TWI313508B - Non-volatile memory cells having a polysilicon-containing, multi-layer insulating structure, memory arrays including the same and methods of operating the same - Google Patents

Non-volatile memory cells having a polysilicon-containing, multi-layer insulating structure, memory arrays including the same and methods of operating the same Download PDF

Info

Publication number
TWI313508B
TWI313508B TW95142487A TW95142487A TWI313508B TW I313508 B TWI313508 B TW I313508B TW 95142487 A TW95142487 A TW 95142487A TW 95142487 A TW95142487 A TW 95142487A TW I313508 B TWI313508 B TW I313508B
Authority
TW
Taiwan
Prior art keywords
layer
memory cell
disposed
dielectric
gate
Prior art date
Application number
TW95142487A
Other languages
Chinese (zh)
Other versions
TW200824099A (en
Inventor
Erh Kun Lai
Yen-Hao Shih
Tzu-Hsuan Hsu
Shih-Chin Lee
Jung-Yu Hsieh
Kuang-Yeu Hsieh
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW95142487A priority Critical patent/TWI313508B/en
Publication of TW200824099A publication Critical patent/TW200824099A/en
Application granted granted Critical
Publication of TWI313508B publication Critical patent/TWI313508B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

1313508 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種非揮發性記憶胞,並尤其有關於一 種包括有多層絕緣結構之非揮發性記憶胞,以及包括此記 憶胞之記憶陣列、及其製造方法。 φ 【先前技術】 非揮發性記憶體(NVM)係指半導體記憶體其可持續地 儲存資訊,即使包括有此NVM記憶胞之元件的電源供應 被移除時亦然。NVM包括了遮罩唯讀記憶體(Mask ROM)、可程式化唯讀記憶體(PR〇M)、可抹除可程式化唯 讀記憶體(EPROM)、電氣可抹除可程式化唯讀記憶體 (EEPROM)、以及快閃記憶體。非揮發性記憶體係被大量地 $用於半導體產業卜並且係為—種用以防止程式化資料 鲁損失的記憶體類型。典型地,非揮發性記憶體可以根據此 元件的最終使用需求而被程式化、讀取、及/或抹除,且程 式化S料可以被長期儲存。 ' 非揮發性記憶元件可以使用多種不同的設計,包括且肩 電荷儲存層之「浮動閘極型」,以及具有電荷捕捉層而將獨 何以局部方錢存_型。局耗㈣荷儲存(或捕捉) 係指稱可關-電荷捕捉層而將電荷儲存的能力,且不^ 在儲存層巾造成大幅度的㈣水平移動。習知的「浮㈣ ^記憶胞係包括了-電荷儲存層,其係為—導體且被信 存的電荷係水平地分散於整層巾(亦即分散於整個浮^ •1313508 極中 隨著過去近二十年來資 電腦與電子通訊產豐 科技市%的大幅成長,可攜式 (VLSI)與極大型積體、已^成為=導體超大型積體電路 此,低消耗功率、高密_ LSI)设計的主要驅動力。因 體係有非常大的市場需;===== 記憶經巧半導髓產業的重式抹除1313508 IX. Description of the Invention: [Technical Field] The present invention relates to a non-volatile memory cell, and more particularly to a non-volatile memory cell including a multilayer insulating structure, and a memory array including the memory cell And its manufacturing method. φ [Prior Art] Non-volatile memory (NVM) refers to semiconductor memory that continuously stores information even when the power supply of components including the NVM memory cell is removed. NVM includes Masked Read Only Memory (Mask ROM), Programmable Read Only Memory (PR〇M), Erasable Programmable Read Only Memory (EPROM), Electrically Erasable Programmable Read Only Memory (EEPROM), and flash memory. Non-volatile memory systems are used in large quantities in the semiconductor industry and are a type of memory used to prevent loss of stylized data. Typically, the non-volatile memory can be programmed, read, and/or erased according to the end use requirements of the component, and the programmed S material can be stored for long periods of time. Non-volatile memory components can be used in a variety of different designs, including the "floating gate type" of the shoulder charge storage layer, and the charge trapping layer, which will be stored locally. The local consumption (four) charge storage (or capture) refers to the ability to store the charge in the off-charge trapping layer, and does not cause a large (four) horizontal shift in the storage layer. The conventional "floating (4) memory cell system includes a charge storage layer, which is a conductor and the stored charge is horizontally dispersed in the entire layer of the towel (ie, dispersed throughout the entire surface of the 1313508). In the past 20 years, the computer and electronic communication industry has grown by a large percentage, and the portable (VLSI) and the ultra-large integrated body have become the conductor super-large integrated circuit. This is low power consumption and high density _ LSI The main driving force of design. Because the system has a very large market demand; ===== Memory is a heavy erase of the semi-guided embryo industry

體穷;Γ的求’觀鑛於集積密度與記憶 在每一個記憶胞中可以儲存二個位元 1 °田。、甘立705己憶胞’在此領域中係為習知但並未被大幅 彳。/、些雙位7〇記憶胞具有多重臨界電壓位階,其中每 二臨界電壓㈣之間則儲存—不同的位元。此_的雙位 元記憶胞⑽賴作複雜度,因此阻卻了其廣泛應用。1 他雙位元記憶胞使用了電荷捕捉層並具有二分離的儲存ς 置,並在同記憶胞的二側之—儲存—位元資訊。此種雙位 元α己隐胞的其中一種係為氮化物唯讀記憶體㈤砲e trapping memory) ° 般而5 ’ nitride traPping memory記憶胞使用了較 厚的通道氧化物層於半導朗與電荷捕捉氮化物層之間, 以避免在資料保存狀態時的電荷流失。然而,較厚的通道 氧化物層可能會影響通道抹除速度。因此,一帶至帶穿隨 熱電洞(BTBTHH)抹除方法係經常被用以注入電洞至通道 中,以抵銷先前儲存的電子。然而,BTBTHH抹除方法可 旎會引起可靠度問題。舉例而言,NVM元件使用btbthh 抹除方法的性能特徵係數,在多次程式化/抹除(p/E)循環之 6 1313508 後可能會快速劣化,因為半導體層/氧化物介面可能因為 BTBTHH方法而產生損壞。本發明中,「半導體層」係指源 極/汲極區域鄰近於此層表面的層結構,而「半導體基板」 •或「基板」則是指鄰近於半導體層的支撐或絕緣結構但不 包括源極/汲極區域。並不是所有的半導體元件均具有半導 體基板,且在不具有半導體基板的例子中,半導體層則通 常也被認為是基板。 另一電荷捕捉NVM記憶胞的設計,係為矽-氧化物-氮 φ 化物-氧化物-矽(SONOS)元件,其可包括一薄穿隧氧化 物層於半導體層與電荷捕捉層之間,以允許電洞直接穿隧 的抹除操作。雖然此種設計可以達到優良的抹除速度,但 資料保存性能則通常不佳,部分因為直接穿隧可能在低電 場強度下發生,而低電場強度則在記憶元件的保存狀態就 已經存在。 因此,在此領域中需要一種非揮發性記憶胞設計與陣 列,其可多次重複地進行程式化與抹除,而不會受到從半 φ 導體層發生之熱電洞穿隧所引起的半導體層/氧化物介面 損壞。 【發明内容】 本發明係有關於非揮發性記憶胞以及包括此記憶胞的 元件,並尤其有關於一種非揮發性記憶胞設計,其包括一 含有絕緣多晶矽之多層結構設置於一電荷儲存層與一閘極 之間,以利正電壓抹儲存操作,且允許閘極注入電洞抹除。 本發明亦有關於操作此種記憶胞的方法。根據本發明各實 切 35〇8 &amp;例所、隹一 介雨因,之正電壓抹除操作,可以減少半導體層/氧化物 方法為半導體層帶間熱電洞注入所引起的損害,此操作 極偏^用為記憶胞的抹除方法。此方法中並不需要一負閘 擊,因此所需要的周邊電路可以更簡單、更密集。 層其,明之一實施例後’包括—記憶胞’其包括:一半導體 教it括有至少二源極/汲極區域接近該半導體層之表面 上〜通道區域所分隔;一下絕緣層設置於該通道區域之 結構;^荷儲存層0於該τ絕緣層之上…上絕緣i展 括〜^於叆電荷儲存層之上,其中該上絕緣多層結構包 間了夕晶矽材料層插諛於—第一介電層與一第二介電層= 曰,以及一閘極設置於該上絕緣多層結構之上。 本發明之另—實施制包括—記憶胞,其包栝:-石夕半導 層,其包括有至少二源極/汲極區域設置於該半導體層之 表面下,並被-通道區域所分隔;—魏化物絕緣 置於該通道區域之少;〆氮切電荷儲存層設置於= 化物絕緣層之上;—上絕緣多層結構設置於該乳 之上,其中該上絕緣多層結構係包括—多晶 ^存層 於-第-矽氧化物介電層與—第二矽氧化物介::日插設 其中該多晶頻料層之厚度係為約10至3〇埃,’ 氧化物介電層之厚度係為約1〇至4 _〜弟一矽 ,,人存U埃’且讀第二矽氧化 物&quot;電層之厚度係為約1G至4G埃;以及—間極設置於該 上絕緣多層結構之上’其中該閘極係包括—摻雜之多 晶石夕層。本發明亦包括非揮發性記憶元件, 數個 記憶胞(亦即陣列)其包括有複數個根據本發日卜個以上 的記憶胞實施例。在本發明中,「複數個」以及「至少二」 1313508 等詞鲞 ^ _„ ’係指稱至二個以上亓去 疋貝詞單數「一個」以及定貫外:在本發明中,不 對象,除非該文句巾清楚:°5〜」係包括複數個指定 可以包括複數個此等記憶因此’例如「—記憶胞」 A本赘明之記憶元件顯示了大^ 二電荷保存以及改良的耐用 ' :導質’包括改 的心損害的降低。大約1()伏 5口^抹除所引起 抹除電壓係低於一反及閉(NA=p=已足狗。此 抹除電壓。同時,本發明可於介隊 思體所需要的 本發明之介面係發生於接近閘極處】=損害’因為 因此本發明減損害之因素係遠少於帶^^^處, 本發明亦包括用以操作非揮發性記憶= 法。本發明#作方法的實施例之一包括 ,、單歹!之方 極,此正電廣係足以使得電洞從閘極穿正电壓至閘 以下係_制本㈣之結構與方 章節目的並本發明。本發明係由申請=圍 所定義。舉^狀實_、賴、目料優點等將可 透過下列說明Μ專利範圍及所附圖式獲得充分瞭解。Poor body; Γ ’ 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观 观Gan Li 705 has recalled the 'in this field, but it has not been greatly embarrassed. /, the two-bit 7-inch memory cells have multiple threshold voltage levels, where each of the two threshold voltages (four) stores - different bits. This double-dimensional memory cell (10) relies on complexity, thus blocking its widespread application. 1 His two-dimensional memory cell uses a charge trapping layer and has two separate storage devices, which store information on the two sides of the same memory cell. One of the two-dimensional alpha occult cells is a nitride-reading memory (5), and the 5' nitride traPping memory uses a thicker channel oxide layer in the semi-conductor The charge traps between the nitride layers to avoid charge loss during data storage. However, a thicker channel oxide layer may affect the channel erase speed. Therefore, the band-to-band wear-through thermal hole (BTBTHH) erasing method is often used to inject holes into the channel to offset previously stored electrons. However, the BTBTHH erasing method can cause reliability problems. For example, the performance characteristic coefficients of the NVM component using the btbthh erase method may degrade rapidly after multiple 131313508 of the stylization/erase (p/E) cycle because the semiconductor layer/oxide interface may be due to the BTBTHH method. And it caused damage. In the present invention, the term "semiconductor layer" refers to a layer structure in which a source/drain region is adjacent to a surface of the layer, and "semiconductor substrate" or "substrate" refers to a support or insulating structure adjacent to the semiconductor layer but does not include Source/drainage area. Not all semiconductor elements have a semiconductor substrate, and in the case of not having a semiconductor substrate, the semiconductor layer is generally also considered to be a substrate. Another charge trapping NVM memory cell design is a germanium-oxide-nitride-oxide-germanium (SONOS) device that can include a thin tunneling oxide layer between the semiconductor layer and the charge trapping layer. An erase operation that allows the tunnel to tunnel directly. Although this design achieves excellent erase speeds, data retention performance is generally poor, in part because direct tunneling can occur at low field strengths, while low field strengths already exist in the memory state of the memory device. Therefore, there is a need in the art for a non-volatile memory cell design and array that can be programmed and erased multiple times without being subjected to thermal tunneling from the semi-φ conductor layer to the semiconductor layer/ The oxide interface is damaged. SUMMARY OF THE INVENTION The present invention relates to a non-volatile memory cell and an element including the same, and more particularly to a non-volatile memory cell design including a multilayer structure including an insulating polysilicon disposed on a charge storage layer and Between the gates, the positive voltage wipes the storage operation and allows the gate to be injected into the hole. The invention also relates to methods of operating such memory cells. According to the practice of the present invention, the positive voltage erasing operation of the semiconductor layer/oxide method can reduce the damage caused by the semiconductor layer/oxide method for the injection of the thermal hole between the semiconductor layers. The partial use is used as the erasing method of the memory cell. A negative gate is not required in this method, so the required peripheral circuitry can be simpler and more dense. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> The structure of the channel region; the charge layer 0 above the τ insulating layer... the upper insulating layer i is overlaid on the 叆 charge storage layer, wherein the upper insulating layer structure is interposed between a first dielectric layer and a second dielectric layer = 曰, and a gate disposed over the upper insulating multilayer structure. Another embodiment of the present invention includes a memory cell, the package comprising: - a stone semiconductor layer comprising at least two source/drain regions disposed under the surface of the semiconductor layer and separated by a channel region - the Wei compound insulation is placed in the channel region; the niobium cut charge storage layer is disposed on the = insulating layer; the upper insulating multilayer structure is disposed on the milk, wherein the upper insulating multilayer structure includes - The crystal layer is deposited on the -th-thorium oxide dielectric layer and the second germanium oxide layer: wherein the thickness of the polycrystalline frequency layer is about 10 to 3 Å, 'oxide dielectric The thickness of the layer is about 1 〇 to 4 _ 〜 弟 矽 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Above the upper insulating multilayer structure, wherein the gate system comprises a doped polycrystalline layer. The invention also includes non-volatile memory elements, a plurality of memory cells (i.e., arrays) including a plurality of memory cell embodiments in accordance with the present invention. In the present invention, the words "plural" and "at least two" 1313508 and the like 鲞^ _„ ' are referred to as two or more 疋 数 singular "one" and singular: in the present invention, no object, Unless the sentence is clear: °5~" includes a plurality of designations that can include a plurality of such memories so that 'for example, "-memory cells" A memory device of the present invention shows large (two-charge storage and improved durability): Quality 'includes a reduction in heart damage. About 1 () volts 5 ports ^ erasing caused the erase voltage is lower than a reverse and closed (NA = p = already a dog. This erase voltage. At the same time, the present invention can be used in the body of the body The interface of the invention occurs near the gate 】 = damage 'because the reason for the damage reduction of the present invention is far less than the band ^ ^ ^, the present invention also includes the operation of non-volatile memory = method. One of the embodiments of the method includes a square pole of a single enthalpy, which is sufficient for the hole to pass a positive voltage from the gate to the gate structure (the fourth) and the purpose of the section and the present invention. The invention is defined by the application = enclosure. The advantages of the invention, the advantages of the invention, and the like, will be fully understood through the following description of the patent scope and the drawings.

【實施方式J 接下來將參照本發明之較佳實施例而進行詳細說明,並 參照至對應鄺式舄要注意的是,圖式係為簡化示意,因 此並不代表貧際的尺度。在本發明說明中,為了力求簡潔, 諸如頂、底、左、右、上、下、之上、之下、底下、後端、 前端等方向性詞彙,係僅用於對應圖式中。這些方向性詞 1313508 茱與本文之圖式說明並非用 雖然本發明說明係參照至特=^發明於任何方式中。 些實施例僅做為舉例用,施例’可以瞭解的是 明之製程步驟與結構並未涵蓋:制劍可以理解的是,本發 要的完整製程。本發明可以與;^造整個積體電略所需 種積體電路製程技術共同使用、/員域中熟知或發展中的多 列本發明之記憶胞、以及包括二個以上 以及包括有此種記憶胞及/ 。己憶胞的陣 V1V[元件中的—些可靠度問題,尤i曰估兀,可以克服 =記憶元件中。本發明之記憶胞結;荷儲 極/主入熱電洞抹除方法, 了正電壓、閘 荷保存特性。本發明之多種乃維持 熱電洞穿隧抹除方法的依賴,:二列減了對於帶間 式化/抹除循環之後,在半導體層凡件在經過多次程 劣化。由科需要物介面損傷所產生的 以更簡化且更密所使用的周邊電路可 =低於;及間快閃記憶體所需要的抹除電壓i時, 處降低介面損害,因為本發明之介面係發 生於接近閘極處而非接近表 害之因錢遠切此树明造成損 此了本發明—實施例之記憶胞1GG的剖面圖。 己憶胞包括-半導體層101 ’其中包括至少二源極/汲極 =11〇,m,其中每一源極/汲極區域110,112可作用為源 極’視所施加電塵而定。半導體層ι〇ι更包拉一通 ι-域115於二源極/汲極區域之間。記憶胞⑽更包括一 10 .1313508 下絕緣層120,其係設置於通道區域115之上,但不必然 直接位於半導體層101的表面上。舉例而言,額外的層結 構可以選擇性地設置於半導體層的表面以及下絕緣層之 間,例如一閘極氧化物層(未示)設置於半導體層的表面 上。記憶胞100更包括一電荷儲存層130設置於下絕緣層 120之上。記憶胞100更包括一上絕緣多層結構140其具 有多晶矽層144插設於一第一介電層142與一第二介電層 146之間。此記憶胞100更包括一閘極150設置於上絕緣 • 多層結構140之上。本發明亦可應用於一具有傳統矽半導 體層之記憶胞上,其不具有一基板,或是絕緣上覆矽(SOI) 以及薄膜電晶體(TFT)製程上或一垂直電晶體製程。對 於本發明之目的而言,「半導體層」係指源極/汲極區域鄰 近於此層表面的層結構,而「半導體基板」或「基板」則 是指鄰近於半導體層的支撐或絕緣結構、但不包括源極/汲 極區域。並不是所有的半導體元件都具有半導體基板,且 在不具有半導體基板的例子中,半導體層則通常也被認為 φ 是基板。 本發明之記憶胞,係包括一半導體層。任何適用於一半 導體元件中之半導體材料層均可被使用。在許多本發明較 佳實施例中,此半導體層包括一矽材料。利用標準技術所 製造的矽晶圓可被用來製備適合的半導體層。舉例而言, 適合的晶圓可以利用適當製程形成,其中矽係從一微小結 晶(稱為晶種)經由旋轉並緩慢地從一溶融南壓碎拉出’ 以生成一圓柱結晶,之後經由切片而獲得薄圓盤,之後經 過切片、精細研磨並清潔而獲得晶圓。因此,舉例而言, 11 1313508 如第1圖中的半導體層1〇1可勺 根據本發明之數個較佳實^Γ'ϋΡ ° 一般而言,Ρ型矽半導體層係。 千導體層包括ρ型矽。 包括已經過輕微Ρ摻雜之^夕曰可用於本發明較佳實施例中, 域包括η+摻雜佈植的實施例^ 。在本發明其源極/汲極區 層將因ΡΝ接面的逆向偏壓而在:經輕微Ρ摻雜之半導體 中較具優勢。如矽等半導妒展沾圮憶胞的程式化與讀取之 的方式實施,例如利用蝴、“摻雜可利用任何適合[Embodiment J] Reference will now be made in detail to the preferred embodiments of the invention, In the description of the present invention, in order to be concise, directional words such as top, bottom, left, right, up, down, top, bottom, bottom, back end, front end, etc. are used only in the corresponding drawings. These directional words 1313508 茱 are not used in the drawings herein, although the description of the present invention is in any way. These examples are for illustrative purposes only, and the example 'is understood that the process steps and structures are not covered: the sword can understand the complete process of the present invention. The present invention can be used in conjunction with the integrated circuit circuit technology required for the entire integrated circuit, the memory cells of the present invention which are well known or under development in the field, and including more than two and including such Memory cells and /. The memory of the cell V1V [some reliability problems in the component, especially estimated, can be overcome = memory element. The memory cell junction of the present invention; the charge storage/primary thermal cavity erasing method has positive voltage and gate storage characteristics. The various aspects of the present invention are dependent on maintaining the thermal tunnel tunneling erase method: the two columns are degraded for a plurality of stages in the semiconductor layer after a band pass/erase cycle. The peripheral circuit used in the simplified and denser use of the interface-related damage can be lower than; and the erase voltage i required for the flash memory is reduced, because the interface of the present invention is reduced. This is a cross-sectional view of the memory cell 1GG of the present invention, which is caused by the fact that the money is close to the gate and not close to the surface damage. The memory cell includes a semiconductor layer 101' which includes at least two source/drain electrodes = 11 Å, m, wherein each of the source/drain regions 110, 112 can function as a source depending on the applied electric dust. The semiconductor layer ι〇ι is further wrapped between the two source/drain regions. The memory cell (10) further includes a 10.1313508 lower insulating layer 120 disposed over the channel region 115, but not necessarily directly on the surface of the semiconductor layer 101. For example, an additional layer structure may be selectively disposed between the surface of the semiconductor layer and the lower insulating layer, for example, a gate oxide layer (not shown) is disposed on the surface of the semiconductor layer. The memory cell 100 further includes a charge storage layer 130 disposed on the lower insulating layer 120. The memory cell 100 further includes an upper insulating multilayer structure 140 having a polysilicon layer 144 interposed between a first dielectric layer 142 and a second dielectric layer 146. The memory cell 100 further includes a gate 150 disposed over the upper insulating layer structure 140. The invention can also be applied to a memory cell having a conventional germanium semiconductor layer which does not have a substrate, or an insulating overlying germanium (SOI) and thin film transistor (TFT) process or a vertical transistor process. For the purposes of the present invention, a "semiconductor layer" refers to a layer structure in which a source/drain region is adjacent to a surface of the layer, and a "semiconductor substrate" or "substrate" refers to a support or insulating structure adjacent to the semiconductor layer. But does not include the source/drain region. Not all semiconductor elements have a semiconductor substrate, and in the case of not having a semiconductor substrate, the semiconductor layer is generally also considered to be φ. The memory cell of the present invention comprises a semiconductor layer. Any layer of semiconductor material suitable for use in half of the conductor elements can be used. In many preferred embodiments of the invention, the semiconductor layer comprises a germanium material. Tantalum wafers fabricated using standard techniques can be used to prepare suitable semiconductor layers. For example, a suitable wafer can be formed using a suitable process in which a lanthanide is drawn from a tiny crystal (referred to as a seed crystal) via rotation and slowly drawn from a molten south to form a cylindrical crystal, which is then sliced. A thin disk is obtained, which is then sliced, finely ground, and cleaned to obtain a wafer. Thus, for example, 11 1313508, such as the semiconductor layer 1 〇 1 in Fig. 1, can be scooped according to several preferred embodiments of the present invention. The thousand conductor layer includes a p-type 矽. The inclusion of a slight antimony doping may be used in a preferred embodiment of the invention, the domain comprising an embodiment of n+ doped implants. In the present invention, the source/drain regions of the present invention will be advantageous in semiconductors that are slightly doped by the reverse bias of the junction. Such as the implementation of the semi-conducting and semi-conducting methods of stylization and reading, such as the use of butterfly, "doping can be used any suitable

乏之元素而可用於半導體之材以佈:任::由電子缺 摻雜係以介於約l〇i3/cm2至約 6 2 較佳地,p型 , ,b p 1015/cm2的劑量進行。 10 /em2至約The element of the semiconductor material can be used for the semiconductor material: any: from the electron-doped doping system at a dose of from about l〇i3/cm2 to about 62, preferably, p-type, b p 1015/cm2. 10 /em2 to about

可以理解的是,雖然本發明所述此 顧接面,其中半導體層包括—p型半導係針對 以上以n型摻雜而形成的源極/汲極區域,以曰生成、J二個 s己憶胞’本發明之記憶胞亦包括pNp型半導體 NPN 發明之方法可以心製備PNP記憶體。pNp ;且本It can be understood that, although the contact layer of the present invention, wherein the semiconductor layer includes a -p type semiconductor system, the source/drain region formed by the above n-type doping is formed by 曰, J s The memory cell of the present invention also includes the method of the pNp type semiconductor NPN. The method of the invention can prepare the PNP memory. pNp; and this

帶間熱電子注人方法而進行程式化,其= ^ 至源極/汲極區域,並施加一正電壓至閘極以產生帶 J 子轉移。PNP的抹除係經由施加正電堡至閘極而誘^、、 諾德罕(FN)電洞注入,以將電洞引入捕捉層中。a田 本發明之一 S己憶胞具有一源極區域與一沒極區域一者 在本發明中係共同稱為至少二源極/汲極區域。如熟習=項 技藝者可理解的,每一記憶胞包括二源極/汲極區域,每一 該區域可做為源極或汲極,視所施加電壓的位置與位卩比而 12 •1313508 本發明中所使用的 區域可作用為二:二 區域」—詞,係指稱此 m乍用為,原極歧極的雙功能特徵 而定。當指稱至本發明記憶胞中 =所%加電壓 乍用為源極而另一區域作用為汲極時; 二詞則可分別使用以指稱特定區 而、」/、 / °」 並非用以蚊這些區域的功,二詞囊的使用 限制於特定區域Γ _ 切本發明之源極與汲極 ㈣本發明之記憶元件可包括-半導體層,其具有二個 • Γ上的源極續極區域而構成複數個記憶胞。可以理解的 =,任-雜/ &amp;極區域可作用為相鄰二記憶胞的源極或沒 才…或其可在-記憶胞之源極區域中作用為沒極、並在立 相鄰記憶胞之汲極區域中作用為源極。舉例而言,請參^ 苐1圖’源極/汲極區域110可作用為源極/沒極區域m與 一相鄰記憶胞(位於記憶胞!⑽的左側,未示)_之另一 源極/及極區域(未不)的源極,而源極/汲極區域m與其 他源極/汲極區域則作用為汲極。相反地,源/極/汲極區域 鲁Π0可作用為上述二者的汲極,而源極/汲極區域H2與其 他源極/汲極區域則作用為源極。或者,舉例而言,在源極 /汲極區域112作用為源極時,源極/汲極區域n〇可做為汲 極,並在一鄰近記憶胞(位於記憶胞1〇〇的左側,未示) 之其他源極/汲極區域作用為汲極時,源極/沒極區域j 1〇 作用為源極。 一般而言,每一該至少二源極/汲極區域係在半導體層的 表面底下包括一區域,其摻雜方式係與半導體層的摻雜方 式互補。換言之,當使用一p型半導體層時,源極/汲極區 13 ' 1313508 域係為η型摻雜,反之亦然。㈣, 矽的實施例尹,該至少二㈣ 千¥體層^括p支 域,較佳係具有高劑量的—Γ型:m包括n+摻雜區 構m中H括;'種以上離子佈植,其係選自石申、 離子佈植的(濃度係為約至l〇19/cm3至 H) /⑽。因此’在特定較佳實施例中,該至少 極區域係包括η型埋人擴散區域佈植。 ° ’ 命每^至少二源極/汲極區域切半導體層中的佈植深 又,可從1體層表面向τ延伸約3G至奈米,視元件 ^支=世代或節點(亦即最小特徵尺寸如13〇奈米等)而 二在本發明之一實施例中’技術世代節點係 ,至少二源極級極區域在半導縣的佈植 冰度可為約100奈米,從半導體層的表面開始往下測量。 如本發明所使用,源極/汲極區域係位於半導體層表面「之 下」,包括摻雜區域所延伸的源極/汲極區域以及半導體層 的表面本身。換言之,本發明並未要求任何源極/汲極區域 :須完全位於半導體層的表面下。本發明不只可以應用至 :習知矽半導體層,並可應用至一絕緣上覆矽(S0I)、薄 膜電晶體(TFT)製程、或-垂直電晶體製程。 本發明亦包括記憶陣列,其包括複數個記憶胞。在本發 :記憶陣制蚊實施财,二似上的記憶胞可排列^ —列,/吏得此列二個以上記憶胞兩侧的源極/汲極區域會包 括連續的埋入擴散位元線。每一位元線包括一連續摻ς區 域,其係位於半導體層的表面下。本發明包括複數個記情 胞的陣列可更包括多種選擇電晶體及/或共同源極線,复^ 14 1313508 適用於影響多種記憶體類型的陣 (NOR) (NAND &quot;; 此外,在本發明的特定實施例中f&quot;己憶體。.. /沒極區域(或位元線)並相反二雜相鄰於-個以上源: 德姑制如” m u t雜的區域,可進行口釭 佈植b叫供π袋佈植區域。舉例_ 源極/ 區域係包括n+掺雜區域時,可針對高二型掺雜的小 ,域或鄰近於-個以上肺續極區域進行口袋佈植。因 :直m記:胞可更包括摻雜類型相反的摻雜口袋佈 植q域,其係相鄰於—個以上源私及極區域。 月施例中’可以使用任何習知的離子佈植製 私或任何正在發展中的技術。 本發明之記憶胞可選擇性地包括 於半導體層之-表U 1㈣其係成 區域。在本發明的Γ 該至少二源極/波極 佳係為疊置於魅少設置於半導體層之上(較 的介雷姑料〜源極/汲極區域上之半導體表面上) 可以完全填滿聚介電材料或任何其他 的最佳實_中=度電㈣化物。在本發明 在本發明的特定t #f包括了二氧化矽。 料,或較佳為-高=實=胞可包括—介電材 極/汲極區域之上㈣介電材料,其係設置於每—源 例中,—記憶胞可=體層表面上。在本發明的某些實施 化物層,於—石夕半個;上麵構,例如-開極氧 氧化物可離層的表面與介電材料之間。1極 …、成長於+導體層的表面上,且在半導體層包 15 1313508 括有矽的特定較佳實施例中,閘極氧化物層可包括二氧化 石夕。 本發明的每一對源極/汲極區域係被一通道區域所分 隔。此通道區域係指半導體層中位於二源極/没極區域中的 部分,其中,當適當的電壓施加至源極、汲極與閘極時, 電荷載子將從一源極/汲極區域遷移至另一源極/汲極區 域。因此,舉例而言,請參照第1圖,通道115 —般包括 半導體層位於源極/汲極區域110與112之間的部分。在本 ❿ 說明書中,「通道長度」係指從一源極/汲極區域到另一源 極/汲極區域之間的通道區域距離。「通道寬度」係指通道 區域中與通道長度垂直的尺寸。 本發明之一記憶胞包括一下絕緣層。舉例而言,參照第 1圖,記憶胞100包括一下絕緣層120設置於通道區域115 之上。一下絕緣層係大致位於通道區域之上。在本發明中, 在通道區域「之上」係指該下絕緣層的位置係在半導體層 之通道區域的表面上,但不必然直接接觸至半導體層的表 φ 面。如上所述,本發明的記憶胞可包括一層以上的額外層 結構於半導體層與下絕緣層之間,例如一閘極氧化物層。 下絕緣層的適合材料可包括任何高介電質介電材料,其 在半導體層與電荷儲存層之間提供電氣絕緣效果。一低介 電質材料或純氧化物亦可做為此層的材料,因為此層在讀 取、程式化、以及抹除操作中並不會捕捉電子。當外加一 高電場時,電子與電洞可以進行穿隧。適當的高介電質介 電材料包括如二氧化石夕、氧化组、氧化給、氧化告、鈦酸 認、鈦酸錯鋇、氧化銘、其妙化物以及混合物。一下絕緣 16 ^13508 =系::氧化物所形成,例”氧化物、氧化銘等。 == 例中,—下絕緣層可包括—轉化物。 間,隨著彳叫ngSt_)之 声私杜你丄 ,、㈣即點而有所變動。下絕緣層的厚 ΐ=ί=埃,以防止記憶胞經過程式化後(亦即在 中散失。因此,-下絕緣層係作用為-絕緣 之門二:提供铸體層之通道區域與電荷儲存層 二的障礙。下絕緣層的材料與厚度可以改變,只要在記 力m缺/或讀取操作時、當絕緣層的屏障功能因施 加電壓至至少二源極/汲極 外,仍能提供絕緣效果即可。及閑極而刻意克服以 本發明之記憶胞亦包括—電荷儲存層’設置於下 二之中’「於下絕緣層之上」係指稱至電荷儲 明:必然是直接與下絕緣層接觸。本發 存上的材料層於下絕緣層與電荷儲 侧:因此可作用為穿隧增強層或-捕捉 電荷儲存層提供了非揮發性 存部分。此電荷儲存層係較佳為;===: 存電荷的材料,程式化操作係指施加-程式 化電£至閘細及源極/汲極區域之―,以誘 荷儲存層。電荷儲存層之厚度較 何進入電 薄的層可能無法產生捕捉效果、或捕捉效^150埃。較 層亦不理想,因為將需要較高的操作電塵。較厚的 17 本發明之〜番4 晶矽,或—带+€何儲存層可包括一、草勤 ^^电荷捕捉材料。多θ A / ψ極材料,例如多 敕二操作,因為其係為—導能在一雙位元/記憶胞 又位兀/記憶皰模式中 々设數個多晶石夕點可以在〆The inter-band hot electron injection method is programmed to = ^ to the source/drain region and apply a positive voltage to the gate to produce a J-sub-transfer. The erasing of the PNP is performed by applying a positive electric gate to the gate, and a Norman (FN) hole is injected to introduce the hole into the trap layer. A Field One of the inventions has a source region and a gate region. In the present invention, it is collectively referred to as at least two source/drain regions. As can be understood by those skilled in the art, each memory cell includes two source/drain regions, each of which can be used as a source or a drain, depending on the position of the applied voltage and the bit ratio. 12 • 1313508 The region used in the present invention can function as two: two regions" - the word is used to refer to the dual function of the primary pole. When referring to the memory cell of the present invention = the % applied voltage is used as the source and the other region acts as the drain; the two words can be used separately to refer to the specific area, and "/, / °" is not used for mosquitoes. The work of these regions, the use of the second word capsule is limited to a specific region _ _ cutting the source and the drain of the present invention. (IV) The memory device of the present invention may comprise a semiconductor layer having two source regions on the 续And constitute a plurality of memory cells. It can be understood that the =-hetero/ & polar region can act as the source of the adjacent two memory cells or not... or it can act as a immersive and adjacent neighbor in the source region of the -memory cell The role of the memory cell in the bungee region is the source. For example, please refer to Figure 1 'Source/drain region 110 can function as source/no-polar region m and an adjacent memory cell (located on the left side of memory cell! (10), not shown)_ The source/pole region (not the source) of the source, and the source/drain region m and other source/drain regions act as drains. Conversely, source/pole/drain regions can be applied to the drains of both, while source/drain regions H2 and other source/drain regions act as sources. Or, for example, when the source/drain region 112 acts as a source, the source/drain region n〇 can be used as a drain and in a neighboring memory cell (on the left side of the memory cell 1〇〇, When the other source/drain regions of the unillustrated) function as the drain, the source/drain region j 1〇 acts as the source. In general, each of the at least two source/drain regions includes a region underneath the surface of the semiconductor layer in a doping manner complementary to the doping pattern of the semiconductor layer. In other words, when a p-type semiconductor layer is used, the source/drain region 13' 1313508 domain is n-type doped, and vice versa. (d), the embodiment of 矽, Yin, the at least two (four) thousand body layer including the p branch domain, preferably with a high dose of Γ type: m includes n + doped region structure m in H;; It is selected from Shishen, ion implant (concentration is about l〇19/cm3 to H) / (10). Thus, in a particularly preferred embodiment, the at least polar region comprises an n-type buried diffusion region implant. ° 'The life of each of the at least two source/drain regions is deep in the semiconductor layer. It can extend from the surface of the body to τ by about 3G to nanometer, depending on the component = generation or node (ie, the smallest feature) Dimensions such as 13 〇 nanometer, etc.) and in one embodiment of the present invention, the 'technical generation node system, at least two source-polar regions can have an ice density of about 100 nm in the semi-conducting county, from the semiconductor layer. The surface begins to measure down. As used herein, the source/drain regions are "under" the surface of the semiconductor layer, including the source/drain regions over which the doped regions extend and the surface itself of the semiconductor layer. In other words, the present invention does not require any source/drain regions: it must be completely under the surface of the semiconductor layer. The present invention can be applied not only to conventional semiconductor layers but also to an insulating overlying germanium (S0I), thin film transistor (TFT) process, or a vertical transistor process. The invention also includes a memory array comprising a plurality of memory cells. In this issue: the memory array is used to make mosquitoes, and the memory cells on the second array can be arranged in the column, and the source/drain regions on both sides of the memory cell will include continuous buried diffusion bits. Yuan line. Each of the individual lines includes a continuous erbium doped region that is located below the surface of the semiconductor layer. The array comprising a plurality of cells of the invention may further comprise a plurality of selection transistors and/or a common source line, and the complex is applicable to a matrix (NOR) affecting a plurality of memory types (NAND &quot;; In a particular embodiment of the invention, f&quot;remembering body../dipole region (or bit line) and conversely two heterogeneous adjacent to more than one source: Degu system such as "mut" area, can be sputum The implant b is called the π bag implanting area. For example, when the source/region includes the n+ doped region, the pocket implant can be performed for the small, domain or adjacent to the more than one lung continuation region. Because: straight m: the cell can further include doped pockets of opposite doping type, which are adjacent to more than one source private and polar regions. In the monthly application, any conventional ion cloth can be used. Planting private or any technology under development. The memory cell of the present invention can be selectively included in the semiconductor layer - Table U 1 (d) its entangled region. In the present invention, the at least two source/wave is excellent Stacked on the charm layer is set on the semiconductor layer (relative to the Jielei material ~ source / bungee area On the surface of the semiconductor) can be completely filled with poly dielectric material or any other best _ medium = degree electric (four) compound. In the present invention, the specific t #f in the present invention includes cerium oxide. Preferably, the high-solid=cell=cell may include a dielectric material/dipole region (four) dielectric material, which is disposed in each source instance, and the memory cell may be on the surface of the body layer. Some of the implementation layers are formed on the surface of the stone, and the upper surface is, for example, an open-electrode oxide detachable layer between the surface and the dielectric material. 1 pole... grows on the surface of the +conductor layer, and In a particular preferred embodiment in which the semiconductor layer package 15 1313508 includes germanium, the gate oxide layer may comprise a dioxide dioxide. Each pair of source/drain regions of the present invention is separated by a channel region. The region refers to the portion of the semiconductor layer that is located in the two-source/no-polar region, wherein when a suitable voltage is applied to the source, drain, and gate, the charge carriers will migrate from a source/drain region to Another source/drain region. So, for example, please refer to Figure 1, channel 115. The portion of the semiconductor layer between the source/drain regions 110 and 112. In this specification, "channel length" means from one source/drain region to another source/drain region. The channel area distance refers to the size of the channel area which is perpendicular to the channel length. One of the memory cells of the present invention includes a lower insulating layer. For example, referring to FIG. 1, the memory cell 100 includes a lower insulating layer 120 disposed on Above the channel region 115. The lower insulating layer is located substantially above the channel region. In the present invention, "above" the channel region means that the position of the lower insulating layer is on the surface of the channel region of the semiconductor layer, but not It is inevitable to directly contact the surface φ surface of the semiconductor layer. As described above, the memory cell of the present invention may include more than one additional layer structure between the semiconductor layer and the lower insulating layer, such as a gate oxide layer. Suitable materials for the lower insulating layer can include any high dielectric dielectric material that provides an electrical insulating effect between the semiconductor layer and the charge storage layer. A low dielectric material or pure oxide can also be used as the material for this layer because it does not capture electrons during read, program, and erase operations. When a high electric field is applied, electrons and holes can be tunneled. Suitable high dielectric dielectric materials include, for example, sulphur dioxide, oxidation groups, oxidation, oxidation, titanic acid, strontium titanate, oxidized imides, compounds, and mixtures. The insulation 16 ^ 13508 = system:: oxide formation, such as "oxide, oxidation, etc.. == In the example, - the lower insulation layer can include - conversion. Between, with the squeaking ngSt_) You 丄, (4) change from point to point. The thickness of the lower insulation layer = ί = angstroms to prevent the memory cells from being stylized (that is, lost in the middle. Therefore, the lower insulation layer acts as - insulation Door 2: Provides obstacles for the channel region of the casting layer and the charge storage layer 2. The material and thickness of the lower insulating layer may be changed as long as the barrier function of the insulating layer is applied to the voltage during the memory loss or read operation At least two sources/drain electrodes can still provide an insulation effect. And the memory cells of the present invention are also intentionally overcome, and the charge storage layer is also disposed in the lower two layers. Refers to the charge reservoir: it must be in direct contact with the lower insulating layer. The material layer of the present invention is on the lower insulating layer and the charge storage side: thus it can act as a tunneling enhancement layer or a trapping charge storage layer. Volatile storage portion. This charge storage layer is preferably; ===: Loaded material, stylized operation refers to the application-stylation of electricity to the gate and source/drain regions to trap the storage layer. The thickness of the charge storage layer may not be captured by the layer that enters the thin film. The effect, or capture effect is 150 angstroms. The layer is also not ideal because it will require a higher operating dust. Thicker 17 of the invention, or the storage layer may include one. Caoqin ^^ charge trapping material. Multi-θ A / ψ pole material, such as multi-tanning operation, because it is - conduction can set several polycrystals in a double bit / memory cell and 兀 / memory bleb mode Shi Xidian can be in the 〆

電荷儲存層包括了—電在各個本發明較佳實施例中 胞中的電荷捕捉材料包丄旦:材料。適合用於本發明記 酸錦、鈦酸鋼鋇、氧笼。限於’氮化咬、氧化组、鈷 二氧化矽,发I °、 電荷捕捉層亦可包括一層 二層外的二氧;二:=離的多晶發島,選擇性地央置於 所形成,例如氮化荷捕捉層較佳係由氣化物 本發明中,「雷4 4或氦氧化矽(SiOxNy)。 結構其可捕捉局部:的電— =::r幾乎沒有== 荷载二:電τ捕捉的介電層。因此,為了促進電The charge storage layer comprises a charge trapping material: material in each of the preferred embodiments of the invention. It is suitable for use in the present invention, such as acid broth, barium titanate steel, and oxygen cage. Limited to 'nitriding bite, oxidation group, cobalt dioxide, I °, charge trapping layer may also include a layer of two layers of dioxins; two: = separated polycrystalline hair island, selectively placed in the formation For example, the nitrided trapping layer is preferably a vaporized material. In the present invention, "Ray 4 4 or yttrium oxide ytterbium (SiOxNy). The structure can capture local: electricity - =::r hardly == load 2: electricity τ captures the dielectric layer. Therefore, in order to promote electricity

度會低於失置此;=居電:捕捉層材料的電子屏障高 較高的材電捕捉層的其他層(亦即二層屏障高度 古,,?y θ失置一層屏障高度較低的材料層)。舉例而 :iUb⑪電荷捕捉層夾置於二發氣化物層(例如二氧 化石夕下絕緣層與—石夕氧化物第—介電層)的實施例中,氧 ,物層的屏障高度約為31 ev,而氮化物層的屏障高度約 為!2 1 eV。βει ll —_ υ此’ 一電子井係生成於氮化物層之中。 a午多可以用於下絕緣層與第一介電層中的材料係相同 、且層可較佳包括一氧化物,更加為;δ夕氧化物。然而, ;氧化物層中的電荷捕捉層必須包括一不同的介電 18 * 1313508 材料(具有較低的屏障高度) 不同的絕緣、介,'舆電荷捕捉二=:。 適合技術或發展中21=何習知的 言,當™層係包括m拉積4材料。舉例而 技術所形成,包括作不二於埶1’此氧化物層可以經由氧化 低壓化學氣相沈積(L;二化、化學氣相沈積(cvd)、 (PECVD)^ 、電漿增強化學氣相沈積 合用以沈學氣相沈積(聊CVD)。適 相沈積以及電漿氮/匕製程包括但不限於,氮化、化學氣 物在二 寺二較佳實施例中’下絕緣層包括-氧化 物。更佳的是,這些#八别勺心/1電層包括一乳化 及二氧化矽。如下所-礼化矽、氮化矽、以 電層分別包括一氧化物,且更佳為二氧化 氧:二絕、電荷捕捉層、以及第-介電層分別包括二 的至少-声3可4為—乳化石夕的實施例中’此二二氧化石夕層中 石夕層之至少為—氧豐二氧切層。此二二氧化 二二氧化石夕乂 由一熱成長或沈積氧化物所構成。此 氮可為氮氧化物層。此氮化物可為 豐氮:矽層。…含氧之氮化矽。此氮化物亦可為-氮 声;Γ:二’么一下絕緣層、電荷儲存層、以及上絕緣多 ::之,、:;見度,可以對應於通道長度與通道寬度。 換5之母一層可以與該至少二源極/汲極區域等寬,且長 19 1313508 度係等於分隔該至少二源極/汲極區域的通道長度。 本發明之記憶胞亦可包括一上絕緣多層結構。本發明之 上絕緣多層結構包括一多晶矽材料層插設於一第一介電層 與一第二介電層之間。如同其他層的「之上」一詞所指稱, 此處該上絕緣多層結構可以位於電荷儲存層的上表面之 上,但不必然直接接觸至電荷儲存層。一層以上的額外層, 例如一額外絕緣層,可以選擇性地設置於電荷儲存層與上 絕緣多層結構之間。 第一介電層與第二介電層可以包括同樣材料或不同材 料。第一與第二介電層可包括的適合材料,包括高介電質 介電材料,例如碎氧化物、氧化组、氧化給、氧化錯、鈦 酸魏、鈦酸錯鋇、氧化铭、其梦化物與混合物。較佳地, 第一介電層包括一砍氧化物,且更佳為二氧化碎。較佳地, 第二介電層包括一石夕氧化物,且更佳為二氧化石夕。更佳地, 第一與第二介電層均包括一石夕氧化物,且較佳地,二者均 包括二氧化矽。 第一介電層的厚度可以介於約10至約40埃,。此層的 厚度對於電洞穿隧於閘極與電荷儲存層之間,至為重要。 較佳的厚度係為13-18埃。第二介電層的厚度可介於約10 至約40埃。第二介電層的厚度對於資料保存與可靠度至為 重要,較佳厚度係為25埃。 上絕緣多層結構包括一多晶石夕材料層。此多晶石夕材料層 可包括未摻雜多晶矽或經摻雜多晶矽。經摻雜多晶矽材料 可為一 η摻雜或p摻雜材料,摻雜劑量則無限制。上絕緣 多層結構的厚度可為約5至約40埃。較佳的範圍係為10-20 20 * 1313508 埃。 多晶矽材料層可以利用任何習知的方法或研發中的方 法而形成。舉例而言,多晶石夕可以藉由化學氣相沈積或物 •理氣相沈積而沈積。在多晶矽係經摻雜的實施例中,多晶 矽可以利用習知或發展中的離子佈植方法而摻雜,或可以 選擇性地在沈積步驟中進行摻雜。若此多晶矽係經摻雜, 則其厚度應介於10-40埃之間。 在本發明的特定較佳實施例中,上絕緣多層結構包括一 ❿ 未摻雜多晶矽材料層,其厚度為大約30埃,其係插設於一 第一介電層與一第二介電層之間,第一介電層係包括二氧 化矽且厚度為約30埃,第二介電層係包括二氧化矽且厚度 為約30埃。 本發明之記憶胞亦包括一閘極設置於上絕緣多層結構 之上。如前所述,「設置於上絕緣多層結構之上」係指空間 上而言,閘極係位於上絕緣多層結構的上表面上、而不必 然直接接觸至上絕緣多層結構的上表面。因此,本發明記 φ 憶胞中的閘極可以直接設置於上絕緣多層結構的上介電層 之上,或者一閘極可以被一額外材料而與上絕緣多層結構 分隔,此額外材料可舉例如一額外的絕緣材料。較佳地, 一閘極係直接設置於上絕緣多層結構的上介電層之上。 本發明之間極可包括任何導電材料。本發明之閘極較佳 係包括一多晶石夕層,其可為η型或p型摻雜,且金屬石夕化 物層係設置於多晶矽層之上。多晶矽閘極層的厚度較佳係 為約30奈米至約200奈米之間。在本發明特定更佳實施例 中,此多晶矽係為ρ型摻雜。本發明較佳實施例的金屬矽 21 -1313508 化物閘極層可包括一金屬矽化物材料,其係選自矽化鎢、 石夕化鈦、石夕化銘、以及石夕化鎳。 閘極材料層可以利用任何適用於沈積一金屬、含機屬材 •料、多晶矽、或其他導電材料的製程所形成。金屬可以利 用習知或發展中的金屬化製程所形成。含金屬材料如金屬 矽化物等,可以藉由如濺鍍或化學氣相沈積等方式而沈 積。化學氣相沈積製程較佳係用以形成金屬石夕化物。多晶 矽材料可以利用任何習知或發展中的製程而形成,例如一 # 使用SiH4或二氯-SiH4的化學氣相沈積製程,且多晶矽可 以在沈積製程中或沈積於半導體層之上後再進行掺雜。 本發明亦包括用以操作利用上述任一實施例所形成之 記憶胞的方法。本發明的方法包括施加一正電壓至本發明 記憶胞的閘極,其中此正電壓係足以使得電洞從閘極穿隧 至電荷儲存層。本發明之方法包括施加正電壓至閘極,以 抹除及/或重置記憶胞與陣列。 適合施加至本發明較佳實施例之記憶胞之閘極的正電 Φ 壓,可介於約10至約15伏特。較佳係施加13伏特。一般 而言係施加一正電壓至記憶胞之閘極、維持一段時間,以 將記憶胞之臨界電壓減低至其抹除態。根據本發明較佳實 施例,當正電壓係為約10至約15伏特時,適當的抹除時 間可為約100至約500毫秒。較佳的抹除時間係為200至 400毫秒。 本發明之記憶胞可以經由多種熱電子方法而進行程式 化,包括如通道熱電子(CHE)操作。其他適合的程式化 方法,包括富勒-諾德罕穿隧。較佳係使用正電壓程式化。 22 1313508 本發明之記憶胞可以由正向或逆向方式進行讀取。對於雙 位元/記憶胞操作而言,係使用逆向讀取以區別被捕捉的位 元。 • 本發明之記憶胞可以利用所有正電壓系統而完整地操 作(程式化/讀取/抹除)。舉例而言,如表1所示,本發明 一較佳實施例的記憶胞係具有一 NPN接面結構,其中下絕 緣層與介電層係包括二氧化石夕、電荷捕捉層包括氮化石夕、 多晶矽材料層係未摻雜、且閘極係包括p摻雜多晶矽,而 • 每一程式化、抹除與讀取操作可以在所有外加電壓為正電 壓的情況下進行。 表1 操作 VG(V) VD(V) VS=VB(V) 時間 程式化 9 5 0 5微秒 抹除 12.5 0 0 400毫秒 讀取 3 1.6 0 - 第2圖繪示了一記憶胞在一抹除操作中施加一 13伏特 的正電壓至閘極經過一段時間後的臨界電壓,如先前段落 所述,其中下絕緣層的厚度為50埃、電荷捕捉層的厚度為 70埃、多晶矽材料層的厚度為20埃、第一介電層的厚度 為18埃、且第二介電層的厚度為18埃(「例示記憶胞」)。 如第2圖所示,臨界電壓係從約4.5伏特減低至小於2.5伏 特,而正閘極電壓則代表從閘極進行了成功的電洞穿隧。 第3圖繪示了例示記憶胞在50次程式化/抹除(P/E)循 環後的操作性能。此記憶胞的操作區間相當優秀,因為程 23 1313508 式抹除臨界電屋均保持為相當穩定。 在程式化盘抹二二ί圖中,汲極電流係對閘極電壓 量。如圖所一::中、初-人與50次循環後的變化進行測 (幾乎I數值麵躲幾乎获,顯示最小化 i ΪΐΓ ρ程度。第5圖放Α 了第4圖的次臨界部 :環時=憶胞在50次循環之後的性能仍與初次進行The degree will be lower than the misplaced; = residential: the electronic barrier of the capture layer material has a higher height and the other layers of the electrical capture layer (ie, the second barrier height is ancient, and the ?y θ is lost to a lower barrier height) Material layer). For example, in the embodiment in which the iUb11 charge trapping layer is sandwiched between the two gasification layers (for example, the Xixia lower insulating layer and the Shishi oxide first-dielectric layer), the barrier height of the oxygen and the physical layer is about 31 ev, and the barrier height of the nitride layer is about! 2 1 eV. Βει ll —_ υ This an electron well is formed in the nitride layer. A can be used for the lower insulating layer and the material in the first dielectric layer, and the layer may preferably comprise an oxide, more preferably; However, the charge trapping layer in the oxide layer must include a different dielectric 18 * 1313508 material (with a lower barrier height) with different insulation, dielectric, and '舆 charge trapping two =:. Suitable for technology or development 21 = what is customary, when the TM layer includes m pull 4 material. By way of example and technology, this oxide layer can be oxidized by low pressure chemical vapor deposition (L; dimerization, chemical vapor deposition (cvd), (PECVD) ^, plasma enhanced chemical gas Phase deposition is used for sinking vapor deposition (ICP). Suitable phase deposition and plasma nitrogen/helium processes include, but are not limited to, nitriding, chemical gas in the second embodiment of the second temple. More preferably, these #八别心/1 electrical layers include an emulsified and cerium oxide. The following are the cerium, tantalum nitride, and the electric layer respectively including an oxide, and more preferably The oxygen dioxide: the second, the charge trapping layer, and the first dielectric layer respectively comprise at least two-acoustic 3, which may be an emulsified stone. In the embodiment, the at least two layers of the diatom layer are at least - Oxygen dioxygenate layer. The dioxon dioxide is composed of a thermally grown or deposited oxide. The nitrogen may be a nitrogen oxide layer. The nitride may be a nitrogen-rich layer: a layer of germanium.... Oxygen-containing tantalum nitride. The nitride may also be a nitrogen sound; Γ: two's insulation layer, charge storage layer, And the upper insulation::,,:; visibility, can correspond to the channel length and channel width. The mother layer of the 5 can be equal to the width of the at least two source/drain regions, and the length 19 1313508 degrees is equal to the separation The channel length of the at least two source/drain regions. The memory cell of the present invention may further comprise an upper insulating multilayer structure. The insulating multilayer structure of the present invention comprises a polysilicon material layer interposed between a first dielectric layer and a Between the second dielectric layers, as the term "above" of the other layers is used, the upper insulating multilayer structure may be located above the upper surface of the charge storage layer, but does not necessarily directly contact the charge storage layer. The above additional layer, such as an additional insulating layer, may be selectively disposed between the charge storage layer and the upper insulating multilayer structure. The first dielectric layer and the second dielectric layer may comprise the same material or different materials. Suitable materials for the second dielectric layer include high dielectric dielectric materials such as crushed oxides, oxidized groups, oxidized, oxidized, titanic acid, titanic acid, oxidized, and their dreams and Mixed Preferably, the first dielectric layer comprises a chopped oxide, and more preferably a dicerium oxide. Preferably, the second dielectric layer comprises a cerium oxide, and more preferably a cerium oxide. Preferably, the first and second dielectric layers each comprise a cerium oxide, and preferably both comprise cerium oxide. The first dielectric layer may have a thickness of between about 10 and about 40 angstroms. The thickness of the layer is important for tunneling between the gate and the charge storage layer. The preferred thickness is 13-18 angstroms. The thickness of the second dielectric layer can range from about 10 to about 40 angstroms. The thickness of the two dielectric layers is important for data storage and reliability, preferably 25 angstroms. The upper insulating multilayer structure comprises a polycrystalline material layer. The polycrystalline material layer may comprise undoped polysilicon. Or doped polysilicon. The doped polysilicon material can be an n-doped or p-doped material, and the doping amount is not limited. The upper insulating multilayer structure can have a thickness of from about 5 to about 40 angstroms. A preferred range is 10-20 20 * 1313508 angstroms. The polycrystalline germanium material layer can be formed by any conventional method or method in development. For example, polycrystalline can be deposited by chemical vapor deposition or vapor deposition. In embodiments in which the polycrystalline lanthanide is doped, the polysilicon can be doped using conventional or evolving ion implantation methods, or can be selectively doped during the deposition step. If the polycrystalline lanthanide is doped, its thickness should be between 10 and 40 angstroms. In a particularly preferred embodiment of the invention, the upper insulating multilayer structure comprises a layer of undoped polysilicon material having a thickness of about 30 angstroms, which is interposed between a first dielectric layer and a second dielectric layer. Between the first dielectric layer comprising cerium oxide and having a thickness of about 30 angstroms, the second dielectric layer comprising cerium oxide and having a thickness of about 30 angstroms. The memory cell of the present invention also includes a gate disposed over the upper insulating multilayer structure. As previously mentioned, "on top of the upper insulating multilayer structure" means that the gate is spatially located on the upper surface of the upper insulating multilayer structure without necessarily contacting the upper surface of the upper insulating multilayer structure. Therefore, the gate of the φ memory cell of the present invention can be directly disposed on the upper dielectric layer of the upper insulating multilayer structure, or a gate can be separated from the upper insulating multilayer structure by an additional material, and the additional material can be exemplified. Such as an extra insulation material. Preferably, a gate is directly disposed on the upper dielectric layer of the upper insulating multilayer structure. Extremely any conductive material may be included between the present invention. Preferably, the gate of the present invention comprises a polycrystalline layer which may be n-type or p-type doped, and the metallization layer is disposed over the polysilicon layer. The thickness of the polysilicon gate layer is preferably between about 30 nm and about 200 nm. In a particularly preferred embodiment of the invention, the polycrystalline lanthanide is p-type doped. The metal ruthenium 21 - 1313508 gate layer of the preferred embodiment of the present invention may comprise a metal ruthenium material selected from the group consisting of tungsten telluride, shi xi ti, shi shi ming, and shi xi hua. The gate material layer can be formed by any process suitable for depositing a metal, organic material, polysilicon, or other conductive material. Metals can be formed using conventional or evolving metallization processes. Metal-containing materials such as metal halides can be deposited by, for example, sputtering or chemical vapor deposition. The chemical vapor deposition process is preferably used to form a metallite. The polycrystalline germanium material can be formed by any conventional or evolving process, such as a chemical vapor deposition process using SiH4 or dichloro-SiH4, and the polysilicon can be doped in a deposition process or deposited on a semiconductor layer. miscellaneous. The invention also includes a method for operating a memory cell formed using any of the above embodiments. The method of the present invention includes applying a positive voltage to the gate of the memory cell of the present invention, wherein the positive voltage is sufficient to tunnel the hole from the gate to the charge storage layer. The method of the present invention includes applying a positive voltage to the gate to erase and/or reset the memory cells and array. The positive Φ pressure suitable for application to the gate of the memory cell of the preferred embodiment of the invention may range from about 10 to about 15 volts. Preferably, 13 volts is applied. In general, a positive voltage is applied to the gate of the memory cell for a period of time to reduce the threshold voltage of the memory cell to its erased state. In accordance with a preferred embodiment of the present invention, a suitable erasing time can range from about 100 to about 500 milliseconds when the positive voltage is from about 10 to about 15 volts. A preferred erasing time is from 200 to 400 milliseconds. The memory cells of the present invention can be programmed via a variety of thermoelectronic methods, including, for example, channel hot electron (CHE) operations. Other suitable stylized methods include Fuller-Nordham tunneling. It is preferred to use a positive voltage stylization. 22 1313508 The memory cell of the present invention can be read in a forward or reverse manner. For double bit/memory operation, reverse reading is used to distinguish the captured bits. • The memory cell of the present invention can be fully operated (programmed/read/erased) using all positive voltage systems. For example, as shown in Table 1, a memory cell system according to a preferred embodiment of the present invention has an NPN junction structure, wherein the lower insulating layer and the dielectric layer system comprise a dioxide dioxide, and the charge trapping layer comprises a nitride nitride layer. The polysilicon layer is undoped and the gate includes p-doped polysilicon, and each stylized, erased, and read operation can be performed with all applied voltages being positive. Table 1 Operation VG(V) VD(V) VS=VB(V) Time Stylized 9 5 0 5 microseconds erase 12.5 0 0 400 milliseconds read 3 1.6 0 - Figure 2 depicts a memory cell in a wipe Except that a positive voltage of 13 volts is applied during operation to a threshold voltage after a period of time, as described in the previous paragraph, wherein the thickness of the lower insulating layer is 50 angstroms, the thickness of the charge trapping layer is 70 angstroms, and the layer of polysilicon material The thickness is 20 angstroms, the thickness of the first dielectric layer is 18 angstroms, and the thickness of the second dielectric layer is 18 angstroms ("exemplified memory cells"). As shown in Figure 2, the threshold voltage is reduced from approximately 4.5 volts to less than 2.5 volts, while the positive gate voltage represents successful tunneling from the gate. Figure 3 illustrates the operational performance of the memory cell after 50 staging/erasing (P/E) cycles. The operating range of this memory cell is quite good, because the process of erasing the critical electric house of the 23 2313508 is quite stable. In the stylized disk wiper, the bucker current is the gate voltage. As shown in the figure 1:: the middle, the first-person and the change after 50 cycles (almost the I value is almost hidden, showing the minimum degree of i ΪΐΓ ρ. Figure 5 shows the sub-critical part of Figure 4 : ring time = memory performance after 50 cycles is still the first time

雖然本發明係已參照較佳實施例來加以描述, 所暸解的是’本發明創作並未受限於其詳細描述内容:秩 換方式及修改樣式係已於先m巾所建議,並且其他二 換方式及修改樣式將為熟習此項技藝之人士所思及Γ特^ 是,根據本發明之結構與方法,所有具有實質上相同於本 發明之構件結合而達成與本發明實質上相同結果者皆不脫 離本發明之精神範疇。因此,所有此等替換方式及二改樣 式係意欲落在本發明於隨附申請專利範圍及其岣等物所界 定的範疇之中。任何在前文中提及之專利申請案以及芒* 文本,均係列為本案之參考。 p席】 【圖式簡單說明】 第1圖係本發明一實施例之記憶胞之剖面圖。 第2圖係繪示本發明一記憶胞,在一+13伏特抹 。 時的E&amp;界電壓變化圖。 乍 第3圖係繪示本發明一實施例之記憶胞,在數次程 /抹除(P/E)循環之後的臨界電壓變化圖。 化 24 1313508 第4圖係繪示本發明一實施例之記憶胞,在抹除與程式 化操作時之汲極電流對閘極電壓變化圖。 第5圖係繪示第4圖之部分放大。 【主要元件符號說明】 100 記憶胞 101 半導體層 110,112 源極/&gt;及極區域 φ 115 通道區域 120 下絕緣層 130 140 142 電荷儲存層 上絕緣多層結構 第一介電層 144 多晶矽層 146 第二介電層 150 • 閘極 25Although the present invention has been described with reference to the preferred embodiments, it is understood that 'the invention is not limited by the detailed description thereof: the rank change mode and the modified style are suggested by the first m towel, and the other two Modifications and modifications will occur to those skilled in the art, and in accordance with the structure and method of the present invention, all having substantially the same components of the present invention can achieve substantially the same results as the present invention. They do not depart from the spirit of the invention. Therefore, all such alternatives and modifications are intended to be within the scope of the invention as defined by the appended claims. Any patent application mentioned in the foregoing and the Mang* text are a series of references for this case. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view of a memory cell according to an embodiment of the present invention. Figure 2 is a diagram showing a memory cell of the present invention, smeared at a +13 volt. E& boundary voltage change diagram. Fig. 3 is a graph showing a threshold voltage change after a number of pass/erase (P/E) cycles of a memory cell according to an embodiment of the present invention. 24 1313508 FIG. 4 is a diagram showing the variation of the gate current versus the gate voltage during the erasing and programming operation of the memory cell according to an embodiment of the present invention. Fig. 5 is a partial enlarged view of Fig. 4. [Main component symbol description] 100 memory cell 101 semiconductor layer 110, 112 source/&gt; and polar region φ 115 channel region 120 lower insulating layer 130 140 142 charge storage layer upper insulating multilayer structure first dielectric layer 144 polysilicon layer 146 second Dielectric layer 150 • Gate 25

Claims (1)

1313508 十、申請專利範園 i —種記憶胞,包括: 、(〇 —半導體層其包括有至少二源極/汲極區域接近該 半導體層之表面並被一通道區域所分隔; (li)—下絕緣層設置於該通道區域之上; (111) 一電荷儲存層設置於該下絕緣層之上; (代)一上絕緣多層結構設置於該電荷儲存層之上,並 ^上I緣多層結構包括—多晶發材料層插設於—第—^電 a與一第二介電層之間;以及 (V)—閘極設置於該上絕緣多層結構之上。 更1項所述之記憶胞’其中該記憶胞 介電質、半導縣板係為絕緣上一、 導^如板項所述之記憶胞,其中該載體半 承马矽石反化物、玻璃、或藍寶石之一者。 層二’上申請專利範圍第1項所述之記憶胞,其中該半導俨 一者係包括Ϊ 其+誠彡、二源極/祕區域之每 有宁匕括—經η摻雜之埋入擴散佈植區域。 母 層^^^圍第1項所述之記憶胞,其中該下絕緣 26 1313508 層細七該下絕緣 存^項所叙記憶胞,其巾該電荷儲 存^㈣1項料之記憶胞,其中該電荷儲 儲 存層係包㈣1項所述之記憶胞,其中該電荷 儲 二第1項所述之記憶胞,其中該多 10至30埃。 曰曰 該 第二範=項所述之記憶胞,其中每 弟一 ;|電層均包括一矽氧化物。 10至40埃。 該第二介電層之厚度係為約 1^13508 該 介電層之厚度係為、s 10至40埃。 圍第14項所述之記憶胞,其中該第一 25埃,且該第二介電層之厚度係為約 係:'=雜專::1項所述之繼’㈣ 緣声儀利㈣第1項所述之記憶胞,其中該下絕 物氧化物’其中該電荷儲存層係包括一氮化 化物:、且:::第一介電層與該第二介電層係包括-石夕氧 化物且其中該閘極係包括經P摻雜之多晶矽。 汛-種讀陣列’其係包括複數個如申請專利範圍 1項所述之記憶胞。 19. 一種記憶胞,包括: (0 了秒半導體層’其包括有至少二源極/汲極區域設置 於該半導體層之—表面下,並被-通道區域所分隔; (ii) 一矽氧化物絕緣層設置於該通道區域之上; (in) —氮化矽電荷儲存層設置於該矽氧化物絕緣層之 上; (iv) —上絕緣多層結構設置於該電荷儲存層之上,其中 28 ϊ3!35〇8 Γ^絕緣多層結構係包括一多晶矽材料層插設於一第一矽 =物介電層與—第二錢化物介電層之間,其中該 層=層之厚度係為約10至3G埃,該第—魏化物介電 係為約10至40埃,且該第二石夕氧化物介電層之 厚度係為約10至40埃;以及 曰心 (v)—閘極設置於該上絕後多屛 係包括摻雜之多晶;::層4之上’其中該閑極 申請專利範圍第19項所述之 胞更包括-半導體基板,該本 己隐 發、介電質、或載體中之體基板係為絕緣上覆石夕、 21. 如申請專利範圍第2〇項所述之 半導體基板係初碳化物、_、該載體 22. —種§己憶陣列,其包括複數個如太 &gt; 項所述之記憶胞。 甲明專利範圍第19 23. —種操作一記憶胞的方法,包括. (a)提供一記憶胞其包括: (i) 一半導體層其包括有至少二 該半導體層之表面並被-通道區域所、分隔/及極區域接近 (ϋ) 一下絕緣層設置於該通道區域二二 ㈣-電荷儲存層設置於該下絶緣層. (iv) —上絕緣多層結構設置於 曰 , °亥電荷儲存層之上, 29 1313508 晶石夕材料層插設於一 ;以及 其中該上絕緣多層結構包括一多 第一介電層與一第二介電層之間 (v)—閘極設置於該上絕緣多層結構之上·以及 正電壓至該閘極,該正電壓係足以致使電洞 從该閘極穿隧至該電荷儲存層。 ’其中該記憶胞 緣上覆、砍、1313508 X. Patent application i-type memory cell, comprising: (〇-semiconductor layer comprising at least two source/drain regions close to the surface of the semiconductor layer and separated by a channel region; (li)- a lower insulating layer is disposed on the channel region; (111) a charge storage layer is disposed on the lower insulating layer; (on) an upper insulating multilayer structure is disposed on the charge storage layer, and The structure includes: a polycrystalline material layer interposed between the first electricity layer a and a second dielectric layer; and (V) a gate electrode disposed on the upper insulating multilayer structure. The memory cell, wherein the memory cell dielectric layer and the semi-conductor plate system are insulating memory cells, wherein the carrier is half of the mazastatin, glass, or sapphire. The memory cell described in item 1 of the patent application scope of the second layer, wherein the semi-conducting one includes Ϊ + + 彡 彡 彡 二 二 二 二 二 二 二 二 二 二 二 二 经Buried into the diffusion planting area. The mother layer ^^^ surrounds the memory cell described in item 1, where the next The edge 26 1313508 layer is seven memory cells of the lower insulation, and the memory of the memory is stored in the memory cell of the first item, wherein the charge storage layer is a memory cell described in item (4), wherein the charge is stored. The memory cell of item 2, wherein the memory cell is 10 to 30 angstroms. 记忆 The memory cell of the second norm term, wherein each of the first cell; the electrical layer comprises a tantalum oxide. 10 to 40 The thickness of the second dielectric layer is about 1^13508, and the thickness of the dielectric layer is s 10 to 40 angstroms. The memory cell according to item 14, wherein the first 25 angstroms, and the first The thickness of the second dielectric layer is about: '= Miscellaneous:: The memory cell described in item 1 of the '4' edge sound instrument (4), wherein the lower extinction oxide The charge storage layer includes a nitride: and the::: the first dielectric layer and the second dielectric layer comprise - shixi oxide and wherein the gate system comprises a P-doped polysilicon. The seed reading array includes a plurality of memory cells as described in claim 1 of the patent application. 19. A memory cell comprising: (0 The semiconductor layer 'includes at least two source/drain regions disposed under the surface of the semiconductor layer and separated by the channel region; (ii) a tantalum oxide insulating layer is disposed over the channel region; In) a tantalum nitride charge storage layer is disposed on the tantalum oxide insulating layer; (iv) an upper insulating multilayer structure is disposed on the charge storage layer, wherein the 28 ϊ3!35〇8 〇^ insulated multilayer structure a layer of polysilicon material is interposed between a first dielectric layer and a second dielectric layer, wherein the layer=layer has a thickness of about 10 to 3 G angstroms. The electrical system is about 10 to 40 angstroms, and the thickness of the second radiant oxide dielectric layer is about 10 to 40 angstroms; and the 曰 (v)-gate is disposed on the upper ruthenium Polycrystalline;:: Above layer 4, wherein the cell described in claim 19 of the invention has a semiconductor substrate, and the substrate in the crypto, dielectric, or carrier is insulated.上上石夕, 21. The semiconductor substrate is a primary carbide as described in the second paragraph of the patent application, _, the carrier 22. An array of memory cells comprising a plurality of memory cells as described in the item &lt; Patent Application No. 19: 23. A method of operating a memory cell, comprising: (a) providing a memory cell comprising: (i) a semiconductor layer comprising at least two surfaces of the semiconductor layer and a channel region The separation/and the polar region are close to (ϋ). The insulating layer is disposed in the channel region. The second (four)-charge storage layer is disposed on the lower insulating layer. (iv) - the upper insulating multilayer structure is disposed on the 曰, °H charge storage layer Above, 29 1313508 a layer of spar material is interposed; and wherein the upper insulating multilayer structure comprises a plurality of first dielectric layers and a second dielectric layer (v) - the gate is disposed on the upper insulating layer Above the multilayer structure and a positive voltage to the gate, the positive voltage is sufficient to cause a hole to tunnel from the gate to the charge storage layer. 'The memory cell is overlaid, chopped, 24.如申請專利範圍第23項所述之方法 更包括一半導體基板,該半導體基板係為絕 介電質、或载體中之一者。 25.如申請專利範圍第以項所述之方法,1 導體基板係切碳化物、玻璃、或藍寶;5之:者二— 得請專利範圍第23項所述之方法,其中該正電壓 係為約10至15伏特。24. The method of claim 23, further comprising a semiconductor substrate which is one of an insulating dielectric or a carrier. 25. The method of claim 1, wherein the conductor substrate is cut into a carbide, a glass, or a sapphire; 5: the second method of claim 23, wherein the positive voltage is obtained. It is about 10 to 15 volts. 27.如 正電壓一 ^請專利範圍第23項所述之方法,其中係施加該 時間長度介於約200至500亳秒之間。 28. 包括一 如申請專利範圍第2 3項所述之方法,其中該閘極係 經P摻雜之多晶矽。 其中該正電壓 29.如申請專利範圍第28項所述之方g 係為約10至15伏特。 30 工3135〇8 30. 正電壓 如申請專利範圍第28 一時間長度介於約200 員所述之方法,其中係施加該 至亳秒之間。27. The method of claim 23, wherein the length of time is between about 200 and 500 sec. 28. The method of claim 2, wherein the gate is a P-doped polysilicon. Wherein the positive voltage 29. is as described in claim 28, and the square g is about 10 to 15 volts. 30 WORK 3135 〇 8 30. Positive voltage As in the scope of the patent application, the length of time is between about 200 and the method is applied, which is applied between the leap seconds. 3131
TW95142487A 2006-11-16 2006-11-16 Non-volatile memory cells having a polysilicon-containing, multi-layer insulating structure, memory arrays including the same and methods of operating the same TWI313508B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95142487A TWI313508B (en) 2006-11-16 2006-11-16 Non-volatile memory cells having a polysilicon-containing, multi-layer insulating structure, memory arrays including the same and methods of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95142487A TWI313508B (en) 2006-11-16 2006-11-16 Non-volatile memory cells having a polysilicon-containing, multi-layer insulating structure, memory arrays including the same and methods of operating the same

Publications (2)

Publication Number Publication Date
TW200824099A TW200824099A (en) 2008-06-01
TWI313508B true TWI313508B (en) 2009-08-11

Family

ID=44771404

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95142487A TWI313508B (en) 2006-11-16 2006-11-16 Non-volatile memory cells having a polysilicon-containing, multi-layer insulating structure, memory arrays including the same and methods of operating the same

Country Status (1)

Country Link
TW (1) TWI313508B (en)

Also Published As

Publication number Publication date
TW200824099A (en) 2008-06-01

Similar Documents

Publication Publication Date Title
TWI451562B (en) Methods of operating non-volatile memory cells having an oxide/nitride multilayer insulating structure
TWI361489B (en) Transistor with independent gate structures
Chang et al. Developments in nanocrystal memory
TW505998B (en) Multigate semiconductor device with vertical channel current and method of fabrication
US8022466B2 (en) Non-volatile memory cells having a polysilicon-containing, multi-layer insulating structure, memory arrays including the same and methods of operating the same
TWI517297B (en) Floating gate memory device with interpoly charge trapping structure
KR100944649B1 (en) Non-volatile memory and method of forming thereof
TW584960B (en) SONOS component having high dielectric property
US20060202254A1 (en) Multi-level flash memory cell capable of fast programming
US7973366B2 (en) Dual-gate, sonos, non-volatile memory cells and arrays thereof
US20190074286A1 (en) Method of reducing charge loss in non-volatile memories
JP2004015051A (en) Non-volatile memory cell, memory element, and method for manufacturing non-volatile memory cell
CN103311286A (en) Semiconductor device and manufacturing method thereof
WO2009104688A1 (en) Non-volatile memory device and method of manufacturing same
TW200826300A (en) Semiconductor device and manufacturing method thereof
TW201709528A (en) Semiconductor device and method of manufacturing the same
US20040021170A1 (en) Method and apparatus for injecting charge onto the floating gate of a nonvolatile memory cell
CN101621035B (en) Amorphous silicon MONOS or MAS memory cell structure with OTP function
CN106024889A (en) Semiconductor device and manufacturing method thereof
TWI289912B (en) Method of manufacturing a non-volatile memory device
KR100849993B1 (en) Nor flash memory usimg asymmetric schottky-barrier and fabricating method thereof
US20100044775A1 (en) Semiconductor memory device and semiconductor device
JP2012146957A (en) Semiconductor nonvolatile memory device
TWI313508B (en) Non-volatile memory cells having a polysilicon-containing, multi-layer insulating structure, memory arrays including the same and methods of operating the same
TW200830475A (en) Integrated circuit device, method for forming and operating an integrated circuit, method for forming and operating a semiconductor device