TWI312978B - Method and drive means for color correction in an organic electroluminescent device - Google Patents

Method and drive means for color correction in an organic electroluminescent device Download PDF

Info

Publication number
TWI312978B
TWI312978B TW91119380A TW91119380A TWI312978B TW I312978 B TWI312978 B TW I312978B TW 91119380 A TW91119380 A TW 91119380A TW 91119380 A TW91119380 A TW 91119380A TW I312978 B TWI312978 B TW I312978B
Authority
TW
Taiwan
Prior art keywords
light
emitting element
voltage
current
change
Prior art date
Application number
TW91119380A
Other languages
Chinese (zh)
Inventor
Irene Elisabeth Vulto Simone
Theodorus Hubertus Fransiscus Liedenbaum Coen
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Priority to TW91119380A priority Critical patent/TWI312978B/en
Application granted granted Critical
Publication of TWI312978B publication Critical patent/TWI312978B/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

1312978 A71312978 A7

’具有至 包含一冷 該像素構 I本發明關於一種有機冷光裝置的彩色修正方法 =—像素,包含一冷光材料層,具有一像素(6), 光材料層(5),其則位於一第一及第二電極之間, 成至少一第一及一第二發光元件。 、-本發明也關於—有機冷光裝置的一驅動裝置,包含— 冷士材料,其是位於第一和第二電極型態之間,其中該: 型態界定至少一像素,每個皆包含至少一第一和_二 . 乐一發 兀*牛,該驅動裝置則連接至該等電極及配置以供給電源 至冷光材料以從該材料獲致發光。 〃 有機冷光發光一極體的技術,如多元酯發光二極體 (PolyLED或PLED)或有機發光二極體(〇LED),則是_依特 定有機材料為基礎的最近發展的技術,如多元酯,可使用 在一發光二極體的半導體。此技術則是非常有趣的,因為 多几酯材料在生產上則是輕,有彈性及價廉的。結果, polyLED和OLED提供機會以產生薄及高彈性的顯示器例 如使用電子新聞或相似的。該等顯示器的應用則可用於行 動電話的顯示器。 上述顯不器相較於競爭技術如LCD顯示器具有多個有利 特點。首先有機冷光顯示器在產生光時是比較有效,及對 polyLCD顯示器而言發光效率則比LCD顯示器高三倍。結果 ’該polyLED在相同電池下可運轉三倍時間。此外,冷光有 機顯不器具有關於對比及亮度之優點。PolyLED顯示器則非 依觀點而定,因為光是在相同密度下多方向傳送。 無論如何’有機發光裝置技術則進步至一點其中所有使 • 4 - 本紙張尺度逋用中國國家標準(CNS) A4规格(210 X 297公釐) 1312978 A7 ____B7 五、發明説明(2 ) ^ 用此技術的彩色顯示器則是視為—選擇。為獲致主要顏色 ,幾種方法可被使用。 一種直接嘗試則是使用白光及彩色濾光片產生色彩,如 TFT-LCD顯示器。這種方式的最大缺點即是使用彩色濾 光片增加了複雜度及成本,此外從一白光發射的有效光譜 的2/3則被彩色濾光片吸收,使得這種方法也不符合能源效 益。 無論如何,對有機冷光裝置而言,另種產生色彩的方法 是調整基本發射材料以使得CIE彩色的座標x*y吻合需要的 紅綠藍彩色點。這可由低分子重裝置來完成,如〇LED裝置 經由調整主材料裡的滲雜,對多元酯應用而言,如pLED, 光譜的改變可經由改變多元酯材料的主要和側鍊組成來獲 得。也可能增加多元酯材料的滲雜來獲致。由於發光多元 酯材料可用於紅綠藍色,一彩色顯示器可簡單地經由將紅 綠藍色材料施於一包含多個像素的陣列架構内的像素之適 切位置來獲得。這是可以從先前技藝印刷技術來獲得的。 無論如何,上述方法有個大問題即是關於產生色彩。這 是由於實際應用的X和y CIE色彩座標當像素被驅動時是依 整體時間而定的。此效應則基本是用於所有有機冷光材料 的且不論色彩。在顯示器的生命週期,冷光材料的發射頻 譜及最後的CIE彩色點隨時間移動。結果,雖然致力於獲得 红綠藍點的修正及特定CIE色彩座標值,它們的位置還是會 隨著像素驅動一定時間後改變。此外’因為所有像素並非 等時間驅動,上述"衰減"程序會隨著顯示器的像素之不同 -5- 本紙張尺度適用中國國家樣準(CNS) A4規格(210X297公釐)The color correction method for an organic luminescence device of the present invention includes a layer of luminescent material having a pixel (6) and a layer of optical material (5), which is located at a Between the first electrode and the second electrode, at least one of the first and second light emitting elements. The invention also relates to a driving device for an organic luminescence device comprising - a cold material, between the first and second electrode patterns, wherein: the pattern defines at least one pixel, each of which comprises at least A first and a second. The drive is coupled to the electrodes and configured to supply power to the luminescent material to illuminate the material. 〃 Organic cold-lighting one-pole technology, such as polyester light-emitting diodes (PolyLED or PLED) or organic light-emitting diodes (〇LED), is a recently developed technology based on specific organic materials, such as The ester can be used in a semiconductor of a light-emitting diode. This technique is very interesting because polyester materials are light, flexible and inexpensive to produce. As a result, polyLEDs and OLEDs offer opportunities to produce thin and highly flexible displays such as electronic news or the like. Applications for such displays can be used in displays for mobile phones. The above display has several advantageous features over competing technologies such as LCD displays. First, organic cold light displays are more efficient when producing light, and are three times more efficient than LCD displays for polyLCD displays. Results 'The polyLED can operate three times longer under the same battery. In addition, the luminescence organic display has the advantage of contrast and brightness. PolyLED displays are not depending on the point of view, because light is transmitted in multiple directions at the same density. In any case, 'organic illuminator technology has progressed to a point where all make 4 - this paper scale 中国 Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1312978 A7 ____B7 V. Invention description (2) ^ Use this The technical color display is considered as a choice. Several methods can be used to achieve the main color. A direct attempt is to use white light and color filters to produce colors, such as TFT-LCD displays. The biggest drawback of this approach is the increased complexity and cost of using color filters. In addition, 2/3 of the effective spectrum emitted from a white light is absorbed by the color filter, making this method also not energy efficient. In any case, for organic luminescent devices, another method of producing color is to adjust the basic emissive material such that the coordinates of the CIE color x*y match the desired red, green, and blue colored dots. This can be accomplished by low molecular weight devices, such as 〇LED devices by adjusting the turbidity in the host material. For polyol applications, such as pLEDs, spectral changes can be obtained by altering the major and side chain composition of the polyol material. It is also possible to increase the infiltration of the polyester material to obtain. Since the luminescent polyester material can be used in red, green, and blue, a color display can be obtained simply by applying the red, green, and blue material to a suitable position of a pixel within an array structure comprising a plurality of pixels. This is available from prior art printing techniques. In any case, the big problem with the above method is that it produces color. This is due to the fact that the actual X and y CIE color coordinates are based on the overall time when the pixel is driven. This effect is basically applied to all organic luminescent materials regardless of color. During the life of the display, the emission spectrum of the luminescent material and the final CIE color point move over time. As a result, while working to obtain corrections for red, green, and blue dots and specific CIE color coordinate values, their position will change as the pixel is driven for a certain period of time. In addition, because all pixels are not time-driven, the above "attenuation" program will vary with the pixels of the display. -5- This paper size applies to China National Standard (CNS) A4 specification (210X297 mm)

裝 訂Binding

線 1312978Line 1312978

發明説明 而不同。此外,14對全色彩應用例是特別重要的,因為所 有色彩並非在同一時間被驅動’且每一色彩顯示一相似但 非獨特的光譜降級。 種解決此問題的方法是專利文件w〇_9945525號所述。 其所描述的結構考慮到像素矩陣包含三種單色冷光二極體 (R,G, B)。該等二極體是由—傳遞一電能卩至每一二極體 的電路所控制,其中該電能是由p=k*pr所決定,其中以是 專用於每一顏色二極體的參考電能,及^^是一根據呈現的 色彩所選定的係數。此外,在時間考量裡,該參考電能則 是依變化而定以補償二極體的衰減。無論如何,此系統之 主要缺點是顯示器的每個二極體的整體時間已被儲存在一 s己憶體裝置裡,及該所獲致的補償是依此資訊而定。結果 ,此系統需要一大的記憶體空間而使得其有點不實際難以 實現。此外,此系統需要持續啟動,以遵循整體時間。 結果,本發明的一目的是提供一種改良方法及目的以減 少上述之問題點。本發明是由獨立的申請專利範圍所界定 ’該獨立的申請專利範圍界定具優點之具體例。 所有的目的皆在發明摘要有所敘述’該方法包含步驟有 輸入一由發光元件所顯示器的資訊之資料信號,在一修正 裝置為每一發光元件產生一修正係數,該等係數是以下列 為基礎的: (i)發光元件在一預定電流(Is)流經其間的一種測量的電 壓變化及該發光元件之電壓變化及一色彩點波長變化(Δλ) 間之一關係,或 -6- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 1312978 A7 ----------B7 五、發明説明)--- …)發光元件在—預定電壓(Vs)橫跨其間的一 ,化及該發光元件之電流變化及一色彩點波長 電 間之—關係,及 該發光7G件之電流和—彩色點波長變化㈣,及從該修正 裝置輸出該修正係數,以施於該資料信號上。此方法的有 利點在於彩色修正可在驅動裝置的任何時間簡單地獲得, 因為整個彩色點可以經由調整電流流經各別發光元件所獲 致之電壓調整獲得。此外,一顯示器上的電壓和電流可被 簡易地測量’而導致執行—種簡單及具成本效益的方法。 若需要,該修正係數可以基於執行在像素内—個以上發 光元件的的測量,較佳是在像素内每一發光元件。測量到 的電壓和電抓變化及彩色點在不同發光元件可以是不同的。 較佳地’該修正裝置包含―具關於—發光元件的電壓之 預先測量的相關資訊之搜尋表,電流施於該發光元件,及 導致該發光元件的波長變化。經由儲存該資訊,其可被整 合及不需清楚福述,在-搜尋表内,此資訊可簡單地存取。 根據一較佳具體例’該方法包含下列步驟:在預定時間區 間傳送,s S兀件之-具有一預定電济L,測量發光元件上 電壓於電流傳送過發光元件時,計算該被測量的電壓及一 對應電流之預先電壓間之一電壓,輸入電壓變化至修正裝 置,及從該修正裝置輸出一修正參數變化。當一決定的電 流流經該裝置時,測量裝置上電壓即可完成一簡單修正。 較佳地,該發光元件的波長變化(Δλ)計算如下: Δλ =k · ΔΥ 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 1312978 ,發明説明( 其中Δλ是所獲得的波長一 變化,其令疋修正係數及AV是電壓 # . ^ ^ ^ 發光70件及每種型式發光元件預先儲 …二一值。該修正係數可以是-常數或該顯 或電流函數,如哪。使用該有機冷 先材枓’其具有電㈣化和波長變化間之—線性關係,容 較时常小的搜尋表,因位實際上㈣㈣㈣正係數 二这疋個優點,因為該表需要—些記憶體空間即可簡單獲 得。此外,相同修正係數“用於相同型式的發光元件。= 相同型式的發光元件"則表示具有發光層的相同組成及尺寸 之發光兀件及具有第-和第二電極之相同組成及尺寸。例 如’對具有紅綠藍發光的元件之全彩色矩陣顯示器而言, 其中一色彩(紅,綠或藍)的所有發光元件則是相同型式,僅 三個修正係數k需被儲存。 根據本具體例之一變化,該先前電壓則是一橫跨發光元 件的初始電壓,在製造該裝置時測量。所有的測量值皆與 預先儲存值比較,導致一穩定系統。根據本具體例之另一 變化,該預先電壓是在驅動裝置期間預先測量的發光元件 的一電壓’導致該裝置並不需要初始計量。 根據本發明的第二具體例,該方法包含下列步驟:在預 定時間區間傳送,發光元件之一具有一預定電壓,測量發 光元件上電流於電壓施於發光元件時,計算該被測量的電 流及一預先電流間之一電流變化’輸入電流變化至修正裝 置’及從該修正裝置輸出一以電流變化為基礎對應該發光 元件之波長變化Δλ的修正參數變化。當一決定的電壓施於 -8 - 本紙張尺度適用中國國家標準(CNS) Α4规格(210X 297公釐) 1312978 五、發明説明(6 該裝置',測量裝置上電流即可完成一簡單修正。較佳地 ,該發光兀*件的波長變化計算如下: Δλ =k · ΔΙ 其中Δλ疋所獲;^的波長變化’ &是—修正係'數及是電流變 其中k疋對每-發光元件或對每種型式發光元件預先儲 子在該修正裝置的-值。該修正係數可以是一常數或該顯 數’如Μ(ν,υ。使用該有機冷 光材料,其具有電壓變化和波長變化間之一線性關係,容 許^非常小的搜尋表,因為實際上僅需要儲存修正係數k 這疋個優點,因為該表需要一些記憶體空間即可簡單獲 得。此外,相同修正係船可用於相同型式的發光元件。" 相同型式的發光元件>!表示具有發光層的相同組成及尺寸 之發光π件及具有第-和第二電極之相同組成及尺寸。例 如’對具有、红綠藍發光的元件之全彩色矩陣顯示器而言, 其中一色彩(紅,綠或藍)的所有發光元件則是相同型式,僅 三個修正係數k需被儲存。 根據本具體例之一變化,該先前電壓則是一流經發光元 件的初始電流,在製造該裝置時測量。所有的測量值皆與 預先儲存值比較,導致一穩定系統。根據本具體例之另二 變化,該先前的電流是在驅動裝置期間預先測量的發光元 件的一電流,導致該裝置並不需要初始計量。 較佳地,該冷光材料是多元酯發光材料及一有機發光材 料之一,皆是具良好特性測試良好的材料。此外,根據一 較佳具體例,至少一像素實質包含三個或更多個發光元件 -9· 本紙張尺度適用中國國家標準(CNS) A4規格(2i〇x 297公釐) 1312978 A7The invention is different. In addition, 14 pairs of full color applications are particularly important because all colors are not driven at the same time' and each color exhibits a similar but non-unique spectral degradation. A solution to this problem is described in the patent document WO _9945525. The structure described takes into account that the pixel matrix contains three monochromatic luminescent diodes (R, G, B). The diodes are controlled by a circuit that transmits an electrical energy to each of the diodes, wherein the electrical energy is determined by p=k*pr, wherein the reference energy is dedicated to each color diode. , and ^^ is a coefficient selected based on the rendered color. In addition, in the time consideration, the reference energy is varied to compensate for the attenuation of the diode. In any event, the main disadvantage of this system is that the overall time of each diode of the display has been stored in a suffix device, and the compensation obtained is based on this information. As a result, this system requires a large memory space making it somewhat impractical to implement. In addition, this system requires continuous startup to follow the overall time. As a result, it is an object of the present invention to provide an improved method and object for reducing the above problems. The present invention is defined by the scope of the independent patent application. The independent patent application scope defines specific examples of advantages. All of the objects are described in the Summary of the Invention 'The method comprises the steps of inputting a data signal of information displayed by the light-emitting element, and a correction factor is generated for each light-emitting element in a correction device, the coefficients being Basic: (i) a relationship between a measured voltage change of a light-emitting element flowing through a predetermined current (Is) and a voltage change of the light-emitting element and a color point wavelength change (Δλ), or -6-ben Paper scale applies to China National Standard (CNS) Α4 specification (210X297 mm) 1312978 A7 ----------B7 V. Invention description) --- ...) illuminating element at - predetermined voltage (Vs) across In the meantime, the current change of the light-emitting element and the relationship between the wavelengths of a color point and the current of the light-emitting 7G element and the wavelength change of the color point (4), and the correction coefficient is output from the correction device. On the data signal. The advantage of this method is that the color correction can be easily obtained at any time during the driving of the device, since the entire color point can be obtained by adjusting the voltage obtained by the current flowing through the respective light-emitting elements. In addition, the voltage and current on a display can be easily measured' resulting in a simple and cost effective method. If desired, the correction factor can be based on measurements performed on more than one of the light-emitting elements within the pixel, preferably each of the light-emitting elements within the pixel. The measured voltage and electrical pick-up changes and color points can be different for different light-emitting elements. Preferably, the correction means includes a search table having information about the pre-measurement of the voltage of the light-emitting element, a current applied to the light-emitting element, and a wavelength change of the light-emitting element. By storing this information, it can be integrated and does not need to be clearly stated. This information can be easily accessed in the - search form. According to a preferred embodiment, the method comprises the steps of: transmitting in a predetermined time interval, having a predetermined electrical energy L, and measuring the voltage on the light-emitting element when the current is transmitted through the light-emitting element, calculating the measured A voltage between the voltage and a pre-voltage of a corresponding current, the input voltage is changed to the correction device, and a correction parameter change is output from the correction device. When a determined current flows through the device, a simple correction can be made by measuring the voltage across the device. Preferably, the wavelength variation (Δλ) of the illuminating element is calculated as follows: Δλ = k · Δ Υ The paper scale is applicable to the Chinese National Standard (CNS) Α 4 specification (210×297 mm) 1312978, the invention description (where Δλ is the obtained wavelength A change, which causes the correction coefficient and AV to be voltage #. ^ ^ ^ illuminates 70 pieces and each type of illuminating element pre-stores a value of 2. The correction factor can be a constant or a function of the display or current, such as. Using the organic cold precursor 枓 'which has a linear relationship between electric (four) and wavelength change, the search table is often smaller, and the bit is actually (four) (four) (four) positive coefficient two, because the table needs some The memory space can be easily obtained. In addition, the same correction factor "for the same type of light-emitting element. = the same type of light-emitting element" means a light-emitting element having the same composition and size of the light-emitting layer and having the first and the The same composition and size of the two electrodes. For example, for a full color matrix display with red, green and blue illuminating elements, all of the luminescent elements of one color (red, green or blue) are In the same pattern, only three correction coefficients k need to be stored. According to one of the specific examples, the previous voltage is an initial voltage across the light-emitting element, which is measured when the device is manufactured. All measured values are stored in advance. The comparison of values results in a stable system. According to another variation of this embodiment, the pre-voltage is a voltage of the illuminating element that is pre-measured during the driving of the device, resulting in the device not requiring an initial metering. For example, the method includes the following steps: transmitting in a predetermined time interval, one of the light-emitting elements has a predetermined voltage, and measuring a current on the light-emitting element when the voltage is applied to the light-emitting element, calculating a current between the measured current and a pre-current Changing the 'input current change to the correcting device' and outputting a modified parameter change corresponding to the wavelength change Δλ of the light-emitting element based on the current change from the correcting device. When a determined voltage is applied to the -8 - the paper scale is applicable to the Chinese country Standard (CNS) Α4 size (210X 297 mm) 1312978 V. Description of invention (6 The device', on the measuring device A simple correction can be made by the current. Preferably, the wavelength variation of the illuminating element is calculated as follows: Δλ = k · Δ Ι where Δλ 疋 is obtained; ^ wavelength variation ' & is - correction system 'number and current Changing the value of k 疋 for each illuminating element or for each type of illuminating element in advance in the correction device. The correction factor may be a constant or the number 'such as ν (ν, υ. using the organic luminescent light) The material, which has a linear relationship between voltage change and wavelength change, allows a very small search table because only the advantage of the correction factor k needs to be stored, since the table requires some memory space to be easily obtained. Further, the same modified mooring can be used for the same type of light-emitting element. "The same type of light-emitting element" indicates a light-emitting π member having the same composition and size of the light-emitting layer and the same composition and size of the first and second electrodes. For example, for a full color matrix display having red, green and blue illuminating elements, all of the illuminating elements of one color (red, green or blue) are of the same type, and only three correction coefficients k need to be stored. According to one of the specific examples, the previous voltage is the initial current of the first-class illuminating element, which is measured at the time of manufacture of the device. All measured values are compared to pre-stored values resulting in a stable system. According to another variation of this embodiment, the previous current is a current of the illuminating element that was previously measured during the driving of the device, resulting in the device not requiring an initial metering. Preferably, the luminescent material is one of a polyester luminescent material and an organic luminescent material, all of which are well tested with good properties. Further, according to a preferred embodiment, at least one pixel substantially contains three or more light-emitting elements -9. The paper scale applies to the Chinese National Standard (CNS) A4 specification (2i〇x 297 mm) 1312978 A7

13129781312978

。獨立於顯示器材料衰減的—種具有實f怪定彩色行為的 顯示器也可被獲得。 本發明的目的將參考下列具體例之說明而更加清楚。 本發明的一現行較佳具體例將參考附圖更詳細地予以描 述。 圖la是圖示一波長變化及冷光顯示器上之—電壓如同該 顯示器所給予之一恆定整體驅動時間的函數。 圖1 b則圖示電壓變化及該冷光顯示器的波長變化間關係。 圖2則圖示一冷光顯示器的一具體例,其中根據本發明的 一種方法及一種裝置可被使用。 圖2則圖示一冷光顯示器的一具體例,其中根據本發明的 —種方法及一種裝置可被使用。 一冷光顯示器1的基本裝置結構包含:一結構化第一電極 2或陽極;一透明材料’如常見的透光型IT〇 ; 一第二電極3 或陰極;及一發射冷光層5’其被夾在陽極2與陰極3之間。 在圖2所示的顯示器範例’一另傳導層4如一傳導多元酯層 (如PEDOT)則夾層於該陽極2及發射層5間。其他層結構則 也可能包含較少或較多有機層。該發射層5可以是如一 PolyLED顯示器的一多元酯發光材料層,或一〇led顯示器 的一有機發光材料層》 在作動時,一電流I傳送在陽極和陰極間(如圖示),經由 發射冷光層5以驅動發射冷光層5内之材料以發射。 圖2所示顯示器範例包含像素6的一陣列(僅示一像素)亦參 考如發光二極體(LEDs),其是由電極2,3及界於其間的發 -11 - 本紙張尺度適用t國國家樣準(CNS) A4規格(210X 297公釐) 1312978 、發明説明(9 射層5所界定的。對全彩色應用而言,每一像素則另區分成 三個副像素,或發光元件6R,6G,6B,包含冷光材料用以 各別發射紅,綠和藍光。該像素/副像素型態可以經由印刷 技術產生在一基片上。 此外,驅動裝置7則連接至該電極2’ 3以驅動該顯示器1 。對上述像素/副像素裝置而言,一驅動裝置單元則被配置 至包含三個副像素6R,6G,6B的每個像素6。 t驅動裝置7包含輸入裝置8用以從一影像產生器(未示)接 收-資料信號s。在上述例,該接收的資料信號3包含經由 適切驅動該副像素(6R,6G,6B)關於一期望顏色或由像素6 顯示的彩色點之資訊。一具有R,nB多元醋(即,紅色、 綠色或藍色發光多元脂)的發射所界定角落之彩色三角内的 所有色彩則由線性結合R,G,B發射向量所獲致如紅, 綠和藍副像素光的結合。此外,每_彩色點可以由一組㈣ 色也圖内X和y軸所呈現。該驅動裝置7可包括信號處理裝置 η,其中每個副像素的該彩色點資訊被轉換成驅動資訊以 :一副像素產生特定像素的一期望的彩色。無論如何,該 貝訊區分也可在輪人資料信號㈣包含的。因此,驅動資訊 則經輸出連接9施於該顯示器的每一發射副像素。 ::如何’如上述’在該顯示器的生命週期,里,仍有保 正參數於平衡於既有顯示^的H由於該彩色 二.&此變動疋依特定像素或副像素的整個驅動時間而 疋0 本發月所建議,上述驅動裝置另包含修正裝置用以 -12-. A display that has a solid color behavior independent of the display material attenuation can also be obtained. The object of the present invention will become more apparent from the following description of the specific examples. A presently preferred embodiment of the present invention will be described in more detail with reference to the accompanying drawings. Figure la is a graph illustrating a wavelength change and a voltage on a luminescent display as a function of a constant overall drive time given by the display. Figure 1b illustrates the relationship between the voltage change and the wavelength change of the luminescent display. Fig. 2 illustrates a specific example of a cold light display in which a method and a device according to the present invention can be used. Fig. 2 illustrates a specific example of a cold light display in which a method and a device according to the present invention can be used. The basic device structure of a luminescent display 1 comprises: a structured first electrode 2 or an anode; a transparent material 'such as a common light-transmissive type IT 〇; a second electrode 3 or cathode; and an emission luminescent layer 5' Sandwiched between the anode 2 and the cathode 3. In the display example shown in Figure 2, an additional conductive layer 4, such as a conductive polyester layer (e.g., PEDOT), is sandwiched between the anode 2 and the emissive layer 5. Other layer structures may also contain fewer or more organic layers. The emissive layer 5 can be a layer of a polyester luminescent material such as a PolyLED display, or an organic luminescent material layer of a led display. When operating, a current I is transmitted between the anode and the cathode (as shown). The luminescent layer 5 is emitted to drive the material within the luminescent layer 5 to emit. The display example shown in FIG. 2 includes an array of pixels 6 (only one pixel is shown) and also refers to, for example, light-emitting diodes (LEDs), which are applied by electrodes 2, 3 and the boundary between them. National Standard (CNS) A4 specification (210X 297 mm) 1312978, invention description (9 shot layer 5 defined. For full color applications, each pixel is divided into three sub-pixels, or light-emitting elements 6R, 6G, 6B, comprising a luminescent material for emitting red, green and blue light, respectively. The pixel/sub-pixel pattern can be produced on a substrate via a printing technique. Further, a driving device 7 is connected to the electrode 2' 3 To drive the display 1. For the above pixel/sub-pixel device, a driving device unit is arranged to each pixel 6 including three sub-pixels 6R, 6G, 6B. The t driving device 7 includes an input device 8 for Receiving a data signal s from an image generator (not shown). In the above example, the received data signal 3 includes a color that is driven by the sub-pixel (6R, 6G, 6B) with respect to a desired color or by pixel 6 Point information. One with R, nB multi-vinegar ( , the red, green or blue luminescent multi-element) of all the colors in the color triangle defined by the emission of the corner is obtained by linearly combining the R, G, B emission vectors to obtain a combination of red, green and blue sub-pixel light. Each _color point may be represented by a set of (four) colors also within the X and y axes. The driving device 7 may include a signal processing device n, wherein the color point information of each sub-pixel is converted into driving information to: The pixel produces a desired color for a particular pixel. In any event, the beta can also be included in the wheel profile signal (4). Thus, the drive information is applied to each of the transmit sub-pixels of the display via output connector 9. How to 'as above' in the life cycle of the display, there are still guaranteed positive parameters in the balance of the existing display ^ H due to the color two. & this change depends on the specific driving time of a particular pixel or sub-pixel 疋 0 As suggested by this month, the above drive unit additionally includes a correction device for -12-

1312978 A7 -----—____B7 五、發明説明(10 ) ' ------— ΐ存:Γ正表’如一搜尋表及為資料信號s,產生-修正係 。k L正裝置10則連接至信號處理裝置u。 —本發明是以在有機冷Μ置(如上述顯示器)的生命週期裡 —電麼(或電流)變化間之關係,及在該裝置的生命週期裡發 射的光譜變化’當一像素或副像素被-預定電流(或電旬所 驅動時。如圖1所示對一流經該冷光材料的特定電流,一顯 器的電壓V和特疋變化从基本上是依像素的整體驅動時 間t指數變動的。電壓變κΔν和頻譜變化綱—基本線性關 係可被產生,如圖lb所示。該線性關係以線LF表示,為線 陡致的。此外,此線性關係是獨立於顯示器的整體驅動 時間的’但卻依電流而定。結果,經由測量顯示器上的電 壓或電流,同時保持另一項於恆定值,則可獲得波長變化 結果,一彩色點修正係數可施於一資料信號,傳送至一 顯不器,以補償顯示器的衰減,因為衰減改變電流和電壓 間的相互關係。此外,該一彩色修正可以電氣處理,並將 於下述。 當驅動該顯示器時,上述顯示器裝置可以兩種不同方式 彩色修正。 根據本發明的第一具體例,如圖2所示,一資料信號8經 由一輸入裝置8輸入驅動裝置資料信號3則傳送至信號處 理裝置11及經由一輸出裝置9輸出至顯示器的各別像素/副 像素’以顯示該顯示裝置的一影像。 當製造該顯示器裝置時,即完成一"計量",其中—副像素 上電壓V〇由流經該副像素之選定電流Is測量得之。及“的 本紙張尺度逋用中國國家標準(CNS) A4規格(210X297公爱) -13- 1312978 A71312978 A7 ------____B7 V. INSTRUCTIONS (10) ' ------ ΐ Γ Γ Γ Γ ’ 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如The k L positive device 10 is connected to the signal processing device u. - The present invention is based on the relationship between the life cycle of an organic cold junction (such as the above display) - the change in electricity (or current), and the spectral change emitted during the life of the device 'as a pixel or sub-pixel When the current is driven by a predetermined current (or electrician), as shown in Fig. 1, for a specific current passing through the luminescent material, the voltage V and characteristics of an display change from an index of the overall driving time t of the pixel. The voltage change κΔν and the spectrum change profile—a basic linear relationship can be generated, as shown in Figure lb. This linear relationship is represented by the line LF and is steep. Further, this linear relationship is independent of the overall drive time of the display. 'But it depends on the current. As a result, by measuring the voltage or current on the display while keeping the other value at a constant value, the wavelength change result can be obtained. A color point correction coefficient can be applied to a data signal and transmitted to A display to compensate for the attenuation of the display, because the attenuation changes the relationship between current and voltage. In addition, the color correction can be electrically processed and will be described below. When the display is activated, the display device can be color corrected in two different ways. According to the first specific example of the present invention, as shown in FIG. 2, a data signal 8 is input to the signal through an input device 8 and then transmitted to the signal. The processing device 11 and the respective pixels/sub-pixels 'outputted to the display via an output device 9 to display an image of the display device. When the display device is manufactured, a "metering" is completed, wherein - the sub-pixel The voltage V〇 is measured by the selected current Is flowing through the sub-pixel. And “the paper size is measured by the Chinese National Standard (CNS) A4 specification (210X297 public) -13- 1312978 A7

B7 =則因此儲存在該裝置的職 素皆執行。此外,斟好壯 、牡母彳的田像 的補償曲線則…使用的每個材料,"°圖1b所示 、’ 由-波長變化/電壓變化測量來產生,如圖 :’既定恆定電流的時間函數。補償曲線的產生及測 材料僅需做一次,且此補償曲線是一材料特性。 夕數材枓而言’電壓變化Δν和波長變化Λλ為線性,如圖 1所不及前述。由圖lb可瞭解,下列關係可獲得。 Δλ = k · ΔΥ 其中△人是所獲得的波長變化,,是一修正係數及Δν是電壓 變化J在本具體例中,如圖lb所示,k基本上是個材料常數 。無論如何,該修正係數可以是顯示器上的電壓及碱電流 函數,如 k=k(V,I;) » 僅需要一小記憶體區域以儲存一搜尋表,因為實際上僅 需要儲存曲線值,或該曲線的修正係數k。該值是對應圖 lb所示的補償曲線内 在預定時間週期,如一小時,或當該顯示器啟動時一 對應電流Is被傳送過該顯示器,其中該顯示器的電壓v經由 一電壓表來測量。該測量的電壓值v則因此與初始電壓值v〇 比較於特定電流流經該顯示器時。該電壓位移Δν可由下列 公式獲得: AV=|V-V〇| 當Δν為已知’ Δλ可簡單地經由儲存在該搜尋表的修正係 數來獲得。因此,一適切修正係數可在其傳送至顯示器前 施於資料訊號S,其中彩色修正經由調整流經一像素的副像 -14· 本紙張尺度適用中國國家標準(CNS) Α4規格(210Χ 297公釐) 1312978 12 、發明説明( 電流來啟動’以使得像素的整個彩色點為不變。 ^像素㈣色點改變,其也必須調整流經相同像 他副像素的電壓/電流來改變。 、’八 .根據本發明的第二具體例,該"計量"則經由測量— 壓值Vs的電流1〇達成。-對應補償曲線,如圖lb所示,可經 和波長變化間的關係產生。該電流I。則對應補償曲線 在預定時間期間’如一小時,或顯示器開始時, 電流被傳送過該顯示器,-對應值Vs則施於該顯示琴,里 中流經該顯示器的電流㈣經由—電流表測量。該測量的電 流故則因此與該顯示器上的特定電壓所產生的初始電流值 1〇比較。該電流變化ΔΙ可以由下式獲得: ΔΙ=|Ι-Ι〇| 當ΔΙ為已知,Δλ可簡單地經由儲存在搜尋表内的修正係 數獲得。因此,一適切的修正係數可以施於信號處理裝置 11的資料㈣S上’於其傳送至顯示器之前’其中彩色修正 可被啟動。 > 對上述的兩個具體例而言,其可關聯電壓/電流值與一具 事先測量的相同參數值,而非關聯該測量的電壓/電^值與 一初始值。在此需要一儲存先前測量的電壓/電流值的額外 記憶體。這也可以在每個畫面執行。 此外也可以使用電壓/電流變化及波長間沒有線性關係的 材料《無論如何,在此例,需要一較大搜尋表以提供多個 變化波長的修正係數。 本紙張尺度適用中國®家標準(CNS) Α4規格(210X 297公着) -15 1312978 五、發明説明(η ) 經由使用上述方法,可以伴姓 t ^ j以保持—修正彩色平衡於顯 ΙΓΓί::ΓΓ由各別調整副像素的發射波長,及因 H該像素的一值定整體彩色點。這可以經由提供根據 本發明的具一驅動器之顯示器來 月盗果獲侍,其包含裝置用以決 ::! 一發射器之電愿/電流變化及用以決定每個 發射益的頻S普變化,及其包含I H u π ^ 汉/、G3裝置用以將一修正參數施於 =像素的紅綠藍發射器的㈣信號以修正發㈣的頻譜變 =發明應不限於上述具體例’但應包財請專利範 界疋之所有可能變化。 本發明已連結-顯示裝置予以描述,及特指一全彩色顯 不裝置。無論如何,請注意本發明可應用於其他技術裝置 ’如一黑白顯示裝置,非圖形顯示或-有機冷光二極體用 於一背光板或其他等。 此外,即使上述裝置是一polyLED裝置,該彩色修正方法 也可應用於其他有機冷光襄置如有機LED(0LED)裝置。 請注意上述預先決定電壓Vo及電流10對不同副像素而言可 為不同。此外,其可在上述電壓測量模式部份驅動一顯示 裝置,及部份於上述電流測量模式。 總言之,本發明關於一種有機冷光裝置内彩色修正的方 具有至V、像素,包含一冷光材料層,其係包失於第 一和第二電極間’該像素構成至少一第一和一第二發光元 件,其中該方法包含下列步驟:輸入一具有該發光元件顯 不的資訊之資料信號,對每一發光元件產生一修正係數於 -16- 本紙張尺度適財s S家料(CNS) A4規格⑽x 297公爱) 1312978 A7 B7 五、發明説明(14 ) —修正裝置内,該修正係數則是基於一彩色點波長變化Δλ 和任一發光元件在一特定電流(Is)時之電壓及一電流在一特 定電壓(vs)流經該發光元件之一之間的一關係、,及從該修正 裝置輸出施於該資料信號的修正係數。 本發明也關於一種執行上述方法的驅動裝置。 應注意上述具體例展示並非為限制本發明,該等習知本 技藝者在不背離本發明的範疇下可設計許多替代具體例。 在該等中請專利範圍,所有參考信號並不會構成限制申_ 專利範圍。"包含"的字眼不排除元件或步驟的呈現而非僅 有-申請專㈣圍所列示者。"―"或·,_種”於元件前也不會 排除多個元件。本發明可由包含幾個獨特元件的 及經由適切程式化電腦來執[在該等裝置巾請專利範 列舉數個裝置,該等裝置也可由—個或相同項目硬體聚人 。在互相不同的獨立巾請專利範圍所”的特定測量之二 一係數並不表示該等測量的組合不能整合在一起使用。 -17-B7 = then the functions stored in the device are executed. In addition, the compensation curve of the field image of the strong and the mother-in-law is... each material used, "° shown in Figure 1b, is generated by the measurement of -wavelength change/voltage variation, as shown in the figure: 'Constant constant current Time function. The generation of the compensation curve and the measurement of the material need only be done once, and this compensation curve is a material property. In the case of the singular material, the voltage change Δν and the wavelength change Λλ are linear, as shown in Fig. 1 . As can be seen from Figure lb, the following relationships are available. Δλ = k · ΔΥ where Δ is the wavelength change obtained, which is a correction factor and Δν is the voltage change J. In this specific example, as shown in FIG. 1b, k is basically a material constant. In any case, the correction factor can be a voltage and alkali current function on the display, such as k = k (V, I;) » Only a small memory area is needed to store a search table, since only the curve values need to be stored. Or the correction factor k of the curve. The value is corresponding to the compensation curve shown in Figure lb for a predetermined period of time, such as one hour, or when the display is activated, a corresponding current Is is transmitted through the display, wherein the voltage v of the display is measured via a voltmeter. The measured voltage value v is thus compared to the initial voltage value v 〇 when a particular current flows through the display. The voltage displacement Δν can be obtained by the following equation: AV = |V - V 〇 | When Δν is known ' Δλ can be obtained simply by the correction factor stored in the search table. Therefore, a suitable correction factor can be applied to the data signal S before it is transmitted to the display, wherein the color correction is adjusted by passing through a sub-pixel of a pixel - 14. The paper scale is applicable to the Chinese National Standard (CNS) Α 4 specification (210 Χ 297 gong) PCT) 1312978 12, invention description (current to start 'to make the entire color point of the pixel unchanged. ^ pixel (four) color point change, it must also adjust the voltage / current flowing through the same sub-pixel to change. According to a second specific example of the present invention, the "metering" is achieved by measuring the current of the voltage value Vs. The corresponding compensation curve, as shown in Figure lb, can be generated by the relationship between the wavelength and the wavelength change. The current I. corresponds to the compensation curve during a predetermined time period 'such as one hour, or when the display starts, the current is transmitted through the display, and the corresponding value Vs is applied to the display, and the current flowing through the display (4) is passed through - The ammeter measurement. The measured current is therefore compared to the initial current value 1 产生 produced by a particular voltage on the display. The current change ΔΙ can be obtained by: ΔΙ=|Ι- 〇| When ΔΙ is known, Δλ can be obtained simply via the correction factor stored in the search table. Therefore, an appropriate correction factor can be applied to the data (4) S of the signal processing device 11 before it is transmitted to the display. Color correction can be activated. > For the two specific examples above, it can correlate the voltage/current value with a previously measured same parameter value, rather than correlating the measured voltage/electrical value with an initial value. Here, an additional memory for storing the previously measured voltage/current values is required. This can also be performed on each screen. It is also possible to use voltage/current variations and materials that have no linear relationship between wavelengths. "In any case, in this case. A larger search table is required to provide correction coefficients for multiple varying wavelengths. This paper scale applies to the China® Family Standard (CNS) Α4 specification (210X 297 public) -15 1312978 V. Invention Description (η) Via the above method , can be accompanied by the surname t ^ j to maintain - correct the color balance in the display ί:: ΓΓ adjust the emission wavelength of the sub-pixel separately, and the overall color point of the pixel due to H This can be achieved by providing a display with a driver in accordance with the present invention, which includes means for determining::! The power/current variation of a transmitter and the frequency used to determine each transmission benefit. The change, and the (4) signal of the red, green, and blue emitters used to apply a correction parameter to the red, green, and blue emitters of the = pixel to correct the spectral variation of the fourth (the fourth) is not limited to the above specific example 'but All possible variations of the patent application are contemplated. The present invention has been described in connection with a display device, and specifically refers to a full color display device. In any case, please note that the present invention can be applied to other technical devices such as a black and white display. Device, non-graphic display or - organic luminescent diode for a backlight or other. Further, even if the above device is a polyLED device, the color correction method can be applied to other organic luminescent devices such as organic LED (OLED) devices. Note that the above predetermined voltages Vo and currents 10 may be different for different sub-pixels. In addition, it can drive a display device in the voltage measurement mode portion and partially in the current measurement mode. In summary, the present invention relates to a method for color correction in an organic luminescence device having V to a pixel, comprising a layer of luminescent material, the package being lost between the first and second electrodes. The pixel constitutes at least a first and a a second illuminating element, wherein the method comprises the steps of: inputting a data signal having information not displayed by the illuminating element, and generating a correction coefficient for each illuminating element at -16 - the paper size is suitable for the material (CNS) A4 size (10) x 297 public) 1312978 A7 B7 V. Invention description (14) - In the correction device, the correction factor is based on a color point wavelength change Δλ and the voltage of any light-emitting element at a specific current (Is) And a relationship between a current flowing through one of the light-emitting elements at a specific voltage (vs), and a correction coefficient applied to the data signal from the correction device. The invention also relates to a drive device for performing the above method. It should be noted that the above-described specific examples are not intended to limit the invention, and those skilled in the art can devise many alternative embodiments without departing from the scope of the invention. In the case of such patents, all reference signals do not constitute a limitation. The words "include" do not exclude the presentation of components or steps, and not only the applicants listed in (4). """ or ·, _" does not exclude multiple components before the component. The invention may be implemented by a computer containing several unique components and via a suitable stylized computer. The devices may also be hard-assembled by one or the same item. The specific measurement of the coefficients in the patents of different individual towels does not mean that the combinations of the measurements cannot be used in combination. -17-

Claims (1)

六、申請專利篇圏Sixth, apply for patents圏 (6R 6G),其中該方法包含下列步驟: -松I修正万沄,該裝置具有包含 )的至少一像素(6),該層是夾層於第— 3)間’該像素構成第一及第二發光元件 ⑴輪八—包含待由該發光元件(6R , 6G)顯示的資訊之 資料信號(S), ··)為母發光元件(6R’ 6G)產生一修正係數,該修 正係數藉由測量以下而取得: 在—預定電流(Is)流經該發光元件時橫跨一發光元件 (^ 期間的一電壓(V)變化及該發光元件之所測量的 電壓變化及一色彩點波長變化(Δλ)間之一關係,或 在一預定電壓(Vs)橫跨該發光元件期間流經一發光元 件(6R,6G)的一電流⑴變化及該發光元件(6R,6G)之所 測里的電流變化及一色彩點波長變化^人間之一關係, (111)將該修正係數施於該資料信號;及 (iv)將修正資料信號(s)施於發光元件(6r,6g)。 2·如申請專利範圍第1項之方法,其中該修正係數包含具 有一關於電壓施於一發光元件(611或6(}),或電流施於該 發光元件(6R或6G),及發光元件的波長變化奴間關係的 預先測量資訊的一搜尋表。 3.如申請專利範圍第1項之方法,另包含在預定時間週期 傳送具預定電流(Is)的發光元件(6R,6G)之一的步称, 測量發光元件(6R,6G)上電壓(V)於該預定電流(Is)傳 送過發光元件(6R,6G)時, 本纸張尺度適用t國國家標準(CNS) A4規格(210 X 297公釐) 1312978 申請專利範圍(6R 6G), wherein the method comprises the following steps: - loosening I, the device having at least one pixel (6), the layer being sandwiched between the third and third) 'the pixel constitutes the first and the first The second light-emitting element (1) wheel eight--a data signal (S) containing information to be displayed by the light-emitting element (6R, 6G), a correction coefficient is generated for the mother light-emitting element (6R'6G) by a correction coefficient The measurement is as follows: when a predetermined current (Is) flows through the light-emitting element, a voltage (V) changes across a light-emitting element (^) and a voltage change measured by the light-emitting element and a color point wavelength change ( a relationship between Δλ), or a current (1) change flowing through a light-emitting element (6R, 6G) during a predetermined voltage (Vs) across the light-emitting element, and a measurement of the light-emitting element (6R, 6G) Current change and one color point wavelength change ^ one relationship between humans, (111) applying the correction coefficient to the data signal; and (iv) applying the modified data signal (s) to the light-emitting element (6r, 6g). The method of claim 1, wherein the correction coefficient comprises A search table for pre-measuring information about a voltage applied to a light-emitting element (611 or 6(}), or a current applied to the light-emitting element (6R or 6G), and a wavelength-changing slave relationship of the light-emitting element. The method of claim 1, further comprising the step of transmitting one of the light-emitting elements (6R, 6G) having a predetermined current (Is) for a predetermined period of time, and measuring the voltage (V) of the light-emitting element (6R, 6G) When the predetermined current (Is) is transmitted through the light-emitting elements (6R, 6G), the paper size is applicable to the National Standard (CNS) A4 specification (210 X 297 mm). 1312978 Patent Application Range 计异该被測量的雷愿7ΤΓ 4 (V)和預定電流(Is)下預先電壓 (V〇)間的一電壓變化AV,及 輸出-以電壓變化AV為基礎對應發光元件(6r,6g)的 波長變化Δλ的一修正係數。 4·如申請專利範圍第3項之方法’其中發光元件(6r,⑹ 的波長變化Δλ計算為: Δλ =k -AV > 其中k疋修正係數及其中k是為每一發光元件(6R , 6G) 或每種型式發光元件預先儲存的。 5. 如申請專利圍第3項之方法,其中該預先電壓%是一 在製造裝置(1)時測量到橫跨發光元件(6R,6G)的一初始 電壓。 6. 如申請專利範圍第3項之方法,其中該預先電壓v〇是一 在驅動該裝置時測量到橫跨發光元件(6R,6G)的一電壓。 7. 如申請專利範圍第1項之方法,包含在預定時間期間傳 送具一預定電壓(Vs)的發光元件(6R,6G)的步驟, 測量發光元件(6R ’ 6G)上電流⑴於該預定電壓(\^)施 於發光元件(6R,6G)時, 计异該被測量的電流⑴和預定電流(Is)下預先電流間 的一電流變化ΔΙ,及 輪出一以電流變化△:[為基礎對應發光元件(6r,6G)的 波長變化Δλ的一修正係數。 8. 如申請專利範圍第7項之方法,其中發光元件(6R,6G) 的波長變化Δλ計算為: -2- 1312978 A B c D 、申請專利範固 =Κ ·Δ1 > 9. =—疋t正係數及其中k是為每一發光元件(6R,0G) 或母種型式發光元件預先儲存在修正裝置(1〇)的。 人申》月專利範圍第!項之方法,其中該冷光材料層⑺包 3 -多兀I旨發光材料,_有機發光材料,或—多元醋及 一有機發光材料的混合。 1〇.如申請專利範圍第W之方法,其中該係數係以每一發 光兀件(6R,6G)所輸出光為基礎提供該像素一實質恆定 整體彩色點。 ' 11 種用於—有機冷光裝置(1)的驅動裝置(7),包含 一夹層於第一和第二電極型態(2,3)間的一冷光材料 層(5) ’其中s亥型態界定至少一像素(6),包含至少一第一 及一第二發光元件(6R , 0G),該驅動裝置(7)則連接至電 極(2,3)及配置以將一電流⑴施於冷光材料以獲致來自 該材料的發光,該驅動裝置(7)包含: 一輸入連接(8),用以輪入一包含待由該發光元件(6R ’ 6G)顯示的資訊之資料信號(S), 一修正裝置(10),用以將一修正係數施於該資料信號 (s) ’遠修正係數則是基於一彩色點變化及將一電壓(v) 施於發光元件(6R ’ 6G)及一電流⑴流經發光元件(6R, 6G)之一内的一測量的變化間之一關係,及 一輸出裝置(9),用以輸出該彩色修正資料信號至發光 元件(6R,6G)。 本紙張尺度適用中國國家標準(CNS) A4规格(21〇x 297公釐)Depending on the voltage change AV between the measured voltage and the pre-voltage (V〇) of the predetermined current (Is), and the output - the light-emitting element (6r, 6g) based on the voltage change AV A correction factor for the wavelength change Δλ. 4. The method of claim 3, wherein the wavelength change Δλ of the light-emitting element (6r, (6) is calculated as: Δλ = k - AV > wherein k 疋 correction coefficient and k therein is for each illuminating element (6R, 6G) or each type of illuminating element pre-stored. 5. The method of claim 3, wherein the pre-voltage % is measured across the illuminating element (6R, 6G) when manufacturing the device (1) 6. The method of claim 3, wherein the pre-voltage v is a voltage that is measured across the light-emitting elements (6R, 6G) when the device is driven. The method of item 1, comprising the step of transmitting a light-emitting element (6R, 6G) having a predetermined voltage (Vs) during a predetermined time period, measuring a current (1) on the light-emitting element (6R '6G) at the predetermined voltage (\^) In the case of the light-emitting element (6R, 6G), a current change (Δ) between the measured current (1) and the predetermined current (Is) and a current change ΔΙ between the current and the current change Δ: [based on the light-emitting element ( A correction system for the wavelength change Δλ of 6r, 6G) 8. The method of claim 7, wherein the wavelength change Δλ of the light-emitting element (6R, 6G) is calculated as: -2- 1312978 AB c D , the patent application formula = Κ · Δ1 > 9. =- The positive coefficient of 疋t and its medium k are pre-stored in the correction device (1〇) for each of the light-emitting elements (6R, 0G) or the parent type of light-emitting elements. The method of the invention is the method of The material layer (7) comprises a mixture of 3 - 兀 I luminescent materials, _ organic luminescent materials, or - a mixture of poly vinegar and an organic luminescent material. 1. The method of claim W, wherein the coefficient is for each luminescence The light output from the element (6R, 6G) provides a substantially constant overall color point of the pixel. '11 kinds of driving devices (7) for the organic luminescent device (1), including a sandwich on the first and the a layer of luminescent material (5) between two electrode types (2, 3), wherein at least one pixel (6) defines at least one first and a second light-emitting element (6R, 0G), The driving device (7) is connected to the electrodes (2, 3) and configured to apply a current (1) to the cold light a material for obtaining illumination from the material, the driving device (7) comprising: an input connection (8) for wheeling a data signal (S) containing information to be displayed by the light-emitting element (6R '6G), a correction device (10) for applying a correction coefficient to the data signal (s). The far correction coefficient is based on a color point change and applying a voltage (v) to the light-emitting element (6R '6G) and The current (1) flows through a relationship between a measured change in one of the light-emitting elements (6R, 6G), and an output device (9) for outputting the color corrected data signal to the light-emitting elements (6R, 6G). This paper scale applies to the Chinese National Standard (CNS) A4 specification (21〇x 297 mm)
TW91119380A 2002-08-27 2002-08-27 Method and drive means for color correction in an organic electroluminescent device TWI312978B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91119380A TWI312978B (en) 2002-08-27 2002-08-27 Method and drive means for color correction in an organic electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91119380A TWI312978B (en) 2002-08-27 2002-08-27 Method and drive means for color correction in an organic electroluminescent device

Publications (1)

Publication Number Publication Date
TWI312978B true TWI312978B (en) 2009-08-01

Family

ID=45072695

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91119380A TWI312978B (en) 2002-08-27 2002-08-27 Method and drive means for color correction in an organic electroluminescent device

Country Status (1)

Country Link
TW (1) TWI312978B (en)

Similar Documents

Publication Publication Date Title
TW498567B (en) Light-emitting devices
TW586331B (en) Light-emitting devices
TW556137B (en) Energy sensing light emitting diode display
JP3469764B2 (en) Organic electroluminescence device
KR100887168B1 (en) Method and drive means for color correction in an organic electroluminescent device
TWI497165B (en) Light source module and display apparatus having the same
TWI234757B (en) Active-drive type light emitting display device and drive control method thereof
US8994056B2 (en) LED-based large area display
JP5535628B2 (en) Electroluminescent device with variable color point
CN102379002A (en) Light sensing in display device
US20150054815A1 (en) Driving method of organic el display device and organic el display device
CN103348401A (en) Electroluminescent device aging compensation with multilevel drive
TW201007686A (en) Display device, display method, and electronic device
US20160155376A1 (en) Method of performing a multi-time programmable (mtp) operation and organic light-emitting diode (oled) display employing the same
TW200415563A (en) Display with variable duty cycle
US20210398479A1 (en) Light emitting diode package and display apparatus including the same
CN109979966A (en) Organic LED display device
TWI312978B (en) Method and drive means for color correction in an organic electroluminescent device
JP2007207833A (en) Light-emitting diode light source
JP2007121988A (en) Display method, display device, and electronic apparatus
CN110323357B (en) Organic light emitting diode, display panel and display device
CN101346020B (en) Display apparatus and imaging system using the same
Wacyk et al. Ultra-high resolution and high-brightness AMOLED
Ghosh et al. Recent advances in small molecule OLED-on-silicon microdisplays
KR20070080649A (en) Light generating unit and display apparatus having the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees