TWI314504B - Internal engaging spherical gears and method of making the same - Google Patents

Internal engaging spherical gears and method of making the same Download PDF

Info

Publication number
TWI314504B
TWI314504B TW96100598A TW96100598A TWI314504B TW I314504 B TWI314504 B TW I314504B TW 96100598 A TW96100598 A TW 96100598A TW 96100598 A TW96100598 A TW 96100598A TW I314504 B TWI314504 B TW I314504B
Authority
TW
Taiwan
Prior art keywords
cos
sin
gear
spherical gear
coordinate system
Prior art date
Application number
TW96100598A
Other languages
Chinese (zh)
Other versions
TW200829397A (en
Inventor
Shyue Cheng Yang
Original Assignee
Univ Nat Changhua Education
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Changhua Education filed Critical Univ Nat Changhua Education
Priority to TW96100598A priority Critical patent/TWI314504B/en
Publication of TW200829397A publication Critical patent/TW200829397A/en
Application granted granted Critical
Publication of TWI314504B publication Critical patent/TWI314504B/en

Links

Description

1314504 九、發明說明: 【發明所屬之技術領域】 本發明是有關於—種球面齒輪裝置,且特別是有關於 一種内嚙合式球面齒輪裝置及其製造方法。 【先前技術】 目前許多的重型工業已經慢慢的轉型成為精密工 鲁 I’而在使用的領域方面像是精密的配接、組裝或是高準 度的焊接技術都已經由機械手臂來代卫。現有的機械手 臂,其肘節機構是由螺旋齒輪、斜齒輪、圓錐齒輪的組合 配裝而成,因此僅具有的自由度皆為單一自由度,且所需 齒輪組件甚多。 因此,相關業者發展出球面齒輪,並應用於機械手臂 的肘節機構。球面窗輪在球冠上分佈著許多由錐形φ,在 空間上的應用比起一般的齒輪多了一個自由度,適合用於 機器人上的關節機構。因而,球面齒輪逐漸成為機械手臂 零 的關鍵零組件之一。 此外,機械手臂的作動,不外乎垂直移動與水平移動 加上旋轉。但無論是兩軸是否交錯或者平行,都只能傳達 • 、沿兩軸線且自由度相對位置不變的一維迴轉運動。然而, 由於球面齒輪機構與一般的齒輪機構相較,具有多出的— 一 個自由度,因此,可以傳達二維的旋轉運動。 、請參照第1圖所示,係為Trallfa公司所出產應用於機 械手臂傳動裝置的球面齒輪,這種機械手臂的特點是應用 6 1314504 了萬向接頭與球面齒輪的傳動組合,利用球面傳動 兩個輪齒面相互而來達成傳動β由於此種球面齒輪為 外接型式,亦即,兩個相唾合的球面齒輪均為凸球面,因 此,具有較大的空間體積。此外,此種球面齒輪也必須# 由許多的單球齒輪組合,也會造成空間上的浪費。、 球面齒輪的主要傳動元H凸輪齒及凹輪齒兩元 且可以允許整體兩個自由度轉動,現有球面齒輪的輪 *· 冑為錐形齒形’造成相唾合的輪齒間,會有應力集中的現 象。因此’為了使球面齒輪便於應用,必須減低傳動元件 (即凸齒輪及凹齒輪)間的應力效應,以增加球面齒輪的使 用壽命與提昇效率。 因此’仍需要-種體積小以應用傳動裝置的球面齒 輪,以及減低應力的齒輪齒形設計,來解決前述問題。 【發明内容】 φ 因此本發明的目的在提供一種内嚙合式球面齒輪裝 置,用以減小該内嚙合式球面齒輪裝置的整體組裝尺寸。 本發明的另一目的提供一種内嚙合式球面齒輪的製 造方法,以提供具有兩個自由度的順暢轉動,並減小應力 效應的内嚙合式球面齒輪裝置。 —種内嚙合式球面齒輪裝置,至少包含一凹球面齒輪 以及一凸球面齒輪。該凹球面齒輪具有一凹球面,該凹球 面上的輪齒是由中央輪齒複製而來,而中央輪齒是由嚅合 w創成而來。該凸球面齒輪與該凹球面齒輪相互。齒合, 1314504 並具有-與該凹球面相對應的四球面,該凸球面上的輪齒 是由中央輪齒複製而來,而中央輪齒是由儒合理論創成而 來,該些凸球面上輪齒與該凹球面上的輪齒係可分別相互 嚙合,並已在電腦完成動晝模擬。 該内嚙合式球面齒輪的製造方法,包含:提供一固定 座標系統〜(0,,〜々,Z/),並將一座標系統夂呔,n,y 固定在刀具上。將兩個參考座標系統咖,〜和1314504 IX. Description of the Invention: [Technical Field] The present invention relates to a spherical gear device, and more particularly to an internal meshing spherical gear device and a method of manufacturing the same. [Prior Art] Many heavy-duty industries have been slowly transformed into precision workers, and in the field of use, such as precision mating, assembly or high-precision welding technology, have been defended by robotic arms. . In the conventional manipulator arm, the toggle mechanism is a combination of a helical gear, a helical gear, and a bevel gear, so that the degree of freedom is only a single degree of freedom, and many gear components are required. Therefore, the relevant industry has developed a spherical gear and applied it to the toggle mechanism of the robot arm. The spherical window wheel has a number of conical φ on the spherical crown. The space application has one more degree of freedom than the general gear and is suitable for the joint mechanism on the robot. Therefore, the spherical gear gradually becomes one of the key components of the robot arm zero. In addition, the movement of the robot arm is nothing more than vertical movement and horizontal movement plus rotation. But whether the two axes are staggered or parallel, they can only convey • one-dimensional rotary motion along the two axes with the same relative position of degrees of freedom. However, since the spherical gear mechanism has an extra degree of freedom as compared with a general gear mechanism, it can convey a two-dimensional rotational motion. Please refer to Figure 1 for the spherical gear produced by Trallfa for the mechanical arm transmission. This mechanical arm is characterized by the application of 6 1314504 universal joint and spherical gear transmission combination, using spherical transmission two The gear teeth face each other to achieve the transmission β. Since the spherical gear is an external type, that is, the two spherical balls that are salivated are convex spherical surfaces, and therefore have a large space volume. In addition, such a spherical gear must also be combined with many single-ball gears, which also causes space waste. The main transmission element of the spherical gear H is the two cam teeth and the concave gear teeth and can allow the whole two degrees of freedom to rotate. The existing spherical gear wheel *· 胄 is a conical tooth shape, causing the spoiled teeth between the teeth. There is a phenomenon of stress concentration. Therefore, in order to make the spherical gear easy to apply, it is necessary to reduce the stress effect between the transmission element (i.e., the convex gear and the concave gear) to increase the life and efficiency of the spherical gear. Therefore, it is still necessary to solve the aforementioned problems by a spherical gear having a small volume to apply a transmission and a gear tooth design with reduced stress. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an internal mesh type spherical gear device for reducing the overall assembly size of the internal mesh type spherical gear device. Another object of the present invention is to provide a method of manufacturing a meshing spherical gear to provide a meshing spherical gear device having smooth rotation with two degrees of freedom and reducing stress effects. An internal meshing spherical gear device comprising at least a concave spherical gear and a convex spherical gear. The concave spherical gear has a concave spherical surface on which the teeth on the concave spherical surface are copied, and the central tooth is created by the twisting w. The convex spherical gear and the concave spherical gear are mutually opposed. Teeth, 1314504 and having a four-spherical surface corresponding to the concave spherical surface, the teeth on the convex spherical surface are copied from the central tooth, and the central tooth is created by the Confucian theory, the convex spherical surface The upper gear teeth and the gear teeth on the concave spherical surface can respectively mesh with each other, and the dynamic simulation has been completed in the computer. The method for manufacturing the internal meshing spherical gear comprises: providing a fixed coordinate system ~ (0,, ~々, Z/), and fixing the standard system 夂呔, n, y to the tool. Put two reference coordinates system coffee, ~ and

Ate,〜知y固定於凸球面齒輪的座標系,隨著凸球面齒 輪轉動。且將兩個參考座標系以仏,5, Ad和Ate, ~ know y fixed to the coordinate system of the convex spherical gear, with the convex spherical gear rotating. And the two reference coordinates are 仏, 5, Ad and

Afe,h八,A)固定於凹球面齒輪的座標系,隨著凹球面 齒輪轉動。 將凸球面齒輪繞著•轉動U,使凹球面齒輪轉動堯 角度,為和㈣係為其中,π和乂分別為凸球 面齒輪之凸輪齒及凹球面齒輪之凹輪齒之齒數。將凸球面 齒輪上的座標系4砍,〜知y繞4軸轉動色角,凹球面齒 輪則轉動么角度,色和么的關係為^Μ。將凸球面齒輪 繞Α和Ζ3軸,分別轉動為和么,則凹球面齒輪分別轉動了 戎角度。 5 接著,利用齊次座標轉換矩陣,產生刀具曲面之雙參 數曲面族方程式,最後,利用雙參數包絡嚅合理論,產生 刀具曲面之參數曲面族群之包絡面。 藉此’本發明所能達成的功效在於: 在使用快速成型法和製造科技,可依據參數 之包絡面產生球面齒輪之凸面球面齒輪和凹面球面齒輪 1314504 之輪廓。本發明提供了具有圓弧齒根圓之圓錐形刀具曲面 設計及其製造方法,並用雙參數曲面族包絡理論,建立了 球面齒輪裝置的輪廓,提供—個可以兩個自由度傳動之内 嚙合式球面齒輪傳動機構。 此外,本發明之球面齒輪裝置經機構動模擬及應力分 析’可得以雙參數包絡產生之内齒輪式球面齒輪,可以提 供兩個自由度下順暢的轉動’並可改善球面齒輪裝置的應 【實施方式】 請參照第2圖與第3圖所示,第2圖為本發明_較佳 實施例一凸球面齒輪的立體圖;第3圖為本發明較佳實施 例一凹球面齒輪的立體圖。 本發明較佳實施例之一内喃合式球面齒輪裝置,包含 - Λ球面齒輪100、-凹球面齒輪2〇〇、一凸球面齒輪框 架300以及一凹球面齒輪框架4〇〇 (如第9圖所示)。凸球 面齒輪100與凹球面齒輪2〇〇係相互凹凸對應嚙合,並結 合於框架300、400上。凸球面齒輪1〇〇與凹球面齒輪 上並分布許多的錐形輪齒,包含凸球面上輪齒與凹球面上 的輪齒。 在廷個較佳實施例中,凸球面齒輪1〇〇上的輪齒設為 凸輪齒110’凹球面齒輪200上的輪齒設為凹輪齒2丨〇。對 於此項技術領域中具有通常知識者來說,應該可認知凸球 面齒輪100的齒可設為凹輪齒,此時,凹球面齒輪2〇〇上 1314504 的齒可設為凸輪齒。 而由於凸輪齒110與凹輪齒210係相互嚙合,因此, 兩者的齒形會符合齒輪的嚙合原理。要形成凸輪齒110與 凹輪齒210的齒形的刀具,一般稱為刀具設計,或是創成 面D又冲。利用刀具設計於凸球面齒輪100與凹球面齒輪200 上分別創成凸輪齒11〇與凹輪齒21〇,這些凸輪齒11()與 凹輪齒210又稱為被創成面。 凊參照第4圖與第5圖所示,第4圖為本發明較佳實 施例,產生球面齒輪之刀具幾何形狀設計的剖面圖,第5 圖為本發明較佳實施例,刀具曲面(創成面)的模擬示意圖。 刀f曲面(創成面)的可由一 3線段、一 &線段一叾線 以及一办線段,繞一軸心(久軸)轉一圈形成。其中,&線段 是使用於產生被創成面(即凸輪齒11〇與凹輪齒21〇)之齒 冠,&線段則用於產生被創成面之工作區域,g線段則是 被創成面的齒根圓弧,而办線段則使用於產生齒底面。 被創成面所形成的凸輪齒110與凹輪齒21〇係為對應 嚙合,為簡化說明起見,以下將以刀具曲面(創成面)形成 凹輪齒210(被創成面)說明。 當該些線段繞义軸轉一圈時,則可以形成加工凹球面 齒輪200上凹輪齒210之刀具。由以上刀具幾何線段部分 的敘述m之幾何數學參數式表示在座標系統 ,〜土,d下4中Rf上標g用以代表刀具之▲線段、 [線段^線段和石線段區域。如第4圖所示,刀具的剖 面形狀必線段所定義的區域產生凹輪齒21〇頂部的圓狐 1314504 部。若以可變數β是刀具曲線之參數。3線段所定義的區 域之方程式(1)式以座標系統&表示,可以下式表示: ((r + rcl)sini^ +θχ)~ rcX cos(0, + a)) cosrg + ((r + rcl) cos(6»p + &) - rd sin(6», + o〇) sinAfe, h VIII, A) is a coordinate system fixed to the concave spherical gear, which rotates with the concave spherical gear. The convex spherical gear is rotated around the U, so that the concave spherical gear rotates by 尧, and the sum is (4), where π and 乂 are the cam teeth of the convex spherical gear and the concave teeth of the concave spherical gear, respectively. Cut the coordinate system 4 on the convex spherical gear, and let the y turn the color angle around the 4 axis. The concave spherical gear rotates at an angle, and the relationship between the color and the color is ^Μ. When the convex spherical gear is wound around the Α and Ζ 3 axes, respectively, the concave spherical gears are rotated by the 戎 angle. 5 Next, using the homogeneous coordinate transformation matrix, the two-parameter surface family equations of the tool surface are generated. Finally, the two-parameter envelope convergence theory is used to generate the envelope surface of the parameter surface group of the tool surface. The effect achieved by the present invention is that, in the use of rapid prototyping and manufacturing techniques, the contours of the spherical spherical gears and the concave spherical gears 1314504 of the spherical gears can be produced in accordance with the envelope surface of the parameters. The invention provides a conical tool curved surface design with a circular arc root circle and a manufacturing method thereof, and uses the two-parameter curved surface family envelopment theory to establish the contour of the spherical gear device, and provides an internal meshing with two degrees of freedom transmission. Spherical gear transmission mechanism. In addition, the spherical gear device of the present invention can realize the smooth rotation of two degrees of freedom through the mechanism dynamic simulation and stress analysis 'internal gear type spherical gear which can be generated by the two-parameter envelope' and can improve the performance of the spherical gear device. 2 is a perspective view of a convex spherical gear according to a preferred embodiment of the present invention; and FIG. 3 is a perspective view of a concave spherical gear according to a preferred embodiment of the present invention. An inner spheroidal spherical gear device according to a preferred embodiment of the present invention comprises: a spherical spherical gear 100, a concave spherical gear 2〇〇, a convex spherical gear frame 300, and a concave spherical gear frame 4〇〇 (Fig. 9) Shown). The convex spherical gear 100 and the concave spherical gear 2 are meshed with each other in a concave-convex manner and joined to the frames 300 and 400. The convex spherical gear 1〇〇 and the concave spherical gear are distributed with a plurality of tapered teeth, including the teeth on the convex spherical surface and the teeth on the concave spherical surface. In a preferred embodiment, the teeth on the convex spherical gear 1〇〇 are set as cam teeth 110'. The teeth on the concave spherical gear 200 are set as concave teeth 2丨〇. For those of ordinary skill in the art, it should be recognized that the teeth of the convex spherical gear 100 can be set as concave teeth. In this case, the teeth of the concave spherical gear 2 13 1314504 can be set as cam teeth. Since the cam teeth 110 and the concave teeth 210 are in mesh with each other, the tooth profiles of the two will conform to the meshing principle of the gears. The tool to form the tooth shape of the cam tooth 110 and the concave tooth 210 is generally referred to as a tool design, or the face D is flushed. The cam gear 11 〇 and the concave gear teeth 21 are respectively formed on the convex spherical gear 100 and the concave spherical gear 200 by the cutter design, and these cam teeth 11 () and the concave gear teeth 210 are also referred to as created faces. Referring to Figures 4 and 5, FIG. 4 is a cross-sectional view showing a geometrical design of a tool for generating a spherical gear according to a preferred embodiment of the present invention, and FIG. 5 is a view showing a curved surface of the tool according to a preferred embodiment of the present invention. Simulation of the surface). The blade f surface (created surface) can be formed by a 3-line segment, a & line segment and a line segment, and a circle around the axis (long axis). Wherein, the & line segment is used to create the crown of the created surface (ie, the cam tooth 11 〇 and the concave tooth 21 〇), the & line segment is used to create the working area of the created surface, and the g line segment is created into the surface. The root of the tooth is used, and the line segment is used to create the bottom of the tooth. The cam teeth 110 formed by the created faces are engaged with the female teeth 21, and for the sake of simplicity of explanation, the following description will be made by forming the concave teeth 210 (created faces) by the tool curved surface (created surface). When the segments are rotated one revolution about the axis, a tool for machining the concave teeth 210 of the concave spherical gear 200 can be formed. From the above geometrical line segment of the tool, the geometric mathematical parameter of m is expressed in the coordinate system, ~ soil, d, 4, Rf superscript g is used to represent the ▲ line segment of the tool, [line segment ^ line segment and stone segment region. As shown in Fig. 4, the area defined by the section of the tool must be the area of the rounded fox 1314504 at the top of the concave tooth 21〇. If the variable number β is a parameter of the tool curve. The equation (1) of the region defined by the 3-line segment is expressed by the coordinate system & and can be expressed as: ((r + rcl)sini^ +θχ)~ rcX cos(0, + a)) cosrg + ((r + rcl) cos(6»p + &) - rd sin(6», + o〇) sin

-((r + /-cl)sin((9p +θχ)~ rcl cos(6>, + or)) sin re + ((r + rd)cos(6»p +6^)-rdsin(6>, +a))cosrs 0 〇<0t<(0c,+0c2)-((r + /-cl)sin((9p +θχ)~ rcl cos(6>, + or)) sin re + ((r + rd)cos(6»p +6^)-rdsin(6> , +a))cosrs 0 〇<0t<(0c,+0c2)

其中, r〇iWhere r〇i

, , .r-rcosO, , .r-rcosO

Kr=Kn +(-£ XX XO V / cost K ={r-r cos θχ) tan φρρ + r sin θχ ΦΡΡ=ΦΡ+θρ+α , , Α _! .rtan^ -rsin^. Φρ =tan (-x- r-rcos&r _10π_ ~180η , _! rsin^ r + rcl -rcos^ Ο) 加(-—χ-) •L·· I -t/· _ v r\r\c\ t-i 這裡的參數,、rel、q、&、心和7為給定的值,而其 它的參數則需由數學上的幾何關係來決定,77是輪齒的修 11 1314504 正係數,一般而s,此係數適用於產生兩唾合輪齒間之背 隙,r是刀具的基圓半徑,〜為刀具輪齒的根圓半徑。 ' η •vf (rsinOp -(Ap ->9)sina)cos^ + (rcos^ -^)cosa)sinr0 1 -(r sin Θρ - (kp - β) sin a) sin rB + (r cos θρ + (hp - β) cos a) cos re 0 1 ^<P<hp-hxx &線段所定義的區域產生凹輪齒210的工作區域,A代 表刀具之設計參數。為了產生完整的刀具輪廓’ &線段所 定義的區域之方程式以座標系統\表示,可以下式表示:Kr=Kn +(-£ XX XO V / cost K ={rr cos θχ) tan φρρ + r sin θχ ΦΡΡ=ΦΡ+θρ+α , , Α _! .rtan^ -rsin^. Φρ =tan (-x - r-rcos&r _10π_ ~180η , _! rsin^ r + rcl -rcos^ Ο) Add (--χ-) •L·· I -t/· _ vr\r\c\ ti The parameters here, , rel, q, &, heart and 7 are given values, while other parameters are determined by mathematical geometric relations, 77 is the rotation of the tooth 11 1314504 positive coefficient, generally s, this coefficient is applicable In the backlash between the two sprockets, r is the radius of the base circle of the tool, and ~ is the radius of the root circle of the tool teeth. ' η •vf (rsinOp -(Ap ->9)sina)cos^ + (rcos^ -^)cosa)sinr0 1 -(r sin Θρ - (kp - β) sin a) sin rB + (r cos θρ + (hp - β) cos a) cos re 0 1 ^<P<hp-hxx & The area defined by the line segment produces the working area of the concave tooth 210, and A represents the design parameter of the tool. The equation for the area defined by the & line segment to produce a complete tool profile is represented by the coordinate system\, which can be expressed as:

其中, hp =h-rccosa + ye _ rc (c〇s α -1 + sin a)(cos α +1 - sin α) ye---—- 2 cos a 為了產生凹輪齒210的齒根圓,使用刀具之冱線段。 A代表刀具曲線之設計參數。冱線段所定義之區域之方程 式以座標系統&表示,可以下式表示:Where hp = h-rccosa + ye _ rc (c〇s α -1 + sin a)(cos α +1 - sin α) ye---- 2 cos a in order to generate the root circle of the concave tooth 210 , use the 冱 line segment of the tool. A represents the design parameters of the tool curve. The equation for the area defined by the 冱 line segment is expressed by the coordinate system &

(rc sin 9C + w) cos r9 + (r cos + /i cos a - rc (1 - cos Qc)) sin re yld -(rcsin0c +w)sinQ +(rcos0p +Acosa-rc(l-cos0c))cosr0 Kd 1 0 1 O<A<0C1 (3) 其中, w^rsin^-/isina-rccosa +(rc sin 9C + w) cos r9 + (r cos + /i cos a - rc (1 - cos Qc)) sin re yld -(rcsin0c +w)sinQ +(rcos0p +Acosa-rc(l-cos0c)) Cosr0 Kd 1 0 1 O<A<0C1 (3) where w^rsin^-/isina-rccosa +

忑線段所定義的區域是刀具曲線的齒底,用以產生凹 輪齒210之底部。忑所定義的區域區域之方程式以座標系 統叉表示,可以下式表示: 12 (4) 1314504 t h cos τθ + (A cos or + r cos θρ ) sin re yf -^ A sin + (A cos a+ r cos θρ ) cos re 4e 0 1 _ . 1 _ 足是刀具之位置向量,上標文字g象徵方程式(丨)到(4) 中’以線段、&線段、g線段、和办線段索定義的區域。 下標符號c表示座標系統兄中的方程式,當方程式(丨)到(4) 繞尺軸轉也角,也角度的區間給定0。〜36〇。則可以得到單一齒 之加工刀具曲面,如第5圖所示。The area defined by the 忑 line segment is the tooth bottom of the tool curve for creating the bottom of the concave tooth 210. The equation for the region defined by 忑 is represented by the coordinate system fork and can be expressed as: 12 (4) 1314504 th cos τθ + (A cos or + r cos θρ ) sin re yf -^ A sin + (A cos a+ r Cos θρ ) cos re 4e 0 1 _ . 1 _ foot is the position vector of the tool. The superscript letter g symbolizes the equation (丨) to (4) defined by the line segment, & line segment, g segment, and line segment. region. The subscript symbol c indicates the equation in the coordinate system brother. When the equations (丨) to (4) are rotated around the axis, the angle is also given by 0. ~36〇. A single tooth machining tool surface is obtained, as shown in Figure 5.

請參照第6圖、第7圖以及第8圖所示,座標系統 久,ze)表示固定在刀具上之座標系統。固定座標系 統心私,',八,z/)為固定參考座標。兩個參考座標系統 〜乃,2l)和&(〇3% Z3)固定於凸球面齒輪1〇〇的 座標系,隨著凸球面齒輪1〇〇轉動。兩個參考座標系 \(〇5,〜〜4)和&(〇6,〜八,26)固定於凹球面齒輪2〇〇的 座標系,隨著凹球面齒輪200轉動。 如第6圖所示,當凸球面齒輪1〇〇繞著Χι轉動$角時, 凹球面齒輪200則轉動舍角度,為和㈣關係為% 和%分別為凸輪齒110及凹輪齒21〇之齒數。 同理,如第7圖所示,當凸球面齒輪100上的座標系 h少3,4)繞4軸轉動色角,凹球面齒輪200則轉動戎角 度為和厶的關係為=#5式。凹球面齒輪200是由一個可 做兩個自由度的凹球面齒輪框架·所支持凹球面齒輪, 而凸球面齒輪_則是由-個可做兩個自由度的凸球面窗 輪樞架300所支持。 13 1314504 如第8圖所示,當凸球面齒輪1〇〇繞a和&軸,分別 轉動於和色時,則凹球面齒輪200分別轉動了也和戎角度, 故此内嚙合式球面齒輪可以有兩個自由度轉動◦第6圖中 的A為座標原點〇1和〇5的中心距離。Please refer to Figure 6, Figure 7, and Figure 8. The coordinate system is long, ze) indicates the coordinate system fixed on the tool. The fixed coordinate system is private, ', eight, z/) is a fixed reference coordinate. The two reference coordinate systems ~, 2l) and & 〇 (〇3% Z3) are fixed to the coordinate system of the convex spherical gear 1〇〇, and rotate with the convex spherical gear 1〇〇. The two reference coordinate systems \(〇5, 〜4) and & (〇6, 八8, 26) are fixed to the coordinate system of the concave spherical gear 2〇〇, as the concave spherical gear 200 rotates. As shown in Fig. 6, when the convex spherical gear 1 is rotated around the $, the concave spherical gear 200 is rotated by the angle, and the relationship between (4) and % is the cam tooth 110 and the concave tooth 21 分别, respectively. The number of teeth. Similarly, as shown in FIG. 7, when the coordinate system h on the convex spherical gear 100 is less than 3, 4) and the color angle is rotated around the 4 axes, the concave spherical gear 200 is rotated at an angle of 厶 and the relationship is = = 5 . The concave spherical gear 200 is a concave spherical gear supported by a concave spherical gear frame capable of two degrees of freedom, and the convex spherical gear _ is composed of a convex spherical surface wheel pivot 300 which can be used for two degrees of freedom. stand by. 13 1314504 As shown in Fig. 8, when the convex spherical gear 1 is wound around the a and & axis, respectively, when the color is rotated, the concave spherical gear 200 is rotated and also angled, so that the internal meshing spherical gear can There are two degrees of freedom to rotate. A in Figure 6 is the center distance between the coordinate origins 〇1 and 〇5.

如第6圖以及第7圖所示之座標系設定,為了產生刀 具曲面族方程式,可以利用從座標系統、到座標系統\之 齊次座標轉換矩陣軋!以及座標系統S3到座標系統s6之齊次 座標轉換矩陣m63。分別表示為: 0 _0 0 0 cos(木一办)sin(也一戎) 一 sin(也一办)cos(色一於) 0 0 0 a cos φ5 -a sin (5) 财63(分3 )=As shown in Figure 6 and Figure 7, the coordinate system setting, in order to generate the tool surface family equation, can be used from the coordinate system, to the coordinate system \ homogeneous coordinate conversion matrix rolling! and the coordinate system S3 to the coordinate system s6 Sub-coordinate conversion matrix m63. Respectively expressed as: 0 _0 0 0 cos (木一办) sin (also a 戎) a sin (also do one) cos (color one in) 0 0 0 a cos φ5 -a sin (5) 财63 (minutes 3 )=

cos(^6 -φ3) sin(^6 -φ3) 〇 αύηφ6 -sin(^ -φ3) cos(么一色)0 -acos^6 0 0 1 〇 0 〇 〇 1 如第8圖所示,為凸球面齒輪1 〇〇繞*和^軸,分別 轉動為和戎時’則凹球面齒輪200分別轉動了么和戎角度, 使得内嚙合式球面齒輪可以有兩個自由度轉動,因此,當 刀具在座標系&和夂轉動時,根據齊次座標轉換矩陣方 法’可以獲得從座標系5>3到座標系到座標系統&的齊次座 標轉換矩陣,並表示為: (6)Cos(^6 -φ3) sin(^6 -φ3) 〇αύηφ6 -sin(^ -φ3) cos(一色色)0 -acos^6 0 0 1 〇0 〇〇1 As shown in Fig. 8, it is convex When the spherical gear 1 is wound around the * and ^ axes, respectively, when the rotation is 戎, then the concave spherical gear 200 is rotated by the angle of the yoke, so that the internal meshing spherical gear can rotate with two degrees of freedom, so when the cutter is When the coordinate system & and the 夂 rotation, the homogeneous coordinate transformation matrix from the coordinate system 5 > 3 to the coordinate system to the coordinate system & can be obtained according to the homogeneous coordinate transformation matrix method, and expressed as: (6)

°Φ6€Φι +S^6S^3C(^5 ~Ψ\) -攻(W3 +如㈣5 -办) ~5φ^{φ$-φι) 0 一C戎+#6C&C(木-办) +c^6c^3c(^5 -^) -〇φ^{φ5 -φ{) ο 械S(05 D 〇Φ^{Φ$~ΦΧ) 〇(.Φί-φ\) ο as么c《5 αοφ6οφ5 ⑺ 經由齊次座標轉換理論,可以將設計的刀具曲面方程 14 (8) (8)°Φ6€Φι +S^6S^3C(^5 ~Ψ\) - Attack (W3 + 如(四)5 -do) ~5φ^{φ$-φι) 0 One C戎+#6C&C(木-办) +c^6c^3c(^5 -^) -〇φ^{φ5 -φ{) ο 械 S(05 D 〇Φ^{Φ$~ΦΧ) 〇(.Φί-φ\) ο as么c 5 αοφ6οφ5 (7) Through the homogeneous coordinate transformation theory, the designed tool surface equation 14 (8) (8)

1314504 式絰由第8圖的座標系設定,由&的座標系到座標系統 Ί得到刀具的雙參數曲面族方程式,可以記為 R\^j, α, φν ^3)=Μ63λ| 變數心是設計參數,向量妒b α,九办)是刀具 曲面族 =程式。上標文? g是3線段、[線段、^線段和石線段。 垮是刀具在座標系統A的位置向量,如方程式(1)到(4)所 表示。 應用Litvin的雙參數包絡嚅合理論,來獲得到雙參數 刀具參數曲面族群之包絡面,在此一實施例中,以凸球面 齒輪100上的輪齒齒形為刀具,由於運動參數有兩個分別 為必及色,所以在求包絡條件時,需先令其中一個運動參數 勿為零,求此時的包絡條件。再令色為零,求此時的包絡條 件,因此’會有兩個包絡條件。首先,令色為零,可以求 得以凸齒輪上中央輪齒刀具與凹齒輪相嚙合的第一個包 絡條件,記為 ^f * ^/ = msin^ + «cos^, + (1 + A^2 /Νλ){τηζλ — ny^/a = 0 這裡 ~sin^cos+(^,cos^+ZjSin^)k ]-α^5^ 八/ =朽 + (wcos 妁一wsin 戎)/· + (msin^ + ncos 戎)ft: 同理,令4為零,可獲得凸齒輪上,中央輪齒刀具與 凹齒輪相嚙合的第二個包絡條件,記為 Ν}·ν}6 = msin(^-£cos^ + (l +N2/-mxl)/a = 0 這裡 ^/6 =(Φί -^6)[-(·^ιsin^3 +^,cos^3)i +(^005^3 -^sin^j)/ ] + a^6k (10) (11) (12) 15 (13) (14) 1314504 iV} =(fcos^3 -wsin^)/ + (^sin^ +mco^)j + nk 由方程式(1)到(4)、(8)、(9)以及(12)可以獲得凹球面 齒輪200的幾何模型,經由Turb〇 C++語言撰寫程式,獲 得凹球面齒輪200空間的點座標值,然後將其轉至The 1314504 type is set by the coordinate system of Fig. 8. From the coordinate system of & to the coordinate system, the two-parameter surface family equation of the tool is obtained, which can be recorded as R\^j, α, φν ^3)=Μ63λ| Is the design parameter, the vector 妒b α, nine do) is the tool surface family = program. Superscript? g is a 3-line segment, a [line segment, a ^ line segment, and a stone segment.垮 is the position vector of the tool in coordinate system A, as expressed by equations (1) to (4). Applying Litvin's two-parameter envelope coupling theory to obtain the envelope surface of the two-parameter tool parameter surface group. In this embodiment, the tooth profile on the convex spherical gear 100 is used as the tool, and there are two motion parameters. They are respectively necessary colors, so when seeking the envelope condition, you must first make one of the motion parameters not zero, and find the envelope condition at this time. Then let the color be zero and find the envelope condition at this time, so there will be two envelope conditions. First, let the color be zero, you can find the first envelope condition of the central tooth cutter and the concave gear on the convex gear, which is recorded as ^f * ^/ = msin^ + «cos^, + (1 + A^ 2 /Νλ){τηζλ — ny^/a = 0 where ~sin^cos+(^,cos^+ZjSin^)k ]-α^5^ 八/ = 朽+ (wcos 妁一wsin 戎)/· + ( Msin^ + ncos 戎) ft: Similarly, let 4 be zero, the second envelope condition of the central gear and the concave gear on the convex gear can be obtained, which is recorded as Ν}·ν}6 = msin(^ -£cos^ + (l +N2/-mxl)/a = 0 where ^/6 =(Φί -^6)[-(·^ιsin^3 +^,cos^3)i +(^005^3 -^sin^j)/ ] + a^6k (10) (11) (12) 15 (13) (14) 1314504 iV} =(fcos^3 -wsin^)/ + (^sin^ +mco^) j + nk From the equations (1) to (4), (8), (9), and (12), the geometric model of the concave spherical gear 200 can be obtained, and the program of the concave spherical gear 200 is obtained by writing the program in the Turb〇C++ language. Coordinate value, then turn it to

MasterCam做線架構呈現,最後,經由電腦輔助軟體 SolidWorks繪出凸球面齒輪丨〇〇和凹球面齒輪2〇〇的單一 個中央輪齒。透過所獲得的中央輪齒,將中央輪齒複製並 分布在在球面上,來構成凸球面齒輪及凹球面齒輪,輪齒 之分布角度是(i=i和2),下標文字i=1表示凸球面 齒輪100之輪齒數(即凸輪齒11〇)。下標文字i=2表示凹球 面齒輪200之輪齒數(即凹輪齒21〇)。 吻參照第2圖與第3圖所示,第一個環形以中央輪$ 形狀複製六個輪齒。同樣地,第二個環形以中央輪齒形片 複製十二個輪齒,如第2圖所示,為凸球面齒輪1〇〇之2 …輪110帛3圖所示’為凹球面齒輪i 〇〇的幾何模型 2的中央輪齒是由雙參數包絡理論產生,由俯視角度白 圈分佈六個凹輪齒,第二圈分佈12個凹輪齒。 自由第9圖所示,為本發明較佳實施例之可以㈣ 亍之内喷合式球面齒輪傳動機構示意圖,圖中戶彳 不為框架300及400為未啟動時之干音圖氣 ^ 傳動的效果,可將制本發明較佳===⑹ 動機構所能繞轉動的χ軸和之;面齒_ 輪繞又軸轉動。 先固疋y軸,使球面# 請參照第10圖 11圖、第12圖以及第13圖所示, 16 1314504 本發明較佳實施例之球面齒輪的傳 =㈣為、動晝座標為6時、動晝座標為9時以及 動晝座標為11時的四種角度下,傳動機構繞X軸轉動的情 形。 J 1月 同理,若固定X軸,使球面齒輪繞y轴轉動。請泉昭 第14圖、第15圖、第16圖以及第17圖所-.…、 口 4汉昂17圖所不,分別為應 、毛明較佳實施例之球面齒輪的傳動機構在動晝座標 為3時、動晝座標為6時、動晝座標為9時以及動晝座^ 為11時的四種角度下,傳動機構繞y轴轉動的情形 圖9-17可以確定此㈣合球面齒輪,確實可以達成兩個自 由度的傳動機構。The MasterCam is presented in a line architecture. Finally, a single central tooth of the convex spherical gear 丨〇〇 and the concave spherical gear 2〇〇 is drawn by the computer aided software SolidWorks. Through the obtained central gear teeth, the central gear teeth are copied and distributed on the spherical surface to form a convex spherical gear and a concave spherical gear. The distribution angle of the gear teeth is (i=i and 2), and the subscript text i=1 The number of teeth of the convex spherical gear 100 (ie, the cam teeth 11〇) is shown. The subscript letter i=2 indicates the number of teeth of the concave spherical gear 200 (i.e., the concave teeth 21〇). The kisses are shown in Figures 2 and 3, and the first ring replicates six teeth in the shape of the center wheel $. Similarly, the second ring replicates twelve teeth with a central tooth-shaped piece, as shown in Fig. 2, which is a convex spherical gear 1〇〇 2 ... wheel 110帛3 shown as a concave spherical gear i The central tooth of the geometric model 2 of the 〇〇 is generated by a two-parameter envelope theory, with six concave teeth distributed in a white circle from a plan view and 12 concave teeth in a second circle. FIG. 9 is a schematic view of a spray-type spherical gear transmission mechanism which can be used in the fourth embodiment of the present invention. In the figure, the households are not the frame 300 and 400 are dry sound maps that are not activated. The effect of the invention is that the y-axis of the moving mechanism can be rotated and the flank of the rotator is rotated. First, the y-axis is fixed to the spherical surface. Referring to FIG. 10, FIG. 12, and FIG. 13, FIG. 13 1314504, the spherical gear of the preferred embodiment of the present invention transmits (4), and the movable coordinate is 6 The transmission mechanism rotates around the X-axis under the four angles of 9 o'clock and 11 o'clock. J January Same as the case, if the X axis is fixed, the spherical gear is rotated around the y axis. Please refer to Fig. 14, Fig. 15, Fig. 16, and Fig. 17 of Fig., and Fig. 4, Hanon 17, No., respectively, the transmission mechanism of the spherical gear of the preferred embodiment of Maoming is moving. When the coordinate is 3, the moving coordinate is 6, the moving coordinate is 9, and the moving seat is 11, the transmission mechanism rotates around the y-axis. Figure 9-17 can determine this (four) Spherical gears can indeed achieve a two-degree-of-freedom transmission.

此外,為了說明本發明減低元件間應力的功效,有效 提供準確的應力和變形資料,可使用有限元素分析法。在 假設在凸球面齒輪100和凹球面齒輪2〇〇之間沒有組裝誤 差下。由有限元素法和一般電腦輔助軟體程式,可以完成 §亥齒輪傳動裝置的應力分析。Further, in order to explain the effect of the present invention in reducing stress between elements and to provide accurate stress and deformation data, a finite element analysis method can be used. It is assumed that there is no assembly error between the convex spherical gear 100 and the concave spherical gear 2〇〇. The stress analysis of the § hai gear transmission can be done by the finite element method and the general computer aided software program.

該凸球面齒輪100和凹球面齒輪2〇〇的材料,可假設 為等向且均質,具有鋼材之楊氏模數(Y〇ung,s modulus) 五= ’蒲松比(Poisson ratio ) = 0.3。經由 ANSYSThe material of the convex spherical gear 100 and the concave spherical gear 2〇〇 can be assumed to be isotropic and homogeneous, and has a Young's modulus of steel (Y〇ung, s modulus) five = 'Poisson ratio = 0.3. Via ANSYS

Workbench進行有限元素分析。在這個分析裡,凸球面齒 輪100假設具有固定力矩之荷重。凹球面齒輪2〇〇繞著它 的軸旋轉。凸球面齒輪1〇〇上作用有一逆時針方向的轉 矩,導致在凸球面齒輪1〇〇和凹球面齒輪2〇〇之間產生接 觸。該作用在凸球面齒輪100之轉矩為50 Nm。 17 1314504 由於兩輪齒100,200嚙合時,本發明較佳實施例著重 在輪齒的應力強度分析上的說明,因此未將支撐的十字形 支架顯示出來。 β青參照第18圖所示,係為具有兩個自由度之内唾合 式球面齒輪有限元素網格圖,將其兩嚙合齒輪之表面網格 化,以針對數值模擬或先導性生產提供彈性的沙盤推演及 擬真的用途’凹球面齒輪200設為固定,凸球面齒輪ι〇〇 以50Nm繞X軸轉動。 請參照第19圖與第20圖所示,為經由有限元素應力 分析,凸球面齒輪1〇〇與凹球面齒輪200之v〇n_Mises應 力顯示之三度空間應力分佈圖。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 珅和範圍内,當可作各種之更動與潤飾,因此本發明之保 °蔓範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖是Trallfa公司所設計之外嚙合式球面齒輪裝置 的立體示意圖。 第2圖係繪示依照本發明—較佳實施例的一凸球面齒輪 立體圖。 第3圖係繪示依照本發明較佳實施例的一凹球面齒輪立 18 !314504 體圖。 第4圖係為依照本發明較佳實施例的一圓弧形錐形刀具 設計的示意圖。 ^ 第5圖係為第4圖中圓弧形錐形刀具的立體模擬示意 圖。 第6圖係依照本發明較佳實施例的座標系&和&之空間 關係示意圖。 第7圖係依照本發明較佳實施例的座標系&和&之空間 關係示意圖。 第8圖係依照本發明較佳實施例加卫凹輪嵩之球面齒輪 座標系設定示意圖。 第9圖係依照本發明較佳實施例之㈣合式球面齿輪裝 置,具有兩個自由度轉動的示意圖,用以說明當動 晝座標為零時位置。 第^㈣依照本發明較佳實施例之㈣合式球面齒輪 ,置’當動畫座標為3時位置時,將旋轉轴y軸固 定,並沿X軸轉動的示意圖。 第11圖係依照本發明較佳實施例之㈣合式球面齒輪 —置田動畫座標為6時位置時,將旋轉軸y軸固 定’並沿X軸轉動的示意圖。 第12圖係依照本發明較佳實施例之内嚙合式球面齒輪 二置胃動畫座標為9時位置時,將旋轉軸丫轴固 疋,並沿X軸轉動的示意圖。 第13圖係依照本發明較佳實施例之内嚙合式球面齒輪 19 1314504 展置 虽動畫座標為u時位置時 固定,並沿X軸轉動的示意圖。旋轉轴又轴 第14裝圖置係佳實施例…合式球面齒輪 田-^為3時位置時,將旋轉軸χ軸固 並沿y軸轉動的示意圖。 第15圖係:照本發明較佳實施例之内喝合式球面齒輪Workbench performs finite element analysis. In this analysis, the convex spherical gear 100 assumes a load with a fixed moment. The concave spherical gear 2 rotates around its axis. The counter-clockwise torque acts on the convex spherical gear 1 ,, resulting in contact between the convex spherical gear 1〇〇 and the concave spherical gear 2〇〇. The torque acting on the convex spherical gear 100 is 50 Nm. 17 1314504 As the two-toothed teeth 100,200 are engaged, the preferred embodiment of the present invention focuses on the analysis of the stress intensity of the teeth, so that the supported cross-shaped brackets are not shown. As shown in Figure 18, the β-green is a finite element mesh diagram of the inner salivary spherical gear with two degrees of freedom, meshing the surfaces of the two meshing gears to provide flexibility for numerical simulation or pilot production. Sand table derivation and plausible use 'The concave spherical gear 200 is set to be fixed, and the convex spherical gear ι is rotated around the X axis at 50 Nm. Referring to Figures 19 and 20, the three-dimensional spatial stress distribution of the v〇n_Mises stress of the convex spherical gear 1〇〇 and the concave spherical gear 200 is shown by finite element stress analysis. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and various modifications and refinements may be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious, the detailed description of the drawings is as follows: Figure 1 is an externally designed spherical surface designed by Trallfa A schematic view of the gear unit. Figure 2 is a perspective view of a convex spherical gear in accordance with the preferred embodiment of the present invention. Figure 3 is a perspective view of a concave spherical gear stand 18!314504 in accordance with a preferred embodiment of the present invention. Figure 4 is a schematic illustration of a circular arc shaped tool design in accordance with a preferred embodiment of the present invention. ^ Figure 5 is a three-dimensional simulation of the circular arc-shaped tool in Figure 4. Figure 6 is a schematic diagram showing the spatial relationship of the coordinate systems &&& Figure 7 is a schematic illustration of the spatial relationship of coordinate systems &&&&> in accordance with a preferred embodiment of the present invention. Figure 8 is a schematic view showing the setting of the coordinate system of the spherical gear of the burr according to the preferred embodiment of the present invention. Figure 9 is a schematic view of a (4) combined spherical gear device in accordance with a preferred embodiment of the present invention having two degrees of freedom of rotation for illustrating the position when the movable coordinate is zero. (4) A (4) combined spherical gear according to a preferred embodiment of the present invention, when the position of the animation is 3, the y-axis of the rotating shaft is fixed and rotated along the X-axis. Fig. 11 is a view showing the (four) combined spherical gear according to the preferred embodiment of the present invention, in which the rotational axis y-axis is fixed and rotated along the X-axis when the field animation coordinate is at the 6 o'clock position. Fig. 12 is a view showing the inner shaft type spherical gear according to the preferred embodiment of the present invention. When the two-position stomach animation coordinate is at the 9 o'clock position, the rotary shaft is fixed and rotated along the X-axis. Figure 13 is a schematic view showing the inner-engaging spherical gear 19 1314504 according to a preferred embodiment of the present invention, which is fixed when the position of the animation is u, and is rotated along the X-axis. Rotating shaft and shaft The 14th drawing is a good example... Combined spherical gear When the field is at 3 o'clock, the rotating shaft is fixed and rotated along the y-axis. Figure 15 is a view of a preferred spherical spherical gear according to a preferred embodiment of the present invention.

二、备動晝座標為6時位置時,將旋轉軸χ轴固 疋,並沿y軸轉動的示意圖。 第16圖係依財發明料實關之㈣合式球面齒輪 :置’當動畫座標為9時位置時,將旋轉軸X袖固 疋’並沿y軸轉動的示意圖。 第17圖係依照本發明較佳實施例之内喃合式球面齒輪 裝置,當動畫座標為U時位置時,將旋轉軸χ軸 固定’並沿y軸轉動的示意圖。 第8圖係依照本發明較佳實施例之凹球面齒輪的網格 切割應力分析的示意圖。 第19圖係依照本發明較佳實施例之凸球面齒輪的應力 分布的示意圖。 第20圖係依照本發明較佳實施例之凹球面齒輪的應力 分布的示意圖。 【主要元件符號說明】 100 ·凸球面齒輪 200 :凹球面齒輪 110 :凸輪齒 210 :凹輪齒 20 1314504 凹球面齒輪框架 300 :凸球面齒輪框架 400 :2. When the 昼 coordinate is at the 6 o'clock position, the rotation axis is fixed and the y-axis is rotated. Figure 16 is a schematic diagram of the (4) combined spherical gear according to the invention. When the position of the animation is 9 o'clock, the rotation axis X sleeve is fixed 疋' and rotated along the y-axis. Fig. 17 is a view showing the inner spheroidal spherical gear device according to the preferred embodiment of the present invention, when the imaginary coordinate is at the position of U, the rotary shaft 固定 is fixed and rotated along the y-axis. Figure 8 is a schematic illustration of a grid cutting stress analysis of a concave spherical gear in accordance with a preferred embodiment of the present invention. Figure 19 is a schematic view showing the stress distribution of a convex spherical gear in accordance with a preferred embodiment of the present invention. Figure 20 is a schematic illustration of the stress distribution of a concave spherical gear in accordance with a preferred embodiment of the present invention. [Main component symbol description] 100 · convex spherical gear 200 : concave spherical gear 110 : cam tooth 210 : concave gear tooth 20 1314504 concave spherical gear frame 300 : convex spherical gear frame 400 :

21twenty one

Claims (1)

1314504 十、申請專利範園: 1 種内喃合式球面齒輪裝置,至少包含: 一凹球面齒輪, 第一輪齒,該4b第一 U)輪,具有一凹球面,該凹球面上設有複數 該些第一輪齒並由一中央輪齒複製而來;以及 一凸球面齒輪,嚙合於該凹球面齒輪,並具有一與該 凹球面相對應的凸球面’該凸球面上設有複數第二輪齒, 該些第二輪齒並由-巾央輪齒複製而來,該些凹球面及凸1314504 X. Patent application garden: 1 inner-ring spherical gear device, comprising at least: a concave spherical gear, a first gear, the 4b first U) wheel having a concave spherical surface, the concave spherical surface having a plurality of The first gear teeth are duplicated by a central gear; and a convex spherical gear meshes with the concave spherical gear and has a convex spherical surface corresponding to the concave spherical surface. Two-toothed teeth, which are copied from the central teeth of the towel, the concave spherical surface and the convex 藉此、’'工由該凸球面齒輪與該凹球面齒輪間以内喊合 合,以減小該内嚙合式球面齒輪裝置的整體組裝尺 2·如申請專利範圍第1項所述之内嚙合式球面齒輪 裝置,其中各該第一輪齒係為一凹輪齒,各該第二輪齒係 為一凸輪齒,該凹輪齒以及該凸輪齒係由—刀具曲面形 成0 3_如申請專利範圍第2項所述之内嚙合式球面齒輪 裝置’其中該刀具曲面係由一 3線段、一 &線段、一 &線 以及一办線段,繞—軸心轉一圈形成,其中,3線段係用 於產生該凹輪齒的齒冠,巧線段則用於產生該凹輪齒的工 作區域,3線段則是該凹輪齒的齒根圓弧,而忑線段係用 於產生該凹輪齒的齒底面。 22 1314504 4.如申請專利範圍第3項所述之内嚙合式球面齒輪 裝置,其中3線段所定義的區域之方程式以座標系統&表 示,可以下式表示:Thereby, the work is performed by the convex spherical gear and the concave spherical gear to reduce the overall assembly rule of the internal meshing spherical gear device. 2. The internal meshing as described in claim 1 The spherical gear device, wherein each of the first gear teeth is a concave gear tooth, each of the second gear teeth is a cam tooth, and the concave gear teeth and the cam gear system are formed by a tool curved surface 0 3_ The internal meshing spherical gear device of the second aspect of the invention, wherein the tool surface is formed by a 3-line segment, a & line segment, a & line, and a line segment, wherein the axis is rotated one turn, wherein The 3-line segment is used to generate the crown of the concave tooth, the skill line is used to generate the working area of the concave tooth, the 3-line segment is the root arc of the concave tooth, and the 忑 line segment is used to generate the The bottom surface of the concave teeth. 22 1314504 4. The internal meshing spherical gear device according to claim 3, wherein the equation of the region defined by the 3-line segment is expressed by a coordinate system & ((r + rcl) sin% + &) — rcl cos⑷ + o〇) cos + ((r + rcl) cos(^ +θχ)~ rcl sin(^ + a)) sin re —((r + rcl) sin(0p + 0X) - rcl cos(6», + a)) sin + ((/ + rcl) cos(l + ) - rcl sin(0, + a:)) cos 0 1 〇<0t<(ec3+0c2) 其中,((r + rcl) sin% + &) — rcl cos(4) + o〇) cos + ((r + rcl) cos(^ +θχ)~ rcl sin(^ + a)) sin re —((r + rcl ) sin(0p + 0X) - rcl cos(6», + a)) sin + ((/ + rcl) cos(l + ) - rcl sin(0, + a:)) cos 0 1 〇<0t< (ec3+0c2) where, r-rcos0x c〇si/>PP hxp =(r_rcosΘχ)tanφρρ+πsinθχ ,R-rcos0x c〇si/>PP hxp =(r_rcosΘχ)tanφρρ+πsinθχ , ΦΡρ=ΦΡ+θΡ+α , _! rtan^ -rsin6> ΦΡ = tan (-2 r 一 rcos0v ,ΦΡρ=ΦΡ+θΡ+α , _! rtan^ -rsin6> ΦΡ = tan (-2 r a rcos0v , 10π 180/7 (^~θχ)/η 2n' 2310π 180/7 (^~θχ)/η 2n' 23 1314504 匕=taiT'(— r + rCI-rcos^ , 其中’參數r、&、%、必、^和7為給定的值,而其他 的參數係為數學上的幾何關係決定’"是輪齒的修正係 數,r是刀具的基圓半徑’ G為刀具輪齒的根圓半徑。 5.如申請專利範圍第4項所述之内嚙合式球面窗輪 裝置’ 6c線段所定義的區域之方程式以座標系統&表示, 可以下式表示: (r sin Θρ - (hp - β) sin a) cos rg + (r cos θρ + (hp ~ β) cos a) sin re -(r sin θρ - (hp - β) sin a) sin re + (r cos θρ + (hp - cos a) cos re 0 1 0<β<\~Ηα 其中, hp=h-rccosa + ye _ rc(cosa-l + sina)(coso; + l —sina) e 2 cos a , Θ代表刀具之設計參數。 6 ·如申請專利範圍第5項所述之内响合式球面齒輪 裝置,其中,3線段所定義之區域之方程式以座標系統&表 示,可以下式表示: (rc sin 6C + w) cos r9 + (r cos + Λ cos a - rc (1 - cos 9C)) sin re " ~-{rc sin0c + w)sinr0 +/2cosor-rc(l-cos0c))c〇sre 0 1 24 !314504 0<之<& 其中, ^—rsm.Op —hsma — rc cos a + ^1314504 匕=taiT'(— r + rCI-rcos^ , where 'parameters r, &, %, must, ^, and 7 are given values, while other parameters are determined by mathematical geometric relations'" Is the correction factor of the tooth, r is the base circle radius of the tool 'G is the radius of the root circle of the tool tooth. 5. As defined in the 6c line segment of the internal meshing spherical window wheel device described in claim 4 The equation of the region is expressed by the coordinate system & and can be expressed as: (r sin Θρ - (hp - β) sin a) cos rg + (r cos θρ + (hp ~ β) cos a) sin re - (r sin Θρ - (hp - β) sin a) sin re + (r cos θρ + (hp - cos a) cos re 0 1 0<β<\~Ηα where hp=h-rccosa + ye _ rc(cosa-l + sina)(coso; + l —sina) e 2 cos a , Θ represents the design parameters of the tool. 6 · The inner ring type spherical gear device as described in claim 5, wherein the area defined by the 3-line segment The equation is expressed as a coordinate system & and can be expressed as: (rc sin 6C + w) cos r9 + (r cos + Λ cos a - rc (1 - cos 9C)) sin re " ~-{rc sin0c + w)sinr0 +/2cosor -rc(l-cos0c))c〇sre 0 1 24 !314504 0<<& where ^-rsm.Op —hsma — rc cos a + ^ Α代表刀具曲線之設計參數。 7.如申請專利範圍第6項所述之内嚙合式球面齒輪 裝置’办所定義的區域區域之方程式以座標系統叉表示, 可以下式表示: V, £kcosrd H-(/zcosa + rcos0p)sinr0 Rf = yte zde -£ ksinr0 +(h cos a + r cos θρ ) cos rQ 0 _ 1 “c _ 1 〇<L <w 〇 8. —種内嚙合式球面齒輪的製造方法,包含: (a) 提供一固定座標系統&(〇,,々,々,Z/); (b) 提供一固定在刀具上之座標系統足砍,v Λ,z); ⑷提供兩個參考座標系統,〜只,Ζι)和 4(〇3,A,乃,4),固定於一凸球面齒輪的座標系,隨著凸球 面齒輪轉動; ⑷提供兩個參考座標系&(05,〜>5,y和 Ate,〜八,〜),固定於一凹球面齒輪的座標系,隨著凹 球面齒輪轉動; (d)將凸球面齒輪繞著々軸轉動&角,使凹球面齒輪轉 25 1314504 Μ分別為凸 動么角度,於和綱係為其中,· 球面齒輪及凹球面齒輪之輪齒數; 心%,ζ3)繞23軸 色和幺的關係為 (e)將凸球面齒輪上的座標系&(03, 轉動色角,凹球面齒輪則轉動么角度, Νλφ3 = Ν5φ6,Α represents the design parameters of the tool curve. 7. The equation for the area defined by the internal meshing spherical gear device as described in claim 6 is represented by a coordinate system fork, which can be expressed as: V, £kcosrd H-(/zcosa + rcos0p) Sinr0 Rf = yte zde - £ ksinr0 + (h cos a + r cos θρ ) cos rQ 0 _ 1 "c _ 1 〇 <L <w 〇8. — A method of manufacturing an internal meshing spherical gear, comprising: (a) provide a fixed coordinate system &(〇,,々,々,Z/); (b) provide a coordinate system fixed to the tool, v Λ, z); (4) provide two reference coordinate systems , ~ only, Ζι) and 4 (〇3, A, is, 4), fixed to a coordinate system of a convex spherical gear, with the convex spherical gear rotating; (4) provide two reference coordinate system & (05, ~> ; 5, y and Ate, ~ eight, ~), fixed to a coordinate system of a concave spherical gear, with the concave spherical gear rotating; (d) rotating the convex spherical gear around the 々 axis to make the concave spherical gear Turn 25 1314504 Μ respectively for the convex angle, the sum of the system is, · the number of teeth of the spherical gear and the concave spherical gear; ζ3) about the relationship between the color and the shaft 23 is unitary (e) the projections on the spherical coordinate system gear & (03, color rotation angle, it rotates the gear concave spherical surface angle, Νλφ3 = Ν5φ6, (g)利用齊次座標轉換矩陣,產生刀具曲面之雙泉 曲面族方程式;以及 〃數 (h)利用雙參數包絡嚅合理論,由雙參數曲面族方程 式產生刀具曲面之參數曲面族群之包絡面。 9.如申請專利範圍第8項所述之内嚙合式球面齒輪 的製造方法’其中該刀具曲面係由一 3線段、一巧線段、 一 2線以及一办線段,繞一軸心轉一圈形成,其中, 3線段所定義的區域之方程式以座標系統'表示,可 以下式表示: ((r + rcl) sin(^ +θχ)- rcl cos{9t + a)) cos re + ((r + rd) cos(0p + ) - sin⑼ + a)) sin R(g) Using the homogeneous coordinate transformation matrix to generate the double spring surface family equation of the tool surface; and the number of turns (h) using the two-parameter envelope convergence theory to generate the envelope surface of the parameter surface group of the tool surface from the two-parameter surface family equation . 9. The method for manufacturing an internal meshing spherical gear according to claim 8, wherein the tool curved surface is rotated by a 3-line segment, a clever segment, a 2-wire, and a line segment. Formed, wherein the equation of the region defined by the 3-line segment is represented by the coordinate system ', which can be expressed as: ((r + rcl) sin(^ +θχ)- rcl cos{9t + a)) cos re + ((r + rd) cos(0p + ) - sin(9) + a)) sin R CC yfYf -Hr + ^i) sin(^p +θχ)~ rc\ cos(e, + «)) sin re + ((r + rcl) cos(^ +θχ)~ rcl sin(^( + a)) cos re 26 0 1314504 0<$<(H) 其中, 〇cl =tan-1(-^L) rci , κ=ΚΗ:ζτψ^ cos^ ,-Hr + ^i) sin(^p +θχ)~ rc\ cos(e, + «)) sin re + ((r + rcl) cos(^ +θχ)~ rcl sin(^( + a)) cos Re 26 0 1314504 0<$<(H) where 〇cl =tan-1(-^L) rci , κ=ΚΗ:ζτψ^ cos^ , ^χρ ~(r~r cos θχ) tanφρρ + r sin θχ Φρρ=ΦΡ+θρ+α r — rcos0x , 0 〜10;r 180”, Θ 2n{ θχ)!η θ tan'1 ( rsin9r r + rcl -rcos0x 其中’參數,、C丨、%、&、0和认〜 的參數係為數學上的幾何關係決定:g疋的值,而其他 數,?·θ ”疋輪齒的你·χ及 疋刀具的基圓半徑,“刀具輪齒的板圓丰係 10. 如申請專利範圍第9項所述之内 的製造方法,其中[線段所定義的區域之:合式球面齒輪 ,可以下式表示: U料以座標系 表 示 27 1314504 (rsin6^ -(Ap -々)sma)cos4 +(rcos 〜+(Ap —々)C0SQr)sin〜 -(r sin θρ - (hp - β) sin a) sin re + (r cos θρ + (hp - β) cos a) cos r9 0 1 其中, ~h-rc cos a + ye y ^ (c〇s -1 + sin a)(cosa +1 - sin a) 2cosa ,^χρ ~(r~r cos θχ) tanφρρ + r sin θχ Φρρ=ΦΡ+θρ+α r — rcos0x , 0 〜10;r 180”, Θ 2n{ θχ)!η θ tan'1 ( rsin9r r + rcl -rcos0x where the parameters of 'parameters, C丨, %, &, 0 and acknowledgment are determined by mathematical geometric relations: the value of g疋, while other numbers, ?·θ 疋 疋 的 你 χ χ And the radius of the base circle of the boring tool, "the slab circle of the cutter tooth 10. The manufacturing method as described in claim 9 of the patent application, wherein [the area defined by the line segment: the combined spherical gear can be of the following formula Representation: U material is represented by coordinate system 27 1314504 (rsin6^ -(Ap -々)sma)cos4 +(rcos ~+(Ap —々)C0SQr)sin~ -(r sin θρ - (hp - β) sin a) Sin re + (r cos θρ + (hp - β) cos a) cos r9 0 1 where ~h-rc cos a + ye y ^ (c〇s -1 + sin a)(cosa +1 - sin a) 2cosa, π 1 ^代表刀具之設計參數。 11.如申請專利範圍第10項所述之内嚙合式球面齒 輪的製造方法,其中,線段所定義之區域之方程式以座 標系統&表示,可以下式表示: ,.cd ,.cd (rc sin 9C +w)cosre+{rcos9p+h cos a - ?; (1 _ c〇g ^ ^ gin ^ -(rc sin5>c + w)sinre + {r cos0p+hcosa~r〇(1 - c〇s^^c〇g^ o c 8π 1 ^ represents the design parameters of the tool. 11. The method of manufacturing a meshing spherical gear according to claim 10, wherein the equation of the region defined by the line segment is represented by a coordinate system &, and can be expressed as: , .cd , .cd (rc Sin 9C +w)cosre+{rcos9p+h cos a - ?; (1 _ c〇g ^ ^ gin ^ -(rc sin5>c + w)sinre + {r cos0p+hcosa~r〇(1 - c〇s ^^c〇g^ oc 8 其中, w —?"sin0p-/jsina-^cosa + jVg , *代表刀具曲線之設計參數。 ^ Μ請專利範圍第U項所述之㈣合式球面齒 二“方法,顿定義的區域區域之方裎式以座標系統 I表示,可以下式表示: 28 !314504Where w -?"sin0p-/jsina-^cosa + jVg , * represents the design parameters of the tool curve. ^ Please refer to the (4) combined spherical tooth method described in item U of the patent scope. The method is defined by the coordinate system I, which can be expressed as: 28 !314504 °<^<w o ih cosr0 +(Acosa + rcos0p)sinr6l -£h sinr0 +(Acosa + rcos^/,)cosr^ 0 1 如申請專利範圍第12項所述之内 輪的製造方法’其中步驟(g)係包含 嚙合式球面齒°<^<wo ih cosr0 +(Acosa + rcos0p)sinr6l -£h sinr0 +(Acosa + rcos^/,)cosr^ 0 1 The manufacturing method of the inner wheel as described in claim 12 (g) contains intermeshing spherical teeth 利用從座標系統$到座標系統&之齊次座桿轉換矩陣 、以及座標系統\到座標系統…:欠座標轉換矩陣 ^63,其中 财51(舍)=〇 0 0 cos(么-奐) -sin(05-戎) 0 0 sin(么-办) cos(戎-办) 0 0 a cos φ5 -a sin φ5 财 63(4) = cos(么-色) -sin(^-^3) 0 0 sin(么-戎) cos(么-色) 0 0 0 asin^6 0 —a cos 么 1 0 ο 1Use the coordinate system from the coordinate system $ to the coordinate system & and the coordinate system \ to coordinate system...: under-coordinate conversion matrix ^63, where Cai 51 (she) = 〇0 0 cos (么-奂) -sin(05-戎) 0 0 sin(么-办) cos(戎-办) 0 0 a cos φ5 -a sin φ5 财63(4) = cos(么-色) -sin(^-^3) 0 0 sin(么-戎) cos(么-色) 0 0 0 asin^6 0 —a cos 么1 0 ο 1 當刀曲面具在座標系$和Α轉動時,根據齊次座標轉 換矩陣方法,獲得從座標系矣到座標系到座標系統&的齊 次座標轉換矩陣,其中: 163 C么4 +咖知伙-办) -Ξφ6〇φζ + - φλ) 一 s(ks(jt>5 - Φ6 0 -c么外 + 从c<i3C(^5 _為) ^φ63φ3+οφ6εφ3ε(φ5 -φλ) -^ΦΑΦ5 - φχ) ο s<t>Af!>5-<k、 οφ6ε(φ5 ~φχ) ε(Φβ ~Φ\) 0 ^φ6〇φ5ac<Kc<k -αεφ5 :以及 經由齊次座標轉換理論,得到刀具曲面的雙參數曲面 族方程式,記為 29 1314504 R a, φν Φ3)= m63 其中’變數心是設計參數,向量浐匕,a,l色)是刀具 曲面族方程式,上標文字g是表示3線段、&線段、9線 段和忑線段。 H.如申請專利範圍第13項所述之内响合式球面齒 輪的製造方法’其中步驟(h)係包含 令硌為零,以獲得凸齒輪與凹齒輪相嚙合的第一個包 絡條件,記為 ^/ · ^/5 = m sin + n cos ^, + (1 + TV2 / iV, ){mzx - «^ ) / fl = 〇 其中 C=—(A-么)[-hsin色+Zlcos私)_/ .(只咖為+qsin办)k ]-α表A: •^=^ + (wcos為-nsin於)y + (msin办+”cos為)Λ ;以及 令為為零,可獲得凸齒輪與凹齒輪相嚙合的第二個包 絡條件,記為 Nf *v}6 =msinφ3~£cosφ3+(\ + Ν2/N:)(i.yx -mxx)la = Q 其中 F/36 =(表-sin & + % cos 么)ί· + (X cos 也—% sin 色)_/· ] + α么ft =(/cos么-msin卢3)i + (£sin^j+mcos03X/ + M。 15.如申請專利範圍第14項所述之内嚙合式球面齒 輪的製造方法,更包含 於凸球面齒輪和凹球面齒輪上分別形成單一個中央 輪齒; 30 1314504 再由該中央㈣在凸球面錢和凹球面齒輪上㈣ 形成一第一個環形輪齒,輪齒之分布角度是,其中下 標文字1=1表示凸球面齒輪之輪齒數’下標文字丨=2表示 凹球面齒輪之輪齒數。 16.如申請專利範圍第15項所述之内嚙合式球面齒 輪的製造方法,更進_步包含 於各該第一個環形複製六個輸齒; 在凸球面齒輪和凹球面齒輪上分別形成一第二個環 形輪歯;以及 於各5亥第二個環形由中央輪齒複製十二個輪齒。When the knife mask rotates in the coordinate system $ and Α, according to the homogeneous coordinate transformation matrix method, the homogeneous coordinate transformation matrix from the coordinate system to the coordinate system to the coordinate system & is obtained, wherein: 163 C? 4 +伙-办) -Ξφ6〇φζ + - φλ) One s(ks(jt>5 - Φ6 0 -c outside + from c<i3C(^5 _ is) ^φ63φ3+οφ6εφ3ε(φ5 -φλ) -^ΦΑΦ5 - φχ) ο s<t>Af!>5-<k, οφ6ε(φ5 ~φχ) ε(Φβ ~Φ\) 0 ^φ6〇φ5ac<Kc<k -αεφ5 : and the theory of homogeneous coordinate transformation , get the two-parameter surface family equation of the tool surface, recorded as 29 1314504 R a, φν Φ3) = m63 where 'variable heart is the design parameter, vector 浐匕, a, l color) is the tool surface family equation, superscript text g It is a 3-line segment, a & line segment, a 9-line segment, and a line segment. H. The method for manufacturing an inner cohesive spherical gear according to claim 13 wherein step (h) comprises a first enveloping condition for the convex gear to mesh with the concave gear, For ^/ · ^/5 = m sin + n cos ^, + (1 + TV2 / iV, ){mzx - «^ ) / fl = 〇 where C=—(A-么)[-hsin色+Zlcos private )_/ . (only coffee is +qsin) k ]-α Table A: •^=^ + (wcos is -nsin in) y + (msin do +"cos is) Λ ; and the order is zero, Obtain the second envelope condition of the convex gear meshing with the concave gear, denoted as Nf *v}6 = msinφ3~£cosφ3+(\ + Ν2/N:)(i.yx -mxx)la = Q where F/36 = (Table -sin & + % cos) ί· + (X cos also -% sin color) _/· ] + α ft = (/cos-msin Lu 3)i + (£sin^j+mcos03X The manufacturing method of the internal meshing spherical gear according to claim 14, further comprising forming a single central tooth on the convex spherical gear and the concave spherical gear; 30 1314504 (4) Forming a first annular gear on the convex spherical surface and the concave spherical gear (4), the distribution angle of the teeth is The subscript text 1=1 indicates the number of teeth of the convex spherical gear' subscript text 丨=2 indicates the number of teeth of the concave spherical gear. 16. The manufacturing method of the internal meshing spherical gear according to claim 15 of the patent application, Further step _ is included in each of the first ring-shaped replicas of six tooth teeth; a second ring-shaped rim is formed on each of the convex spherical gear and the concave spherical gear; and the second ring is formed by the central tooth at each of the five Duplicate twelve teeth. 3131
TW96100598A 2007-01-05 2007-01-05 Internal engaging spherical gears and method of making the same TWI314504B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96100598A TWI314504B (en) 2007-01-05 2007-01-05 Internal engaging spherical gears and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96100598A TWI314504B (en) 2007-01-05 2007-01-05 Internal engaging spherical gears and method of making the same

Publications (2)

Publication Number Publication Date
TW200829397A TW200829397A (en) 2008-07-16
TWI314504B true TWI314504B (en) 2009-09-11

Family

ID=44817992

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96100598A TWI314504B (en) 2007-01-05 2007-01-05 Internal engaging spherical gears and method of making the same

Country Status (1)

Country Link
TW (1) TWI314504B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI421137B (en) * 2011-01-06 2014-01-01 Method for applying envelop theory to build model of precision roller curve of skew-roll straightening machine
CN115352271A (en) * 2022-10-20 2022-11-18 靖江市三菱暖通机械制造有限公司 Petroleum machinery electric driving wheel with damping transmission mechanism and production processing machine tool thereof

Also Published As

Publication number Publication date
TW200829397A (en) 2008-07-16

Similar Documents

Publication Publication Date Title
Lin et al. Design of a two-stage cycloidal gear reducer with tooth modifications
TW585806B (en) Locking-type double joints tool
WO2020019625A1 (en) Spherical involute spur bevel gear pair and method for reshaping gear profile thereof
TWI314504B (en) Internal engaging spherical gears and method of making the same
JP2012233567A (en) Spline device by smilling, and smilling processing for manufacturing spline device by smilling
TW201205217A (en) Topography shaping apparatus for forming surfaces of low friction coefficient
JP6836665B2 (en) Biaxial hinge mechanism used for mobile terminals and mobile terminals
CN204741541U (en) Earphone pivot structure
CN102233555B (en) Sleeve for connection and washer for supporting used reacting force and connecting structure
JP4139234B2 (en) Ratchet manufacturing method for spanner with 90-180 teeth
WO2016011791A1 (en) Fluid mechanism
CN206889620U (en) The gear structure of adjustable backlash
JP3170606U (en) Elastic backrest seat
JP2006256961A5 (en)
TWI273008B (en) Joints mechanism
TWM426472U (en) Clip apparatus for wrench
TWI565545B (en) Power head structure
CN1962207A (en) Tool with rotary type head
CN205703827U (en) Positioning set structure
JP3155760U (en) Rotating mechanism
CN205799335U (en) Spanner progressive structure
JP2004068169A5 (en)
TWI552834B (en) A method for preparing the rotor and a torque tool for making the rotor using the method
TWM360110U (en) Improved wrench
TWM274312U (en) Conversion device structure for disc brake hub

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees