TWI313522B - Conduction control device - Google Patents

Conduction control device Download PDF

Info

Publication number
TWI313522B
TWI313522B TW95109460A TW95109460A TWI313522B TW I313522 B TWI313522 B TW I313522B TW 95109460 A TW95109460 A TW 95109460A TW 95109460 A TW95109460 A TW 95109460A TW I313522 B TWI313522 B TW I313522B
Authority
TW
Taiwan
Prior art keywords
ferromagnetic
region
control device
junction
layer
Prior art date
Application number
TW95109460A
Other languages
Chinese (zh)
Other versions
TW200644303A (en
Inventor
Jorg Wunderlich
Kenchi Ito
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of TW200644303A publication Critical patent/TW200644303A/en
Application granted granted Critical
Publication of TWI313522B publication Critical patent/TWI313522B/en

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

1313522 (1) 九'發明說明 【發明所屬之技術領域】 本發明係關於傳導控制裝置。 【先前技術】 新型的電子裝置正在興起,其中藉由電荷載子自旋’ 至少部分的載子傳渡係受到控制。這些所謂的「自旋電子 」裝置之已知範例包括基於巨磁阻效應(G M R )的自旋閥 和磁性穿隧接面(MTJ)裝置。一般來說,這些裝置包含 交替的鐵磁和非鐵磁材料層,該非鐵磁材料係爲金屬的( 在自旋閥的情況中)或絕緣的(在MTJ裝置的情況中)。 自旋電子裝置具有數種應用,包括磁場感測器和磁性隨機 存取記憶體(MRAM )。基於自旋之電子學及應用的論述 係提出於Science期刊第294卷,第1488〜1495頁( 2001 )之由 S.A. Wolf 等人所著的「Spintronics: A Spin-based Electronics Vision for the Future」 。 早期的自旋電子裝置中,鐵磁材料通常包含例如鐵( Fe)、鈷(Co)或鎳(Ni)的金屬或其合金。然而,某些 較近期的自旋電子裝置係使用鐵磁半導體,例如砷化鎵錳 (Ga,Mn) As,其係被敘述於Science期刊第281卷,第 951 〜956 頁(1 99 8 )之由 H. Ohno 所著的「Making Nonmagnetic Semiconductors Ferromagnetic」中 ° 以鐵磁半導體爲主的裝置具有表露的強磁阻效應。 舉例來說 ’ Physical Review Letters 第 91 卷,第 (2) 1313522 2 1 6602 頁(2003 )之由 C. Ruster 等人所著的「Very Large Magnetoresistance in Lateral Ferromagnetic ( Ga,Mn) As Wires with Nanoconstrictions」係敘述顯現穿 隧磁阻(TMR )的結構。該結構由生長於半絕緣之GaAs 上的19 nm厚之Gao.pwMno.o^As層所製造,其係藉由蝕 刻加以橫向地界定,以形成由狹窄之壓縮段(constriction )連接至任一側上之導線的島狀物。1313522 (1) Description of the Invention [Technical Field of the Invention] The present invention relates to a conduction control device. [Prior Art] A new type of electronic device is emerging in which at least a portion of the carrier propagation system is controlled by the charge carrier spin. Known examples of these so-called "spin-electron" devices include a giant magnetoresistance effect (G M R ) based spin valve and a magnetic tunnel junction (MTJ) device. Generally, these devices comprise alternating layers of ferromagnetic and non-ferromagnetic materials, either metallic (in the case of spin valves) or insulated (in the case of MTJ devices). Spintronic devices have several applications, including magnetic field sensors and magnetic random access memory (MRAM). A discussion of spin-based electronics and applications is presented in "Spintronics: A Spin-based Electronics Vision for the Future" by S.A. Wolf et al., Vol. 294, pp. 1488~1495 (2001). In early spintronic devices, ferromagnetic materials typically contained a metal such as iron (Fe), cobalt (Co) or nickel (Ni) or an alloy thereof. However, some of the more recent spintronic devices use ferromagnetic semiconductors, such as gallium arsenide (Ga, Mn) As, which are described in Science Journal, Vol. 281, pp. 951-956 (1 99 8 ). In the "Making Nonmagnetic Semiconductors Ferromagnetic" by H. Ohno, the ferromagnetic semiconductor-based device has a strong magnetoresistance effect. For example, 'Very Large Magnetoresistance in Lateral Ferromagnetic (Ga,Mn) As Wires with Nanoconstrictions, by C. Ruster et al., 'Physical Review Letters, Vol. 91, pp. (2) 1313522 2 1 6602 (2003) The structure showing the tunneling magnetoresistance (TMR) is described. The structure is fabricated from a 19 nm thick layer of Gao.pwMno.o^As grown on semi-insulating GaAs, which is laterally defined by etching to form a narrow constriction connected to either An island of wires on the side.

Physical R e vi e w L e tt e r s 第 9 3 卷,第 1 1 7 2 0 3 頁( 2004)之由 C. Gould 等人所著的「Tunneling Anisotropic Magnetoresistance: A spin-value like tunnel magnetoresistance using a single magnetic layer」係余戈述 顯示如自旋閥之效應的裝置。該裝置包含由在氧化鋁( A10x )穿隧阻障上的鈦/金(Ti/Au )金屬接點所構成之柱 狀物,該氧化鋁(A1 Ox )穿隧阻障係設置於生長於半絕緣 之GaAs上的70 nm厚之Gao.94Mno.o6As層上。此實驗性 裝置中的強異向性磁滯效應可被歸因於穿隧異向性磁阻( TAMR ),其係由單一鐵磁層中的強自旋軌道耦合所導致 【發明內容】 本發明欲提供一種傳導控制裝置,舉例來說,其係用 於記憶體及/或邏輯電路中,或是用以作爲磁感測器。 根據本發明之第一形態,提供有一種傳導控制裝置, 其包含具有相對高矯頑磁力的第一鐵磁區、具有相對低矯 -5 - (3) 1313522 頑磁力的第二鐵磁區、設置於第一和第二鐵磁區之間以將 第一和第二鐵磁區磁解耦的接面區、以及用以對接面區施 加電場以控制接面區內之電荷載子密度的閘極。 因此,該閘極可被用於在接面區中空乏或累積電荷載 子,以形成穿隧阻障或傳導通道’並從而分別提供讀取及 寫入狀態。 該裝置可包含具有較第二鐵磁區高之矯頑磁力的第三 鐵磁區、設置於第二和第三鐵磁區之間的另一接面區、以 及用以對該另一接面區施加一場(field)以改變接面區內 之電荷載子密度的另一閘極。 該裝置可包含用以對該第二鐵磁區施加一場的又一閘 極。該又一閘極可被用以增加或降低第二鐵磁區中的電荷 載子密度,並因此改變其磁特性,例如矯頑磁力。 第一和第二鐵磁區可包含相同的材料,該材料可爲鐵 磁半導體,例如(Ga,Mn) As。接面區亦可包含相同的材 料。第一和第二鐵磁區及接面區可被形成於一層中。 第一鐵磁區可爲細長形並具有一縱軸。該縱軸可被對 準於沿著易磁化軸的方向。 該裝置可被建構以顯現穿隧異向性磁阻(TAMR )效 應及/或穿隧磁阻(TMR )效應。 第一鐵磁區可由大致配置於一平面的一層或一層之一 部分所提供。該層或層部分可具有小於或等於1 〇 nm的厚 度。第二鐵磁區可具有定向爲離開該層或層部分之平面的 易fe化軸及/或定向爲進入該層或層部分之平面的易磁化 -6- (4) 1313522 軸。第一鐵磁區可由大致配置於該平面或另一平面之另一 層或該層的另一部分所提供。第一鐵磁區可具有定向爲進 入該另一層或該另一層部分之平面的易磁化軸。 根據本發明之第二形態,提供有一種裝置,其包含傳 導區、鐵磁區、用以連接傳導區和鐵磁區的接面區、以及 用以對接面區施加電場以控制接面區內之電荷載子密度的 聞極。 傳導區可包含非鐵磁材料或半導體材料或非鐵磁半導 體材料。接面區可包含半導體材料。傳導區、接面區及/ 或鐵磁區可包含相同的材料。 根據本發明之第二形態,提供有一種傳導控制裝置之 記憶體陣列。 根據本發明之第三形態,提供有一種製造傳導控制裝 置的方法,該方法包含提供具有相對高矯頑磁力的第一鐵 磁區、提供具有相對低矯頑磁力的第二鐵磁區、提供設置 於第一和第二鐵磁區之間以將該第一和第二鐵磁區磁解耦 的接面區、以及提供用以對接面區施加一場以控制接面區 內之電荷載子密度的閘極。 提供該接面區可包含界定第一和第二接面區之間的壓 縮段(constriction)。 根據本發明之第四形態,提供有一種操作傳導控制裝 置的方法,該傳導控制裝置具有一 ·通道,該通道包含具有 相對高矯頑磁力的第一鐵磁區、具有相對低矯頑磁力的第 二鐵磁區、設置於第一和第二鐵磁區之間以將第一和第二 (5) (5)1313522 鐵磁區磁解耦的接面區、以及用以對接面區施加電場以控 制接面區內之電荷載子密度的閘極,該方法包含施加第一 偏壓至該閘極以增加接面區中的電荷載子密度,以及驅動 第一電流脈衝通過該通道,該電流脈衝具有大於一臨界値 的第一電流振幅,以使第二鐵磁區的磁化作用反向。 此可具有使第二鐵磁區的磁化作用可被選擇性地反向 而不使第一鐵磁區的磁化作用反向之優點。 該方法可包含施加第二偏壓至該閘極以降低接面區中 的電荷載子密度,以及驅動第二電流脈衝通過該通道,該 第二電流脈衝具有低於該臨界値的第二電流振幅。 根據本發明之第五形態,提供有一種操作傳導控制裝 置的方法,該傳導控制裝置具有一通道,該通道包含具有 相對高矯頑磁力的第一鐵磁區、具有相對低矯頑磁力的第 二鐵磁區、設置於第一和第二鐵磁區之間以將第一和第二 鐵磁區磁解耦的接面區、以及用以對接面區施加一場以控 制接面區內之電荷載子密度的閘極,該方法包含施加磁場 至該第一和第二鐵磁區以將第二鐵磁區的磁化作用反向, 該磁場大於第二鐵磁區的臨界場,但小於第一鐵磁區的臨 界場。 此可具有使第二鐵磁區的磁化作用可被選擇性地反向 而不使第一鐵磁區的磁化作用反向之優點。 現在將以範例並參照附圖來說明本發明之實施方式, 其中: 本發明之其他目的、特徵及優點將由以下實施方式之 -8- (6) 1313522 詳細說明配合附圖而更爲淺顯。 【實施方式】 裝置結構 參照第1、2和3圖,根據本發明之傳導控制裝置1 係包含細長的傳導通道2以及第一、第二和第三閘極3、4 、5 ° 通道2包含具有相對高矯頑磁力的第一和第二鐵磁區 6、7以及具有相對低矯頑磁力的第三鐵磁區8。第三鐵磁 區8 —般係設置於第一和第二鐵磁區6、7之間,使得第 一和第二鐵磁區6、7之間的傳導會通過第三鐵磁區8而 發生。因此,第一和第二固定區6、7亦作爲源極和汲極 I品.。 .第一、第二和第三鐵磁區6、7、8係由相同的鐵磁材 料所形成。然而,第一、第二和第三鐵磁區6、7、8可由 不同的鐵磁材料所形成,例如鐵磁金屬和鐵磁半導體。該 鐵磁半導體可包含摻雜有磁性摻雜物的半導體以呈鐵磁性 ,且該磁性摻雜物的濃度可變。另外,該鐵磁半導體可摻 雜有額外的非磁性摻雜物。抑或,該鐵磁半導體可包含展 現出鐵磁性但未摻雜且可被摻雜有磁性或非磁性摻雜物的 半導體。 通道2係包括第一和第二接面區9、10。第一接面區 9係將第一鐵磁區6和第三鐵磁區8磁解耦,其意謂磁化 作用反向可在不同磁場下發生於第一和第三區6、8。同樣 -9- (7) 1313522 地,第二接面區1 〇係將第一鐵磁區7和第三鐵磁區8磁 解耦。第一和第二接面區9、10包含半導體材料。第一和 第二接面區9、1 0可由相同的材料所形成,且可由和鐵磁 區6、7、8其中之一以上相同的材料所形成。 鐵磁區和接面區6、7、8、9、1 〇係設置於圖案化之 鐵磁層11中,該圖案化之鐵磁層11包含一鐵磁半導體, 在此例中該鐵磁半導體爲具有〇.〇2之錳濃度χ的砷化鎵 猛合金(Gai-xMnxAs),也就是 Ga〇.98MnQ.〇2As。然而, 可使用具有其他錳濃度的砷化鎵錳合金,例如X = 〇.〇6。 另外,可使用其他鐵磁半導體,例如(In,Mn ) As、( Ga,Mn) P、(Ga,Mn) N 或 Ge^yMiiy。在此例中,圖案化 之鐵磁層11具有10 nm的厚度。然而,鐵磁層ll可更薄 ,例如3nm或5nm,或是更厚。 使用鐵磁半導體來代替鐵磁金屬或合金係具有閘極可 被用來對鐵磁材料施加電場以及改變電荷載子的密度及/ 或分佈的優點,其中該些電荷載子係調解磁序並因此改變 該鐵磁材料的磁特性。其亦可具有減少功率消耗的優點, 因爲鐵磁半導體中之自旋力矩磁化作用反向的臨界電流密 度通常會比在鐵磁金屬中低二〜三階的強度。 圖案化之鐵磁層1 1係覆於包含絕緣體的共同擴張之 絕緣層12上,在此例中該絕緣體爲砷化鋁(A1 As )。可 使用其他絕緣體。該絕緣體可爲結晶。該絕緣體可與該鐵 磁半導體晶格匹配,或是可與該鐵磁半導體晶格不匹配, 以達成幫助導致磁異向性的應變。鐵磁層1 1和絕緣層1 2 -10- (8) 1313522 不需共同擴張。舉例來說’絕緣層12可較大。絕緣層12 係覆於部分被蝕刻的基板1 3上,在此例中該部分被触刻 的基板1 3係包含半絕緣之砷化鎵(G a As )。可使用其他 基板,例如矽。覆蓋層1 4 (在第1圖中所示者係部分被移 除,以求清晰)共同擴張地覆於圖案化之鐵磁層1 1上。 在此例中,覆蓋層14包含AlAs。覆蓋層14和鐵磁層11 不需共同擴張。 特別參照第2和3圖,第二鐵磁區8以及第一和第一 接面區 9、10係由壓縮段(constriction) 15、16所界定 。該些壓縮段1 5、1 6係界定於第一側壁1 7以及相對之第 二側壁1 8的第一和第二部分1 8 !、1 8 2之間。在平面圖中 ,各側壁部分1 8 !、1 8 2係提供朝向第一側壁1 7的內向凹 口。壓縮段1 5、1 6可使用其他的側壁配置加以界定,例 如使用其他形狀的折曲段(inflection )及/或使用一對相 對的折曲段。壓縮段15、16可爲細長形,例如由狹窄的 傳導通道部分所提供。 接面區9、10可以其他方式加以界定且不需使用壓縮 段。舉例來說,接面區9、10可包含不同的材料或是具有 不同摻雜濃度的材料。 桌一和弟一鐵磁區6、7通常爲細長形並具有寬度w 和長度L,使得W &lt; L。寬度W可小於或等於丨〇〇 nm且 可小於或等於50 nm。在此例中’ W爲50 ® 弟二鐵磁區8可爲細長形並具有寬度w和長度丨。寬 -11 - (9) 1313522 度w可小於W。在此例中,w爲4 0 n m而 磁性形狀異向性可被用以降低相對於 區6、7的矯頑磁力之第三鐵磁區8的矯 若鐵磁區6、7、8包含相同材料時。因此 可藉由將其配置爲相較於其他鐵磁區6、 長比而被建構爲具有較低矯頑磁力。該寬 寬度對長度的比率,亦即w/1和W/L °因 8可較第一和第二鐵磁區6、7具有更高的 壓縮段1 5、16各自具有小於w的寬 寬度c可小於20 nm。在此例中,該壓縮 nm ° 壓縮段15、16可具有不同的寬度。 壓縮段15可足夠窄以對裝置1提供穿隧 異向性磁阻(TAMR),而第二壓縮段16 以不提供穿隧阻障,反之亦然。因此’第-定,但僅一壓縮段15、16提供穿隧阻障。 第一和第二閘極3、4分別控制第一和 1 0中的電荷載子密度,以將接面區9、1 0 緣狀態之間,較佳分別爲歐姆和穿隧狀態 在此例中,第一和第二閘極3、4係 大致位於同一平面且被橫向地與接面區9 被配置爲與第一側壁1 7相鄰以提供側閘 一和第二閘極3、4係經由第一側壁1 7而丨 2〇施加至第一和第二接面區9、10中。然 1 爲 60 nm。 第一和第二鐵磁 頑磁力,尤其是 ,第三鐵磁區8 7具有不同的寬 長比可被定義爲 此,第三鐵磁區 寬長比。 度C。該壓縮段 段寬度c爲1 0 舉例來說,第一 阻障而顯現穿隧 可較寬,寬至足 三磁區8可被界 丨第二接面區9、 切換於傳導和絕 〇 與接面區9、1〇 、10隔開,並且 配置。因此,第 捋個別電場1 9、 而,可使用其他 -12- (10) 1313522 的閘配置。舉例來說,各側閘極3、4可包含一對相對的 側閘極,其有時被稱爲「分裂閘極(spUt-gate )」。各閘 極3、4可額外或替代性地包含覆蓋接面區9、1 〇的頂閘 極及/或位於接面區9、1 〇之下的後閘極。閘極3、4可藉 由介電層(未顯示)而與接面區9、10隔開。 在該側閘配置中,第一和第二閘極3、4係分別藉由 間隔s而與第一和第二接面區9、1 0隔開。間隔s可小於 2 0 nm,小於1 0 nm或小於5 nm。在此例中,間隔s爲i 〇 n m 〇 在頂閘極及/或側閘極配置中,閘極3、4和接面9、 1 〇之間的間隔可由中間絕緣體(未顯示)的厚度加以界定 ,舉例來說,該中間絕緣體係包含非晶絕緣材料,例如二 氧化矽(Si02)、氮化矽(Si3N4),或絕緣之結晶材料, 例如用於(G a,Μ n ) A s的 A1A s。該中間絕緣體較佳應足 夠厚以至少在一般閘極電壓下防止穿隧或崩潰。該絕緣體 的厚度可小於2 0 nm且可小於1 0 nm。該絕緣體的厚度可 小於6或5 nm,但大於2或3 nm。 可基於所施加之電場1 9、20及閘極3、4和接面9、 1 0或分開之絕緣體(未顯示)之間的間隙之崩潰場的強度 來選擇間隔。 第三閘極5係被配置爲第三鐵磁區8的側閘極,以控 制第三鐵磁區8中的電荷載子密度,且因此改變矯頑磁力 。此可具有降低磁化作用反向所需的電流及/或磁場,並 因此降低功率消耗的優點。其亦可具有當該裝置被用以作 -13- (11) 1313522 爲磁場感測器時,其可被用以增加或降低該裝置的靈敏度 的優點。 第三閘極5係大致與第三鐵磁區8同一平面,並橫向 ' 地與該第三鐵磁區8隔開,且被配置爲鄰近第二側壁1 8, 以提供側閘配置。因此,第三閘極5係施加電場21通過 . 第二側壁1 8而進入第三鐵磁區8。然而,可使用其他的閘 _ 配置。舉例來說,第三閘極5可包含一對相對的側閘極。 φ 第三閘極5可額外地或替代性地包含覆於自由區8之上的 頂閘極及/或位於第三鐵磁區8之下的後閘極。該頂或底 閘極配置可具有可將第三鐵磁區8之較大面積或體積暴露 於電場並因此提供對鐵磁區8之磁特性(例如矯頑磁力) 的較佳控制之優點。稍後將更爲詳細地敘述頂閘極配置。 在該側閘配置中,第三閘極5和第三鐵磁區8係由間 隔s'加以隔開。該間隔s'可小於2 0 nm,小於1 〇 nm或小 於5 n m。在此例中,間隔W爲1 0 n m。 • 在頂閘極及/或側閘極配置中,閘極5和第三鐵磁區8 之間的間隔可由中間絕緣體(未顯示)的厚度加以界定, 該中間絕緣體係例如包含非晶或結晶絕緣材料,如先前所 述。該絕緣體的厚度可小於2 0 nm且可小於1 〇 nm。該絕 * 緣體的厚度可小於6或5 nm,但大於2或3 nm。 * 可基於所施加之電場21及鬧極5和第三鐵磁區8或 分開之絕緣體(未顯示)之間的間隙之崩潰場的強度來選 擇間隔。 閘極3、4、5係設置於圖案化之鐵磁層1 1中,並覆 -14- (12) 1313522 於絕緣層1 2和基板1 3上且位於覆蓋層1 4下。 可使用非鐵磁區(例如非鐵磁半導體區)來替代第一 鐵磁區6。第二鐵磁區7可被省略,或是可使用非鐵磁區 來替代。包含傳導區、鐵磁區、用以電耦合該傳導區和鐵 磁區的接面區、以及用以控制接面區內的電荷載子密度之 閘極的裝置可被用來作爲磁感測器。 磁化作用 在此例中,第一、第二和第三鐵磁區6、7、8係由( G a,Μ n ) A s所形成。(G a, Μ η ) A s中的鐵磁性係因流動之 電洞及局部Μη離子之間的交換交互作用而產生。因此, 改變電荷載子的密度可改變裝置1的磁特性,且甚至可抑 制磁序。 鐵磁區6、7、8可各自包含個別的單一磁域。藉由將 區域6、7、8建構爲具有小於給定尺寸之大小(典型爲1 〜10 μιη的等級),可將區域6、7、8配置爲具有單一磁 域。 參照第4圖,係顯示第一、第二和第三鐵磁區6、7、 8及其個別的磁化作用22、23、24之示意圖。 第一、第二和第三鐵磁區6、7、8係在層11之平面 中被磁化並具有個別的磁化作用22、23、24。然而,鐵磁 區6、7、8其中之一或多個可在層11之平面外被磁化’ 例如垂直於層1 1之平面。舉例來說,第一和第二鐵磁區6 、7可在層11之平面中被磁化,而第三鐵磁區8可在層 -15- (13) 1313522 1 1之平面外被磁化,反之亦然。 生長於GaAs上的(Ga,Mn) As薄膜會受到肇因於晶 格不匹配的壓縮應變並在低溫下(在此情況中係低於約 4·2 〇K)顯現具有沿著[100]和[010]的晶向之易磁化軸的雙 軸異向性。因此,一般來說,沿著[100]、[010]、[-100]或 [-〇 1 〇]的晶向對準之磁化作用各自具有相同的異向性能量 〇 然而,另外的異向性可被引入,例如藉由形狀或應變 ,其可導致易磁化軸移動及/或打破四重簡倂性(4-fold degeneracy),並從而使得一易磁化軸較佳積極地沿著另 一易磁化軸對準。 第三鐵磁區8係沿著縱軸25而爲細長形,以引入形 狀異向性。第一和第二鐵磁區6、7亦可沿著軸2 5而爲細 長形。在此例中,縱軸25係沿著[100]的晶向26對準。然 而,縱軸25可沿著[010]的晶向27對準。 # 在較高溫度下,接近居禮溫度,生長於GaAs上的(Physical R e vi ew L e tt ers Vol. 9 3, No. 1 1 7 2 0 3 (2004) by C. Gould et al. "Tunneling Anisotropic Magnetoresistance: A spin-value like tunnel magnetoresistance using a single The magnetic layer is a device that shows the effect of a spin valve. The device comprises a pillar formed of a titanium/gold (Ti/Au) metal junction on an alumina (A10x) tunneling barrier, the alumina (A1 Ox ) tunneling barrier being disposed on the growth 70 nm thick layer of Gao.94 Mno.o6As on semi-insulating GaAs. The strong anisotropic hysteresis effect in this experimental device can be attributed to tunneling anisotropic magnetoresistance (TAMR), which is caused by strong spin-orbit coupling in a single ferromagnetic layer. The invention is intended to provide a conduction control device, for example, for use in a memory and/or logic circuit, or as a magnetic sensor. According to a first aspect of the present invention, there is provided a conduction control device comprising a first ferromagnetic region having a relatively high coercive force, a second ferromagnetic region having a relatively low-correction -5, 1313522 coercive force, a junction region disposed between the first and second ferromagnetic regions to magnetically decouple the first and second ferromagnetic regions, and an electric field applied to the abutment region to control the charge sub-density in the junction region Gate. Thus, the gate can be used to hollow out or accumulate charge carriers in the junction region to form a tunneling barrier or conduction channel' and thereby provide read and write states, respectively. The device may include a third ferromagnetic region having a higher coercive force than the second ferromagnetic region, another junction region disposed between the second and third ferromagnetic regions, and the other interface The face region applies a field to change another gate of the charge carrier density within the junction region. The device can include a further gate for applying a field to the second ferromagnetic region. The further gate can be used to increase or decrease the charge carrier density in the second ferromagnetic region and thus change its magnetic properties, such as coercive force. The first and second ferromagnetic regions may comprise the same material, which may be a ferromagnetic semiconductor such as (Ga,Mn) As. The junction area can also contain the same material. The first and second ferromagnetic regions and junction regions may be formed in one layer. The first ferromagnetic region can be elongated and have a longitudinal axis. The longitudinal axis can be aligned in the direction along the axis of easy magnetization. The device can be constructed to exhibit tunneling anisotropic magnetoresistance (TAMR) effects and/or tunneling magnetoresistance (TMR) effects. The first ferromagnetic region may be provided by a portion or a portion of the layer disposed substantially in a plane. The layer or layer portion may have a thickness less than or equal to 1 〇 nm. The second ferromagnetic region can have an easy-producing axis oriented away from the plane of the layer or layer portion and/or an easy magnetization -6-(4) 1313522 axis oriented into the plane of the layer or layer portion. The first ferromagnetic region may be provided by another layer disposed substantially in the plane or another plane or another portion of the layer. The first ferromagnetic region can have an easy axis of magnetization oriented to enter the plane of the other layer or portion of the other layer. According to a second aspect of the present invention, there is provided a device comprising a conductive region, a ferromagnetic region, a junction region for connecting the conduction region and the ferromagnetic region, and an electric field for the interface region to control the junction region The charge of the charge carrier density. The conductive region may comprise a non-ferromagnetic material or a semiconductor material or a non-ferromagnetic semiconductor material. The junction region can comprise a semiconductor material. The conductive, junction, and/or ferromagnetic regions may comprise the same material. According to a second aspect of the present invention, there is provided a memory array of a conduction control device. According to a third aspect of the present invention, there is provided a method of fabricating a conduction control device, the method comprising: providing a first ferromagnetic region having a relatively high coercive force, providing a second ferromagnetic region having a relatively low coercive force, providing a junction region disposed between the first and second ferromagnetic regions to magnetically decouple the first and second ferromagnetic regions, and a field for providing a field for the abutment region to control the charge carriers in the junction region The gate of density. Providing the junction region can include defining a constriction between the first and second junction regions. According to a fourth aspect of the present invention, there is provided a method of operating a conduction control device having a channel including a first ferromagnetic region having a relatively high coercive force and having a relatively low coercive force a second ferromagnetic region, a junction region disposed between the first and second ferromagnetic regions to magnetically decouple the first and second (5) (5) 1313522 ferromagnetic regions, and for applying the abutment region An electric field to control a gate of a charge sub-density in the junction region, the method comprising applying a first bias voltage to the gate to increase a charge carrier density in the junction region, and driving the first current pulse through the channel The current pulse has a first current amplitude greater than a critical threshold to reverse the magnetization of the second ferromagnetic region. This may have the advantage that the magnetization of the second ferromagnetic region can be selectively reversed without reversing the magnetization of the first ferromagnetic region. The method can include applying a second bias voltage to the gate to reduce a charge carrier density in the junction region, and driving a second current pulse through the channel, the second current pulse having a second current below the threshold amplitude. According to a fifth aspect of the present invention, there is provided a method of operating a conduction control device having a passage including a first ferromagnetic region having a relatively high coercive force and a first having a relatively low coercive force a ferromagnetic region, a junction region disposed between the first and second ferromagnetic regions to magnetically decouple the first and second ferromagnetic regions, and a field for the abutment surface region to control the junction region a gate of a charge carrier density, the method comprising applying a magnetic field to the first and second ferromagnetic regions to reverse the magnetization of the second ferromagnetic region, the magnetic field being greater than a critical field of the second ferromagnetic region, but less than The critical field of the first ferromagnetic zone. This may have the advantage that the magnetization of the second ferromagnetic region can be selectively reversed without reversing the magnetization of the first ferromagnetic region. Embodiments of the present invention will now be described by way of example and with reference to the accompanying drawings, in which: FIG. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; [Embodiment] Referring to Figures 1, 2 and 3, the conduction control device 1 according to the present invention comprises an elongated conductive channel 2 and first, second and third gates 3, 4, 5 ° channel 2 comprising First and second ferromagnetic regions 6, 7 having a relatively high coercive force and a third ferromagnetic region 8 having a relatively low coercive force. The third ferromagnetic region 8 is generally disposed between the first and second ferromagnetic regions 6, 7 such that conduction between the first and second ferromagnetic regions 6, 7 passes through the third ferromagnetic region 8 occur. Therefore, the first and second fixed regions 6, 7 also serve as source and drain electrodes. The first, second and third ferromagnetic regions 6, 7, 8 are formed from the same ferromagnetic material. However, the first, second and third ferromagnetic regions 6, 7, 8 may be formed of different ferromagnetic materials, such as ferromagnetic metals and ferromagnetic semiconductors. The ferromagnetic semiconductor may comprise a semiconductor doped with a magnetic dopant to be ferromagnetic, and the concentration of the magnetic dopant is variable. Additionally, the ferromagnetic semiconductor can be doped with additional non-magnetic dopants. Alternatively, the ferromagnetic semiconductor can comprise a semiconductor that exhibits ferromagnetism but is undoped and can be doped with a magnetic or non-magnetic dopant. Channel 2 includes first and second junction regions 9, 10. The first junction region 9 magnetically decouples the first ferromagnetic region 6 from the third ferromagnetic region 8, which means that the magnetization reversal can occur in the first and third regions 6, 8 under different magnetic fields. Similarly, -9-(7) 1313522, the second junction region 1 is magnetically decoupled from the first ferromagnetic region 7 and the third ferromagnetic region 8. The first and second junction regions 9, 10 comprise a semiconductor material. The first and second junction regions 9, 10 may be formed of the same material and may be formed of the same material as one or more of the ferromagnetic regions 6, 7, 8. The ferromagnetic region and the junction region 6, 7, 8, 9, 1 are disposed in the patterned ferromagnetic layer 11, the patterned ferromagnetic layer 11 comprising a ferromagnetic semiconductor, in this case the ferromagnetic The semiconductor is a gallium arsenide alloy (Gai-xMnxAs) having a manganese concentration of 〇.〇2, that is, Ga〇.98MnQ.〇2As. However, gallium arsenide manganese alloys having other manganese concentrations can be used, such as X = 〇.〇6. In addition, other ferromagnetic semiconductors such as (In, Mn) As, (Ga, Mn) P, (Ga, Mn) N or Ge^yMiiy may be used. In this example, the patterned ferromagnetic layer 11 has a thickness of 10 nm. However, the ferromagnetic layer 11 can be thinner, such as 3 nm or 5 nm, or thicker. The use of ferromagnetic semiconductors instead of ferromagnetic metals or alloys has the advantage that the gates can be used to apply an electric field to the ferromagnetic material and to change the density and/or distribution of charge carriers, wherein the charge carriers mediate the magnetic order and Therefore, the magnetic properties of the ferromagnetic material are changed. It can also have the advantage of reducing power consumption because the critical current density of the spin torque magnetization in the ferromagnetic semiconductor is generally two to three orders of magnitude lower than in the ferromagnetic metal. The patterned ferromagnetic layer 11 is overlaid on a coextensive insulating layer 12 comprising an insulator, which in this case is aluminum arsenide (A1 As ). Other insulators can be used. The insulator can be crystalline. The insulator may be lattice matched to the ferromagnetic semiconductor or may be mismatched to the ferromagnetic semiconductor lattice to achieve strain that contributes to magnetic anisotropy. The ferromagnetic layer 1 1 and the insulating layer 1 2 -10- (8) 1313522 do not need to be expanded together. For example, the insulating layer 12 can be larger. The insulating layer 12 is applied to a portion of the substrate 13 to be etched. In this example, the partially etched substrate 13 comprises semi-insulating gallium arsenide (G a As ). Other substrates, such as helium, can be used. The cover layer 14 (the portion shown in Fig. 1 is removed for clarity) is coextensively overlaid on the patterned ferromagnetic layer 11. In this example, the cover layer 14 contains AlAs. The cover layer 14 and the ferromagnetic layer 11 do not need to be coextensive. With particular reference to Figures 2 and 3, the second ferromagnetic region 8 and the first and first junction regions 9, 10 are defined by constrictions 15, 16. The compression sections 15 and 16 are defined between the first side wall 17 and the first and second portions 1 8 !, 1 8 2 of the opposite second side wall 18. In plan view, each of the side wall portions 1 8 !, 18 2 provides an inward recess toward the first side wall 17 . Compression segments 15 5, 16 may be defined using other sidewall configurations, such as using other shapes of inflection and/or using a pair of opposing flex segments. The compression sections 15, 16 can be elongate, such as provided by a narrow conductive channel portion. The junction areas 9, 10 can be defined in other ways and do not require the use of compression sections. For example, the junction regions 9, 10 may comprise different materials or materials having different doping concentrations. Table 1 and brother-ferromagnetic zones 6, 7 are generally elongate and have a width w and a length L such that W &lt; L. The width W can be less than or equal to 丨〇〇 nm and can be less than or equal to 50 nm. In this example, 'W is 50 ® di ferromagnetic region 8 can be elongated and have a width w and a length 丨. Width -11 - (9) 1313522 degrees w can be less than W. In this case, w is 40 nm and magnetic shape anisotropy can be used to reduce the ferromagnetic regions 6, 7, 8 of the third ferromagnetic region 8 relative to the coercive force of the regions 6, 7. When the same material. Therefore, it can be constructed to have a lower coercive force by being configured to be compared with other ferromagnetic regions 6, a length ratio. The ratio of the wide width to the length, i.e., w/1 and W/L °, may have a higher compression width than the first and second ferromagnetic regions 6, 7 each having a wide width less than w. c can be less than 20 nm. In this case, the compressed nm° compression sections 15, 16 can have different widths. The compression section 15 can be narrow enough to provide tunneling anisotropic magnetoresistance (TAMR) to the device 1 while the second compression section 16 does not provide a tunneling barrier and vice versa. Therefore, the first step, but only one of the compression sections 15, 16 provides a tunneling barrier. The first and second gates 3, 4 respectively control the charge carrier density in the first and 10, respectively, to connect the junction regions 9, 10 edge states, preferably in ohmic and tunneling states, respectively. The first and second gates 3, 4 are substantially in the same plane and are laterally and adjacent to the junction region 9 to be adjacent to the first sidewall 17 to provide the side gate 1 and the second gate 3, 4 It is applied to the first and second junction regions 9, 10 via the first side wall 17 and the second side. However, 1 is 60 nm. The first and second ferromagnetic coercive forces, in particular, the third ferromagnetic region 807 having a different aspect ratio can be defined as the third ferromagnetic region width to length ratio. Degree C. The width of the compression segment c is 1 0. For example, the first barrier can be seen to be wider, and the width to the third magnetic region 8 can be bounded by the second junction region 9, switched to conduction and absolute connection. The face areas 9, 1 and 10 are separated and arranged. Therefore, the first individual electric field is 19, and other -12-(10) 1313522 gate configurations can be used. For example, each of the side gates 3, 4 can include a pair of opposing side gates, sometimes referred to as "spUt-gates." Each of the gates 3, 4 may additionally or alternatively comprise a top gate covering the junction regions 9, 1 and/or a rear gate below the junction regions 9, 1 . The gates 3, 4 may be separated from the junction regions 9, 10 by a dielectric layer (not shown). In the side gate configuration, the first and second gates 3, 4 are separated from the first and second junction regions 9, 10 by spacing s, respectively. The interval s can be less than 20 nm, less than 10 nm or less than 5 nm. In this example, the spacing s is i 〇 nm 〇 in the top gate and/or side gate configuration, the spacing between the gates 3, 4 and the junctions 9, 1 可由 may be the thickness of the intermediate insulator (not shown) By way of example, the intermediate insulation system comprises an amorphous insulating material, such as cerium oxide (SiO 2 ), cerium nitride (Si 3 N 4 ), or an insulating crystalline material, for example for (G a, Μ n ) A s A1A s. The intermediate insulator should preferably be thick enough to prevent tunneling or collapse at least at normal gate voltages. The insulator may have a thickness of less than 20 nm and may be less than 10 nm. The insulator can be less than 6 or 5 nm thick, but greater than 2 or 3 nm. The spacing can be selected based on the strength of the collapse field of the applied electric field 19, 20 and the gap between the gates 3, 4 and the junction 9, 10 or a separate insulator (not shown). The third gate 5 is configured as a side gate of the third ferromagnetic region 8 to control the charge carrier density in the third ferromagnetic region 8, and thus to change the coercive force. This may have the advantage of reducing the current and/or magnetic field required for the magnetization reversal and thus reducing power consumption. It may also have the advantage that it can be used to increase or decrease the sensitivity of the device when the device is used as a magnetic field sensor. The third gate 5 is substantially flush with the third ferromagnetic region 8 and laterally spaced from the third ferromagnetic region 8 and is disposed adjacent the second sidewall 18 to provide a side gate configuration. Therefore, the third gate 5 applies an electric field 21 through the second side wall 18 to enter the third ferromagnetic region 8. However, other gate configurations can be used. For example, the third gate 5 can include a pair of opposing side gates. The third gate 5 of φ may additionally or alternatively comprise a top gate overlying the free region 8 and/or a back gate below the third ferromagnetic region 8. The top or bottom gate configuration may have the advantage of exposing a larger area or volume of the third ferromagnetic region 8 to the electric field and thus providing better control of the magnetic properties (e.g., coercive force) of the ferromagnetic region 8. The top gate configuration will be described in more detail later. In the side gate configuration, the third gate 5 and the third ferromagnetic region 8 are separated by an interval s'. The interval s' can be less than 20 nm, less than 1 〇 nm or less than 5 n m. In this example, the interval W is 10 n m. • In the top gate and/or side gate configuration, the spacing between the gate 5 and the third ferromagnetic region 8 may be defined by the thickness of an intermediate insulator (not shown), for example comprising amorphous or crystalline Insulation material as previously described. The insulator may have a thickness of less than 20 nm and may be less than 1 〇 nm. The thickness of the rim can be less than 6 or 5 nm but greater than 2 or 3 nm. * The interval can be selected based on the strength of the applied field 21 and the strength of the collapse field of the gap between the pole 5 and the third ferromagnetic region 8 or a separate insulator (not shown). The gates 3, 4, and 5 are disposed in the patterned ferromagnetic layer 11 and are covered with -14-(12) 1313522 on the insulating layer 12 and the substrate 13 and under the cap layer 14. A non-ferromagnetic region (e.g., a non-ferromagnetic semiconductor region) may be used in place of the first ferromagnetic region 6. The second ferromagnetic region 7 may be omitted or may be replaced with a non-ferromagnetic region. A device including a conductive region, a ferromagnetic region, a junction region for electrically coupling the conduction region and the ferromagnetic region, and a gate for controlling the charge sub-density in the junction region can be used as the magnetic sensing Device. Magnetization In this example, the first, second and third ferromagnetic regions 6, 7, 8 are formed by (G a, Μ n ) A s . (G a, Μ η ) The ferromagnetism in A s is caused by the exchange interaction between the flowing holes and the local Μn ions. Therefore, changing the density of the charge carriers can change the magnetic characteristics of the device 1, and can even suppress the magnetic sequence. The ferromagnetic regions 6, 7, 8 may each comprise an individual single magnetic domain. The regions 6, 7, 8 can be configured to have a single magnetic domain by constructing the regions 6, 7, 8 to have a size smaller than a given size (typically a level of 1 to 10 μηη). Referring to Fig. 4, there are shown schematic views of the first, second and third ferromagnetic regions 6, 7, 8 and their individual magnetizations 22, 23, 24. The first, second and third ferromagnetic regions 6, 7, 8 are magnetized in the plane of the layer 11 and have individual magnetizations 22, 23, 24. However, one or more of the ferromagnetic regions 6, 7, 8 may be magnetized outside the plane of the layer 11 'e, for example, perpendicular to the plane of the layer 1 1 . For example, the first and second ferromagnetic regions 6, 7 may be magnetized in the plane of the layer 11, and the third ferromagnetic region 8 may be magnetized outside the plane of the layer -15-(13) 1313522 1 1 , vice versa. The (Ga,Mn) As film grown on GaAs is subjected to compressive strain due to lattice mismatch and appears at low temperatures (in this case less than about 4.2 〇K) along [100] And the biaxial anisotropy of the easy magnetization axis of the crystal orientation of [010]. Therefore, in general, the magnetizations of the crystal orientation along [100], [010], [-100], or [-〇1 〇] each have the same anisotropic energy. However, another anisotropy Sex can be introduced, for example by shape or strain, which can cause the easy axis of magnetism to move and/or break the four fold degeneracy, and thereby make an easy magnetization axis better positively along another Easy to magnetize the axis alignment. The third ferromagnetic region 8 is elongated along the longitudinal axis 25 to introduce shape anisotropy. The first and second ferromagnetic regions 6, 7 may also be elongated along the axis 25. In this example, the longitudinal axis 25 is aligned along the crystal orientation 26 of [100]. However, the longitudinal axis 25 can be aligned along the crystal orientation 27 of [010]. # At a higher temperature, close to the Curie temperature, grown on GaAs (

