TWI314383B - A dc to dc converter having linear mode and switch mode capabilities,a controller,a control method and an apparatus of said converter - Google Patents

A dc to dc converter having linear mode and switch mode capabilities,a controller,a control method and an apparatus of said converter Download PDF

Info

Publication number
TWI314383B
TWI314383B TW95134693A TW95134693A TWI314383B TW I314383 B TWI314383 B TW I314383B TW 95134693 A TW95134693 A TW 95134693A TW 95134693 A TW95134693 A TW 95134693A TW I314383 B TWI314383 B TW I314383B
Authority
TW
Taiwan
Prior art keywords
signal
control
output
pwm
circuit
Prior art date
Application number
TW95134693A
Other languages
Chinese (zh)
Other versions
TW200721647A (en
Inventor
Alexandru Hartular
Chun Lu
You-Yuh Shyr
Constantin Bucur
Vlad Mihail Popescu-Stanesti
Ji-Wei Chen
Oleg Kobildjanov
Original Assignee
O2Micro Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/250,048 external-priority patent/US7508176B2/en
Application filed by O2Micro Int Ltd filed Critical O2Micro Int Ltd
Publication of TW200721647A publication Critical patent/TW200721647A/en
Application granted granted Critical
Publication of TWI314383B publication Critical patent/TWI314383B/en

Links

Description

1314383 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種直流/直流轉換器,更特別令 g 一種直流/直流轉換器之控制器。 ° ’是 【先前技術】 目前,很多電子裝置,例如手提電腦、手提 人數位助理(PDA)以及其他可攜的和不可捭等各二、個 置,都使用-或多個直流/直流轉換器。直产^裝 係將一輸入的直流電壓轉換成另一個 電壓。在一般的電子裝置裡面,直流/直 的直^ 付各種不同的負載。直流/直流轉換器 、°可用以應 對低的負载變成一個相對高的負载。這種^可能從―個相 根據統及/或是使心‘ ^差別 载。線賴細低或高負 適合於提供功率給低的負载 的一種,它更 輪出直流電_變化,並提供=整器會監控 維持該輸出電愿在所期望的值上。S3,電晶體,以 0,,LD〇H__ ^電=調整器 可以相對小的遷降和相對低的雜 調正益的-種,其 低的負载。切換模式直流/直流^出’提供電源給相對 器,其係藉由切換至少一、=一種直流/直流轉換 與OFF來維持該輪出電:^轉換器的電晶體〇N 器切換模式可 下W值。這樣的電跑周整 載障況下,以相對高的效率提供一 IP060267-TW-spec-X(〇22〇〇7〇i〇8) ^ 1314383 個經調變的輸出電壓。 ❿ 為了因應於不同狀況下負載可能高或低的情形,習知 的做法是提供-直流/直流轉換器(例如一 LD〇)配合低 載二並提供另—個分離的直流/直流轉換器(例如 板式直流/纽轉換11)配合高㈣,且在某特定環境 兩個直流/直流轉換H之間切換。這種f知方法同時需要兩 個直流/直流職器以及額外的元件和接腳,以達成在這兩 者之間的切換,因此增加成本及複雜度。 因此’需要-種同時具有線性“和切換模式能力之 直'"〇/直流轉換器之控制器。 【發明内容】 自根發明之—方面,提供—種直流7直流轉換11之控 器包恤模式控制電路、切換模式控制電 生模式控制電路可提供-第-控制信 第°一二制俨號:、器之一文控裝置。該受控裝置回應該 弟控他號作為-可變電阻 換器之-輸出電壓。該切拖控制該直机/直流轉 制信號至該直流/直電路可提供一第二控 應該第較控裝置回 和該切換_ 。轉賴式控制電路 態,可被致能以控制該受控 回應一致能信號之狀 收-代表該錢/A_i^置該保錢路被設置為接 信號與-欠電壓門限位:::之壓的信號並將該 較如果代表該輸出電壓之該 TP060267-TW-spec-X (〇2 20070108) 8 1314383 信號小於該欠電壓門限位準 第-或該第二控制信號。該保受控裂置的該 號與-過電壓門限位準比_,路進一步被設置將該信 號大於該過電壓門限位準Γ補償電壓之該信 -或該第二控制信號。貝^供給該受控裝置的該第 該直 ,置之控制器。該_包=置模制= 式控制電路及保護電路。該線性模式控制二 控制U至該錢/直流轉絲之該受控裝置。該受^裝 =直應=;控制信號作為—可變電H以控制該直 如之-如電壓。該城模式㈣電路可提供 一第-控號至該錢/直流轉換器之該受控裝置。該受 控裝置回應該第二控制信號作為一開關工作切換ON與 =,以㈣該直流/直流轉換器之該輸出㈣。該線性模 式控制電路和該切換模式控制電路其中之一回應一致能 信號之狀態,可被致如控_受縣置。絲護電路被 設置為接收-代賴錢/纽職_之雜&電壓的信 號並將該信號與-欠隸門限位準比較,如果代表該輸出 電壓之該信號小於該欠錢門限辦,娜提供給該受控 裝置的該第-或該第二控制信號。該保護電路進一步被設 置將該信號與-過電屋門限位準比較,如果代表該輸出電 歷之該信號大於該過電壓門限位準,補償提供給該受控裝 置的該第一或該第二控制信號。 根據本發明之又一方面,提供一種控制方法。該方法 TP060267-TW-spec-X (〇2 20070108) 9 1314383 =^第:時間期提供—第—控制信號至—直流 轉換态之一受控裝置,該第一 且仙· 模式控制電路提供,心广工1器之線性 一可變ΐ _該第—㈣信號作為 Μ ^ 制該直流7直流轉換器之一輸出電 壓。該方法進-步包含在-第二時間期提供一第一二! 號至該直流/錢轉㈣控制仏 ^爪轉齡之該%控裝置,該第二時間期與 夺間期不重疊,該第二控制信號由該控制器之切換模1314383 IX. Description of the Invention: [Technical Field] The present invention relates to a DC/DC converter, and more particularly to a controller of a DC/DC converter. ° 'Before [Previous Technology] At present, many electronic devices, such as laptops, portable PDAs, and other portable and non-existing devices, use multiple or multiple DC/DC converters. . Direct production converts an input DC voltage to another voltage. In a typical electronic device, DC/straight is applied to various loads. The DC/DC converter, ° can be used to respond to low loads and become a relatively high load. This kind of ^ may be from the "phase" and / or the heart '^ difference. The line is either low or high negative. It is suitable for supplying power to a low load. It also takes the DC_change and provides = the whole unit will monitor and maintain the output at the desired value. S3, transistor, with 0,, LD 〇 H__ ^ electric = adjuster can be relatively small migration and relatively low miscellaneous positive - the low load. Switching mode DC/DC output 'provides power to the opposite unit, which maintains the round output by switching at least one, = one DC/DC conversion and OFF: ^Transistor transistor 〇N switching mode can be W value. Under such an electric running cycle, an IP060267-TW-spec-X (〇22〇〇7〇i〇8) ^ 1314383 modulated output voltage is provided with relatively high efficiency. ❿ In order to respond to situations where the load may be high or low under different conditions, it is customary to provide a DC/DC converter (eg, an LD〇) with a low load and provide another separate DC/DC converter ( For example, the plate DC/Nucle conversion 11) is matched with the high (four) and switches between two DC/DC conversions H in a specific environment. This method of knowing requires two DC/DC registers and additional components and pins to achieve switching between the two, thus increasing cost and complexity. Therefore, there is a need for a controller that has both linear and switching mode capabilities. The invention provides a controller package for DC 7 DC conversion 11 from the aspect of the invention. The shirt mode control circuit and the switching mode control electric power mode control circuit can provide a - control signal of the first control system: one of the text control devices. The controlled device should be controlled by the other as a variable resistor. Converter-output voltage. The cut-and-control control of the straight/DC conversion signal to the DC/straight circuit can provide a second control should be compared with the control device and the switch _. The switch control circuit state can be Enabled to control the controlled response of the consistent energy signal - on behalf of the money / A_i ^ set the security road is set to signal and - under voltage threshold::: the pressure of the signal and the representative if The output voltage of the TP060267-TW-spec-X (〇2 20070108) 8 1314383 signal is less than the undervoltage threshold level - or the second control signal. The number and the overvoltage threshold of the controlled splitting Level ratio _, the path is further set to make the signal larger than The overvoltage threshold is used to compensate the signal of the voltage - or the second control signal. The first control signal is supplied to the controlled device. The _ packet = mold set = control circuit and protection The linear mode controls the second control U to the controlled device of the money/DC wire. The receiving device = direct response =; the control signal acts as a variable electric H to control the straight-like voltage. The city mode (4) circuit can provide a first-control number to the controlled device of the money/DC converter. The controlled device responds to the second control signal as a switch operation to switch ON and =, to (4) the DC/DC conversion The output of the device (4). One of the linear mode control circuit and the switching mode control circuit responds to the state of the uniform energy signal, which can be caused by the control. The wire protection circuit is set to receive - on behalf of the money / New The signal of the _ _ & voltage and compare the signal to the threshold of the under-limit, if the signal representing the output voltage is less than the threshold of the money, the first- or the a second control signal. The protection circuit is further configured to send the letter Comparing with the over-voltage threshold, if the signal representative of the output electrical calendar is greater than the over-voltage threshold level, the first or second control signal provided to the controlled device is compensated. In one aspect, a control method is provided. The method TP060267-TW-spec-X (〇2 20070108) 9 1314383 = ^: time period providing - first control signal to - DC conversion state one of the controlled devices, the first And the mode control circuit provides a linear variability _ _ the first - (four) signal as one of the output voltages of the DC 7 DC converter. The method is further included in the second time Providing a first two! to the DC/money turn (4) controlling the % control device of the 爪^ claw age, the second time period does not overlap with the smash period, and the second control signal is switched by the controller mold

=控制電路提供,該受控裝置喊剑二控織號工作切 :、ON與OFF,以控制該直流/直流轉換器之該輸出電壓。 2 =法進-步包含將—代表該直流/直流轉換 器之該輸出 二壓之信號與1電壓門限位準和—欠電麼門限位準比 又’且如果該代表該輸出電壓之信號大於該過電門限位 準或小於社錢門限鱗,_償料-或第二控制信 號。 一根據本發明之再一方面,提供一種裝置。該裝置包含 種能夠從複數種充電模式巾作&選擇以對—充電電池 充電之積體電路。該魏種充賴式包括_切換模式和一 線性模式。 【實施方式】 圖1闡示一電子裴置100之方塊圖,其包含一電源 102、一個直流/直流轉換器1〇4及一負載1〇6。該電子裝 置100可以是各種裝置,例如筆記型電腦、手機、個人數 位助理(PDA)等等。該電源102可以是各種電源,例如一 電池(如一鋰電池)’其提供一未調整之直流電壓(Vin)至該 TP060267-TW-spec-X (02 20070108) 10 1314383 轉換器ι〇4。該直流/直流轉換器104提供一調整 1僅^山直抓電壓(V〇Ut)至該負載106。為簡明故,雖然圖 實直流/直流轉換器104及—相關負載106,然而 配^作置⑽可以包含多個錢/直流轉換器以 配合多個負載。 該=2為圖丨之該直流/直流轉換器⑽之細部方塊圖。 ^ 曰冰轉換益104 一般包含一控制器201,其控制至= The control circuit provides that the controlled device screams the control number to cut: , ON and OFF to control the output voltage of the DC/DC converter. 2 = method-step includes - representing the output two-voltage signal of the DC/DC converter and a voltage threshold level and - under-power threshold level ratio and 'if the signal representing the output voltage is greater than The over-voltage threshold is either less than the social threshold threshold, _ repayment - or the second control signal. According to yet another aspect of the present invention, an apparatus is provided. The device includes an integrated circuit that can be selected from a plurality of charging mode wipes to charge the rechargeable battery. The Wei type of charge includes a _ switching mode and a linear mode. [Embodiment] FIG. 1 illustrates a block diagram of an electronic device 100 including a power source 102, a DC/DC converter 1〇4, and a load 1〇6. The electronic device 100 can be a variety of devices such as a notebook computer, a cell phone, a personal digital assistant (PDA), and the like. The power source 102 can be a variety of power sources, such as a battery (e.g., a lithium battery) that provides an unregulated DC voltage (Vin) to the TP060267-TW-spec-X (02 20070108) 10 1314383 converter ι〇4. The DC/DC converter 104 provides an adjustment 1 to the voltage 106 (V〇Ut) to the load 106. For simplicity, while the DC/DC converter 104 and associated load 106 are shown, the configuration (10) may include multiple money/DC converters to accommodate multiple loads. This = 2 is a detailed block diagram of the DC/DC converter (10). ^ 曰冰转换 benefits 104 generally include a controller 201 that controls to

、曰曰體Q1之狀癌、,以控制該直流/直流轉換器刚之 電壓。耗晶體Q1可以是任何麵之電晶體。 1斋2〇1可包含一線性模式控制電路202 *一切換模 電路綱。這裏所述之“電路,,可包含例如單一實連 、可程式化電路、狀態機電路及/或财供可程式化 订之指令的幢’或是上述電路之結合。無論是該 、’·莫式控制電路202或該切換模式控制電路204都可以 在不同的、不重複的時間間隔内,回應終端犯上之致能 信號的狀態,而控制該直流/直流轉難之該電晶體⑴的 狀態。 若該致能信號為數位〇,該切換模式控制電路2〇4將 被除能(disabled)而不提供任何控制信號至該電晶體φ。 反之,該線性模式控制電路202將被致能(enabled),藉由 回應該數位0致能信號,將該開關sw關閉,以控制該電 晶體Q1之狀態。當該開關sw關閉時,該線性模式控制 電路202可將一第一控制信號(例如hdrjd〇)提供給電晶體 Q1。該電晶體Q1回應來自該線性模式控制電路2〇2之該 第一控制信號’在一線性區操作並控制該直流/直流轉換器 TP060267-TW-spec-X (02 20070108) 11 1314383 之該,出電壓。該第一控制信號可以是—類比電壓信號。 若該致能信號為數位1,該切換模式控制電 被致能,以提供—第二控制信號至該電晶體…。此時反: 器209之輪出將變為〇,開關sw回應該輸出而打開。因 ,,該線性模式控制電路202在此情形下將不能控制該電 晶體Q1。該電晶體Q1回應來自該切換模式控制電路204 之該第二控制信號,該電晶體Q1可切換ON與OFF,來 控制該直流/直流轉換器之該輸出電壓。一個代表該輸出電 壓V〇Ut之回授信號被提供至該線性模式控制電路202和該 切換模式控制電路2〇4,且來自該線性模式控制電路2〇2 和該切換模式控制電路204之該第一和第二控制信號,係 至少根據將該回授信號和一參考電壓位準做比較而得。 圖3闡示與圖2之該直流/直流轉換器1〇4 一致之直流 /直流轉換器l〇4a之一實施例。控制器2〇1&包含一低壓降 電壓調整器(LDO)電路202a,其如同該線性模式控制電路 202般工作。控制斋201a亦包含一個脈衝寬度調變(pWM) 電路204a,其如同該切換模式控制電路2〇4般工作。在一 如圖3所詳示之實施例中,該pWM電路2〇4&可如一電壓 控制模式非同步PWM控制H般工作。在其他實施例中, 該切換模式控制電路204亦可包含其他_的控制器,例 ^電流控麵式控㈣、同步控㈣或脈衝鮮調變控制 器等等,但並不以此為限。該電晶體Q1可以是一個p型 金屬氧化物半導體場效應電晶體(M〇SFET)或pM〇s,根 據該致能㈣㈣狀態之不同,其閘極電極可適於接收來 自該LD0電路202a之該第-控制信號或來自該pwM電 TP060267-TW-spec-X (02 20070108) 12 1314383 . 路204a之該第二控制信號。 ' 若該致能信號為數位〇,該PWM電路2〇4a藉由使該 驅動器316在高阻抗(high impedance)狀態而除能。該LD〇 電路202a亦可被致能,以藉由關閉該開關Sw而提供其控 制信號(hdr_ldo)至該PMOS電晶體Q1的控制端。該LD〇 電路202a所提供之控制信號(hdr一ldo)可以是一個類比電 壓信號’且該電晶體Q1可回應該控制信號,而在其線性 區操作’並控制電流的多少以調整該輸出電壓位準乂〇说。 ♦ 當該電晶體Q1在該LDO電路202a的控制之下而在其線 性區操作時,該直流/直流轉換器之輸出電壓係有利地為一 極低之漣波(ripple)電壓’且該控制器201a消耗一低靜態 . 電流。 ~ 該LD0電路202a包含一放大器322,其係如同一誤 差放大器般工作。該放大器322可在其反相輸入端接收一 代表該輸出電壓Vout之回授信號。該回授信號可具有一電 壓位準vi,它是由包含電阻RfM和Rfb2所形成之分壓器 籲 之回授電阻網路328將Vout縮小而得。該放大器322亦可 經由一參考終端334在其非反相輸入端接收一參考電壓信 號該參考電壓#號可以有多種來源,例如一頻帶隙 (bandgap)電路。 在直流操作時,該ldo電路202a之該放大器322可 藉由將該參考電壓信號與該電壓位準VI進行比較,並根 據該電壓信號或一電壓誤差信號之差別,經由一關閉的開 關SW &供適當之輸出控制信號(hdr—ldo)至該電晶體 Q1以如同一誤差放大器般工作。該電晶體q〗回應該控 TP060267-TW-spec-X (〇2 20070108) 13 1314383 ^言號在線性區操作,並料修正該輪出電壓位準v⑽, 胤可能驅使該電壓誤差信號接近於零。 例如’如果終端336上之輸出電壓v〇ut增加至超過一 預期電壓辦,龍電壓位準V1也會增加。因此,該放 ^器322之兩個輸入之間的誤差電壓會產生一控制信號 _Jd0),其致使該電晶體Q1傳導較少電流,以降低該 輸出電壓V〇ut。相反的,如果終端336上之輸出電愿咖 降低至超過一預期的電壓值,該電壓位準VI也會降低。 因此,該放大器322之兩個輸入之間的誤差電壓會產生一 控制信號(hdr—ldo),其致使該電晶體Qi傳導較多電流, 以增加該輸出電壓V〇 ut。 若該致能信號為數位1,該PWM電路2〇乜之驅動器 316可被致能,以提供一 PWM控制信號(hdr)至該pM〇s 電晶體Q1。此外’該反相器209之輸出可為數位〇,且開 關sw可回應該輸出而打開,以有效地阻止來自該LD〇 電路202a之控制信號(hdr_ldo)去控制該pm〇S電晶體 Q1。該PMOS電晶體Q1可回應該PWM控制信號(hdr)之 工作週期而切換ON和OFF,以調整該輸出電壓v〇ut。因 此當該致能信號為數位1時,該控制器201a如一 PWM控 制器般操作,而該PMOS電晶體Q1如一具有由振盈器314 之斜波信號決定開關之ON-OFF頻率,其能達成大於90〇/〇 的高效率。 該PWM電路204a包含一誤差放大器310、一產生斜 波信號之振盪器314、一比較器312、一補償電容Cc和電 阻Rc以及一驅動器316。該誤差放大器310可在其反相輸 TP060267-TW-spec-X (〇2 20070108) 14 1314383 «r •人端^該回授信號⑽。該回授信號可代表終端336上 之 V〇ut。賴紐Α|| 村在其非反相輸 入1收-來自終端334之參考電塵信號,並根據差值提 供=出信號。該比較器312可在其非反相輸入端接收該 。號在其反相輸入端接收—來自振盪器314的斜波 L號並提供具有一根據該比較信號與該斜波信號的交叉 點之工作週期之輸出PWM信號342(pwm_in)。 該控制$ 201a亦可包含-個過電欠電壓保護電路 326用來保濩該直流/直流轉換器,避免過電壓與欠電壓 的情況。該控制器20U還可以包含一個軟啟動電路332。 圖4闡示該比較器312之非反相輸入端之比較信號 402和提供給圖3中之該比較器312之斜波信號,來自 於圖3中的振盪器314)。隨著該比較信號4〇2值的升高和 降低,該比較彳§號402和該斜波信號的交叉點隨之變化。 來自該比較器312之結果pwm_in信號342因此具有一脈 衝見度,且其工作週期係基於該交又點之值。當該比較信 號降低,該pwm—in信號342之工作週期就會降低,而^ 該比較信號升高,該pwm_in信號342之工作週期亦會提 尚。該驅動器316可接受該pwm_in信號342,並提供一 輸出PWM信號(hdr)給PMOS電晶體Q1,該輸出pwM信 號(hdr)是該pwm_in信號342的反相,如圖4所示。 圖5更詳細闡示圖3之PWM電路204a中之驅動器 316之一實施例驅動器316a。該驅動器316a包含複數個反 相器 502、506、508、510、514、516、518、一 N0R 間 504、一 NAND閘512以及電晶體Q2、Q3。電晶體Q2可 TP060267-TW-spec-X (02 20070108) 15 1314383 以疋一 PM〇S電晶體,電晶體Q3可以是一 N型金屬氧化 物半導體場效應電晶體(MOSFET)或者NM0S電晶體。 當該致能信號為數位〇時,反相器5〇2之輸出為數位 1。由於NOR閘504之一輸入為數位丨,該N〇R閘5〇4 之輸出也為數位〇。因此,反相器5〇6之輸出為數位工, 反相器508之輸出為數位0,而最後反相器51〇之輸出為 數位1。由於本實施例中電晶體Q2是一 PM〇s電晶體, 電晶體Q2回應來自反相器51〇之數位丨而為〇FF。當該 致能信號為數位〇時,NAND閘512之輸出為數位丨。因 此,反相器514之輸出為數位0,反相器516之輸出為數 位1,而最後反相器518之輸出為數位〇。由於本實施例 中電晶體Q3是一 NMOS電晶體,電晶體Q3的狀態也是 〇FF,當該致能信號為數位〇時,該驅動器316a被有效除 能。由於提供該hdr控制信號之該驅動器316a之終端522 係耦接一對均為OFF之PMOS電晶體Q2和NMOS電晶 體Q3,當致能信號為數位〇時,驅動器316a沒有輸出信 號hdr。因此,該驅動器316a被有效除能。換句話說,當 該致能信號為數位〇時,該驅動器316a將呈高阻抗狀態。 i該致症彳§號為數位1時,該hdr信號是pwm_in信 號之反相’如圖4所示。該pwm_in信號可能是數位〇或 數位1。當該pwm_in信號為數位1且該致能信號為數位1 時’ NOR閘5〇4之輸出為數位〇。因此,反相器5〇6之 輸出為數位1,反相器508之輸出為數位〇,而最後反相 态之輸出為數位1。PM〇s電晶體回應反相器510之 數位1而為0FF。當Pwm__in信號為數位1且該致能信號 TP〇60267-TW-spec-X(〇22〇〇7〇1〇8) 16 1314383 -為數位1日守,NAND閘512之3個輸入都為數位卜因此 該NAND㈤512之輸出為數位〇。這致使得反相器之 輸出為數位1,且因此NM〇s電晶體Q3為〇N。 當該pwm一in信號為數位〇且該致能信號為數位i 時’ NAND閘512的輪出為數位丄,且因此反相器518的 ,出為數位0。回應於此,NM〇s電晶體Q3為〇FF。接 者,在此情形:NOR閘504之3個輸入都為數位〇。因此該 NOR閘504之輸出為數位卜且反相器51〇之輸出為數位 | 〇。回應於此,PMOS電晶體Q2為〇Νβ因此,當該致能 #號為數位1時,hdr信號是pwm_in信號之反相,如圖4 所不,而當該致能信號為數位〇時,該驅動器316a可藉由 使% sa體Q2與Q3切換為OFF而達到有效除能。 圖6更詳細闡示圖3所示之過電壓/欠電壓保護電路 326之一實施例過電壓/欠電壓保護電路32如。一般而言, 若沒有檢測到過電壓或者欠電壓情況,圖3中的c〇mp和 hdr_ldo彳§號將不會被補償。當檢測到欠電壓情況,c〇mp | 彳§號將會被上拉(pulled up)而hdr_ldo信號將會被下拉 (pulled down),以拉升(drive up)該輸出電壓v〇ut。當檢測 到過電壓情況,comp信號將會被下拉而hdr_ldo信號將會 被上拉’以壓低(drive down)該輸出電壓v〇ut。 該過電壓/欠電壓保護電路326a包含兩個比較器602 和604。該欠電壓比較器602將代表輸出電壓之回授信號 (fb)和一欠電壓門限位準作比較。若該回授信號未低於該 欠電壓門限位準’該比較器602輸出一數位〇。若該回授 信號等於或低於該欠電壓門限位準,該比較器602輸出一 TP060267-TW-spec-X (02 20070108) 17 1314383 數位1。類似地,該過電壓比較器604將該回授信號和一 過電壓門限位準作比較。若該回授信號未高於該過電壓門 艮位準,該比較器604輸出一數位〇。若該回授信號等於 或向於該過電壓門限位準,該比較器6〇4輸出一數位i。 在工作期間,若該致能信號為數位丨,其指示使用該 PWM電路204a,且該回授電壓位準未低於該欠電壓門限 位準或高於該過電壓門限位準,則該比較器6〇2和6〇4之 輪出都為數位〇。因此該NAND閘006之輸出為數位丄。 回應於此’該PMOS電晶體Q4為〇ff。反相器608之輪 出為數位1’且NAND閘610之輸出為數位0。回應於此, 該NM0S電晶體q5亦為〇FF。因此,在此情況下將沒有 任何補償施加至該comp信號。 進一步在工作期間’若該致能信號為數位0,其指示 使用該LDO電路202a,且該回授信號未低於該欠電壓門 限位準或高於該過電壓門限位準’則該比較器 602 和 604 之輸出都仍然為數位〇。因此該n〇R閘612之兩個輸入都 為數位0,且其輸出為數位1。回應於此,該PM0S電晶 體Q6為OFF。NOR閘620之輸出為數位0。回應於此, 該NMOS電晶體Q7亦為〇FF。因此,在此情況下將沒有 任何補償施加至該hdr_ldo信號。 若該致能信號為數位1,其指示使用該PWM電路 204a ’且該回授信號低於該欠電壓門限位準,則該欠電壓 比較器602之輸出為數位丨。由於在此情形下NAND閘6〇6 之兩個輸入都為數位1,其輸出為數位0。回應於此,該 PM0S電晶體Q4為0N,並上拉該c〇mp信號至c〇mph。 TP060267-TW-spec-X (02 20070108) 18 1314383 號之 該回 藉由將該信號comp信號上拉至comph,該pWm作 工作週期將會增加以增加輸出電壓位準,並因此3曾加 授電壓位準。 9The cancer of the body Q1 is controlled to control the voltage of the DC/DC converter. The consuming crystal Q1 can be a transistor of any face. 1 〇2〇1 may include a linear mode control circuit 202* a switching mode circuit. The "circuitry" described herein may include, for example, a single solid, programmable circuit, state machine circuit, and/or a block of programmable instructions, or a combination of the above. The mode control circuit 202 or the switching mode control circuit 204 can respond to the state of the enable signal of the terminal in different, non-repeating time intervals, and control the state of the transistor (1) in which the DC/DC is difficult to switch. If the enable signal is digital, the switch mode control circuit 2〇4 will be disabled without providing any control signals to the transistor φ. Conversely, the linear mode control circuit 202 will be enabled ( Enabled), by switching back to the digital 0 enable signal, the switch sw is turned off to control the state of the transistor Q1. When the switch sw is closed, the linear mode control circuit 202 can set a first control signal (eg Hdrjd〇) is supplied to the transistor Q1. The transistor Q1 operates in response to the first control signal from the linear mode control circuit 2〇2 in a linear region and controls the DC/DC converter TP060267-TW-spec-X ( 02 The first control signal may be an analog voltage signal. If the enable signal is a digital one, the switching mode control circuit is enabled to provide a second control signal to the electrical Crystal.... At this time, the rounding of the device 209 will become 〇, and the switch sw will be output and turned on. Therefore, the linear mode control circuit 202 will not be able to control the transistor Q1 in this case. Responding to the second control signal from the switching mode control circuit 204, the transistor Q1 can be switched ON and OFF to control the output voltage of the DC/DC converter. A feedback signal representing the output voltage V〇Ut Provided to the linear mode control circuit 202 and the switching mode control circuit 2〇4, and the first and second control signals from the linear mode control circuit 2〇2 and the switching mode control circuit 204 are at least according to The feedback signal is compared with a reference voltage level. Figure 3 illustrates an embodiment of a DC/DC converter 104a that is identical to the DC/DC converter 1〇4 of Figure 2. Controller 2 〇1& A low dropout voltage regulator (LDO) circuit 202a is provided which operates as the linear mode control circuit 202. The control module 201a also includes a pulse width modulation (pWM) circuit 204a which acts as the switching mode control circuit 2〇4 In a preferred embodiment as shown in FIG. 3, the pWM circuit 2〇4& can operate as a voltage controlled mode asynchronous PWM control H. In other embodiments, the switching mode control circuit 204 can also Contains other controllers, such as current control surface control (four), synchronous control (four) or pulse fresh modulation controller, etc., but not limited to this. The transistor Q1 may be a p-type metal oxide semiconductor field effect transistor (M〇SFET) or pM〇s, and its gate electrode may be adapted to receive from the LD0 circuit 202a depending on the state of the enable (d) (iv) state. The first control signal or the second control signal from the pwM TP060267-TW-spec-X (02 20070108) 12 1314383. If the enable signal is digital, the PWM circuit 2〇4a is disabled by causing the driver 316 to be in a high impedance state. The LD 电路 circuit 202a can also be enabled to provide its control signal (hdr_ldo) to the control terminal of the PMOS transistor Q1 by turning off the switch Sw. The control signal (hdr-1do) provided by the LD〇 circuit 202a may be an analog voltage signal 'and the transistor Q1 may respond to the control signal while operating in its linear region' and controlling the amount of current to adjust the output voltage. The standard is said. ♦ When the transistor Q1 is operated under the control of the LDO circuit 202a and in its linear region, the output voltage of the DC/DC converter is advantageously a very low ripple voltage and the control The device 201a consumes a low static current. ~ The LD0 circuit 202a includes an amplifier 322 that operates as a same error amplifier. The amplifier 322 can receive a feedback signal representative of the output voltage Vout at its inverting input. The feedback signal can have a voltage level vi which is obtained by a voltage divider comprising resistors RfM and Rfb2 calling the feedback resistor network 328 to reduce Vout. The amplifier 322 can also receive a reference voltage signal at its non-inverting input via a reference terminal 334. The reference voltage # can be of various sources, such as a bandgap circuit. During DC operation, the amplifier 322 of the ldo circuit 202a can compare the reference voltage signal with the voltage level VI, and according to the difference between the voltage signal or a voltage error signal, via a closed switch SW &amp The appropriate output control signal (hdr-1do) is supplied to the transistor Q1 to operate as the same error amplifier. The transistor q should be controlled back to TP060267-TW-spec-X (〇2 20070108) 13 1314383 ^The word operates in the linear region, and the correction of the voltage level v(10) is corrected, which may drive the voltage error signal close to zero. For example, if the output voltage v〇ut on terminal 336 is increased beyond an expected voltage, the dragon voltage level V1 will also increase. Therefore, the error voltage between the two inputs of the amplifier 322 produces a control signal _Jd0) which causes the transistor Q1 to conduct less current to lower the output voltage V〇ut. Conversely, if the output power on terminal 336 is reduced to more than an expected voltage level, the voltage level VI will also decrease. Thus, the error voltage between the two inputs of the amplifier 322 produces a control signal (hdr-1do) that causes the transistor Qi to conduct more current to increase the output voltage V?ut. If the enable signal is a digital one, the driver 316 of the PWM circuit 2 can be enabled to provide a PWM control signal (hdr) to the pM〇s transistor Q1. In addition, the output of the inverter 209 can be digital, and the switch sw can be turned on in response to the output to effectively block the control signal (hdr_ldo) from the LD〇 circuit 202a to control the pmS transistor Q1. The PMOS transistor Q1 can be switched ON and OFF in response to the duty cycle of the PWM control signal (hdr) to adjust the output voltage v〇ut. Therefore, when the enable signal is digital 1, the controller 201a operates as a PWM controller, and the PMOS transistor Q1 has an ON-OFF frequency that is determined by the ramp signal of the oscillator 314, which can be achieved. High efficiency of more than 90 〇 / 〇. The PWM circuit 204a includes an error amplifier 310, an oscillator 314 for generating a ramp signal, a comparator 312, a compensation capacitor Cc and a resistor Rc, and a driver 316. The error amplifier 310 can be inverted in its TP060267-TW-spec-X (〇2 20070108) 14 1314383 «r • human terminal ^ the feedback signal (10). The feedback signal can represent V〇ut on terminal 336.赖纽Α|| The village receives a reference to the dust signal from terminal 334 at its non-inverting input and provides a = signal based on the difference. The comparator 312 can receive this at its non-inverting input. The signal is received at its inverting input - the ramp L number from oscillator 314 and provides an output PWM signal 342 (pwm_in) having a duty cycle based on the intersection of the comparison signal and the ramp signal. The control $201a may also include an overvoltage and undervoltage protection circuit 326 for protecting the DC/DC converter from overvoltage and undervoltage conditions. The controller 20U may also include a soft start circuit 332. 4 illustrates the comparison signal 402 of the non-inverting input of the comparator 312 and the ramp signal provided to the comparator 312 of FIG. 3, from the oscillator 314 of FIG. As the value of the comparison signal 4〇2 increases and decreases, the intersection of the comparison 彳§ 402 and the ramp signal changes accordingly. The resulting pwm_in signal 342 from the comparator 312 thus has a pulse visibility and its duty cycle is based on the value of the intersection. When the comparison signal is lowered, the duty cycle of the pwm_in signal 342 is lowered, and the comparison signal is raised, and the duty cycle of the pwm_in signal 342 is also raised. The driver 316 accepts the pwm_in signal 342 and provides an output PWM signal (hdr) to the PMOS transistor Q1. The output pwM signal (hdr) is the inverse of the pwm_in signal 342, as shown in FIG. Figure 5 illustrates in more detail one embodiment of the driver 316 driver 316a in the PWM circuit 204a of Figure 3. The driver 316a includes a plurality of inverters 502, 506, 508, 510, 514, 516, 518, an inter-N0R 504, a NAND gate 512, and transistors Q2, Q3. The transistor Q2 can be a TP060267-TW-spec-X (02 20070108) 15 1314383. The transistor Q3 can be an N-type metal oxide semiconductor field effect transistor (MOSFET) or an NM0S transistor. When the enable signal is digital, the output of inverter 5〇2 is digit 1. Since one of the inputs of the NOR gate 504 is a digital 丨, the output of the N 〇 R gate 5 〇 4 is also a digital 〇. Therefore, the output of the inverter 5〇6 is digital, the output of the inverter 508 is the digit 0, and the output of the last inverter 51〇 is the digit 1. Since the transistor Q2 is a PM〇s transistor in this embodiment, the transistor Q2 responds to the digital 丨 from the inverter 51, and is 〇FF. When the enable signal is digital, the output of NAND gate 512 is digital. Thus, the output of inverter 514 is digital 0, the output of inverter 516 is digital 1, and the output of last inverter 518 is digital. Since the transistor Q3 is an NMOS transistor in this embodiment, the state of the transistor Q3 is also 〇FF, and when the enable signal is digital, the driver 316a is effectively disabled. Since the terminal 522 of the driver 316a that supplies the hdr control signal is coupled to a pair of PMOS transistors Q2 and NMOS transistors Q3 that are both OFF, the driver 316a does not output the signal hdr when the enable signal is digital. Therefore, the driver 316a is effectively disabled. In other words, when the enable signal is digital, the driver 316a will be in a high impedance state. When the symptom is § §, the hdr signal is the inverse of the pwm_in signal as shown in Fig. 4. The pwm_in signal may be digit 〇 or digit 1. When the pwm_in signal is the digit 1 and the enable signal is the digit 1 'the output of the NOR gate 5〇4 is the digit 〇. Therefore, the output of inverter 5〇6 is digit 1, the output of inverter 508 is digital 〇, and the output of the last inverted state is digit 1. The PM〇s transistor responds to bit 1 of inverter 510 and is 0FF. When the Pwm__in signal is the digit 1 and the enable signal TP〇60267-TW-spec-X(〇22〇〇7〇1〇8) 16 1314383 - is the digit 1 day, the 3 inputs of the NAND gate 512 are all digits. Therefore, the output of the NAND (5) 512 is digital. This causes the output of the inverter to be digital 1, and thus the NM〇s transistor Q3 is 〇N. When the pwm-in signal is digital and the enable signal is digital i, the turn-off of the NAND gate 512 is digital, and thus the output of the inverter 518 is digit 0. In response to this, the NM〇s transistor Q3 is 〇FF. In this case, the three inputs of the NOR gate 504 are all digital. Therefore, the output of the NOR gate 504 is a digital bit and the output of the inverter 51 is a digital bit | In response to this, the PMOS transistor Q2 is 〇Νβ. Therefore, when the enable # is a digit 1, the hdr signal is the inverse of the pwm_in signal, as shown in FIG. 4, and when the enable signal is digital, The driver 316a can achieve effective de-energization by switching the % sa bodies Q2 and Q3 to OFF. Figure 6 illustrates in more detail an embodiment of the overvoltage/undervoltage protection circuit 326 shown in Figure 3 as an overvoltage/undervoltage protection circuit 32. In general, if no overvoltage or undervoltage condition is detected, the c〇mp and hdr_ldo彳§ numbers in Figure 3 will not be compensated. When an undervoltage condition is detected, the c〇mp | 彳§ number will be pulled up and the hdr_ldo signal will be pulled down to drive up the output voltage v〇ut. When an overvoltage condition is detected, the comp signal will be pulled down and the hdr_ldo signal will be pulled up to drive down the output voltage v〇ut. The overvoltage/undervoltage protection circuit 326a includes two comparators 602 and 604. The undervoltage comparator 602 compares the feedback signal (fb) representing the output voltage with an undervoltage threshold level. If the feedback signal is not below the undervoltage threshold level, the comparator 602 outputs a digit 〇. If the feedback signal is equal to or lower than the undervoltage threshold level, the comparator 602 outputs a TP060267-TW-spec-X (02 20070108) 17 1314383 digit 1. Similarly, the overvoltage comparator 604 compares the feedback signal to an overvoltage threshold level. The comparator 604 outputs a digit 〇 if the feedback signal is not above the overvoltage threshold level. The comparator 6〇4 outputs a digit i if the feedback signal is equal to or towards the overvoltage threshold level. During operation, if the enable signal is digital, indicating that the PWM circuit 204a is used, and the feedback voltage level is not lower than the undervoltage threshold level or higher than the overvoltage threshold level, the comparison is performed. The rounds of the 6〇2 and 6〇4 are all digital. Therefore, the output of the NAND gate 006 is digital. In response to this, the PMOS transistor Q4 is 〇ff. The turn of inverter 608 is digital 1' and the output of NAND gate 610 is digital 0. In response to this, the NM0S transistor q5 is also 〇FF. Therefore, no compensation will be applied to the comp signal in this case. Further, during operation, if the enable signal is a digit 0, indicating that the LDO circuit 202a is used, and the feedback signal is not below the undervoltage threshold level or above the overvoltage threshold level, then the comparator The outputs of both 602 and 604 are still digital. Therefore, both inputs of the n〇R gate 612 are digit 0, and their outputs are digits 1. In response to this, the PM0S transistor Q6 is OFF. The output of NOR gate 620 is a digit 0. In response to this, the NMOS transistor Q7 is also 〇FF. Therefore, no compensation will be applied to the hdr_ldo signal in this case. If the enable signal is a digital bit indicating that the PWM circuit 204a' is being used and the feedback signal is below the undervoltage threshold level, the output of the undervoltage comparator 602 is a digital 丨. Since both inputs of NAND gate 6〇6 are digital 1 in this case, their output is digit 0. In response to this, the PM0S transistor Q4 is 0N, and the c〇mp signal is pulled up to c〇mph. TP060267-TW-spec-X (02 20070108) 18 This number of 1314383 is pulled up to comph by the signal comp signal, the pWm duty cycle will increase to increase the output voltage level, and therefore 3 has been granted Voltage level. 9

若該致能信號為數位1 ’其指示使用該PWM電 204a,且該回授信號高於該過電壓門限位準,則該過電壓 比較器604之輸出為數位1。因此,反相器608的輪出為 數位0。NAND閘610所給定之輸入一為數位丨一為數位 〇 ’其輸出為數位1。回應於此,該NMOS電晶體q5為 ON,並下拉該comp信號至c〇mpl。藉由將信號信 號下拉至compl,該pwm_in信號之工作週期將會降低二 降低輸出電壓值,並因此降低該回授電壓位準。 若該致能信號為數位〇,其指示使用該Ld〇電路 202a,且該回授信號高於該過電壓門限位準,則該過電壓 之比較器604之輸出為數位hNQR閘612所給定之輸入 一為數位0 —為數位1,其輸出為數位〇。回應於此,該 PMOS電晶體Q6為ON。因此上拉hdr_ldo信號至 hdr一ldoh,其接著下拉該輸出電壓v〇ut。 若該致能信號為數位〇,其指示使用該LD〇電路 202a,且該回授信號低於該欠電壓門限位準,則該欠電壓 之比較器602之輸出為數位!。若NAND閘618之兩個輪 入由於D正反器616之輸出QN亦是數位1而均為數位卜 則NAND閘618之輸出為數位閘62〇之兩個輸入 都為數位0,則NOR閘之輸出為數位丨。回應於此,該 NMOS電晶體Q7為ON。因此下拉hdr_ldo信號至 hdr—Idol,其接著上拉該輸出電壓v〇ut。 TP060267-TW-spec-X (02 20070108) 19 1314383 -進-步在該控制器 模式時,用以•呆從線性模式轉換到切換 式的轉換期間,兮回=、、通昂’在切換模式和線性模 壓V,變二二作二’「以使在輪出電 而1 该過a M和該欠電朗限之間。铁 電愿^ 係伴隨著致使該輸出 VGUt高於該過 電壓Η限核於該賴⑽之大 2〇1可利用該過電壓/欠雷懕仅。幻茲控制态 ^ MrJd〇 (hysteresis)工作模式\、"^位準亚工作在"滯後 此布後,,觀念亦可用來描述比較器的操作。一個理相 的比較器在該比較器之兩個輸入(例如ν_ * V—相; 的情況下會職(tGggle)。爲縣比㈣在這姆況下的振 盛,可使用“滯後比較器,,。滞後比較器在其兩個輸入相等 的情況下’例如Vinp=Vinm時,輪出為數位G。滞後比較 器在Vinp=Vinm+Δ V的情況下其輸出為數位!,此處之△ v 可以是Vinm的一小部分。 圖6之“滯後工作模式,,類似於滯後比較器之操作。例 如,當圖3之直流/直流轉換器1〇4a之輸出電壓¥〇也被圖 6之過電壓/欠電壓保護電路326a所控制,v〇ut可能不等 於一理想設置值。反之,Vout可具有一個非零之峰對峰 (peak-to-peak)值AV,其係由門限位準UVJh和〇v—th根據 公式AV=ov_th-uv_th所決定。 因此,該過電壓/欠電壓保護電路326a可以藉由例如 圖6之實施例中之比較器604,將代表該直流/直流轉換器 TP060267-TW-spec-X (02 20070108) 20 1314383 ====,較。該_ :較::厂Η伽直流,直流轉換器=二:: 與-欠電制限位準作比較 以之4號 C屋之繼於該_限位準時:過電: f6a亦可,該輪峨至 右代表直流/直流轉換器之輸出 ^ :=,該_欠電壓保護電二== 和 ,_保了在線性模式 壓程中’該直流/直流轉換器之輸出電 差所界定之範圍内。 π限位羊間之 ,了^反器616可有一重置信號(reset)輸入。該重置芦 驗約G伏特啟誠增加_整輪出電壓 避免在軟起動過程中發生偽欠電壓情形。 =動情況下,初始的低輸出電壓可能會觸 至0N°D正反器之_輸出可回應該重置信號 ,供一數位0,使NAND閘618之輸出為數位i且職 閘620之輪出為數位〇,以保持NM〇s電晶體⑺為卿 壓/欠電壓保護電路326a能夠在輪出電壓從 約0伙特開始並朝一期望或調整輸出電壓位準增加之過程 中,識別出一軟啟動情況。該過電壓/欠電壓保 亦能夠有效地將由該比較器602執行之比較操作除能,以 避免在該軟啟動情況下發生偽欠電壓情形判斷/、b 該致能信號可以由多種來源提供。圖7闡示該致能信 TP060267-TW-spec-X(〇22〇〇7〇1〇8) 21 1314383 . 叙—可能來源為-微控彻7Q2。—旦制者按下 按鈕704 ’手持裝置中的該微控制器702就會被供電。"、 圖8所不為具體描述了另一回應於變化負載情況而提 供該致能信號之實施例。一感應電阻8〇2用於感應負载恭 ^橫跨該感應電阻8G2之壓降與該負載電流成比例 於該感應電隨2的阻值相當小,可利用一感應放大器_ 該值放大,以提供—能代表貞載電流之電壓位準或Vil。 -比較器806接著對該電壓Vil和一參考電壓位準灿進 # 行比較,如賴比·供—致驗號。若該電壓位準Vil 大於該參考電壓位準refl,該比較器提供之致能信號 在數位1狀態。若該電壓位準Vil小於該參考電壓位準 巧、,該比較器_提供之致能信號在數位G狀態。換句 話"兒胃負載疋-個相對重之負載時,該控制器可操作 PWM電路2G4a維持與該重負載之高效率。當負載是二個 相對輕之負載時’該控制器可操作LD〇電路施提供低 雜訊輸出。 _ • 圖9顯示圖3之直流/直流轉換器104a之模擬結果。 、線段9〇2繪示該致能信號㈣。線段9〇4緣示該直流/直流 轉換器的負載電流從lmA變化到1〇〇mA。線段9〇6緣示 豸直流/直流轉魅的輪出電壓ν_,而線段9()8 _示^供 給PMOS電晶體Q1控制端之閘驅動信號。在時間也和ti 之間,該致能信號之線段9〇2為數位〇。據此,該控制器 篇在LDO模式工作,而LD〇電路篇提供間驅動信 號給PMOS電晶體Q1。在此時間⑴和u之間的期間,如 線段904所示,負載電流維持相對低且固定在imA。如線 TP060267-TW-spec-X (02 20070108) 22 !314383 段906所示,輸出電壓亦維持相對固定在 此期間由該LDO電路施提供給pM〇s電^據= 驅動信號也—__定,如驗9G8 = Q的間 在N·間t卜該致能信號由數位〇變 模式轉換到_模式,此處_電 =:= =動信號給PMOS電晶體Q1。代表補償轉 二 的了p信號可低於某一位準(例如ιν),則p麵h : 所It之:乍週期為。。如此’在時間U和t2之間期間, L ίί = s電晶體Q1問之hdr信號為數位1, 如線& 908所示。而在時間tl#〇t2之間,隨著負載電流If the enable signal is a digit 1 ' indicating that the PWM power 204a is used and the feedback signal is above the overvoltage threshold level, then the output of the overvoltage comparator 604 is a digital one. Therefore, the rotation of the inverter 608 is digit 0. The input one given by NAND gate 610 is a digit and the digit is 〇 ', and its output is digit 1. In response to this, the NMOS transistor q5 is ON, and the comp signal is pulled down to c〇mpl. By pulling the signal signal down to compl, the duty cycle of the pwm_in signal will decrease by two to lower the output voltage value and thus lower the feedback voltage level. If the enable signal is digital, indicating that the Ld〇 circuit 202a is used, and the feedback signal is above the overvoltage threshold level, the output of the overvoltage comparator 604 is given by the digital hNQR gate 612. Input one is a digit 0 - is a digit 1 and its output is a digit 〇. In response to this, the PMOS transistor Q6 is ON. Therefore, the hdr_ldo signal is pulled up to hdr_ldoh, which then pulls down the output voltage v〇ut. If the enable signal is a digital 〇 indicating that the LD 〇 circuit 202a is used and the feedback signal is below the undervoltage threshold level, the output of the undervoltage comparator 602 is digital! . If the two rounds of the NAND gate 618 are digital because the output QN of the D flip-flop 616 is also the digit 1 then the output of the NAND gate 618 is the digital gate 62. Both inputs are digit 0, then the NOR gate The output is digital. In response to this, the NMOS transistor Q7 is ON. Therefore, the hdr_ldo signal is pulled down to hdr_Idol, which in turn pulls up the output voltage v〇ut. TP060267-TW-spec-X (02 20070108) 19 1314383 - When entering the controller mode, it is used to switch from linear mode to switched mode, 兮back =, 通昂' in switching mode And linearly squeezing V, which becomes two and two ''to make a power out of the wheel and 1 between a and M and the undercurrent limit. The ferroelectric is accompanied by causing the output VGUt to be higher than the overvoltage Η The limit is arbitrarily used in the large (2) 2〇1 to use the overvoltage/under-thunder only. The magic mode control state ^ MrJd〇 (hysteresis) working mode \, "^ position quasi-Asia work in " lag behind this cloth , the concept can also be used to describe the operation of the comparator. A phased comparator is in the two inputs of the comparator (for example, ν_ * V - phase; in the case of the position (tGggle). For the county ratio (four) in this In the case of Zhensheng, the “hysteresis comparator can be used. The hysteresis comparator is rounded to the digital G when its two inputs are equal, for example, Vinp=Vinm. The hysteresis comparator is at Vinp=Vinm+ In the case of Δ V, the output is digital!, where Δ v can be a small part of Vinm. Figure 6 "Lagged working mode, class For operation of the hysteresis comparator. For example, when the output voltage of the DC/DC converter 1〇4a of FIG. 3 is also controlled by the overvoltage/undervoltage protection circuit 326a of FIG. 6, v〇ut may not be equal to an ideal. The value is set. Conversely, Vout can have a non-zero peak-to-peak value AV, which is determined by the threshold levels UVJh and 〇v-th according to the formula AV=ov_th-uv_th. The overvoltage/undervoltage protection circuit 326a can be represented by, for example, the comparator 604 in the embodiment of FIG. 6, which will represent the DC/DC converter TP060267-TW-spec-X (02 20070108) 20 1314383 ==== The _: comparison:: factory sangha DC, DC converter = two:: compared with - under-power limit for the 4th C house followed by the _ limit on time: over-power: f6a can also, The rim to the right represents the output of the DC/DC converter ^ :=, the _ undervoltage protection 2 == and _ are guaranteed in the linear mode voltage range 'the DC/DC converter output difference is defined Within the range of π limit sheep, the counter 616 can have a reset signal (reset) input. The reset Lu test about G volts increase sincerely _ The turn-off voltage avoids the occurrence of false undervoltage during soft-start. In the case of dynamic, the initial low output voltage may touch the 0N°D flip-flop. The output may return to the reset signal for one digit 0. The output of the NAND gate 618 is digitized i and the wheel of the gate 620 is digitally digitized to maintain the NM〇s transistor (7) as a voltage/undervoltage protection circuit 326a capable of starting at about 0 volts and towards one A soft start condition is identified during the desired or adjusted increase in the output voltage level. The overvoltage/undervoltage protection can also effectively disable the comparison operation performed by the comparator 602 to avoid false undervoltage conditions in the soft start condition. /, b The enable signal can be provided from a variety of sources. Figure 7 illustrates the enabling signal TP060267-TW-spec-X (〇22〇〇7〇1〇8) 21 1314383. The possible source is - Microcontroller 7Q2. Once the controller presses the button 704, the microcontroller 702 in the handset will be powered. ", Figure 8 does not specifically describe another embodiment that provides the enable signal in response to varying load conditions. A sense resistor 8 〇 2 is used for the inductive load. The voltage drop across the sense resistor 8G2 is proportional to the load current. The resistance of the sense resistor is relatively small with 2, and can be amplified by a sense amplifier _ Provide - can represent the voltage level or Vil of the load current. - Comparator 806 then compares the voltage Vil with a reference voltage level, such as a Laibi supply. If the voltage level Vil is greater than the reference voltage level refl, the comparator provides an enable signal in the digital 1 state. If the voltage level Vil is less than the reference voltage level, the comparator_provided enable signal is in the digital G state. In other words, the controller can operate the PWM circuit 2G4a to maintain high efficiency with the heavy load when the patient's stomach load is relatively heavy. When the load is two relatively light loads, the controller can operate the LD〇 circuit to provide a low noise output. _ • Figure 9 shows the simulation results of the DC/DC converter 104a of Figure 3. The line segment 9〇2 depicts the enable signal (4). The line segment 9〇4 indicates that the load current of the DC/DC converter varies from lmA to 1〇〇mA. The line segment 9〇6 indicates the DC/DC converter's turn-off voltage ν_, and the line segment 9()8_ indicates the gate drive signal for the PMOS transistor Q1 control terminal. Between time and ti, the line segment 9 〇 2 of the enable signal is a digital 〇. Accordingly, the controller operates in the LDO mode, and the LD〇 circuit provides an inter-drive signal to the PMOS transistor Q1. During this time (1) and u, as indicated by line 904, the load current remains relatively low and is fixed at imA. As shown in the TP060267-TW-spec-X (02 20070108) 22 !314383 segment 906, the output voltage is also relatively fixed during this period. The LDO circuit supplies the pM〇s to the circuit = the drive signal is also -__ If the test 9G8 = Q between N and t, the enable signal is converted from the digital transmutation mode to the _ mode, where _ electric =: = = dynamic signal to the PMOS transistor Q1. The p-signal representing the compensation transition 2 can be lower than a certain level (for example, ιν), then the p-plane h: It is: the 乍 period is. . Thus, during the period between U and t2, L ίί = s transistor Q1 asks for the hdr signal to be a digit 1, as shown by Line & 908. And between time tl#〇t2, with load current

增大(線段904),輸出電壓隨之降低(線段9〇6)。、 L ^旦comp信號達到該門限位準(例如ιν),在時間t2, pwm_m信號342的工作週期從〇開始增力口,而所產生之 來自該驅動器316之hdr信號在時間t2與ts之間振盪,如 線段908所示(亦可參見圖1〇)。在時間t2與t3之間,該 輸出電壓開始增加而回到期望值3 3V,如線段獨所示。Increase (line 904) and the output voltage decreases (line segment 9〇6). The L ^ den comp signal reaches the threshold level (eg, ιν). At time t2, the duty cycle of the pwm_m signal 342 starts from 〇, and the generated hdr signal from the driver 316 is at time t2 and ts. Inter-oscillation, as indicated by line 908 (see also Figure 1 〇). Between times t2 and t3, the output voltage begins to increase and returns to the desired value of 3 3V, as indicated by the line segment alone.

在時間t2與t3之間,由於PM〇s電晶體φ在〇N與〇FF 切換’該輸出電壓可有一漣波。 一在時間t3時,該致能信號由數位丨轉換為數位〇,指 = kPWM模式轉換回到ld〇模式,此處該匕以)電路2〇2a 提供閘驅動信號(例如hdr_ldo)給PMOS電晶體Q1。在時 間t3與t4之間期間,隨著負载電流的下降(線段9〇4),該 閘驅動信號增加(線段908),以驅使該輪出電壓(線段906) 至其調整值3.3V。 圖10為圖9中在該控制器2〇la從ld〇模式改變為 TP060267-TW-spec-X (02 20070108) 23 1314383 ,p购模式之轉換期間(以時間t2為中心)之放大圖;圖^ 則為圖9中當該控制器2〇lM^PWM模式改變為 式期間(以時間t3為中心)之另一放大圖。 果 幕所周知,LDO設計之—大挑戰在於在一寬範圍 載電流下迴路的穩定性。對—輕負載,LD〇可為穩定,作 對較重負制不穩定。這就需要增加成本和複雜性以對 LDO進行補償。例如,利用與圖3中之電容q之等效串 聯電阻(Resr)來達到補償的目的。這需要一電容α和界定 良好之串聯電阻,且將降低到輸出電壓ν_之暫離性能。 亦可利用其他補償綠,同樣會增加LD()的複^度 本。 人 、表1所示為一 LD。在輕負載(本實施例中為1mA)和重 負載(本實補巾為1GQmA)情況下的交流分狀實例。如 表1所不’ 78.5882度的相位範圍(丽㈣對輕負載情況為 適合’但對重負載情況則為負數。此LD〇對該重負載情 況下需要一些補償以達到穩定。 表1Between time t2 and t3, since the PM〇s transistor φ is switched between 〇N and 〇FF, the output voltage may have a chop. At time t3, the enable signal is converted from digital 数 to digital 〇, and the reference = kPWM mode is switched back to ld〇 mode, where the circuit 2〇2a provides a gate drive signal (eg hdr_ldo) to the PMOS Crystal Q1. During the time between time t3 and t4, as the load current drops (line segment 9〇4), the gate drive signal is increased (line segment 908) to drive the turn-off voltage (line segment 906) to its regulated value of 3.3V. 10 is an enlarged view of the controller 2〇la changing from ld〇 mode to TP060267-TW-spec-X (02 20070108) 23 1314383 in FIG. 9 during the transition period of the p-purchase mode (centered on time t2); FIG. 2 is another enlarged view of the controller 2 in FIG. 9 when the PWM mode is changed to the equation (centered on time t3). As is well known in the game, the biggest challenge of LDO design is the stability of the loop over a wide range of current carrying currents. For light load, LD〇 can be stable and unstable for heavy load. This requires increased cost and complexity to compensate for LDO. For example, the equivalent series resistance (Resr) of the capacitor q in Fig. 3 is utilized to achieve the purpose of compensation. This requires a capacitance a and a well defined series resistance and will be reduced to the temporary output performance of the output voltage ν_. Other compensation greens can also be used, which also increases the LD() complex. Person, Table 1 shows an LD. An example of AC fractals in the case of light load (1 mA in this embodiment) and heavy load (1 GQ mA for this actual package). As shown in Table 1, the phase range of 78.5882 degrees (Li (4) is suitable for light load conditions but negative for heavy loads. This LD 需要 requires some compensation for stability under heavy load conditions. Table 1

Index ii〇ad gain(db) unit freq phase temper alter# _______margin___ 1mA 72.1337 i.673e+〇3 78.5882 60.0000 !.〇〇〇〇 100mA 80.7657 5.640e+04 -0.9238 60.0000 !.〇〇〇〇 。有利之處在於’圖3之控制器2〇la可僅在輕負載情況 :操作LDO電路202a’而在重負載情況下則切換到PWM f路204a工作。因此,LD〇電路2〇2a僅需少量成本和複 雜f生供額外補償方法之用就可以維持穩定,以確保在較重 TP060267-TW-spec-X (02 20070108) 24 1314383 i:::穩定度,且該控制器⑽在-寬範圍負載電流下 圖。:3之直流/直流轉換器之測試結果之繪 直4/·^#不致能信號的電壓(Ven),而通道2闡示代表 器輪出電壓的一回授電壓_。通道3闡 直閘驅動信號(Μ),而通道4闡示直流/ 為;;=的負載電流(IlGad)。圖13為當致能信號從1變 模h隸i中Ven、獅和Vhdr緣圖從LD0模式至PWM 1、:圖=期間的放大圖。® 14為當致能信號從0變為 模4夕絲她Ven、Vfb和Vhdr繪圖從PWM模式至LD0 沾i去拄期間的放大圖。如所示般,圖12至14之測試 、,、。果支持圖9至11的模擬結杲。 =闡示根據一實施例之一操作1500。操作臟包 時間期提供—第—控制信號至—直流/直流轉 弋^㈣又控裝置,該第一控制信號由一控制器之線性模 路提供m裝置回應該第—控制信號而操作 2變電阻’以控制該直流/直流轉換器之一輸出電壓。操 =5=包含在H關提供—第二控制信號至該直 直、机轉換器之該受控裝置,該第二時間期與該第一時間 期不重疊’該第二控制信號由該控制器之切換模式控制電 路提供,該受控裝置回應該第二控制信號工作切換⑽愈 OFF ’以控制該直流/直流轉換器之該輸出電壓。操作應 包含將-代表該直流/直流轉換器之該輸出電星之信號與 -過電Μ門限位準和-欠電_限位準比較,且操二: 包含如果該代表該輸出電虔之信號大於該過電璧門限位 TP060267-TW-spec-X (02 20070108) 25 !314383 . 準或小於該欠電壓門限位準,則補償該第一或第二控制信 號。 圖16為圖3中直流/直流轉換器1〇4a的另一實施例 104b。其中與圖3中類似的元件採用類似標號,不再贅述。 - 直流/直流轉換器l〇4b可包括一個與電感L1並聯搞接的開 關SW2。當致能信號為數位〇,開關SW1和SW2均關閉 以回應來自反相209輸出數位1。當ld〇電路202a提 供類比控制信號給受控裝置1604時,開關SW2可致使更 _ 好的瞬態效應。 受控裝置1604可以為多種裝置,當從LD〇電路2〇2a 接收類比控制信號時,其可以作為一可變電阻工作,且當 - 從PWM電路204b接收PWM控制信號時,其可以作為一 • 開關工作以切換ON和OFF。在一實施例中,該受控袭置 可以為電晶體。該電晶體可以是多種類型的電晶體,例如 雙極性接面電晶體(BJT) ’絕緣閘雙載子功率場效電晶體 (IGBT)或場效電晶體(FET),例如包含該PM0S電晶體qi _ 之 MOSFET。 - 圖17為圖16中PWM電路204b的電路圖。PWM電 , 路可包括振盪器314、誤差放大器310、比較器312,以及 與圖3中驅動器316 —致的另一實施例316b。圖17中與 圖3中類似的元件採用類似標號,不再贅述。驅動器3l6b 可包括第一反相器1704、NOR閘1706、第二反相器1708、 NAND閘1710、第三反相器1712、以及驅動器316b的輸 出級上的電晶體Q8和Q9。電晶體Q8可以為PMOS雷曰 曰曰 體,Q9可以為NMOS電晶體。驅動器316b的輸出控制信 TP060267-TW-spec-X (〇2 20070108) 26 1314383 號hdr可以從節點1724輪出,該節點位於pm〇S電晶體 Q8和NMOS電晶體Q9的汲極端之間。 當致能信號為數位0,第一反相器1704的輸出為數位 1。由於NOR閘1706的一輸入為數位卜故其輸出為數位 0。第二反相器1708的輸出因此為數位1。由於此實施例 中電晶體Q8為PMOS電晶體,回應第二反相器1708的輸 出數位1 ’電晶體Q8為OFF。當致能信號為數位〇且第 二反相器1708提供給NAND閘1710的輸出為數位1時, NAND閘1710的輸出為數位1。第三反相器ι712的輸出 因此為數位0,回應於此,NMOS電晶體Q9亦為OFF。 因此’當回應致能信號為數位〇時,兩個電晶體Q8和Q9 都為OFF,且驅動器316b在此情形被有效除能。換句話 說,當致能信號為數位〇時,驅動器316b為高阻抗狀態。 當致能彳§號為數位1,hdr信號可以為pwm_in的反相 信號’如圖4所示。pwm_in信號可能為數位〇或數位卜 當Pwm-in為數位〇且致能信號為數位1時,NAND閘1710 的輸出為數位1 ’且第三反相器1712的輸出為數位〇。回 應於此’ NMOS電晶體Q9為OFF。NOR閘1706的三個 輪入在此情形皆為數位0。故NOR閘1706之輸出為1, 且第二反相器1708的輸出為數位〇。回應於此,pm〇S電 晶體Q8為ON。 當pwm_in信號為數位1且致能信號為數位1時…⑽ 閘1706的輸出為數位〇。據此,第二反相器17〇8的輸出 為數位1。PM0S電晶體Q8回應第二反相器1708的數位 1輸出而為0FF。當Pwm_in信號為數位1且致能信號為 TP060267-TW-spec-X (〇2 20070108) 27 1314383 =丄時•間171〇的三個輸入都為數位!,故其輸 …位〇。第二反相器1712的輸出因此得到數位/,、故 =電^料0N。據此,當致能錢域位丨,hdr 1吕就可以為pwm in的反相传躲 ,^ ^ 信號為數位0,藉由使電晶體^ 不,而當致能 3勘被有效除Γ Q8和Q9均為卿,驅動器 有利之處在於,在這些實施例令,一控制器可操 性拉式電路和切換模式電路。因此,傳統上需要兩故 /直流轉換器與兩個控制器之操作,僅需—控制器和_直二 轉換^卩可執行。因此降低了成本。控_能夠在ΐ 性模式和切換模式之間切換,以擷取每—種模式 線 例如,若該線性模式電路包含LD〇電路,該控制器就 以在輕負載情況下在ΠΧ)模式下I作。因此降低了雜 該切換模式電路包含-PWM電路,城控㈣就可財 =負載情況下,在PWM模式下卫作,以提供_ p 域至該直流/直流控制器之該受控裝置。據此 情況下可賴高效率。更進-步,若該咖電路僅2 ,負載,就可避免縣LDQ電路之㈣且複雜 、 :=〇電路用於較重負載’這些昂貴且複雜的補“ 、本文所用的術語和;i語是用於描述而非限制 這些術語和片語並不意欲排除任何擁有本文所八如 述的特徵(或部分特徵)的等效物,應該明白在申二=和, 圍的範相可能有各種修改。其他修改、變化 可能。因此,申請專利範圍意欲涵蓋所有此等等、处马 TP〇6〇267-TW-spec-X (02 20070108) 28 I314383 圖式簡單說明】 圖1為一系統實施例之示意圖; 圖2為圖1中之直流/直流轉換器之示意圖; 圖 圖3為圖2中之直流/直流轉換器之一實施例之電路 ,其包含一直流/直流轉換器之之控制器;Index ii〇ad gain(db) unit freq phase temper alter# _______margin___ 1mA 72.1337 i.673e+〇3 78.5882 60.0000 !.〇〇〇〇 100mA 80.7657 5.640e+04 -0.9238 60.0000 !.〇〇〇〇 . Advantageously, the controller 2〇la of Fig. 3 can operate only in a light load condition: operating the LDO circuit 202a' and switching to the PWM f path 204a under heavy load conditions. Therefore, the LD〇 circuit 2〇2a can be stabilized with only a small amount of cost and complexity for the additional compensation method to ensure stability in the heavier TP060267-TW-spec-X (02 20070108) 24 1314383 i::: Degree, and the controller (10) is under the -wide range load current graph. The test result of the DC/DC converter of 3 is straight. 4/·^# does not enable the voltage of the signal (Ven), and channel 2 illustrates a feedback voltage _ of the representative wheel voltage. Channel 3 illustrates the gate drive signal (Μ), while channel 4 illustrates the load current (IlGad) of DC / is ; Figure 13 is an enlarged view of the Ven, Lion and Vhdr edges from the LD0 mode to the PWM 1 when the enable signal is changed from 1 to h: i. ® 14 is an enlarged view of when the enable signal changes from 0 to modulo 4, and her Ven, Vfb, and Vhdr plots from PWM mode to LD0. As shown, the tests of Figures 12 through 14, and . The simulations of Figures 9 through 11 are supported. = illustrates operation 1500 in accordance with one of the embodiments. Operation of the dirty packet time period provides - the first - control signal to - DC / DC transfer ^ (four) control device, the first control signal is provided by a linear mode of a controller, the m device responds to the first - control signal and operates 2 The resistor 'controls the output voltage of one of the DC/DC converters. Operation = 5 = includes at - H provides - a second control signal to the controlled device of the direct, machine converter, the second time period does not overlap with the first time period 'The second control signal is controlled by the second control signal The switching mode control circuit provides that the controlled device responds to the second control signal to switch (10) to OFF to control the output voltage of the DC/DC converter. The operation shall include comparing - the signal representing the output electric star of the DC/DC converter with the over-current threshold level and the - under-power limit, and the operation 2: including the signal if the output is representative of the output Greater than the over-power threshold TP060267-TW-spec-X (02 20070108) 25 !314383 . The first or second control signal is compensated if it is less than or less than the undervoltage threshold level. Figure 16 is another embodiment 104b of the DC/DC converter 1A4a of Figure 3. Elements similar to those in FIG. 3 are denoted by like reference numerals and will not be described again. - The DC/DC converter l〇4b may include a switch SW2 connected in parallel with the inductor L1. When the enable signal is digital, the switches SW1 and SW2 are both turned off in response to the output bit 1 from the inverted 209. When ld〇 circuit 202a provides an analog control signal to controlled device 1604, switch SW2 can cause a better transient effect. The controlled device 1604 can be a plurality of devices that can operate as a variable resistor when receiving the analog control signal from the LD〇 circuit 2〇2a, and can act as a control signal when receiving the PWM control signal from the PWM circuit 204b. The switch works to switch ON and OFF. In an embodiment, the controlled attack can be a transistor. The transistor may be a plurality of types of transistors, such as a bipolar junction transistor (BJT) 'insulated gate bipolar power field effect transistor (IGBT) or field effect transistor (FET), for example comprising the PMOS transistor Qi _ MOSFET. - Figure 17 is a circuit diagram of the PWM circuit 204b of Figure 16. The PWM circuit can include an oscillator 314, an error amplifier 310, a comparator 312, and another embodiment 316b that is compatible with the driver 316 of FIG. Elements in Fig. 17 that are similar to those in Fig. 3 are denoted by like reference numerals and will not be described again. The driver 316b may include a first inverter 1704, a NOR gate 1706, a second inverter 1708, a NAND gate 1710, a third inverter 1712, and transistors Q8 and Q9 on the output stage of the driver 316b. The transistor Q8 can be a PMOS thunder 曰曰 body, and the Q9 can be an NMOS transistor. The output control signal of the driver 316b TP060267-TW-spec-X (〇2 20070108) 26 1314383 hdr can be rotated from the node 1724, which is located between the pm〇S transistor Q8 and the NMOS terminal Q9. When the enable signal is a digital zero, the output of the first inverter 1704 is a digital one. Since an input of the NOR gate 1706 is a digital bit, its output is a digit 0. The output of the second inverter 1708 is therefore a digital one. Since the transistor Q8 is a PMOS transistor in this embodiment, the output bit 1' transistor Q8 in response to the second inverter 1708 is OFF. When the enable signal is digital and the output of the second inverter 1708 to the NAND gate 1710 is a digital one, the output of the NAND gate 1710 is a digital one. The output of the third inverter ι712 is therefore a digit 0. In response to this, the NMOS transistor Q9 is also OFF. Therefore, when the response enable signal is digital, both transistors Q8 and Q9 are OFF, and driver 316b is effectively disabled in this case. In other words, when the enable signal is digital, driver 316b is in a high impedance state. When the enable § § is digit 1, the hdr signal can be the inverted signal of pwm_in as shown in Figure 4. The pwm_in signal may be digital or digital. When Pwm-in is digital and the enable signal is digital 1, the output of NAND gate 1710 is digital 1 ' and the output of third inverter 1712 is digital. In response to this, the NMOS transistor Q9 is OFF. The three rounds of NOR gate 1706 are in this case all digits zero. Therefore, the output of NOR gate 1706 is 1, and the output of second inverter 1708 is digital. In response to this, pm〇S transistor Q8 is ON. When the pwm_in signal is a digit 1 and the enable signal is a digit 1... (10) The output of gate 1706 is a digital 〇. Accordingly, the output of the second inverter 17A is digital one. The PM0S transistor Q8 is responsive to the digital 1 output of the second inverter 1708 and is 0FF. When the Pwm_in signal is digit 1 and the enable signal is TP060267-TW-spec-X (〇2 20070108) 27 1314383 =丄• The three inputs of 171〇 are all digits, so the input is 〇. The output of the second inverter 1712 thus obtains the digits /, and therefore = the material 0N. According to this, when the money domain is enabled, hdr 1 Lu can hide the inversion of pwm in, ^ ^ signal is digit 0, by making the transistor ^ not, and when enabling 3 is effectively removed Q8 And Q9 are both clear, the driver is advantageous in that, in these embodiments, a controller is operable to pull the circuit and switch the mode circuit. Therefore, the operation of the two-factor/DC converter and the two controllers is conventionally required, and only the controller and the _straight-converter are required to perform. This reduces costs. Control_ can switch between the neutral mode and the switching mode to capture each mode line. For example, if the linear mode circuit includes an LD〇 circuit, the controller is in a light load condition. Work. Therefore, the switching mode circuit includes a -PWM circuit, and the control device (4) can be used in the PWM mode to provide the _p domain to the controlled device of the DC/DC controller. According to this situation, high efficiency can be relied upon. More advanced, if the coffee circuit is only 2, the load can avoid the county LDQ circuit (four) and complex, :=〇 circuit for heavier loads 'these expensive and complex complements', the terminology used in this article; Language is used to describe and not to limit these terms and phrases and is not intended to exclude any equivalents that have the features (or features) as described in this document. It should be understood that there may be Various modifications and changes are possible. Therefore, the scope of the patent application is intended to cover all of this, etc., TP 〇6〇267-TW-spec-X (02 20070108) 28 I314383 Simple illustration of the diagram] Figure 1 is a system 2 is a schematic diagram of a DC/DC converter of FIG. 1; FIG. 3 is a circuit of an embodiment of the DC/DC converter of FIG. 2, including a DC/DC converter Controller

圖4闡不圖3中之控制n之脈衝寬度調變電 種信號圖; I 圖5闡示圖3中之控制器之脈衝寬度調變電路中 動器之一實施例之電路圖; ‘ 圖6闡不圖3中之控制器之過電壓/欠電壓保護電路之 一實施例之電路圖; < 實施 圖7為提供致能信號至圖2或3中之控制器之 例之電路圖; 圖8為提供致能信號至圖2或3中之控制器之另—电 施例之電路圖; 只 圖9闡示顯示圖3之直流/直流轉換器之模擬之綠圖; 圖10為圖9之繪圖中從LD◦模式至pwM模式 換期間的放大圖; ' 轉4 is a diagram showing a pulse width modulation type signal of the control n in FIG. 3; FIG. 5 is a circuit diagram showing an embodiment of the pulse width modulation circuit of the controller of FIG. 3; 6 is a circuit diagram of an embodiment of an overvoltage/undervoltage protection circuit of the controller of FIG. 3; <FIG. 7 is a circuit diagram showing an example of providing an enable signal to the controller of FIG. 2 or 3; A circuit diagram for providing an enable signal to the other embodiment of the controller of FIG. 2 or 3; only FIG. 9 illustrates a green diagram showing the simulation of the DC/DC converter of FIG. 3; FIG. 10 is a plot of FIG. Enlarged view from LD◦ mode to pwM mode change period; 'Turn

圖11為圖9之繪圖中從pWM模式至LD〇模式之 換期間的放大圖; 、 W 圖12闡示圖3之直流/直流轉換器之測試結果之繪圖;Figure 11 is an enlarged view of the period from the pWM mode to the LD〇 mode in the drawing of Figure 9; W Figure 12 illustrates a plot of the test results of the DC/DC converter of Figure 3;

圖13為圖12之繪圖中從LDO模式至pwM模式之^辕 換期間的放大圖; 、 W 圖14為圖12之繪圖中從pwM模式至LDO模式之轅 換期間的放大圖; ' ^ TP060267-TW-spec-X (02 20070108) 29 1314383 圖15為本發明之一實施例之操作流程圖; 圖16為圖3中之直流/直流轉換器之另一實施例之示 意圖;以及 圖17為圖16中之脈衝寬度調變電路之電路圖。 【主要元件符號說明】 100 :電子裝置 102 :電源 104 :直流/直流轉換器 104a、104b :直流/直流轉換器 106 :負載 201 :控制器 201a、201b :控制器 202 :線性模式控制電路 202a :低壓降電壓調整器(LDO)電路 204 :切換模式控制電路 204a、204b :脈衝寬度調變(PWM)電路 209 :反相器 212 :終端 310 :誤差放大器 312 :比較器 314 :振盪器 316 :驅動器 316a、316b :驅動器 322 :放大器 TP060267-TW-spec-X (02 20070108) 30 1314383 _ 326 :過電壓/欠電壓保護電路 326a :過電壓/欠電壓保護電路 328 :回授電阻網路 332 :軟啟動電路 334 :終端 336 :終端 342 : PWM 信號 402 :比較信號 • 404:斜波信號 502 :反相器 504 : NOR 閘 506 :反相器 508 :反相器 510 :反相器 512 : NAND 閘 514 :反相器 § 516:反相器 518 :反相器 522 :終端 602 :比較器 604 :比較器 606 : NAND 閘 608 :反相器 610 : NAND 閘 612 : NOR 閘 TP060267-TW-spec-X (02 20070108) 31 1314383Figure 13 is an enlarged view of the period from the LDO mode to the pwM mode in the drawing of Figure 12; W Figure 14 is an enlarged view of the switching period from the pwM mode to the LDO mode in the drawing of Figure 12; ' ^ TP060267 - TW-spec-X (02 20070108) 29 1314383 Figure 15 is a flow chart showing an operation of an embodiment of the present invention; Figure 16 is a schematic diagram of another embodiment of the DC/DC converter of Figure 3; Figure 16 is a circuit diagram of the pulse width modulation circuit. [Main component symbol description] 100: electronic device 102: power supply 104: DC/DC converter 104a, 104b: DC/DC converter 106: load 201: controller 201a, 201b: controller 202: linear mode control circuit 202a: Low dropout voltage regulator (LDO) circuit 204: switching mode control circuit 204a, 204b: pulse width modulation (PWM) circuit 209: inverter 212: terminal 310: error amplifier 312: comparator 314: oscillator 316: driver 316a, 316b: driver 322: amplifier TP060267-TW-spec-X (02 20070108) 30 1314383 _ 326: overvoltage/undervoltage protection circuit 326a: overvoltage/undervoltage protection circuit 328: feedback resistor network 332: soft Startup circuit 334: terminal 336: terminal 342: PWM signal 402: comparison signal • 404: ramp signal 502: inverter 504: NOR gate 506: inverter 508: inverter 510: inverter 512: NAND gate 514: inverter § 516: inverter 518: inverter 522: terminal 602: comparator 604: comparator 606: NAND gate 608: inverter 610: NAND gate 612: NOR gate TP060267-TW-spec- X (02 20070108) 31 1314383

反相器 D正反器 NAND 閘 NOR閘 微控制器 電源按雀丑 感應電阻 感應放大 比較器 線段 線段 線段 線段 :操作 :操作 :操作 :操作 :操作 :受控裝置 :反相器 :NOR 閘 :反相器 :NAND 閘 :反相器 :節點 TP060267-TW-spec-X (02 20070108) 32Inverter D forward and reverse NAND gate NOR gate microcontroller power supply by ugly sensation resistance induction amplification comparator line segment line segment line segment: Operation: Operation: Operation: Operation: Operation: Controlled device: Inverter: NOR Gate: Inverter: NAND Gate: Inverter: Node TP060267-TW-spec-X (02 20070108) 32

Claims (1)

、申凊專利範圍: L二,直流/直流轉換器之控制器, 以及™切換模式間切換, ,、了在―線性模式 線* 生柄式控制電路,其可提 直流/直流轉換器之—受控裝¥—4—控制信號至該 控制信號作為—可變電阻工:受,置回應該 直流轉換器之-輪出電壓; ,以控制該直流/ 切換松式控制電路,其可提供 直流/直流轉換器之該受控裝f弟―控制信號至該 第二控制信號作為一開關工;切控裝置回應該 制該直流/直流轉換、0N 〃、0FF,以控 制帝玖h 亥輸出電壓,該線性m 制-路和該切換模式控制電 =杈式控 被致能以控制該受控裝置二致能 15 該直號且被配置為接收代表 欠電壓、如·的—錢並利用— 則i(hysteresis)比較器將 壓門限位準比較,如果哕俨嘹r u,、人电 果4“唬小於該欠電壓門限位 二呆4電路進-步被配置為補償提供給該受控裝 20 年月日修(更)正替換頁 ____ 的忒第控制彳s號或該第二控制信號 ,該保護“ 進-步被配置為利用—過電麼滞後比較器將代表讀 輸出電壓之該信號與—過電壓門限位準比較,如果代 表該輸出電壓之該信號大於該過電壓門限位準,該保 濩電路補償提供給該受控裝置的該第一控制信號或 該第二控制信號’該欠電壓滯後比較器及該過電壓滯 後比較器被配置為驅動該第一控制信號炱〆期望電 0212-TW-OA1 -CH Claim-AmdSet(sandra.t-20090211)1 25 ---------------------------丨丨--.-一r1¾ 43 83]修(更)正替換頁 ί ϋβ. 2. 2.^ .-以上. 壓位準; 換模式控制電路包含—脈衝寬度調變 號,其中如果控制信號包含一屬輸出信 置,該受_電路被致能以控制該受控裝 切換,且其中如果代表該輸出S 於該欠電壓門限位準,則該保護電路藉由 週期來補償該趣輸出信號,且如果代 二剧)电壓之该信號大於該過電壓門限位準,則藉 由減小該工作週期來補償該PWM輸出信號;、曰 其^ ’该PWM電路包含—誤差放大器以及一驅動器 ^提供^ PWM輪出信號,當該致能信號在—第—^ 悲時,每一该誤差放大器及該驅動器個別地 (individually)回應該致能信號以提供該 15 PWM輪出作 號,當該致能錢在―第二狀態時,每__該誤差玫又 态及該驅動器不提供該第二控制信號。 2.如申請專利範圍第i項之控制器,其中該 20 含: 〇〇匕 一第一反相器,以接收該致能信號及提供一輪 號; S - NOR閘’接收來自該第—反相器之該輸出信號, 及接收來自該PWM電路之一比較器之一 pWM ^入 25 信號; 0212-TW-OA1-CH Claim-AmdSet(sandra.t-20090211)2 1314383 正替换i 第一反相器’接收來自該NOR閘之一輸出信號及 提供該第一控制信號; —第一電晶體,接收該第一控制信號; 〜NAND閘,接收來自該第二反相器之該第一控制 ^ 5虎,及接收該致能信號和接收該pwM輸入信號; 一第三反相器,接收來自該NAND閘之一輸出信號, 及提供該第二控制信號;以及 —第二電晶體,接收該第二控制信號,該第二控制信 10 旒輪出一耦接至該第一電晶體與該第二電晶體之該 驅動器之一終端(terminal)。 3.如申請專利範圍第2項之控制器,其中該第一 15 和料二電晶體之其中之-為0N以回應該pw= 入1號的一值,俾使由該驅動器所提供之該pWM輸 出信號為該PWM輸入信號的反相(inverse)。 ^ 申請專利範圍第1項之控制器,其中,該線性 =制電路包含-線性模式誤差放A|§,其侧地回應 5亥致能信號。 20 請專利範圍第4項之控制器,其中,該線性 ΐίΪ大器具有一開關有效地爐至該線性模式: 大器之輸出,且該開關係個別地回應該致= 6. —種直流/直流轉換器,其包含: 一受控裝置;以及 一用以控制該受控裝置之控制器,該控制器包括: 0212-TW-OA1-CH Claim-AmdSet(sandra.t-20090211)3 25The scope of the patent application: L two, the controller of the DC/DC converter, and the switching between the TM switching modes, and the linear mode line * the shank type control circuit, which can raise the DC/DC converter - Controlled loading ¥-4—control signal to the control signal as a variable resistor: receiving, returning the DC converter-wheeling voltage; to control the DC/switching loose control circuit, which can provide DC The controlled converter of the /DC converter - the control signal to the second control signal as a switch; the switching control device should make the DC/DC conversion, 0N 〃, 0FF to control the output voltage of the emperor The linear m-channel and the switching mode control electric control are enabled to control the controlled device two enable 15 and configured to receive an undervoltage, such as - money and use - Then the i (hysteresis) comparator compares the threshold level, if 哕俨嘹ru, the person electric 4 "唬 is less than the undervoltage threshold, the second circuit is stepped - the step is configured to provide compensation to the controlled device. 20 years, month, repair (more) Page ____ 忒 彳 彳 或 或 s or the second control signal, the protection "step is configured to use - over-voltage lag comparator will represent the read output voltage of the signal and - over-voltage threshold level Comparing, if the signal representing the output voltage is greater than the overvoltage threshold level, the protection circuit compensates the first control signal or the second control signal provided to the controlled device 'the undervoltage hysteresis comparator and the The overvoltage hysteresis comparator is configured to drive the first control signal, the desired power 0212-TW-OA1 -CH Claim-AmdSet(sandra.t-20090211)1 25 ------------- --------------丨丨--.-一r13⁄4 43 83]Repair (more) is replacing page ί ϋβ. 2. 2.^ .-above. Pressure level; change mode The control circuit includes a pulse width modulation number, wherein if the control signal includes a generic output signal, the received circuit is enabled to control the controlled switching, and wherein if the output S is representative of the undervoltage threshold level The protection circuit compensates the interesting output signal by a period, and if the voltage of the circuit is greater than the overvoltage Limiting the limit, the PWM output signal is compensated by reducing the duty cycle; and the PWM circuit includes an error amplifier and a driver to provide a PWM round-trip signal, when the enable signal is at - -^ sorrow, each of the error amplifier and the driver individually responds to an enable signal to provide the 15 PWM round-out number, and when the enablement is in the "second state, each error And the driver does not provide the second control signal. 2. The controller of claim i, wherein the 20 includes: a first inverter to receive the enable signal and provide a wheel number; and the S-NOR gate receives the first-reverse The output signal of the phase comparator, and receiving one of the comparators from the PWM circuit, pWM^in 25 signal; 0212-TW-OA1-CH Claim-AmdSet(sandra.t-20090211)2 1314383 is replacing i the first counter a phaser 'receives an output signal from the NOR gate and provides the first control signal; - a first transistor receives the first control signal; - a NAND gate receives the first control from the second inverter ^5, and receiving the enable signal and receiving the pwM input signal; a third inverter receiving an output signal from the NAND gate and providing the second control signal; and - a second transistor receiving The second control signal, the second control signal 10, is coupled to a terminal of the driver coupled to the first transistor and the second transistor. 3. The controller of claim 2, wherein - the first 15 and the second transistor are - 0N to return a value of pw = 1 to the value provided by the driver The pWM output signal is the inverse of the PWM input signal. ^ The controller of claim 1 of the scope of the patent, wherein the linear = system includes - linear mode error A | §, which side responds to the 5-energy signal. 20 The controller of the fourth aspect of the patent, wherein the linear 具有 Ϊ 具有 has a switch effective furnace to the linear mode: the output of the large device, and the open relationship is individually returned to = 6. - DC / DC A converter comprising: a controlled device; and a controller for controlling the controlled device, the controller comprising: 0212-TW-OA1-CH Claim-AmdSet (sandra.t-20090211) 3 25 lWlW 吻且流/直流轉換 轉換器之一輪出電壓;Kiss and flow/DC conversion 第二控制信號 置,該受控裝 開關切換™以回= 2 以控制该直流/直流轉換器之該輸出 2 ’該線賴式控制f路和該切難式控制電 其中之一被致能以控制該受控裝置,以回應一 致月號之一狀態;以及 、保濩電路’回應該致能信號且被配配置為接收 代表該直流/直流轉換器之該輸出電壓的一信 旒’並利用一欠電壓滯後比較器將該信號與一欠 電壓門限位準比較,如果代表該輸出電壓之該信 號小於該欠電壓門限位準,該保護電路進一步被 配置為補償提供給該受控裝置的該第一控制信 號或該第二控制信號,該保護電路進一步被配置 利用一過電壓滯後比較器將該信號與一過電壓 門限位準比較,如果代表該輸出電壓之該信號大 於該過電壓門限位準,該保護電路補償提供給該 受控裝置的該第一控制信號或該第二控制信 號,該欠電壓滯後比較器及該過電壓滞後比較器 被配置為驅動該第一控制信號至一期望電壓位 準; 0212 TW-OA1-CH Claim-AmdSet(sandra.t-20090211)4 1314383 .. i Λ νι,冷农 其中,該切換模式控制電路包含Γ脈衝寬 (顺)電路,且該第二控制信號包含一= —#u,其中如果該PWM電路被致能以= 受控裝置,該受糾置回應該PWM輸出作^ :工作在ON與〇FF切換,且其中:二 表該輸出電壓之該信號小於該欠電壓 準’則該保護電路藉由增加該工作 $ 擇Μ輸出信號,且如果代表該輸出電壓== 唬大於该過電壓門限位準° 期來補償該戰輪出^號則错由减小紅作週 其中,該PWM電路包含一誤差放大器以及—驅 ==提供該P WM輪出信號,當該致能信號在 15 20 =-狀·4時’每-該誤纽A||及該驅動器個 別地回應該致能信號以提供該pwM輸 號,當該致能信號在一第二狀態時,每一該誤^ 放大器及該驅動器不提供該第二控制作號。 7. 如㈣專利範圍第6項之直流/直流轉其中該 =置包:電晶體’其工作在 '線性區域以回應 信號。 開關以回應該第二控制 8. 如申請專利範圍第7項之直流/直流轉換器, 電感耦接至該電晶體的一終端,且其中— 感並聯輕接,當該線性模式控制電路提供該^ = 信號給該電晶體時,該開關回應該致能工 為關閉(close)。 置 0212-TW-0A1 -CH CIaim-AmdSet(sandra.t-20090211)5 25 9. 如申請專利範圍第6項之直流/直流轉換器,其中該 驅動器包含: 5 一第一反相器,以接收該致能信號及提供一輸出信 號; 一 NOR閘,接收來自該第一反相器之該輸出信號, 及接收來自該PWM電路之一比較器之一 PWM輸入 信號; ίο 一第二反相器,接收來自該NOR閘之一輸出信號及 提供該第一控制信號; 一第一電晶體,接收該第一控制信號; 一 NAND閘,接收來自該第二反相器之該第一控制 信號,及接收該致能信號和接收該PWM輸入信號; 15 一第三反相器,接收來自該NAND閘之一輸出信號, 及提供該第二控制信號;以及 一第二電晶體,接收該第二控制信號,該第二控制信 號輸出一耦接至第一電晶體與該第二電晶體之該驅 動器之一終端。 20 10. 如申請專利範圍第6項之直流/直流轉換器,其中該 第一電晶體和該第二電晶體之其中之一為ON以回 應該PWM輸入信號的一值,俾使由該驅動器提供之 該PWM輸出信號為該PWM輸入信號的反相 25 (inverse)。 0212-TW-OA1-CH Claim-AmdSet(sandra.t-20090211)6 J314383 掛更)正替#V 申請專利範圍第6項之直流 該線性模式控制電路包含一線性模式誤差放大器,复 個別地回應該致能信號。 " 12·如申請專利範圍第11項之直流/直流轉換器,其中, f線性;^式誤差放A ^具有—_有效她接至該 秦性模式誤差放大器之輸出,且該開關係個別地_ 該致能信號。 應 13. —種直流/直流轉換器控制方法,其包含: 10 15 提供一致能信號; 在-第-時間期提供—第—控制信號至—直流法 f換器之-受控裝置,且回應該致能信號之一第一: 怨’該第-控制信號係由一控制器之一線性模式 電路所提供,該受控裝置工作為一可變電阻以回^ 第一控制信號,以控制該直流/直流轉換器之一ϋ 電壓; 甸出 在-第二時間期提供—第二控制錢至該直流 • ,換器之該受控裝置,且回應該致能信號之-第二= 恶,该第二時間期與該第—時間期不重疊,該第二. ㈣信號係由該控制器之—切換模式控制電路所= - 供,該受控裝置切換⑽與OFF以回應該第二控^ 信號,以控制該直流/直流轉換器之該輸出電壓;二 將-代表該直流/直流轉換器之該輸出電壓之邀 -過電壓卩m位準和-欠電朗限位準比較;以及、 如果代表讀出電壓之削於該過t壓門 25 娜於該欠電壓門限位準’則補償該第-控制㈣ 0212-TW-OAl-CH Claim-AmdSet(sandra.t-20090211)7 I聲8淨El修(史)土替換頁 2. 2β 或該第二控制信號; 其中,該切換模式控制電路包含一脈 (應)電路,且該第二控制信號包含一聰輸^ 號’其中如果該PWM f路被致能以控制該受料 置,該雙控裝置回應該P WM輪出信號之—工作週期 而在ON與OFF切換’且該PWM電路包含一誤差放 大态以及一驅動器以提供該pWM輸出信號,當該致 ^言號在該第-狀態時,每—該誤差放大器及該驅動 器個別地回應該致能信號以提供該pWM輸出信號, 當該致能信號在該第二狀態時,每一該誤差放大器及 該驅動器不提供該第二控制信號。 。 14. 如申請專利範圍第13項之方法’其中該補償操作包 括在該第-時間期和該第二時間期之間之—轉換期 間(transition)驅動該直流/直流轉換器之該輸出電壓 至-期望輸出電壓位準,俾使該輸出電壓維持在由該 過電壓門限位準和該欠電壓門限位準之差值所界定 之一範圍内。 1 15. 如申請專職圍第13項之方法,其中該切換模式控 制電路包含一脈衝寬度調變(PWM)電路,且該第二= 制信號包含一 P WM輸出信號,且其中該方法之^ 償操作包括: 如果代表該輸出電壓之該信號小於該欠電壓門限位 準,則增加該PWM輸出信號之一工作週期;以及 如果代表該輸出電壓之該信號大於該過電壓門限位 準’則減小該PWM信號之該工作週期。 0212-TW-OA1-CH Claim-AmdSet(sandra.t-20090211)8 1314383 一 :όΒ., Da ....—— * 16.如申請專利範圍第13項之方法,進一步包括: 將一代表該直流/直流轉換器之一輸出電流位準之回 授信號和一門限位準比較,且若該回授信號低於該門 限位準,選擇該線性模式控制電路以提供該第一控制 5 信號至該受控裝置,及若該回授信號高於或等於該門 限位準時,則選擇該切換模式控制電路以提供該第二 控制信號至該受控裝置。 17. 如申請專利範圍第13項之方法,其中,該線性模式 φ 控制電路包含一線性模式誤差放大器,其個別地回應 10 該致能信號。 18. 如申請專利範圍第13項之方法,其中,該線性模式 誤差放大器具有一開關有效地耦接至該線性模式誤 差放大器之輸出,且該開關係個別地回應該致能信 號。 15 0212-TW-OA1 -CH Claim-AmdSet(sandra.t-20090211)9a second control signal is set, the controlled switch switch TM is back = 2 to control the output of the DC/DC converter 2 'the line is controlled and the one of the line is enabled To control the controlled device in response to a state of a consistent month number; and, the protection circuit 'returns the enable signal and is configured to receive a signal representing the output voltage of the DC/DC converter' and The signal is compared to an undervoltage threshold level using an undervoltage hysteresis comparator, and if the signal representative of the output voltage is less than the undervoltage threshold level, the protection circuit is further configured to compensate for the controlled device The first control signal or the second control signal, the protection circuit is further configured to compare the signal with an overvoltage threshold level using an overvoltage hysteresis comparator, if the signal representative of the output voltage is greater than the overvoltage threshold a level, the protection circuit compensating the first control signal or the second control signal provided to the controlled device, the undervoltage hysteresis comparator and the overvoltage hysteresis The comparator is configured to drive the first control signal to a desired voltage level; 0212 TW-OA1-CH Claim-AmdSet(sandra.t-20090211)4 1314383 .. i Λ νι, cold farming, the switching mode control The circuit includes a chirped pulse width (shun) circuit, and the second control signal includes a =#u, wherein if the PWM circuit is enabled to = controlled device, the corrected back should be PWM output as: Switching between ON and 〇FF, and wherein: the signal of the output voltage of the second meter is less than the undervoltage criterion, the protection circuit increases the operation by selecting the output signal, and if the output voltage is greater than The voltage threshold is used to compensate for the warfare. The error is reduced by red. The PWM circuit includes an error amplifier and the drive provides the P WM turn-off signal. When the enable signal is 15 20 = - shape · 4 o' each time the error A|| and the driver individually respond to the enable signal to provide the pwM input number, when the enable signal is in a second state, each of the errors ^ The amplifier and the driver do not provide the second control number. 7. For example, (4) DC/DC conversion of item 6 of the patent scope: where = the package: the transistor 'operates in the 'linear region' in response to the signal. The switch is responsive to the second control. 8. The DC/DC converter of claim 7 is inductively coupled to a terminal of the transistor, and wherein the sense is connected in parallel, when the linear mode control circuit provides the ^ = When the signal is applied to the transistor, the switch should be enabled to close. 0212-TW-0A1 -CH CIaim-AmdSet(sandra.t-20090211)5 25 9. The DC/DC converter of claim 6 wherein the driver comprises: 5 a first inverter to Receiving the enable signal and providing an output signal; a NOR gate receiving the output signal from the first inverter, and receiving a PWM input signal from one of the comparators of the PWM circuit; ίο a second inversion Receiving an output signal from the NOR gate and providing the first control signal; a first transistor receiving the first control signal; and a NAND gate receiving the first control signal from the second inverter And receiving the enable signal and receiving the PWM input signal; 15 a third inverter receiving an output signal from the NAND gate and providing the second control signal; and a second transistor receiving the first And a second control signal outputting a terminal coupled to the first transistor and the driver of the second transistor. 20 10. The DC/DC converter of claim 6, wherein one of the first transistor and the second transistor is ON to respond to a value of the PWM input signal, thereby enabling the driver The PWM output signal is provided as an inverse of the PWM input signal. 0212-TW-OA1-CH Claim-AmdSet(sandra.t-20090211)6 J314383 Hanging) For the #V Patent Application No. 6 DC This linear mode control circuit includes a linear mode error amplifier, which is individually back The signal should be enabled. " 12· For example, the DC/DC converter of the 11th patent application scope, wherein f linearity; ^-type error A ^ has -_ effective she is connected to the output of the Qin mode error amplifier, and the relationship is individual Ground _ the enable signal. 13. A DC/DC converter control method comprising: 10 15 providing a uniform energy signal; providing - during the - time period - a control signal to - a DC method - a controlled device, and returning One of the signals should be enabled. First: The first control signal is provided by a linear mode circuit of a controller that operates as a variable resistor to return the first control signal to control the One of the DC/DC converters ϋ voltage; the annihilation is provided in the second time period - the second control money is supplied to the dc, the controlled device of the converter, and the response signal is -second = evil, The second time period does not overlap with the first time period, and the second (4) signal is controlled by the controller-switching mode control circuit, and the controlled device switches (10) and OFF to respond to the second control. a signal to control the output voltage of the DC/DC converter; and a second-to-initial-overvoltage 卩m level-to-electrical limit level comparison of the output voltage of the DC/DC converter; If the representative read voltage is cut in the over t-gate 25 The undervoltage threshold level 'compensates the first-control (four) 0212-TW-OAl-CH Claim-AmdSet(sandra.t-20090211)7 I sound 8 net El repair (history) soil replacement page 2. 2β or the first a control signal; wherein the switching mode control circuit comprises a pulse (s) circuit, and the second control signal comprises a singular signal, wherein if the PWM f path is enabled to control the receiving, the double The control device responds to the P WM turn-off signal - the duty cycle is switched between ON and OFF ' and the PWM circuit includes an error amplification state and a driver to provide the pWM output signal when the enable flag is in the first state And each of the error amplifier and the driver individually responds to an enable signal to provide the pWM output signal, and when the enable signal is in the second state, each of the error amplifier and the driver does not provide the second control signal. . 14. The method of claim 13 wherein the compensation operation comprises transitioning between the first time period and the second time period - the output voltage of the DC/DC converter is switched to The desired output voltage level is maintained such that the output voltage is maintained within a range defined by the difference between the overvoltage threshold level and the undervoltage threshold level. 1 15. The method of claim 13, wherein the switching mode control circuit comprises a pulse width modulation (PWM) circuit, and the second = system signal comprises a P WM output signal, and wherein the method is The reserving operation includes: increasing the duty cycle of the PWM output signal if the signal representative of the output voltage is less than the undervoltage threshold level; and decreasing if the signal representing the output voltage is greater than the overvoltage threshold level The duty cycle of the PWM signal is small. 0212-TW-OA1-CH Claim-AmdSet(sandra.t-20090211)8 1314383 A: όΒ., Da ....—— * 16. The method of claim 13 further includes: The feedback signal of one of the DC/DC converters outputs a current level and a threshold level comparison, and if the feedback signal is below the threshold level, the linear mode control circuit is selected to provide the first control 5 signal And to the controlled device, and if the feedback signal is higher than or equal to the threshold level, the switching mode control circuit is selected to provide the second control signal to the controlled device. 17. The method of claim 13, wherein the linear mode φ control circuit comprises a linear mode error amplifier that individually responds to the enable signal. 18. The method of claim 13, wherein the linear mode error amplifier has a switch operatively coupled to the output of the linear mode error amplifier, and the open relationship individually responds to the enable signal. 15 0212-TW-OA1 -CH Claim-AmdSet(sandra.t-20090211)9
TW95134693A 2005-10-13 2006-09-19 A dc to dc converter having linear mode and switch mode capabilities,a controller,a control method and an apparatus of said converter TWI314383B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/250,048 US7508176B2 (en) 2004-05-14 2005-10-13 Controller for a DC to DC converter having linear mode and switch mode capabilities

Publications (2)

Publication Number Publication Date
TW200721647A TW200721647A (en) 2007-06-01
TWI314383B true TWI314383B (en) 2009-09-01

Family

ID=38866220

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95134693A TWI314383B (en) 2005-10-13 2006-09-19 A dc to dc converter having linear mode and switch mode capabilities,a controller,a control method and an apparatus of said converter

Country Status (2)

Country Link
CN (1) CN100525031C (en)
TW (1) TWI314383B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303910B2 (en) * 2007-11-20 2013-10-02 株式会社リコー Switching regulator
CN101989812B (en) * 2009-07-31 2013-06-26 晨星软件研发(深圳)有限公司 Direct-current (DC) power supply conversion circuit and method
CN101753010B (en) * 2009-12-31 2012-08-29 苏州华芯微电子股份有限公司 Method for controlling conversion of DC-DC converter between PS mode and PWM mode
US8188719B2 (en) * 2010-05-28 2012-05-29 Seiko Instruments Inc. Voltage regulator
CN102566643B (en) * 2010-12-30 2015-04-01 项敬来 Driving voltage adjustment circuit
TWI449311B (en) * 2010-12-31 2014-08-11 Hanergy Technologies Inc Methology of on-chip soft-start circuits for switching mode dc/dc converter
CN102185348A (en) * 2011-04-28 2011-09-14 天津理工大学 Micro-electric energy collecting and converting circuit device
KR101877371B1 (en) * 2011-10-14 2018-07-12 삼성전자주식회사 Apparatus and method for protecting supply modulator
CN103425170A (en) 2012-05-22 2013-12-04 联合聚晶股份有限公司 Power supply circuit adapting to load variation
CN102723868B (en) * 2012-06-26 2014-11-05 深圳市大族激光科技股份有限公司 Constant current source
US9106134B2 (en) * 2013-06-21 2015-08-11 O2Micro, Inc. Power transfer devices
CN104702101A (en) * 2013-12-10 2015-06-10 展讯通信(上海)有限公司 Voltage conversion device and electronic device
CN105763033B (en) 2014-12-18 2019-03-15 台达电子工业股份有限公司 Power-supply system and its control method
US10003192B2 (en) * 2015-09-28 2018-06-19 Nxp B.V. Bus interfaces with unpowered termination
JP6619662B2 (en) * 2016-02-05 2019-12-11 エイブリック株式会社 Switching regulator
TWI654813B (en) 2017-07-20 2019-03-21 新唐科技股份有限公司 Control device and its power conversion circuit
DE102018200668A1 (en) * 2018-01-17 2019-07-18 Robert Bosch Gmbh Circuit for detecting circuit defects and avoiding overvoltages in regulators
CN109802563A (en) * 2019-03-22 2019-05-24 北京集创北方科技股份有限公司 Voltage-regulating system
CN110515447B (en) * 2019-08-09 2021-05-04 苏州浪潮智能科技有限公司 Power supply system and method for storage medium

Also Published As

Publication number Publication date
TW200721647A (en) 2007-06-01
CN100525031C (en) 2009-08-05
CN101060283A (en) 2007-10-24

Similar Documents

Publication Publication Date Title
TWI314383B (en) A dc to dc converter having linear mode and switch mode capabilities,a controller,a control method and an apparatus of said converter
US7508176B2 (en) Controller for a DC to DC converter having linear mode and switch mode capabilities
US11031867B2 (en) Digital-to-analog converter with embedded minimal error adaptive slope compensation for digital peak current controlled switched mode power supply
TWI279066B (en) A DC to DC converter having linear mode and switch mode capabilities, a controller and a control method of said converter
TWI794315B (en) Low power hysteretic buck-boost dc-dc controller
US10637353B2 (en) Feedback voltage DC level cancelling for configurable output DC-DC switching converters
JP5840164B2 (en) LDO regulators for integrated applications
Yan et al. Fixed-frequency boundary control of buck converter with second-order switching surface
TWI261406B (en) Charge pump DC/DC converter with constant-frequency operation
US8269471B2 (en) Method for DC/DC conversion and DC/DC converter arrangement including four switching phases
US10199928B1 (en) Soft start of switched capacitor converters by reducing voltage provided by initial power switch
TW201108589A (en) Mixed mode control for switching regulator with fast transient responses
CN114424440A (en) Efficient use of energy in switching power converters
TW201135393A (en) Regulator including hysteretic control
EP1536549A3 (en) Power supply device
TW201021388A (en) Analog variable-frequency controller and DC-DC switching converter with thereof
TW201227203A (en) Method for improving voltage identification (VID) transient response and voltage regulator
CN207676242U (en) The circuit adjusted for voltage and the system adjusted for voltage
TW200824238A (en) Charge pump controller and method therefor
Bose et al. A 3.5 mV input, 82% peak efficiency boost converter with loss-optimized MPPT and 50mV integrated cold-start for thermoelectric energy harvesting
Zhou et al. Multiloop control for fast transient DC–DC converter
JP2010051152A (en) Current mode control type switching regulator
US8106639B1 (en) Feed forward control of switching regulator
Kim et al. High-efficiency peak-current-control non-inverting buck–boost converter using mode selection for single Ni–MH cell battery operation
US9647546B2 (en) Dual-mode voltage doubling buck converter with smooth mode transition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees