TWI314644B - - Google Patents

Download PDF

Info

Publication number
TWI314644B
TWI314644B TW95139933A TW95139933A TWI314644B TW I314644 B TWI314644 B TW I314644B TW 95139933 A TW95139933 A TW 95139933A TW 95139933 A TW95139933 A TW 95139933A TW I314644 B TWI314644 B TW I314644B
Authority
TW
Taiwan
Prior art keywords
electrode
humidity sensor
layer
micro
electrodes
Prior art date
Application number
TW95139933A
Other languages
Chinese (zh)
Other versions
TW200819739A (en
Inventor
I Yu Huang
Yue-Yu Li
Original Assignee
Huang Yi You
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Yi You filed Critical Huang Yi You
Priority to TW95139933A priority Critical patent/TW200819739A/en
Publication of TW200819739A publication Critical patent/TW200819739A/en
Application granted granted Critical
Publication of TWI314644B publication Critical patent/TWI314644B/zh

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

1314644 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種濕度感測器,詳言之’係關於一種具 不共平面電極及水氣進出口之微型濕度感測器。 【先前技術】 一般濕度感測器之高分子材料需具備低介電常數(約3至 ' 4之間)與高電阻之特性。由於水的介電常數約為78,當水 - 分子進該高分子材料後,整體介電常數值將隨著環境濕度 增加,故該習知電容式微型濕度感測器之電容值隨相對濕 度升高而增加。常見的電容式濕度感測材料有聚對笨二甲 二乙酯(PETT,polyethylenetere phthalate)、六曱苯二醚(HMDSO, hexamethyldisiloxane)、聚甲基丙烯酸甲酯(PMMA, polymethylmethacrylate)、聚苯乙烯磺酸鈉(p〇lystyrene sulf〇nic sodium)和常見的聚亞醯胺(Polyimide )等,該等高分子材料皆 含有羥基(-0H)、醚基(-〇-)、胺基(_NH2)、聯胺基(>NH)、 . 磺酸基(-S03H)和硫基(-S02-)作為吸附水分子的官能基。 請參閱圖1,其顯示習知電容式濕度感測器之示意圖。 該電容式微型濕度感測器1包括一基板1 1、一第一電極層 12、 ;|電層13及一弟二電極層14。該第一電極層12設置 於該基板Π上,該第一電極層12具有複數個第一電極 121。該介電層13覆盍該基板丨丨及該第一電極層12。該第 一電極層14设置於該介電層丨3上,該第二電極層丨4具有複 數個第二電極141,該等第二電極141與該等第一電極121 相對地設置。 115236.doc 1314644 由於該習知濕度感測器1之該介電層13為疏水性高分子 材料’水分子易於其内凝聚而有遲滯現象,且疏水性材料 通常和有機溶劑或揮發物有很好之親和力,因此對濕度之 感測影響甚大。並且,因為該等第二電極141與該等第— 電極1 2 1相對地設置,會使得濕度感測之靈敏度、感測線 性度、穩定性、精確度及反應速度表現不佳。1314644 IX. Description of the Invention: [Technical Field] The present invention relates to a humidity sensor, and more particularly to a miniature humidity sensor having a non-coplanar electrode and a water vapor inlet and outlet. [Prior Art] The polymer material of a general humidity sensor is required to have a low dielectric constant (between about 3 to 4) and a high resistance. Since the dielectric constant of water is about 78, when the water-molecule enters the polymer material, the overall dielectric constant value will increase with the ambient humidity, so the capacitance value of the conventional capacitive miniature humidity sensor is relative to the relative humidity. Increase and increase. Common capacitive humidity sensing materials are polyethylene terephthalate (PETT), hexamethyldisiloxane (HMDSO), polymethylmethacrylate (PMMA), polystyrene. Sodium sulfonate (p〇lystyrene sulf〇nic sodium) and common polyimide (Polyimide), etc., all of which contain hydroxyl (-0H), ether (-〇-), amine (_NH2) And a hydrazine group (>NH), a sulfonic acid group (-S03H), and a thio group (-S02-) are used as a functional group for adsorbing water molecules. Please refer to FIG. 1, which shows a schematic diagram of a conventional capacitive humidity sensor. The capacitive micro humidity sensor 1 includes a substrate 11 , a first electrode layer 12 , an electrical layer 13 , and a second electrode layer 14 . The first electrode layer 12 is disposed on the substrate, and the first electrode layer 12 has a plurality of first electrodes 121. The dielectric layer 13 covers the substrate and the first electrode layer 12. The first electrode layer 14 is disposed on the dielectric layer 丨3. The second electrode layer 丨4 has a plurality of second electrodes 141 disposed opposite the first electrodes 121. 115236.doc 1314644 Since the dielectric layer 13 of the conventional humidity sensor 1 is a hydrophobic polymer material, water molecules are prone to internal agglomeration and have hysteresis, and the hydrophobic material is usually very similar to organic solvents or volatiles. Good affinity, so it has a great impact on the sensing of humidity. Further, since the second electrodes 141 are disposed opposite to the first electrodes 1 21, the sensitivity, sensing linearity, stability, accuracy, and reaction speed of the humidity sensing are not performed well.

因此,有必要提供一種創新且具進步性之具不共平面電 極及水氣進出口之微型濕度感測器,以解決上述問題。 【發明内容】 第一電極層、一第一介電層 本發明之目的在於提供一種具不共平面電極及水氣進出 口之微型濕度感測器。該微型濕度感測器包括一基板、— 第 第二介電 極層Therefore, it is necessary to provide an innovative and progressive miniature humidity sensor with non-coplanar electrodes and water vapor inlets and outlets to solve the above problems. SUMMARY OF THE INVENTION First Electrode Layer and First Dielectric Layer An object of the present invention is to provide a miniature humidity sensor having a non-coplanar electrode and a water vapor inlet and outlet. The miniature humidity sensor includes a substrate, a second dielectric layer

層。該第一電極層設置於該基板上,該第-電極層具有一 第-接端及複數個第一電極。該第一介電層覆蓋部分該基 板及該等第_電極且顯露該第-接端。該第三電極層設置 於/第"電層上,具有一第二接端及複數個第二電極, 於空間上,兮笼楚-命> ^ —電極與該等第一電極係良錯地設置。 該第二介電層覆蓋該等第-雷熇0 ^ ^ 斤弟—電極,且顯露該第二接端,該 Ϊ 口 I:層具有複數個第一水氣進出。,該等第-水氣進 係W形成於該等第1極上之相對位置。 =型濕度感測器利用低介電常數之該第一介 電層及該第二介電層作 屠。並且,該第一二^感應層及該第二電極之保護 古 曰及3衾第一介電層具有低介電常 ㈣_、抗化學㈣性、尺寸安定性' I I5236.doc 1314644 極佳階梯覆蓋性等優良特性,因此在微電子與微機電系統 領域的應用非常廣泛。 再者,該等第一水氣進出口係分別形成於該等第一電極 上之相對位置,且該等第一水氣進出口係分別形成於該等 第二電極之間,且該第一電極層及該第二電極層為不共平 面,可使得該微型濕度感測器於進行濕度之量測時,具有 較佳的濕度感測靈敏度、極高的感測線性度、極低的遲滯Floor. The first electrode layer is disposed on the substrate, and the first electrode layer has a first terminal and a plurality of first electrodes. The first dielectric layer covers a portion of the substrate and the first electrode and exposes the first terminal. The third electrode layer is disposed on the /th electrical layer, and has a second terminal and a plurality of second electrodes. In space, the electrode and the first electrode are good. Wrong setting. The second dielectric layer covers the first - Thunder 0 ^ ^ 弟 - electrodes, and the second terminal is exposed, the I I: layer has a plurality of first moisture in and out. The first-hydrogen gas system W is formed at a relative position on the first poles. The = type humidity sensor utilizes the first dielectric layer of low dielectric constant and the second dielectric layer for slaughter. Moreover, the first two sensing layers and the second electrode of the protective ruthenium and the third 衾 first dielectric layer have a low dielectric constant (four) _, chemical resistance (four), dimensional stability 'I I5236.doc 1314644 excellent ladder Excellent characteristics such as coverage, so it is widely used in the field of microelectronics and MEMS. Further, the first water vapor inlet and outlet are respectively formed at opposite positions on the first electrodes, and the first water vapor inlet and outlet are respectively formed between the second electrodes, and the first The electrode layer and the second electrode layer are not coplanar, which enables the miniature humidity sensor to have better humidity sensing sensitivity, extremely high sensing linearity, and extremely low hysteresis when performing humidity measurement.

效應、優良的穩定性、極佳的精確度及高反應速度。 【實施方式】 請參閱圖2,其顯示本發明具不共平面電極及水氣進出 口之微型濕度感測器2 ^該微型濕度感測器2包括一基板 21、一第一電極層22、' 一第一介電層23、一第二電極層 24及一第二介電層25。該基板21可為一矽基板,例如該矽 基板21可為一p型矽基板,或者,該基板^亦可為一印刷 電路板。在該實施例中,該基㈣包括-碎層211及二層 氧化層212、213 ’料氧化層212、213分別形成於該石夕層 相對表面,其中,該等氧化層212、213之材質係 為—氧化句7。 2 ,考圖2、圖3及圖4,該第一電極層22設置於該基 ~第電極層22具有複數個第一電極221及一第Effect, excellent stability, excellent precision and high reaction speed. [Embodiment] Please refer to FIG. 2, which shows a miniature humidity sensor having a non-coplanar electrode and a water vapor inlet and outlet. The micro humidity sensor 2 includes a substrate 21 and a first electrode layer 22. A first dielectric layer 23, a second electrode layer 24 and a second dielectric layer 25. The substrate 21 can be a germanium substrate. For example, the germanium substrate 21 can be a p-type germanium substrate, or the substrate can be a printed circuit board. In this embodiment, the base (4) includes a fragmented layer 211 and two layers of oxide layers 212, 213. The material oxide layers 212, 213 are respectively formed on the opposite surfaces of the layer, wherein the materials of the oxide layers 212, 213 are The system is - oxidized sentence 7. 2, FIG. 2, FIG. 3 and FIG. 4, the first electrode layer 22 is disposed on the base-electrode layer 22 and has a plurality of first electrodes 221 and a first

一接端222。右兮L 山 在°亥實鉍例中,該等第一電極221與該第一接 知;222電性速技 、, A _ ,亚呈梳狀。該第一介電層23覆蓋部分該 土 ^及該等第—電極221且顯露該苐-接端222。 弟二電極層24設置於該第-介電㈣上,該第二電極 115236.doc 1314644 一第二接端242 ’在該實施 二接端242電性連接,並呈 層24具有複數個第二電極24;[及 例中’該等第二電極241與該第 :狀,於空間上’該等第二電極241與該等第一電極2㈣ 交錯地設置。該第-接端222及該第:接端⑷係用以電性 連接至一外部電源。該第一電極層22及該第二電極層^之 材質係選自銘、銅、鉻或金等金屬。在該實施例中,該第 -電極層22及該第二電極層24之材質係為鋁,而鋁具有導 包性佳及延展性佳之特性’且料取得容易之金屬材質。 該第二介電層25覆蓋該等第二電極241,且顯露該第二 接端242,該第二介電層25具有複數個第一水氣進出口 251 ’用以使水氣通過以進行濕度之量測。該等第一水氣 進出口251係分別形成於該等第一電極221上之相對位置, 且該等第-水氣進出口251係分別形成於該等第:電極241 之間。要注意的是’該第—介電層23亦可具有複數個第二 錢進出口231 ’該等第二水氣進出口加係分卿成於該 等第-電極221上之相對位置’且分別與該等第一水氣進 出口 251相連通(如圖5所示)。 在該/施例中1第一電極221之寬度等於該第二電極 241之見度,且該第二電極241之垂直投影不覆蓋該第一電 極221亦即’於^間上,該等第—電極221及該等第二電 極⑷未重豐。要注意的是,該第-電極221之寬度可大於 ^一电極241之寬度(如圖6所示),或者,該第-電極221 之見度可小於該第二電極241之寬度(如圖7所示)。 另外,該第二電極241之垂直投影亦可覆蓋部分該第一 115236.doc 1314644 電極221。亦即,於空間上,該等第一電極221及該等第二 電極241部分重疊。纟且,該第一電極221之寬度可大於該 第一電極241之寬度(如圖8所示),或者,該第一電極22丨之 寬度可小於該第二電極241之寬度(如圖9所示),或者,該 第一電極221之寬度等於該第二電極241之寬度,且該第一 電極221及該第二電極241具有較寬之寬度(如圖1〇所示)。 車父佳地,該第一介電層23及該第二介電層25之材質係為 问分子材料。該高分子材料係選自聚對苯二甲二乙酯 (PETT,polyethylenetere phthalate)、六甲苯二醚(HMDS〇, hexamethyldisUoxane)、聚甲基丙烯酸甲酯(pMMA, polymethylmethacrylate)、聚苯乙烯磺酸鈉(p〇lystyrene sulfonic sodium)及聚亞醯胺㈣切加如)等。其中,該第一介電層23及 s亥第一介電層25之材質較佳為聚亞醯胺。在應用範圍上, 該咼分子材料之工作溫度範圍較高’通常可達_4〇。〇至 180°C,電容值之變化約在1至i〇〇〇pfd 請參閱圖11,其顯示圖2、圖6、圖7及圖10之微型濕度 感測器之相對濕度-電容值之示意圖。其中,曲線5A100代 表圖2之微型濕度感測器之濕度感測曲線;曲線5B100代表 圖6之微型濕度感測器之濕度感測曲線;曲線5c 1 〇〇代表圖 7之微型濕度感測器之濕度感測曲線;曲線5D100代表圖10 之微型濕度感測器之濕度感測曲線。由圖11中可得知,在 相同感測區域面積面積、感測介電層厚度及交錯的電極寬 度下’電極的交錯方式,以圖10之微型濕度感測器(上、 下電極接觸面積較大)之功效為最佳,其電容變化範圍 115236.doc 1314644 值、靈敏度與線性度為最佳。 之= = = ’其顯示本發明微型濕度感測器之遲滞效應 、、…:二圖12中可得知,由3〇%相對濕度至7〇%相對 二产::之濕度感測曲線,與由7〇%相對濕度至鄕相 對濕度所置測之濕度感測 刑, 深忒十篁里,亦即,本發明微 =度感測器具有極低之遲滯效應,㈣ 較佳之精準度,且感測之濕度值不易失真。 -有 本發明之該微型濕度感測器利用低介電常數之該第一介 電層及該第二介電層作為電容感應層及該第 層。並且,該介電層具有 古 夺之保漠 ,、啕低;丨電常數、尚耐熱性、抗幅射 性、抗化學腐餘性、p斗& > , 尺寸女疋性、極佳階梯覆蓋性等優良 特性,因此在微電子與微機電系統領域的應用非常廣、乏。 再者’該等第—水氣進出口 251係分別形成於該等第一 電極221上之相對位置,且該等第一水氣進出口⑸係分別 形成於該等第二電極241之間,且該第-電極層及該第二 電極層為不共平面,可使得該微型濕度感測器2於進行濕 度之量測時’具有較佳的濕度感測靈敏度、極高的感測線 性度、極低的遲滞效應、優良的穩定性、極佳的精確度及 高反應速度。 惟上述實施例僅為說明本發明之原理及其功效,而非用 以限制本發明。因此,習於此技術之人士對上述實施例進 仃修改及變化仍不脫本發明之精神。本發明之權利範圍應 如後述之申請專利範圍所列。 【圖式簡單說明】 115236.doc 1314644 圖1顯不習知電容式微型濕度感測器之示意圖; 圖2顯示本發明微型濕度感測器之示意圖; 圖3顯示本發明第一電極層之示意圖; 圖4顯示本發明第二電極層之示意圖; 圖5顯示本發明第一介電層具有複數個第二水氣進出口 微型濕度感測器之示意圖; 圖6顯示本發明第一電極之寬度大於第二電極之寬声之 微型濕度感測器之示意圖; &A terminal 222. Right 兮L Mountain In the case of the 亥 铋 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The first dielectric layer 23 covers a portion of the earth and the first electrode 221 and exposes the meandering terminal 222. The second electrode layer 24 is disposed on the first dielectric (four), and the second electrode 115236.doc 1314644 and the second terminal 242 ′ are electrically connected at the second terminal 242, and the layer 24 has a plurality of second layers. The electrode 24; [and in the example, the second electrode 241 and the first shape: spatially] the second electrode 241 and the first electrodes 2 (four) are alternately disposed. The first terminal 222 and the first terminal (4) are electrically connected to an external power source. The material of the first electrode layer 22 and the second electrode layer is selected from metals such as Ming, copper, chromium or gold. In this embodiment, the material of the first electrode layer 22 and the second electrode layer 24 is aluminum, and aluminum has a property of good packageability and good ductility, and is made of a metal material which is easy to obtain. The second dielectric layer 25 covers the second electrodes 241 and exposes the second terminal 242. The second dielectric layer 25 has a plurality of first water inlets and outlets 251' for allowing moisture to pass through. The measurement of humidity. The first water vapor inlets and outlets 251 are respectively formed at the relative positions of the first electrodes 221, and the first water vapor inlets and outlets 251 are formed between the first electrodes 241, respectively. It should be noted that 'the first dielectric layer 23 may also have a plurality of second money inlets and outlets 231 'the relative positions of the second water gas inlet and outlet addition points on the first electrode 221' and They are respectively connected to the first water gas inlet and outlet 251 (as shown in FIG. 5). In the embodiment, the width of the first electrode 221 is equal to the visibility of the second electrode 241, and the vertical projection of the second electrode 241 does not cover the first electrode 221, that is, - The electrode 221 and the second electrode (4) are not heavy. It should be noted that the width of the first electrode 221 may be greater than the width of the electrode 241 (as shown in FIG. 6), or the visibility of the first electrode 221 may be smaller than the width of the second electrode 241 (eg, Figure 7)). In addition, the vertical projection of the second electrode 241 may also cover a portion of the first 115236.doc 1314644 electrode 221. That is, the first electrodes 221 and the second electrodes 241 partially overlap in space. The width of the first electrode 221 may be greater than the width of the first electrode 241 (as shown in FIG. 8 ), or the width of the first electrode 22 可 may be smaller than the width of the second electrode 241 ( FIG. 9 ) The width of the first electrode 221 is equal to the width of the second electrode 241, and the first electrode 221 and the second electrode 241 have a wide width (as shown in FIG. 1A). The material of the first dielectric layer 23 and the second dielectric layer 25 is a molecular material. The polymer material is selected from the group consisting of polyethylene terephthalate (PETT), hexamethyldicarboxylate (HMDS〇, hexamethyldisUoxane), polymethylmethacrylate (pMMA), polystyrene sulfonic acid. Sodium (p〇lystyrene sulfonic sodium) and polyamidamine (IV) cut and so on. The material of the first dielectric layer 23 and the first dielectric layer 25 is preferably polyamine. In terms of application, the molecular weight of the bismuth molecular material has a higher operating temperature range, usually up to _4 〇. 〇 to 180 ° C, the capacitance value changes about 1 to i 〇〇〇 pfd See Figure 11, which shows the relative humidity - capacitance value of the miniature humidity sensor of Figure 2, Figure 6, Figure 7 and Figure 10. schematic diagram. Wherein, the curve 5A100 represents the humidity sensing curve of the miniature humidity sensor of FIG. 2; the curve 5B100 represents the humidity sensing curve of the miniature humidity sensor of FIG. 6; the curve 5c 1 〇〇 represents the miniature humidity sensor of FIG. The humidity sensing curve; the curve 5D100 represents the humidity sensing curve of the miniature humidity sensor of FIG. As can be seen from FIG. 11, the interdigitation of the electrodes in the same sensing area area, the thickness of the sensing dielectric layer, and the staggered electrode width, and the micro humidity sensor of FIG. 10 (upper and lower electrode contact areas) The larger one is best, with a capacitance range of 115236.doc 1314644, sensitivity and linearity are optimal. == = 'It shows the hysteresis effect of the miniature humidity sensor of the present invention, ...: 2, Figure 12 shows that the humidity sensing curve is from 3〇% relative humidity to 7〇% relative to the second production: And the humidity sensing test measured from 7〇% relative humidity to 鄕 relative humidity, deep 忒10篁, that is, the micro=degree sensor of the invention has a very low hysteresis effect, (4) better precision And the sensed humidity value is not easily distorted. The miniature humidity sensor of the present invention utilizes the first dielectric layer of low dielectric constant and the second dielectric layer as a capacitive sensing layer and the first layer. Moreover, the dielectric layer has the ancient protection of the desert, the low; the electric constant, the heat resistance, the radiation resistance, the chemical corrosion resistance, the p bucket &>, the size of the female, excellent Excellent features such as step coverage, so it is widely used in the field of microelectronics and MEMS. Further, the first water-gas inlets and outlets 251 are respectively formed on the first electrodes 221, and the first water-gas inlets and outlets (5) are respectively formed between the second electrodes 241. The first electrode layer and the second electrode layer are not coplanar, so that the micro humidity sensor 2 has better humidity sensing sensitivity and extremely high sensing linearity when performing humidity measurement. , very low hysteresis effect, excellent stability, excellent precision and high reaction speed. However, the above-described embodiments are merely illustrative of the principles of the invention and its effects, and are not intended to limit the invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a capacitive miniature humidity sensor; FIG. 2 is a schematic view showing a miniature humidity sensor of the present invention; FIG. 3 is a schematic view showing a first electrode layer of the present invention; Figure 4 is a schematic view showing a second electrode layer of the present invention; Figure 5 is a schematic view showing a first dielectric layer of the present invention having a plurality of second water-gas inlet and outlet miniature humidity sensors; Figure 6 is a view showing the width of the first electrode of the present invention; Schematic diagram of a wide acoustic miniature humidity sensor larger than the second electrode; &

圖7顯示本發明第一電極之寬度小於第二電極之寬度之 微型濕度感測器之示意圖; 圖8至圖1〇顯示本發明第二電極之垂直投影覆蓋部分第 一電極之三種微型濕度感測器之示意圖; 圖Π顯示圖2、圖6、圖7及圖10之微型濕度感測器之相 對濕度-電容值之示意圖;及7 is a schematic view showing a miniature humidity sensor in which the width of the first electrode of the present invention is smaller than the width of the second electrode; FIG. 8 to FIG. 1B show three types of micro humidity feelings of the first electrode of the vertical projection covering portion of the second electrode of the present invention. Schematic diagram of the detector; Figure Π shows the relative humidity-capacitance values of the miniature humidity sensors of Figures 2, 6, 7, and 10;

圖12顯示本發明微型濕度感 【主要元件符號說明】 1 習知之電容式 2 本發明之微型 11 基板 12 第一電極層 13 介電層 14 第二電極層 21 基板 22 第一電極層 測器之遲滞效應之示意圖。 微型濕度感測器 濕度感測器 I15236.doc 1314644 23 第一介電層 24 第二電極層 25 第二介電層 121 第一電極 141 第二電極 211 矽層 212 ' 213 氧化層 221 第一電極 222 第一接端 231 第二水氣進出口 241 第二電極 242 第二接端 251 第一水氣進出口 115236.doc _ η _Figure 12 shows the micro-humidity of the present invention. [Main component symbol description] 1 Conventional capacitance type 2 The micro 11 substrate 12 of the present invention First electrode layer 13 Dielectric layer 14 Second electrode layer 21 Substrate 22 First electrode layer detector Schematic diagram of the hysteresis effect. Micro humidity sensor humidity sensor I15236.doc 1314644 23 first dielectric layer 24 second electrode layer 25 second dielectric layer 121 first electrode 141 second electrode 211 germanium layer 212 ' 213 oxide layer 221 first electrode 222 first connection end 231 second water gas inlet and outlet 241 second electrode 242 second connection end 251 first water gas inlet and outlet 115236.doc _ η _

Claims (1)

1314644 、申請專利範圍: —種具不共平面電極及水氣進出口夕 印之微型濕度感測器, 包括: 一基板; 一第一電極層,設置於該基板上, 一第一接端及複數個第一電極; 該第一電極層具有 -第-介電層’覆蓋部分該基板及該等[電極且顯 露該第一接端; 一第二電極層,設置於該第—介 力電層上,具有一第二 接端及複數個第二電極,於空間上, 等第一電極係交錯地設置;及 山-第:介電層,覆蓋該等第二電極,且顯露該第二接 端,該第二介電層具有複數個第一水氣進出口該等第 一水氣進出口係分別形成於該等第—電極上之 該等第二電極與該 2. 置。 如請求項 相對位 1之微型濕度感測器,其中該基板係為 板。 如明求項2之微型 石夕基板。 '員1之微型濕度感測器,其中該基板 電路板。 1尔马一印刷 5. 如古青炎 π /項1之微型濕度感測器,其中該基板包 及二ι姑一砂層 曰氧化層,該等氧化層分別形成於該曰 表面。 s又一相對 濕度感測器,其中該矽基板係為 矽基 P型 1 l5236.doc 1314644 6·如晴求項5之微型濕度感測器,其中該等氧化層之材質 係為二氧化矽。 如請求項1之微型濕度感測器,其中該第一電極層及該 第一電極層之材質係選自鋁、銅、鉻或金等金屬。 8. 如晴求項1之微型濕度感測器,其中該第一介電層及該 第二介電層之材質係為高分子材料。 9. 如請求項8之微型濕度感測器,其中該高分子材料係選 自♦對本二甲二乙酯(PETT,polyethylenetere phthalate)、六曱苯 一喊(HMDSO,hexamethyldisiloxane)、聚甲基丙稀酸曱醋 ’ polymethylmethacrylate)、聚苯乙稀續酸納 ^poiys'iyjene sulfonic sodium)或聚亞醯胺(Polyimide)等。 10 如晴求項1之微型濕度感測器,其中該第一介電層具有 複數個第二水氣進出口,該等第二水氣進出口係分別形 成於該等第一電極上之相對位置,且分別與該等第一水 氣進出口相連通。 其中該等第一水氣進出 間。 其中該第一電極之寬度 11 ·如請求項1之微型濕度感測器, 口係分別形成於該等第二電極之 12. 如請求項1之微型濕度感測器, 等於該第二電極之寬度。 13. 如請求項丨之微型濕度感測器,其中該第一電極之寬度 大於該第二電極之寬度。 14. 如請求項丨之微型濕度感剛器,其中該第一電極之寬度 小於該第二電極之寬度。 15. 如請求項1之微型濕度感測器,其中該第二電極之垂直 115236.doc 1314644 投影不覆蓋該第一電極。 16.如請求項1之微型濕度感測器,其中該第二電極之垂直 投影覆蓋部分該第一電極。 11314644, the scope of application for patents: - a miniature humidity sensor with a non-coplanar electrode and a water vapor inlet and outlet, comprising: a substrate; a first electrode layer disposed on the substrate, a first terminal and a plurality of first electrodes; the first electrode layer has a -first dielectric layer covering a portion of the substrate and the [electrode and exposing the first terminal; a second electrode layer disposed on the first dielectric The layer has a second terminal and a plurality of second electrodes, and spatially, the first electrodes are alternately disposed; and a mountain-first: dielectric layer covers the second electrodes and exposes the second The second dielectric layer has a plurality of first water gas inlet and outlet ports, and the first water gas inlet and outlet ports are respectively formed on the first electrodes and the second electrodes. A miniature humidity sensor as claimed in relation to bit 1, wherein the substrate is a plate. Such as the micro-Shi Xi substrate of the item 2. 'A member of the miniature humidity sensor, which is the substrate circuit board. 1 erma a printing 5. Such as the ancient inflammatory π / item 1 miniature humidity sensor, wherein the substrate package and the second layer of a sand layer of ruthenium oxide layer, the oxide layer is formed on the surface of the ruthenium. a further relative humidity sensor, wherein the ruthenium substrate is a ruthenium-based P-type 1 l5236.doc 1314644 6 · a micro-humidity sensor according to the ninth item, wherein the material of the oxide layer is cerium oxide . The micro humidity sensor of claim 1, wherein the material of the first electrode layer and the first electrode layer is selected from the group consisting of metals such as aluminum, copper, chromium or gold. 8. The micro humidity sensor of claim 1, wherein the material of the first dielectric layer and the second dielectric layer is a polymer material. 9. The micro humidity sensor of claim 8, wherein the polymer material is selected from the group consisting of: PETT, polyethylenetere phthalate, HMDSO, hexamethyldisiloxane, polymethyl propyl Dilute vinegar 'polymethylmethacrylate', polystyrene sulphonate sodium or polyimide (Polyimide). 10. The micro humidity sensor of claim 1, wherein the first dielectric layer has a plurality of second water gas inlet and outlet ports, and the second water gas inlet and outlet ports are respectively formed on the first electrodes. Positions are respectively connected to the first water gas inlet and outlet. Among them, the first water gas enters and exits. Wherein the width of the first electrode is 11. The micro-humidity sensor of claim 1 is formed on the second electrode 12. The micro-humidity sensor of claim 1 is equal to the second electrode. width. 13. The micro humidity sensor of claim 1, wherein the width of the first electrode is greater than the width of the second electrode. 14. The micro humidity sensor of claim 1, wherein the width of the first electrode is less than the width of the second electrode. 15. The miniature humidity sensor of claim 1, wherein the vertical 115236.doc 1314644 projection of the second electrode does not cover the first electrode. 16. The miniature humidity sensor of claim 1, wherein a vertical projection of the second electrode covers a portion of the first electrode. 1
TW95139933A 2006-10-27 2006-10-27 Miniatured humidity sensor having a non-coplanar electrode and moisture entry/exit TW200819739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95139933A TW200819739A (en) 2006-10-27 2006-10-27 Miniatured humidity sensor having a non-coplanar electrode and moisture entry/exit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95139933A TW200819739A (en) 2006-10-27 2006-10-27 Miniatured humidity sensor having a non-coplanar electrode and moisture entry/exit

Publications (2)

Publication Number Publication Date
TW200819739A TW200819739A (en) 2008-05-01
TWI314644B true TWI314644B (en) 2009-09-11

Family

ID=44769912

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95139933A TW200819739A (en) 2006-10-27 2006-10-27 Miniatured humidity sensor having a non-coplanar electrode and moisture entry/exit

Country Status (1)

Country Link
TW (1) TW200819739A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3401674B1 (en) 2017-05-09 2020-07-15 ams International AG Capacitive-type humidity sensor with superhydrophobic top surface and corresponding fabrication method
JP2021042956A (en) * 2017-12-28 2021-03-18 アルプスアルパイン株式会社 Humidity detection device

Also Published As

Publication number Publication date
TW200819739A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
Tang et al. A highly aligned nanowire‐based strain sensor for ultrasensitive monitoring of subtle human motion
Jing et al. Freestanding functional structures by aerosol‐jet printing for stretchable electronics and sensing applications
Wang et al. Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device
CN103376279B (en) Humidity sensor apparatus
El-Molla et al. Integration of a Thin Film PDMS‐Based Capacitive Sensor for Tactile Sensing in an Electronic Skin
TW201330747A (en) Electronic devices with internal water-resistant coatings
EP2762866B1 (en) CMOS gas sensor and method for manufacturing the same
Wang et al. Flexible chemiresistor sensors: Thin film assemblies of nanoparticles on a polyethylene terephthalate substrate
CN101443635A (en) Thermal mass gas flow sensor and method of forming same
JP7188983B2 (en) conductivity sensor
US9086276B2 (en) Multilayered liquid capacitive micro inclinometer
TWI314644B (en)
Lee et al. Electrolytic tilt sensor fabricated by using electroplating process
Linseis et al. Complete thermoelectric characterization of PEDOT: PSS thin films with a novel ZT test chip platform
Park et al. Pixel-free capacitive touch sensor using a single-layer ion gel
US9052334B2 (en) Acceleration sensor
CN108028110A (en) Resistor and temperature sensor
Li et al. Laser‐Patterned Copper Electrodes for Proximity and Tactile Sensors
Dean et al. Capacitive fringing field sensors in printed circuit board technology
US20170097313A1 (en) Humidity sensor
CN107727713B (en) Micro-sensor
US10705064B2 (en) Micro sensor package
Suh et al. Small‐Sized Deformable Shear Sensor Array for Direct Monitoring of Quantitative Shear Distribution
KR20170045963A (en) A sensor and method for manufacturing the sensor
Del Duca et al. Origami‐Enabled Stretchable Electrodes Based on Parylene Deposition and 3D Printing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees