1310197 九、發明說明: 【發明所屬之技術領域】 :發明是有關於—種電子式安定器,特別是有關於一 I、有不連續電流式功因修正器之電子式安定器。、 【先前技術】 隨著科技的發展及生活水準的提高,照明已成為人類 曰吊生活中不可缺少的基本雹龙。 ^ ^ *1- Λ . . " 年來由於全球各種產 業的逄功發展、商業活動的頻繁以及居家生活品質的提 高,照明用電也與日俱增,使得合乎高效率、舒適'安全、 高經濟效應之照明系統的開發也漸漸備受重視。盆中,由 於螢光燈具有發光效率高、壽命長、燈管溫度低,光色及 形狀多元等優點’成為了今日照明系統的主流。 螢光燈與大多數的氣體放電燈一樣,係呈現負增量電 阻的電氣特性,需要安定器來限制流經燈管的電流。榮光 燈的安定器除了限流的功能之外,必須兼具啟動登光燈的 功能’其中係利用提供—高電壓使游離氣體產生放電現象 的方法來啟動螢光燈。在啟動了螢光燈之後,僅需再維持 一較小之電壓維持螢光燈之氣體放電電流即可。 傳統所使用之安定器為電磁作業的形式。雖然電磁式 :定器具有耐用以及構造簡單等優點,但其更有著效率: 落、體積大、笨重、易生噪音以及低頻閃爍現象等缺點。 對現代的越來越多元化的燈具應用而言,電磁式安定哭越 來越無法滿足使用上的需求。相較於電磁式安定器,電子 5 1310197 式安定器具有啟動快、不閃爍、高光效與高功率因數等優 點更可較電磁式安定器節省大量的電能。因此電子式安 定器已漸漸地取代了電磁式安定器的地位。 . 般的電子式安^器所使用的電源是直流電,但目前 電力系統所供應的電源為交流電。所以目前大多利用二極 體王波抓電路或倍磨整流電路將電力系統所供應之交流 電源轉換成直流電以供電子式安定器使用。因此為了消除 • ?流後的交流成分’會利用-大電容與該直流電並聯以獲 知穩疋的直流電壓。然而正是由於此電容將直流電壓維持 在一大約固定的準位’使得整流器只能在交流電壓的振幅 间於電谷電壓時才得以導通,從電源部分汲取所需功率。 故整流器於每個輸入電源週期中導通的時間都非常短,且 在該時段内會有很大的脈波湧入電流。湧入電流於交流電 源電壓的峰值附近以脈衝之形式出現。此種電流波形含有 高量諧波(harmonic) ’並在交流電源處產生低功率因數的不 P 良影響。 - 功率因數的降低不僅使系統中電力設備(如變壓器)的 .利用因數隨之降低,更迫使相關元件與設備的額定容量必 屑&尚,以供應負載所需。此外,高次諧波電流常導致控 制電路及電力保護設備的誤動作,並使量測儀器或通訊系 統受到干擾’以及影響電源電壓的波形使之產生畸變。因 此,如何改善功率因數及降低總諧波失真,乃設計電子式 安定器之重要課題。 6 1310197 【發明内容】 因此本發明的主要目的就是在提供一種用 持螢光燈負载之電子式安定器。 動及維 本發明的另-目的就是在提供一種具有功因修正 電子式安定器。 ° 再一目的就是在提供一種作業於不連續電流 模式之電子式安定器。 本㈣的更一目的就是在提供一種具有低製造成本之 電子式安定器。 —為達到本發明之上述目的,符合本發明實施例之電子 式安定器包含有一交流電壓源、一整流器、一功因修正器、 一換流器以及一共振電路。其中,整流器係用以將交流電 壓源所提供之交流電壓整流為直流電塵,以使換流器能夠 利用直流電屬來切換出高頻交流方波電壓。共振電路中的 疋件此夠互相產生譜振作用,並利用諧振作用所產生的諧 振阻抗對換流器所產生之高頻交流方波進行遽波。經過濾、 波之後的高頻交流方波會轉變為適於供螢光燈負載使用之 正弦波。另外,功因修正器係為—直流對直流之轉換電路, 係能夠使輸入之電流波形能夠追隨輸入之電魔波形,以達 到功因修正及穩壓的功能,並價測輸入和輸出電壓以因應 不同功率之螢光燈負載所需。 在符合本發明之實施例中,功因修正器係作業於不連 續電流模式’以降低功因修正器内元件的數量,使符合本 七明之電子式安定器能夠具有較低的製造成本。 7 1310197 【實施方式】 由於一般之電子式安定器具有低功因以及高諧波失真 等問題’因此本發明之基本概念係將於電子式安定器中加 . 裝一功因修正器,以提高功因並降低諳波失真。其中,於 - 本發明實施例中所提出之功因修正器係運作於不連續電流 模式’能夠以最少電路元件來達成功因修正及穩壓之目的。 % 第1圖繪示了符合本發明概念之一電子式安定器100 之電路架構圖。其中,交流電壓源102提供了整個電路之 電力來源,但由於在後續電路所需之電源為直流電源,所 以必需先經由整流器104將交流電壓源1〇2所輸出之交流 電整流為直流電後,再往後續電路傳輸。接著,藉由換流 器108的快速切換,可將整流器1〇4所輸出的直流電壓切 換成尚頻方波電壓。在共振電路11〇中會利用電感及電容 το件來產生諧振效應,當換流器1〇8所輸出之高頻方波電 • 壓經過此諧振阻抗的濾波作用之後,會在負載端1丄2上出 '現接近於正弦波的電壓及電流,用以供應螢光燈負載之所 -需。另外,共振電路u〇在螢光燈負載啟動前可以於負載 兩端產生足夠高的燈管啟動電壓,使燈管進入發光狀態。 功因修正器106係在整流器1〇4之後所介入之一直流 對直流的轉換電路,以因應負載不同功率之需求。並以控 制開關切換的時機,使其中之儲能電路進行能量的儲存及 釋放,藉以改變輸入功率與電流波形,使輸入電流波形能 追隨輸入電壓的波形。經由適當的操作程序,可精確地控 8 1310197 制輸入電流的波形與大小’達到功因修正及穩壓的功能。 根據實驗結果’將功因修正電路106加入電子式安定器i 〇〇 的電路中之後’可將諧波失真抑制到幾乎不存在,功因幾 乎接近於一,並允許輸入電源和負載在相當大的範圍内變 * 化。 - 其中,在本發明實施例中所提出之功因修正器ι〇6係 工作於不連續電流模式,亦即,功因修正器1〇6不強制控 φ 制流經這些電路元件之電流之變化幅度,使功因修正器内 106内電路元件的數量能夠降至最低,並且仍能達到功因修 正及穩壓之功能。因此,具有不連績電流式功因修正器之 電子式安定器特別適合應用於需要低製作成本之場合。以 下係列舉多種實施例來說明能夠達成本發明目的之電路態 樣。 。 第2圖繪示了符合本發明之第一實施例之電子式安定 器之電路圖。此電子式安定器之電源係由一交流電壓源2〇2 所提供。由交流電壓源所提供之交流電源會先經過由濾波 -電感204及濾波電容2〇6所組成的濾波器將高頻雜訊濾除 掉,以確保電源的品質。經過濾波之後的交流電源會接著 被送入由一第一整流二極體212及一第二整流二極體214 所組成之半波整流器。 由一第一開關元件232及一第二開關元件234所組成 之換流器會與該半波整流器並聯,其中,第一開關元件232 與第二開關元件234可為如金氧半場效電晶體(m〇sfet) 之類的開關元件所實現,因此在圖中係直接以一開關加上 9 1310197 一電晶體的等效電路方式來代表第-開關元件232及第二 開關元件234。因此,由第2圖中可以看出,由第_整流二 極體2i2以及第二整流二極體214所組成的半波整流器並 聯上内含著等效二極體的第—開關元件232及第二開關元 件234實際上可實現—全波濾波器之功能。1310197 IX. Description of the invention: [Technical field to which the invention pertains]: The invention relates to an electronic ballast, and more particularly to an electronic ballast having a discontinuous current type power factor corrector. [Prior Art] With the development of science and technology and the improvement of living standards, lighting has become an indispensable basic dragon in human life. ^ ^ *1- Λ . . " Due to the development of various industries around the world, the frequent activities of commercial activities and the improvement of the quality of life at home, the lighting power is also increasing day by day, making it highly efficient and comfortable, safe and economical. The development of lighting systems is also gaining more and more attention. In the basin, the fluorescent lamp has the advantages of high luminous efficiency, long life, low temperature of the lamp, multi-color and shape, and has become the mainstream of today's lighting system. Fluorescent lamps, like most gas discharge lamps, exhibit electrical characteristics of negative incremental resistance and require a ballast to limit the current flowing through the lamp. In addition to the function of current limiting, the ballast of the glory lamp must have the function of starting the spotlight, which activates the fluorescent lamp by providing a high voltage to cause the discharge of the free gas. After the fluorescent lamp is activated, it is only necessary to maintain a small voltage to maintain the gas discharge current of the fluorescent lamp. Conventional stabilizers are in the form of electromagnetic operations. Although the electromagnetic type: the durable and simple structure of the fixed device, it is more efficient: falling, bulky, bulky, prone to noise and low frequency flickering. For modern and increasingly diversified luminaire applications, electromagnetic stability crying is increasingly unable to meet the needs of use. Compared with the electromagnetic ballast, the electronic 5 1310197 ballast has the advantages of fast start, no flicker, high luminous efficiency and high power factor, and can save a lot of electric energy compared with the electromagnetic ballast. Therefore, electronic stabilizers have gradually replaced the status of electromagnetic ballasts. The power supply used in the general electronic safety device is direct current, but the power supply currently supplied by the power system is alternating current. Therefore, at present, most of the AC power supply system is converted into direct current for use in an electronic ballast by using a diode or a double-grinding rectifier circuit. Therefore, in order to eliminate the AC component after the current flow, a large capacitor is connected in parallel with the direct current to obtain a stable DC voltage. However, it is because this capacitor maintains the DC voltage at a fixed level so that the rectifier can only be turned on when the amplitude of the AC voltage is between the voltages of the AC voltage, drawing the required power from the power supply. Therefore, the rectifier is turned on for very short periods of time during each input power cycle, and there is a large pulse inrush current during this period. The inrush current appears as a pulse near the peak of the AC source voltage. This current waveform contains high harmonics and produces a low power factor non-P effect at the AC source. - The reduction in power factor not only reduces the utilization factor of the power equipment (such as transformers) in the system, but also forces the relevant components and equipment to be rated and required to supply the load. In addition, higher harmonic currents often cause malfunctions in the control circuit and power protection equipment, and cause the measurement instrument or communication system to be disturbed and to affect the waveform of the power supply voltage to cause distortion. Therefore, how to improve the power factor and reduce the total harmonic distortion is an important issue in the design of electronic ballasts. 6 1310197 SUMMARY OF THE INVENTION It is therefore a primary object of the present invention to provide an electronic ballast that is loaded with a fluorescent lamp. Moving and Dimensional Another object of the present invention is to provide an electronic ballast having a power factor correction. ° Another objective is to provide an electronic ballast that operates in a discontinuous current mode. A further object of the present invention is to provide an electronic ballast having a low manufacturing cost. - In order to achieve the above object of the present invention, an electronic ballast according to an embodiment of the present invention includes an AC voltage source, a rectifier, a power factor corrector, an inverter, and a resonance circuit. The rectifier is used to rectify the AC voltage provided by the AC voltage source into DC dust so that the inverter can switch the high frequency AC square wave voltage by using the DC current. The components in the resonant circuit are capable of generating a spectral action with each other, and the high-frequency alternating square wave generated by the inverter is chopped by the resonant impedance generated by the resonant action. After filtering, the high-frequency AC square wave after the wave is converted into a sine wave suitable for the load of the fluorescent lamp. In addition, the power factor corrector is a DC-to-DC conversion circuit, which enables the input current waveform to follow the input electric magic waveform to achieve the function of power factor correction and voltage regulation, and to measure the input and output voltages. Required for fluorescent lamp loads of different powers. In an embodiment consistent with the present invention, the power factor corrector operates in a discontinuous current mode to reduce the number of components in the power modifier, enabling the electronic ballast in accordance with the present invention to have a lower manufacturing cost. 7 1310197 [Embodiment] Since the general electronic ballast has problems such as low power factor and high harmonic distortion, the basic concept of the present invention is to add an electric stabilizer to the electronic ballast to improve Causes and reduces chopping distortion. Wherein, the power factor corrector proposed in the embodiment of the present invention operates in the discontinuous current mode' to achieve the purpose of correcting and stabilizing with a minimum of circuit components. % Fig. 1 is a circuit diagram showing the electronic ballast 100 in accordance with one of the concepts of the present invention. The AC voltage source 102 provides the power source of the entire circuit. However, since the power source required for the subsequent circuit is a DC power source, the AC power output from the AC voltage source 1〇2 must be rectified to DC power via the rectifier 104. Transfer to subsequent circuits. Then, by the rapid switching of the inverter 108, the DC voltage output from the rectifier 1〇4 can be switched to the frequency-frequency square wave voltage. In the resonant circuit 11〇, the inductance and the capacitance τ are used to generate the resonance effect. When the high-frequency square wave voltage outputted by the inverter 1〇8 is filtered by the resonant impedance, it will be at the load end. 2 Up and down 'now close to the sine wave voltage and current, to supply the fluorescent lamp load - need. In addition, the resonant circuit u〇 can generate a sufficiently high lamp starting voltage across the load before the fluorescent lamp load is started, so that the lamp enters the lighting state. The power factor corrector 106 is coupled to a DC-to-DC converter circuit after the rectifier 1〇4 to accommodate different power requirements of the load. In order to control the switching timing of the switch, the energy storage circuit stores and releases the energy, thereby changing the input power and current waveform, so that the input current waveform can follow the waveform of the input voltage. Through proper operating procedures, the waveform and size of the input current of the 13 1310197 can be accurately controlled to achieve the function of power factor correction and voltage regulation. According to the experimental result 'after adding the power factor correction circuit 106 to the circuit of the electronic ballast i ' ', the harmonic distortion can be suppressed to almost no existence, the power factor is almost close to one, and the input power and load are allowed to be quite large. Within the scope of the change. - wherein the power factor corrector ι 6 proposed in the embodiment of the present invention operates in a discontinuous current mode, that is, the power factor corrector 1 不 6 does not forcibly control the current flowing through the circuit elements. The magnitude of the change allows the number of circuit components in the corrector to be minimized, and the function of power factor correction and voltage regulation can still be achieved. Therefore, an electronic ballast with a non-continuous performance current effect corrector is particularly suitable for applications requiring low production costs. The following series of various embodiments are presented to illustrate circuit aspects that achieve the objectives of the present invention. . Fig. 2 is a circuit diagram showing an electronic ballast in accordance with a first embodiment of the present invention. The power supply of this electronic ballast is provided by an AC voltage source 2〇2. The AC power supply provided by the AC voltage source filters the high frequency noise through a filter consisting of a filter-inductor 204 and a filter capacitor 2〇6 to ensure the quality of the power supply. The filtered AC power is then fed to a half-wave rectifier consisting of a first rectifying diode 212 and a second rectifying diode 214. An inverter composed of a first switching element 232 and a second switching element 234 is connected in parallel with the half-wave rectifier, wherein the first switching element 232 and the second switching element 234 can be, for example, a gold-oxygen half field effect transistor. The switching element such as (m〇sfet) is realized, so that the first switching element 232 and the second switching element 234 are represented by an equivalent circuit of a switch plus 9 1310197-transistor in the figure. Therefore, as can be seen from FIG. 2, the half-wave rectifier composed of the first-rectifying diode 2i2 and the second rectifying diode 214 is connected in parallel with the first switching element 232 having the equivalent diode and The second switching element 234 can actually implement the function of a full wave filter.
本電路中的共振電路是由一第一楷振電容242、一譜振 電感244以及一第二諧振電容⑽所組成。其中,諧振電 感244的兩端分別與第—譜振電容242及第二諸振電容μ 串聯H振電容242的另_端則連接於第—整流二極 體212與第二整流二極體214之間’以及第二諧振電容⑽ 的另一端則連接於第一開關元件232及第二開關元件234 之間。第一負载電容246的兩端係用以與螢光燈負載252 並聯。 另外,還有一儲能電容216與整個半波整流器並聯、 —回授電容222與半波整流器中的第一整流二極體212並 聯。 如同之前所述,第一整流二極體212及第二整流二極 體214所連接組成之半波整流器與第一開關元件232及第 二開關元件234所連接組成之換流器互相並聯後,能夠得 到全波整流的效果,因此,第一整流二極體2丨2之負極能 夠k供一經签流過後的正電壓。又因為此半波整流器與一 儲能電容216並聯,使第一整流二極體212之負極能夠提 供一較為平穩之直流正電壓。 在本電路中,會有另外的控制電路(未繪示於圖式中) 10 1310197 控制著第一開關元件232及第二開關元件234的切換。一 般來說,第一開關元件232及第二開關元件234會以互相 反相的方式快速切換,以於其兩者之中間連接處輸出高頻 方波電壓。此间頻方波電壓為由第一譜振電容、諧振電感 以及第二諧振電容所組成之共振電路諧振濾波之後,便能 夠在負載252的兩端產生近似於正弦波的電壓及電流。 其中’當第二開關元件234在進行切換動作的瞬間, 會引發大電流流經共振電路及第二開關元件234,且此大電 流會較滤波電路所輸出之電流為大,所以除了渡波電路所 輸出的電抓以外’儲能電容216也會經由回授電容η〗釋 放出所儲存之電能以支援通過第二開關元# 234之大電 流,並同時對回授電容222充電。其中,因為濾波電路的 輸出端係直接與共振電路連接,不會經過任何之儲能元 件、,所以it波電路所輪出之電流會具有—般的變化幅度, 以達成不連續模式’並節省了儲能元件的成本。 接著田!個電路到達一個平衡時,滤波電路所輸出 之電流會大於流經共振電路的電流,此時,除了第一整流 二極體212會導通之外,回授電容222也會將所儲存的電 b傳送回儲此電谷216。透過如此的電能轉移動作,可以將 電路的功率因數維持在—定的程度。 。第3圖输示了符合本發明之第二實施例之電子式安定 器之電路圖。f 3圓所示之電路圖係由第2圖所示之電路 圖變化而來中是將第2圖所示電路中的回授電容222 移除’並加入另一回授電容322,其中回授電容322與由第 1310197 —諧振電容242、諧振電感244以及第二諧振 屯合* 246所細 成的共振電路並聯。 如此,當流經共振電路的電流較大時, ^ ^^ Μ對回授 • ^ 322充電,當濾、波電路所輸出的電流較大時,回授電 容322可經由第-整流二極體212將電能轉移給儲能=容 ' 216 ’以達成能量轉移的目的。 第4圖繪示了符合本發明之第三實施例之電子式安定 _ 器之電路圖。與前述之電路比較起來,本電路係採用了不 同種類的整流電路及共振電路。在本電路中,多加入了由 —第二整流二極體412及一第四整流二極體4Μ所串聯而 成的半波整流器,並與原本由第一整流二極體212及第二 整流二極體214所串聯而成之半波整流器並聯成為一全波 整流器。另外,共振電路是由一第一諧振電容442、一諧振 電感444以及一第二諧振電容446所組成,其中第一諧振 電容442之兩端分別與諧振電感444及一第二回授電容424 _ 串聯,而諧振電感444之另一端則連接於第一開關元件232 及第二開關元件234之間’第二回授電容424之另一端則 、.連接於第二整流二極體412及第四整流二極體414之間。 —第二諧振電容446之一端連接於第二回授電容424及第 —諧振電容442之間’另一端則與第二整流二極體214及 第四整流二極體414的正極連接。負載252與第二諧振電 容546互相並聯。另外,一第一回授電容422之一端連接 於第一開關元件232及第二開關元件234之間,另一端則 連接於第一整流二極體212及第二整流二極體214之間。 12 1310197 在此種電路組態中’由第一諧振電容442、諧振電感 444及第二諧振電容446所組成之共振電路,配合第一開關 疋件232及第二開關元件234的快速切換一樣可提供負載 252所需之正弦電壓及電流。其中,當第二_元件… 在切換的瞬間引發大電流時,第-回授電容422可同時儲 能,並在達到平衡狀態時,將所儲電能透過第—整流二極 體m轉移給儲能電容216,達到功因修正即穩壓之目的。 另卜-第一回授電谷424的作用與第一回授電容422的作 用相同,但其是於第-開關元件232切換時的瞬間進行儲 能。同樣地,因為濾波電路係直接地與由第一回授電容422 及第二回授f容424所組成之功因修振電路連接,所以由 濾波電路所輸出的電流會是不連續的。 第5圖繪不了符合本發明之第四實施例之電子式安定 器之電路圖。此電路係由第4圖所示之電路變化而來,其 中,回授電谷之連接方式有所不同。在本電路中,一第一 回,電容522之-端連接於第一諧振電容442及第二譜振 電谷446之間,另一知則連接於第一整二 二整流二極…間。一第二回授電容二: 於第-開關元件232及第二開關元件234之間,另一端則 連接於第三整流二極體412及第四整流二極體414之間。 雖然連接方式有所不同,但第—回授電容522及第二回授 電容524於電路中所產生之功能會分別與第4圖中所示之 第一回授電容422及第二回授電容424相同。 第6圖綠不了符合本發明之第五實施例之電子式安定 13 1310197 器之電路圖。此電路係由第4所示之電路變化而來。在第6 圖中,係將第4圖中之第一回授電容422及第二回授電容 424合併為一回授電容622 ’因此,回授電容622之一端連 接於第一整流二極體212及第二整流二極體214之間,另 一端連接於第一諧振電容442及第二諧振電容446之間, 且回授電容622的電容值可為第一回授電容422及第二回 授電容424電容值的總和。另外,全波整流器也被簡化為 僅剩第一整流二極體212及第二整流二極體214之半波整 流器,但配合第一開關元件232及第二開關元件234所内 含之等效二極體,一樣可達到全波整流的效果,並再進一 步地達到節省元件數量的目$。本電路與第4圖所示電路 可得到相同的功能與效果。 第7圖緣示了符合本發明之第六實施例之電子式安定 器之電路圖。此電路係由第6所示之電路變化而來。在第7 圖中,共振電路係改為由_第一譜振電容如、 744以及一第二諧振電衮7仏上、^ 电‘次 谷746所組成,其中諧振電感744 之兩端分別與第-諧振電容742之及第二譜振電容746之 一端串聯’而第-諧振電容742之另一端則連接 關元件232及第二開關元件 1 Μ & 1干以之間’第二譜振電容746 之另一端則與第二整流-揣Μ 芷机—極體214之正極連接。 载252 —樣與第二諧振電 負 拉古々女此吩々 46並聯。雖然共振電路之連 接方式有些許之不同,但本電路與第6圖所示 = 到同樣之功能與效果。 電路可達 第8圖繪示了符合本發明 之第七實施例之電子式安定 1310197 器之電路圖。此電路係可視為第2圖及第6圖所示電路之 結合’其中,便是將第2圖中所示之回授電容222加裝至 第6圖所不之電路中,並且多加入與第二整流二極體214 並聯之-回授電容822。其中,為配合回授電容似的加 入必/頁將第上谐振電容446原本連接至第二整流二極體 '214之正極之端點改連接至第二整流二極體之負極。 在本電路中’由於回授電容222以及回授電容防的 籲加入,增加了回授電容的儲能容量,也使得本電路之功因 G正效果更為顯者。其中,回授電容M2會於第—開關元 牛2切換的瞬間進行儲能,回授電容會於第二開關 . 0換的瞬間進行儲能’而回授電容622則是不认 广開關元件232或第二開關元件234切換的瞬= 進行儲能的動作。 曰 最後要特別說明的是’在上面所列舉的實施例當中, 際皆是以電容及電感元件的組合來達成,但是在實 u 也可使用壓電變壓器來實現共振電路的作用。 以限月已以一較佳實施例揭露如上’然其並非用 .. Α 明’任何熟習此技藝者’在不脫離本發明之 範圍内,當可作各種之更動與潤飾,因此本發明之; &圍當視後附之中請專利範圍所界定者為準。 【圖式簡單說明】 優點與貫施例 A為讓本發明之上述和其他目#、特徵、 能更明顯易懂’所附圖式之詳細說明如下: 15 1310197 第1圖為#人士 第2圖主 明實施例之電子式安定器之架構圖。 路圖 。 為符合本發明第-實施例之電子式安定器之電 路圖。W為付合本發明第二實施例之電子式安定器之電 路圖 第圖為符纟本發明第三實施例之電子式安定 器之電 第5圖 路圖。’夺°本發明第四實施例之電子式安定器之電 第6圖為符合本發 路圖 明第五實施例之電子式安定 器之電 路圖 第7圖為符合本發明第六實施例之電子式安定 器之電 路圖。Η為符合本發明第七實施例之電子式安定器之電 【主要元件符號說明】 ί〇〇 :電子式安定器 104 :整流器 108 :換流器 112 :負載端 204 ··濾波電感 212 :第一整流二極體 102 :交流電壓源 1〇6 :功因修正器 110 :共振電路 202 :交流電壓源 2 〇 6 .渡波電容 214.第二整流二極體 16 1310197 216 :儲能電容 222 :回授 232 :第一開關元件 234 :第二 242、442、742 :第一諧振電 244、444 ’ 容 246、446、746 :第二諧振電252 :負載 容 322、622、822 :回授電容 412 :第三 414 :第四整流二極體 422、522 424、524 :第二回授電容 電容 開關元件 7 4 4 .諸振電感 整流二極體 第一回授電容 17The resonant circuit in the circuit is composed of a first oscillating capacitor 242, a spectral inductor 244 and a second resonant capacitor (10). The two ends of the resonant inductor 244 and the first spectral capacitor 242 and the second resonant capacitor μ are connected to the first rectifier diode 212 and the second rectifier diode 214. The other end between the 'and the second resonant capacitor (10) is connected between the first switching element 232 and the second switching element 234. Both ends of the first load capacitor 246 are used in parallel with the fluorescent lamp load 252. In addition, a storage capacitor 216 is coupled in parallel with the entire half-wave rectifier, and the feedback capacitor 222 is coupled in parallel with the first rectifier diode 212 in the half-wave rectifier. As described above, after the half-wave rectifier composed of the first rectifying diode 212 and the second rectifying diode 214 is connected in parallel with the inverter composed of the first switching element 232 and the second switching element 234, The effect of full-wave rectification can be obtained, and therefore, the negative electrode of the first rectifying diode 2丨2 can supply a positive voltage after being checked. Moreover, because the half-wave rectifier is connected in parallel with a storage capacitor 216, the negative electrode of the first rectifying diode 212 can provide a relatively stable DC positive voltage. In this circuit, there will be another control circuit (not shown) 10 1310197 controls the switching of the first switching element 232 and the second switching element 234. In general, the first switching element 232 and the second switching element 234 are quickly switched in an inverted manner to output a high frequency square wave voltage at the intermediate junction of the two. After the inter-frequency square wave voltage is resonantly filtered by the resonant circuit composed of the first spectral capacitance, the resonant inductance, and the second resonant capacitor, a voltage and current similar to a sine wave can be generated at both ends of the load 252. Wherein, when the second switching element 234 is in the switching operation, a large current is caused to flow through the resonant circuit and the second switching element 234, and the large current is larger than the current output by the filtering circuit, so in addition to the wave circuit The output of the storage capacitor 216 will also release the stored electrical energy via the feedback capacitor η to support the large current through the second switching element #234, and simultaneously charge the feedback capacitor 222. Wherein, because the output end of the filter circuit is directly connected to the resonant circuit and does not pass through any energy storage component, the current that the it wave circuit rotates has a general variation range to achieve a discontinuous mode' and saves The cost of energy storage components. Then Tian! When the circuits reach a balance, the current output by the filter circuit will be greater than the current flowing through the resonant circuit. At this time, in addition to the first rectifier diode 212 being turned on, the feedback capacitor 222 will also store the stored electricity b. The electricity valley 216 is transmitted back to the storage. Through such a power transfer action, the power factor of the circuit can be maintained at a certain level. . Fig. 3 is a circuit diagram showing an electronic ballast in accordance with a second embodiment of the present invention. The circuit diagram shown by the f 3 circle is changed from the circuit diagram shown in FIG. 2 to remove the feedback capacitor 222 in the circuit shown in FIG. 2 and added another feedback capacitor 322, wherein the feedback capacitor 322 is connected in parallel with a resonant circuit formed by a 1310197 - resonant capacitor 242, a resonant inductor 244, and a second resonant junction * 246. Thus, when the current flowing through the resonant circuit is large, ^^^ Μ charges the feedback ^ ^ 322, and when the current output by the filter and wave circuit is large, the feedback capacitor 322 can pass through the first-rectifying diode 212 transfers electrical energy to energy storage = capacity '216' for energy transfer purposes. Fig. 4 is a circuit diagram showing an electronic stabilizer according to a third embodiment of the present invention. Compared with the above circuit, this circuit uses different types of rectifier circuits and resonant circuits. In the circuit, a half-wave rectifier formed by connecting the second rectifying diode 412 and the fourth rectifying diode 4 串联 in series is added, and the first rectifying diode 212 and the second rectifying are originally used. The half-wave rectifiers in which the diodes 214 are connected in series are connected in parallel to form a full-wave rectifier. In addition, the resonant circuit is composed of a first resonant capacitor 442, a resonant inductor 444, and a second resonant capacitor 446, wherein the two ends of the first resonant capacitor 442 are respectively coupled to the resonant inductor 444 and a second feedback capacitor 424 _ In series, the other end of the resonant inductor 444 is connected between the first switching element 232 and the second switching element 234. The other end of the second feedback capacitor 424 is connected to the second rectifying diode 412 and the fourth. Between the rectifier diodes 414. One end of the second resonant capacitor 446 is connected between the second feedback capacitor 424 and the first resonant capacitor 442. The other end is connected to the positive terminals of the second rectifying diode 214 and the fourth rectifying diode 414. The load 252 and the second resonant capacitor 546 are connected in parallel with each other. In addition, one end of the first feedback capacitor 422 is connected between the first switching element 232 and the second switching element 234, and the other end is connected between the first rectifying diode 212 and the second rectifying diode 214. 12 1310197 In such a circuit configuration, a resonant circuit composed of a first resonant capacitor 442, a resonant inductor 444 and a second resonant capacitor 446 can be used in conjunction with the fast switching of the first switching element 232 and the second switching element 234. The sinusoidal voltage and current required for load 252 are provided. Wherein, when the second_element... induces a large current at the moment of switching, the first feedback capacitor 422 can simultaneously store energy, and when the equilibrium state is reached, the stored electrical energy is transferred to the storage through the first-rectifying diode m. The capacitor 216 can achieve the purpose of correcting the power. Alternatively, the first feedback valley 424 functions the same as the first feedback capacitor 422, but it is stored at the instant when the first switching element 232 is switched. Similarly, since the filter circuit is directly connected to the power factor repair circuit composed of the first feedback capacitor 422 and the second feedback capacitor 424, the current output by the filter circuit may be discontinuous. Fig. 5 is a circuit diagram showing an electronic ballast in accordance with a fourth embodiment of the present invention. This circuit is changed by the circuit shown in Fig. 4, in which the connection mode of the feedback power valley is different. In the present circuit, for the first time, the end of the capacitor 522 is connected between the first resonant capacitor 442 and the second spectral oscillator valley 446, and the other is connected between the first two diodes. A second feedback capacitor 2 is connected between the first switching element 232 and the second switching element 234, and the other end is connected between the third rectifying diode 412 and the fourth rectifying diode 414. Although the connection manner is different, the functions of the first feedback capacitor 522 and the second feedback capacitor 524 in the circuit are respectively different from the first feedback capacitor 422 and the second feedback capacitor shown in FIG. 424 is the same. Fig. 6 is a circuit diagram of an electronic stabilizer 13 1310197 in accordance with a fifth embodiment of the present invention. This circuit is changed by the circuit shown in FIG. In FIG. 6, the first feedback capacitor 422 and the second feedback capacitor 424 in FIG. 4 are combined into a feedback capacitor 622. Therefore, one end of the feedback capacitor 622 is connected to the first rectifying diode. Between the 212 and the second rectifying diode 214, the other end is connected between the first resonant capacitor 442 and the second resonant capacitor 446, and the capacitance of the feedback capacitor 622 can be the first feedback capacitor 422 and the second back The sum of the capacitance values of the capacitor 424 is given. In addition, the full-wave rectifier is also simplified to a half-wave rectifier in which only the first rectifying diode 212 and the second rectifying diode 214 are left, but the equivalent of the first switching element 232 and the second switching element 234 is included. The diode can achieve the effect of full-wave rectification, and further achieve the goal of saving component count. This circuit and the circuit shown in Figure 4 can get the same functions and effects. Fig. 7 is a circuit diagram showing an electronic ballast in accordance with a sixth embodiment of the present invention. This circuit is changed by the circuit shown in FIG. 6. In Fig. 7, the resonant circuit is composed of a first spectral capacitance such as 744 and a second resonant electrical current 仏7, which is composed of a second valley 746, wherein the two ends of the resonant inductor 744 are respectively One end of the first resonant capacitor 742 and the second spectral resonant capacitor 746 are connected in series, and the other end of the first resonant capacitor 742 is connected to the closed element 232 and the second switching element 1 Μ & The other end of the capacitor 746 is connected to the anode of the second rectifying body-pole 214. Load 252 - and the second resonant electric negative Lagu 々 female this command 46 parallel. Although the connection method of the resonant circuit is slightly different, this circuit and the same function and effect are shown in Fig. 6. Circuit achievable Fig. 8 is a circuit diagram showing an electronic stabilizer 1310197 in accordance with a seventh embodiment of the present invention. This circuit can be regarded as a combination of the circuits shown in FIG. 2 and FIG. 6 , wherein the feedback capacitor 222 shown in FIG. 2 is added to the circuit of FIG. 6 and added. The second rectifying diode 214 is connected in parallel to the feedback capacitor 822. The upper resonant capacitor 446 is originally connected to the anode of the second rectifying diode '214 and is connected to the negative terminal of the second rectifying diode for the purpose of adding the capacitance-like input. In this circuit, due to the feedback of the feedback capacitor 222 and the feedback capacitor, the energy storage capacity of the feedback capacitor is increased, and the positive effect of the circuit is more obvious. Wherein, the feedback capacitor M2 will store energy at the moment when the first switch is switched, the feedback capacitor will be stored at the moment of the second switch. 0 change, and the feedback capacitor 622 is the open switch component. The 232 or the second switching element 234 switches the instantaneous = energy storage action.曰 Finally, it is specifically stated that 'in the above-exemplified embodiments, the combination of capacitors and inductors is used, but piezoelectric transformers can also be used to realize the function of the resonant circuit. The present invention has been disclosed in a preferred embodiment as described above. However, it is not intended to be used by any person skilled in the art without departing from the scope of the invention. ; & and the scope of the patent is subject to the scope of the patent. BRIEF DESCRIPTION OF THE DRAWINGS Advantages and embodiments A are for the purpose of making the above and other objects and features of the present invention more obvious and easy to understand. The detailed description of the drawings is as follows: 15 1310197 Figure 1 is #人第2 The architecture diagram of the electronic ballast of the embodiment is shown. Road map. A circuit diagram of an electronic ballast in accordance with the first embodiment of the present invention. W is a circuit diagram of an electronic ballast in accordance with a second embodiment of the present invention. The figure is a circuit diagram of the electronic ballast of the third embodiment of the present invention. Figure 6 is a circuit diagram of an electronic ballast according to a fifth embodiment of the present invention. Fig. 7 is an electron according to a sixth embodiment of the present invention. Circuit diagram of the ballast. Η is the electric ballast according to the seventh embodiment of the present invention. [Main component symbol description] 〇〇: electronic ballast 104: rectifier 108: inverter 112: load terminal 204 · filter inductor 212: A rectifying diode 102: AC voltage source 1〇6: power factor corrector 110: resonant circuit 202: AC voltage source 2 〇6. Wave capacitor 214. Second rectifying diode 16 1310197 216: storage capacitor 222: Feedback 232: first switching element 234: second 242, 442, 742: first resonant electric 244, 444 'capacity 246, 446, 746: second resonant electric 252: load capacity 322, 622, 822: feedback capacitance 412: third 414: fourth rectifying diode 422, 522 424, 524: second feedback capacitive and capacitive switching element 7 4 4 . vibrating inductor rectifying diode first feedback capacitor 17