Ga,As ) Μη亦顯現具有沿著[1 1 0]的晶向之易磁化軸的單 軸異向性。因此,縱軸25可沿著[1 10]的晶向28對準。 易磁化軸可被建構爲位於平面外的方向。GaMnAs中 * 的平面外異向性可藉由將張力應變引入GaMnAs膜中來達 ' 成,例如藉由在InGaAs上生長GaMnAs膜,或是藉由降 低生長於GaAs上之GaMnAs膜中的電洞密度。因此,藉 由使用第三閘極5而對第三鐵磁區8施加電場,第三鐵磁 區8可選擇性地顯現平面外磁異向性,而第一和第二鐵磁 -16 - (14) 1313522Ga, As) Μη also exhibits uniaxial anisotropy with an easy axis of magnetization along the crystal orientation of [1 1 0]. Thus, the longitudinal axis 25 can be aligned along the crystal orientation 28 of [1 10]. The easy magnetization axis can be constructed to be in an out-of-plane direction. The out-of-plane anisotropy of GaMnAs can be achieved by introducing tensile strain into the GaMnAs film, for example, by growing a GaMnAs film on InGaAs or by reducing a hole in a GaMnAs film grown on GaAs. density. Therefore, by applying an electric field to the third ferromagnetic region 8 by using the third gate 5, the third ferromagnetic region 8 can selectively exhibit out-of-plane magnetic anisotropy, while the first and second ferromagnetic-16 - (14) 1313522

區6、7仍顯現平面中磁異向性。此可導致較大的TAMR 效應。 若使用不同的鐵磁材料,則易磁化軸可不同。 在此例中’易磁化軸係位於層】i的平面中。當未施 加外部磁場或電流’磁化作用2 2、2 3 ' 2 4係沿著易磁化 軸20、27其中之一對準。然而,若以不同於磁化作用方 向的方向施加外部磁場,則磁化作用2 2、2 3、2 4的方向 可自一易磁化軸26、27切換至另一者26、27。另外,若 施加夠強的電流以運用自旋力矩,則磁化作用24的方向 可自一易磁化軸26、27切換至另一者26、27。 如第4圖所示’當磁化作用2 4與易磁化軸2 6、2 7其 中之一對準時,會產生較高電阻狀態。在此例中,當磁化 作用2 4係沿著第一易磁化軸2 6,亦即沿著[丨〇 〇 ]的晶向時 ’會產生相對低的電阻狀態,而當磁化作用24係沿著第 二易磁化軸27,亦即沿著[〇 1 〇]的晶向時,會產生相對高 的電阻狀態。 在此例中,該裝置之縱軸2 5係對準[1 0 0 ]的晶軸2 6。 當第三鐵磁區8的磁化作用2 4平行於電流而沿著[1 〇 〇 ]的 方向的對準時,該裝置係處於低電阻狀態。當磁化作用垂 直於電流而沿著[0 1 0 ]的方向對準時,裝置1係處於高電阻 狀態。 雖然裝置1可利用TAMR效應,但其不需如此。反之Zones 6, 7 still exhibit magnetic anisotropy in the plane. This can result in a larger TAMR effect. If different ferromagnetic materials are used, the easy magnetization axes can be different. In this case, the 'easy magnetization axis is in the plane of the layer i'. When no external magnetic field or current is applied, the magnetization 2 2, 2 3 ' 2 4 is aligned along one of the easy magnetization axes 20, 27. However, if an external magnetic field is applied in a direction different from the direction of magnetization, the direction of magnetization 2 2, 2 3, 2 4 can be switched from one easy magnetization axis 26, 27 to the other 26, 27. Alternatively, if a strong current is applied to apply the spin torque, the direction of magnetization 24 can be switched from one easy magnetization axis 26, 27 to the other 26, 27. As shown in Fig. 4, when the magnetization 24 is aligned with one of the easy magnetization axes 26, 27, a higher resistance state is produced. In this case, when the magnetization 24 is along the first easy axis 2, that is, along the crystal direction of [丨〇〇], a relatively low resistance state is produced, and when the magnetization 24 is along the line When the second easy magnetization axis 27, that is, along the crystal orientation of [〇1 〇], a relatively high resistance state is generated. In this example, the longitudinal axis 25 of the device is aligned with the crystal axis 26 of [1 0 0]. When the magnetization 24 of the third ferromagnetic region 8 is aligned parallel to the current and in the direction of [1 〇 〇 ], the device is in a low resistance state. When the magnetization is aligned with the current and aligned in the direction of [0 1 0 ], the device 1 is in a high resistance state. Although the device 1 can utilize the TAMR effect, it does not need to be. on the contrary

’裝置1可利用其他效應,例如其中裝置電阻係取決於第 三鐵磁區8之磁化作用2 4的方向之穿隧磁阻效應(TMR -17- (15) 1313522 ),該第三鐵磁區8之磁化24的方向係相對於第一和第 二鐵磁區6、7之磁化作用22、23的方向。 雖然鐵磁區6、7、8係由相同材料所形成,但第三鐵 磁區8可被建構爲具有較低矯頑磁力,例如藉由選擇性地 將第三鐵磁區8成形爲具有給定幾何形狀,在此例中其爲 較不細長。額外地或替代性地,可使用其他降低矯頑磁力 的技術,例如藉由蝕刻或在自由區8中藉由離子佈植而引 入損害或其組合來使區域8變細。 因第三鐵磁區8較第一和第二區6、7具有更低的矯 頑磁力,其磁化作用24之反向係發生於較其他兩鐵磁區6 、7的磁化作用22、23之反向更低的臨界磁場。因此,可 施加高於第三鐵磁區8的臨界場但低於第一和第二鐵磁區 6、7的臨界場之磁場。當施加如此之場時,第三鐵磁區8 的磁化作用24可被切換,而第一和第二鐵磁區6、7的磁 化作用2 2、2 3仍同樣地定向於個別之方向。可利用此行 爲而使得在正常操作期間,第一和第二鐵磁區6、7提供 具有固定方向磁化作用22、23的區域,而第三鐵磁區8 提供具有可反向方向磁化作用24的區域。因此,第一和 第二鐵磁區 6、7可各自被稱爲「固定」或「釘扎( pinned )」區,而第三鐵磁區8可被視爲「自由」區。爲 了方便’第一和第二鐵磁區6、7在下文中係稱爲第一和 第二固定區6、7’而第三區8在下文中係稱爲自由區8。 如先前所提及的,若施加夠強的電流,則磁化作用2 4 的方向可自一易磁化軸26、27切換至另一者26、27。此 -18- (16) 1313522 可能是因爲磁域壁上之自旋力矩作用,其導致該壁移動通 過自由區8。 第一和第二固定區6、7的磁化作用22、23係對準於 ' 相同方向。此可藉由施加高於第一和第二固定區6、7的 臨界場之磁場來達成。 . 相較於習知之自旋電子裝置,裝置1可具有多個優點 〇 φ 舉例來說,習知自旋電子裝置通常會採取垂直堆疊的 形式,包含複雜的多層配置,其中各層具有固定功能。然 而,裝置1可被視爲較簡單的配置,其中裝置1的不同部 分可具有不同功能且可被調諧。舉例來說,接面區9、1〇 可作用如穿隧阻障而提供磁域壁釘扎及/或作爲磁域壁之 成核區域。第三鐵磁區8的磁特性,例如磁異向性和矯頑 磁力,可被變動。 • 裝置操作 . 參照第5圖,用以操作傳導控制裝置1的設備29係 包括用以驅動電流脈衝I通過通道2的電流源3 0和選用 之串聯電阻器3 1、用以將第一、第二和第三閘極電壓v 〇, 、vG2、VG3分別施加至第一、第二和第三側閘極3、4、5 , 的第一、第二和第三電壓源3 2、3 3、3 4、以及用以量測第 一和第二固定區6、7之間的電壓降V s D並因此判定裝置】 係處於高或低電阻狀態的伏特計3 5。 亦可提供用以產生fe場B t; X t的來源3 6。來源3 6 g -19- (17) 1313522 a電感器(未顯示)’例如導線、迴路或線圈、以及來源 (未顯不),以驅動電流通過該電感器。該電感器(未顯 示)可被設置於接近裝置1(第1圖)的基板13(第1圖 )上。 裝置1可被用以儲存資料及/或感測磁場。 現在將參照第5〜7圖敘述將資料寫入裝置1及自裝 置1讀取資料的程序。 裝置1係被冷卻至該鐵磁材料的居禮溫度tc以下。 在此例中’ Gao.wMnmAs的居禮溫度約爲48 °Κ,且裝置 係被冷卻至4 _ 2。Κ。其他的鐵磁材料可具有較高的居禮溫 度’且因此’以這些材料爲基的裝置可被操作於較高溫度 下。 特別參照第6圖’在寫入程序中,第一和第二電壓漉 32、33可各自對第一和第二閘極3、4施加偏壓37、38, 亦即VG1 = VG2 = -Vi ’以增加接面區9、1〇中的電荷載子 密度’從而減少接面區9、1 〇的電阻而使其傳導(較佳係 如歐姆導體一般)。接面9、1 〇係具有足夠的傳導性以顯 現電流感應之磁化作用反向。 在此例中’ I VG1 |和I vG21爲1 V的等級。然而,這 些可藉由常規試驗而得。 在(Ga,Mri ) As中,電荷載子傳輸係由電洞所支配。 因此’第一和第二閘極3、4係被施加負偏壓以增加接面 區9、1〇中的電荷載子密度。但若使用其中電荷載子傳輸 係由電子所支配的鐵磁半導體,則閘極3 ' 4會被施加正 -20- (18) 1313522 偏壓。 第三電壓源3 4可對第三閘極5施加偏壓3 9 VG3 = V2,以降低鐵磁島狀物8上的電荷載子密度 此減少矯頑磁力。 在此例中’ lvG3|爲1 v的等級。然而,此可 規試驗而得。 電流源3 0係驅動具有強度IC的電流脈衝4 0 Isd = Ic’其係闻於鐵磁島狀物8的臨界電流。該 衝會強化既有的磁化作用24 (第4圖)或是將磁 24 (第4圖)反向,例如藉由將磁化作用切換9 〇。 作用2 4的給定方向可藉由選擇該電流脈衝的極性 。電流脈衝4 0具有持續時間At!。持續時間Δΐ ι可 等於1 00 ns、1 0 ns或1 ns。在此例中,持續時間 1 0 0 p s 〇 對鐵磁金屬而言’典型的臨界電流密度爲1〇7 的等級,而對鐵磁半導體而言,典型的臨界電流 1〇4或105 AcnT2的等級。然而,將磁化作用反向所 流脈衝4 0之強度和最小持續時間可藉由常規試驗 例如藉由以增加較高電流密度及/或較短持續時間 電流脈衝,以及量測電阻。 fe場源3 6可施加磁場脈衝4 1以輔助電流脈衝 而,磁場源3 6可施加固定磁場以偏壓自由區8。因 有較低強度的電流脈衝40可被用以將磁化作用反 場源36可爲感應源(inductive source)或可爲永 ,亦即 ,並因 藉由常 ,亦即 電流脈 化作用 。磁化 而達成 小於或 ! Δίι 爲 Acm 密度爲 需的電 而得, 來驅動 40。然 此,具 向。磁 久磁鐵 -21 - (19) 1313522 特別參照第7圖’在讀取程序中,第一和第二電壓源 3 2、3 3可各自對第一和第二閘極3、4施加偏壓42、43, 亦即VG1 = VG2 = V3,以自接面區9、10空乏電荷載子, 較佳係形成穿隧阻障。形成至少一穿隧阻障係具有裝置j 可使用具有局fe阻之T A M R效應的優點。在此例中,因傳 輸係由電洞所支配,故施加正偏壓以降低接面區9、1 0中 的電荷載子密度。 在此例中,V3爲1 V的等級。然而,自接面區9、10 空乏電荷載子所需的偏壓可由常規試驗而得,例如藉由增 加閘極偏壓以及量測源極-汲極特性。 第三電壓源34會對第三閘極5施加零偏壓44,亦即 V〇3 = 0,或是令第三聞極5浮動。 電流源3 〇係驅動量測或具有強度Ip的探針電流脈衝 4 5 ’亦即I s D = I p &lt; I e,其係低於鐵磁島狀物8的臨界電 流。電流脈衝4 0具有持續時間At2。該探針脈衝可比該寫 入脈衝長(換言之At2 &gt; Δΐ!),可約爲相同的持續時間( 亦即At2 « At,),或是可比該寫入脈衝短(亦即Δί2 &lt; Δίι )。該持續時間可取決於裝置1的RC値及/或伏特計3 6 的靈敏度。持續時間AU可小於或等於1〇〇 ns、1〇 ns或1 ns。在此例中,持續時間At2爲1 ns。 可令Ip的強度盡可能的低而仍可進行電壓量測。Ip之 値可由常規試驗所決定。 因該探針電流脈衝4 5被驅動通過裝置1,故跨越裝置 -22- (20) 1313522 1而發展的電壓降係由伏特計3 5所量測。 若裝置1處於高電阻狀態’則將量測到對應 電壓降的相對大脈衝46η。若該裝置處於低電阻 將量測到對應於相對低電壓降的相對小脈衝46L。 裝置製造 參照第8A〜8D圖,現在將敘述製造裝置1纪 參照第8A圖,半絕緣(〇〇1 )-定向GaAs之 以作爲基板13’並被載入至分子束磊晶(MBE) 顯示)。 未摻雜之AlAs層12'係藉由MBE而以習知 於基板13'上。AlAs層12’具有l〇nm的厚度 AlAs層12'可較薄,例如爲5 nm,或是其可較厚 於2 0和5 0 n m之間。'Device 1 may utilize other effects, such as where the device resistance is dependent on the tunneling magnetoresistance effect of the direction of magnetization 24 of the third ferromagnetic region 8 (TMR -17-(15) 1313522), the third ferromagnetic The direction of the magnetization 24 of the region 8 is relative to the direction of the magnetizations 22, 23 of the first and second ferromagnetic regions 6, 7. Although the ferromagnetic regions 6, 7, 8 are formed of the same material, the third ferromagnetic region 8 can be constructed to have a lower coercive force, for example by selectively forming the third ferromagnetic region 8 to have Given a geometry, in this case it is less elongated. Additionally or alternatively, other techniques for reducing the coercive force may be used, such as by etching or introducing damage or combinations thereof by ion implantation in the free zone 8 to thin the region 8. Since the third ferromagnetic region 8 has a lower coercive force than the first and second regions 6, 7, the reverse of the magnetization 24 occurs in the magnetization 22, 23 of the other two ferromagnetic regions 6, 7. The lower critical magnetic field in the reverse direction. Therefore, a magnetic field higher than the critical field of the third ferromagnetic region 8 but lower than the critical field of the first and second ferromagnetic regions 6, 7 can be applied. When such a field is applied, the magnetization 24 of the third ferromagnetic region 8 can be switched, while the magnetizations 2, 2 3 of the first and second ferromagnetic regions 6, 7 are still oriented in the same direction. This behavior can be utilized such that during normal operation, the first and second ferromagnetic regions 6, 7 provide regions having fixed direction magnetizations 22, 23, while the third ferromagnetic region 8 provides reversible magnetization 24 Area. Thus, the first and second ferromagnetic regions 6, 7 can each be referred to as a "fixed" or "pinned" region, while the third ferromagnetic region 8 can be considered a "free" region. For convenience, the first and second ferromagnetic regions 6, 7 are hereinafter referred to as first and second fixed regions 6, 7' and the third region 8 is hereinafter referred to as free region 8. As previously mentioned, if a sufficiently strong current is applied, the direction of magnetization 24 can be switched from one easy axis 28, 27 to the other 26, 27. This -18-(16) 1313522 may be due to the spin torque on the magnetic domain wall, which causes the wall to move through the free zone 8. The magnetizations 22, 23 of the first and second fixed zones 6, 7 are aligned in the same direction. This can be achieved by applying a magnetic field higher than the critical field of the first and second fixed zones 6, 7. Compared to conventional spintronic devices, device 1 may have several advantages. φ φ For example, conventional spintronic devices typically take the form of a vertical stack, including a complex multi-layer configuration in which the layers have a fixed function. However, device 1 can be considered a relatively simple configuration in which different portions of device 1 can have different functions and can be tuned. For example, the junction regions 9, 1 can act as tunneling barriers to provide magnetic domain wall pinning and/or as nucleation regions of the magnetic domain walls. The magnetic properties of the third ferromagnetic region 8, such as magnetic anisotropy and coercive force, can be varied. • Device operation. Referring to Figure 5, the device 29 for operating the conduction control device 1 includes a current source 30 for driving a current pulse I through the channel 2 and an optional series resistor 31 for using the first, Second and third gate voltages v 〇 , vG2, VG3 are applied to the first, second and third side gates 3, 4, 5, respectively, the first, second and third voltage sources 3 2, 3 3, 3 4, and a voltmeter for measuring the voltage drop V s D between the first and second fixed zones 6, 7 and thus determining that the device is in a high or low resistance state. A source 36 for generating a fe field B t ; X t may also be provided. Source 3 6 g -19- (17) 1313522 a inductor (not shown) such as a wire, loop or coil, and source (not shown) to drive current through the inductor. The inductor (not shown) can be placed on the substrate 13 (Fig. 1) of the proximity device 1 (Fig. 1). The device 1 can be used to store data and/or sense magnetic fields. A procedure for reading data from the data writing device 1 and the self-installation 1 will now be described with reference to Figs. The device 1 is cooled to below the salvage temperature tc of the ferromagnetic material. In this case, the high temperature of 'Gao.wMnmAs' is about 48 °Κ, and the device is cooled to 4 _ 2 . Hey. Other ferromagnetic materials can have a higher Curie temperature&apos; and thus devices based on these materials can be operated at higher temperatures. Referring in particular to Figure 6, in the writing process, the first and second voltage ports 32, 33 can each apply a bias voltage 37, 38 to the first and second gates 3, 4, i.e., VG1 = VG2 = -Vi 'To increase the charge carrier density in the junction area 9, 1 ' to reduce the resistance of the junction area 9, 1 而 to conduct it (preferably like an ohmic conductor). The junction 9, 1 lanthanum has sufficient conductivity to show the magnetization reversal of current sensing. In this example, ' I VG1 | and I vG21 are 1 V levels. However, these can be obtained by routine experimentation. In (Ga, Mri) As, the charge carrier transport is dominated by holes. Therefore, the first and second gates 3, 4 are negatively biased to increase the charge carrier density in the junction regions 9, 1 . However, if a ferromagnetic semiconductor in which the charge carrier transmission is dominated by electrons is used, the gate 3' 4 is biased with a positive -20-(18) 1313522. The third voltage source 34 can apply a bias voltage of 3 9 VG3 = V2 to the third gate 5 to reduce the charge carrier density on the ferromagnetic islands 8 which reduces the coercive force. In this case 'lvG3| is a level of 1 v. However, this can be tested experimentally. The current source 30 drives a current pulse 40 0 Isd = Ic' having an intensity IC which is ignited by the critical current of the ferromagnetic island 8. This rush will reinforce the existing magnetization 24 (Fig. 4) or reverse the magnetic 24 (Fig. 4), for example by switching the magnetization to 9 〇. The given direction of action 2 4 can be selected by selecting the polarity of the current pulse. The current pulse 40 has a duration At!. The duration Δΐ ι can be equal to 1 00 ns, 10 ns or 1 ns. In this case, the duration of 1 0 0 ps ' 'typically a critical current density of 1〇7 for ferromagnetic metals, and 1 to 4 or 105 AcnT2 for ferromagnetic semiconductors. grade. However, the intensity and minimum duration of the pulse 40 that is reversed by magnetization can be routinely tested, for example, by increasing the current density and/or short duration current pulses, and measuring the resistance. The field source 36 can apply a magnetic field pulse 4 1 to assist the current pulse, while the magnetic field source 36 can apply a fixed magnetic field to bias the free region 8. The lower intensity current pulse 40 can be used to cause the magnetization counter field source 36 to be an inductive source or can be permanent, i.e., by current, i.e., current pulsing. Magnetize to achieve less than or ! Δίι is the Acm density required to drive 40. However, it is directional. Magnetic permanent magnet-21 - (19) 1313522 Referring specifically to Figure 7 'in the reading procedure, the first and second voltage sources 3 2, 3 3 can each bias the first and second gates 3, 4 42, 43, that is, VG1 = VG2 = V3, the self-connected surface area 9, 10 is short of charge carriers, preferably forming a tunneling barrier. Forming at least one tunneling barrier has the advantage that device j can use the T A M R effect with local resistance. In this example, since the transmission system is dominated by the holes, a positive bias is applied to reduce the charge carrier density in the junction regions 9, 10. In this example, V3 is a 1 V rating. However, the bias required for the vacant charge carriers 9 and 10 can be obtained by routine experimentation, for example, by increasing the gate bias and measuring the source-drain characteristics. The third voltage source 34 applies a zero bias 44 to the third gate 5, i.e., V 〇 3 = 0, or causes the third horn 5 to float. The current source 3 is a tether drive measurement or a probe current pulse 4 5 ′ having an intensity Ip, i s D = I p &lt; I e , which is lower than the critical current of the ferromagnetic island 8 . The current pulse 40 has a duration At2. The probe pulse can be longer than the write pulse (in other words, At2 &gt; Δΐ!), can be about the same duration (ie, At2 « At,), or can be shorter than the write pulse (ie, Δί2 &lt; Δίι ). This duration may depend on the sensitivity of the RC値 and/or voltmeter 3 6 of the device 1. The duration AU can be less than or equal to 1 〇〇 ns, 1 〇 ns, or 1 ns. In this example, the duration At2 is 1 ns. The intensity of the Ip can be made as low as possible while still measuring the voltage. Ip can be determined by routine experimentation. Since the probe current pulse 45 is driven through the device 1, the voltage drop developed across the device -22-(20) 1313522 1 is measured by the voltmeter 35. If device 1 is in a high resistance state, then a relatively large pulse 46n corresponding to the voltage drop will be measured. If the device is at low resistance, a relatively small pulse 46L corresponding to a relatively low voltage drop will be measured. Referring to Figures 8A to 8D, the manufacturing apparatus will now be described with reference to Figure 8A. Semi-insulating (〇〇1)-oriented GaAs is used as the substrate 13' and loaded into the molecular beam epitaxy (MBE) display. ). The undoped AlAs layer 12' is conventionally known on the substrate 13' by MBE. The AlAs layer 12' has a thickness of 10 nm. The AlAs layer 12' may be thinner, for example 5 nm, or it may be thicker between 20 and 50 n m.

Ga〇.98Mn〇.〇2As層11'係以低溫MBE生長於 12'上,例如如同由R. Campion所著之Journal 〇 Growth,第 247 卷,第 42 頁(1 3 03 ) Ga〇.98Mn〇.〇2 As 層 11'具有 1〇 nm 的厚 Ga〇.98Mn〇.()2As層 11'可較薄,例如爲 5 nm,或 。Gao.wMno.MAs層11’可被摻雜,例如摻雜以p ,如鈹(B e )。 如先前所說明的,可使用其他的鐵磁材料。 使用其他的鐵磁半導體。The Ga〇.98Mn〇.〇2As layer 11' is grown on the 12' with low temperature MBE, for example as in Journal of R. Campion, 247Growth, Vol. 247, p. 42 (1 3 03 ) Ga〇.98Mn 〇.〇2 As layer 11' has a thickness of 1 〇 nm. The thickness of Ga 〇 98 〇 ( ( ( As As As 可 可 可 可 可 As 可 可 As 可 可 As As As As As As As As As As. The Gao.wMno.MAs layer 11' can be doped, for example doped with p, such as 铍 (B e ). As previously explained, other ferromagnetic materials can be used. Use other ferromagnetic semiconductors.

AlAs 層 12'幫助將 Ga〇.98Mn().()2As 層 11'與遲 於相對高 狀態,則 ]方法。 晶圓係用 系統(未 方式生長 。然而, ,例如介 AlAs 層 f Crystal 所述 。 度。但 是可較厚 型摻雜物 特別是可 5板1 3 1電 -23- (21) (21)The AlAs layer 12' helps to bring the Ga〇.98Mn().()2As layer 11' to a relatively high state, then the method. Wafer system (not grown). However, for example, the AlAs layer f Crystal is described. However, it can be thicker dopants, especially 5 boards 1 3 1 electricity -23- (21) (21)

1313522 性絕緣,並提供狹銳的下介面47至Gao.^MncK^As層1313522 Sexually insulated and provides a narrow lower interface 47 to the layer of Gao.^MncK^As

AlAs層14,係藉由MBE而生長於Ga〇.98Mnu2As 1 1'上。覆蓋層的厚度爲5 nm。覆蓋層14,幫助限 Ga0.98Mnc.02As層1Γ的氧化並提供狹銳的上介面48 Ga〇.98Mn〇,〇2As 層 11*。The AlAs layer 14 is grown on Ga〇.98Mnu2As 1 1' by MBE. The thickness of the cover layer is 5 nm. The cover layer 14 helps to limit the oxidation of the layer of Ga0.98Mnc.02As and provides a narrow upper interface 48 Ga〇.98Mn〇, 〇2As layer 11*.

Ga〇.98MnQ.〇2AS層1 Γ內的載子濃度可使用調變摻雜 增加。舉例來說,絕緣之AlAs層12'或覆蓋層it可被 雜,例如摻雜以P型摻雜物’如Be。額外地或替代性 ,可將包含例如GaAs、AlGaAs或AlAs的額外之層( 顯示)提供在緊鄰該鐵磁半導體之下或之上’該鐵磁半 體係被摻雜以提高電荷載子密度。 包含基板1 3 '並具有位於上方之沉積層1 Γ、1 2 '、 的晶圓係自反應器(未顯示)移除並加以處理。此可包 將該晶圓分割爲較小的晶片。 用以將該晶圓(或晶片)之不同區域電性隔離的台 結構(未顯示)以及用以使裝置1和接合墊區(未顯矛 電性接觸的引線(未顯示)可使用光微影和濕蝕刻以g 方式加以界定。裝置可在隔離區域中被製造,如現在將 以敘述: 參照第8B圖,聚甲基丙烯酸甲酯(pmma )形3 電子束光阻層(未顯示)係被敷於覆蓋層14,的上表面 。該晶圓(或晶片)係被載入至電子束微影系統(未雾 )以供曝光。該圖案包含第2圖所示之圖案的負像。 1' 層 制 至 來 摻 地 未 導 14, 括 面 ) 知 加 之 49 示 -24- (22) (22)1313522 該晶圓(或晶片)係自該電子束微影系統(未顯示) 移除’並使用以水和異丙醇(IPA )爲基的顯影劑加以顯 影’以移除光阻之曝光區域(未顯示),並留下圖案化之 光阻層5 0以作爲蝕刻遮罩。 參照第8 C圖,該晶圓(或晶片)係放置於反應式離 子触刻(RIE)系統(未顯示)中。層1Γ、13,、14’之未 遮蔽部分5 1、5 2係使用異向性四氯化矽(s i C 14 )蝕刻劑 5 3來加以乾式蝕刻。在此例中,蝕刻劑5 3係延伸至基板 13'中。可使用其他的RIE蝕刻,例如Cl2。可使用其他的 乾式餓刻方法,例如離子束硏磨(i ο n b e a m m i 11 i n g )。額 外地或替代性地可使用濕式蝕刻。 該晶圓(或晶片)係自該RIE系統(未顯示)移除, 且該圖案化之光阻層50可使用丙酮加以移除。對應的結 構係顯示於第8D圖中。 額外的製程步驟可包括將損害導入至自由區8(第2 圖)。此可包含在電子束光阻層(未顯示)中的自由區8 (第2圖)上方開啓一窗口(未顯示),以及在裝置1( 第1圖)上全域地掃描離子束。抑或,該製程可包含選擇 性地在自由區8(第2圖)上掃描離子束(未顯示)。 該鐵磁材料的居禮溫度可藉由退火而提高,例如如同 Edmonds 等人所著之 Physical Review Letters,92 卷’第 037201 頁( 2004)所述。 如先前所述,在某些實施例中’可使用非鐵磁區來代 替第一鐵磁區6。 -25- (23) 1313522 包含傳導區和鐵磁區的裝置可藉由以下步驟加以製造 :沉積第一層材料(例如鐵磁半導體材料),圖案化該第 一層’例如以形成第三鐵磁區,接著沉積第二層材料(例 如非鐵磁半導體材料,其可覆於該圖案化之第一層),以 及圖案化該第二層,例如以形成非鐵磁區。接面區係由該 第一和第二材料之間的至少一介面區所提供。 包含傳導區和鐵磁區的裝置可藉由沉積一層材料並選 擇性地佈植雜質以形成給定類型的區域來加以製造。舉例 來說’製造方法可包含沉積一層非鐵磁材料,例如GaAs ,以及選擇性地佈植一磁性摻雜物,例如Mn,以形成第 三鐵磁區。抑或,製造方法可包含沉積一層鐵磁材料,例 如(Ga,Mn ) As,以及選擇性地佈植一摻雜物,例如si, 以損害該鐵磁區及/或提供補償之半導體,並因此形成非 鐵磁區來代替第一鐵磁區。接面區係由佈植和非佈植區之 間的至少一介面區所提供。 替代性的閘結構 參照第9和1 0圖’經修改的裝置丨,係與先前所述之 裝置1 (第1圖)類似,除了側閘極5 (第1圖)係由覆 蓋位於自由區8上方之區域中的覆蓋層1 4之頂閘極5 '所 取代。頂閘極5,係包含非鐵磁導體,例如金屬或半導體。 1 8 3上而將鐵磁區8 在此例中,頂閘極5 |由被蝕刻的基板1 3延伸至覆蓋 層1 4上。額外的絕緣層5 4係在沉積非鐵磁導體5 ,之前被 沉積’以隨著導體5,延伸於側壁部分 -26- (24) 1313522 與導體5 I絕緣。然而,分開之側絕緣層(未顯示)可被設 置於側壁部分1 83上。因此,可省略額外的絕緣層54。 可使用其他的閘配置。舉例來說,可使用位於下方的 底閘極。 邏輯鬧 在習知的微處理器中,邏輯閘通常不會儲存其已輸出 的資料。因此,一旦一邏輯閘或邏輯閘組已執行邏輯作業 並提供輸出,則該輸出通常會儲存於分離的記憶體中。儲 存輸出的額外步驟會阻礙計算效能。 相反地,裝置1不僅可運作如邏輯閘,亦可儲存作業 之輸出而不需將該輸出儲存於分離的記憶體中。 參照第11圖,第4圖所示之裝置1係就具有輸入a 、B和T以及輸出VR的邏輯閘之觀點所提出。 輸入A操作性地連接至第三閘極5並控制磁化作用反 向。輸入B操作性地連接至電阻器3 1,以驅動寫入或讀 取電流脈衝通過該電阻器3 1和裝置1。輸入T操作性地 連接至第一和第二閘極3、4,以設定裝置1用以寫入或讀 取。輸出VR係位於裝置1和電阻器3 1之間。 在此例中,輸入A、B、T係由來源30、32、33、34 所提供(第5圖)。然而,該些輸入可由其他邏輯閘(未 顯示)或控制元件(未顯示)所提供。 參照第1 2圖,爲了將裝置1切換爲「寫入」狀態, 係施加輸入T = 0。此係藉由將VG1 = VG2 = -V,供應至第 -27- (25) 1313522 一和第二閘極3、4而達成’如先則所述。 分別藉由將VG3 = %或Vg3 = _V2供應至第三閘極5 而施加輸入A = 0或 以和先前所述類似的方式’藉由不施加電流脈衝或施 加具有強度Ic的雙倍脈衝通過裝置1而施加輸入B = 〇或 B = 1。 參照第13圖,爲了將裝置1切換爲「讀取」狀態, 係施加輸入T = 1。此係藉由將V G 1 = V G2 = V !供應至第 一和第二閘極2、3而達成,如先前所述。 藉由施加具有強度1 p的電流脈衝通過裝置1並量測跨 於該裝置上的偏壓VR而讀出輸出VR’如先前所述。 參照第14圖,係顯示裝置1的真値表。 邏輯「AND」可藉由在寫入A和B以及量測VR之前 將Vr重置爲「0」加以實現。邏輯「NAND」可藉由在寫 入A和B以及量測VR之前將VR重置爲「1」加以達成。 邏輯「CNOT」可藉由寫入A = 1和B = 1加以實現。 磁性隨機存取記憶體陣列 參照第1 5圖,根據本發明之磁性隨機存取記憶體( MR AM )胞元5 5包含細長的傳導通道5 6和閘極5 7。記憶 體胞元5 5係類似於先前所述之傳導控制裝置1,除了作爲 構建塊的記憶體胞元55不需具有第二固定區7、第二接面 區1 〇、對應之接面閘極4和「矯頑磁力調諧」閘極5以外 。然而’如將於稍後加以詳述的,記憶體胞元5 5可在具 -28 - (26) (26)The concentration of the carrier in the Ga〇.98MnQ.〇2AS layer 1 can be increased by modulation doping. For example, the insulating AlAs layer 12' or the cap layer it can be doped, for example doped with a P-type dopant such as Be. Additionally or alternatively, an additional layer (display) comprising, for example, GaAs, AlGaAs or AlAs may be provided immediately below or above the ferromagnetic semiconductor. The ferromagnetic half system is doped to increase the charge carrier density. The wafer system comprising the substrate 1 3 ' and having the deposited layers 1 Γ, 1 2 ' above it is removed from the reactor (not shown) and processed. This can be used to divide the wafer into smaller wafers. A mesa structure (not shown) for electrically isolating different regions of the wafer (or wafer) and for using the device 1 and the bonding pad region (lead (not shown) for electrically contacting the spear Shadow and wet etching are defined in g. The device can be fabricated in the isolation region as will now be described: Refer to Figure 8B, polymethyl methacrylate (pmma) 3 electron beam photoresist layer (not shown) The wafer is applied to the upper surface of the cover layer 14. The wafer (or wafer) is loaded into an electron beam lithography system (not fogged) for exposure. The pattern contains the negative image of the pattern shown in FIG. 1' layered to the ground without the lead 14, including the surface) 知加之49 示-24- (22) (22) 1313522 The wafer (or wafer) is moved from the electron beam lithography system (not shown) Except 'and use developer developed with water and isopropyl alcohol (IPA)' to remove the exposed areas of the photoresist (not shown) and leave the patterned photoresist layer 50 as an etch mask . Referring to Figure 8C, the wafer (or wafer) is placed in a reactive ion etch (RIE) system (not shown). The unmasked portions 5 1 and 5 2 of the layers 1 13, 13, 14' are dry etched using an anisotropic ruthenium tetrachloride (s i C 14 ) etchant 5 3 . In this example, the etchant 53 extends into the substrate 13'. Other RIE etches can be used, such as Cl2. Other dry hungry methods can be used, such as ion beam honing (i ο n b e a m m i 11 i n g ). Wet etching may be used additionally or alternatively. The wafer (or wafer) is removed from the RIE system (not shown) and the patterned photoresist layer 50 can be removed using acetone. The corresponding structure is shown in Figure 8D. Additional processing steps may include introducing damage to the free zone 8 (Fig. 2). This may include opening a window (not shown) above the free zone 8 (Fig. 2) in the electron beam photoresist layer (not shown) and scanning the ion beam globally on the device 1 (Fig. 1). Alternatively, the process can include selectively scanning the ion beam (not shown) on the free zone 8 (Fig. 2). The temperature of the ferromagnetic material can be increased by annealing, for example, as described by Edmonds et al., Physical Review Letters, Vol. 92, pp. 037201 (2004). As previously stated, a non-ferromagnetic region may be used in place of the first ferromagnetic region 6 in some embodiments. -25- (23) 1313522 A device comprising a conductive region and a ferromagnetic region can be fabricated by depositing a first layer of material (eg, a ferromagnetic semiconductor material), patterning the first layer 'eg, to form a third iron The magnetic region is then deposited with a second layer of material (e.g., a non-ferromagnetic semiconductor material that overlies the patterned first layer), and the second layer is patterned, for example, to form a non-ferromagnetic region. The junction zone is provided by at least one interface zone between the first and second materials. A device comprising a conductive region and a ferromagnetic region can be fabricated by depositing a layer of material and selectively implanting impurities to form a given type of region. For example, the fabrication method can include depositing a layer of non-ferromagnetic material, such as GaAs, and selectively implanting a magnetic dopant, such as Mn, to form a third ferromagnetic region. Or, the manufacturing method may include depositing a layer of ferromagnetic material, such as (Ga, Mn) As, and selectively implanting a dopant, such as si, to damage the ferromagnetic region and/or provide a compensated semiconductor, and thus A non-ferromagnetic region is formed instead of the first ferromagnetic region. The junction zone is provided by at least one interface zone between the implanted and non-planted zones. An alternative sluice structure refers to the modified device 第 of Figures 9 and 10, which is similar to the previously described device 1 (Fig. 1) except that the lateral gate 5 (Fig. 1) is covered by the free zone. The top gate 5' of the cover layer 14 in the upper region of 8 is replaced. The top gate 5 comprises a non-ferromagnetic conductor such as a metal or a semiconductor. The ferromagnetic region 8 is in this case, and the top gate 5 | is extended from the etched substrate 13 to the overlying layer 14. An additional insulating layer 5 4 is deposited prior to deposition of the non-ferromagnetic conductor 5 to be insulated from the conductor 5 I by the conductor 5 extending from the sidewall portion -26-(24) 1313522. However, a separate side insulating layer (not shown) may be provided on the side wall portion 1 83. Therefore, the additional insulating layer 54 can be omitted. Other brake configurations can be used. For example, the bottom gate located below can be used. Logical Logic In conventional microprocessors, logic gates typically do not store the data they have output. Therefore, once a logic gate or logic gate has executed a logic job and provides an output, the output is typically stored in separate memory. Additional steps in storing output can hinder computational efficiency. Conversely, the device 1 can operate not only as a logic gate, but also the output of the job without storing the output in separate memory. Referring to Fig. 11, the apparatus 1 shown in Fig. 4 is proposed from the viewpoint of having logic switches for inputs a, B and T and output VR. Input A is operatively coupled to third gate 5 and controls magnetization reversal. Input B is operatively coupled to resistor 3 1 to drive a write or read current pulse through the resistor 31 and device 1. The input T is operatively coupled to the first and second gates 3, 4 to set the device 1 for writing or reading. The output VR is located between device 1 and resistor 31. In this example, inputs A, B, and T are provided by sources 30, 32, 33, 34 (Figure 5). However, the inputs may be provided by other logic gates (not shown) or control elements (not shown). Referring to Fig. 12, in order to switch the device 1 to the "write" state, an input T = 0 is applied. This is achieved by supplying VG1 = VG2 = -V to the -27-(25) 1313522 one and the second gates 3, 4, as described above. Applying input A = 0 by supplying VG3 = % or Vg3 = _V2 to the third gate 5, respectively, or in a similar manner as previously described, by passing no current pulses or applying a double pulse with intensity Ic Device 1 applies an input B = 〇 or B = 1. Referring to Fig. 13, in order to switch the device 1 to the "read" state, an input T = 1 is applied. This is achieved by supplying V G 1 = V G2 = V ! to the first and second gates 2, 3 as previously described. The output VR' is read out by applying a current pulse having an intensity of 1 p through the device 1 and measuring the bias voltage VR across the device as previously described. Referring to Fig. 14, a map of the device 1 is shown. The logical "AND" can be achieved by resetting Vr to "0" before writing A and B and measuring VR. The logical "NAND" can be achieved by resetting VR to "1" before writing A and B and measuring VR. The logic "CNOT" can be implemented by writing A = 1 and B = 1. Magnetic Random Access Memory Array Referring to Figure 15, a magnetic random access memory (MR AM) cell 5 5 in accordance with the present invention includes an elongated conductive channel 56 and a gate 57. The memory cell 5 is similar to the conduction control device 1 described above, except that the memory cell 55 as a building block does not need to have the second fixed area 7, the second junction area 1 〇, and the corresponding junction gate The pole 4 and the "coercive force tuning" are outside the gate 5. However, as will be detailed later, the memory cell 5 5 can be in the -28 - (26) (26)

1313522 有由中間接面區解親之相鄰鐵磁區的交錯之 序列中被配置爲一列。 通道5 6係包含具有相對局和相對低矯 區58、59。鐵磁區58、59係由相同的鐵磁 案化之層67 (第UA圖)中。然而,鐵磁ΐ 不同的鐵磁材料所形成,例如鐵磁金屬和鐵 通道56包括將鐵祕區58、59紐解轉的 接面區60係由壓縮段61所界定,該通 第一側壁62和相對之第二側壁63的一部另 平面圖中,第二側壁部分63 !係提供朝向第 內向凹口。 參照第16圖,係顯示記憶體陣列64 β 第17圖)。 記憶體陣列64’包括記憶體胞元5 5之陣 胞元55係具有6F2的單位胞元尺寸,其中 。各胞元5 5可透過閘極線6 5和電流線6 6力| 參照第1 7 Α圖,鐵磁區和接面區5 8、 於包含鐵磁半導體的圖案化之鐵磁層6 7中 鐵fe半導體爲具有0.〇2之猛濃度X的碑化磨 X Μ η X A s ) ’亦 卩 Ga〇.98Mn〇.〇2As。 圖案化之鐵磁層6 7位於包含絕緣體的 緣層68之上,在此例中該絕緣體爲砷化鋁 然可使用其他的絕緣體。該絕緣體可與該鐵 匹配或晶格不匹配。絕緣層6 8係位於包含 固定和自由區 頑磁力的鐵磁 :材料形成於圖 S 58 、 59可由 磁半導體。 接面區60。 g縮段61位於 、6 3 i之間。在 ;—側壁 2 4的 β —部分64'( [列。各記憶體 F爲特徵尺寸 口以定址。 5 9、6 0係設置 ,在此例中該 赛猛合金(G a !- 共同擴張之絕 (A1A s ),雖 磁半導體晶格 半絕緣之砷化 -29- (27) 1313522 鎵(GaAs)的部分蝕刻之基板69之上。包含AlAs的覆蓋 層70係位於圖案化之鐵磁層67之上。 電流線6 6係包含導體,例如金屬,或是重摻雜半導 體。電流線66可爲非鐵磁性。若電流線66包含金屬且若 該鐵磁材料爲半導體,則電流線6 6亦可作爲歐姆接點。 - 處理可包括退火,以形成歐姆接點。在此例中,電流線6 6 . 包含作爲對該GaG.98Mn〇.G2As之歐姆接點的金/鋅(Au/Zn φ )合金以及位於上方的金層(Au)。該金/鋅層具有50nm 的厚度,而金具有2 00 nm的厚度。然而,可使用其他的 層厚度。 參照第1 7 B圖,閘極和電流線6 5、6 6係以中間絕緣 層7 1加以電絕緣。中間絕緣層7 1可爲結晶或非晶。在此 例中’絕緣層71包含二氧化矽(Si02 )。然而,可使用 其他的絕緣材料,例如氮化矽(Si3N4 )。絕緣層7 1係沉 積於閘極線6 5之前。 Φ 閘極線6 5係包含導體,例如金屬,或是重摻雜半導 體。閘極線6 5可爲非鐵磁性。在此例中,閘極6 5包含鈦 (Ti)黏著層(sticking layer)和覆於上方之金層(au) 。鈦具有20 nm的厚度,而金具有200 nm的厚度。然而 • ’可使用其他的層厚度。 ^ 記憶體陣列64可被建構爲與第1 6、1 7A和1 7B圖所 示者不同。舉例來說,閘極線65可被形成爲與圖案化之 鐵磁層6 7位於同一平面,例如以和先前所述之裝置1 (第 1圖)類似的方式,由和圖案化之鐵磁層6 7相同的鐵磁材 -30- (28) 1313522 料加以形成。電流線66可被形成於閘極線65之上,尤其 是若閘極線65被形成爲與圖案化之鐵磁層67共平面時。 如先前所述,表面或位於下方之閘極組態可被用來代替側 閘極組態。 抑或,電流線66可被形成於鐵磁層67下方,例如藉 由在絕緣層68上沉積一傳導層(未顯示)、將該層(未 顯示)圖案化爲條紋(未顯示)、以及將一鐵磁層沉積在 傳導和絕緣材料之條紋(未顯示)上。接著將該鐵磁層圖 案化以形成圖案化之層6 7並界定閘極線6 6。鐵磁層之圖 案化及界定閘極線可發生於相同或不同的處理步驟。 參照第1 8圖,記憶體陣列64係由列解碼器72和行 解碼器73所控制。 列解碼器72可自閘極線65i、65i.i、65i、65i + 1、65n 中選擇一條閘極線,以定址來自記億體胞元551;1、55u.2 、5 5 1 j. 1 ' 5 5 1 j ' 5 5 1 j + 1 ' 5 5 i j + 2 ' 55i,m、55j],i、5 5 j. ] j _2 、55i-i,j — i、55j-i,j、55i_i,j + i、5 5 j. i ; j + 2 55i-iiin、55j,i、 55丨,卜2、55j,j-i、55j,j、55]:」+ ι、55j,j + 2、55j,m、55i + i’i、 5 5 i + i J-2 ' 5 5 i + j j. j ' 5 5 j + i j ' 5 5 i + i j + ! ' 55i + 】,j + 2、55i + 1,m ' 55n,i、55n,j-2、55n,j-i、55n,j、55η,」+ι、55n,j + 2、55n,m 的 列記憶體胞元,並以偏壓Vl、VM或VH施加選擇信號, 以選擇三種不同的通道傳導制度(channel conduction regime ) ° 具有偏壓Vl的選擇信號會增加接面區6 0中的電荷載 子密度,從而降低接面區60的電阻而使其傳導(較佳係 -31 - (29) 1313522 如歐姆導體一般)。具有偏壓VM的選擇信號會降低接面 區60中的電荷載子密度’使得接面區60空乏。具有偏壓 V η的選擇信號會降低接面區6 0中的電荷載子密度,使得 接面區6 0強烈地空乏,亦即,施加偏壓ν η時的空乏區會 大於施加νΜ時的空乏區。乂]^和VH之極性係與Vl相反。 如先前所說明的,各値可由常規試驗而得。 丫了 解碼器 73 可自電流線 66ι、662、66j.2、66j.i、66j 、6 6j + 1、66j + 2、6 6j + 3、66m、66m+1 中選擇一對相鄰的電流 線’以驅動具有強度I IH I的寫入電流脈衝(其係高於較低 矯頑磁力鐵磁區5 9之臨界電流,但低於較高矯頑磁力鐵 磁區5 8之臨界電流)或具有強度| Im |的讀取電流脈衝( 其係低於較低矯頑磁力鐵磁區5 9的臨界電流)。「〇」或 「1」係根據寫入電流脈衝的極性被寫入。 參照第1 9圖,係描繪在寫入程序期間之記憶體陣列 64的該部分64’。 具有偏壓VL的寫入選擇信號74係被施加於列i ,亦 即鬧極線65;,而具有偏壓Vh的保持信號75係被施加於 其他列’包括閘極線65^!、65i+1。因此,列i上之記憶體 胞元55丨小丨、55i,j、55i,j + i的接面60會具有較低電阻,而 其他列i-Ι、i + Ι上之記憶體胞元55i i j i、55ι ΐ」、55i_ + 55UU·!、55i + l j、55i+1,j+1 的接面 60 會具有較高電 阻。 寫入電流脈衝76係被驅動通過行j和j + 1,亦即電流 線6 6」、0 6」+ 1。電流脈衝76係以足夠高的電流密度通過記 -32- (30) (30)1313522 There is a sequence of interleaving sequences of adjacent ferromagnetic regions that are decomposed by the indirect surface region. The channel 586 includes a relatively local and relatively low normal region 58, 59. The ferromagnetic regions 58, 59 are in the same ferromagnetic layer 67 (Fig. UA). However, ferromagnetic ferrules are formed of different ferromagnetic materials, such as ferromagnetic metal and iron passages 56, including joint regions 60 that untwist the iron secret regions 58, 59, which are defined by compression segments 61 that pass through the first sidewall In a further plan view of 62 and the opposite second side wall 63, the second side wall portion 63 is provided towards the inwardly facing recess. Referring to Fig. 16, a memory array 64 β is shown in Fig. 17). The memory array 64' includes a memory cell 55. The cell 55 has a unit cell size of 6F2, wherein. Each of the cells 5 5 can pass through the gate line 65 and the current line 6 6 | Refer to the 1 7th diagram, the ferromagnetic region and the junction region 58 , and the patterned ferromagnetic layer 6 including the ferromagnetic semiconductor China Railway Fe Semiconductor is a monumental mill with a concentration X of 0. 〇2 X Μ η XA s ) 'also 卩 Ga〇.98Mn〇.〇2As. The patterned ferromagnetic layer 607 is located over the edge layer 68 comprising an insulator, which in this case is aluminum arsenide but other insulators may be used. The insulator can be matched to the iron or the lattice does not match. The insulating layer 6.8 is located in ferromagnetic material containing a fixed and free-region coercive force: the material is formed in Figures S58, 59 by a magnetic semiconductor. Junction area 60. The g-segment 61 is located between and 6 3 i. In the - side wall 24 of the β-portion 64' ([column. Each memory F is a feature size port to address. 5 9, 60 system is set, in this case the match alloy (G a ! - co-expansion Absolute (A1A s ), although the magnetic semiconductor lattice is semi-insulated arsenide -29- (27) 1313522 gallium (GaAs) partially etched on the substrate 69. The cover layer 70 containing AlAs is located in the patterned ferromagnetic Above the layer 67. The current line 6 6 comprises a conductor, such as a metal, or a heavily doped semiconductor. The current line 66 can be non-ferromagnetic. If the current line 66 comprises a metal and if the ferromagnetic material is a semiconductor, the current line 6 6 can also be used as an ohmic junction. - Processing can include annealing to form an ohmic junction. In this example, current line 6 6 . contains gold/zinc as the ohmic junction of the GaG.98Mn〇.G2As ( Au/Zn φ ) alloy and a gold layer (Au) located above. The gold/zinc layer has a thickness of 50 nm, and gold has a thickness of 200 nm. However, other layer thicknesses can be used. The gate and current lines 6 5, 6 6 are electrically insulated by an intermediate insulating layer 71. The intermediate insulating layer 71 may be crystalline or amorphous. In this example, the insulating layer 71 contains cerium oxide (SiO 2 ). However, other insulating materials such as tantalum nitride (Si 3 N 4 ) may be used. The insulating layer 71 is deposited before the gate line 65. Φ Gate The line 6 5 comprises a conductor, such as a metal, or a heavily doped semiconductor. The gate line 65 may be non-ferromagnetic. In this example, the gate 65 includes a titanium (Ti) sticker layer and a cover. The upper gold layer (au). Titanium has a thickness of 20 nm, while gold has a thickness of 200 nm. However, 'other layer thicknesses can be used. ^ Memory array 64 can be constructed to be compared with No. 1, 6 7A It is different from the one shown in Fig. 7B. For example, the gate line 65 can be formed in the same plane as the patterned ferromagnetic layer 67, for example, similar to the device 1 (Fig. 1) previously described. The method is formed by the same ferromagnetic material -30-(28) 1313522 as the patterned ferromagnetic layer 67. The current line 66 can be formed over the gate line 65, especially if the gate line 65 is Formed to be coplanar with the patterned ferromagnetic layer 67. As previously described, the surface or the underlying gate configuration can be used instead Gate configuration. Alternatively, current line 66 can be formed under ferromagnetic layer 67, for example by depositing a conductive layer (not shown) on insulating layer 68, patterning the layer (not shown) into stripes (not shown) A ferromagnetic layer is deposited on stripes (not shown) of conductive and insulating material. The ferromagnetic layer is then patterned to form a patterned layer 67 and define a gate line 66. Ferromagnetic layer Patterning and defining the gate lines can occur at the same or different processing steps. Referring to Fig. 18, memory array 64 is controlled by column decoder 72 and row decoder 73. The column decoder 72 may select a gate line from the gate lines 65i, 65i.i, 65i, 65i + 1, 65n to address from the cells 551; 1, 55u. 2, 5 5 1 j. 1 ' 5 5 1 j ' 5 5 1 j + 1 ' 5 5 ij + 2 ' 55i,m,55j],i,5 5 j. ] j _2 , 55i-i,j — i,55j-i,j , 55i_i, j + i, 5 5 j. i ; j + 2 55i-iiin, 55j, i, 55丨, Bu 2, 55j, ji, 55j, j, 55]:”+ ι, 55j, j + 2 , 55j, m, 55i + i'i, 5 5 i + i J-2 ' 5 5 i + j j. j ' 5 5 j + ij ' 5 5 i + ij + ! ' 55i + 】, j + 2 , 55i + 1, m ' 55n, i, 55n, j-2, 55n, ji, 55n, j, 55η, "+ι, 55n, j + 2, 55n, m of column memory cells, and The voltage Vl, VM or VH applies a selection signal to select three different channel conduction regimes. The selection signal with the bias voltage V1 increases the charge sub-density in the junction region 60, thereby reducing the junction region. The resistance of 60 is transmitted (preferably -31 - (29) 1313522 as an ohmic conductor). The selection signal with the bias voltage VM reduces the charge sub-density in the junction region 60 such that the junction region 60 is depleted. The selection signal having the bias voltage V η reduces the charge sub-density in the junction region 60, so that the junction region 60 is strongly depleted, that is, the depletion region when the bias voltage ν η is applied is greater than when the ν 施加 is applied. Vacant area. The polarity of 乂]^ and VH is opposite to Vl. As previously explained, each enthalpy can be obtained by routine experimentation. The decoder 73 can select a pair of adjacent currents from the current lines 66ι, 662, 66j.2, 66j.i, 66j, 6 6j + 1, 66j + 2, 6 6j + 3, 66m, 66m+1. Line 'to drive a write current pulse with intensity I IH I (which is higher than the critical current of the lower coercive ferromagnetic region 59, but lower than the critical current of the higher coercive ferromagnetic region 58) Or a read current pulse with intensity | Im | which is lower than the critical current of the lower coercive ferromagnetic region 59. "〇" or "1" is written according to the polarity of the write current pulse. Referring to Figure 19, the portion 64' of the memory array 64 during the writing process is depicted. A write select signal 74 having a bias voltage VL is applied to column i, that is, a noisy line 65; and a hold signal 75 having a bias voltage Vh is applied to the other columns 'including gate lines 65^!, 65i +1. Therefore, the junction 60 of the memory cells 55丨, 55i, j, 55i, j + i on the column i will have lower resistance, while the memory cells on the other columns i-Ι, i + Ι The junction 60 of 55i iji, 55ι ΐ, 55i_ + 55UU·!, 55i + lj, 55i+1, j+1 will have a higher resistance. The write current pulse 76 is driven through lines j and j + 1, i.e., current lines 6 6", 0 6" + 1 . Current pulse 76 is passed through a high enough current density -32- (30) (30)

1313522 憶體胞元55,,』以設定磁化作用。同—行』上之其他 胞兀55卜丨,j、55i+i,j未被設定,因此些裝置中的接^ 處於高電阻狀態。如先前所說明的,寫入電流脈衝 具有小於100 ns、10 ns或1 ns的持續時間。在批 該持續時間約爲1 ns。 參照第20圖’係描繪在讀取程序期間之記情 64的該部分641。 具有偏壓V M的讀取選擇信號7 7係被施加於$ 即閛極線6 5 i,而具有偏壓V η的保持信號7 5仍補 其他列,包括閘極線6 5 i _ i ' 6 5 j + !。因此,列i上的 胞兀55i,j-i、55i,j、55丨」+ 1之接面60會具有較低電 其他列i-Ι、i+Ι上的記憶體胞元55^,』」、55^ i,j + i、55j + i,j-i、55i + 1,j、55j + 1,j + i 之接面 60 會具有 阻。 讀取電流脈衝7 8係被驅動通過行j和j +丨,jj 線66j、6 6j + 1。電流脈衝74係以足夠高的電流密β 憶體胞兀5 5 i,j以設定磁化作用。同一行j上之其竹 胞元55i+1,j未被設定,因此些裝置中的接 處於高電阻狀態。1313522 Recalling the body cell 55,," to set the magnetization. The other cells on the same line, 55, j, j, 55i+i, j are not set, so the connections in these devices are in a high resistance state. As explained previously, the write current pulse has a duration of less than 100 ns, 10 ns, or 1 ns. The duration of the batch is approximately 1 ns. Referring to Fig. 20, the portion 641 of the quotation 64 during the reading process is depicted. The read select signal 7 7 having the bias voltage VM is applied to the $ie drain line 6 5 i, while the hold signal 75 having the bias voltage V η still complements the other columns, including the gate line 6 5 i _ i ' 6 5 j + !. Therefore, the junction 60 of the cell 兀 55i, ji, 55i, j, 55丨"+ 1 on the column i will have a memory cell 55^ on the other columns i-Ι, i+Ι. The junction 60 of 55^ i, j + i, 55j + i, ji, 55i + 1, j, 55j + 1, j + i will have a resistance. The read current pulse 768 is driven through lines j and j + 丨, jj lines 66j, 6 6j + 1. The current pulse 74 is set to a magnetization effect with a sufficiently high current density β memory cell 5 5 i,j. The bamboo cells 55i+1,j on the same row j are not set, so the connections in these devices are in a high resistance state.

跨越電流線66』、66j + 1所發展的電壓Vs係白 器73 (第1 8圖)所量測,以判定該胞元係處於名 於「0」的高電阻狀態或是對應於「1」的低電阻狀 應了解到,上文中所描述的實施例可被施以| 。該裝置不需爲先前所述的側向裝置而可爲垂直I I記憶體 S 60係 i 7 6可 :例中, i體陣列 可i,亦 ί施加於 丨記憶體 i阻,而 ,J ' 55i. 「較高電 S即電流 i通過記 i記憶體 S 60係 丨行解碼 I如對應 能。 •種修改 :置,例 -33- (31) 1313522 如柱(pillar )。 熟習此項技藝者更應了解的是,雖然上文中係以實施 例的方式來敘述本發明’但本發明不應受限於此,且對其 進行各種改變與修正皆不脫離本發明之精神及所附申請專 利範圍的範疇。 . 【圖式簡單說明】 # 第1圖爲根據本發明之傳導控制裝置的透視圖; 第2圖爲第1圖所示之裝置的平面圖; 第3圖爲第2圖所示之裝置沿著線A_A,的剖面; 第4圖爲第1圖所示之裝置中的鐵磁區之磁化作用示 意圖; 第5圖爲用以操作第1圖所示之裝置的設備示意圖·, 第6圖係描繪可在寫入循環期間被施加至第1圖之裝 置的閘極偏壓、電流脈衝和磁場; 9 第7圖係描繪可在讀取循環期間被施加至第1圖之裝 置的閛極偏壓和電流脈衝; 第8A〜8D圖係顯示製造第1圖所示之裝置的方法; 第9圖爲根據本發明之另一傳導控制裝置的平面圖; _ 第10圖爲第9圖所示之裝置沿著線B_B,的剖面; ' 第1 1圖係描繪第1圖所示之裝置被用以作爲邏輯閫 第ί 2圖係描繪可在寫入循環期間被施加至第〗圖之 裝置的閘極偏壓、電流脈衝和磁場; -34- (32) 1313522 第1 3圖係描繪可在讀取循環期間被施加至第1圖之 裝置的閘極偏壓和電流脈衝; 第14圖爲第11圖所示之裝置的真値表; 第1 5圖爲根據本發明之記憶體胞元的示意圖; 第1 6圖係描述一部分包括第1 5圖所示之記憶體胞元 的記憶體陣列; 第1 7A和1 7B圖分別爲第1 5圖所示之記憶體胞元沿 著線C - C ’和D - D ’的剖面; 第1 8圖爲包括驅動電路之記憶體陣列的示意圖; 第1 9圖係描繪寫入至第1 8圖所示之記憶體陣列中的 記憶體胞元;以及 第20圖係描繪讀取第1 8圖所示之記憶體陣列中的記 憶體胞元。 【主要元件符號說明】 1 :傳導控制裝置 2 :傳導通道 3 :第一閘極 4 :第二聞極 5 :第三閘極 5 ’ :頂閘極 6:第一鐵磁區(第一固定區) 7:第二鐵磁區(第二固定區) 8 :第三鐵磁區(自由區) -35- (33)1313522 9 :第一接面區 1 0 :第一接面區 1 1 :鐵磁層The voltage Vs developed by the current line 66′′, 66j + 1 is measured by the white device 73 (Fig. 18) to determine whether the cell is in a high resistance state named “0” or corresponds to “1”. It should be understood that the embodiment described above can be applied with | The device does not need to be a vertical II memory S 60 system i 7 6 for the lateral device previously described. In the example, the i body array can be i, and is applied to the memory i resistance, and J ' 55i. "Higher power S is the current i is decoded by the memory of the memory system S. I can respond. I can modify it: set, example -33- (31) 1313522 as a pillar. It is to be understood that the present invention is described by way of example only, but the invention is not limited thereto, and various changes and modifications may be made without departing from the spirit and scope of the invention. The scope of the patent range. [Simplified illustration of the drawings] # Fig. 1 is a perspective view of a conduction control device according to the present invention; Fig. 2 is a plan view of the device shown in Fig. 1; The cross section of the device shown along line A_A; Fig. 4 is a schematic view showing the magnetization of the ferromagnetic region in the device shown in Fig. 1; Fig. 5 is a schematic view of the device for operating the device shown in Fig. 1. Figure 6 depicts the gate bias, current pulse that can be applied to the device of Figure 1 during the write cycle. Punching and magnetic field; 9 Figure 7 depicts the drain bias and current pulses that can be applied to the device of Figure 1 during the read cycle; Figures 8A-8D show the method of fabricating the device shown in Figure 1. Figure 9 is a plan view of another conduction control device according to the present invention; _ Figure 10 is a cross-section of the device shown in Figure 9 along line B_B; 'Figure 1 depicts the first Figure The device is used as a logic diagram to depict gate bias, current pulses, and magnetic fields that can be applied to the device during the write cycle; -34- (32) 1313522 Figure 13 Depicting the gate bias and current pulses that can be applied to the device of Figure 1 during the read cycle; Figure 14 is a true table of the device shown in Figure 11; Figure 15 is a memory in accordance with the present invention Schematic diagram of a somatic cell; Figure 16 depicts a portion of a memory array including the memory cells shown in Figure 15; Figures 17A and 17B are respectively memory cells shown in Figure 15. a section along lines C - C ' and D - D '; Figure 18 is a schematic diagram of a memory array including a driver circuit; The memory cells written in the memory array shown in Fig. 18 are depicted; and the 20th image depicts the memory cells in the memory array shown in Fig. 18. [Main component symbols] Description] 1: Conduction control device 2: Conduction channel 3: First gate 4: Second smell pole 5: Third gate 5': Top gate 6: First ferromagnetic zone (first fixed zone) 7: Second ferromagnetic zone (second fixed zone) 8: Third ferromagnetic zone (free zone) -35- (33) 1313522 9 : First junction zone 1 0 : First junction zone 1 1 : Ferromagnetic layer

11' : Ga0'98Mn0.02As 層 1 2 :絕緣層 12' : AlAs 層 1 3、1 3 ':基板 14、14':覆蓋層 1 5 :第一壓縮段 1 6 :第二壓縮段 1 7 :第一側壁 1 8 :第二側壁11': Ga0'98Mn0.02As Layer 1 2: Insulating layer 12': AlAs Layer 1 3, 1 3 ': Substrate 14, 14': Cover layer 15: First compression section 1 6 : Second compression section 1 7 : first side wall 1 8 : second side wall

18〗、182 、 183 :側壁部分 19、 20、 21:電場 22、 23、 24:磁化 25 :縱軸 2 6 : [ 1 0 0 ]的晶向(第一易磁化軸) 2 7 : [ 0 1 0 ]的晶向(第二易磁化軸) 2 8 : [ 1 1 0 ]的晶向 29 :設備 3 0 :電流源 3 1 :電阻器 3 2 :第一電壓源 3 3 :第二電壓源 -36- (34)1313522 34 : 35 : 36 : 37、 40 : 41 : 42、18〗, 182, 183: Side wall portions 19, 20, 21: Electric field 22, 23, 24: Magnetization 25: Vertical axis 2 6 : Crystal orientation of [1 0 0 ] (first easy magnetization axis) 2 7 : [ 0 Crystal orientation of 1 0 ] (second easy axis of magnetization) 2 8 : crystal orientation of [ 1 1 0 ] 29 : device 3 0 : current source 3 1 : resistor 3 2 : first voltage source 3 3 : second voltage Source-36- (34) 1313522 34 : 35 : 36 : 37, 40 : 41 : 42

4 5 : 4 6h 46l 47 : 48 : 49 : 50 :4 5 : 4 6h 46l 47 : 48 : 49 : 50 :

53 : 54 : 55、 56 : 57 : 58 ' 60 : 61 : 第三電壓源 伏特計 來源 3 8、3 9 :偏壓 電流脈衝 磁場脈衝 4 3 :偏壓 零偏壓 探針電流脈衝 :相對大脈衝 :相對小脈衝 下介面 上介面 上表面 光阻層 5 2 :未遮蔽部分 蝕刻劑 絕緣層 55u〜55n,m :記憶體胞元 傳導通道 閘極 5 9 :鐵磁區 接面區 壓縮段 -37- (35) 1313522 6 2 :第一側壁 6 3 :第二側壁 6 3 !:第二側壁部分 64 :記憶體陣列 64':記憶體陣列的一部分 • 6 5、6 5 1〜6 5 n :鬧極線 _ 66、66i 〜66m+1 :電流線 _ 6 7 :鐵磁層 6 8 :絕緣層 6 9 :基板 70 :覆蓋層 7 1 :絕緣層 7 2 :列解碼器 7 3 :行解碼器 74 :寫入選擇信號 φ 7 5 保持信號 76 :寫入電流脈衝 77 :讀取選擇信號 ' 78 :讀取電流脈衝 ' s、V :間隔 -3853 : 54 : 55 , 56 : 57 : 58 ' 60 : 61 : Third voltage source voltmeter source 3 8 , 3 9 : Bias current pulse magnetic field pulse 4 3 : Bias zero bias probe current pulse : relatively large pulse : relatively small pulse interface on the interface surface photoresist layer 5 2: unmasked part of the etchant insulating layer 55u~55n, m: memory cell conduction channel gate 5 9 : ferromagnetic zone junction area compression section -37- (35) 1313522 6 2 : First side wall 6 3 : Second side wall 6 3 !: Second side wall portion 64 : Memory array 64 ′: Part of the memory array • 6 5, 6 5 1~6 5 n : Polar line _ 66, 66i ~ 66m +1 : current line _ 6 7 : ferromagnetic layer 6 8 : insulating layer 6 9 : substrate 70 : cover layer 7 1 : insulating layer 7 2 : column decoder 7 3 : row decoder 74: Write selection signal φ 7 5 Hold signal 76: Write current pulse 77: Read selection signal '78: Read current pulse' s, V: Interval - 38

Claims (1)

1313522 十、申請專利範圍 第095109460號專利申請案 中文申請專利範圍修正本 民國97年12月12日修正 1 · 一種傳導控制裝置,包含: 一第一鐵磁區,具有相對高的矯頑磁力; φ 一第二鐵磁區,具有相對低的矯頑磁力; 一接面區,設置於該第一和第二鐵磁區之間,用以將 該第一和第二鐵磁區磁解耦;以及 一閘極,用以對該接面區施加一電場,以控制該接面 區內的電荷載子密度。 2.如申請專利範圍第1項之傳導控制裝置,包含: 一第三鐵磁區,具有比該第二鐵磁區高的矯頑磁力; 另一接面區,設置於該第二和第三鐵磁區之間;以及 φ 另一閘極’用以對該另一接面區施加一電場,以改變 該接面區內的電荷載子密度。 3 ·如申請專利範圍第1或2項之傳導控制裝寘,更 包含: 又一閘極,用以對該第二鐵磁區施加一場。 4 ·如申請專利範圍第1項之傳導控制裝置,其中該 第一和第二鐵磁區包含相同材料。 5.如申請專利範圍第1項之傳導控制裝置,其中該 第一和第二鐵磁區以及該接面區包含相同材料。1313522 X. Patent Application No. 095109460 Patent Application Revision Chinese Patent Application Revision Amendment December 12, 1997 of the Republic of China 1 · A conduction control device comprising: a first ferromagnetic region having a relatively high coercive force; Φ a second ferromagnetic region having a relatively low coercive force; a junction region disposed between the first and second ferromagnetic regions for magnetically decoupling the first and second ferromagnetic regions And a gate for applying an electric field to the junction region to control the charge sub-density in the junction region. 2. The conduction control device of claim 1, comprising: a third ferromagnetic region having a higher coercive force than the second ferromagnetic region; and another junction region disposed in the second and the second Between the three ferromagnetic regions; and φ another gate' is used to apply an electric field to the other junction region to change the charge carrier density in the junction region. 3. The conduction control device of claim 1 or 2, further comprising: another gate for applying a field to the second ferromagnetic region. 4. The conduction control device of claim 1, wherein the first and second ferromagnetic regions comprise the same material. 5. The conduction control device of claim 1, wherein the first and second ferromagnetic regions and the junction region comprise the same material. 1313522 6. 如申請專利範圍第1項之傳導控制裝置,@ _ 第一和第二鐵磁區以及該接面區被形成於一層中。 7. 如申請專利範圍第1項之傳導控制裝置,其φ _ 第一和第二鐵磁區包含鐵磁半導體。 8. 如申請專利範圍第7項之傳導控制裝置,_ + _ 鐵磁半導體包含(Ga,Mn) As。 9. 如申請專利範圍第1項之傳導控制裝置,其ψ胃 接面區包含一半導體材料。 10. 如申請專利範圍第1項之傳導控制裝置,其ψ _ 第一鐵磁區爲細長形並具有一縱軸。 11. 如申請專利範圍第10項之傳導控制裝置,_ φ 該縱軸係對準於沿著一易磁化軸的方向。 1 2.如申請專利範圍第1或2項之傳導控制裝置,_ 中該裝置係建構以顯現穿隧異向性磁阻(TAMR )效應。 1 3 .如申請專利範圍第1或2項之傳導控制裝置,_ 中該裝置係建構以顯現穿隧磁阻(T M R )效應。 14.如申請專利範圍第1項之傳導控制裝置,其中該 第二鐵磁區係由大致配置於一平面中的一層或一層之—部 分所提供。 1 5 .如申請專利範圍第1 4項之傳導控制裝置,其中 該層或層部分具有小於或等於10 nm的厚度。 16.如申請專利範圍第1 4項之傳導控制裝置,其中 該第二鐵磁區具有一易磁化軸,該易磁化軸係定向爲離開 該層或層部分的該平面。 -2-1313522 6. As in the conduction control device of claim 1, the @_first and second ferromagnetic regions and the junction region are formed in one layer. 7. The conduction control device of claim 1, wherein the φ _ first and second ferromagnetic regions comprise a ferromagnetic semiconductor. 8. As in the case of the conduction control device of claim 7, the _ + _ ferromagnetic semiconductor contains (Ga, Mn) As. 9. The conductive control device of claim 1, wherein the gastric interface region comprises a semiconductor material. 10. The conductive control device of claim 1, wherein the first ferromagnetic region is elongated and has a longitudinal axis. 11. The conductive control device of claim 10, wherein the longitudinal axis is aligned in a direction along an easy axis of magnetization. 1 2. In the case of the conduction control device of claim 1 or 2, the device is constructed to exhibit a tunneling anisotropic magnetoresistance (TAMR) effect. 1 3. In the case of the conduction control device of claim 1 or 2, the device is constructed to exhibit a tunneling magnetoresistance (T M R ) effect. 14. The conduction control device of claim 1, wherein the second ferromagnetic region is provided by a portion of a layer or a layer disposed substantially in a plane. A conductive control device according to claim 14 wherein the layer or layer portion has a thickness of less than or equal to 10 nm. 16. The conduction control device of claim 14, wherein the second ferromagnetic region has an easy magnetization axis oriented away from the plane of the layer or layer portion. -2- 1313522 1 7 ·如申請專利範圍第1 4項之傳導控制裝置,其中 該第二鐵磁區具有一易磁化軸,該易磁化軸係定向爲進入 該層或層部分的該平面。 1 8 .如申請專利範圍第1 4項之傳導控制裝置,其中 該第一鐵磁區係由大致配置於該平面或另一平面之另一層 或該餍的另一部分所提供。 1 9 ·如申請專利範圍第1 8項之傳導控制裝置,其中 φ 該第一鐵磁區具有一易磁化軸,該易磁化軸係定向爲進入 該另一層或該另一層部分的該平面。 2〇· —種裝置,包含: 一傳導區; 一鐵磁區; 一接面區’連接該傳導區和該鐵磁區;以及 一鬧極’用以對該接面區施加一電場,以控制該接面 區內的電荷載子密度。 # 21·如申請專利範圍第20項之裝置,其中該傳導區 包含一非鐵磁材料。 22.如申請專利範圍第20項之裝置,其中該傳導區 包含一半導體材料。 23 '如申請專利範圍第20項之裝置,其中該接面區 包含一半導體材料。 24'如申請專利範圍第20項之裝置,其中該傳導區 和接面區包含相同材料_。 25 ·如申請專利範圍第2〇項之裝置,其中該鐵磁區 1313522 u日修正替換頁 4-2- 和接面區包含相同材料。 26. 一種如申請專利範圍第1至2項、第4至1 1項 和第1 4至2 5項中任一項之裝置的記憶體陣列。 2 7 . —種製造傳導控制裝置的方法,該方法包含: 提供具有相對高矯頑磁力的一第一鐵磁區; 提供具有相對低矯頑磁力的一第二鐵磁區; 提供設置於該第一和第二鐵磁區之間的一接面區,用 以將該第一和第二鐵磁區磁解耦;以及 提供用以對該接面區施加一電場的一閘極,以控制該 接面區內的電荷載子密度。 2 8.如申請專利範圍第27項之方法,其中提供該接 面區包含在該第一和第二接面區之間界定一壓縮段。 2 9 . —種操作一傳導控制裝置的方法,該傳導控制裝 置具有一通道,該通道包含具有相對高矯頑磁力的一第一 鐵磁區、具有相對低矯頑磁力的一第二鐵磁區、設置於該 第一和第二鐵磁區之間以將該第一和第二鐵磁區磁解耦的 一接面區;以及用以對該接面區施加一場以控制該接面區 內之電荷載子密度的一閘極,該方法包含: 對該閘極施加一第一偏壓,以增加該接面區中的電荷 載子密度;以及 驅動一第一電流脈衝通過該通道’該電流脈衝具有大 於一臨界値的一第一電流振幅,以將該第二鐵磁區的磁化 作用反向。 30.如申請專利範圍第2 9項之方法’包含: -4- 1313522 ~—— - 曰修正替換頁 對該閘極施加一第二偏壓,以降低該接面區中的電荷 載子密度;以及 驅動一第二電流脈衝通過該通道,該第二電流脈衝具 有低於該臨界値的一第二電流振幅。 3 1 . —種操作傳導控制裝置的方法,該傳導控制裝置 具有一通道,該通道包含具有相對高矯頑磁力的一第一鐵 磁區、具有相對低矯頑磁力的一第二鐵磁區、設置於該第 &gt; 一和第二鐵磁區之間以將該第一和第二鐵磁區磁解耦的一 接面區;以及用以對該接面區施加一場以控制該接面區內 之電荷載子密度的一閘極,該方法包含: 對該第一和第二鐵磁區施加一磁場,以將該第二但非 該第一鐵磁區的磁化作用反向,該磁場大於該第二鐵磁區 的一臨界場,但小於該第一鐵磁區的一臨界場。1313522 1 7 The conductive control device of claim 14, wherein the second ferromagnetic region has an easy magnetization axis oriented to enter the plane of the layer or layer portion. 18. The conduction control device of claim 14, wherein the first ferromagnetic region is provided by another layer disposed substantially in the plane or another plane or another portion of the crucible. A conduction control device according to claim 18, wherein φ the first ferromagnetic region has an easy magnetization axis oriented to enter the plane of the other layer or the other layer portion. A device comprising: a conductive region; a ferromagnetic region; a junction region 'connecting the conduction region and the ferromagnetic region; and a horn electrode' for applying an electric field to the junction region Control the charge sub-density in the junction area. #21. The device of claim 20, wherein the conductive region comprises a non-ferromagnetic material. 22. The device of claim 20, wherein the conductive region comprises a semiconductor material. 23 'A device as claimed in claim 20, wherein the junction region comprises a semiconductor material. 24' The device of claim 20, wherein the conductive zone and the junction zone comprise the same material. 25. The device of claim 2, wherein the ferromagnetic region 1313522 u-day correction replacement page 4-2- and the junction region comprise the same material. 26. A memory array as claimed in any one of claims 1 to 2, 4 to 11 and any of items 14 to 25. A method of manufacturing a conduction control device, the method comprising: providing a first ferromagnetic region having a relatively high coercive force; providing a second ferromagnetic region having a relatively low coercive force; a junction region between the first and second ferromagnetic regions for magnetically decoupling the first and second ferromagnetic regions; and providing a gate for applying an electric field to the junction region to Control the charge sub-density in the junction area. The method of claim 27, wherein providing the junction region comprises defining a compression segment between the first and second junction regions. A method of operating a conduction control device, the conduction control device having a passage including a first ferromagnetic region having a relatively high coercive force and a second ferromagnetic having a relatively low coercive force a junction region disposed between the first and second ferromagnetic regions to magnetically decouple the first and second ferromagnetic regions; and a field applied to the junction region to control the junction a gate of the charge carrier density in the region, the method comprising: applying a first bias to the gate to increase a charge carrier density in the junction region; and driving a first current pulse through the channel The current pulse has a first current amplitude greater than a threshold 値 to reverse the magnetization of the second ferromagnetic region. 30. The method of claim 29, wherein the method includes: -4- 1313522 ~ - - 曰 correction replacement page applies a second bias to the gate to reduce the charge sub-density in the junction region And driving a second current pulse through the channel, the second current pulse having a second current amplitude below the threshold 値. 3 1. A method of operating a conduction control device, the conduction control device having a passage including a first ferromagnetic region having a relatively high coercive force and a second ferromagnetic region having a relatively low coercive force a junction region disposed between the first and second ferromagnetic regions to magnetically decouple the first and second ferromagnetic regions; and a field applied to the junction region to control the connection a gate of the charge carrier density in the area, the method comprising: applying a magnetic field to the first and second ferromagnetic regions to reverse the magnetization of the second but not the first ferromagnetic region, The magnetic field is greater than a critical field of the second ferromagnetic region but less than a critical field of the first ferromagnetic region.
TW95109460A 2005-03-24 2006-03-20 Conduction control device TWI313522B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05102430 2005-03-24
EP05102529 2005-03-30
GB0514371A GB0514371D0 (en) 2005-03-24 2005-07-14 Conduction control device

Publications (2)

Publication Number Publication Date
TW200644303A TW200644303A (en) 2006-12-16
TWI313522B true TWI313522B (en) 2009-08-11

Family

ID=34913505

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95109460A TWI313522B (en) 2005-03-24 2006-03-20 Conduction control device

Country Status (2)

Country Link
GB (1) GB0514371D0 (en)
TW (1) TWI313522B (en)

Also Published As

Publication number Publication date
TW200644303A (en) 2006-12-16
GB0514371D0 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP4919682B2 (en) Conductive control device
JP6154745B2 (en) Magnetic memory element
JP4693634B2 (en) Spin FET
US8779496B2 (en) Spin FET, magnetoresistive element and spin memory
US8217438B2 (en) Spin memory and spin FET
EP2513904B1 (en) Spin torque magnetic integrated circuit and method of fabricating therefor
EP3073532B1 (en) Magnetoresistive element, spin mosfet, magnetic sensor, and magnetic head
US7893426B2 (en) Single-charge tunnelling device
US20090146231A1 (en) Magnetic memory device having a C-shaped structure and method of manufacturing the same
KR100855105B1 (en) Spin transistor using perpendicular magnetization
US20100097063A1 (en) Method for changing spin relaxation, method for detecting spin current and spintronics device using spin relaxation
US20090137066A1 (en) Sensor for a magnetic memory device and method of manufacturing the same
EP2209123B1 (en) Magnetoresistive memory
US7298594B2 (en) Electric-field-effect magnetoresistive devices and electronic devices using the magnetoresistive devices
US10355046B1 (en) Steep slope field-effect transistor (FET) for a perpendicular magnetic tunnel junction (PMTJ)
TWI313522B (en) Conduction control device
US10243021B1 (en) Steep slope field-effect transistor (FET) for a perpendicular magnetic tunnel junction (PMTJ)
JP5058236B2 (en) Spin memory
CN100459149C (en) Conduction control device
US20230083328A1 (en) Magnetic tunnel junction device and operating method therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees