TWI311758B - A novel capping structure for enhancing dr/r of the mtj device - Google Patents

A novel capping structure for enhancing dr/r of the mtj device Download PDF

Info

Publication number
TWI311758B
TWI311758B TW094119318A TW94119318A TWI311758B TW I311758 B TWI311758 B TW I311758B TW 094119318 A TW094119318 A TW 094119318A TW 94119318 A TW94119318 A TW 94119318A TW I311758 B TWI311758 B TW I311758B
Authority
TW
Taiwan
Prior art keywords
layer
thickness
mtj
angstroms
substrate
Prior art date
Application number
TW094119318A
Other languages
Chinese (zh)
Inventor
T Horng Cheng
Tong Ru-Ying
Hong Liubo
Li Min
Original Assignee
Headway Technologies Inc
Applied Spintronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Headway Technologies Inc, Applied Spintronics Inc filed Critical Headway Technologies Inc
Priority to TW094119318A priority Critical patent/TWI311758B/en
Application granted granted Critical
Publication of TWI311758B publication Critical patent/TWI311758B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)

Description

修正本 1311758 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種高性能磁性穿隧接面(MTJ)元件及其製造方 法’特別是當減小磁致伸縮(magnetostriction)時,一磁阻(MR)增加 的覆蓋層。 【先前技術】 以矽CMOS和磁性穿隧接面(MTJ)技術之整合為基礎的磁阻式隨機 儲存記憶體(MRAM),係一主要的新興技術,且這技術在目前的半導體 記憶體如SRAM、DRAM、Flash等係相當的競爭。一 MRAM元件大體而 吕包括:在一平面上,有一排互相平行的第一導的線,以及在另一平 面上’方向與第一導線垂直的一排互相平行的第二導線,且一[】元 件疋夾在弟一導線和第二導線之間的每個交叉位置上。當第二導線係 位元線(bit line)時’則第一導線係字元線(word line),反之亦然。 就選擇第二導線係位元線(或字元線),則第一導線係字元線且係為一 底部電極,其係一分段的線。在一排第一導線下面,以及在作為讀寫 技術的MRAM陣列中’用來選擇特定MRAM記憶元(cell)的周邊電路之 下面,還有其他包含電晶體和二極體的元件。 參閱第一圖’係為一 MTJ元件1之構造,是依據穿隧式磁阻(TMR) 效應,係具有一多層膜結構,在此,兩個鐵磁層被一薄的非磁性介電 層分開。在一 MRAM元件中形成MTJ元件1在一底部電極2,如第一導 線’和一頂部電極9,如第二導線之間。一底部電極2有一種子層(see(jMODIFICATION 1311758 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a high performance magnetic tunneling junction (MTJ) component and a method of fabricating the same, particularly when magnetostriction is reduced. A magnetic reluctance (MR) increased overlay. [Prior Art] Magnetoresistive random access memory (MRAM) based on the integration of 矽CMOS and magnetic tunnel junction (MTJ) technology is a major emerging technology, and this technology is in current semiconductor memory such as SRAM, DRAM, Flash, etc. are quite competitive. An MRAM component generally includes: a row of first-conducting wires parallel to each other on a plane, and a row of second wires parallel to each other in a direction perpendicular to the first wire, and one [ The component is clamped at each of the intersections between the first wire and the second wire. When the second conductor is a bit line, then the first conductor is the word line and vice versa. To select the second conductor line bit line (or word line), the first line is the word line and is a bottom electrode which is a segmented line. There are other elements including transistors and diodes underneath a row of first conductors, and below the peripheral circuitry used to select a particular MRAM cell in an MRAM array as a read/write technique. Referring to the first figure, the structure of an MTJ element 1 is based on a tunneling magnetoresistance (TMR) effect, and has a multilayer film structure in which two ferromagnetic layers are thinned by a non-magnetic dielectric. The layers are separated. The MTJ element 1 is formed in an MRAM element between a bottom electrode 2, such as a first wire 'and a top electrode 9, such as a second wire. A bottom electrode 2 has a seed layer (see(j

layer)/導電層/覆蓋層結構,例如Ta/Cu/Ta或NiCr/Ru/Ta。在MTJ 元件1中,一般底層3是由一個或更多的種子層組成,這些種子層可 修正本 1311758Layer) / conductive layer / cover layer structure, such as Ta / Cu / Ta or NiCr / Ru / Ta. In the MTJ element 1, the general underlayer 3 is composed of one or more seed layers, which can be modified 1311758

以是NiCr或Ta/NiCr,係能用來促進平滑且致密的結晶體成長於MTJ 元件1上。再者,一反鐵磁固定層(AFM pinning layer)4是由如ptMn 或IrMn之材質所形成。有一鐵磁”固定”層(FMpinnedlayer)5在 反鐵磁固定層4上方,此鐵磁層5通常是由包含CoFe層的多層膜合成 物。一薄的穿隧障礙層6於鐵磁固定層5上方,此穿随障礙層6通常 包括一介電材料’例如AlOx,藉著先沉積一鋁層後再加以原位(in_situ)NiCr or Ta/NiCr can be used to promote smooth and dense crystal growth on the MTJ element 1. Further, an antiferromagnetic pinning layer 4 is formed of a material such as ptMn or IrMn. There is a ferromagnetic "fixed" layer (FMpinned layer) 5 above the antiferromagnetic pinned layer 4, which is typically a multilayer film composition comprising a CoFe layer. A thin tunneling barrier layer 6 is over the ferromagnetic pinned layer 5, which typically includes a dielectric material, such as AlOx, by depositing an aluminum layer and then in situ (in_situ)

氧化。形成在穿隧障礙層6上方係一鐵磁,,自由,,層(free layer)7, 其可以是另一種複合層,包含CoFe與NiFe兩者或其中之一。在多層 膜結構MTJ元件1頂端係一覆蓋層8。多層膜結構[】元件i有一所 謂底部自制(spin valve)_。此外,多層麟構m元件i可以 有一頂端自旋閥結構,其係形成一自由層於種子層上,且依序形成一 穿随障礙層,一固定層,一反鐵磁層,以及一覆蓋層。 固疋層5具有-固定在y方向的磁矩,藉著與磁化方向亦是y方 向之鄰接的反鐵磁層4交_合(e她_ eQupling)。自由層7之磁 矩可以是平行統平行_定層5 _矩。穿晴_ 6係相當的薄, 使得導電電子的量子穿隨機制建立—電流通過穿曝礙層 6。自由層7 的磁矩會隨外加磁場變化,在自由層7和固定層5之間,此磁矩的相 對方向決定穿《流和_面的電阻大小。在—垂直於多層膜結構 犯元件1的方向,從頂部電極9流到底部電極3,通過-感應電流10, 當自由層7和固糊的磁化方向平行(記為” Γ,)時是量測到-較小 的電阻,而自由層7和固㈣_化麵反平行⑽,,0,,)時是量 1311758 修正本 測到一較大的電阻。 在一讀取技術方面,藉著在一電流垂直平面結構化虹^肘 pe卬endicular to plane,CPP)上,通過一感應電流由頂部至底部流 經記憶元,偵測MTJ元件1的磁性狀態(電阻等級)的方式,讀取儲 存在-画域元(eeU)的資料。在—寫人技術方面,因為施加位元 線和字元線的電流於MTJ元件的上方或下層之兩交錯的導線上,藉著 產生外加磁場,改變自由層的磁性狀態至一適當的磁性狀態的方式, 寫入資料至MM!記憶元中。在某碰AM _造,頂部或底部的電極 參與讀與寫兩者的技術。 -高性能的ΜΠ元件是以具有高磁阻(MR)比率為其特徵,即麟 是為磁阻比率,R是謂元件最小的電阻值,dR是改變自由層磁性狀 態所觀察到的電_化值。要得到高雜瞬結果是·町條件實 現:(a)自由層的磁化和翻轉易於控制,⑹具有大的交換場(耐卿 field)且有良賴敎度牺定層,其魏易於控制,⑹穿随障礙層 的完整性。為了達職好轉礙特性,例如—特定的接面電阻X面積 (RA)值和-高崩潰鍾(Vb)值,藉由在反鐵層和固定層平滑且密集成 長,以擁有-無洞均勻的穿曝礙層是必要的。雜大約麵〇 hm _的一冋rA值’對於大面積而言是可以接受的但是對於較小 的面積,RA值應該相當地小(小於麵比心心。否則,電阻太大是 無法和連接於MTJ元件的電晶體之電阻相配。 對於自由層令人企盼的特性係包括低磁致伸縮和低橋頑力 修正本 1311758 (coeixivity)。為了要產生一高磁阻比率,在工業上的趨勢是使用高 自旋極化材料,例如CoFe的Fe原子,佔原子成份大於2〇%,或NiFe 的Fe原子,佔原子成份大於50%,或[(CoFe)tuBo.2]的Fe佔CoFe的原 子成份25%以上。在一鐵磁層中,較高的自旋極化通常與一高飽和磁 化(Ms)有關。一般而言,在高飽和磁化自由層,磁致伸縮(As)太大 對MRAM的應用並不適合。所以,在MRAM陣列中,一個改良過的 元件是必須的,其具有超過30%的一高磁阻比率和少於大約丨χ 1〇E 〇6 的一低As值。 參閱第二圖,具有一個頂端導體19的MRAM記憶元u,在底部導 體16上配置MTJ元件1。基板12係由一電晶體(圖中未示)所組成,此 電晶體係藉著-導電柱u與底部導體16連接。—字元線13位在MTJ 元件下面’且置於第-絕緣層15之中,此第一絕緣層15是在基板12 上,通常係由二個或更多的介電層所組成的_多層膜複合層,但為了 簡化圖示並沒有顯示。MTJ元件1藉由_覆蓋層18和頂端導體19(位 元線)接觸’且形成於底部導體16上_第二絕緣層17之間。從總體 透視圖(未顯7F此圖不)’在-陣列,形成複數個M17元件在複數列的 底部導體和複數行的頂端導體之間。 除了 MRAM的應用,彻能給予一非常低以值(小於5 〇hms_"m2) 的薄穿隨障礙層之MTJ元件,可作為在—磁讀取頭的磁阻感應器。參 閱第三圖,從-空氣軸承表面(ABS)的平面,顯示在基板21上,一 MR 讀取頭20的-部份⑽树23形缺係—底雜鮮⑸)的底部導 1311758 修正本 線22與係一上層防護罩(S2)的頂部導線30之間。MTJ元件23依序包 括一種子層24、一反鐵磁層25、一固定層26、一穿隧障礙層27、一 自由層28和一覆蓋層29於底部導線22上方,其組成和功能與先前在 MTJ元件1所提及的對應層膜類似。底部電線22有一 NiFe(〜2#m)/Ta 結構,而頂部導線30有一 Ru/Ta/NiFe(〜2/zm)結構。在本樣品,底部 導線22的NiFe層代表S1,而頂部導線30的NiFe層代表S2。一讀取 技術需要在Z方向,沿著ABS移動讀取頭為一記錄媒介,其產生一外 部磁場影響自由層的磁化方向。 在美國專利US6,127, 045,在MTJ元件的兩固定層和自由層之間, 放置一高自旋極化層(NkFew)於隧道障礙層附近,以增加磁阻比率。 形成一負的磁致伸縮(magnetostriction)層(NimiFei。)於鄰近的每一個 正的磁致伸縮層(Ni«Fe6〇),以消除正磁致伸縮係數。在美國專利 6674617,藉著形成一軟的磁性層,例如在鎳層上的附㈤⑽以抵消鎳 的硬度和減少自由層的矯頑力,在一正的磁致伸縮上,修 改由一負磁致伸縮層(Ni)所組成的複合自由層。 一般而言,覆蓋層之目的是保護在蝕刻過程和Q|p加工程序申, MTJ元件下面的層膜,以及提供作為一上層的位元線的電接觸。美國專 利US6, 266, 218描述一磁感應器,其非磁性覆蓋層包括Ta、Ru或Ta、 Ru的氧化物。在美國專利US6,_,638揭露—MTJ感應器,以及使用 厚度約40埃的一 Ta覆蓋層;然而在美國專利邶6, 657, 825,覆蓋層是 Ta或Rh其中之一。另外,在美國專利US6, 7〇3, 654,係為厚度為2〇〇 修正本 1311758 〜300埃的—ru或覆蓋層。 在美國專利US6, 624, 987,覆蓋層係作為保護層,可以是一多層膜 或者氧化物與/和鈦、釩、鉻、鈷、銅、辞、釔、锆、錕、鉬、鉻、釕、 把、銀、給、钽、鎢、銖、锇、銀、鉑、金、矽、鋁、錄之氮化物的 混合物。然而,Hayashi並沒有教授哪種元素效果比較好,或者在一多 層膜覆蓋結構’層膜的沉積順序應該要如何排列才能提供最佳的功 效。因此’對先進的MRAM技術而言,一改良過的覆蓋層以促使MTJ達 到一高磁阻比率且低;^值係需要的。 【發明内容】 ® 本發明之主要目的係在MTJ元件中,提供一自由層,其具有易於 控制地磁化和翻轉特性(swi tchi ng characteri st i cs)產生不具有紐結 (kink)或旋渦(vortex)的磁滯曲線。 本發明之另一目的是根據第一目的,在自由層上方,提供一覆蓋 層以提高MTJ元件的磁阻比率。 本發明之再一目的是根據前兩項目的,提供一磁致伸縮 (magnetostriction)低於 1 E-06.的 MTJ 元件。Oxidation. Formed above the tunneling barrier layer 6 is a ferromagnetic, free layer 7, which may be another composite layer comprising either or both of CoFe and NiFe. A cover layer 8 is attached to the top of the multilayer film structure MTJ element 1. The multilayer film structure [] element i has a spin valve _. In addition, the multi-layered m-e element i may have a top spin valve structure which forms a free layer on the seed layer and sequentially forms a barrier layer, a fixed layer, an antiferromagnetic layer, and a cover. Floor. The solid layer 5 has a magnetic moment fixed in the y direction, and is joined to the antiferromagnetic layer 4 which is adjacent to the magnetization direction in the y direction (e her_eQupling). The magnetic moment of the free layer 7 can be parallel parallel _ fixed layer 5 _ moment. The qing _ 6 series is quite thin, so that the quantum wear of the conductive electrons is established randomly - the current passes through the barrier layer 6 . The magnetic moment of the free layer 7 varies with the applied magnetic field. Between the free layer 7 and the fixed layer 5, the relative direction of the magnetic moment determines the magnitude of the resistance of the flow and the _ plane. In the direction perpendicular to the multilayer film structure, the element 1 flows, from the top electrode 9 to the bottom electrode 3, through the -induction current 10, when the free layer 7 and the solidification magnetization direction are parallel (denoted as "Γ") Measured - a smaller resistance, while the free layer 7 and the solid (four) _ plane are anti-parallel (10), 0,,) when the amount is 1311758. This correction measures a large resistance. In a reading technique, by means of In a current vertical plane structure, the electromagnetic current (resistance level) of the MTJ element 1 is read by an induced current flowing from the top to the bottom through the memory element. Data stored in the -e field (eeU). In the writing technique, because the current applied to the bit line and the word line is on the two interleaved wires above or below the MTJ element, by generating an applied magnetic field, The method of changing the magnetic state of the free layer to a proper magnetic state, writing data to the MM! memory element. In a certain touch, the top or bottom electrode participates in both reading and writing techniques. The germanium component is characterized by a high magnetic reluctance (MR) ratio. Lin is the magnetoresistance ratio, R is the minimum resistance value of the component, and dR is the electric_chemical value observed by changing the magnetic state of the free layer. To obtain a high noise result is the condition of the town: (a) the free layer Magnetization and flipping are easy to control, (6) have a large exchange field (resistant field) and have a good sacrificial layer, which is easy to control, and (6) wear the integrity of the barrier layer. In order to achieve good performance characteristics, for example - The specific junction resistance X area (RA) value and the -high collapse clock (Vb) value are necessary to have a uniform hole-free penetration layer by smoothing and densely growing in the anti-iron layer and the fixed layer. A rA value of 大约 〇 _ is acceptable for large areas but for smaller areas, the RA value should be quite small (less than the face than the heart. Otherwise, the resistance is too large to be connected to The resistance of the transistor of the MTJ component is matched. The desirable properties for the free layer include low magnetostriction and low bridge coercivity correction 1311758 (coeixivity). In order to generate a high magnetoresistance ratio, the industrial trend is Use a high spin polarization material, such as Fe for CoFe An atom, which accounts for more than 2% by atom of the atomic component, or a Fe atom of NiFe, which accounts for more than 50% of the atomic component, or Fe of [(CoFe)tuBo.2] accounts for more than 25% of the atomic component of CoFe. In a ferromagnetic layer, Higher spin polarization is usually associated with a high saturation magnetization (Ms). In general, in a high saturation magnetization free layer, magnetostriction (As) is too large for MRAM applications. Therefore, in MRAM arrays. A modified component is necessary which has a high magnetoresistance ratio of more than 30% and a low As value of less than about 〇 1 〇 E 〇 6. Referring to the second figure, an MRAM having a top conductor 19 The memory element u is provided with the MTJ element 1 on the bottom conductor 16. The substrate 12 is composed of a transistor (not shown) which is connected to the bottom conductor 16 via a conductive pillar u. - the word line 13 is below the MTJ element and is placed in the first insulating layer 15, which is on the substrate 12, usually composed of two or more dielectric layers. Multilayer film composite layer, but not shown for simplicity of illustration. The MTJ element 1 is contacted by the _ cover layer 18 and the top conductor 19 (bit line) and is formed between the bottom conductor 16 and the second insulating layer 17. From the overall perspective (not shown in this figure), a plurality of M17 elements are formed between the bottom conductor of the plurality of columns and the top conductor of the plurality of rows. In addition to the application of MRAM, it is possible to give a very low value (less than 5 〇hms_" m2) MTJ component of the thin barrier layer as a magnetoresistive sensor for the in-magnetic read head. Referring to the third figure, the plane of the air bearing surface (ABS) is shown on the substrate 21, and the bottom portion of the MR read head 20 is a portion of the bottom portion of the MR read head 20 (10). 22 is between the top wire 30 of an upper shield (S2). The MTJ element 23 sequentially includes a sub-layer 24, an antiferromagnetic layer 25, a fixed layer 26, a tunneling barrier layer 27, a free layer 28 and a cap layer 29 over the bottom wire 22, the composition and function of which The corresponding layer film previously mentioned in MTJ element 1 is similar. The bottom wire 22 has a NiFe (~2#m)/Ta structure, and the top wire 30 has a Ru/Ta/NiFe (~2/zm) structure. In this sample, the NiFe layer of the bottom wire 22 represents S1, and the NiFe layer of the top wire 30 represents S2. A read technique requires moving the read head along the ABS in the Z direction as a recording medium that produces an external magnetic field that affects the magnetization direction of the free layer. In U.S. Patent No. 6,127,045, a high spin polarization layer (NkFew) is placed between the two pinned layers and the free layer of the MTJ element to increase the magnetoresistance ratio. A negative magnetostriction layer (NimiFei.) is formed in each of the adjacent positive magnetostrictive layers (Ni «Fe6〇) to eliminate the positive magnetostriction coefficient. In U.S. Patent 6,746,617, by forming a soft magnetic layer, such as the attachment (5) (10) on the nickel layer, to counteract the hardness of the nickel and reduce the coercivity of the free layer, a positive magnetostriction is modified by a negative magnetic A composite free layer composed of a stretching layer (Ni). In general, the purpose of the cap layer is to protect the film under the MTJ component during the etching process and the Q|p process, as well as to provide electrical contact as a bit line of the upper layer. U.S. Patent No. 6,266,218 describes a magnetic sensor whose non-magnetic cover layer comprises an oxide of Ta, Ru or Ta, Ru. An MTJ inductor is disclosed in U.S. Patent No. 6, 638, and a Ta cover layer having a thickness of about 40 angstroms; however, in U.S. Patent No. 6,657,825, the cover layer is one of Ta or Rh. In addition, U.S. Patent No. 6,7,3,654 is a ru or cover layer having a thickness of 2 〇〇 and a modification of 1311758 to 300 angstroms. In U.S. Patent No. 6,624,987, the cover layer serves as a protective layer and may be a multilayer film or oxide and/or titanium, vanadium, chromium, cobalt, copper, rhodium, ruthenium, zirconium, hafnium, molybdenum, chromium, A mixture of niobium, tantalum, silver, niobium, tantalum, tungsten, niobium, tantalum, silver, platinum, gold, rhenium, aluminum, and nitrides. However, Hayashi does not teach which elements work better, or how the order of deposition of a film in a multi-layer film overlay structure should be arranged to provide the best performance. Therefore, for advanced MRAM technology, a modified overlay layer is used to cause the MTJ to reach a high magnetoresistance ratio and is low; SUMMARY OF THE INVENTION The primary object of the present invention is to provide a free layer in an MTJ element that has an easily controllable magnetization and flip characteristics (swi t ng characteri st i cs) that produces no kink or vortex ( Hysteresis curve of vortex). Another object of the present invention is to provide a cover layer over the free layer to increase the magnetoresistance ratio of the MTJ element in accordance with the first object. A further object of the present invention is to provide an MTJ component having a magnetostriction of less than 1 E-06.

• 本發明之又一目的是提供製造一高dR/R比率和低磁致伸縮的MTJ 元件的方法。 為達成上述目的,根據第一實施例,藉著提供一基板而MRAM結構 形成於此基板上。在基板上,形成一底部導體電極且可以為一 Ta/Cu/Ta/Ru的結構,其中,在MTJ元件尚未沈積前,藉著一濺鍍蝕刻 步驟形成-非_Ta覆蓋層,移除ru層。織,形成—多層膜結構 的MTJ兀件於底部電極上。在一實施例中,MTJ元件有一底部自旋閥 (spin valve)結構,其包括一種子層、反鐵磁層、合成反平行 11 修正本 1311758 固疋層f隨障礙層、自由層以及一覆蓋層依序形成。種子層係為 阶,而反鐵磁層係為MnPt。SyAp固定層有一 Ru輕合層(c〇叩_ layer)被夾在兩CoFe層之間。穿隨障礙層係使用一氧化A1⑽χ)層。 穿隨障礙層上面為-自由層’其係由驗組成,Fe約佔原子成份ΐ7· 5 〜20%。在MTJ元件的覆蓋層通常係一複合層,覆蓋層有一麟滿 結構’其在自由層上的一下層界面擴散(inter diffusi⑻障礙層係一 相當薄的Ru層,中間層是—氧氣吸收層,例如化,上層金屬層相對而 言係一厚的Ru層。所有在MTJ元件的層齡利用賴法(sputteHng) # 或離子束沈積(IBD)法形成。自由絲化方法⑽χ)完成M的氧化。通 吊的順序疋依照下列次序:定義側壁(sidewall)和MTj元件的頂部表 面’形成第一絕緣層於鄰近# MTJ耕側壁,以及在MTJ元件的頂部 表面形成一頂部導體電極(位元線)。 在第二實施例中,在一磁阻讀取頭,形成MTJ元件為一感應器。 底部防護罩,例如一則化層,係由Ta組成的一上層防護覆蓋層於 基板上。如同在第一實施例所述之MTJ元件是位於防護覆蓋層上。MTJ % 元件有一複合自由層,係由c〇Fe,其Fe約佔原子成份約1〇%,和NiFe, 其Fe約佔原子成份17. 5〜2〇%。在一方面,覆蓋層有一 Ru/Ta/Ru結 構。形成第一介電層於MTJ元件的兩邊,以將訂】元件和對自由層提 供縱向偏壓的一硬偏壓層。形成第二介電層於硬偏壓層上且和MTJ元 件之頂部表面共平面。係為上層防護罩的頂部電極係配置在ΜΠ元 件了員部表面與第二介電層的上面。 底下藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本 12 修正本 1311758 發明之目的、技術内容、特點及其所達成之功效。 【實施方式】 在-磁性穿隨接面(ΜΉ)多層膜結構,本發明係複合覆蓋 層,其能使所產生的元件有一高磁阻率和一低磁致伸縮,這些重要的 特質對於有小尺寸ΜΊ7的高密度元件係必要的。雖然雜隨機存取記 憶體(MRAM)和穿隨式磁阻⑽)讀取頭的應用敘述於此,但熟習該項技 術之人士也可崎本發明個在其仙MTj元件為基礎的技術上。經 參 *例子提供這些圖示,並非是要限制本發明的範圍。此外,這些圖示 未必是按照尺度大小畫’而各式元件_對大小與實際裝置對照可能 會有所差異。 根據本發_第-實施例’將揭露—麵結構。參閱第四圖,顯 示-部份完成的麵結構36,係包括一基板38,可以是石夕或其他用 於該技術的半導體基板,其係通常含有其他裝置,例如電晶體和二極 體。在基板38上,形成第一絕緣層39,其係由胤,石夕氧化合物或 • 類似的化合物所組成。例如,有一由銅所組成的第-導線係在該第- 絕緣層39中且與之共平面,而第一導線係一字元線撕丽^㈣, 用來在+y或-y方向導引電流的。然而,對於熟習該項技術之人士也許 將第-導線稱為數位線、資料線、列線或柱線。藉著一薄擴散障礙層, 字元線40四周與底部皆被包圍(圖中未示)。有一第二絕緣層幻,例如 AW或石夕氧化合物’形成於字元線4〇和第一絕緣層邪上面。位於第 二絕緣層41上面的-底部導體層45,係作為與基板洲上的一下層電 晶體連接。底部導體層45通常係與一絕緣層共平面(圖中未示)。底部 13 1311758 修正本 導體層45係為-複合層,包括-種子層42/導電層43/覆蓋層44的多 層膜結構。 可以知道MRAM結構36只是一 MRAM陣列的一部份,在一 MRAM陣 列中,形成複數個平行?元線於第-導電層+,而在一勝元件陣列 上面,形成複數個頂部導體電極,例如平行位元線於第二導電層中。 當第二導電層係平行的字元線’卿—導電層係平行的位元線。字元 線和位元線彼此是互相正交,利用一底部導體層將每一 MTJ元件和在 基板38上的一電晶體電路連接。在本實施例中,在每個字元線交又位 元線之位置,形成一 MTJ元件於一底部導體層與字元線之間。 例如,底部導體層45可以係-分段的線,其有一矩形形狀於χ、y 平面而有一厚度於z方向❶底部導體層45可以係一位元線,且正交於 一下層字元線40以及之後在MTJ元件上面的形成的另一字元線。在一 實施例中,底部導體層45可以是一 NiCr/Ru/Ta多層膜結構,其係有 一厚度大小約40〜60埃的NiCr種子層42位在第二絕緣層41上面。 戈者’種子層42也可以疋由厚度大小約40〜60埃的Ta組成。種子層 42的上面係一導電層43,其厚度大約是1〇〇〜2〇〇埃之間而最好係由 Ru組成。將美國專利6703654所提及的在此納入參考(此專利已讓渡給 Headway科技股份有限公司)’其他高熔點金屬,例如Ir和Rh,其結 晶顆粒小且有平滑的表面可用來作為導電層43。另外,導電層43也可 以用其他的金屬,例如Au或Cu。 覆蓋層44可以係一厚度大小30〜50埃的Ta層,且濺鍍儀刻後會 修正本 1311758 有一非晶形特徵。根據一實施例,利用濺鍍法(sputtering)或離子束 沈積法(IBD),依序將種子層42 ’導電層43,Ta覆蓋層44,以及一上 層Ru層(未顯示於圖示)沈積於第二絕緣層41上面。在Hea(jway專利 申請案HT03-22所提及的在此納入參考,藉著濺錢蚀刻法移除肋層和 在底部導體層45上一部份位於上層的Ta層,以產生一非晶形Ta覆蓋 層44,其係在之後形成的MTJ層,提供均勻且稠密的成長。 形成一 MTJ多層膜結構於底部導體層45上。可以知道MTJ多層膜 結構可用以製造底部導體層相同的方法來製作。舉例來說,底部導體 層45和MTJ多層膜結構可以在一 Anelva 7100系統形成,或類似有包 括超高真空直流磁控濺鍍腔和氧化腔的系統。該濺鍍沈積過程包括一 氬氣濺鍍氣,而每一個濺鍍腔都有複數個低壓放電陰極的靶 (target)。經過濺鍍沈積系統的單一抽氣以加強生產,底部導體層45 和上層的MTJ元件層可以形成。 在一較佳的實施例中,形成MTJ多層膜結構於底部導體層45的上 方,藉著依序形成一種子層’反鐵磁層(AFM layer),SyAP固定層(pinned layer),穿随障礙層,自由層’和一覆蓋層。該種子層46之厚度大約 為40〜60埃,而最好係為一厚度45埃的NiCr層且Cr約佔原子成份 的35%〜45%。然而,種子層46也可以用NiFe或NiFeCr取代NiCr。 因為種子層46成長於非晶形Ta覆蓋層44上方,所以一平滑且密集 〈111&gt;種子層產生。發明人之前就沈積一 NiCr種子層在非晶形Ta層 上,在Headway專利專請案HT03-22所提及的在此納入參考。一平滑 15 1311758 修正本 且稠进的種子層46,對於平滑且密集的成長於在之後形成的ΜΉ多層 膜結構中係很重要。 鐵磁層47最好疋由厚度大小約1〇〇 2〇〇埃的·七組成,而厚 〇埃又更好,雖然IrMn的厚度約5Q〜⑽埃,但還是可以接受。 在y方向,姐鐵磁層47磁化成一列。在一mtj層之沈積期間,例如 —反鐵磁層,施加—外部磁場,沿著某-方向影響磁化。Another object of the present invention is to provide a method of fabricating a high dR/R ratio and low magnetostrictive MTJ element. To achieve the above object, according to the first embodiment, an MRAM structure is formed on the substrate by providing a substrate. On the substrate, a bottom conductor electrode is formed and may be a Ta/Cu/Ta/Ru structure in which a non-Ta coating layer is formed by a sputtering etching step before the MTJ element has been deposited, and ru is removed. Floor. The MTJ element of the multilayer film structure is formed on the bottom electrode. In one embodiment, the MTJ component has a bottom spin valve structure including a sub-layer, an antiferromagnetic layer, a synthetic anti-parallel 11 modified 1311758 solid layer f with a barrier layer, a free layer, and a cover The layers are formed in sequence. The seed layer is order and the antiferromagnetic layer is MnPt. The SyAp pinned layer has a Ru light layer (c〇叩_ layer) sandwiched between the two CoFe layers. The wear-resistant barrier layer uses a layer of oxidized A1(10)χ. The upper layer of the barrier layer is a free layer, which consists of a test composition, and Fe accounts for about 7.5 to 20% of the atomic composition. The cover layer of the MTJ component is usually a composite layer, and the cover layer has a lining structure, which diffuses at the lower layer interface on the free layer (inter diffusi (8) barrier layer is a relatively thin Ru layer, and the middle layer is - oxygen absorbing layer, For example, the upper metal layer is relatively thick Ru layer. All layers in the MTJ element are formed by the sputteHng # or ion beam deposition (IBD) method. The free silking method (10) χ) completes the oxidation of M . The order of the hanging is in the following order: defining the side wall and the top surface of the MTj element 'forming a first insulating layer adjacent to the # MTJ ploughing sidewall, and forming a top conductor electrode (bit line) on the top surface of the MTJ element . In the second embodiment, in a magnetoresistive read head, the MTJ element is formed as an inductor. The bottom shield, such as a layer, is an upper protective cover layer of Ta on the substrate. The MTJ element as described in the first embodiment is located on the protective cover layer. 5〜2〇%。 The MTJ% component has a composite free layer, is composed of c〇Fe, the Fe is about 1% by atom of the atomic composition, and NiFe, and its Fe is about 17.5~2〇% of the atomic component. In one aspect, the cover layer has a Ru/Ta/Ru structure. A first dielectric layer is formed on both sides of the MTJ element to provide a resistive element and a hard bias layer that provides a longitudinal bias to the free layer. A second dielectric layer is formed over the hard bias layer and is coplanar with the top surface of the MTJ element. The top electrode system, which is the upper shield, is disposed on the surface of the member and the second dielectric layer. The purpose, technical content, features, and effects achieved by the present invention are more readily understood by the detailed description of the specific embodiments and the accompanying drawings. [Embodiment] In the magnetic permeation surface (ΜΉ) multilayer film structure, the present invention is a composite cover layer which enables the generated element to have a high magnetoresistance ratio and a low magnetostriction, and these important characteristics are High-density components of small size ΜΊ7 are necessary. Although the application of the head of the random access memory (MRAM) and the wear-through magnetoresistive (10) is described herein, those skilled in the art can also invent a technology based on its MTj component. . The illustrations are provided by way of example and are not intended to limit the scope of the invention. In addition, these illustrations are not necessarily drawn to scale and the various components _ pairs may differ from the actual device. The surface structure will be disclosed in accordance with the present invention. Referring to the fourth figure, the partially completed surface structure 36 is shown to include a substrate 38, which may be a ceramic substrate or other semiconductor substrate used in the art, which typically contains other devices, such as transistors and diodes. On the substrate 38, a first insulating layer 39 is formed which is composed of ruthenium, anthraquinone or a similar compound. For example, a first conductor composed of copper is in and coplanar with the first insulating layer 39, and the first conductor is a word line torn (^) for guiding in the +y or -y direction. Leading current. However, those familiar with the technology may refer to the first wire as a digit line, data line, column line, or bar. With a thin diffusion barrier layer, the word line 40 is surrounded by the bottom and the bottom (not shown). There is a second insulating layer illusion, such as AW or a sulphur compound, formed on the word line 4 〇 and the first insulating layer. The bottom conductor layer 45, which is located above the second insulating layer 41, is connected to the lower layer of the transistor on the substrate. The bottom conductor layer 45 is typically coplanar with an insulating layer (not shown). Bottom 13 1311758 The present conductor layer 45 is modified to be a composite layer comprising a multi-layer film structure of a seed layer 42 / a conductive layer 43 / a cover layer 44. It can be seen that the MRAM structure 36 is only a part of an MRAM array. In a MRAM array, a plurality of parallels are formed. The line is on the first conductive layer +, and above the array of winning elements, a plurality of top conductor electrodes are formed, such as parallel bit lines in the second conductive layer. When the second conductive layer is parallel, the word line is a parallel bit line. The word line and the bit line are mutually orthogonal to each other, and each MTJ element is connected to a transistor circuit on the substrate 38 by a bottom conductor layer. In this embodiment, an MTJ element is formed between a bottom conductor layer and a word line at the position where each word line intersects the bit line. For example, the bottom conductor layer 45 may be a line-segmented line having a rectangular shape in the χ, y plane and having a thickness in the z direction. The bottom conductor layer 45 may be a one-dimensional line and orthogonal to the lower layer of the word line. 40 and another word line formed later on the MTJ element. In one embodiment, the bottom conductor layer 45 may be a NiCr/Ru/Ta multilayer film structure having a NiCr seed layer 42 having a thickness of about 40 to 60 angstroms above the second insulating layer 41. The seed layer 42 can also be composed of Ta having a thickness of about 40 to 60 angstroms. The top of the seed layer 42 is a conductive layer 43 having a thickness of between about 1 Å and about 2 Å and preferably consisting of Ru. Reference is made to U.S. Patent No. 6,703,654, which is hereby incorporated by reference in its entirety assigned to the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all 43. Alternatively, the conductive layer 43 may be made of other metals such as Au or Cu. The cover layer 44 may be a Ta layer having a thickness of 30 to 50 angstroms, and the 1311758 has an amorphous feature after the sputtering process. According to an embodiment, the seed layer 42' conductive layer 43, the Ta cap layer 44, and an upper Ru layer (not shown) are sequentially deposited by sputtering or ion beam deposition (IBD). On the second insulating layer 41. In the reference to Hea (jway patent application HT03-22), the rib layer and a portion of the upper layer of Ta on the bottom conductor layer 45 are removed by a splash etch to produce an amorphous shape. The Ta cap layer 44, which is formed after the MTJ layer, provides uniform and dense growth. An MTJ multilayer film structure is formed on the bottom conductor layer 45. It is known that the MTJ multilayer film structure can be used in the same manner as the bottom conductor layer. For example, the bottom conductor layer 45 and the MTJ multilayer film structure can be formed in an Anelva 7100 system, or a system including an ultra-high vacuum DC magnetron sputtering chamber and an oxidation chamber. The sputtering deposition process includes an argon. Gas splatter gas, and each sputtering chamber has a plurality of low-pressure discharge cathode targets. A single pumping of the sputter deposition system enhances production, and the bottom conductor layer 45 and the upper MTJ component layer can be formed. In a preferred embodiment, an MTJ multilayer film structure is formed over the bottom conductor layer 45, by sequentially forming a sub-layer 'AFM layer', a SyAP pinned layer, and wearing barrier The barrier layer, the free layer' and a cover layer. The seed layer 46 has a thickness of about 40 to 60 angstroms, and is preferably a NiCr layer having a thickness of 45 angstroms and Cr accounts for about 35% to 45% of the atomic component. The seed layer 46 may also be substituted with NiFe or NiFeCr for NiCr. Since the seed layer 46 grows above the amorphous Ta cap layer 44, a smooth and dense <111> seed layer is produced. The inventors previously deposited a NiCr seed layer in the non- On the crystalline Ta layer, reference is made to the Headway patent application HT03-22, which is hereby incorporated by reference. A smoothing 15 1311758 modified and thickened seed layer 46 for a smooth and dense growth of the multilayer formed later The structure of the film is very important. The ferromagnetic layer 47 is preferably composed of a thickness of about 1 〇〇 2 〇〇 的, and thick 〇 is better, although the thickness of IrMn is about 5Q 〜 (10) angstroms, but still It is acceptable. In the y direction, the sister ferromagnetic layer 47 is magnetized into a column. During the deposition of an mtj layer, for example, an antiferromagnetic layer, an external magnetic field is applied to influence the magnetization along a certain direction.

