TWI314338B - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
TWI314338B
TWI314338B TW96145958A TW96145958A TWI314338B TW I314338 B TWI314338 B TW I314338B TW 96145958 A TW96145958 A TW 96145958A TW 96145958 A TW96145958 A TW 96145958A TW I314338 B TWI314338 B TW I314338B
Authority
TW
Taiwan
Prior art keywords
plasma
electrode
processing apparatus
gas
plasma processing
Prior art date
Application number
TW96145958A
Other languages
Chinese (zh)
Other versions
TW200834638A (en
Inventor
In Chel Shin
Sung Gee Jang
Tae Wook Kim
Kyung Ho Ryu
Soo Yeon Jung
Original Assignee
K C Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020040092904A external-priority patent/KR101071429B1/en
Priority claimed from KR1020040092903A external-priority patent/KR20060047072A/en
Priority claimed from KR1020040114723A external-priority patent/KR20060076333A/en
Priority claimed from KR1020040115329A external-priority patent/KR20060075949A/en
Priority claimed from KR1020050046225A external-priority patent/KR101195137B1/en
Priority claimed from KR1020050073542A external-priority patent/KR100773725B1/en
Priority claimed from KR1020050076654A external-priority patent/KR100541867B1/en
Application filed by K C Tech Co Ltd filed Critical K C Tech Co Ltd
Publication of TW200834638A publication Critical patent/TW200834638A/en
Application granted granted Critical
Publication of TWI314338B publication Critical patent/TWI314338B/en

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

1314338 .九、發明說明: 本申凊是申清案號:94140176、申請日:94年11月 日、發明名稱、離子電極構造、等離子源及利用它的 等離子處理裝置,’(修正後發明名稱“電漿處理裝置,,) 、 的專利申請的分案申請。 5 V- 【發明所屬之技術領域】 _ 本發明涉及電漿(plasma)處理装置,更具體來說, 涉及可提鬲電漿密度的均勻性,並可適用於最近基板大型 化的趨勢的電漿電極構造及其電極製造方法、電極冷卻方 ίο 法· 〇 另外’涉及利用上述電漿電極構造的電漿源及電漿處 理裝置、以及其控制方法。 【先前技術】 15 一般,生產TFT LCD、PDP、OLED等FPD及半導體 元件等的過程中必然經過基板的清洗工序。 以往的基板的清洗工序使用了濕式工序’但最近,多 使用作為乾式清潔技術的電漿技術。 第一圖是表示利用一般的電漿源130的清洗裝置100 20 的圖面。 如第一圖所示,利用電聚源1的清洗裝置1 〇〇由電 漿源130、電源供給裝置140、氣體供給裝置120、和移送 裝置160構成,所述電漿源130向清洗物件即LCD玻璃 (glass) 150的表面喷射氧基’所述電源供給裝置丨4〇向上 5 1314338 =聚源13G施加交流電壓,所述氣體供 與上述雷將、、β】、土 展置KG通過 14130連接的配管供給魏、 =1=6,130實施電聚二 坡璃150以一定的速度向一方向移送。 如下:洗裝置100中的清洗過程,則可知 ,斤述地實現>月洗,即:形成在LCD坡 移运裝置160將清洗物件即LCD玻璃15〇^ 一方向移送,而此時形成在上部的電騎 ⑼的表面實施電漿常壓放電。 ㈣LCD玻璃 ^在上述清洗裝置⑽_,上述電_ 130和向 其供給電源的電源供給裝置14〇通過高壓線連接。 1時’電源供給裝置140產生的電屢是峰值為W〜 kv左右的南壓’而且由於高壓線露出在外部環境,因此, 經常由於露出而存在電安全事故的危險。 15 ^卜’在内置方式的工序中,經常發生非電聚源13〇 的異㈣氣體裝置的異常、或由於卫序上的原因臨時 LCD玻璃150的料㈣況,而鱗减需要停止移送袭 置160,而且不得不關閉電漿源13〇。 、 如果根據這樣的需要,關閉電漿源130,則一旦關閉後 打開需要穩定化時間,另外,存在發揮本身性能之前需 數分鐘的時間上的損失,費用上的損失。 第一圖a至第二圖d是表示第一圖中圖示的電漿源2〇〇 的圖面。 第二圖a是電漿溽200的俯視圖,第二圖b是第二圖丑 6 20 1314338 中圖示的電漿源200的示意側面剖視圖。 如第二圖a及第二圖b所示,以往的電漿源200在兩 侧面具有從氣體供給裝置供給氣體的氣體供給埠2〇〇a、 200b、200c、200d、200e、200f、200g、200h 總共 8 個。 5 另外’通過總共8個氣體供給埠200a ' 200b、200c、 200d、200e、200f、200g、200h流入的氣體填滿電漿源200 的主體’而其上部具有氣體分配器(gas distributor) 210, 使上述流入的氣體在電漿源内部分佈均勻。 另外,在氣體分配器210的下部具有通過電介質的充 10電及放電而產生電漿的上/下部電介質220、230。 另外’為了在上/下部電介質220、230上施加交流電 壓,在上部電介質220上及下部電介質230的下部面分別 形成上部電極(未圖示)、和下部電極(未圖示)。 如果觀察這樣構成的電漿源2〇〇中的被流入的氣體的 I5流動路徑及基板清洗過程,則如下所述。 、即,首先通過總共8個的氣體供給埠流入的氣體暫時 填滿電漿源主體的上部緩衝層24〇,之後,儲存於上部緩衝 層240的氣體通過形成在氣體分配器21〇的中央的第】氣 體流入口 211、212流入到下部緩衝層25〇。 2〇 之後,流入到下部緩衝層250的氣體通過形成在上部 電介質220的兩側面的第2氣體流入口 221、222流入到隔 壁電介質空間26G而產生電漿,而產生的電魏過形成在 下部電介質上的流出口 23丨被噴射,而清洗LCD玻璃27〇 上的有機物280。 1314338 此時’實際上為形成氣體密度的均勻性而作為緩衝區 域發揮緩衝層的作用的,只不過為下部緩衝層25〇,流入到 隔壁電介質空間260的氣體的密度反而相比只存在一個緩 衝詹日守下降’存在氣體流動的移動上發生湍流(turbulent 5 flow)的問題。 第二圖c是對第二圖b中圖示的電漿源2〇〇中的電極 構造詳細顯示的剖視圖。 如第二圖C所示,以往的電襞電極構造是以下所述的 方式的電極構造,即:以DBD (介質阻止放電)方式在一 10對對向的電介質電極之間產生電衆。錢,通過形成在其 中的一個電極的氣體排出口排出由電漿激發的反應氣體, 而處理處於其下部的被處理物。 這樣的電漿電極構造形成上部電極223及下部電極 233 ’使得能夠對上部電介質22〇及下部電介質23〇的相互 15面向的表面的相反面施加高壓電源。 在上述上部電介質及下部電介質220、230的一面形成 金屬,膜形態的電極223、233後,需要覆蓋用於保 護上述 金薄臈的第1及第2保護薄瞑224、234。之所以是因為 金屬對由f漿產生的活性分子的耐性非常弱。 另外,可以具有接觸於表面而冷卻上述上部電極223 的=部裝置部(未圖示),但上述冷卻裝置部可以使用能夠 使攸外部供給的冷卻水迴圈的水冷式構造,也可以使用空 冷式散熱板。 ‘、、<、而,存在上述冷卻裝置部不易設置,根據上述冷卻 1314338 裝置部的設置電漿源的價格上升的問題。 苐一圖d是弟一圖c中圖示的電極構造中的形成有氡 體排出口 231的下部電介質電極的玫大圖面。 氣 如第二圖d所示,沿下部電介質230的壁面發生玫電 5 (面放電)。此時產生的面放電通過高能量的活性離子損傷 發生放電的電極的表面,集中損傷厚度相對薄的電極邊緣 部的第2保護膜234。 ' 從而,由於面放電伴隨的保護膜侵蝕和由此引起電極 ,接露出在上述放電下,因此,存在侵蝕速度加速,電極 10哥命急劇縮短的問題。 另一方面,隨著最近LCD板大型化為6、7代或之上, 處理清洗、電鐘等工序的FPD處理裝置也相應大型化,為 此’兩電介質平行板也需要大型化。 然而,在以大型電介質平行板形成電極的情況下,為 15 了維持兩電極之間的間隔而利用粘結或螺栓等,但此時可 能由於熱變形而產生應力。 这在小型電極構造的情況下是忽略不計的程度,在大 =化的電極構造中向長度方向的變形累積,因此,應力集 中現象嚴重,終究破壞電介質的絕緣的可能性變高。 π祕ft在使时由於諸如電介㈣老化、或電介質内 等的結合之類的各種原因’可能發生絕緣的破 豆六/恶日守需要更換發生絕緣破壞的整個電介質板,因此, ,、子在費用上或工序上構成浪費的問題。 9 1314338 【發明内容】 本發明是為了解決上述的 供可提高電漿密度的均勻性,、、:如做成的,目的在於提 的趨勢的電漿電極構造及電漿於最近基板大型化 另外’目的在於提供電; 以提命的電聚電極樽造及=,從而,可 性:減可以消除高壓的產生伴隨的危險 聚處理裝ί源的打開/關_作引_時_失的電 裝置為述的目的,本發明的實施例中的電漿處理 包含:將電聚噴射在基板的電装源、 供认裝給電源的電源供給裝置,將在所述電極 存:裝置中產生馬壓的功率轉換器、和所述電衆源一體式 形或。 其他的優選實施例,其特徵在於,包含:將電漿喷射 在^板的電漿源、支樓所述電漿源,並在所述基板上調節 電水源的商度的高度調節部、驅動所述高度調節部的驅動 邛、和控制所述驅動部的主控制部。 ^本發明的一個實施例的電漿源,其特徵在於,包含: 2〇從外部供給氣體的氣體供給埠;和氣體分配器,其包含與 所逃氡體供給埠連接的内部空間、和以使流入所述内部空 間的氣體均勻分散在源内部的沿上部的長度方向保持規定 間隔%成的至少一個的氣體喷射孔。 其他的優選實施例,其特徵在於,在電漿源中,在基 10 1314338 的上部配置與所述基板的大小吻合的多個電裝源。 又-其他的優選的實施例,其特徵在於,包含 ^多個車位電極單元的—對單元型電極板,使流入到开= 所述::電極板之間帽產生空間的氣體發生電漿放 電,亚將產生的氣體離子噴射到被處理物上。 另外’其特徵在於’將所述單位電 處理物的寬度進行組裝。 κ根據所述被 另外’其魏在於,所述單位電極單 極板、形成在所述單位電極板上的 位電極板的-___槽。紐和料在所述單 又-其他的優選的實施例,其特徵在於 對電極、和均勻形成在所述—對電極中的至少―二的 =氧化義㈣成的電㈣極,使流Μ 述 15 ,板之間的電浆產生空間的氣體發生電聚放Ϊ ;將; 生的氣體離子噴射到被處理物上。 、、 本發明的-個實施例的電漿源,其特徵在於,所述一 對電極油而其中形成的電漿產生空間、㈣勻 达一對電極中至少—個的表面的氧化被膜層。^ 根據本發明的另一側面可知,捲彳址— 造方法,其特徵在於,利二==電 並在所述電極的整個表面均勻形成氧化被獏。 另外’提供-種電聚產生用電極的冷卻方法,其特徵 在於’在使流人到形成在所述―對電極板之間的電聚產生 空間的氣體發生放電聽產生的缝料 20 1314338 理物的電漿處理方法中,將所述上部電極的整甸上面露 在流入的工序氣體下,並通過工序氣體和上部電極之= 熱交換’冷卻所述上部電極。 a ' 、 另外,提供一種電漿處理裝置的控制方法,包含: —5 (a)控制電漿源的主控制部收集系統有無異常的資訊 : 的步驟、 、^ (b) 通過在所述(a)步驟收集的資訊,判斷是否是 • 能對所述電漿源產生直接影響的異常現象、 (c) 根據所述(b)步驟的判斷結果,如果不是對所 ίο述電漿源直接產生影響的異常現象,則所述主控制部保持 所述電漿源的打開狀態並抬高到規定的高度的步驟、和 (d) 根據所述(b)步驟的判斷結果,如果是能夠對 所述電漿源直接產生影響的異常現象,則關閉所述電漿源 的步驟。 15 【實施方式】 - 下面,參照附加的圖面,對本發明的優選的實施例進 行詳細說明。 如第二圖a所示,本發明的電漿處理裝ί包含向作為 2〇處理物件的LCD破璃等基板喷射電漿的電漿源331、和向 上述電漿源331供給電源的電源供給裝置。 在此,電源供給裝置由產生大的高壓的功率轉換器 332、和控制上述電漿源331的控制板350構成’在本發明 中是將上述功率轉換器332從電源供給裝置分離出,並與 12 1314338 上述電漿源331形成一體。 即’電漿源331 #產生高壓的功率轉換器332之間是 =壓線334連接。此時,由於高壓的產生伴隨對外部的 危險性’因此,形成覆蓋電聚源33卜功率轉換器332及連 接此的高壓線334的蓋子。上述蓋子用電子波遮罩物質使 與外部分離,能夠以接合方式構成—體型源33〇。 另外,-體型電漿源330可以不形成連接電聚源331 和功率轉換器332的高壓線334的前提下,可以以將功率 轉換器332内置於電漿源331的形態一體化。 、另外,-體型電漿源330的蓋子為了不僅能夠遮罩高 壓的產生伴隨的電子波,而且防止通過高壓線334施加的 笔塵對周圍環境造成噪音’而由金屬材質形成。 15 另外,控制板350,與功率轉換器332分離,因此,上 述功率轉換器332和控制板350之間一般通過家庭用電源 線370連接。此時,在上述電源線37〇上施加家庭用ιι〇ν 〜220V電壓,因此,對人體不造成任何傷害。 另外,上述電源線370可以根據需要延長長度,從而, 能夠適當調整用於設置控制板350的位置及上述電源線 370的配置。這樣,在設置空間上不受限制,因此,在長期 使用時,能夠享受空間上的好處。 第三圖b是一體型電漿源330構成為内置型的例子, 是表示一體型電漿源330和控制板350之間的連接狀態的 圖面。 如第三圖b所示,在一體型電漿源330和控制板350 13 20 1314338 連接時’只有電源線wo和傳感線36〇露出在外部。 此時’關係到一體型電漿源330的控制,可能由於電 源線370 #電流量大,因此,通過感應電力發出很大熱量。 從而茜要通過遮罩線(shielding line) 372纏繞電源 5線370而防止漏電等安全事故。 ,在此,作為遮罩線372,優選的是,由鋁、或SUS (蘇 式鋼)等金屬材質構成的可彎曲管(flexible pipe)形態。 另卜感應電漿源330的狀態的傳感線360可以與控 制板350連接。 ίο 弟四圖a及第四圖b是表示本發明的其他實施例的電 漿處理裝置400的構成的圖面。 如第四圖a所示,本發明的其他實施例的電漿處理裝 置400具有:作為處理物件的基板44〇、將上述基板 以疋速度移送的移送裝置450、和向被上述移送裝置45〇 I5移送的基板440噴射電漿的電漿源41〇。 另外,具有用於調節上述電漿源41〇的高度調節部 430、和形成在上述高度調節部43〇的上部而用於調節基板 440和電衆源410之間產生的微細缺口的缺口調節部。 另外,具有用於驅動高度調節部23〇的操作集流部 20 (manif〇ld) 460、和控制上述操作集流部460的主控制部 470。 另外’用於將電漿源410抬起到或降下到規定的高度 的高度調節部430可以由氣壓或油壓式汽虹、滾珠絲杠 screw)構成。 1314338 另外’彳呆作集流部460可以通過氣壓、油壓或機械式、 電子式驅動上述高度調節部430。 在此’在氣壓或油壓式的情沉下,操作集流部460是 、 由多個電磁閥構成的驅動部,並通過打開/關閉閥的方式驅 _ 5動高度調節部430。 -另外,主控制部470通過附著在FPD製造裝備的適當 處的感測器等而感知系統有無異常,並收集裝備整體的情 ❿ 況的資訊。 此後’在通過收集資訊而發現任何異常時,判斷應該 10關閉(off)電漿源410,還是應該維持打開(on)的狀態 並運行高度調節部430’將電漿源410抬高到不至於對基板 440造成損傷的規定的高度。 在本發明的常壓電漿處理裝置400中,如果在FpD製 造工序上發生異常時觀察電漿源41〇的控制過程,則如下 15 所述。 * w在移送裝置450停止的情況下,主控制部470通過感 • 測器等收集系統是否有無異常的資訊(第1步驟)。 此後,主控制部470通過所收集的資訊,判斷是否為 直接對電漿源產生影響的異常現象,還是非電漿源的異常 2〇的其他裝備的異常或製造工序上的原因(第2步驟)。、 後,判斷結果,在為非電漿源的異常的其他裝備的 異本或製造工序上的原因的情況下,主控制部47〇在打開 (=)電漿源410的狀態下使基板440上升到規定的高度 (第3步驟)。 °又 15 Ϊ314338 然而,如果發生對電漿410直接產生影響的異常現象 例如,電力系統異常、供給氣體的異常等),則為了電漿 /原410而關閉電漿源41〇 (第4步驟)。 在異常現象被消除後等再次運行電漿源410時,檢查 =源410的狀態。此時,如果處在打開(⑽)狀態下^ 中,則復位(上—下)到原始位置後開始工序,如果處 =閉Rf)狀態下,則打開(on)電聚源41〇後,經過 、又的穩定化時間後開始工序(第5步驟)。 10 、一這樣,本發明的其他的實施例的電漿處理裝置4〇〇可 = 肖除作為以往的雜處理裝置的短處的打 起的FPD製造工序時的時間上的損失。= =單地通過電漿源指的上/下驅動而避免被處理基板的 =句的電漿露出,同時,能夠減少敎化伴隨的 的損失。 =四圖b是表不本發明的其他的實施例的電裝處理裝 置的南度調節部430的一實施例的圖面。 二四圖b所示’上述高度調節部43〇具有:通過電 磁閥的打開/關閉驅動的氣缸434、和將通過上述氣缸物 2長的衝程(讀〇傳達的水準方向的能量轉換為垂直方 2〇 向的楔塊(wedge block) 435。 外’具有:利用通過楔塊435轉換的能量而使附著 的電漿源上升(up)到規㈣高度的裝載部(i〇ad) 431。 另外,由於將電漿源的兩側面上升到規定的高度,因 此’上述氣紅434、楔塊435、和裝辦431在兩侧面形成 16 1314338 對稱的一對。 另外,在高度調節部430的中央具有:保持左右側氣 缸434通過長的衝程向楔塊435施加的力相同的連接部 432。 5 另外,在通過連接部432使電漿源上升(up)到規定 的高度時,由於能夠在兩側裝载部431提高(up)到相同 的高度,因此,被抬起的電漿源保持均衡狀態。 如果觀察這樣構成的電漿處理裝置的高度調節過程, 則如下所述。 10 %果電漿處理裝置的主控制部(未圖示)在打開狀態 下發出將電襞源抬起到規定的高度的命令,則得到主广制 部(未圖示)的命令的操作集流部(未圖示)將驅動^缸 15 ’、苯Μ。丨疋田夕個電磁閥構成的驅動部,通 過打開/關閉閥的方式驅動氣缸434。 另外,氣虹434由氣遷式或油屋式氣缸434構成,而 如果打開閥而通過氣職油壓驅動氣缸似,則將氣紅倾 的直線運行能量通過衝程傳達到楔塊435。 ” 裝二it二利用傳達到的能量使附著有電衆源的 裝載部431上升到規定的高度左右。 另外’在使電漿源升高時,保持連接部们 缸434的長的衝程向楔塊435施加的力相同,使 2 左右裝載部切的電漿源在不傾斜的 定= 度的狀態下保持均衡。 仕現疋的局 17 20 0,對構成上述轉處理裝置的料 第多圖a至第五圖c是表示本發 二月 的圖面。 實知例的電漿 ,發明的一實施例的電漿源500的俯視 5 _,第ill 源500的立體圖,第五圖。是上 .儒疼雜50〇的側面剖視圖。 ▲妒第五圖a所示,由氣體供給裝置(未圖示)供給氣 癯的氟雜供給埠500a形成在上述電漿源5〇〇的一側。 遠蔣以往的8個氣體供給埠減少為丨個而減小化氣體 1〇 0 漿 妒第五圖b及第五圖c所示,本發明的一實施例的電 5〇〇 是介質阻止放電(DBD : Dielectric Barrier 妒〆)的方式。 >述電聚源500具有:氣體分配器(gas distributor) 5 51〇,所述氣體分配器510用於使通過氣體供給埠流入的氣 體均勻分佈在源内部空間。 上述氣體分配器510,其剖面為多那圈形狀,整體上為 中空的氣體管形態。 另外’一側與氣體供給埠連接,氣體向中空的内部空 2〇 間流入。 另外’在外周面的上部,在長度方向保持間隔地形成 多個氣體嘴射孔511。 另外’上述氣體喷射孔511的直徑在1〜l〇mm範圍 内’而為了保持電漿源内部的氣體分佈的均勻性’上述氣 18 1314338 體噴射孔的直徑優選的是5mm。 如果觀察通過上述氣體分配器510流入的氣體流動 (flow) ’則如下所述。 首先,通過氣體供給埠流入的氣體流入到氣體分配器 510的中空部即内部空間。此時,流入到上述氡體分配器 510的内部空間的氣體像從喷泉噴水一樣通過多個氣體噴 射孔511流入到源内部空間550。 這由於整個源内部空間550起到緩衝層的作用,因此, 相比以往’可以增加流入到源内部空間550的氣體的量。 另外,由於能夠以比以往更大的壓力將流入到氣體分 配器510的氣體推向上部電介質520側,因此,上述氣體 症夠具有均勻性的分佈’被引導流入到隔壁電介質空間 560。 ' 151314338. Nine, invention description: This application is Shen Qing case number: 94140176, application date: November, 1994, invention name, ion electrode structure, plasma source and plasma processing device using it, '(revised invention name "Varial processing device,", a divisional application for a patent application. 5 V- [Technical field to which the invention pertains] The present invention relates to a plasma processing apparatus, and more particularly to an extractable plasma The uniformity of the density, the plasma electrode structure which can be applied to the recent trend of large-scale substrate, the electrode manufacturing method thereof, and the electrode cooling method are also related to the plasma source and plasma treatment using the above-mentioned plasma electrode structure. [Previous technology] 15 In general, in the process of producing FPDs and semiconductor devices such as TFT LCDs, PDPs, and OLEDs, the substrate cleaning process is inevitable. The conventional substrate cleaning process uses a wet process. Recently, plasma technology as a dry cleaning technique has been frequently used. The first figure is a view showing a cleaning apparatus 100 20 using a general plasma source 130. As shown in the figure, the cleaning device 1 using the electric energy source 1 is composed of a plasma source 130, a power supply device 140, a gas supply device 120, and a transfer device 160, which is a cleaning glass, that is, an LCD glass. The surface of the (glass) 150 is sprayed with oxygen. The power supply device 丨4〇 upwards 5 1314338 = the source 13G applies an alternating voltage, and the gas is supplied to the above-mentioned lightning, β, and soil-exposed KG through 14130. The piping supply Wei, =1=6,130, and the electro-convex sloping glass 150 is transferred in one direction at a certain speed. As follows: The cleaning process in the washing apparatus 100 can be understood to realize the monthly washing, that is: Formed in the LCD slope transport device 160 to transfer the cleaning object, that is, the LCD glass 15 , while the surface of the electric ride ( 9 ) formed on the upper portion is subjected to plasma atmospheric pressure discharge. (4) LCD glass ^ in the above cleaning device (10) _, the above The electric power supply unit 14 is connected to the power supply device 14A to which the power supply is supplied. The power generated by the power supply device 140 is a south voltage having a peak value of about W to kv, and the high voltage line is exposed to the external environment. Often by There is a danger of an electric safety accident when exposed. 15 ^b' In the process of the built-in method, abnormalities of the (4) gas device of the non-electrical energy source 13〇 often occur, or the material of the LCD glass 150 is temporarily due to the cause of the guardian order (4) Moreover, the scale reduction needs to stop the transfer of the attack 160, and the plasma source 13 has to be turned off. If the plasma source 130 is turned off according to such a need, the stabilization time is required once it is turned off, and the presence itself is present. The loss in time and the loss in cost are required before the performance. The first to the second figures d are diagrams showing the plasma source 2 图示 shown in the first figure. The second diagram a is a top view of the plasma crucible 200, and the second diagram b is a schematic side cross-sectional view of the plasma source 200 illustrated in the second diagram ug 6 20 1314338. As shown in FIG. 2A and FIG. 2b, the conventional plasma source 200 has gas supply ports 〇〇2〇〇a, 200b, 200c, 200d, 200e, 200f, and 200g supplied from a gas supply device on both sides. 200h A total of 8. 5 additionally 'the gas flowing in through the total of 8 gas supply ports 200a' 200b, 200c, 200d, 200e, 200f, 200g, 200h fills the main body of the plasma source 200 and has a gas distributor 210 on the upper portion thereof, The above-mentioned inflowing gas is evenly distributed inside the plasma source. Further, in the lower portion of the gas distributor 210, there are upper/lower dielectrics 220, 230 which generate plasma by charging and discharging of the dielectric. Further, in order to apply an alternating current voltage to the upper/lower dielectrics 220 and 230, an upper electrode (not shown) and a lower electrode (not shown) are formed on the upper dielectric 220 and the lower surface of the lower dielectric 230, respectively. The I5 flow path and the substrate cleaning process of the inflowing gas in the plasma source 2 thus constructed are observed as follows. That is, first, the gas flowing into the upper buffer layer 24〇 of the plasma source body is temporarily filled by a total of eight gas supply ports, and then the gas stored in the upper buffer layer 240 is formed in the center of the gas distributor 21〇. The first gas flow inlets 211, 212 flow into the lower buffer layer 25A. After 2 Torr, the gas which has flowed into the lower buffer layer 250 flows into the partition dielectric space 26G through the second gas flow inlets 221 and 222 formed on both side surfaces of the upper dielectric 220 to generate plasma, and the generated electricity is formed in the lower portion. The outflow port 23A on the dielectric is ejected to clean the organic matter 280 on the LCD glass 27. 1314338 At this time, 'actually, the function of forming a buffer layer as a buffer region for forming the uniformity of the gas density is only the lower buffer layer 25〇, and the density of the gas flowing into the partition dielectric space 260 is relatively less than that of the buffer. Zhan Rishou dropped the problem of turbulent 5 flow in the movement of gas. The second figure c is a cross-sectional view showing in detail the electrode configuration in the plasma source 2A illustrated in the second figure b. As shown in Fig. 2C, the conventional electro-deuterium electrode structure is an electrode structure of the following type, that is, a battery is generated between a pair of opposing dielectric electrodes in a DBD (Medium Blocking Discharge) manner. The money, by the gas discharge port forming one of the electrodes, discharges the reaction gas excited by the plasma, and processes the object to be treated in the lower portion thereof. Such a plasma electrode structure forms the upper electrode 223 and the lower electrode 233' so that a high-voltage power source can be applied to the opposite surface of the surface of the upper dielectric 22A and the lower dielectric 23A facing each other. After the metal is formed on one surface of the upper dielectric and the lower dielectrics 220 and 230, and the electrodes 223 and 233 in the form of a film, it is necessary to cover the first and second protective sheets 224 and 234 for protecting the gold thin film. The reason is that the resistance of the metal to the active molecules produced by the f slurry is very weak. Further, the unit portion (not shown) that cools the upper electrode 223 may be provided in contact with the surface. However, the cooling device unit may be a water-cooled structure that can recirculate cooling water supplied from the outside of the crucible, or may be air-cooled. Heat sink. ‘,、<>, the above-described cooling device unit is not easily installed, and the price of the plasma source is increased according to the cooling 1314338. Fig. 1D is a plan view of the lower dielectric electrode in which the body discharge port 231 is formed in the electrode structure shown in Fig. c. Gas As shown in the second diagram d, a rose 5 (face discharge) occurs along the wall surface of the lower dielectric 230. The surface discharge generated at this time is damaged by the high-energy active ions to damage the surface of the electrode on which the discharge occurs, and the second protective film 234 at the edge portion of the electrode having a relatively small thickness is concentratedly damaged. Therefore, the erosion of the protective film accompanying the surface discharge and the resulting electrode are exposed to the above-described discharge. Therefore, there is a problem that the etching speed is accelerated and the electrode 10 is sharply shortened. On the other hand, with the recent increase in the size of the LCD panel to 6, 7 or above, the FPD processing apparatus for processing processes such as cleaning and electric clocks has also been increased in size, so that the two dielectric parallel plates also need to be enlarged. However, in the case where the electrodes are formed by a large dielectric parallel plate, bonding or bolts or the like is used to maintain the interval between the electrodes, but stress may be generated due to thermal deformation at this time. This is negligible in the case of the small-electrode structure, and the deformation in the longitudinal direction is accumulated in the large-sized electrode structure. Therefore, the stress concentration phenomenon is severe, and the possibility of destroying the insulation of the dielectric is high. π ft ft in the time due to various reasons such as dielectric (four) aging, or a combination of dielectrics, etc. 'There may be insulation of the broken beans six / evil day guards need to replace the entire dielectric plate where insulation damage occurs, therefore, The child poses a waste problem in terms of cost or process. 9 1314338 SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problem of improving the uniformity of the plasma density, and, as such, the purpose of the plasma electrode structure and the plasma of the recent trend is to increase the size of the substrate. 'The purpose is to provide electricity; to build up the electric polyelectrode to make and =, and thus, the feasibility: minus can eliminate the danger associated with the generation of high-voltage processing, the opening/closing of the source, the ___ For the purpose of the present invention, the plasma treatment in the embodiment of the present invention comprises: electro-polymerizing a charge source on a substrate, and a power supply device for supplying power to the power source, and generating a horse pressure in the electrode storage device. The power converter, and the electric source are integrated or shaped. Another preferred embodiment is characterized in that it comprises: a plasma source for injecting plasma into the plasma source of the board, a plasma source of the branch, and a height adjustment unit for driving the electric water source on the substrate, and driving The driving unit of the height adjusting unit and the main control unit for controlling the driving unit. A plasma source according to an embodiment of the present invention, comprising: a gas supply port for supplying gas from the outside; and a gas distributor including an inner space connected to the escape body supply port, and The gas that has flowed into the internal space is uniformly dispersed in the gas injection hole at least one of the inside of the source at a predetermined interval % in the longitudinal direction of the upper portion. Other preferred embodiments are characterized in that, in the plasma source, a plurality of electrical sources matching the size of the substrate are disposed on the upper portion of the base 10 1314338. Further, another preferred embodiment is characterized in that the aligning unit type electrode plate including the plurality of parking electrode units causes plasma discharge to occur in a gas flowing into the space between the opening and the opening of the electrode plate , the gas ions generated by the sub-subject are sprayed onto the object to be treated. Further, it is characterized in that the width of the unit electrical treatment is assembled. κ is according to the above, in which the unit electrode single plate, the -___ groove of the bit electrode plate formed on the unit electrode plate. The present invention is characterized in that the counter electrode and the other preferred embodiments are characterized in that the counter electrode and the electric (four) electrode which is uniformly formed in the counter electrode are at least two of Said that the gas generated by the plasma between the plates generates electricity to be discharged; the raw gas ions are sprayed onto the object to be treated. The plasma source of the embodiment of the present invention is characterized in that the plasma formed by the pair of electrode oils generates a space, and (4) the oxide film layer that reaches the surface of at least one of the pair of electrodes. According to another aspect of the present invention, a method of manufacturing a web site is characterized in that Li 2 == electricity and uniformly forms an oxidized bedding on the entire surface of the electrode. Further, there is provided a method for cooling an electrode for generating electricity, which is characterized in that a sewing material 20 1314 338 which generates a discharge of gas generated by a flow of electricity to a space formed between the pair of electrode plates is generated. In the plasma processing method of the object, the upper electrode of the upper electrode is exposed to the inflowing process gas, and the upper electrode is cooled by the heat exchange of the process gas and the upper electrode. A ' In addition, a control method for the plasma processing apparatus is provided, comprising: - 5 (a) controlling the main control unit of the plasma source to collect information on whether the system is abnormal: the steps of, (b) by a) The information collected in the step to determine whether it is an anomaly that can directly affect the plasma source, (c) according to the judgment result of the step (b), if it is not directly generated by the source of the plasma The abnormal phenomenon of the influence, the main control unit maintains the open state of the plasma source and raises the height to a predetermined height, and (d) according to the judgment result of the step (b), if it is capable of The step of shutting down the plasma source is described as an abnormal phenomenon in which the plasma source directly affects. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. As shown in FIG. 2A, the plasma processing apparatus of the present invention includes a plasma source 331 that ejects plasma to a substrate such as a LCD glass that is a workpiece, and a power supply that supplies power to the plasma source 331. Device. Here, the power supply device is constituted by a power converter 332 that generates a large high voltage and a control board 350 that controls the above-described plasma source 331. In the present invention, the power converter 332 is separated from the power supply device, and 12 1314338 The above plasma source 331 is integrated. That is, the 'plasma source 331 # generates a high voltage power converter 332 between = the pressure line 334 is connected. At this time, since the generation of the high voltage is accompanied by the danger to the outside, a cover covering the electric power source 33 and the high voltage line 334 connected thereto is formed. The cover is separated from the outside by an electron wave shielding material, and can be configured to be a body type source 33〇. Further, the -type plasma source 330 may be integrated in a form in which the power converter 332 is built in the plasma source 331 without forming the high-voltage line 334 connecting the electric-concentration source 331 and the power converter 332. Further, the cover of the bulk type plasma source 330 is formed of a metal material in order to cover not only the accompanying electron waves accompanying the high pressure but also the dust applied to the high-voltage line 334 from causing noise to the surrounding environment. Further, the control board 350 is separated from the power converter 332. Therefore, the power converter 332 and the control board 350 are generally connected by a household power line 370. At this time, the voltage of the home use ιι〇ν~220V is applied to the power supply line 37〇, so that no damage is caused to the human body. Further, the power supply line 370 can be extended in length as needed, so that the position for setting the control board 350 and the arrangement of the power supply line 370 can be appropriately adjusted. In this way, there is no restriction on the installation space, so that space benefits can be enjoyed in long-term use. The third diagram b is an example in which the integrated plasma source 330 is configured as a built-in type, and is a view showing a connection state between the integrated plasma source 330 and the control board 350. As shown in the third figure b, when the integrated plasma source 330 and the control board 350 13 20 1314338 are connected, only the power supply line wo and the sensing line 36 are exposed to the outside. At this time, the control of the integrated plasma source 330 may be due to the large amount of current of the power source line 370#, and therefore, a large amount of heat is generated by the induced power. Therefore, it is necessary to wind the power supply 5 line 370 through the shielding line 372 to prevent a safety accident such as electric leakage. Here, the mask line 372 is preferably in the form of a flexible pipe made of a metal material such as aluminum or SUS (sugar steel). Alternatively, the sense line 360 that senses the state of the plasma source 330 can be coupled to the control board 350. Figs. 4A and 4B are views showing the configuration of a plasma processing apparatus 400 according to another embodiment of the present invention. As shown in FIG. 4A, a plasma processing apparatus 400 according to another embodiment of the present invention includes a substrate 44 as a processing object, a transfer device 450 that transfers the substrate at an idling speed, and a transfer device 45 to the transfer device 45. The substrate 440 transferred by the I5 ejects the plasma source 41 of the plasma. Further, a height adjusting portion 430 for adjusting the plasma source 41A and a notch adjusting portion formed on the upper portion of the height adjusting portion 43A for adjusting a fine notch generated between the substrate 440 and the electric source 410 are provided. . Further, there is an operation collecting portion 20 for driving the height adjusting portion 23A, and a main control portion 470 for controlling the above operation collecting portion 460. Further, the height adjusting portion 430 for raising or lowering the plasma source 410 to a predetermined height may be constituted by a pneumatic or hydraulic type screw or a screw screw. 1314338 Further, the 集 作 集 460 can be driven by air pressure, oil pressure, or mechanically or electronically. Here, in the case of the air pressure or the hydraulic pressure, the operation header 460 is a drive unit composed of a plurality of solenoid valves, and the height adjustment unit 430 is driven by opening/closing the valve. Further, the main control unit 470 senses whether or not the system is abnormal by a sensor or the like attached to an appropriate place in the FPD manufacturing equipment, and collects information on the overall situation of the equipment. Thereafter, when any abnormality is found by collecting information, it is judged whether the plasma source 410 should be turned off 10, or whether the on state should be maintained and the height adjustment portion 430' is operated to raise the plasma source 410 to a level that does not rise. A predetermined height that causes damage to the substrate 440. In the normal-electrostatic slurry processing apparatus 400 of the present invention, if the control process of the plasma source 41 is observed when an abnormality occurs in the FpD manufacturing process, it is as follows. * w When the transfer device 450 is stopped, the main control unit 470 collects information on whether or not the system is abnormal by the sensor or the like (first step). Thereafter, the main control unit 470 judges whether or not the abnormal phenomenon directly affects the plasma source by the collected information, or the abnormality of the other equipment of the non-plasma source or the cause of the manufacturing process (step 2) ). Then, in the case of the determination of the abnormality of the other equipment of the non-plasma source or the cause of the manufacturing process, the main control unit 47 raises the substrate 440 while turning on (=) the plasma source 410. Go to the specified height (step 3). °15 Ϊ314338 However, if an abnormal phenomenon that directly affects the plasma 410 occurs, for example, abnormality of the power system, abnormality of the supplied gas, etc., the plasma source 41 is turned off for the plasma/original 410 (Step 4) . When the plasma source 410 is operated again after the abnormality is eliminated, the state of the source 410 is checked. At this time, if it is in the open ((10)) state, the process is started after resetting (up-down) to the original position, and if it is in the state of closed Rf), after turning on the electric source 41, After the completion and after the stabilization time, the process is started (the fifth step). 10. In the same manner, the plasma processing apparatus according to another embodiment of the present invention can eliminate the time loss in the FPD manufacturing process which is a short part of the conventional miscellaneous processing apparatus. = = The plasma of the substrate to be processed is prevented from being exposed by the up/down driving of the plasma source finger, and the loss accompanying the deuteration can be reduced. = Figure 4b is a view showing an embodiment of the south adjustment portion 430 of the electrical equipment of the other embodiment of the present invention. The above-described height adjusting portion 43A has a cylinder 434 that is driven by opening/closing of the solenoid valve, and a stroke that is long by the stroke of the cylinder member 2 (the energy in the level direction conveyed by the reading is converted into a vertical direction) A two-way wedge block 435. The outer portion has a load portion (i〇ad) 431 that raises the attached plasma source to the height of the gauge (4) by the energy converted by the wedge 435. Since the both sides of the plasma source are raised to a predetermined height, the above-mentioned gas red 434, the wedge 435, and the mounting 431 form a pair of 16 1314338 symmetrical on both sides. In addition, in the center of the height adjusting portion 430 The connecting portion 432 having the same force applied to the wedge 435 by the long stroke of the left and right side cylinders 434 is provided. 5 Further, when the plasma source is raised to a predetermined height by the connecting portion 432, The side loading portion 431 is raised to the same height, and therefore, the raised plasma source is maintained in an equilibrium state. If the height adjustment process of the plasma processing apparatus thus constructed is observed, it is as follows. Pulp treatment When the main control unit (not shown) issues a command to raise the power source to a predetermined height in the open state, an operation current collecting unit (not shown) of the command of the main wide unit (not shown) is obtained. The driving unit constituted by the driving cylinder 15' and the benzoquinone. The electric field valve of the 丨疋田夕 solenoid valve drives the air cylinder 434 by opening/closing the valve. In addition, the gas rainbow 434 is composed of an air moving type or an oil house type cylinder 434, and if When the valve is opened and the cylinder is driven by the pneumatic oil pressure, the straight running energy of the gas red is transmitted to the wedge 435 through the stroke. The second energy is used to raise the load portion 431 to which the electric source is attached. In addition, when the plasma source is raised, the long stroke of the cylinder 434 is kept the same as the force applied to the wedge 435, and the plasma source which is cut by the left and right loading portions is not tilted. In the state of the fixed degree, the balance is maintained. The current situation of the current processing 1720 is the drawing of the second embodiment of the present invention. Slurry, a top view of the plasma source 500 of an embodiment of the invention 5 _, A perspective view of the ill source 500, and a fifth side view, is a side cross-sectional view of the upper confession 50. ▲ 妒 妒 妒 妒 妒 , , , , 由 由 由 a a a a a a a a a a a a a a a a a Formed on the side of the above-mentioned plasma source 5 。. Yuan Jiang's previous eight gas supply enthalpy is reduced to one, and the reduced gas is 〇0 pulp. The fifth figure b and the fifth figure c show the present invention. The electric 5 一 of one embodiment is a medium blocking discharge (DBD: Dielectric Barrier 妒〆). The electric power source 500 has a gas distributor 5 51 〇, the gas distributor 510 It is used to uniformly distribute the gas flowing in through the gas supply weir in the source internal space. The gas distributor 510 has a cross-sectional shape of a plurality of loops and is generally in the form of a hollow gas tube. Further, the one side is connected to the gas supply port, and the gas flows into the hollow inner space. Further, a plurality of gas nozzle perforations 511 are formed in the upper portion of the outer peripheral surface at intervals in the longitudinal direction. Further, the diameter of the gas injection hole 511 is in the range of 1 to 10 mm, and in order to maintain the uniformity of the gas distribution inside the plasma source, the diameter of the gas injection hole of the above gas 18 1314338 is preferably 5 mm. If the flow of gas flowing in through the gas distributor 510 described above is observed, it is as follows. First, the gas that has flowed in through the gas supply port flows into the inner space of the hollow portion of the gas distributor 510. At this time, the gas that has flowed into the internal space of the above-described trunk distributor 510 flows into the source internal space 550 through the plurality of gas injection holes 511 as if it were sprayed from the fountain. Since the entire source internal space 550 functions as a buffer layer, the amount of gas flowing into the source internal space 550 can be increased as compared with the prior art. Further, since the gas flowing into the gas distributor 510 can be pushed to the upper dielectric 520 side at a pressure greater than the conventional one, the gas distribution having a uniformity is guided to flow into the partition dielectric space 560. ' 15

此時,流入到源内部空間550的氣體通過在上部電介 質520上形成的流入口 521、522,流入到隔壁電介質空間 560 中。 之後’如果向形成在上/下部電介質520、530上的上/ 下部電極(未圖示)施加電壓’則流入到隔壁電介質空間 560的氣體發生電漿反應’而從電漿反應中產生的氧基通過 2〇形成在下部電介質530的下部面的多個下部電介質孔或間 隙(slit) 531向電漿源500的主體外部放電。 另外’被放電到外部的氧基噴射到作為清洗對象的基 板570的表面而消除基板570表面的有機物58〇 從而,提高源内部的氣體的密度的均勻性, 在電漿產 19 1314338 生之前以層流(laminar flow)引導氣體流體的流動,能夠 極大化電漿源的清洗效率。 第六圖a至第六圖d是表示本發明的其他的實施例的 電漿源600的圖面。 、 5 如第六圖a所示,本發明的其他的實施例的電漿源000 配置有將從反應中產生的氧基(Q ra(Jical)向基板64〇的表 面喷射的上/下部2個電漿源610a、610b。 在此,電漿源600可以配置為在上述基板64〇的前進 方向(橫向)上互相錯開,而在上述基板64〇的前進之外 10的方向(丑向)上可以與上述基板的大小吻合地相互並列 配置而構成格子形態。 另外,豎向並列設置上/下部2個電漿源610a、610b 時,2個長方形形態的電漿源61〇a、61〇b的整個豎向長度 至少為基板640的暨向長度以上。 15 之所以是因為隨著LCD板大型化為6、7代或之上, 而電漿源也對應其變得大型化,而此時不需要製造大型電 漿源,就能夠豎向配置多個現有大小或小型的電漿源而獲 得相同的效果。 另外’通過在橫向互相錯開上/下部2個電漿源6l〇a、 2〇 610b,能夠消除單純以並列式的方式排列時產生的豎向的 微細的縫隙空間的四角區域。 另外’為了使上述上/下部電漿源61〇a、610b與大氣隔 開,不得不配備圍繞整個上述電漿源61〇a、61〇b的大氣遮 罩箱 620。 ''' 20 1314338 另外,以使附著在基板640的有機物的清洗等表面飧 癦變得更容易,可以將加熱上述基板64〇的加熱器(未= 系)形成在上述上/下部電聚源6i〇a、6i〇b的一侧面。· 第六圖a中圖示的本發明的其他的電漿源可以通過改 5變私置的電漿源的數量或形狀的簡單的方式進行各種變 衫。 第六圖b至第六圖d是對此的具體的例子,並將與第 a中說明的電漿源的不同點作為說明重點。 、 第六圖b是第六圖a中圖示的設置在上/下部的2個電 揉源構成再重複一次的方式。 即’ 4個電衆源610a、610b、610c、610d可以由以下 戶斤述構造構成,即:在豎向上相互並列配置’而在橫向上 是^立相錯開的格子。 另外,在平面上豎向並列設置4個電漿源61〇a、61〇b、 15 610c、610d時,4個長方形形態的電漿源6i〇a、61〇b、610c、 610d的整個豎向長度至少為基板640的豎向長度以上。 第六圖c以格子方式多重配置了第六圖b中圖示的4 個電漿源,是一個擴大電漿源的照射面積的構成。 即,8 個 610a、610b、610c、610d、610e、610f、610g、 2〇 010h可以構成為在對基板640的整個照射面積上互相錯開 配置的格子構造。 如上所述,配置多個僅豎向的尺寸小的電漿源,從而, 在不需要針對基板的大型化傾向而使用一個大型電漿源的 别提下,積極應對。 21 1314338 另外,如果以錯開的格子構造多重配置多個電漿源, 則能夠對基板640移送速度快的情況也充分消除有機物。 另外,越增加所構成的電漿源的數量,越能夠在基板 640上產生均勻的電漿而極大化清洗等表面處理。 5 第六圖d如第六圖b,具有在豎向以格子方式配置4 個電漿源630a、630b、630c、630d的相同的構成,但不同 點在於將4個電漿源630a、630b、630c、630d的大小代替 橫向而向豎向擴大,且其端面從以往的長方形變形為正方 形的構造。 ίο 這是不僅能夠產生均勻且穩定的電漿,而且增加電漿 照射面積的構成的另一個其他的方式。 下面,對使用在上述電漿源的電漿電極構造進行說明。 第七圖a至弟七圖c是本發明的一實施例的電漿電極 構造,是表示單元(cell)型電極構造72〇的圖面。 15 通常,電漿源使用DBD類型的電極構造,而上述DBd 類型的電極構造可以以垂直或水準的平行對向板方式形 成。 如第七圖a所示,單位電極單元710具有:單位電極 板711、形成在上述單位電極板711上的電極712、和形成 2〇在上述單位電極板711的一個側面的間隙槽713。 在此’單位電極板711是具有〇.imm〜3mm左右的厚 度的薄板形態,並具有以斜線傾斜的平行四邊形的形態。 此日·=τ,傾斜角為〇〜90之間的角,優選的是,3〇·〜^5。之間 的角度範圍。 22 1314338 另外,以單位電極板川的形狀舉例了平行 , 像:角:基ί及倒三角基板以横向交替並列配置的 方式專-樣二可以變形為非平行四邊形的其他的形狀。 另外,早位電極板711主要使用電 =,、氧化銘、二氧化錯、二氧化鈦:、= 寻的陶%。 另外’電極7U可以在單位電極板711讀 = 優良的金屬而形成。此時,為了最小化電極712 f弘’優選的是,在單位電極板711 的表面形成凹凸,並在凹進的内部塗層。 ^ 古為了防止_712被反應性氣體腐敍,優選的 =: 耐電漿性的性質的保護膜塗層在上述 15 20 時=單位電極板711的一側面形成了間隙槽713。此 蚪’形成在-側的平行板的間隙槽作為流入口發揮作用, 2在另-侧的平行板的間隙槽作為排出在隔板電介質空 間形成的反應氣體離子的排出口發揮作用。 、 第七圖b是表示排列第七圖a中圖示的單位電極單元 〇而形成本發明的單元型電極板720的—實施例的圖面。 如第傾b所示,本發_單元型電 處^即基板的前進方向橫向並列配置多個第七圖 的單位電極單元71。而形成的單位電極單元710的 另外’举位電極板710橫向並列配置,啊,通過間 23 1314338 隙槽713對向而形成的單位電極單元7ΐ()形成槽,從而, 形成多個反應氣體流入口。 β如上所述地構成的本發明的單元型電極板72〇是小的 =電極單S 7!G的集合體,因此,根本不需要製造大型 .5 ^板’簡單地將單位電極單元71()對照基板的大小變化 排列^固數的方式就能夠適應基板的大型化的趨勢。 第七圖e是表示弟七® b中圖示的本發明的單元型電 參極板體現為水準平行型DBD類型的一實施例的圖面。 如第七圖c所示’本發明的具有單元型電極構造的電 10 "、’、7G0配置有在上下部水準對向的如第七圖b所示的單 元型電極板。 即,上述上部電極板72〇和下部電極板74〇配置為以 互相水準平行的狀態互相對向,但是形成電極的部分相互 之間背對配置的構造。 15 另外’上部電極板720及下部電極板750由第七圖a • 巾圖示的單位電極單元710、谓的集合體構成。 另外下邓的上述基本單元單位構造即單位電極單元 -與上部不同,以向後翻轉的形態連續配置。 即’上部的單位電極單元谓具有:具有以斜線傾斜 2〇的^于四邊形的形狀的上部單位電極板7U、形成在上述上 部早位電滅711上的上部電極712、和形成在上述上部單 位電極板711的-側面的上部間隙槽713。 另外’下部的單位餘單元740具有:上部單位電極 板U以番構的开久%朝向下部面的下部單位電極板Μ1、开) 24 1314338 成在上述下部單位電極板741上的下部電極742、和形成在 上述下部早位電極板741的一側面的下部間隙槽川。 另外為了保持上部單位電極板川和下部單位 板Μ之間的間隔,向中間叙入精密加工的隔片。 5極禮卜’上部電極712的上部可以具有:使從單元型電 量:二Γ體,分佈在電極板的長度方向的氣體流 舌蟲二夕衣置。此時’氣體流量均勾化裝置可以利用多層 重且的^孔板或多孔性材質的形態等。 另外幵/成上部間隙槽713的多個單位電極單元 1〇 Ϊ接而形成上部槽714。此時’上述上部槽714可以作 為從氣體供給裝置供給的氣體的流入口而發揮作用。 ,、另外’下部槽743的情況下,也以與上部相同的方 形成下部槽744。此時,上述下部槽744作為使通過兩個^ 订板形成的隔壁電介質空間產生的反應氣體離子向 15射的排出口發揮作用。 嘴 另一方面,與上部間隙槽713保持規定間隔而形 部間隙槽743 ’而互相錯開配置上部槽714和下部槽744, 使通過上部槽714流入的氣體不從下部槽744洩漏。 、,從而,通過上部槽714流入的氣體經過兩個電極之 20並經過電漿放電,而通過下部槽744喷射。 曰 另外,將多個下部槽744傾斜於上述基板的前進方向 的斜線的間隙形態配置,從而,能夠提高内喪處理的 中的電漿處理性能的均勻性。 土 另外,在為了電漿放電而施加電壓時,多個上部電極 25 1314338 712只與上部電極之間連接通電,在多個下 況下,也同樣只與下部電極之間 電極742的情 第八圖a是表示第七圖&至7c ^ “。 口 造中的電鼓生狀態的圖面1 ^的單元型電極構 元電極構造中的多個下部槽排/ 是表示通過上述單 圖面。 1卿㈣反錢體離子的流量的 如第八圖a及第八圖b戶斤;, 部槽設為非常小的_隙,出的下 衆的流量大致相同,這可以:;=:部槽嘴射的電 電裝排出的流量的均勾性。电極的整個長度方向上保持 另外,各個流量在下部槽的中 下部槽的端部分越弱。但是,如^^A ’而且越靠近 15 斜線傾斜於基板的前進方向的間隙形態,:: ==:因此’可能喪失掉從各個下部槽噴二 即’由於互相鄰接的下部槽的端部分重疊,因此,能 夠保證所有喷射的電漿的密度的均勻性。 第九圖a及第九圖b是表示本發明的其他的實施例的 20電漿電極構造800的圖面。 如第九圖a所示,為了施加用於形成電衆的高頻電源, 本發明的其他的實施例的電漿電極構造8〇〇在上下部具 有:互相平行對向的平板形上部電極811及下部電極82Γ。 另外,在上部電極811及下部電極821的整個表面分 26 1314338 別形成均勻的氧化被膜(membrance)層810、820,在上 述上部電極及下部電極之間形成電漿產生空間83〇。 另外’形成為了產生電漿而使處理氣體流入電漿產生 空間830的氣體流入口(未圖示)。可以將上述氣體流入口 5形成在電極或形成在上述電漿產生空間的側部。 另外,如果對上述電極811施加交流電壓,則流入到 電漿產生空間830的處理氣體被激發進行電漿反應。此時, 以使被激發的處理氣體離子(陽離子、電子、根基等)被 喷射到被處理物(破璃、半導體晶片等),一個以上的孔 10 (hole)或間隙形態的氣體排出口 823貫穿下部電極821 及氧化被膜層820而形成。 另一方面,以往是利用陶瓷形成電介質隔壁,並在其 表面形成金屬電極薄膜,通過向上述電極薄膜上再次覆蓋 保護膜的方法形成電漿電極構造。 15 但是,在本發明中,形成上部電極811及下部電極821 的兩個電極’形成貫穿上述下部電極的氣體排出口 823。 之後利用陽極氧化被膜形成法(An〇dizing)在兩個 電極811、821的整個表面形成氧化被膜層81〇、82〇。 另外,如第九圖a所示,在上部電極811及下部電極 20 上都形成氧化被膜層810、820,但可以只在其中的一 個電極上形成氧化被膜層,尤其可以只在氣體排出口 823 的内側面的發生面放電的下部電極821形成氧化被膜層而 使用。 另外,上部電極811及下部電極821主要使用鋁合金, 27 1314338 仁可以使用表Φι天然或人為形成氧化被膜的合金。 假設’鈦㈤、鎂(Mg)、鋅(Ζη)、鈕㈤ 對應。 另外’通過上述陽極氧化被膜形成法形成的氧化 層是氧化銘(Al2〇3)結晶’通常這是作為卿電極的· 介質活用的諸如is之細物f。之外,可錢 敍包 氧化鎂(Mg〇)、氧化鋅(Zn〇)、氡化钽等。吏 匕鈦、 從而’上述氧化被_本身可以作為電介質發 用’由於氧化被膜層本身具有優越的耐腐祕和耐· f生因此不另行需要保護膜,從而,也作為保護上述叙 ^金形態的上部電極811及下部電極821的保護__ 另外,陽極氧化被膜形成法是將鋁合金電極完全、主 15 20 在電解液中,_電解,在上述電極的整個表面形成氧= 被膜層。 從而,無論電極的形狀多麼複雜,也能夠 的整個表面形成均勻的氧化被膜層。 达包極 即,形成相同的厚度的氧化被膜層直至電極的 部分和氣體排出口。 另外,作為上述金屬電極舉例了鋁合金,但不限與此, 可以使用能夠通過陽極氧化被膜形成法形成氧化被膜層的 各種金屬。 、另外,氧化被膜層除了氧化鋁之外,作為上述金屬電 極活用的金屬的氧化被膜層也可以使用。 兒 28 1314338 第九圖b是第九圖a中圖示的電極構造中形成有氣體 排出口 823的氧化被膜層及下部電極的放大圖面。 如第九圖b所示,在DBD放電時,其他極的電荷聚集 在氧化被膜層820的表面和基底層而形成電場,但通過在 下部電極821的整個表面均勻形成的氧化被膜層82〇,使電 場不能通過空氣層而形成。 另外’下部電極821為不是現有金屬薄膜(4〜2〇#m 的形態,而是桶(bulk)狀態(1〜5_) _合金電極, 因此’不發生像财金屬薄财_樣在邊緣部的電場效 果’也不發生電場的密集現象。 由於這樣的原因’能夠根本上防止下部電極幻 面發生面放電。 巧衣 第十圖a至第十圖d是將第九圖冱及第九圖 15 20 =電衆電極構造與喊的電料極構造進 = 放電不發生的圖面。 敉而表不面 的初麵本㈣的其他柯施_電漿電極形成 另外,第十圖b表示電襞持續放電時 後,在圓圈(氣體排出口)附近與以往裝 f第十圖^及第十圖d)不同, 才貝吾現象’而與第十圖a的初始狀態相同。包 第十圖是為適用本發明的電極冷卻 構造的示意剖視圖。 法的電漿電極 一般’電極的異常溫度是2G至15代,在就以上 29 I314338 的情沉1 ’發生由於熱膨脹而電漿模組損傷,或溫度上升 而清洗考勿件受損等問題。 從⑸’本發明’如第十一圖所示,使工序氣體的流入 口位於J部電極911的上部。此時,溫度相對低的工序氣 體經遇一t述上部電極911的上面,並能夠冷卻上述上部電 極911、’從而,保持上述上部電極911的清洗溫度。 尤上述工序氣體的流入量根據被處理的基板970 的面積Λ供給適當的量,由此,能夠實現利用電聚的清洗 1等工序尚同日能夠防止上述上部電極州過熱。 〇 遠轉的工序氣體的流入量是被電漿處理的基板970的 面積越乂越需要增大’根據其基板的面積的工序氣體的流 入量在一F面的實施例中詳細說明。 上3述工序氣體主要可以使用ν2氣體、〇2氣體或淨化的 空氣,七b可以使用Ar、Ne、Xe或He。 15 (趙用例1 : 5代基板) 一趨,根據使用於顯示裝置的製造上的基板的面積區 分代,5代基板其面積為11〇〇mmxl 2〇〇mm。 處*里面積相對小的5代基板的電衆源是流入250至 600LPPV3的工序氣體,從而,可以防止電聚的產生及上部電 2〇 極91L白^過熱。 如上所述地將250至600LPM的工序氣體流入到 上部電承亟911的上面,能夠防止上部電極9U的過熱。 另夕卜’該流入的工序氣體再通過上部絕緣體91〇的氣 體流入妇流入到上部絕緣體91〇和下部絕緣體92〇之間的 30 1314338 p南壁電介質空間’並通過上部電極 電位差產生電漿。 和下邛%極921的 的電漿通過配備在下部電極921和下部電極 、電水"丨!_入〇噴射到基板,處理基板。 (適用例2 : 7代基板) 裝置的7代基板的面積為⑽麵 ^^i=rmx2,250mm’為處理這樣電聚處理7代 ΐ電小’比上述適關1中的處理5代基板 為了處理這樣更大的基板的同時,防止上部電極9ΐι ^更大的過熱’需要增加卫序氣體的流量,在7代基板的 情况下,將功氣體的流量設為_至刪LpM。 在上述定義的工序氣體的範圍内,能夠進行優選的電 漿處理和防止上部電極911的過熱。 15 (適用例3 : 8代基板) 為製造顯示裝置的8代基板的面積為2,16〇mmx 2,460mm。 為處理大面積化的8代基板的電漿源其大小相比上述 適用例2中的處理7代基板的電漿源,更大,能夠防止需 20要進而增加工序氣體的流量的電漿處理及上部電極911的 過熱。 在流入處理8代基板的電漿處理裝置的工序氣體的流 里為800至1400LPM時,能夠防止希望的電襞處理及上部 電極11的過熱。 31 1314338 (適用例4 : 9代基板) 9代基板是2400mmx2800mm的大面積,為處理辞 代基板的電漿源相比處理以往代的基板的電聚源,更2 ^為了保持這樣的電漿源的上部電極911在2〇至15〇〇c 5粑圍内的同時處理9代基板,將以使經過該上部電極州 的上面而流人的工序氣體的流量^為_至18G〇LPM。 如上可知,本發明的電漿電極構造不僅可以使用在電 漿源’而且可以使用在為電聚放電的各種方式的裝置中的 電極構造。 1〇 另外,本發明的電漿源及利用此的表面處理裝置作為 基板主要使用LCD玻璃,但不限於此,在〇LED、pDp等 顯示板用大型基板上都可以適用。 另外,本發明的電漿處理裝置可以適用在利用電裝的 清洗褒置、電鑛裝置、㈣裝置等各種方式的半導體、FpD 15 (Flat Panel Display)製造裝置。 另外,也可以適用在金屬或高分子的表面處理、新物 質的合成等各種方式的表面處理裝置。 從而,本發明不限於上述適用例,即使本技術領域的 具有通常知識的技術人員在不脫離本發明的技術思想的範 2〇圍内進行設計變更,也屬於本發明的範圍内。 (發明的效果) 如上所述’本發明的電漿處理裝置將產生高壓而危險 性大的功率轉換器部分從電源供給裝置分離,並將被分離 的功率轉換器與電漿源一體化。 32 1314338 由此,能夠消除電子波遮罩、和高壓線露出在外部壤 境而發生觸電事故、火災事故等的危險性,防止施加在電 漿源的高壓產生噪音,從而,對電漿源的穩定化也起到貢 獻作用。 ' 5 在其他優選的實施例中,由於一般通過電源線將一體 ' 型電漿源和控制板連接,因此,不僅能夠提高穩定性,而 且在控制板的設置及電源線的配置上提高空間利益。 0 另外,在感應整個系統有無異常,並且異常現象發生 時,如果該現象為不對電漿源產生直接影響的現象,^不 H)關閉上述電漿源並保持打開狀態的同時,將上述 高到規定高度。 ^ 〃 由此’減少FPD製造工序時的電漿源的打開觸閉動作 引起的時間上的損失’其結果,能夠提高製造工序的生產 性。 15 另外,即使保持打開狀態,也將電漿源的位置上升到 φ 不對被處理基板的表面灰化(over ashing)或表面塗層材質 - 造成損傷的高度,因此,能夠防止被處理基板的不良。 . 士另外,由於上升到規定的高度,因此,在工序氣體流 動日守不引起停滯現象,從而,能夠電漿處理裝置的壽命。 20 另一方面,本發明的電漿源將1個氣體供給埠形成在 ,,源的一側,由此,相比以往,能夠得到氣體配管線的 簡單化和外觀上的美感。 另外,由於具有氣體分配器,相比以往,不僅能夠增 加流入到源内部空間的氣體的量,而且以更大的壓力將4 33 1314338 流入的氣體推向電漿產生部’其中,所述氣體分配器具有 中空的圓筒形狀’在其上部具有多個氣體噴射孔。 從而,防止在現有方式中的在電漿源的内部發生的氣 體流體的湍流(turbulent flow ),在產生電裝之前以層流 5 (laminar flow)的方式引導氣體流體的流動,能夠提高源 内部的氣體密度的均勻性。 其他的優選的實施例是應對最近基板大型化的趨勢, 配備小尺寸的多個電漿源,而不是吻合處理物件即基板的 大小而配備一個大型電聚源。 10 由此,能夠克服製造一個大型電漿源導致的困難及限 制的同時,能夠發揮與使用一個大型電漿源相同的效果。 另外’對照清洗物件即基板的大小格子狀配置多個電 漿源,從而,相比使用一個大型電漿源時,能夠產生更均 勻的穩定的電漿。 15 另外,多重配置格子狀配置的多個電漿源,對速度快 的基板移送速度也能充分消除有機物。 另外,為了擴大電漿照射面積,將電漿源的大小豎向 擴大,而不是橫向擴大,或通過在小尺寸上增加電漿源的 配置構成而極大化表面處理效果。 2〇 另一方面,本發明的電漿電極構造可以通過簡單地將 單位電極單元對照被處理基板的大小並列配置的方式構 成。 由此,僅根據基板大型化的趨勢,變化上述單位電極 單元的排列個數即可,因此,基本不需要製造大型陶瓷, 34 1314338 能夠彈性應對基板大小的變化。 另外,即使由於陶瓷燒結及工序中的微細裂縫,或内 空隙等=原因在電極構造上產生缺陷,也只要更換 單兀即可,因此,不需要像以往-樣更換整個電 ”貝平行板,彳欠而,能夠劃時代地減少維持維護費用。 ^另外,在製造單元性電極構造時,不僅僅通過加工製 4而月b夠彻模具等穩定地大量生產,因此,能夠減少 製造費用。 另外,在構造的穩定性方面上,在電漿放電時產生的 10熱變形也限制在單位電極單元,不以整個單元型電極構造 累積因此,热淪電極的尺寸變得多麼大,也能夠最小化 熱變形引起的問題。 另外此夠通過利用沿基板的前進方向以斜線形態排 列的氣體排出口 ’將消除噴射到基板的電浆的不均勾性。 15 尤其’能夠在内置處理的玻璃的PR灰化等工序忖保 電漿處理性能的均勻性。 其他的優選的實施例能夠在電極的表面形成氧化被膜 層’使上述氧化被膜層本身起到電介質和保護膜的作用。 、即與以往不相同’由於能夠消除在高價的陶究上形 2〇成金屬薄膜的工序和塗層保護膜的工序,因此,理所當然 簡單化電極的生成工序,而且具有劃時代地減少製造^ 的效果。 、另外,由於使用桶狀態的結合金電極,通過陽極氧化 被臈形成法形成均勻的厚度的氧化被膜層,因此,能夠防 35 1314338 止面放電的發生,並能夠延長電極的壽命。 本發明的電極冷卻方法即使不另行使用冷卻裝置,也 能夠通過調節工序氣體的流入方向及流量,將施加有高壓 的電漿處理裝置的電極冷卻到適當的溫度。 5 由此,具有簡單化設備,並容易化維持及管理的效果。 另外,易於擴展電極,具有提高裝置的擴展性的效果。 與此同時,本發明通過工序氣體和電極之間的熱交換 冷卻電極的同時,提高工序氣體的溫度,並能夠以該高溫 的工序氣體容易地製造電漿,具有提高電漿處理裝置的效 10 率的效果。 36 1314338 【圖式簡單說明】 第一圖是表示利用一般的電漿源的清洗裝置的圖面。 第二圖a至第二圖d是表示第一圖中圖示的電漿源的 圖面。 5 第三圖a至第三圖b是表示本發明的一個實施例的電 漿源處理裝置的圖面。 第四圖a至第四圖b是表示本發明的其他的實施例的 電漿處理裝置的圖面。 第五圖a至第五圖c是表示本發明的一個實施例的電 10 漿源的圖面。 第六圖a至第六圖d是表示本發明的其他的實施例的 電聚源的圖面。 第七圖a至第七圖c是表示作為本發明的一個實施例 的電漿電極構造的單元(cell)形電極構造的圖面。 15 第八圖a是表示第七圖a至第七圖c中說明的單元型 電極構造中的電漿產生狀態的圖面,第八圖b是表示上述 單元型電極構造中通過多個下部孔而排出的反應氣體離子 的流量的圖面。 第九圖a及第九圖b是表示本發明的其他的實施例的 20 電漿電極構造的圖面。 第十圖a至第十圖d是將第九圖a及第九圖b中說明 的電漿電極構造與以往的電漿電極構造進行相比而表示不 發生面放電的圖面。 第十一圖是適用本發明的電極冷卻方法的電漿電極構 37 1314338 造的示意剖視圖。 【主要元件符號說明】 清洗裝置100 氣體供給裝置120 5 電漿源130 電源供給裝置140 LCD玻璃150 移送裝置160 電漿源200 氣體分配器210 氣體供給埠200a、200b、 200g ' 200h 200c、200d、200e、200f 10 第1氣體流入口 211、212 上/下部電介質220、230 第2氣體流入口 221、222 上部電極223 流出口 231 下部電極233 第1及第2保護薄膜224、 234 上部緩衝層240 下部缓衝層250 15 電介質空間260 LCD玻璃270 有機物280 電漿處理裝置300 電漿源330 電漿源331 功率轉換器332 高壓線334 控制板350 傳感線360 20 電源線370 遮罩線372 電漿處理裝置400 電漿源410 缺口調節部420 高度調節部430 裝載部431 連接部432 氣缸434 楔塊435 38 1314338 調節基板440 移送裝置450 操作集流部460 主控制部470 電漿源500 氣體供給埠500a 氣體分配器510 氣體喷射孔511 5 上/下部電介質520、530 流入口 52卜522 間隙531 源内部空間550 隔壁電介質空間560 基板570 有機物580 電漿源600 電漿源 610a、610b、610c、 610d、610e、610f、610g、610h L Ο 大氣遮罩箱620 基板640 電漿源 630a、630b、630c 、630d 單位電極單元710、740 單元型電極板720 上部單位電極板711 上部電極712 上部間隙槽713 上部槽714 L 5 下部單位電極板741 下部電極742 下部槽743 下部槽744 下部電極板750 電漿電極構造800 氧化被膜層810、820 上部電極811 下部電極821 氣體排出口 823 匕Ο 電漿產生空間830 上部絕緣體910 上部電極911 下部絕緣體920 下部電極921 基板970 39At this time, the gas flowing into the source internal space 550 flows into the partition dielectric space 560 through the inflow ports 521, 522 formed in the upper dielectric 520. Then, 'if a voltage is applied to the upper/lower electrodes (not shown) formed on the upper/lower dielectrics 520, 530, the gas flowing into the partition dielectric space 560 undergoes a plasma reaction' and the oxygen generated from the plasma reaction The base is discharged to the outside of the main body of the plasma source 500 through a plurality of lower dielectric holes or slits 531 formed on the lower surface of the lower dielectric member 530. Further, the 'oxy group discharged to the outside is ejected onto the surface of the substrate 570 to be cleaned to eliminate the organic matter 58 on the surface of the substrate 570, thereby improving the uniformity of the density of the gas inside the source, before the generation of the plasma product 19 1314338 The laminar flow directs the flow of the gaseous fluid, which maximizes the cleaning efficiency of the plasma source. Fig. 6 to Fig. d are diagrams showing a plasma source 600 of another embodiment of the present invention. 5, as shown in FIG. 6a, the plasma source 000 of another embodiment of the present invention is configured with an upper/lower portion 2 which ejects an oxy group (Q ra(Jical) generated from the reaction toward the surface of the substrate 64A. The plasma sources 610a, 610b. Here, the plasma source 600 may be configured to be shifted from each other in the advancing direction (lateral direction) of the substrate 64A, and in the direction of the outer surface 10 (ugly) of the substrate 64A The grid shape may be arranged in parallel with each other in accordance with the size of the substrate. When two upper and lower plasma sources 610a and 610b are vertically arranged in parallel, two rectangular plasma sources 61〇a and 61〇 are arranged. The entire vertical length of b is at least above the cum length of the substrate 640. 15 The reason is that as the LCD panel is enlarged to 6, 7 or above, the plasma source is also enlarged corresponding to this. When it is not necessary to manufacture a large plasma source, it is possible to vertically arrange a plurality of existing or small plasma sources to obtain the same effect. In addition, by shifting the upper/lower two plasma sources 6l〇a, 2 in the lateral direction. 〇 610b, can eliminate the need to arrange in a side-by-side manner The four corner regions of the vertical fine slit space. In addition, in order to separate the above upper/lower plasma sources 61〇a, 610b from the atmosphere, it is necessary to equip the entire plasma source 61〇a, 61〇b. In the atmosphere mask box 620. ''' 20 1314338 In addition, it is possible to make the surface 飧癦 such as cleaning of the organic substance adhering to the substrate 640 easier, and the heater (not = system) for heating the substrate 64 can be formed above. One side of the upper/lower electrical energy source 6i〇a, 6i〇b. · The other plasma source of the present invention illustrated in the sixth figure a can be changed to the number or shape of the private plasma source. The various changes are made in a simple manner. The sixth figure b to the sixth figure d are specific examples of this, and the difference from the plasma source explained in the a is taken as an explanatory point. The two electric power sources arranged in the upper/lower part of Fig. a constitute a repeating manner. That is, the 'four electric power sources 610a, 610b, 610c, 610d can be constructed by the following configuration, namely: In the vertical direction, the grids are arranged side by side in the vertical direction, and in the lateral direction, the grids are staggered. The entire vertical length of the plasma sources 6i〇a, 61〇b, 610c, 610d of four rectangular forms when four plasma sources 61〇a, 61〇b, 15 610c, 610d are arranged side by side vertically on a plane At least the vertical length of the substrate 640 is greater than. The sixth figure c is configured in a lattice manner to multiplex the four plasma sources illustrated in the sixth figure b, which is a configuration for enlarging the irradiation area of the plasma source. 610a, 610b, 610c, 610d, 610e, 610f, 610g, and 2〇010h may be configured as a lattice structure in which the entire irradiation area of the substrate 640 is shifted from each other. As described above, a plurality of plasma sources having a small vertical size are disposed, and the large-scale plasma source is not required to be used for the large-scale tendency of the substrate. 21 1314338 Further, when a plurality of plasma sources are arranged in a plurality of rows in a staggered lattice structure, the organic matter can be sufficiently eliminated even when the substrate 640 is transferred at a high speed. Further, as the number of plasma sources formed is increased, a uniform plasma can be generated on the substrate 640 to maximize surface treatment such as cleaning. 5 sixth figure d, as shown in the sixth figure b, has the same configuration in which four plasma sources 630a, 630b, 630c, 630d are arranged in a grid in the vertical direction, but differs in that four plasma sources 630a, 630b, The sizes of 630c and 630d are enlarged in the vertical direction instead of the lateral direction, and the end faces thereof are deformed from a conventional rectangular shape into a square structure. Ίο This is another way of not only producing a uniform and stable plasma but also increasing the composition of the plasma irradiation area. Next, the structure of the plasma electrode used in the above plasma source will be described. Fig. 7A to Fig. 7C are diagrams showing a plasma electrode structure according to an embodiment of the present invention, and showing a cell type electrode structure 72A. 15 Typically, the plasma source uses a DBD type electrode configuration, and the above DBd type electrode construction can be formed in a vertical or horizontal parallel alignment plate. As shown in Fig. 7A, the unit electrode unit 710 has a unit electrode plate 711, an electrode 712 formed on the unit electrode plate 711, and a gap groove 713 which forms a side surface of the unit electrode plate 711. Here, the unit electrode plate 711 is in the form of a thin plate having a thickness of about im.imm to about 3 mm, and has a parallelogram shape inclined obliquely. On this day, =τ, the inclination angle is an angle between 〇 and 90, and preferably, 3〇·~^5. The range of angles between. 22 1314338 In addition, the shape of the unit electrode plate is exemplified as parallel, and the angle: the base and the inverted triangular substrate are alternately arranged side by side in the lateral direction, and the other shapes can be deformed into other shapes of the non-parallelogram. In addition, the early electrode plate 711 mainly uses electric =, oxidized, dioxed, titanium dioxide:, = found. Further, the electrode 7U can be formed by reading a good metal on the unit electrode plate 711. At this time, in order to minimize the electrode 712, it is preferable to form irregularities on the surface of the unit electrode plate 711 and to coat the inside of the recess. ^ In order to prevent the _712 from being eroded by the reactive gas, it is preferable that the protective film coating of the slurry resistance property forms the gap groove 713 on one side of the unit electrode plate 711 at the above 15 20 . The gap groove of the parallel plate formed on the side is functioning as an inflow port, and the gap groove of the parallel plate on the other side functions as a discharge port for discharging reaction gas ions formed in the dielectric space of the separator. Fig. 7B is a view showing an embodiment in which the unit electrode unit 图示 shown in Fig. 7A is arranged to form the unitary electrode plate 720 of the present invention. As shown by the first inclination b, a plurality of unit electrode units 71 of the seventh figure are arranged side by side in the advancing direction of the substrate. The other 'position electrode plates 710 of the formed unit electrode unit 710 are arranged side by side in the lateral direction, and the unit electrode unit 7ΐ formed in the opposite direction by the gap 23 1314338 is formed into a groove, thereby forming a plurality of reaction gas streams. Entrance. The unit type electrode plate 72 of the present invention configured as described above is an aggregate of small = electrode sheets S 7 ! G, and therefore, it is not necessary to manufacture a large .5 ^ plate at all simply to unit the unit electrode unit 71 ( The manner in which the size of the substrate is changed by the size of the substrate can be adapted to the tendency of the substrate to be enlarged. Fig. e is a view showing an embodiment in which the unit type electric pole plate of the present invention shown in the seventh embodiment is embodied as a level parallel type DBD type. As shown in Fig. 7c, the electric unit 10", ', 7G0 having the unit electrode structure of the present invention is provided with a unit type electrode plate as shown in Fig. 7b which is opposed to the upper and lower levels. That is, the upper electrode plate 72A and the lower electrode plate 74'' are disposed to face each other in a state in which they are parallel to each other, but the portions where the electrodes are formed are arranged to face each other. Further, the upper electrode plate 720 and the lower electrode plate 750 are composed of a unit electrode unit 710 and a so-called aggregate shown in Fig. a. Further, the unit cell unit of the above-described basic unit unit structure of the lower part is different from the upper portion, and is continuously arranged in a state of being turned backward. That is, the upper unit electrode unit has an upper unit electrode plate 7U having a quadrangular shape inclined by 2 、 oblique lines, an upper electrode 712 formed on the upper portion electric premature stop 711, and an upper unit formed thereon. The upper gap groove 713 of the side surface of the electrode plate 711. Further, the lower unit residual unit 740 has a lower unit electrode plate Μ1 on the lower unit electrode plate 741, and a lower unit electrode 742 on the lower unit electrode plate 741. And a lower gap groove formed on one side of the lower early electrode plate 741. Further, in order to maintain the interval between the upper unit electrode plate and the lower unit plate, a precision-processed spacer is introduced in the middle. The upper portion of the upper electrode 712 may have a gas-flowing worm, which is distributed in the longitudinal direction of the electrode plate, from the unit type electric quantity: the diterpene body. In this case, the gas flow equalizing device can be formed by using a multi-layered plate or a porous material. Further, a plurality of unit electrode units 1A of the upper/lower gap grooves 713 are joined to form an upper groove 714. At this time, the upper groove 714 functions as an inflow port for the gas supplied from the gas supply device. Further, in the case of the lower groove 743, the lower groove 744 is formed in the same manner as the upper portion. At this time, the lower groove 744 functions as a discharge port for causing the reaction gas ions generated in the partition dielectric space formed by the two sheets to be directed to each other. On the other hand, the upper groove 714 and the lower groove 744 are disposed so as to be spaced apart from each other by a predetermined interval from the upper gap groove 713, so that the gas flowing in through the upper groove 714 does not leak from the lower groove 744. Thus, the gas flowing in through the upper tank 714 passes through the two electrodes 20 and is discharged through the plasma, and is ejected through the lower tank 744. Further, the plurality of lower grooves 744 are arranged in a gap shape obliquely inclined in the advancing direction of the substrate, whereby the uniformity of the plasma processing performance during the internal nuisance treatment can be improved. In addition, when a voltage is applied for plasma discharge, a plurality of upper electrodes 25 1314338 712 are connected to the upper electrode only for energization, and in a plurality of cases, the electrode 742 is also only the eighth between the lower electrode and the lower electrode. Figure a is a view showing a seventh figure & to 7c ^". A plurality of lower groove rows in the constitutive electrode structure electrode structure of the surface 1 ^ in the electric making state in the mouth making is indicated by the above-mentioned single drawing 1 Qing (4) The flow rate of the anti-money ion is as shown in the eighth figure a and the eighth figure b; the groove is set to be very small _ gap, and the flow rate of the lower part is roughly the same, which can be:; The flow rate of the electric discharge discharged from the slot is uniform. The entire length of the electrode is kept different, and the flow rate is weaker at the end portion of the lower middle groove of the lower groove. However, the closer to 15 is The shape of the gap obliquely to the advancing direction of the substrate, ::= =: Therefore, 'there may be lost from the respective lower slots, ie 'because the end portions of the lower grooves adjacent to each other overlap, therefore, all the jetted plasma can be ensured. Uniformity of density. Figure 9 a and Figure 9 b are A schematic view of a 20 plasma electrode configuration 800 of another embodiment of the present invention. As shown in FIG. 9a, a plasma electrode of another embodiment of the present invention is applied to apply a high frequency power source for forming a battery. The structure 8 has a flat-plate-shaped upper electrode 811 and a lower electrode 82A which are parallel to each other in the upper and lower portions. Further, a uniform oxidized film layer is formed on the entire surface of the upper electrode 811 and the lower electrode 821 by 26 1314338. 810 and 820, a plasma generating space 83 is formed between the upper electrode and the lower electrode. Further, a gas inflow port (not shown) for causing a processing gas to flow into the plasma generating space 830 in order to generate plasma is formed. The gas inflow port 5 is formed in an electrode or a side portion formed in the plasma generating space. When an alternating voltage is applied to the electrode 811, the processing gas flowing into the plasma generating space 830 is excited to perform a plasma reaction. In order to cause the excited process gas ions (cations, electrons, roots, etc.) to be ejected onto the object to be processed (glass, semiconductor wafer, etc.), one to The hole 10 or the gap-shaped gas discharge port 823 is formed to penetrate the lower electrode 821 and the oxide film layer 820. On the other hand, a dielectric spacer is formed by using a ceramic, and a metal electrode film is formed on the surface thereof. The electrode film is covered with a protective film again to form a plasma electrode structure. However, in the present invention, the two electrodes 'forming the upper electrode 811 and the lower electrode 821 form a gas discharge port 823 penetrating the lower electrode. An oxidized film formation method forms an oxidized film layer 81 〇, 82 整个 on the entire surfaces of the two electrodes 811 and 821. Further, as shown in FIG. 9A, both the upper electrode 811 and the lower electrode 20 are formed. The oxide film layers 810 and 820 are oxidized, but the oxide film layer may be formed only on one of the electrodes, and in particular, the oxide film layer may be formed only on the lower electrode 821 on which the surface discharge of the inner side surface of the gas discharge port 823 is formed. Further, the upper electrode 811 and the lower electrode 821 are mainly made of an aluminum alloy, and the 27 1314338 kernel can be an alloy of a natural or artificially formed oxide film. It is assumed that 'titanium (five), magnesium (Mg), zinc (Ζη), and button (five) correspond. Further, the oxide layer formed by the above-described anodized film formation method is an oxide (Al2〇3) crystal. Usually, this is a fine substance f such as is used as a medium for the electrode. In addition, it can be described as magnesium oxide (Mg〇), zinc oxide (Zn〇), antimony telluride, and the like.吏匕Titanium, and thus 'the above-mentioned oxidized _ itself can be used as a dielectric'. Since the oxidized coating layer itself has superior corrosion resistance and resistance, it does not require a protective film, and thus serves as a protection for the above-mentioned gold form. Protection of the upper electrode 811 and the lower electrode 821 Further, in the anodic oxide film formation method, the aluminum alloy electrode is completely formed, and the main electrode 15 is electrolyzed in the electrolytic solution to form an oxygen-film layer on the entire surface of the electrode. Thereby, regardless of the complexity of the shape of the electrode, a uniform oxide film layer can be formed on the entire surface. In the extreme case, the oxide film layer of the same thickness is formed up to the electrode portion and the gas discharge port. Further, as the metal electrode, an aluminum alloy is exemplified, but various metals which can form an oxide film layer by an anodized film formation method can be used. Further, in addition to the alumina, the oxide film layer may be used as an oxide film layer of a metal used for the above metal electrode. 28 1314338 The ninth diagram b is an enlarged view of the oxide film layer and the lower electrode in which the gas discharge port 823 is formed in the electrode structure shown in the ninth diagram a. As shown in the ninth diagram b, when the DBD is discharged, charges of other poles are concentrated on the surface of the oxide film layer 820 and the base layer to form an electric field, but the oxide film layer 82 is uniformly formed on the entire surface of the lower electrode 821, The electric field cannot be formed by the air layer. In addition, the lower electrode 821 is not a conventional metal film (4 to 2 〇 #m, but a bulk state (1 to 5_) _ alloy electrode, so 'does not occur like a thin metal __ at the edge portion The electric field effect 'does not occur in the dense phenomenon of the electric field. For this reason', it is possible to fundamentally prevent the surface discharge of the lower electrode from the magic surface. The tenth figure to the tenth figure of the smart clothes are the ninth figure and the ninth figure. 15 20 = electric pole electrode structure and shunting electric material pole structure = the surface where the discharge does not occur. The other surface of the first surface of this (4) is formed by another Ke Shi _ plasma electrode, and the eleventh figure b represents electricity.襞 After the continuous discharge, in the vicinity of the circle (gas discharge port), unlike the conventional installation of the tenth figure and the tenth figure d), the phenomenon is the same as the initial state of the tenth figure a. The tenth drawing is a schematic cross-sectional view of an electrode cooling structure to which the present invention is applied. The plasma electrode of the method generally has an abnormal temperature of 2G to 15 generations. In the case of the above-mentioned 29 I314338, the plasma module is damaged due to thermal expansion, or the temperature rises and the cleaning of the test piece is damaged. From (5) 'the present invention', as shown in Fig. 11, the inflow port of the process gas is placed on the upper portion of the J electrode 911. At this time, the gas having a relatively low temperature is subjected to the upper surface of the upper electrode 911, and the upper electrode 911 can be cooled, thereby maintaining the cleaning temperature of the upper electrode 911. In particular, the inflow amount of the process gas is supplied to an appropriate amount depending on the area Λ of the substrate 970 to be processed, whereby the cleaning by electropolymerization can be realized, and the upper electrode state can be prevented from being overheated on the same day.流入 The inflow amount of the process gas to be rotated is increased as the area of the substrate 970 subjected to the plasma treatment is increased. 'The flow rate of the process gas according to the area of the substrate is described in detail in the embodiment of the F surface. The above process gas can be mainly ν2 gas, 〇2 gas or purified air, and seven b can use Ar, Ne, Xe or He. 15 (Zhao use case 1: 5th generation substrate) According to the area of the substrate used for the manufacture of the display device, the area of the 5th generation substrate is 11 〇〇 mm x 12 mm. The electric source of the 5th generation substrate having a relatively small area is a process gas flowing into 250 to 600LPPV3, thereby preventing generation of electric current and overheating of the upper electric electrode 91L. By flowing the process gas of 250 to 600 LPM to the upper surface of the upper electric bearing 911 as described above, overheating of the upper electrode 9U can be prevented. Further, the inflowing process gas flows through the gas of the upper insulator 91〇 into the 30 1314338 p south wall dielectric space ' between the upper insulator 91 〇 and the lower insulator 92 并 and generates plasma by the upper electrode potential difference. The plasma of the lower electrode 921 is processed by the lower electrode 921 and the lower electrode, and the electric water is sprayed onto the substrate to process the substrate. (Applicable Example 2: 7th generation substrate) The area of the 7th generation substrate of the device is (10) plane ^^i=rmx2, and 250mm' is the treatment of the electropolymerization process 7 generations of electricity is smaller than the above treatment of the 5th generation substrate In order to handle such a larger substrate, it is necessary to prevent the upper electrode 9 from being overheated, and it is necessary to increase the flow rate of the gas. In the case of the 7th generation substrate, the flow rate of the work gas is set to _ to LpM. Within the range of the process gas defined above, it is possible to perform a preferable plasma treatment and prevent overheating of the upper electrode 911. 15 (Applicable Example 3: 8th generation substrate) The area of the 8th generation substrate for manufacturing the display device was 2,16 mm x 2,460 mm. The plasma source for processing the large-area 8th generation substrate is larger in size than the plasma source of the 7th generation substrate in the above-described application example 2, and it is possible to prevent plasma treatment which requires 20 to further increase the flow rate of the process gas. And overheating of the upper electrode 911. When the flow rate of the process gas flowing into the plasma processing apparatus for processing the eighth-generation substrate is 800 to 1400 LPM, it is possible to prevent the desired electric discharge treatment and the overheating of the upper electrode 11. 31 1314338 (Applicable Example 4: 9th generation substrate) The 9th generation substrate is a large area of 2400mmx2800mm. It is a chemical source for processing the substrate of the derogatory substrate compared to the previous generation of the substrate. The upper electrode 911 of the source processes the 9th generation substrate while being in the range of 2 〇 to 15 〇〇 c 5 , and the flow rate of the process gas flowing through the upper surface of the upper electrode state is _ to 18 G 〇 LPM. As described above, the plasma electrode structure of the present invention can be used not only in the plasma source but also in the electrode configuration in various types of devices which are electropolymer discharge. In addition, the plasma source of the present invention and the surface treatment apparatus using the same mainly use LCD glass as the substrate. However, the present invention is not limited thereto, and can be applied to a large substrate for a display panel such as 〇LED or pDp. Further, the plasma processing apparatus of the present invention can be applied to various types of semiconductors and FpD 15 (Flat Panel Display) manufacturing apparatuses using electric cleaning devices, electric ore devices, and (4) devices. Further, various surface treatment apparatuses such as surface treatment of a metal or a polymer, synthesis of a new substance, and the like can be applied. Therefore, the present invention is not limited to the above-described application examples, and it is within the scope of the invention to make a design change without departing from the scope of the technical idea of the present invention. (Effect of the Invention) As described above, the plasma processing apparatus of the present invention separates a power converter portion that generates a high voltage and is highly dangerous from the power supply device, and integrates the separated power converter with the plasma source. 32 1314338 Thus, it is possible to eliminate the risk of electric shock and fire accidents caused by the electronic wave mask and the high-voltage line being exposed to the external soil, and to prevent noise generated by the high voltage applied to the plasma source, thereby stabilizing the plasma source. It also contributes. '5 In other preferred embodiments, since the integrated 'type plasma source and the control board are generally connected through the power line, not only the stability can be improved, but also the space benefit is improved in the setting of the control board and the configuration of the power line. . 0 In addition, when there is no abnormality in the whole system, and if the abnormal phenomenon occurs, if the phenomenon is a phenomenon that does not directly affect the plasma source, ^ does not H) turn off the above plasma source and keep it open, and the above is high Specify the height. ^ 〃 This reduces the time loss caused by the opening and closing operation of the plasma source in the FPD manufacturing process. As a result, the productivity in the manufacturing process can be improved. In addition, even if the state of the plasma source is raised to φ, the surface of the substrate to be processed is not ashing or the surface coating material is damaged, so that the damage of the substrate to be processed can be prevented. . In addition, since it rises to a predetermined height, the process gas flow does not cause stagnation, and the life of the plasma processing apparatus can be achieved. On the other hand, in the plasma source of the present invention, one gas supply enthalpy is formed on one side of the source, whereby the simplification of the gas distribution line and the aesthetic appearance can be obtained. In addition, since it has a gas distributor, it is possible to increase not only the amount of gas flowing into the internal space of the source but also the gas which flows in 4 33 1314338 toward the plasma generating portion, which is higher than the conventional gas. The dispenser has a hollow cylindrical shape 'having a plurality of gas injection holes at its upper portion. Thereby, the turbulent flow of the gas fluid occurring inside the plasma source in the conventional mode is prevented, and the flow of the gas fluid is guided by laminar flow before the electrical installation is generated, and the source interior can be improved. Uniformity of gas density. Other preferred embodiments are directed to the recent trend of large-scale substrates, equipped with a plurality of plasma sources of small size, rather than being equipped with a large electro-convergence source to match the size of the substrate, i.e., the substrate. 10 Thus, the same effects as using a large plasma source can be achieved while overcoming the difficulties and limitations caused by manufacturing a large plasma source. Further, a plurality of plasma sources are arranged in a lattice shape in comparison with the substrate of the cleaning object, so that a more uniform and stable plasma can be produced when a large-sized plasma source is used. 15 In addition, multiple plasma sources with multiple grids can fully eliminate organic matter for fast substrate transfer speeds. In addition, in order to enlarge the area of the plasma irradiation, the size of the plasma source is vertically expanded rather than laterally expanded, or the surface treatment effect is maximized by increasing the configuration of the plasma source in a small size. On the other hand, the plasma electrode structure of the present invention can be configured by simply arranging the unit electrode units in parallel with the size of the substrate to be processed. Therefore, the number of the unit electrode units to be arranged can be changed only in accordance with the trend of increasing the size of the substrate. Therefore, it is basically unnecessary to manufacture large ceramics, and 34 1314338 can elastically cope with the change in the substrate size. In addition, even if a defect occurs in the electrode structure due to fine cracks in the ceramic sintering and the process, or internal voids, etc., it is only necessary to replace the single crucible. Therefore, it is not necessary to replace the entire electric parallel plate as in the past. In addition, in the case of manufacturing a unitary electrode structure, it is possible to reduce the manufacturing cost by not only the processing system 4 but also the stable production of the mold and the like. In terms of the stability of the structure, the 10 thermal deformation generated at the time of plasma discharge is also limited to the unit electrode unit, and is not accumulated by the entire unit type electrode structure. Therefore, how large the size of the hot tantalum electrode becomes, and heat can be minimized. The problem caused by the deformation. In addition, it is sufficient to eliminate the unevenness of the plasma sprayed onto the substrate by using the gas discharge port arranged in a diagonal line along the advancing direction of the substrate. 15 In particular, the PR ash which can be processed in the built-in glass. And other processes ensure uniformity of plasma processing performance. Other preferred embodiments are capable of forming an oxide film layer on the surface of the electrode. The oxide film layer itself functions as a dielectric and a protective film. That is, it is different from the conventional one, and it is a matter of course that the process of forming a metal thin film and the process of coating a protective film on a high-priced ceramics can be eliminated. The simplification of the electrode formation process and the epoch-making effect of reducing the manufacturing process are achieved. Moreover, since the gold-plated electrode in the barrel state is used, the oxide film layer having a uniform thickness is formed by the anodic oxidation by the ruthenium formation method, thereby preventing 35 1314338 The occurrence of the stop surface discharge can extend the life of the electrode. The electrode cooling method of the present invention can adjust the flow direction and flow rate of the process gas to adjust the electrode of the plasma processing apparatus to which the high pressure is applied, without using a cooling device. It is cooled to an appropriate temperature. 5 Thereby, the device is simplified, and the effect of maintenance and management is facilitated. Further, it is easy to expand the electrode and has an effect of improving the expandability of the device. At the same time, the present invention passes the process gas and the electrode. The heat exchange between the electrodes simultaneously increases the temperature of the process gas, It is possible to easily produce a plasma with the high-temperature process gas, and it has an effect of improving the efficiency of the plasma processing apparatus. 36 1314338 [Simplified description of the drawings] The first diagram is a diagram showing a cleaning apparatus using a general plasma source. The second to the second figures d are diagrams showing the plasma source illustrated in the first figure. 5 The third to third figures b are plasma source treatments showing an embodiment of the present invention. 4A to 4B are views showing a plasma processing apparatus according to another embodiment of the present invention. Figs. 5A to 5C are diagrams showing an embodiment of the present invention. Fig. 6 to Fig. d are diagrams showing an electropolymer source of another embodiment of the present invention. Figs. 7a to 7c are diagrams showing one embodiment of the present invention. A drawing of a cell-shaped electrode configuration of a plasma electrode configuration of an embodiment. 15 is a view showing a state of generation of a plasma in the constitutive electrode structure explained in the seventh to the seventh c, and an eighth drawing is a view showing a plurality of lower holes in the constitutive electrode structure. The surface of the flow of the discharged reaction gas ions. The ninth diagram a and the ninth diagram b are views showing the structure of the 20 plasma electrode of another embodiment of the present invention. The tenth to tenth graphs d are graphs showing that the plasma electrode structure described in the ninth diagram a and the ninth diagram b is compared with the conventional plasma electrode structure, and that no surface discharge occurs. The eleventh drawing is a schematic cross-sectional view of a plasma electrode structure 37 1314338 to which the electrode cooling method of the present invention is applied. [Description of main component symbols] Cleaning device 100 Gas supply device 120 5 Plasma source 130 Power supply device 140 LCD glass 150 Transfer device 160 Plasma source 200 Gas distributor 210 Gas supply ports 200a, 200b, 200g '200h 200c, 200d, 200e, 200f 10 first gas inflow port 211, 212 upper/lower dielectric 220, 230 second gas inflow port 221, 222 upper electrode 223 outflow port 231 lower electrode 233 first and second protective films 224, 234 upper buffer layer 240 Lower buffer layer 250 15 Dielectric space 260 LCD glass 270 Organic 280 Plasma processing unit 300 Plasma source 330 Plasma source 331 Power converter 332 High voltage line 334 Control board 350 Sensing line 360 20 Power line 370 Mask line 372 Plasma Processing device 400 Plasma source 410 Notch adjusting portion 420 Height adjusting portion 430 Loading portion 431 Connecting portion 432 Cylinder 434 Wedge 435 38 1314338 Adjusting substrate 440 Transfer device 450 Operating current collecting portion 460 Main control portion 470 Plasma source 500 Gas supply 埠500a gas distributor 510 gas injection hole 511 5 upper/lower dielectric 520, 530 inlet 52 522 gap 531 Internal space 550 Partitioned dielectric space 560 Substrate 570 Organic 580 Plasma source 600 Plasma source 610a, 610b, 610c, 610d, 610e, 610f, 610g, 610h L 大气 Atmospheric hood 620 Substrate 640 Plasma source 630a, 630b, 630c 630d unit electrode unit 710, 740 unit type electrode plate 720 upper unit electrode plate 711 upper electrode 712 upper gap groove 713 upper groove 714 L 5 lower unit electrode plate 741 lower electrode 742 lower groove 743 lower groove 744 lower electrode plate 750 plasma Electrode structure 800 Oxidation film layer 810, 820 Upper electrode 811 Lower electrode 821 Gas discharge port 823 匕Ο Plasma generation space 830 Upper insulator 910 Upper electrode 911 Lower insulator 920 Lower electrode 921 Substrate 970 39

Claims (1)

1314338 十、申請專利範圍: 1 · 一種電漿處理裝置,其特徵在於, 包括ML入工序氣體的氣體流入部、和將通過上述氣體 流入。卩机入的工序氣體利用一對上部電極和下部電極進行 放電而對基板進行電漿處理的電漿源, 在所述上部電極和下部電極中的至少一個的表面形成 有氧化被膜。 2·依據申請專利範圍第1項所述的電漿處理裝置,其 中, 所述氧化被臈形成在下部電極的表面。 3 _依據申請專利範圍第1項所述的電漿處理裝置,其 中, 所述下部電極由合金構成。 4 ·依據申請專利範圍第1項所述的電漿處理裝置,其 中, ’、 15 所述下部電極是由紹、鈦、鎂、鋅、组中的任何一個 的合金構成。 中 .依據申請專利範圍第1項所述的電漿處理裝置, 其 所述氧化被膜層是氧化铭、氧化欽、氧化錯、 氧化钽中的任何一個。 中 鎂、氧化鋅、 依據申請專利_第1項所述的電漿處理農 401314338 X. Patent Application Range: 1 A plasma processing apparatus characterized in that it includes a gas inflow portion into which a ML gas is introduced, and an inflow of gas through the gas. A plasma source that discharges the process gas by a pair of upper electrodes and lower electrodes to plasma-treat the substrate has an oxide film formed on a surface of at least one of the upper electrode and the lower electrode. The plasma processing apparatus according to claim 1, wherein the oxidized beryllium is formed on a surface of the lower electrode. The plasma processing apparatus according to the first aspect of the invention, wherein the lower electrode is made of an alloy. The plasma processing apparatus according to claim 1, wherein the lower electrode is made of an alloy of any one of the group consisting of: Shao, titanium, magnesium, zinc, and the group. The plasma processing apparatus according to claim 1, wherein the oxide film layer is any one of oxidized, oxidized, oxidized, and cerium oxide. Medium magnesium, zinc oxide, plasma treatment according to the patent application _ Item 1 曰修正^|尤 1314338 中, 所述上部電極在流入的上述工序氣體中露出上表面整 體。 8·依據申請專利範圍第7項所述的電漿處理裝置,其 5 中, 所述上部電極通過所述工序氣體和上部電極之間的熱 交換而冷卻。 9·依據申請專利範圍第1項所述的電漿處理裝置,其 中, ίο 所述工序氣體的流量與所述基板的面積成比例。 10 ·依據申請專利範圍第1項所述的電漿處理裝置, 其中, 所述電漿源對應所述基板的大小而在所述基板上方設 置多個。 is 11 ·依據申請專利範圍第1項所述的電漿處理裝置, 其中, 所述電漿源沿著所述基板的前進方向設置多個。 12·依據申請專利範圍第1項所述的電漿處理裝置, 其中, 20 還設置有向所述電漿源供給電源的電源供給裝置。 13 ·依據申請專利範圍第12項所述的電漿處理裝置, 其中, 所述電源供給裝置還具備生成高電壓的功率轉換器。 14 ·依據申請專利範圍第13項所述的電漿處理裝置, 41 1314338 其中, 所述功率轉換器與所述電漿源形成為一體。 15 ·依據申請專利範圍第14項所述的電漿處理裝置, 其中, 5 形成為一體的所述功率轉換器和所述電漿源通過電子 波遮罩物質與外部隔離。 16 .依據申請專利範圍第14項所述的電漿處理裝置, 其中, 連接形成為一體的所述功率轉換器和所述電漿源的線 ίο是高壓線,而控制所述功率轉換器和所述電漿源的控制板 則通過電源線連接。 17 .依據申請專利範圍第16項所述的電漿處理裝置, 其中, 所述電源線被電子波遮罩物質纏繞而與外部隔離。 is 18 ·依據申請專利範圍第1項所述的電漿處理裝置, 其中,還包括: 調節所述基板上和電漿源的間隔的高度調節部; 驅動所述高度調節部的驅動部;和 控制所述驅動部的主控制部。 2〇 19 .依據申請專利範圍第18項所述的電漿處理裝置, 其中, 所述高度調節部包括: 通過所述驅動部的打開/關閉而被驅動的兩側的一對氣 缸、 42In 曰1314338, the upper electrode exposes the upper surface as a whole in the inflowing process gas. 8. The plasma processing apparatus according to claim 7, wherein the upper electrode is cooled by heat exchange between the process gas and the upper electrode. 9. The plasma processing apparatus according to claim 1, wherein the flow rate of the process gas is proportional to an area of the substrate. The plasma processing apparatus according to claim 1, wherein the plasma source is provided above the substrate in accordance with the size of the substrate. The plasma processing apparatus according to claim 1, wherein the plasma source is provided in plurality along a traveling direction of the substrate. 12. The plasma processing apparatus according to claim 1, wherein the power supply device for supplying power to the plasma source is further provided. The plasma processing apparatus according to claim 12, wherein the power supply device further includes a power converter that generates a high voltage. 14. The plasma processing apparatus according to claim 13, 41 1314338, wherein the power converter is formed integrally with the plasma source. The plasma processing apparatus according to claim 14, wherein the power converter and the plasma source formed integrally are separated from each other by an electron wave shielding material. The plasma processing apparatus according to claim 14, wherein the line connecting the power converter and the plasma source formed integrally is a high voltage line, and the power converter and the control unit are controlled. The control board of the plasma source is connected by a power line. The plasma processing apparatus according to claim 16, wherein the power supply line is wound by an electron wave shielding material to be isolated from the outside. The plasma processing apparatus according to claim 1, further comprising: a height adjusting portion that adjusts a spacing between the substrate and the plasma source; a driving portion that drives the height adjusting portion; The main control unit of the drive unit is controlled. The plasma processing apparatus according to claim 18, wherein the height adjusting portion includes: a pair of air cylinders that are driven by opening/closing of the driving portion, 42 *1314338 將通過所述-對氣紅傳達的水準方向能量轉換為垂直 方向能量的位於兩側的一對楔塊、 通過利用通過所述一對楔塊轉換的能量而將被安置的 所述電漿源上升到規定的高度的位於兩側的一對裝載部、 5和 保持所述一對氣缸對所述一對楔塊施加的力相同的連 接部。*1314338 A pair of wedges on both sides that are converted by the said-to-gas red-conveyed level-direction energy into vertical energy, the electricity to be placed by utilizing the energy converted by the pair of wedges A pair of loading portions 5 on both sides of the slurry source rising to a predetermined height, and a connecting portion that maintains the same force applied by the pair of cylinders to the pair of wedges. 4343
TW96145958A 2004-11-15 2005-11-15 Plasma processing apparatus TWI314338B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR1020040092904A KR101071429B1 (en) 2004-11-15 2004-11-15 plasma source
KR1020040092903A KR20060047072A (en) 2004-11-15 2004-11-15 Surface treatment system for substrate using plasma source
KR1020040114723A KR20060076333A (en) 2004-12-29 2004-12-29 Atmospheric pressure plasma apparatus and method for controlling the same
KR1020040115329A KR20060075949A (en) 2004-12-29 2004-12-29 Plasma apparatus
KR1020050046225A KR101195137B1 (en) 2005-05-31 2005-05-31 Cell type electrode structure and atmospheric pressure plasma apparatus using it
KR1020050073542A KR100773725B1 (en) 2005-08-11 2005-08-11 Method to cooling electrode of cleaning device for large area substrate
KR1020050076654A KR100541867B1 (en) 2005-08-22 2005-08-22 Manufacturing method of electrode for atmospheric pressure plasma and electrode structure and atmospheric pressure plasma apparatus using it

Publications (2)

Publication Number Publication Date
TW200834638A TW200834638A (en) 2008-08-16
TWI314338B true TWI314338B (en) 2009-09-01

Family

ID=44819528

Family Applications (3)

Application Number Title Priority Date Filing Date
TW094140176A TWI308355B (en) 2004-11-15 2005-11-15 Plasma processing apparatus
TW96145959A TWI314339B (en) 2004-11-15 2005-11-15 Plasma processing apparatus
TW96145958A TWI314338B (en) 2004-11-15 2005-11-15 Plasma processing apparatus

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW094140176A TWI308355B (en) 2004-11-15 2005-11-15 Plasma processing apparatus
TW96145959A TWI314339B (en) 2004-11-15 2005-11-15 Plasma processing apparatus

Country Status (1)

Country Link
TW (3) TWI308355B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404463B (en) * 2010-06-11 2013-08-01 Creating Nano Technologies Inc Plasma-directing element and array plasma-discharging device

Also Published As

Publication number Publication date
TWI308355B (en) 2009-04-01
TW200834638A (en) 2008-08-16
TWI314339B (en) 2009-09-01
TW200834639A (en) 2008-08-16
TW200620374A (en) 2006-06-16

Similar Documents

Publication Publication Date Title
KR100541867B1 (en) Manufacturing method of electrode for atmospheric pressure plasma and electrode structure and atmospheric pressure plasma apparatus using it
EP2835347B1 (en) Ozone-generating system and ozone generation method
CN104299879B (en) Inductive couple plasma processing device
TW201624589A (en) Methods and systems to enhance process uniformity
US20080017504A1 (en) Sidewall temperature control systems and methods and improved electrolysis cells relating to same
KR20070020109A (en) Processing apparatus with a chamber having therein a high-etching resistant sprayed film
JP2006319327A (en) Chemical vapor deposition apparatus
JP2010530643A5 (en)
JP2010514927A (en) Raw material gas supply apparatus and residual gas treatment treatment and method for thin film deposition apparatus
TWI314338B (en) Plasma processing apparatus
JP2005264231A (en) Fluorine-gas-generating apparatus
CN101203086A (en) Plasma treatment device
KR20090058027A (en) System and method including a particle trap/filter for recirculating a dilution gas
WO2009049213A1 (en) Rf return plates for backing plate support
JP3948913B2 (en) Ozone generator
TW200906499A (en) Method and apparatus for wafer electroless plating
KR100913918B1 (en) A electrode type humidifier
TWI312816B (en) Approach and apparatus for etching a substrate in an etching fluid
JP2009041095A (en) Film forming apparatus and cleaning method thereof
TWI390626B (en) Etching methods, programs, computer-readable recording media and plasma processing devices
JP2013033866A (en) Cleaning method of deposition apparatus, and manufacturing apparatus of semiconductor
CN1748264A (en) Ferroelectric film, semiconductor device, ferroelectric film manufacturing method, and ferroelectric film manufacturing apparatus
KR100783761B1 (en) Vacuum dry apparatus
CN104395244A (en) Zinc plate for corrosion-inhibiting ion water treatment apparatus and method for manufacturing same
JP2009289782A (en) Plasma cvd device and method for manufacturing thin amorphous silicon film

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees