切換(cross-point magnetic field switching)而操作 的。場藉由電流通過配置於元件上下方之位元線而產生。 在元件中用作可寫入板(writable plate)的鐵磁性自由層 、 (ferromagnetic free layer)具有小於由位元線產生之磁場的 • 矯頑場(coercivity field)。結果,鐵磁性自由層之磁化方向 被更改以與磁場方向對準。然而,由於需要大的電流,所 以此操作方法限制按比例縮小MRAM元件之能力。當將 多個元件配置成MRAM陣列時,由於—元件之磁場^影 • 響鄰近MRAM元件之鐵磁性自由層,所以操作另外具= 寫入干擾之問題。 、 、另一方面,MRA Μ元件亦可使用用於寫入操作的被稱 為自旋力矩轉移之方法。操作視流經磁性穿隧接面 (magnetic tunnel juncti〇n,MTJ)堆疊之電流密度而非電流 ,幅而定。MTJ堆疊基本上包含鐵磁性自由層以及具有^ 疋磁化方向之參考層(reference layer)。電子穿過參考層且 極化自旋。由於電子自參考層流經鐵磁性自由層:所二電 1317125 、 P950101 21247twf.doc/006 子基於蘭道-李佛西茲—吉爾伯特(Landau_Lifshitz_ Gilbert ’ LLG)方程式之旋進(precessing)以及阻尼(damping) 項之調節來逐漸改變鐵磁性自由層之磁化方向。另外,藉 由使用通過MTJ堆疊之自旋力矩轉移電流,經程式化之單 元可在無干擾的情況下被寫入。此允許自寫入,亦即,不 而要使用額外的位元線來寫入。結果,可更進一步地來按 比例縮小MRAM元件。1317125, P950101 21247twf.doc/006 IX. Description of the Invention: • [Technical Field of the Invention] The present invention generally relates to a magnetic random access memory (MRAM) 'and more specifically' A novel structure of a magnetic random access memory device that is programmed by spin torque transfer and a method of fabricating the structure. [Prior Art] φ Conventional non-volatile magnetic random access memory elements are operated by using cross-point magnetic field switching. The field is generated by current passing through a bit line disposed above and below the element. The ferromagnetic free layer used as a writable plate in the element has a coercivity field smaller than the magnetic field generated by the bit line. As a result, the magnetization direction of the ferromagnetic free layer is changed to be aligned with the direction of the magnetic field. However, this method of operation limits the ability to scale down MRAM components due to the large current required. When a plurality of components are configured as an MRAM array, since the magnetic field of the component affects the ferromagnetic free layer of the adjacent MRAM component, the operation additionally has a problem of write disturb. On the other hand, the MRA element can also be used as a method of spin torque transfer for write operations. The operation depends on the current density of the magnetic tunnel juncti〇n (MTJ) stack, not the current, and the amplitude. The MTJ stack basically comprises a ferromagnetic free layer and a reference layer having a magnetization direction. The electrons pass through the reference layer and are polarized spin. Since the electrons flow through the ferromagnetic free layer from the reference layer: the second electricity 1317125, P950101 21247twf.doc/006 is based on the precessing and damping of the Landau_Lifshitz_Gilbert 'LLG equation ( The adjustment of the term) gradually changes the magnetization direction of the ferromagnetic free layer. In addition, the programmed unit can be written without interference by using the spin torque transfer current through the MTJ stack. This allows self-write, i.e., no additional bit lines are used for writing. As a result, the MRAM element can be further scaled down.

& MTJ堆疊亦可利用第二參考層。第二參考層具有與第 荼考層之磁化方向相反的磁化方向。自由層後來的磁化 =向^藉由在寫人操作_電子流經記‘隨元件之方向 =定。舉例而言,對於流經第-參考層至第二參考層之 電流而言,自由層之磁化方向與第一參考磁體之磁化方向 對準。 所需之自旋力矩轉移電流密度強烈地視MTJ堆疊之 大小而定。然而,由於MTJ堆疊變得較小,所以元件&受 由超順磁引起之$憶體資訊損失。由於需要高寫入電流 密度來實現自域的變化’所以熱能實m使材料中 的原子磁矩(atomic magnetic moment)隨機變動。此現象 僅有助於鐵磁性自由層之失穩,且亦有助於參考 穩。在敵AM陣列中的寫入干擾問題亦持續。因此,兩 要使用需要低寫人電流密度且在元件本身以及_中能^ 保持穩定磁性狀態的MRAM元件。 【發明内容】 本發明之第-實施例包括—種奈米磁性元件 6 1317125 P950101 21247twf.doc/006 入操作細,錢_自—硬雜f過mram元件 ; 鐵磁f自由結構以及第二硬賴。電流密紅_為約1〇5 ’ A/cm至約1〇7 A/cm2,且脈衝持續時間之範圍為約 至 100 ns。 ns 2像其中每-層為平㈣且具有與其他層相同的 的先雨技術,圖1展示兩個硬磁體相對於鐵磁性自由^ 大得多。此賦能利用低電流密度來進行元件程式化。Ί φ 磁化方向所需之電流密度遵照方程式: J=Jc〇[l-(KT/E)ln(r(/rp)],其中 e = MsVHk/2The & MTJ stack can also utilize the second reference layer. The second reference layer has a magnetization direction opposite to the magnetization direction of the first layer. The subsequent magnetization of the free layer = to ^ by the operation of the writer - the flow of electrons in the direction of the component = fixed. For example, for current flowing through the first reference layer to the second reference layer, the magnetization direction of the free layer is aligned with the magnetization direction of the first reference magnet. The required spin torque transfer current density is strongly dependent on the size of the MTJ stack. However, since the MTJ stack becomes smaller, the component & is lost due to the superparamagnetic memory. Since the high write current density is required to achieve self-domain change, the thermal energy m randomly varies the atomic magnetic moment in the material. This phenomenon only contributes to the instability of the ferromagnetic free layer and also contributes to the reference stability. The problem of write disturb in the enemy AM array also continues. Therefore, it is necessary to use an MRAM element which requires a low write current density and can maintain a stable magnetic state in the element itself and in the _. SUMMARY OF THE INVENTION The first embodiment of the present invention includes a nano magnetic element 6 1317125 P950101 21247twf.doc/006 into operation fine, money _ self-hard mis-mram element; ferromagnetic f free structure and second hard Lai. The current density _ is from about 1 〇 5 Å A/cm to about 1 〇 7 A/cm 2 and the pulse duration ranges from about 100 ns. Ns 2 is like the first rain technique in which each layer is flat (four) and has the same as the other layers, and Fig. 1 shows that the two hard magnets are much larger than the ferromagnetic freedom. This enables the use of low current densities for component programming.电流 φ The current density required for the direction of magnetization follows the equation: J=Jc〇[l-(KT/E)ln(r(/rp)], where e = MsVHk/2

Jc〇、K(波茲曼常數)以及Γ〇為常數,脈衝持續時間 斤溫度^叫飽和磁化㈣加如丨⑽咖职如没如吻^^元件 谷積)以及Hk(異向性場(anis〇tr〇pjc fleid))為可變參數。 々對於兩個大的硬磁體而言,Hk以及V是高的。】μιη 見度的兩個硬磁體需要大於1〇7 A/cm2之電流密度以改變 磁化方向。相反地,較小的鐵磁性自由結構具有相對低的 Hk以及V。所需電流密度約為1〇5或1〇6A/cm2。因此「兩 鲁 個硬磁體之成比例的大容積使元件更穩定。同時,較小的 鐵磁性自由層允許使用較低的電流密度,藉此進—步有助 於元件的磁穩定(stabilization)。 圖2展示如在MraM陣列中連接至承载執行MRAM 寫入之電流脈衝的位元線22以及24的本發明之實施例的 詳細橫截面。第一硬磁體10連接至在圖2中沿著χ軸展示 的位元線22。第一硬磁體1〇可由高矯頑性材料構造,包 括諸如CoFe或Co之3d過渡鐵磁性材料或合金,諸如 8 1317125 P950101 21247twf.doc/0〇6Jc〇, K (Bozeman constant) and Γ〇 are constant, pulse duration jin temperature ^ is called saturation magnetization (four) plus 丨 (10) 咖 职 if no kiss ^ ^ component valley product) and Hk (anisotropy field ( Anis〇tr〇pjc fleid)) is a variable parameter. H For two large hard magnets, Hk and V are high. The two hard magnets of μιη visibility require a current density greater than 1〇7 A/cm2 to change the magnetization direction. Conversely, smaller ferromagnetic free structures have relatively low Hk and V. The required current density is about 1 〇 5 or 1 〇 6 A/cm 2 . Therefore, the proportional large volume of the two hard magnets makes the component more stable. At the same time, the smaller ferromagnetic free layer allows the use of a lower current density, thereby facilitating the magnetic stabilization of the component. Figure 2 shows a detailed cross section of an embodiment of the invention as connected to a bit line 22 and 24 carrying a current pulse for performing MRAM writing in a MraM array. The first hard magnet 10 is connected along in Figure 2 The bit line 22 of the x-axis display. The first hard magnet 1〇 can be constructed of a high-coercive material, including a 3d transitional ferromagnetic material or alloy such as CoFe or Co, such as 8 1317125 P950101 21247twf.doc/0〇6

SmCo之硬磁體材料,或混合結構,例如,沉積於&上之a hard magnetic material of SmCo, or a hybrid structure, for example, deposited on &

Co矯頌性(C〇erCivjty)之範圍為約1〇〇 〇e至約ιτ(ι〇,〇〇〇Co颂ercity (C〇erCivjty) ranges from about 1〇〇 〇e to about ιτ(ι〇,〇〇〇

Oe)。 或者’第一硬磁體10可由交換偏移耦接(exchange_bias coupled)鐵磁材料構造。此包括關於反鐵磁性結構的鐵磁 體。反鐵磁性材料可為諸如FeMn、IrMn或ptMn之反鐵 磁性物質,諸如CoFe/Rr/CoFe之合成反鐵磁性結構,或兩 者之組合。拳所用之材料無關,第一硬磁體1〇應具有在約 10 nm至約200 nm之範圍内的總厚度。 在圖2中,將絕緣體層12展示於第—硬磁體之中 心軸的上方。此結構包括諸如Al;2〇3或Mg〇之材料,且厚 度之範圍為約0.8 nm至約4 nm。絕緣體層12將第—硬磁 體10與鐵磁性自由層14分離。鐵磁性自由層14可為諸如 CoFe、CoFeB、NiFeSiB或NiFe之單一鐵磁性層,或可為 多層結構如CoFeB/Ru/CoFeB。每一層之厚度的範圍為約i nm至約10 nm。鐵磁性自由層η之矯頑性低於第—硬磁 | 體10之矯頑性,如低於50 Oe。 而薄金屬層18是用在寫入期間傳導來自第二硬磁體 20之電子自旋訊息(message)且防止鐵磁性自由層14與第Oe). Alternatively, the first hard magnet 10 may be constructed of exchange_bias coupled ferromagnetic material. This includes ferromagnetics for antiferromagnetic structures. The antiferromagnetic material may be an antiferromagnetic material such as FeMn, IrMn or ptMn, a synthetic antiferromagnetic structure such as CoFe/Rr/CoFe, or a combination of both. Regardless of the material used for the boxing, the first hard magnet 1〇 should have a total thickness in the range of about 10 nm to about 200 nm. In Fig. 2, the insulator layer 12 is shown above the center axis of the first hard magnet. This structure includes materials such as Al; 2〇3 or Mg〇, and has a thickness ranging from about 0.8 nm to about 4 nm. The insulator layer 12 separates the first hard magnetic body 10 from the ferromagnetic free layer 14. The ferromagnetic free layer 14 may be a single ferromagnetic layer such as CoFe, CoFeB, NiFeSiB or NiFe, or may be a multilayer structure such as CoFeB/Ru/CoFeB. The thickness of each layer ranges from about i nm to about 10 nm. The coercivity of the ferromagnetic free layer η is lower than the coercivity of the first-hard magnetic body 10, such as less than 50 Oe. The thin metal layer 18 is used to conduct electron spin messages from the second hard magnet 20 during writing and to prevent the ferromagnetic free layer 14 from being

一硬磁體20之間的磁性耗接。由ru、ιΓ、: A u攻Ag 組成之此金屬層18(例如)應覆蓋厚度小於約3 之、止 (topology)。 第二硬磁體20可由類似於第—硬磁體10之材料的 料構造。在較佳實施例中,第—硬磁體1〇 & 9 1317125 P950101 21247twf.doc/006Magnetic dissipation between a hard magnet 20 is achieved. The metal layer 18 composed of ru, ι, and: A u attack Ag should, for example, cover a topology having a thickness of less than about 3. The second hard magnet 20 may be constructed of a material similar to that of the first hard magnet 10. In a preferred embodiment, the first hard magnet 1 & 9 1317125 P950101 21247twf.doc/006

IrMn/CoFeB/Ru/CoFeB的交換偏移耦接多層結構 (multilayer),且第二硬磁體2〇為諸如c〇Fe的具有高矯頑 性之鐵磁性單一層。在所有實施例中,第二硬磁體20必須 具有與第一硬磁體10之磁化方向相反的磁化方向。第二硬 磁體20連接至在圖2中沿著y轴展示之位元線24。The exchange offset of IrMn/CoFeB/Ru/CoFeB is coupled to a multilayer, and the second hard magnet 2〇 is a ferromagnetic single layer having high coercivity such as c〇Fe. In all embodiments, the second hard magnet 20 must have a magnetization direction that is opposite to the magnetization direction of the first hard magnet 10. The second hard magnet 20 is coupled to the bit line 24 shown along the y-axis in FIG.

第一硬磁體10以及第二硬磁體2〇與薄金屬層18之間 剩餘的空間可由介電襯墊來填充。襯墊厚度之範圍可為約 50nm至約200 nm。在較佳實施例中,介電質為si〇2。 圖3-11大體上展示根據本發明之較佳實施例製造 MRAM元件的過程。 明參看圖3 ’沉積第一硬磁體10、絕緣體結構12及邊 磁性自由層14。CMP、終止層26可為金屬性的或絕緣的c 硬罩J 28放置於CMP終止層%之頂上。在較佳實施# 中,右硬罩幕28及稍後沉積之介電襯墊(在下文論述)包@ SK)2且CMP之研磨漿為叫,則終止層%纟_組成 終止層26之厚度應為約10 nm。 為約t較佳實施财,硬罩幕28 A Si〇2,且厚度之範圍 圍亦為約"To至約3⑻nm °蝴案化之抗鋪3G的厚度範 之抗钱膜30=至約 nm。在較佳實施例中,經圖案化 轉狀,諸如_形、目_狀或圓形。 ,刻絕緣體結構12、鐵磁性自由層14、 =二匕及:更罩幕28至經圖案化之抗钱膜二可 —E)方法來_更罩幕28及瞻終 1317125 P950101 21247twf.doc/006 著可使用具有多個步驟的配方’以蝕刻鐵磁性自由層14 及絕緣體12。可能的化學物包括ci2、bC13、NF3、CF4、 CHF3、CO、〇2、Ar及/或N2。在較佳實施例中,使用RIE。 另外可使用時間模式或終點偵測方法,以在第一硬磁體1〇 上終止。 請參看圖5,將第一硬磁體1〇蝕刻為錐形輪廓。可使 用利用 Cl2、BC13、NF3、CF4、CHF3、CO、02、Ar 及/或 N2的純化支配RIE配方。然而,c〇及〇2可減少,且BCI3 及CHF3可增加。時間模式或終點偵測方法可用於終止蝕 刻製程。為了移除聚合物,可利用〇2電漿去除及藉由 5〖匚265進行之濕式剝除(〜技对1^)。 請參看圖6,使用適合的溶劑來使硬罩幕28尺寸縮 ,。在較佳實施例中,在縮減後,硬罩幕28之臨界尺寸之 範圍為約10nm至約60nm。此是自小於約15〇nm之預縮 ,尺寸(pre-shrmk size)而下降的。若使用SiN硬罩幕,則 溶劑可為時間模式控制下的熱磷酸。在較佳實施例中,硬 =幕為si〇2 ’且溶劑可為時間模式控制下的稀hf或緩衝 請參看圖7,再次蝕刻絕緣體結構12、鐵磁性自由層 =及CMP終止層26以與縮減之硬罩幕28相符。可使用 驟配方。對於CMp終止層26而言,可能的化學物包 C™3、CH3F、C〇、〇2、ΑΓ 及域 N2。在較佳實 &歹’,在精調參數(fine-tuned parameter)之情況下使用 舰。飯刻鐵磁性自由層14及絕緣體結構12之可能的化 11 1317125 P950101 21247twf.doc/006 學物包括 Cl2、BC13、NF3、CF4、CHF3、CO、02、Ar 及/ 或N2。可使用時間模式或終點偵測方法以在第一硬磁體 10上終止。在較佳實施例中,在精調參數之情況下使用 RIE。 請參看圖8,將厚介電襯墊16沉積於整個構造上方。 在較佳實施例中’介電質為藉由諸如化學氣相沉積 (chemical vapor deposition,CVD)或電漿增強 CVD 之方法 而/儿積的Si〇2。凊繼績參看圖9 ’使用介電構造cmp製程 來暴露CMP終止層26,而不損壞鐵磁性自由結構。在較 佳實施例中,研磨漿為Ce〇2,使得研磨選擇性足夠高以在 CMP終止層26上終止。需要陣觸近的許多虛設圖案 (dummy pattern)(未顯示於圖9中)來偵測研磨之進程。在 cmp 之後,需mm丨來移除遺冑之微粒殘潰。 請參看W 10 ’藉由(例如)濕式钕刻或乾式钱刻來移除 來自圖9之CMP終止層26。在較佳實 之 ㈣藉由咖_之狀_。對綱性^ 金屬層18,儿積於構造上方。將第二硬磁 ΐ 沉積期間施加磁場來感應磁化方向 膜32類似於第-經圖案化之抗钱膜 3〇,因為其為柱形狀的,如_形 ^膜 而,臨界尺寸之範圍為約5Gnm至約3狀或®形。然 第一硬磁體10之臨界尺寸。 、’' m,且必須大於 明參看圖11’可制多步驟配方來綱第二硬磁體如 12 1317125 P950101 21247twf.doc/006 及薄金屬層18。可能之化學物包括cl2、:BC13、NF3、CF4、 CHF"3、CO、〇2、Ar及/或n2。在較佳實施例中’在精調 參數之情況下使用RIE。可使用時間模式或終點偵測方法 以在過度餘刻時在介電襯墊上終止。在蝕刻之後,使用% 电浆去除及藉由EKC265進行之濕式剝除來移除所有聚合 物。 圖丨2則是顯示具有在第—硬磁體1〇及第二硬磁體% 中才曰示之磁化方向的完成的記憶體元件。相反的磁化方向 及兩個硬磁體1〇及2〇之相符形狀使得磁通量經由磁體1〇 及20形成圓形迴路。此迴路使能量穩定,以滿足馬克士咸 (Maxwell)第二方程式divB = 〇。硬磁體1〇及2〇的這種自 穩定對準可防止鄰近的元件受到磁通量干擾。 —雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何本發明所屬技術領域中具有通常知識 者,在不脫離本發明之精神和範圍内,當可作些許之更動 與满,’因此本發明之保護範目當視後附之_請專利範圍 所界定者為準。 【圖式簡單說明】 =__讀概更好地理解本發明之較佳實施例 ί曰If _容以及以下實施方式。為了達成說明本發明 解’本發5圖式中展7^則為較佳的實施例。然而,應理 解’本發明不限於所示之精確配^及手段。 31展示本發明之實施例之基本結構的橫截面。 圖2展示本發明之實施例的更詳細的橫截面。 13 Ι317125〇ι 21247twf.d〇c/006 圖3-11大體上展示根據本發明之較佳實施例製造 MRAM元件的過程。 圖12展示本發明之實施例的橫截面。 【主要元件符號說明】 10 :第一硬磁體 12 :絕緣體層 14 :鐵磁性自由層 16 :介電襯墊 18 :薄金屬層 20 :第二硬磁體 22、24 :位元線 26 : CMP終止層 28 :硬罩幕 30、32 :抗蝕膜 14The remaining space between the first hard magnet 10 and the second hard magnet 2〇 and the thin metal layer 18 may be filled by a dielectric spacer. The liner thickness can range from about 50 nm to about 200 nm. In a preferred embodiment, the dielectric is si 〇 2 . 3-11 generally illustrate the process of fabricating an MRAM device in accordance with a preferred embodiment of the present invention. Referring to Figure 3, a first hard magnet 10, an insulator structure 12, and an edge magnetic free layer 14 are deposited. The CMP, termination layer 26 may be metallic or insulating c hard mask J 28 placed on top of the CMP stop layer %. In the preferred embodiment #, the right hard mask 28 and the later deposited dielectric liner (discussed below) package @SK) 2 and the CMP slurry is called, then the termination layer %纟_constituting the termination layer 26 The thickness should be approximately 10 nm. Preferably, the hard mask 28 A Si〇2 is used, and the thickness range is also about 30 mm to about 3 nm thick to the thickness of the 3G film. . In a preferred embodiment, the pattern is transformed, such as a _ shape, a mesh shape, or a circular shape. , engraved insulator structure 12, ferromagnetic free layer 14, = two 匕 and: more mask 28 to the patterned anti-money film can be -E) method _ more mask 28 and end of the 1317125 P950101 21247twf.doc / 006 A recipe having multiple steps can be used to etch the ferromagnetic free layer 14 and the insulator 12. Possible chemicals include ci2, bC13, NF3, CF4, CHF3, CO, hydrazine 2, Ar, and/or N2. In the preferred embodiment, RIE is used. Alternatively, a time mode or an end point detection method can be used to terminate on the first hard magnet 1〇. Referring to FIG. 5, the first hard magnetic body 1 is etched into a tapered profile. Purification with Cl2, BC13, NF3, CF4, CHF3, CO, 02, Ar and/or N2 can be used to govern the RIE formulation. However, c〇 and 〇2 can be reduced, and BCI3 and CHF3 can be increased. Time mode or endpoint detection methods can be used to terminate the etching process. In order to remove the polymer, 〇2 plasma removal and wet stripping by 匚265 (~1) can be used. Referring to Figure 6, a suitable solvent is used to reduce the size of the hard mask 28. In the preferred embodiment, the critical dimension of the hard mask 28 ranges from about 10 nm to about 60 nm after reduction. This is a decrease from a pre-shrmk size of less than about 15 〇 nm. If a SiN hard mask is used, the solvent can be hot phosphoric acid under time mode control. In a preferred embodiment, the hard = screen is si 〇 2 ' and the solvent can be a thin hf or buffer under time mode control. Referring to Figure 7, the insulator structure 12, the ferromagnetic free layer = and the CMP stop layer 26 are etched again. Consistent with the reduced hard mask 28. A recipe can be used. For the CMp termination layer 26, possible chemicals include CTM3, CH3F, C〇, 〇2, ΑΓ and domain N2. In the case of a better real & 歹, the ship is used in the case of a fine-tuned parameter. Possible enlightenment of the ferromagnetic free layer 14 and the insulator structure 12 13 1317125 P950101 21247twf.doc/006 The science includes Cl2, BC13, NF3, CF4, CHF3, CO, 02, Ar and/or N2. The time mode or end point detection method can be used to terminate on the first hard magnet 10. In the preferred embodiment, RIE is used in the case of fine tuning parameters. Referring to Figure 8, a thick dielectric liner 16 is deposited over the entire construction. In the preferred embodiment, the dielectric is Si〇2 which is formed by a method such as chemical vapor deposition (CVD) or plasma enhanced CVD. The successor is shown in Figure 9 using a dielectric construction cmp process to expose the CMP stop layer 26 without damaging the ferromagnetic free structure. In a preferred embodiment, the slurry is Ce 〇 2 such that the grinding selectivity is sufficiently high to terminate on the CMP stop layer 26. A number of dummy patterns (not shown in Figure 9) that are close to each other are needed to detect the progress of the grinding. After cmp, mm丨 is needed to remove the remains of the remains. Referring to W 10 ', the CMP termination layer 26 from FIG. 9 is removed by, for example, wet etching or dry etching. In the better case (4) by the coffee _. For the outline ^ metal layer 18, the product is above the structure. Applying a magnetic field during deposition of the second hard magnetic ΐ to induce the magnetization direction film 32 is similar to the first-patterned anti-money film 3〇 because it is column-shaped, such as a film, and the critical dimension ranges from about 5Gnm to about 3 or ® shape. The critical dimension of the first hard magnet 10 is then , ''m, and must be larger than the one shown in Fig. 11' to make a multi-step formulation to the second hard magnet such as 12 1317125 P950101 21247twf.doc/006 and the thin metal layer 18. Possible chemicals include cl2, BC13, NF3, CF4, CHF"3, CO, 〇2, Ar, and/or n2. In the preferred embodiment, RIE is used in the case of fine tuning parameters. A time mode or endpoint detection method can be used to terminate on the dielectric pad during excessive remnant. After etching, all of the polymer was removed using % plasma removal and wet stripping by EKC265. Figure 2 shows a completed memory element having a magnetization direction indicated in the first hard magnetic field 1 and the second hard magnetic body %. The opposite magnetization direction and the conforming shape of the two hard magnets 1 〇 and 2 使得 cause the magnetic flux to form a circular loop via the magnets 1 〇 and 20. This loop stabilizes the energy to satisfy Maxwell's second equation divB = 〇. This self-stabilizing alignment of the hard magnets 1〇 and 2〇 prevents adjacent components from being disturbed by magnetic flux. The present invention has been described above by way of a preferred embodiment, and is not intended to limit the invention, and any of the ordinary skill in the art to which the invention pertains may be made without departing from the spirit and scope of the invention. More dynamic and full, 'Therefore, the scope of protection of the present invention is subject to the definition of patent scope. BRIEF DESCRIPTION OF THE DRAWINGS The preferred embodiment of the present invention is better understood. The following embodiments are better understood. In order to achieve the explanation of the present invention, a preferred embodiment is shown in the drawings. However, it should be understood that the invention is not limited to the precise arrangements shown. 31 shows a cross section of the basic structure of an embodiment of the present invention. Figure 2 shows a more detailed cross section of an embodiment of the invention. 13 Ι 317125 〇 ι 21247 twf.d 〇 c / 006 Figures 3-11 generally illustrate the process of fabricating an MRAM device in accordance with a preferred embodiment of the present invention. Figure 12 shows a cross section of an embodiment of the invention. [Main component symbol description] 10: First hard magnet 12: Insulator layer 14: Ferromagnetic free layer 16: Dielectric pad 18: Thin metal layer 20: Second hard magnet 22, 24: Bit line 26: CMP termination Layer 28: Hard mask 30, 32: resist film 14

Claims (1)

1317125 十、申請專利範圍: 1.一種奈米磁性元件,包括: (a) —第一硬磁體,具有一第一磁化方向且具有一中心 轴.;..... (b) —第二硬磁體,其藉由一介電襯墊與所述第一硬磁 體分離’所述第二硬磁體具有與所述第一硬磁體之所述第 一磁化方向相反的一第二磁化方向且具有一中心軸,使得 在所述第一硬磁體輿所述第二硬磁體對準時,經由所述第 一及第二硬磁體來形成一封閉磁通量迴路;以及 (c) 一鐵磁性自由層,具有一中心轴,使得一自旋力矩 轉移電流沿著所述第一硬磁體、所述第二硬磁體及所述鐵 磁性自由層之所述中心軸而傳遞,且影響所述鐵磁性自由 層之磁化方向, 其中所述第二硬磁體具有與所述第—硬磁體的頂部與 侧劈共形的形狀’以圍繞所述鐵磁性自由層的頂端與侧端。 2·如申靖專利範圍第1項所述之奈米磁性元件,其中 φ 所述鐵磁性自由層具有小於50 〇e之矯頑性。 ' 3.如申請專利範圍第!項所述之奈米磁性元件,其中 所述鐵磁性自由層為C〇Fe或CoFeB。1317125 X. Patent application scope: 1. A nano magnetic component comprising: (a) a first hard magnet having a first magnetization direction and having a central axis;;.. (b) - second a hard magnet separated from the first hard magnetic body by a dielectric gasket having a second magnetization direction opposite to the first magnetization direction of the first hard magnet and having a central axis such that when the first hard magnet is aligned with the second hard magnet, a closed magnetic flux loop is formed via the first and second hard magnets; and (c) a ferromagnetic free layer having a central axis such that a spin torque transfer current is transmitted along the central axis of the first hard magnet, the second hard magnet, and the ferromagnetic free layer, and affects the ferromagnetic free layer a magnetization direction, wherein the second hard magnetic body has a shape conformed to a top and a side of the first hard magnetic body to surround a top end and a side end of the ferromagnetic free layer. 2. The nano magnetic element according to claim 1, wherein the ferromagnetic free layer has a coercivity of less than 50 〇e. ' 3. If you apply for a patent range! The nano magnetic element according to the item, wherein the ferromagnetic free layer is C〇Fe or CoFeB. ,其中 '丁、木磁性元件,其中 之續頌性的一鐵磁性 15 13 l7l25 98-8-17 6.如申請專利範圍第1項所述之奈米磁性元件,更包 (d)—絕緣體層,位於所述第—硬磁體與所述鐵磁性自 由廣之間。 7. 如申請專利範圍第6項所述之奈米磁性元件,其中 戶斤达纟巴緣體廣為AI2O3或Mg〇。 8. 如申請專利範圍第6項所述之奈米磁性元件,更包 换: # ⑻-薄金屬層’接觸所述鐵磁性自由層及所述第 滋體。 ^如申請專利範圍第8項所述之奈米磁性元件其中 戶斤述:4金屬層為Ru或Ir。 10.如申請專利範圍第8項所述之奈米磁性元件,立中 戶斤述”電婦賴述第-硬磁軸錢 自、 層之所述薄金屬層的所有部分分離。 ^ Γ '構成之裝置,其中每一 11 ·—種由多數個奈米磁性元件: 奈米磁性元件包括: 轴 (a)—第/硬磁體,具有—第 '磁化方向且具有一中心 (b)-第二硬磁體,其#由_介_ 體分離,所述第二硬磁體具有盥所沭Μ 汁玫弟更磁 一磁化方向相反的一第二磁t 硬:體之所: 在所述™與_:硬糊I;中::所: 一及所述第二硬磁體來形成一封閉磁通量迴路1及 16 1317125 98-8-17 (c)一鐵磁性自由層’其具有一中心軸’使得一自旋力 矩轉移電流沿著所述第一及所述第二硬磁體及所述鐵磁性 自由層之所述中心轴來傳遞’且影響所述鐵磁性自由層之 磁化方向, 其中所述第一硬磁體具有與所述第·一硬磁體的頂部與 側壁共形的形狀’以圍繞所述鐵磁性自由層的頂端與側 端,且每一奈米磁性元件連接至一晶片,以形成用於一磁 性隨機存取記憶體中之陣列。 12. —種製備用於奈米磁性元件中之裝置之方法,所述 裝置包括一第一硬磁體、一柱、後來沉積的一薄金屬層及 後來沉積的一第二硬磁體,所述第一硬磁體具有一第一磁 化方向及一枉形狀,所述柱包括一絕緣體層、一鐵磁性自 由層、一 CMP終止層及一硬罩幕,所述第二硬磁體具有 與所述第一硬磁體之所述第一磁化方向相反的一第二磁化 方向,所述方法包括: (a) 使所述硬罩幕縮減; (b) 蝕刻所述CMP終止層、所述鐵磁性自由層及所述 絕緣體層之所述柱以與所述硬罩幕相符;以及 (c) 將所述第二硬磁體及所述薄金屬層蝕刻成—柱形 狀’使得圖案與所述第一硬磁體形狀對準。 13. 如申請專利範圍第12項所述之製備用於奈米磁性 元件中之裝置之方法,其中步驟(a)更包括使所述硬罩幕自 小於150 nm之尺寸縮減為10 nm至60 nm之硬罩幕尺寸。 14. 如申請專利範圍第12項所述之製備用於奈来磁性 17 * 1317125 98-8-17 元件中之步署_ 、之方法,其中步驟(C)包括蝕刻所述第二硬磁 一 x 使—第二硬磁體尺寸大於/第一硬磁體尺寸。 15.如申請專利範圍第12項所述之製備用於奈米磁性 元件中之裝置之方法,其中步驟(〇包括蝕刻所述第二硬磁 體,使第二硬磁體尺寸為50 nm至300 nm。 16.如申請專利範圍第12項所述之製備用於奈米磁性-元件中之裝置之方法,其中所述柱形狀為橢圓形、眼睛形 狀及圓形其中之一。, wherein 'd, wood magnetic components, one of which is a ferromagnetic 15 13 l7l25 98-8-17 6. The nano magnetic component described in claim 1 of the patent scope, further comprising (d) - insulator a layer between the first hard magnetic body and the ferromagnetic freely wide. 7. The nano magnetic element according to claim 6 of the patent application, wherein the jinda 纟ba body is widely AI2O3 or Mg〇. 8. The nano magnetic element according to claim 6, further comprising: #(8)-thin metal layer contacting the ferromagnetic free layer and the first zircoid. ^A nano magnetic element as described in claim 8 wherein the metal layer is Ru or Ir. 10. For the nano magnetic component described in the scope of claim 8 of the patent application, Li Zhonghu said that all parts of the thin metal layer of the layer are separated from the hard magnetic axis. ^ Γ ' A device comprising: each of the plurality of nano magnetic elements: the nano magnetic element comprises: a shaft (a) - a / hard magnet having a - 'magnetization direction and having a center (b) - a two hard magnet, the # is separated from the body, the second hard magnet has a 盥 沭Μ 玫 玫 更 更 更 更 更 更 更 更 一 一 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二_: hard paste I; medium::: and the second hard magnetic body to form a closed magnetic flux circuit 1 and 16 1317125 98-8-17 (c) a ferromagnetic free layer 'which has a central axis' a spin torque transfer current is transmitted along the central axes of the first and second hard magnets and the ferromagnetic free layer and affects a magnetization direction of the ferromagnetic free layer, wherein the a hard magnet having a shape conforming to a top and a side wall of the first hard magnet to surround the ferromagnetic self From the top and side ends of the layer, and each nano magnetic element is connected to a wafer to form an array for use in a magnetic random access memory. 12. Preparing a device for use in a nanomagnetic element The method includes a first hard magnet, a pillar, a thin metal layer deposited later, and a second hard magnet deposited later, the first hard magnet having a first magnetization direction and a meandering shape. The pillar includes an insulator layer, a ferromagnetic free layer, a CMP stop layer, and a hard mask, the second hard magnet having a second magnetization opposite to the first magnetization direction of the first hard magnet Direction, the method comprising: (a) reducing the hard mask; (b) etching the CMP stop layer, the ferromagnetic free layer, and the pillar of the insulator layer to form the hard mask And (c) etching the second hard magnetic body and the thin metal layer into a column shape such that the pattern is aligned with the first hard magnetic shape. 13. As described in claim 12 Method of preparing a device for use in a nanomagnetic element Wherein step (a) further comprises reducing the size of the hard mask from less than 150 nm to a hard mask size of 10 nm to 60 nm. 14. Preparation as described in claim 12 for Neil magnetic 17 * 1317125 98-8-17 The method of step _, wherein the step (C) comprises etching the second hard magnetic x to make the second hard magnetic element larger than / the first hard magnetic size. A method of preparing a device for use in a nanomagnetic element according to claim 12, wherein the step (including etching the second hard magnetic body such that the second hard magnetic material has a size of 50 nm to 300 nm). 16. The method of preparing a device for use in a nanomagnetic element according to claim 12, wherein the column shape is one of an elliptical shape, an eye shape, and a circular shape. 18 1317125 货年曰修正替換頁 98-8-17 hard magnet has a shape conforming with top and sidewalls of the first hard magnetic to enclose top and lateral sides of the ferromagnetic free layer. A spin-torque transfer current passes along the central axes of the first and second hard magnets and the ferromagnetic free layer, and affects the magnetization direction of the ferromagnetic free layer. 七、指定代表圖: (一) 本案指定代表圖為:圖(2)。 (二) 本代表圖之元件符號簡單說明: 10 :第一硬磁體 12 :絕緣體層 14 :鐵磁性自由層 16 :介電襯墊 18 :薄金屬層 20 :第二硬磁體 22、24 :位元線 =本案若有化學式時,請揭示最錢示發簡徵的化18 1317125 Hard magnet has a shape conforming with top and sidewalls of the first hard magnetic to enclose top and lateral sides of the ferromagnetic free layer. A spin-torque transfer current passes along the central Axis of the first and second hard magnets and the ferromagnetic free layer, and affects the magnetization direction of the ferromagnetic free layer. 7. The designated representative figure: (1) The representative representative figure of the case is: Figure (2). (b) The symbol of the representative figure is briefly described: 10: first hard magnet 12: insulator layer 14: ferromagnetic free layer 16: dielectric liner 18: thin metal layer 20: second hard magnet 22, 24: bit Yuan line = If there is a chemical formula in this case, please reveal the most money
TW95149214A 2006-12-27 2006-12-27 Structure of magnetic random access memory using spin-torque transfer writing and method for manufacturing same TWI317125B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95149214A TWI317125B (en) 2006-12-27 2006-12-27 Structure of magnetic random access memory using spin-torque transfer writing and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95149214A TWI317125B (en) 2006-12-27 2006-12-27 Structure of magnetic random access memory using spin-torque transfer writing and method for manufacturing same

Publications (2)

Publication Number Publication Date
TW200828305A TW200828305A (en) 2008-07-01
TWI317125B true TWI317125B (en) 2009-11-11

Family

ID=44817629

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95149214A TWI317125B (en) 2006-12-27 2006-12-27 Structure of magnetic random access memory using spin-torque transfer writing and method for manufacturing same

Country Status (1)

Country Link
TW (1) TWI317125B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505268B (en) * 2010-01-08 2015-10-21 Ibm Read direction for spin-torque based memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505268B (en) * 2010-01-08 2015-10-21 Ibm Read direction for spin-torque based memory device

Also Published As

Publication number Publication date
TW200828305A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
US7864569B2 (en) Structure of magnetic random access memory using spin-torque transfer writing
US9595666B2 (en) Method of fabricating smooth seed layers with uniform crystalline texture for high perpendicular magnetic anisotropy materials
JP5571439B2 (en) Magnetic tunnel junction device and method for manufacturing the same
JP5571142B2 (en) Magnetic memory
WO2012015465A1 (en) Bi-layer hard mask for the patterning and etching of nanometer size mram devices
US20080003701A1 (en) Non-via method of connecting magnetoelectric elements with conductive line
JP2008065944A (en) Forming method of pattern of magnetic layer, manufacturing method of magnetoresistive element, and manufacturing method of magnetic storage medium
JP5786341B2 (en) Memory element and memory device
KR20140111508A (en) Magnetoresistive structure, Magnetic Random Access Memory device and Manufacturing Method of the same
WO2011030529A1 (en) Method for manufacturing magnetoresistive element
CN108140728A (en) For the physical removal of self-rotary component and encapsulated layer in-situ deposition method
JP2012204408A (en) Manufacturing method of semiconductor device
JP2007305882A (en) Memory element and memory
CN111566831A (en) Free layer oxidation and spacer assisted magnetic tunneling junction etch for high performance magnetic random access memory devices
WO2018227901A1 (en) Vertically magnetized mtj device and stt-mram
JP2012160681A (en) Memory element, memory device
TWI409813B (en) Tuned pinned layers for magnetic tunnel junctions with multicomponent free layers and method of forming the same
JP6127511B2 (en) Magnetoresistive element, magnetic storage device using the same, and manufacturing method thereof
JP2012059878A (en) Storage element and memory unit
TWI317125B (en) Structure of magnetic random access memory using spin-torque transfer writing and method for manufacturing same
JP2007317734A (en) Storage device and memory
JP2012059879A (en) Storage element and memory unit
US20140212993A1 (en) Method of manufacturing a magnetoresistive device
JP2014179639A (en) Magnetic memory
CN110098321B (en) Method for preparing magnetic random access memory conductive hard mask