SyAP固疋層48有-AP2/Ru/Api結構。在反鐵磁層47上形成 2層最好係由c〇Fe組成,其Fe大約佔原子成份的1〇%,且厚度鲁 約2〇 30埃,而厚度為23埃又更好。Ap2層的磁矩是固定的且反平行 於API的磁矩方向。在Ap2和Αρι層之間細微的厚度差異,使娜固 疋層48沿著y軸產生一小的淨磁矩。藉著一耗合層促進在該Ap2層和 該API層之間乂換麵合,此搞合層最好是由厚度大小約7 5埃此層組 成,雖然亦可以用Rh或ir代替Ru。在一實施例中,在Ru輕合層上, 口亥API層是由c〇Fe組成,其Fe原子佔化合物成份的25%〜50%,且 厚度約15〜25埃,而厚度為20埃又更好。另外,AP1層可以是一複合_ 層,其包含一薄的奈米氧化層(N〇l),例如夾在c〇Fe層之間的FeTa〇 或CoFeO。奈米氧化層是用來增加在Αρι層上的平滑度。The SyAP solid layer 48 has an -AP2/Ru/Api structure. The two layers formed on the antiferromagnetic layer 47 are preferably composed of c〇Fe, which has about 1% by atom of the atomic component and a thickness of about 2 Å to 30 Å, and a thickness of 23 Å or more. The magnetic moment of the Ap2 layer is fixed and anti-parallel to the direction of the magnetic moment of the API. The slight difference in thickness between the Ap2 and Αρι layers causes the nanosolid layer 48 to produce a small net magnetic moment along the y-axis. By consuming a layer to facilitate the exchange of face between the layer of Ap2 and the layer of API, the layer is preferably composed of a layer having a thickness of about 75 angstroms, although it is also possible to use Ru or ir instead of Ru. In one embodiment, on the Ru light-bonding layer, the mouth-opening API layer is composed of c〇Fe, the Fe atom accounts for 25% to 50% of the compound component, and has a thickness of about 15 to 25 angstroms and a thickness of 20 angstroms. Better. Alternatively, the AP1 layer can be a composite layer comprising a thin nano oxide layer (N〇l), such as FeTa〇 or CoFeO sandwiched between c〇Fe layers. The nano oxide layer is used to increase the smoothness on the Αρι layer.

SyAP固定層48上面為一薄的穿隧障礙層49,其最好係一氧化的 A1層,且氧的成份接近一 AhO3的化學計量,則此後係稱作為一 Α1〇χ 層。起初,沈積一厚度約8〜10埃的Α1層於SyAP層48上方,接著被 原位自由基氧化(R0X)氧化。在已經納入參考的相關的專利申請按 16 修正本 1311758 _-〇22,敘述一自由基氧化過程,係包括一電漿氧化過程,係在一 氧化腔内,放置-格子狀的蓋子於—上方離子化電極與—基板(ai層) 之間。所產生的AlOx層係厚度約U〜15埃,而最好是用14埃。因為 在Ta覆蓋層44上方有平滑且密集的種子層46,反鐵磁層47,以及SyAP 固定層48,所以穿隧障礙層49才有良好的平滑度和均勻度。 本發明的一重要特徵疋在该穿隨障礙層49上方,形成自由層, 係用-自旋極化減適巾的自旋極化材娜成,這是驗熟悉該項技 術者所了解。一 CoFe合金,其Fe佔原子成份大於2〇%,一 NiFe合金, 其Fe佔原子成份大於50%,或-[(c〇Fe⑻合金,Fe佔c〇Fe化合物 中之原子成份至少25%,這些皆定義係為一高自旋極化材料。更一般 的疋義,尚自旋極化材料係具有一磁化飽和(此)值,其等於或大於 别面提及過的合金,-自旋極化程度適中的自旋極化材料係定義為具 有的Ms值要小於前面提及過的合金。 —自旋極化程度適中的自旋極化材料有助於減小在MTJ元件的磁 致伸縮Us)。例如’-NiFe層,其Fe約佔原子成份的17 5%〜2〇 / ’而最好係為17. 5% ’也被稱作NiFe(17. 5%),有益於被自由層50 利用。在此例,NiFe層厚度約在3〇〜6〇埃且最好是4〇埃。沿著y方Above the SyAP pinned layer 48 is a thin tunneling barrier layer 49, which is preferably an oxidized A1 layer, and the oxygen composition is close to the stoichiometry of an AhO3, which is hereinafter referred to as a layer of Α1〇χ. Initially, a layer of ruthenium having a thickness of about 8 to 10 angstroms is deposited over the SyAP layer 48 and then oxidized by in situ free radical oxidation (ROX). The related patent application, which has been incorporated by reference, is hereby incorporated by reference in its entirety by reference to the entire disclosure of the disclosure of the disclosure of the disclosure of the entire disclosure of the entire disclosure of Between the ionization electrode and the substrate (ai layer). The resulting AlOx layer is about U~15 angstroms thick, and preferably 14 angstroms. Since there is a smooth and dense seed layer 46, an antiferromagnetic layer 47, and a SyAP pinned layer 48 above the Ta cap layer 44, the tunneling barrier layer 49 has good smoothness and uniformity. An important feature of the present invention is that a free layer is formed over the wear barrier layer 49, using a spin-polarized material of a spin-polarized relief towel, as is known to those skilled in the art. a CoFe alloy, the Fe content of which is greater than 2% by atom, a NiFe alloy, the Fe content of which is greater than 50%, or -[(c〇Fe(8) alloy, Fe accounts for at least 25% of the atomic component of the c〇Fe compound, These are all defined as a high spin-polarized material. More generally, the spin-polarized material has a magnetization saturation (this) value equal to or greater than the alloy mentioned elsewhere, - spin polarization A moderately moderately spin-polarized material is defined as having an Ms value that is less than the alloys mentioned above. - A spin-polarized material of moderate spin polarization helps to reduce the magnetostrictive Us in the MTJ element. ). For example, the '-NiFe layer, which has about 17% to 2〇/' of the atomic component, and preferably 17.5% is also called NiFe (17.5%), which is beneficial to be utilized by the free layer 50. . In this case, the NiFe layer has a thickness of about 3 〇 6 6 Å and preferably 4 Å. Along the y side

向(固定層的方向),自由層5〇磁化排成一列。當由頂端觀看時,MTJ 元件疋橢圓狀(參閱第六圖)’其易軸(easy axis)係沿著長軸(y方 向)。 本發明之另—重要特徵是覆蓋層51,其係為—複合層形成在自由 17 1311758 修正本 層50上方。覆蓋層51有一 Ru/Ta/Ru結構’其在自由層5〇上方,形 成-:層金顧,其厚度約1G〜3G埃的Ru,而厚度係2g猶為更佳。 在覆盍層51中,下層金屬層提供一界面擴散障礙於腸自由層如和 中間金屬層之間。此外’在自由層5G,下層金屬層厚度可以隨著進一 步地減少磁致伸縮而作調整。成長在下層Ru層上的中間的金屬層,最 好是-低電阻的1態Ta層,且厚度在2〇~5〇埃,而厚度係3〇埃為 更佳。中間金屬層上面是-上層金屬層,其最好是一厚度·〜咖埃 的Ru層,而厚度係21〇埃為更好。之前,發明人製造有一標準覆蓋層鲁 的MTJ元件,且覆蓋層是由一厚度25〇埃的一單一 Ru層所組成。 可以知道有-厚的上層金屬層係必要的,因為之後的離子束侧 (圆過程係形成MTJ元件的繼,以及鄰近於mtj元件之絕緣層平面 化(Planarization),導致MTJ元件的頂部表面的紐。在上層金屬層 中’-個細微的厚度減小’將會造成之後形成的位元線和自由層之 間在距離上的小影響。因為在自由層上的位元線電流所產生的磁場強 度大小’係與覆蓋層厚度非常有關,所以操控此變數的能力轉變成在_ 自由層切換磁場的改良控制。此外,一上層厚Ru層係確保與上方的位 元線良好的接觸。要注意的是,在複合覆蓋層51中,上層金屬層和下 層金屬層最好是此,因為Ru是低電阻導體,且在回火時 難起氧化作用。 本發明人發現根據第一實施例,對於覆蓋層51而言,Ru/Ta/Ru結 構提ί、個之月沒有人實現過的高磁阻比率和低入§值的結合。例如, 18 修正本 1311758 田Ru/Ta/Ru覆蓋層51和之前提及的—職自由層結合時,在所產生 的元件將看Μ低磁致伸縮。此機制係產生高磁阻比率的原因係 關於經由複合«層51中_ Ta層,在自由㈣做氧氣。氧氣在 職合金以及過渡金屬例如Ru之中係很活潑的且有一強烈傾向要擴 散出去與鄰近的Ta層反應。藉著使用—覆蓋層,下層的 自由層就tb較^謂氧氣的污染且有較高的導電率。巾間仏層吸收非 常少量的氧氣’導致覆蓋層51的導電率十分微小的損失。 與先則技術比較,本發明之另—優點係為所產生的MTJ元件,具 有一改良的轉換特徵(switching characteristics)。可以觀察到有一 NiFe(7· 5%)自由層的MTJ元件之R—H轉換(磁滯)曲線,係沒有扭結 Gunks)和渦流(vortex)。帶有一高自旋極化自由層wMTj元件產生 有扭結的R-H曲線(圖中未示),此扭結係來自於渦流或強烈地與町】 兀件形狀和在自φ層的飽和魏有敝紫/拖《(d⑽_㈣ pinning/dragging)。盡置要注意自由層的轉換(switching),一自旋 極化程度適中的自旋極化層,例如最好係一 NiFe(17_5%)層,因為NiFe 層與易控制的磁化和對於MRAM應用之重要轉換特徵皆有關係。 或者,覆蓋層51由一 Ta/Ru複合層組成,係為一厚度約1〇〜3〇 埃的Ta層形成於自由層5〇上方,以及一厚度15〇〜25〇埃的Ru層形 成於Ta層上方。可是,這個構造是較朌/化/肋複合層差 ,因為界面 擴散障礙層被移除’以及Ta擴散到NiFe自由層導致一渦流狀的結構。 本發明人也已發現利用Ta/Ru覆蓋層結構,MTJ元件的I從600mV增 19 修正本 1311758 加到80〇mV。因此,在MTJ偏壓條件(一般係4〇〇mV),dR/R比較高。 : 在全部的MTJ層被沈積之後,本發明也完成一回火的步驟。例如, 當沿著y軸施加一外部磁場,反鐵磁材料層可以被回火。 在全部的MTJ層被沈積之後’藉著在覆蓋層51上,先鍍膜以及圖 樣寬度W的光阻層52 ’以製造一有側壁和頂部表面的勝元件。接 著,在- IBE過程移除MTJ多層膜結構之46—5卜其係為沒有被該侧 光罩保護到,光阻層52作為一蚀刻光罩。因此,形成一有傾斜侧壁的 MTJ元件’且此側壁有一寬度w的覆蓋層51和一寬度大於^種子層仙。修 參閱第五圖’光阻層52藉著-習知的方法移除,此方法是包括一 溼式剝除(wet stripper)或一氧氣灰化(〇xygen ashing)過程。實施一 心準的清理步驟是在去除步驟之後,確保财的有機前物被移除。 然後’按照-習知的方法,其係包括沈積—適當介電常數的絕緣材料, 接著將第二絕緣層53平面化以和腦元件的頂部表面5la共平面,則 第二絕緣層53形成於該底部電極45上方且鄰近於MTJ元件的側壁。 下個步驟是在製錄祖Μ記,It元40,形成-獅導體(位糖似_ 在第三絕緣層53上面’其係與ΜΉ元件的頂部表面51a接觸。位元線 54以正交於子元線4〇的方向排成一列而位元線%可以包括由一層 _上所組成。例如,藉著-擴散障礙層,-頂部導體層如Cu,Au, 或A1可以被四周和底部所包圍,此為熟悉該項技術者所知道。在實施 中位元線54疋用來承載在+χ和-X方向的電流,而字元線4〇沿著 有縱白方向。富底部導體層45係為有一矩形狀的一分段的線時, 20 修正本 1311758 一較長的邊在y方向形成而一較短的邊在x方向形成。根據著名的右 手定則,在一寫入技術期間,一電流流經該位元線54會產生一第一磁 場於自由層的易轴(easy axis)方向,而在字元線40的電流產生一第 二磁場於難軸(hard axis)方向。改變流動方向與位元線電流和字元線 電流的大小,使在一特定方向自由層70的磁化排成一列。 參考第六圖’顯示一 MRAM陣列的俯視圖,其係包括四個MRAM記 憶元(cell)、四個MTJ元件、兩個字元線40和兩個位元線54。為了簡 化圖式’沒有顯示底部導電層45。字元線40有一寬度b,而位元線54 有一寬度V。字元線54與第四絕緣層58共平面且亦被第四絕緣層58 分開’第四絕緣層58可以與第一、第二、第三絕緣層39、41、53含 有相同的介電材料。在一較佳的實施例中,MTJ元件的頂部表面51a與 之中的每一個層膜46-51,係有一沿著長軸(y方向)長度為一沿著 短軸(y方向)寬度為a的橢圓狀。不過,本發明也有做圓形或矩形的 MTJ形狀。一位元線54的寬度v可以大於長度w,而一字元線40的寬 度b可以大於一 MTJ元件的寬度a。 根據第一實施例,引導一個實驗決定一 MTJ元件的實現,其中, MTJ元件形成在一 MRAM記憶元中’ 一底部導體層45和位元線54之間。 下列表1提供背景資料,係顯示一 NiFe(17. 5%)自由層與由高自旋極化 材料組成的自由層作比較之結果。由表1可得到是在抓】元件用一習 知的Ru覆蓋層的結果。實際的Mtj結構係To the (fixed layer direction), the free layer 5 turns magnetized into a column. When viewed from the top, the MTJ element is elliptical (see Figure 6) and its easy axis is along the long axis (y direction). Another important feature of the present invention is the cover layer 51, which is formed as a composite layer over the free layer 17 1311758. The cover layer 51 has a Ru/Ta/Ru structure' which is above the free layer 5, forming a layer of Ru, which has a thickness of about 1 G to 3 G, and a thickness of 2 g. In the cover layer 51, the underlying metal layer provides an interface diffusion barrier between the intestinal free layer such as the intermediate metal layer. Further, in the free layer 5G, the thickness of the underlying metal layer can be adjusted as the magnetostriction is further reduced. The intermediate metal layer grown on the lower Ru layer is preferably a low-resistance 1-state Ta layer having a thickness of 2 〇 to 5 Å and a thickness of 3 Å. The upper metal layer is an upper metal layer, which is preferably a Ru layer having a thickness of ~ ga, and a thickness of 21 angstroms is more preferable. Previously, the inventors fabricated an MTJ component having a standard overcoat layer, and the cap layer was composed of a single Ru layer having a thickness of 25 Å. It is known that a thick-upper layer of the upper metal layer is necessary because the subsequent ion beam side (the circular process forms the continuation of the MTJ element and the planarization of the insulating layer adjacent to the mtj element, resulting in the top surface of the MTJ element). The '-a slight thickness reduction' in the upper metal layer will cause a small influence on the distance between the bit line and the free layer formed later. Because of the bit line current generated on the free layer The magnitude of the magnetic field strength is very much related to the thickness of the cover layer, so the ability to manipulate this variable translates into improved control of the switching magnetic field in the _ free layer. In addition, an upper layer of Ru layer ensures good contact with the upper bit line. Note that in the composite cover layer 51, the upper metal layer and the lower metal layer are preferably this because Ru is a low-resistance conductor and is difficult to oxidize upon tempering. The inventors have found that according to the first embodiment, For the cover layer 51, the Ru/Ta/Ru structure improves the combination of the high magnetoresistance ratio and the low value of the § value that has not been realized in a month. For example, 18 Rev. 1311758 Field Ru/Ta/Ru Cover Layer 51 and When the previously mentioned free layer is combined, the resulting components will look low magnetically. This mechanism is responsible for the high magnetoresistance ratio. The reason for the high magnetoresistance ratio is related to the _Ta layer via the composite «layer 51, in the free (four) Oxygen. Oxygen in-service alloys and transition metals such as Ru are very active and have a strong tendency to diffuse out to react with adjacent Ta layers. By using a cover layer, the lower free layer is more polluted by oxygen than tb. It has a higher conductivity. The ruthenium layer absorbs a very small amount of oxygen', resulting in a very small loss of conductivity of the cover layer 51. Compared with the prior art, another advantage of the present invention is that the MTJ element produced has A modified switching characteristic can be observed for the R-H conversion (hysteresis) curve of the MTJ element with a NiFe (7.5 5%) free layer, without kinking the Gunks and vortex. A high-torque polarization free layer wMTj element produces a kinked RH curve (not shown), which is derived from eddy currents or strongly with the 】 】 兀 和 和 和 和 和 和 和 和 和 和 / "(d(10)_(4) pinning/dragging). Attention should be paid to the switching of the free layer, a spin-polarized layer with a moderate degree of spin polarization, such as a NiFe (17_5%) layer, because of the NiFe layer and easy-to-control magnetization and for MRAM applications. The important conversion characteristics are all related. Alternatively, the cap layer 51 is composed of a Ta/Ru composite layer, a Ta layer having a thickness of about 1 〇 3 Å is formed over the free layer 5 ,, and a Ru layer having a thickness of 15 〇 25 Å is formed. Above the Ta layer. However, this configuration is inferior to the 朌/chemical/ribbed composite layer because the interface diffusion barrier layer is removed&apos; and Ta diffuses to the NiFe free layer resulting in a vortex-like structure. The present inventors have also found that with the Ta/Ru cap layer structure, the I of the MTJ element is increased from 600 mV to 19, and the 1311758 is added to 80 〇 mV. Therefore, in the MTJ bias condition (generally 4 〇〇 mV), dR/R is relatively high. : The present invention also completes a tempering step after all of the MTJ layers have been deposited. For example, when an external magnetic field is applied along the y-axis, the antiferromagnetic material layer can be tempered. After all of the MTJ layers have been deposited, a photoresist layer having a sidewall and a top surface is fabricated by first coating a photoresist layer 52' on the cover layer 51 with a pattern width W. Next, the -4BE process removes the MTJ multilayer film structure 46-5 which is not protected by the side mask, and the photoresist layer 52 acts as an etch mask. Thus, an MTJ element having a slanted side wall is formed and this side wall has a cover layer 51 of width w and a width greater than that of the seed layer. Referring to the fifth diagram, the photoresist layer 52 is removed by a conventional method which includes a wet stripper or an oxyxy ashing process. The implementation of a clean-up step is to ensure that the organic precursors are removed after the removal step. Then, 'in accordance with the conventional method, which includes depositing an insulating material of a suitable dielectric constant, and then planarizing the second insulating layer 53 to be coplanar with the top surface 5la of the brain element, the second insulating layer 53 is formed on The bottom electrode 45 is above and adjacent to the sidewall of the MTJ element. The next step is to record the ancestral sac, It 40, forming a lion conductor (bit sugar _ above the third insulating layer 53) which is in contact with the top surface 51a of the ΜΉ element. The bit line 54 is orthogonal The rows of the sub-line 4 排 are arranged in a row and the bit line % may be composed of a layer _. For example, by the diffusion barrier layer, the top conductor layer such as Cu, Au, or A1 may be surrounded by the bottom and the bottom. Surrounded by this, it is known to those skilled in the art that in the implementation the bit line 54 is used to carry the current in the +χ and -X directions, while the word line 4 is along the direction of the white direction. When the layer 45 is a segmented line having a rectangular shape, 20 corrections 1311758 a longer side is formed in the y direction and a shorter side is formed in the x direction. According to the famous right hand rule, in a writing technique During this period, a current flowing through the bit line 54 produces a first magnetic field in the easy axis direction of the free layer, and a current in the word line 40 produces a second magnetic field in the hard axis direction. Changing the flow direction with the bit line current and the word line current to make the free layer 70 in a particular direction Referring to the sixth figure, a top view of an MRAM array is shown, which includes four MRAM cells, four MTJ elements, two word lines 40, and two bit lines 54. The figure ' does not show the bottom conductive layer 45. The word line 40 has a width b, and the bit line 54 has a width V. The word line 54 is coplanar with the fourth insulating layer 58 and is also separated by the fourth insulating layer 58. The four insulating layers 58 may comprise the same dielectric material as the first, second, and third insulating layers 39, 41, 53. In a preferred embodiment, the top surface 51a of the MTJ element and each of the layers The film 46-51 has an elliptical shape along the major axis (y direction) having a width a along the minor axis (y direction). However, the present invention also has a circular or rectangular MTJ shape. The width v of the line 54 may be greater than the length w, and the width b of the word line 40 may be greater than the width a of an MTJ element. According to the first embodiment, an experiment is guided to determine the implementation of an MTJ element, wherein the MTJ element is formed An MRAM memory cell is between a bottom conductor layer 45 and a bit line 54. Table 1 below For background information, the results show that a NiFe (17.5%) free layer is compared with a free layer composed of a high spin-polarized material. It can be seen from Table 1 that a component is covered with a conventional Ru coating. The result is the actual Mtj structure

Ta/NiCr40/MnPtl00/CoFe(10%)23/Ru/CoFe(25%)20/A110-R0X/自由層 21 1311758 修正本 /Ru250。表1的結果指出’當利用一高自旋極化材料如NiFe(6〇幻為一 自由層以增加在MTJ s件的dR/R日夺,-令人不快的高磁致伸縮值產 生。另一方面,對於自旋極化程度適中的自旋極化自由層,例如 NiFe(17.5%),其dR/R不夠大,無法滿足一高性能MTJ元件之dR/R 大於30%。要注意的是,對於在高密度MRAM[J車列中的一自由層而言, Λ s遠大於1. 0E-6是無法接受的。範圍在—丨.〇E—7和+1· 〇E_7之間的入 s值表示自由層疋非磁阻(non_magnet〇restrictive)的,其㈠表示一 擠壓應力(compressive stress)而⑴表示一拉伸應力(tensi le stress) ° 表1 不同自由層的MTJ之磁性性質 自由層 廪度(埃) dWR (%) RA (ohm-um2) Lambda (s) NiFe(17.5%) 40 25-28 3500-4000 -2.7E-7 CoFe(25%) 40 50-55 3500-4000 +5.0E-6 [CoFe(25%)]〇.8B〇.2 40 50-55 4000-5000 +9.44E-6 NiFe(60%) 40 45-50 3500-4000 +1.97E-5 NiFe(60%)/NiFe(l 7.5%) 5/40 35% 3500-4000 +4.08E-6 NiFe(70%)/NiFe(l 7.5%) 5/40 38% 3500-4000 +6.23E-6 為了要證明這項改良是根據本發明製造—MTJ元件所實現的,在Ta/NiCr40/MnPtl00/CoFe(10%)23/Ru/CoFe(25%)20/A110-R0X/free layer 21 1311758 Revision /Ru250. The results in Table 1 indicate that 'when using a high spin-polarized material such as NiFe (6 〇 is a free layer to increase the dR/R annihilation in the MTJ s piece, - an unpleasant high magnetostriction value is produced. Another On the other hand, for spin-polarized free layers with moderate spin polarization, such as NiFe (17.5%), the dR/R is not large enough to satisfy the dR/R of a high-performance MTJ component greater than 30%. For a free layer in a high-density MRAM [J train, Λ s is much larger than 1. 0E-6 is unacceptable. The range is between -丨.〇E-7 and +1·〇E_7 The value of s represents the free layer non non-magnet 〇restrictive, (1) represents a compressive stress and (1) represents a tensile stress (tensi le stress) ° Table 1 Magnetic properties of MTJ of different free layers Properties free layer mobility (Angstrom) dWR (%) RA (ohm-um2) Lambda (s) NiFe (17.5%) 40 25-28 3500-4000 -2.7E-7 CoFe (25%) 40 50-55 3500- 4000 +5.0E-6 [CoFe(25%)]〇.8B〇.2 40 50-55 4000-5000 +9.44E-6 NiFe(60%) 40 45-50 3500-4000 +1.97E-5 NiFe( 60%)/NiFe(l 7.5%) 5/40 35% 3500-4000 +4.08E-6 NiFe(70%)/NiFe(l 7.5%) 5/40 38% 3500-4000 +6.23E-6 In order to demonstrate that this improvement is achieved in accordance with the invention of the MTJ component,

MRAM陣列的MTJ多層膜結構是形成於一 Anelva7100滅鏟系統。在 每個樣本中,形成AlOx穿隧障礙層是藉著按照之前提及的,先沈積一 厚度10埃的鋁鑛膜,其係在自由基氧化(r〇x)過程被原位氧化。準備 所有的樣本都是先沈積一底部導電層,其係由Ta/Ru/Ta/Rum組成, 然後在濺鍍蝕刻以提供一非晶形Ta覆蓋層。 在每一個範例中,MTJ元件有一多層膜結構,其係依序沈積一 NiCr 22 修正本 -1311758 種子層(45埃),一 MnPt反鐵磁層(150埃),一包括CoFe(10%Fe)AP2 層(23 埃)/Ru 耦合層(7. 5 埃)/CoFe(25%Fe)APl(20 埃)結構的 SyAP 固 定層,一 AlOx穿隧障礙層,一 NiFe(40)自由層,以及一覆蓋層。表格 2為各種不同的覆蓋層結構。 表2 不同覆蓋層的MTJ之磁性性質 覆蓋層 鋁的厚度 dR/R (%) Bs RA (ohm-um2 ) Lambda (Xs) Ru250 10 28.1 0.61 4500 -1.90E-7 Rul0/Ta30/Ru210 10 38.2 0.61 3320 -2.70E-7 Ru30/Ta30/Ru210 10 40.1 0.6 3695 -1.01E-6 Ta30/Ru210 10 39.1 0.47 3680 +4.54E-6 Ru 10/Ta30/Ru210 9 39.5 0.60-0.61 1376 如表2所示’參考有一習知Ru覆蓋層的MTJ元件,其RA和dR/R 值分別是4500 ohm-//m2和28.1%。當使用一 Ru/Ta/Ru覆蓋層或一 Ta/Ru 覆蓋層’ dR/R比率分別增加到大於38%和39%。要注意到Ru/Ta/Ru和 Ta/Ru覆蓋層結構與習知的Ru覆蓋層比較,RA值是減少的。在Ta/Ru 的樣本中,自由層的Bs從〇· 6〇減少至〇. 47,這係表示在NiFe自由層 和Ta層之間’有一相當大的界面擴散(inter_diffusi〇n)發生,以及 一由Ta和NiFe組成的合金產生。此外,當加蓋一 Ta/Ru複合層時, 自由層的磁致伸縮係高的。根據本發明…Ru/Ta/Ru覆蓋層係提供最 佳的同dR/R ’低RA,低入3的組合。而且,h可以藉著調整之前提 及過的下層Ru層之厚度而作更改。因此,可以製造—個優於先前技術 23 1311758 修正本 的高效能MTJ元件。 在表2中,顯示當在R〇x之前,藉著減少M層的厚度從1〇埃到9 、乂維持—㊉dR/R,RA就可錢—步的被減少。為熟知該技術者所知 、的疋’ 一介電穿随障礙層⑽加Μ係一穿随障礙層⑷)厚度的指 數函數。 虽對於非常高密度的瞻陣列需要—低ra值時,沈積—薄Μ層。例 如對於- A110-ROX穿随障礙層,可看到一 4〇〇〇 〇hm—_2階級的, 而只又用-更薄的穿_礙層’例如A18—隨才能達到__ 2⑼。⑹―卵2 階級的RA。 在第七圖所示的第二實施例中,顯示一遞讀取頭6〇,其係有一 MTJ το件形成在一抵部防護罩(S1)62和一上層防護&amp;咖5之間。形 成一複合覆蓋層於-自旋極化程度適中的自旋極化層上,例如在腿 疋件的_ NlFe〇7. 5%)自由層,以提升册心匕率和提供可接受的磁致 伸縮。 提供-基板62,其係可以在搬讀取頭6Q中,為—由職㈣ 的底部防護罩62,這是熟習該項技術者所了解。形成—防護覆蓋層① 在底部防鮮62上面,储衫前提及過的綠,包括鱗地沈積一 厚度5〇〜8〇埃的Ta層和-厚度20〜3〇埃的Ru層在底部防護罩62 2 面。之後,藉著一濺舰刻過程移除_和部份下層的&amp;層,以充 成#晶_ Ta層作输髓蓋層64。蓋層%有―3q〜5〇埃的 厚度’且被用來在之後形成㈣】元件,促進層膜平滑且密集的成長。 24 1311758 修正本 或者’覆盍層64可以係由-複合層組成,其底部層作為底部防護罩犯 的-覆蓋層,且也提高在後來形成騎膜之平滑且密_成長,此為 熟悉該項技術所知道。例如’對於—S1防護罩,—覆朗可以係非曰 形(C〇75Fe25)tuB().2。 現在,-MTJ多層膜結構形成在防護覆蓋層64上方,係可以採與 製成防護覆蓋層的相随造方法來沈積。雜造通常是——Μ 7100系統或類她括超高真空濺度腔和氧化腔的纽,以及能夠在一 單一抽氣(pump down)步驟之後,形成在[;元件上所有的層臈。 在-實施例中,沈積-MTJ多層結構於覆蓋層64上面,依序形成 -種子層66,反鐵磁層67,SyAP固定層68,穿隧障礙層69,自由層 70 ’以及一覆蓋層71。種子層66可以是一 NiCr層,其係與在第一實 施例中的種子層46具有相同厚度和組成。同樣地,反鐵磁層们,&amp;Αρ 固定層68 ’穿隧障礙層69,也分別與第一實施例中所提及的反鐵磁層 47,SyAP固定層48,穿隧障礙層9有相同的組成。可是,在TMR讀寫 頭60,起初沈積的A1層大約厚度5. 5〜6埃,接著被一自然氧化過程 (N0X)所氧化以形成穿隧障礙層69。 本發明一重要的特徵是形成在穿隧障礙層69上方的自由層7〇,係 由一自旋極化程度適中的自旋極化材料組成,如第一實施例所提及的 NiFe(17.5%)。一自旋極化程度適中的自旋極化材料有助於減少在虹】 元件的磁致伸縮(As)。自由層7〇係一具有c〇Fe/NiFe結構的一複合 層,CoFe合金之Fe佔原子成份1〇%的Fe,以及其厚度為5~10埃而係 25 修正本 1311758 10埃為較好。NiFe層係佔原子成份17%〜2〇的Fe,以及其厚度為3〇 〜40埃。在沈積過程中,自由層7〇可以沿著χ方向磁化。 本發明又-重要特徵係形成在自由層7Q上方的覆蓋層71為一複 合層。 另一方面’複合層71有一 Ru/Ta/Ru結構,其係在自由層7〇上方 形成-下層金屬層,係為厚度大約1〇〜3〇埃的Ru層,而最好是2〇埃。 在覆蓋層71’此下層低金顧作為在,自由層和巾間金屬層之間的 -界面擴散障礙。此外,該下層金屬層的厚度可以隨著進一步減少在籲 自由層70中的磁致伸縮而作調整。中間的金屬層最好是一厚度2〇〜讪 埃的α態Ta層’而厚度係3Q埃則更好,α態&amp;層係作為_氧氣吸收 層以移除在自由層70的氧氣化層的上面是—上層金屬層,其係最好 是厚度為100〜200埃的Ru材料’且厚度15〇埃為較好。因為之後的 -離子綠_程形成MU元件的側壁,故—厚的上層金屬層是必要 的。在複合覆蓋層中’ Ru通常為為複合覆蓋射的上層金屬和下層金 屬這疋因為Ru具有良好的導電率,可作為一好的界面擴散層 ’和形· 成-光滑表面’以優化和下層的頂部導線的電接觸,此頂端導線是徹 讀取頭的上層防護罩(S2)75。 本發明發現,根據第二實施例,對於覆蓋層71而言,提 供-之前沒人達到的高雜比率和低λ s值。例如,當Ru鬚u覆蓋 曰與之讀及過的一自由層7〇結合時,在所產生的腿元件會觀 察到低磁致伸縮。覆蓋層71可以是由一純複合層組成,其係一厚 26 修正本 .1311758 度大約30〜50埃的一 Ta層形成於自由層70的上方,以及一厚度大約 100〜200埃的一 ru層形成於Ta層的上方。可是,這個結構是較差的, 因為沒有包括界面擴散層。The MTJ multilayer film structure of the MRAM array is formed in an Anelva 7100 shovel system. In each sample, the AlOx tunneling barrier layer was formed by depositing an aluminum ore film having a thickness of 10 angstroms, which was oxidized in situ during the radical oxidation (r〇x) process, as previously mentioned. Preparation All samples were first deposited with a bottom conductive layer consisting of Ta/Ru/Ta/Rum and then sputter etched to provide an amorphous Ta cap layer. In each of the examples, the MTJ component has a multilayer film structure in which a NiCr 22 modified Ben-1311758 seed layer (45 angstroms), a MnPt antiferromagnetic layer (150 angstroms), and a CoFe (10% Fe) are sequentially deposited. ) AP2 layer (23 Å) / Ru coupling layer (7.5 angstroms) / CoFe (25% Fe) APl (20 angstroms) structure of SyAP fixed layer, an AlOx tunneling barrier layer, a NiFe (40) free layer, And a cover layer. Table 2 shows a variety of different overlay structures. Table 2 Magnetic Properties of MTJ with Different Overlays Thickness of Cover Layer Aluminum dR/R (%) Bs RA (ohm-um2) Lambda (Xs) Ru250 10 28.1 0.61 4500 -1.90E-7 Rul0/Ta30/Ru210 10 38.2 0.61 3320 -2.70E-7 Ru30/Ta30/Ru210 10 40.1 0.6 3695 -1.01E-6 Ta30/Ru210 10 39.1 0.47 3680 +4.54E-6 Ru 10/Ta30/Ru210 9 39.5 0.60-0.61 1376 As shown in Table 2 Referring to an MTJ component having a conventional Ru cap layer, the RA and dR/R values are 4500 ohm-//m2 and 28.1%, respectively. When a Ru/Ta/Ru cladding layer or a Ta/Ru cladding layer is used, the dR/R ratio is increased to more than 38% and 39%, respectively. It is to be noted that the Ru/Ta/Ru and Ta/Ru overlay layers are reduced in RA values compared to the conventional Ru overlay. In the sample of Ta/Ru, the Bs of the free layer is reduced from 〇·6〇 to 〇.47, which means that there is a considerable interfacial diffusion (inter_diffusi〇n) between the NiFe free layer and the Ta layer, and An alloy consisting of Ta and NiFe is produced. Further, when a Ta/Ru composite layer is applied, the magnetostriction of the free layer is high. According to the invention, the Ru/Ta/Ru coating layer provides the best combination of the same dR/R 'low RA and low 3. Moreover, h can be changed by adjusting the thickness of the underlying Ru layer previously mentioned. Therefore, it is possible to manufacture a high performance MTJ component that is superior to the prior art 23 1311758 revision. In Table 2, it is shown that by reducing the thickness of the M layer from 1 〇 to 9 and 十 maintaining -10 dR/R before R 〇 x, the RA can be reduced. For the well-known person skilled in the art, the function of the index of the thickness of the barrier layer (10) is increased with the barrier layer (10). Although it is required for very high-density arrays - when the low ra value is deposited, the thin layer is deposited. For example, for the -A110-ROX wear barrier layer, you can see a 4 〇〇〇 〇 hm - 2 class, and only use a thinner wear layer - such as A18 - to reach __ 2 (9). (6) - Egg 2 class RA. In the second embodiment shown in the seventh figure, a hand read head 6 is shown which is formed with an MTJ τ member formed between an abutment cover (S1) 62 and an upper layer protection &amp; coffee 5. Forming a composite overlayer on a spin-polarized layer of moderate spin polarization, such as the _NlFe〇7. 5%) free layer of the leg member, to enhance the heart rate and provide acceptable magnetic properties Telescopic. A substrate 62 is provided, which may be in the transfer head 6Q, which is the bottom shield 62 of the (4), as is known to those skilled in the art. Forming - protective covering layer 1 on the bottom of the anti-fresh 62, the premise of the storage shirt and the green, including the scale depositing a thickness of 5 〇 8 8 angstroms of Ta and the thickness of the Ru layer of thickness 20 ~ 3 〇 at the bottom protection Cover 62 2 faces. Thereafter, the _ and a portion of the lower layer &amp; layer are removed by a splashing process to fill the #晶_ Ta layer as the transfer cap layer 64. The cap layer % has a thickness of "3q to 5 angstroms" and is used to form a (four) element later to promote smooth and dense growth of the film. 24 1311758 The revision or the 'cover layer 64 can be composed of a composite layer, the bottom layer of which acts as a bottom cover--cover layer, and also improves the smoothness and denseness of the film formation later, which is familiar to the Known by the technology. For example, 'for the S1 shield, the cover can be non-曰 (C〇75Fe25)tuB().2. Now, the -MTJ multilayer film structure is formed over the protective cover layer 64 and can be deposited by a conventional method of forming a protective cover layer. Miscellaneous is usually - the 7100 system or the type of ultra-high vacuum splash chamber and oxidation chamber, and can be formed on [; all layers on the component after a single pump down step. In an embodiment, a deposition-MTJ multilayer structure is overlying the cap layer 64, sequentially forming a seed layer 66, an antiferromagnetic layer 67, a SyAP pinned layer 68, a tunneling barrier layer 69, a free layer 70', and a cap layer. 71. The seed layer 66 may be a NiCr layer having the same thickness and composition as the seed layer 46 in the first embodiment. Similarly, the antiferromagnetic layer, &amp; Αρ fixed layer 68' tunneling barrier layer 69, also with the antiferromagnetic layer 47, the SyAP pinned layer 48, and the tunneling barrier layer 9 respectively mentioned in the first embodiment. Have the same composition. However, in the TMR read/write head 60, the initially deposited A1 layer has a thickness of about 5. 5 to 6 angstroms, which is then oxidized by a natural oxidation process (N0X) to form a tunneling barrier layer 69. An important feature of the present invention is that the free layer 7〇 formed over the tunneling barrier layer 69 is composed of a spin-polarized material of moderate spin polarization, such as NiFe as mentioned in the first embodiment (17.5). %). A spin-polarized material with a moderate degree of spin polarization helps to reduce the magnetostriction (As) of the element in the rainbow. The free layer 7 is a composite layer having a c〇Fe/NiFe structure, Fe of the CoFe alloy accounts for 1% of Fe of the atomic component, and the thickness thereof is 5 to 10 angstroms, and the system 25 is modified to be 1311758 10 angstroms. . The NiFe layer accounts for 17% to 2 Å of Fe of the atomic component, and has a thickness of 3 Å to 40 Å. During the deposition process, the free layer 7〇 can be magnetized in the x direction. A further important feature of the present invention is that the cover layer 71 formed over the free layer 7Q is a composite layer. On the other hand, the composite layer 71 has a Ru/Ta/Ru structure which is formed over the free layer 7〇-the lower metal layer, which is a Ru layer having a thickness of about 1 〇 3 Å, and preferably 2 Å. . In the cover layer 71', the lower layer serves as an interface diffusion barrier between the free layer and the inter-sheet metal layer. Moreover, the thickness of the underlying metal layer can be adjusted as the magnetostriction in the free layer 70 is further reduced. The intermediate metal layer is preferably an alpha-state Ta layer having a thickness of 2 Å to 讪 Å and a thickness of 3 Å is more preferable, and the α-state & amp layer is used as an _ oxygen absorbing layer to remove oxygenation at the free layer 70. The upper layer of the layer is an upper metal layer, preferably a Ru material having a thickness of 100 to 200 angstroms and a thickness of 15 angstroms. Since the subsequent -ion green_process forms the sidewall of the MU element, a thick upper metal layer is necessary. In the composite coating layer, 'Ru is usually the upper layer metal and the lower layer metal which are coated by the composite layer. Because Ru has good conductivity, it can be used as a good interface diffusion layer 'and shape-smooth surface' to optimize and lower layer. The electrical contact of the top wire is the upper shield (S2) 75 of the read head. The present inventors have found that, according to the second embodiment, for the cover layer 71, a high impurity ratio and a low λ s value which were not previously achieved are provided. For example, when the Ru must be covered with a free layer 7 读 that has been read, a low magnetostriction is observed in the resulting leg member. The cover layer 71 may be composed of a pure composite layer, which is a thick layer of 26. The thickness of the layer of 1311758 degrees is about 30 to 50 angstroms. A layer of Ta is formed above the free layer 70, and a ru having a thickness of about 100 to 200 angstroms. A layer is formed over the Ta layer. However, this structure is poor because it does not include an interface diffusion layer.

沈積所有的MTJ層之後’本發明也包含一個或更多個回火步驟。 例如’當沿著y軸施加一外部磁場,則反鐵磁層可以被回火。在一 TMR 讀寫頭中’藉著沿著X軸施加一較小的外部磁場,則自由層可以被回 火。 Φ 所有的層被沈積之後,藉著形成一離地的光阻圖案(未顯示於 圖中)於頂部表面71a上,接著,離子束餘刻選擇性地移除部份沒有被 光阻罩保護到的MTJ多層結構66-7卜以製造一 MTJ元件。因此,形 成一 MTJ元件,其係典型地有傾斜的側壁,種子層66的寬度大於覆蓋 層71的的寬度,且頂部表面7ia的寬度決定軌道寬度。例如,在離子 束蝕刻過程之後,藉著在MTJ元件的側壁上和防護覆蓋層64上,用一 化學氣相沉積(GVD)或物理氣相沉積法(PVD),沉積—厚度議〜15〇埃, 瞻韻2〇3所組成的介電層。接著,依序沉積一具有TiW/c〇CrPt/Ta結構(未 顯不於圖中)的-硬偏壓層73和第二舰介電層74於第一介電層乃 上。硬偏壓層73有-大約·〜埃的厚度,而該第二介電層%有 200〜250埃的厚度。藉著—f知方法移除頂部表面仏,提高光阻層 彳上方的層膜72 74。要&gt;主意頂部表面71a最好是與相鄰的第二介電層 74/、平φ可以利用—化學機械研磨(⑽)步驟平面化第二介電層。然 後,形成-上層防護罩75在頂部表面仏以及第二介電層?4上面, 27 修正本 1311758 則完成了 TMR讀取頭60。 第二項實施例的優點與在第一實施例的所實現過的優點相同。在 第二實施例的TMR讀取頭中,MTJ元件完成dR/R大於2〇%,且磁致伸 縮大約低於1. 0E-6。因此,藉著利用於此提及過的MTJ多層結構上之 複σ種子層,用一咼dR/R,低ra與低磁致伸縮的獨一組合實現一高 效能TMR讀取頭。 以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在 使熟習此項技藝之人士能夠瞭解本發明之内容並據以實施,當不能以 之限定本發明之專纖圍,即大凡依本發撕揭示之精神所作之均等 變化或修飾,仍應涵蓋在本發明之專利範圍内。 【圖式簡單說明】 第-圖為-習知MTJ元件的截面剖視圖,其中MTJ元件係位於在_ 結構中,一底部電極與一頂部的電極之間。 第二圖為習知之MRAM結構的截面剖視圖,其中MTJ元件係位於麵 結構中底部_電姉—上綠元線之間,而字元線餘於在底 部導體下面的一絕緣層中。 第三圖為習知之ΜΊ7元件的截面剖視圖,MTJ元件係位於兩上下防護 層之間,作為TMR讀寫頭的感應器。 第四圖為本發明一實施例之部份麵結構的截面剖視圖,係顯示具 有自由層和覆蓋層的㈣元件位於匪結構之間,以及底部導體和 子元線的上面。 第五圖為第四圖移去光阻罩、形成絕緣層於MTJ元件兩旁以及形成 一位凡線於ΜΊ7元件上方表面之後的麵結構之截面剖視圖。 28 修正本 .1311758 第六圖為本發明之MRAM陣列的俯視圖,在MRAM陣列中,排橢圓形狀 的MTJ元件是置於位元線和字元線之間。 第七圖為本發明第二實施例之TMR讀取頭的截面示意圖,MTJ元件係 位於TMR之中,形成一 MTJ元件在上層防護層和下層防護層之間,且 被藉著一絕緣層與一硬偏壓層隔離。 【主要元件符號說明】 1磁性穿隧接面(MTJ) 3底層 Φ 5鐵磁固定層 7鐵磁自由層 9頂部電極 11MRAM記憶元 13字元線 15絕緣層 17絕緣層 • 19導電層 21基板 23磁性穿隧接面(MTJ) 25反鐵磁層 27穿隧障礙層 29覆蓋層 36MRAM結構 39第一絕緣層 2底部電極 4反鐵磁固定層 6穿隧障礙層 8覆蓋層 10感應電流 12基板 14螺栓 16導體 18覆蓋層 20 MR讀取頭 22底部導線 24種子層 26固定層 28自由層 30頂部導線 38基板 40字元線 29 1311758 修正本 41第二絕緣層 43導電層 45底部導體層 47反鐵磁層 49穿隧障礙層 51覆蓋層 52光阻層 54位元線 60 TMR讀取頭 64防護覆蓋層 67反鐵磁層 69穿隧障礙層 71覆蓋層 72第一介電層 74第二介電層 a橢圓的短軸 42種子層 44覆蓋層 46種子層 48 SyAP固定層 50自由層 51a頂部表面 53第三絕緣層 58第四絕緣層 · 62底部防護罩(S1) 66種子層 68 SyAP固定層 70自由層 71a頂部表面 73硬偏壓層 75上層防護罩(S2) · b字元線的寬度 v位元線的寬度 w糖圓的長軸 W覆蓋層的寬度 30After depositing all of the MTJ layers, the present invention also includes one or more tempering steps. For example, when an external magnetic field is applied along the y-axis, the antiferromagnetic layer can be tempered. In a TMR read/write head, the free layer can be tempered by applying a small external magnetic field along the X-axis. Φ After all the layers are deposited, a photoresist pattern (not shown) is formed on the top surface 71a, and then the ion beam remains selectively removed without being protected by the photoresist mask. The resulting MTJ multilayer structure 66-7 is used to fabricate an MTJ component. Thus, an MTJ component is formed which typically has sloped sidewalls, the width of the seed layer 66 is greater than the width of the cover layer 71, and the width of the top surface 7ia determines the track width. For example, after the ion beam etching process, by chemical vapor deposition (GVD) or physical vapor deposition (PVD) on the sidewalls of the MTJ element and the protective cover layer 64, deposition - thickness is discussed. A, a dielectric layer composed of 2, 3. Next, a hard bias layer 73 and a second dielectric layer 74 having a TiW/c〇CrPt/Ta structure (not shown) are sequentially deposited on the first dielectric layer. The hard bias layer 73 has a thickness of about -about angstroms, and the second dielectric layer has a thickness of 200 to 250 angstroms. The top surface 仏 is removed by a method to increase the film 72 74 above the photoresist layer. It is preferred that the top surface 71a of the present invention is planarized with the adjacent second dielectric layer 74/, φ. The second dielectric layer can be planarized by a chemical mechanical polishing ((10)) step. Then, the upper-layer shield 75 is formed on the top surface and the second dielectric layer? 4 Above, 27 Revision 1311758 The TMR read head 60 is completed. The advantages of the second embodiment are the same as those achieved in the first embodiment. In the TMR read head of the second embodiment, the MTJ element has a dR/R of more than 2%, and the magnetically stretched is less than about 1. 0E-6. Thus, by utilizing the complex sigma seed layer on the MTJ multilayer structure mentioned herein, a high performance TMR read head is realized with a unique combination of dR/R, low ra and low magnetostriction. The embodiments described above are merely illustrative of the technical spirit and characteristics of the present invention, and the purpose of the present invention is to enable those skilled in the art to understand the contents of the present invention and to implement them. Equivalent changes or modifications made by the spirit of this disclosure are still to be covered by the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a cross-sectional view of a conventional MTJ element in which the MTJ element is located in the _ structure, between a bottom electrode and a top electrode. The second figure is a cross-sectional view of a conventional MRAM structure in which the MTJ elements are located between the bottom-electrode-upper green line in the surface structure and the word lines are left in an insulating layer below the bottom conductor. The third figure is a cross-sectional view of a conventional ΜΊ7 element, which is located between the two upper and lower protective layers as a sensor for the TMR head. The fourth figure is a cross-sectional view of a partial surface structure of an embodiment of the present invention showing that the (four) elements having the free layer and the cover layer are located between the tantalum structures and the top of the bottom conductor and the sub-member lines. The fifth figure is a cross-sectional view of the fourth embodiment in which the photoresist mask is removed, the insulating layer is formed on both sides of the MTJ element, and the surface structure is formed after the upper surface of the ΜΊ7 element is formed. 28 Amendment. 1311758 Figure 6 is a top view of the MRAM array of the present invention in which an elliptical shaped MTJ element is placed between a bit line and a word line. 7 is a schematic cross-sectional view of a TMR read head according to a second embodiment of the present invention. The MTJ component is located in the TMR to form an MTJ component between the upper protective layer and the lower protective layer, and is insulated by an insulating layer. A hard bias layer is isolated. [Main component symbol description] 1 Magnetic tunneling junction (MTJ) 3 bottom layer Φ 5 ferromagnetic fixed layer 7 ferromagnetic free layer 9 top electrode 11MRAM memory element 13 word line 15 insulating layer 17 insulating layer • 19 conductive layer 21 substrate 23 magnetic tunneling junction (MTJ) 25 antiferromagnetic layer 27 tunneling barrier layer 29 covering layer 36MRAM structure 39 first insulating layer 2 bottom electrode 4 antiferromagnetic fixed layer 6 tunneling barrier layer 8 covering layer 10 induced current 12 Substrate 14 bolt 16 conductor 18 cover layer 20 MR read head 22 bottom wire 24 seed layer 26 pinned layer 28 free layer 30 top wire 38 substrate 40 word line 29 1311758 47 antiferromagnetic layer 49 tunneling barrier layer 51 cladding layer 52 photoresist layer 54 bit line 60 TMR read head 64 protective cover layer 67 antiferromagnetic layer 69 tunneling barrier layer 71 cover layer 72 first dielectric layer 74 Second dielectric layer a elliptical short axis 42 seed layer 44 cover layer 46 seed layer 48 SyAP fixed layer 50 free layer 51a top surface 53 third insulating layer 58 fourth insulating layer · 62 bottom shield (S1) 66 seed layer 68 SyAP pinned layer 70 free layer 71a top surface 73 hard biased Major axis width W of the cover layer 30 the width w of sugar circle v bit line width of the upper shield 75 (S2) · b character line

Claims (1)

修正本 1311758 十、申請專利範圍: 1· 一種磁性穿隧接面(MTJ)元件,其係形成於一基材上的底部導體 層和一頂端導體層之間,該磁性穿隧接面元件包括: —適中的自旋極化自由層;以及 複合覆盘層,形成於該自由層上方’該覆蓋層係包括一由Ru所組成 之下層界面擴散障礙層,一由Ta所組成之中間氧氣吸收層,以及一由 Ru所組成且抗氧化(oxidati〇n resistant)之上層金屬層,該上層金屬 層形成於該中間氧氣吸收層上,且該上層金屬層具有一實質上為平面 之頂部表面與該頂端導體接觸,該覆蓋層之該下層界面擴散障礙層、 該中間氧氣吸收層以及該上層金屬層實質上係具有相同寬度。 2. 如申請專利範圍第1項所述之磁性穿隧接面元件,其中該自旋極化 自由層是由鐵化錄(NiFe)組成’其鐵約佔原子成份π. 5〜20%之間, 而一厚度大小約30〜50埃。 3. 如申請專利範圍第1項所述之磁性穿隧接面元件,更包括一 NiCr 種子層,一 MnPt反鐵磁固定層,一 SyAP固定層,以及一ΑίΟχ穿隧 障礙層,依序形成在該底部導體上面,而該自旋極化自由層和該複合 覆蓋層,依序形成在該AlOx穿隧障礙層上面。 4·如申s青專利範圍第3項所述之磁性穿随接面元件,其中該你处固 定層包括一下層CoFe層,其Fe佔原子成分10%而厚度約23埃,一中 間Ru柄合層,其厚度約7. 5埃,一上層c〇Fe的層,其Fe估原子成 分25〜50%而厚度約20埃。 5.如申請專利範圍第3項所述之磁性穿隧接面元件,其中該八1此穿 31 修正本 1311758 随p爭礙層係彻原位氧化沉賴贿賴|3舰的厚麟5〜c.. 6.如申β月專利範圍第【項所述之磁性穿隨接面元件,其中該下層界 面擴散障礙層之厚度大約1〇〜3〇埃。 7·如申請專概1項所述之雜雜接面元件其巾該中間氧 氣吸收層之厚度大約2〇〜50埃。 8.如申請專利範圍第i項所述之磁性穿隨接面元件,其中該上層金 屬層之厚度大約100〜250埃。 9·如申請專利範圍第1項所狀磁性穿随接面元件,其中該奶元φ 件有-磁致伸縮’其係可以藉著調整該下層界面擴散障礙層的厚度而 減少。 10.如申請專利範圍第1項所述之磁性穿隧接面元件,其中該MTJ元 件形成於-MRAM結構中,且該MTj元件具有一大約4_綱和一 大約低於1. 0E-6的磁致伸縮。 11·如申請專利範圍第1項所述之磁性穿随接面元件,其中該咖】元 件形成於-TMR讀取頭’且該MTJ元件具有一大約2〇%的鬚和一大鲁 約低於1. 0E-6的磁致伸縮。 12. —種MRAM結構,係形成在一基板上,該廳M結構包括: 一底部導體層,形成於該基板上; -具有側壁和-頂部表面的MTj元件,該MTJ元件係包括一種 子層、-反鐵磁固定層、-固定層、—粮障礙層、—自由層和—覆 蓋層’依序形成在該底部導體層上’且該覆蓋層包括—由此所組成 32 修正本 ‘1311758 之下層界面擴雜礙層、-由Ta離成之巾間氧氣做層及一由Ru 所組成且抗氧化(oxidation resistant)之上層金屬層,該上層金屬 層形成於該中間氧氣吸收層上並具有-實質上為平面之頂部表面,且 該覆蓋層之該下層界面擴雜礙層、該巾陳氣吸收層以及該上層金 屬層實質上係具有相同寬度;以及 一頂導體層,形成於該MTJ元件的該頂部表面。 13. 如申請專利範圍第12項所述之腿心結構,其中該底部導體層包 括一 Ta或NiCr製成的種子層位於該基板上,一由Ru或Cu所組成的 導電層位於_預上,以及—由Ta組成的覆蓋層位於該導電層上。 14. 如申請專利範圍第12項所述之MRAM結構’其中該MTJ元件包括 一 NiCr種子層,一 MnPt反鐵磁固定層和—办從固定層。 15. 如申請專利範圍第12項所述之MRAM結構,其中該穿隧障礙層係 由一厚度11〜15埃的AlOx所組成。 16. 如申請專利範圍第12項所述之MRAM結構,其中該自由層係由一 適中自旋極化材料NiFe所組成,而NiFe中的Fe約佔原子成分的 Π.5 〜20%。 17. 如申請專利範圍第丨2項所述之MRAM結構,其中該下層界面擴散 障礙層之厚度大約10〜30埃。 18. 如申請專利範圍第12項所述之MRAM結構,其中該中間氧氣吸收 層之厚度大約20〜50埃。 19. 如申請專利範圍第U項所述之MRAM結構,其中該上層金屬層之 33 修正本 1311758 厚度大約150450埃。 · 20. —種穿隧式磁阻(TMR)讀取頭,其係形成在一基板上,該了^^讀 取頭包括: (a) —底部防護罩,形成於一基板上; (b) —具有側壁和一頂部表面的MTJ元件,位於該底部防護罩 上’該MTJ元件係包括一自旋極化程度適中的自旋極化自由層,且一 覆蓋層在該自旋極化自由層上面,該覆蓋層係包括一由ru所組成之 下層界面擴散障礙層,一由Ta所組成之中間氧氣吸收層,一由肋所 _ 組成且抗氧化(oxidation resistant)之上層金屬層,該上層金屬層 形成於該中間氧氣吸收層上並具有一實質上為平面之頂部表面,且該 覆蓋層之該下層界面擴散障礙層、該中間氧氣吸收層以及該上層金屬 層實質上係具有相同寬度;以及 (c)一上層防護罩,其接觸該MTj元件的頂部表面。 21. 如申請專利範圍第20項所述之TMR讀取頭,更包括一 NiCr種子 層、一 MnPt反鐵磁固定層、一 SyAP固定層和一 AlOx穿隧障礙層依 _ 序形成在該底部防護層上,其中該適中的自旋極化自由層和該覆蓋層 依序形成於該AlOx穿隧障礙層。 22. 如申請專利範圍第21項所述之TMR讀取頭,其中該SyAp固定層 包括一下層CoFe層,其Fe佔原子成分10%而厚度約為23埃,一中 間Ru耦合層,其厚度約7.5埃,以及一上層c〇Fe的層,其Fe佔原 子成分25~50%而厚度約20埃。 34 修正本 '1311758 23·如申請專利範圍第20項所述之TMR讀取頭’其中該底部防護罩 係由NiFe所組成。 24·如申請專利範圍第20項所述之TMR讀取頭’其中該適中的自旋極 化自由層係一複合CoFe/NiFe層,且該CoFe層的Fe約佔原子成分 10%且厚度約5〜1〇埃,而該NiFe層的化約佔原子成分17·5~2⑽且 厚度約30〜40埃。 25·如申請專利範圍第20項所述之TMR讀取頭,其中該下層介面擴 散障礙層之厚度大約1〇〜30埃。 26. 如申請專利範圍第20項所述之TMR讀取頭,其中該中間氧氣吸 收層之厚度大約20〜50埃。 27. 如申請專利範圍第20項所述的TMR讀取頭,該上層金屬層之厚 度大約100〜200埃。 28. —種形成MTJ元件於基板上之方法,其步驟包括: (a)依序形成一種子層、一反鐵磁固定層、一固定層、一穿隧障礙層 於一基板上; (b) 形成一適中的自旋極化自由層於該穿隧障礙層上;以及 (c) 形成一覆蓋層於該適中的自旋極化自由層上,其中,該覆蓋層包 括一由Ru所組成之下層界面擴散障礙層,_由Ta所組成之中間氧氣 吸收層,以及一上層金屬層,該上層金屬層形成於該中間氧氣吸收層 上並具有一貫質上為平面之頂部表面的一由ru所組成且抗氧化 (oxidation resistant)之上層金屬層,且該覆蓋層之該下層界面擴 35 修正本 1311758 散p早礙層、該中間氧氣吸收層以及該上層金屬層實質上係具有相同寬 度。 29·如申請專利範圍帛28項所述之形成MTJ元件於基板上之方法, 其中3亥基板係為一 mram結構中之一底部導體。 30. 如申請專利範圍第28項所述之形成.元件於基板上之方法, 其中該基板係、為在-TMR讀取頭之底部防護罩上的防護覆蓋層。 31. 如申請專利範圍第29項所述之形成MTJ元件於基板上之方法, 更包括形成一頂端導體於該上層金屬的頂部表面上。 32. 如申請專利範圍帛30項所述之形成MTJ元件於基板上之方法, 更包括形成一上層防護罩在該上層金屬的頂部表面。 33. 如申請專利範圍第28項所述之形成MTJ元件於基板上之方法, 其中該種子層係由NiCr所組成,該反鐵棚定層係由酿所組成, 該固定層係-SyAP m定層,城SyAP H定層包括-下層诚層而 Fe約佔原子成分10%,一中間Ru輕合層,一上層c〇Fe層*仏約佔 原子成分25〜50%。 34. 如申請專利範圍第29項所述之形成ΜΠ元件於基板上之方法,其 中該穿隧障礙層係由ΑΙΟχ所組成,且係藉著在該固定層上沉積—厚 度約8〜10埃的鋁層,再實施一原位激發氧化製程後所形成者。 35. 如申請專利範圍第30項所述之形成MTJ元件於基板上之方法, 其中該穿隧障礙層係由ΑΙΟχ所組成,且係藉著在該固定層上先沉積 —厚度約5〜6埃的鋁層,再實施一原位自然氧化製程後所形成者。 36 修正本 1311758 36.如申請專利範圍第29項所述之形成MTJ元件於基板上之方法, '、中°亥適中的自旋極化自由層係由NiFe所組成,其中Fe約佔原子成 分17. 5〜20%,而厚度約20,埃。 3?·如申請專利範圍帛30項所述之形成MTJ it件於基板上之方法, 其中4適巾的自旋極化自由層係-複合CoFe/NiFe層 ,該CoFe層的 Fe約佔原子成分10%且厚度約5〜10埃,而該NiFe層的Fe約佔原子 成分17. 5〜咖且厚度約3(M〇埃。 38·如申請專利範圍第28項所述之形成MTJ元件於基板上之方法, 其中该下層界面擴散層之厚度大約1G~30埃。 39.如申請專利範圍第28項所述之形成MTJ元件於基板上之方法, 其中該中間氧氣吸收層之厚度大約20~50埃。 4〇.如申請專利範圍第28項所述之形成MTJ元件於基板上之方法, 其中該上層金屬層之厚度大約1〇〇~25〇埃。 41. 如申請專利範圍第28項所述之形成MTJ元件於基板上之方法, 其中沉積MTJ元件所有的層膜在一超高真空濺鍍系統,該濺镀系統係 包括濺鏟腔和一氧化腔,在一單一抽氣步驟之後,所有的層膜都在該 濺鍍系統形成。 42. 如申請專利範圍第28項所述之形成MTJ元件於基板上之方法, 其中該基板具有一上層非晶格Ta層,其係在促進層膜平滑且密集的 成長於該MTJ元件内。 37 1311758 修正本 七、指定代表圖: (一) 本案指定代表圖為:第五圖。 (二) 本代表圖之元件符號簡單說明: 36 MRAM結構 38基板 39第一絕緣層 41第二絕緣層 44覆蓋層 40 字元線 42種子層 45底部導體層 46種子層 48 SyAP固定層 50自由層 51a頂部表面 53第三絕緣層 47反鐵磁層 49穿隧障礙層 51覆蓋層 52 光阻層 54位元線上層 φ 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:Amendment 1311758 X. Patent Application Range: 1. A magnetic tunneling junction (MTJ) component formed between a bottom conductor layer and a top conductor layer on a substrate, the magnetic tunneling junction element comprising : a moderate spin-polarized free layer; and a composite clad layer formed over the free layer'. The cap layer comprises a lower interfacial diffusion barrier layer composed of Ru, an intermediate oxygen absorption composed of Ta a layer, and an oxidatively resistant upper metal layer formed of Ru, the upper metal layer being formed on the intermediate oxygen absorbing layer, and the upper metal layer having a substantially planar top surface and The top conductor is in contact with the lower interfacial diffusion barrier layer, the intermediate oxygen absorbing layer and the upper metal layer of the cover layer having substantially the same width. 2. The magnetic tunneling junction element according to claim 1, wherein the spin-polarized free layer is composed of a ferrochemical recording (NiFe), wherein the iron is about π. 5~20% of the atomic component. Between, and a thickness of about 30 to 50 angstroms. 3. The magnetic tunneling junction element according to claim 1 further includes a NiCr seed layer, a MnPt antiferromagnetic fixed layer, a SyAP fixed layer, and a tunneling barrier layer, which are sequentially formed. Above the bottom conductor, the spin-polarized free layer and the composite cover layer are sequentially formed on the AlOx tunneling barrier layer. 4. The magnetic wear-fed surface element according to claim 3, wherein the fixed layer of the layer comprises a lower layer of CoFe, wherein Fe accounts for 10% of the atomic composition and has a thickness of about 23 angstroms, and an intermediate Ru handle. The layer is a layer having a thickness of about 7.5 angstroms and an upper layer of c〇Fe, and the Fe has an atomic composition of 25 to 50% and a thickness of about 20 angstroms. 5. The magnetic tunneling junction element according to item 3 of the patent application scope, wherein the eight one is worn 31, the modified 1311758, and the layer of the stagnation layer is completely oxidized by the reliance on the bribes. ~c.. 6. The magnetic wear-fed surface element described in the above-mentioned patent scope of the present invention, wherein the thickness of the lower layer diffusion barrier layer is about 1 〇 3 〇. 7. The thickness of the intermediate oxygen absorbing layer of the heterojunction element as described in claim 1 is about 2 〇 to 50 angstroms. 8. The magnetic wear-fed surface element of claim i, wherein the upper metal layer has a thickness of about 100 to 250 angstroms. 9. The magnetic wear-fed surface element of claim 1, wherein the milk element φ has magnetostriction, which can be reduced by adjusting the thickness of the lower interface diffusion barrier layer. 10. The magnetic tunneling junction component of claim 1, wherein the MTJ component is formed in a -MRAM structure, and the MTj component has an approximately 4 _ class and an approximately less than 1. 0E-6 Magnetostriction. 11. The magnetic wear-fed surface element of claim 1, wherein the coffee element is formed on a -TMR read head and the MTJ element has a whisker of about 2% and a large Lu Magnetostriction at 1.0E-6. 12. An MRAM structure formed on a substrate, the hall M structure comprising: a bottom conductor layer formed on the substrate; - an MTj element having a sidewall and a top surface, the MTJ component comprising a sublayer , an antiferromagnetic pinned layer, a pinned layer, a grain barrier layer, a free layer, and a cap layer are sequentially formed on the bottom conductor layer 'and the cover layer includes - thereby consisting of 32 revisions of the '1311758 a lower layer interface diffusion layer, an oxygen layer formed by the Ta-separated sheet, and an oxide metal layer formed of Ru and an oxidation resistant upper layer metal layer formed on the intermediate oxygen absorbing layer Having a substantially planar top surface, and the lower layer interface diffusion layer of the cover layer, the towel aging layer and the upper metal layer are substantially the same width; and a top conductor layer formed thereon The top surface of the MTJ element. 13. The leg center structure according to claim 12, wherein the bottom conductor layer comprises a seed layer made of Ta or NiCr on the substrate, and a conductive layer composed of Ru or Cu is located on the pre-stage. And a cover layer composed of Ta is located on the conductive layer. 14. The MRAM structure as claimed in claim 12, wherein the MTJ element comprises a NiCr seed layer, a MnPt antiferromagnetic pinned layer and a slave layer. 15. The MRAM structure of claim 12, wherein the tunneling barrier layer is comprised of a thickness of 11 to 15 angstroms of AlOx. 16. The MRAM structure of claim 12, wherein the free layer is composed of a moderately spin-polarized material NiFe, and the Fe in the NiFe is about 55 to 20% of the atomic composition. 17. The MRAM structure of claim 2, wherein the lower interface diffusion barrier layer has a thickness of about 10 to 30 angstroms. 18. The MRAM structure of claim 12, wherein the intermediate oxygen absorbing layer has a thickness of about 20 to 50 angstroms. 19. The MRAM structure of claim U, wherein the upper layer of the metal layer has a thickness of about 150,450 angstroms. 20. A tunneling magnetoresistive (TMR) read head formed on a substrate, the read head comprising: (a) a bottom shield formed on a substrate; (b - an MTJ element having a sidewall and a top surface on the bottom shield - the MTJ element comprises a spin-polarized free layer of moderate spin polarization, and a cover layer is free in the spin polarization Above the layer, the cover layer comprises a lower interfacial diffusion barrier layer composed of ru, an intermediate oxygen absorbing layer composed of Ta, an oxidized resistant upper metal layer, and An upper metal layer is formed on the intermediate oxygen absorbing layer and has a substantially planar top surface, and the lower interface diffusion barrier layer, the intermediate oxygen absorbing layer and the upper metal layer of the cover layer have substantially the same width And (c) an upper shield that contacts the top surface of the MTj element. 21. The TMR read head according to claim 20, further comprising a NiCr seed layer, a MnPt antiferromagnetic fixed layer, a SyAP fixed layer and an AlOx tunneling barrier layer formed at the bottom. On the protective layer, the moderate spin-polarized free layer and the cover layer are sequentially formed on the AlOx tunneling barrier layer. 22. The TMR read head of claim 21, wherein the SyAp pinned layer comprises a lower CoFe layer having a Fe content of 10% and a thickness of about 23 angstroms, an intermediate Ru coupling layer, a thickness thereof. A layer of about 7.5 angstroms and an upper layer of c〇Fe, which has an atomic composition of 25 to 50% and a thickness of about 20 angstroms. 34 Amendment to the '1311758 23', as described in claim 20, wherein the bottom shield is composed of NiFe. 24. The TMR read head of claim 20, wherein the moderate spin-polarized free layer is a composite CoFe/NiFe layer, and the Fe of the CoFe layer accounts for about 10% of the atomic composition and has a thickness of about 5 to 1 Å, and the NiFe layer accounts for about 17·5 to 2 (10) of atomic components and has a thickness of about 30 to 40 angstroms. 25. The TMR read head of claim 20, wherein the underlying interface diffusion barrier layer has a thickness of about 1 〇 30 Å. 26. The TMR read head of claim 20, wherein the intermediate oxygen absorbing layer has a thickness of about 20 to 50 angstroms. 27. The TMR read head of claim 20, wherein the upper metal layer has a thickness of about 100 to 200 angstroms. 28. A method of forming an MTJ device on a substrate, the steps comprising: (a) sequentially forming a sublayer, an antiferromagnetic pinned layer, a pinned layer, and a tunneling barrier layer on a substrate; Forming a moderate spin-polarized free layer on the tunneling barrier layer; and (c) forming a cap layer on the moderate spin-polarized free layer, wherein the cap layer comprises a layer comprised of Ru a lower interface diffusion barrier layer, an intermediate oxygen absorbing layer composed of Ta, and an upper metal layer formed on the intermediate oxygen absorbing layer and having a uniform top surface of the flat surface The upper metal layer is composed of an oxidation resistant layer, and the lower layer interface of the cover layer is modified to have the same width. The intermediate oxygen absorption layer and the upper metal layer have substantially the same width. 29. The method of forming an MTJ component on a substrate as described in claim 28, wherein the 3H substrate is a bottom conductor of a mram structure. 30. A method of forming an element on a substrate as described in claim 28, wherein the substrate is a protective cover on the bottom shield of the -TMR read head. 31. The method of forming an MTJ component on a substrate according to claim 29, further comprising forming a top conductor on a top surface of the upper metal. 32. The method of forming an MTJ component on a substrate as described in claim 30, further comprising forming an upper shield on a top surface of the upper metal. 33. The method of forming an MTJ element on a substrate according to claim 28, wherein the seed layer is composed of NiCr, and the anti-iron shed layer is composed of a brewing system, the fixed layer system - SyAP m The fixed layer, the city SyAP H fixed layer includes - the lower layer of the layer and the Fe accounted for about 10% of the atomic composition, a middle Ru light layer, an upper layer c〇Fe layer * 仏 accounted for about 25 to 50% of the atomic composition. 34. The method of forming a tantalum element on a substrate according to claim 29, wherein the tunneling barrier layer is composed of tantalum and is deposited on the fixed layer to a thickness of about 8 to 10 angstroms. The aluminum layer is formed by an in-situ excitation oxidation process. 35. The method of forming an MTJ element on a substrate according to claim 30, wherein the tunneling barrier layer is composed of tantalum and is deposited on the fixed layer by a thickness of about 5 to 6 The aluminum layer of angstrom is formed by an in-situ natural oxidation process. 36 Amendment 1311758 36. The method for forming an MTJ element on a substrate as described in claim 29, wherein the spin-polarized free layer in the middle of the system is composed of NiFe, wherein Fe accounts for atomic composition. 17. 5~20%, and the thickness is about 20, angstroms. 3? The method of forming an MTJ it piece on a substrate as described in claim 30, wherein the spin-polarized free layer of the 4 towel-composite CoFe/NiFe layer, the Fe of the CoFe layer occupies an atom The component is 10% and has a thickness of about 5 to 10 angstroms, and the Fe of the NiFe layer accounts for about 17. 5 〜 coffee and a thickness of about 3 (M 〇 。. 38) The MTJ element is formed as described in claim 28 The method of the substrate, wherein the thickness of the lower interfacial diffusion layer is about 1 G to 30 angstroms. 39. The method for forming an MTJ device on a substrate according to claim 28, wherein the thickness of the intermediate oxygen absorbing layer is about The method for forming an MTJ element on a substrate as described in claim 28, wherein the thickness of the upper metal layer is about 1 〇〇 to 25 Å. 41. The method of forming an MTJ element on a substrate according to item 28, wherein all of the layers of the MTJ element are deposited in an ultra-high vacuum sputtering system, the sputtering system comprising a spatter cavity and an oxidation chamber, in a single pumping After the step, all the layers of the film are formed in the sputtering system. The method for forming an MTJ device on a substrate according to the invention of claim 28, wherein the substrate has an upper amorphous Ta layer which is formed in the smooth and dense growth of the promoting layer film in the MTJ element. 37 1311758 VII. Designated representative map: (1) The representative representative figure of this case is: the fifth figure. (2) The symbol of the representative figure is briefly described: 36 MRAM structure 38 substrate 39 first insulating layer 41 second insulating layer 44 covering layer 40 Word line 42 seed layer 45 bottom conductor layer 46 seed layer 48 SyAP fixed layer 50 free layer 51a top surface 53 third insulating layer 47 antiferromagnetic layer 49 tunneling barrier layer 51 covering layer 52 photoresist layer 54 bit line layer φ VIII. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention:
TW094119318A 2005-10-04 2005-10-04 A novel capping structure for enhancing dr/r of the mtj device TWI311758B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW094119318A TWI311758B (en) 2005-10-04 2005-10-04 A novel capping structure for enhancing dr/r of the mtj device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094119318A TWI311758B (en) 2005-10-04 2005-10-04 A novel capping structure for enhancing dr/r of the mtj device

Publications (1)

Publication Number Publication Date
TWI311758B true TWI311758B (en) 2009-07-01

Family

ID=45072486

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094119318A TWI311758B (en) 2005-10-04 2005-10-04 A novel capping structure for enhancing dr/r of the mtj device

Country Status (1)

Country Link
TW (1) TWI311758B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568041B (en) * 2011-12-20 2017-01-21 英特爾公司 Method for reducing size and center positioning of magnetic memory element contacts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568041B (en) * 2011-12-20 2017-01-21 英特爾公司 Method for reducing size and center positioning of magnetic memory element contacts
US9793467B2 (en) 2011-12-20 2017-10-17 Intel Corporation Method for reducing size and center positioning of magnetic memory element contacts

Similar Documents

Publication Publication Date Title
JP5100403B2 (en) Magnetic tunnel junction element and manufacturing method thereof
US10658577B2 (en) Maintaining coercive field after high temperature anneal for magnetic device applications with perpendicular magnetic anisotropy
JP5153061B2 (en) Magnetic memory structure, tunnel magnetoresistive read head and manufacturing method thereof
EP1607980B1 (en) A novel capping structure for enhancing dR/R of the MTJ device
JP5069034B2 (en) Magnetic tunnel junction element and method for forming the same
JP5630963B2 (en) Composite seed layer, magnetic read head having the same, and method for forming TMR sensor and CCP-CPP-GMR sensor
JP5618474B2 (en) Bottom spin valve type magnetic tunnel junction device, MRAM, STT-RAM, MRAM manufacturing method, STT-RAM manufacturing method
CN1822219B (en) Magnetoresistance device including layered ferromagnetic structure, and method of manufacturing the same
JP5451977B2 (en) Magnetic tunnel junction element, method of forming the same, and magnetic random access memory
US8178363B2 (en) MRAM with storage layer and super-paramagnetic sensing layer
TWI293213B (en) Magnetoresistive structures, magnetoresistive devices, and memory cells
JP2008034857A (en) Magnetic tunnel junction element and method of forming same
JP2008004944A (en) Ferromagnetic structure, spin valve structure and its manufacturing method, and magnetoresistive effect element and its manufacturing method
US20210111223A1 (en) Magnetoresistive stack with seed region and method of manufacturing the same
JP2007194327A (en) Tunnel-type magnetic detecting element
JP2007194457A (en) Tunnel magnetism detection element, and its manufacturing method
TWI311758B (en) A novel capping structure for enhancing dr/r of the mtj device
JP2008166533A (en) Tunnel type magnetism detecting element and manufacturing method thereof
JP2008166532A (en) Tunnel type magnetism detecting element and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees