TWI309515B - Feeder link configurations to support layererd modulation for digital signals - Google Patents

Feeder link configurations to support layererd modulation for digital signals Download PDF

Info

Publication number
TWI309515B
TWI309515B TW092129629A TW92129629A TWI309515B TW I309515 B TWI309515 B TW I309515B TW 092129629 A TW092129629 A TW 092129629A TW 92129629 A TW92129629 A TW 92129629A TW I309515 B TWI309515 B TW I309515B
Authority
TW
Taiwan
Prior art keywords
signal
feeder link
upper layer
satellite
layer
Prior art date
Application number
TW092129629A
Other languages
Chinese (zh)
Other versions
TW200423585A (en
Inventor
C Chen Ernest
Santoru Joseph
R Anderson Paul
Original Assignee
Hughes Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/844,401 external-priority patent/US7209524B2/en
Application filed by Hughes Electronics Corp filed Critical Hughes Electronics Corp
Publication of TW200423585A publication Critical patent/TW200423585A/en
Application granted granted Critical
Publication of TWI309515B publication Critical patent/TWI309515B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

1309515 玖、發明說明: 【發明所屬之技術領域】 本發明相關於用於數位信號(尤其是使用層狀調變的信 號)的饋送器鏈路的系統及方法。 相關申請案 本申請案主張美國臨時專利申請案第60/421,328號的權 利’該申請案由Paul r· Anders on等人於2002年10月25曰提 出申清’名稱為”Feeder Link Configurations to Support Layered Modulation for Digital Signals(支援用於數位信號 之層狀調變之饋送器鏈路組態),,。 本申請案亦為以下申請中及共同讓渡的美國專利申請案 的部分連續申請案,該申請案以引用方式併入本文: 專利申請案:申請序號09/844,401,申請曰:2001年4月 27 日’申請人:Ernest C. Chen,名稱:"Layered Modulation for Digital Signals(數位信號之層狀調變)",代理人檔案號 碼:PD-200181 (109.51-US-01)。 本申請案亦相關於以下申請中及共同讓渡的美國專利申 請案,該申請案以引用方式併入本文: 專利申請案:申請序號10/305,490,申請曰:2002年11 月 26日’申請人:Patrick J. Loner’ 名稱:"Systems and1309515 TECHNICAL FIELD OF THE INVENTION The present invention relates to systems and methods for feeder links for digital signals, particularly those that use layered modulation. RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Patent Application Serial No. 60/421,328, the entire disclosure of which is assigned by Support Layered Modulation for Digital Signals, which is a part of a continuous application for a US patent application in the following application and co-transfer This application is incorporated herein by reference: Patent Application: Application No. 09/844,401, Application: April 27, 2001 'Applicant: Ernest C. Chen, Name: "Layered Modulation for Digital Signals (Digital) The layered modulation of the signal) ", the agent's file number: PD-200181 (109.51-US-01). This application is also related to the following application and the commonly assigned US patent application, the application is hereby incorporated by reference. Ways to incorporate this article: Patent Application: Application No. 10/305,490, Application: November 26, 2002 'Applicant: Patrick J. Loner' Name: "Systems and

Methods for Sharing Uplink Bandwidth Among Satellites in a Common Orbital Slot(用以在共同軌道插辑中之衛星間政 同上行鏈路頻寬之系統及方法代理人檔案號碼: PD-201076。 88886>971107.doc -6- 1309515 【先前技術】 數位信號通信系統已使用於多種不同領域中,包括數位 電視信號傳輸(地面或衛星),由於發展多種不同數位信號通 信系統及服務’而產生對增加資料輸送量及附加服務的需 求。但是,需要汰換現存舊式硬體(諸如發射器及接收器等) 時’較難實施舊系統改良及新服務,而新系統及服務在可 利用現存舊式硬料較有利。在無線通信的領域中,藉由 電磁頻譜的有限可利用性而使此原則更明_,因此,不可 月《3 (或至少不實際)僅在新頻率傳送加強型或附加資料。 增加頻譜容量的傳統方法係移至較高階調變,諸如從正 交移相鍵控(QPSK)移至八移相鍵控(8pSK)或十六正交 調變06QAM)。不幸地,QPSKM器無法將傳統8ps = wqam信號解調變’結果,使用QpSK接收器的舊式用戶為 求繼續接收任何利用8PSKW6QAM調變所傳送的信號,則 必須將他們的接收器升級。 —有利做法係,傳送信號的系統及方法適應加強及增加的 資料輸送#而無需額外頻率。此外,對於加強及增加輸送 重信號有利做法係使新接收器與舊式接收器回溯相容。更Methods for Sharing Uplink Bandwidth Among Satellites in a Common Orbital Slot (System and Method for Inter-Satellite Uplink Bandwidth in Common Orbital Interpolation) Agent Profile Number: PD-201076. 88886>971107.doc - 6-1309515 [Prior Art] Digital signal communication systems have been used in a variety of different fields, including digital television signal transmission (terrestrial or satellite), due to the development of a variety of different digital signal communication systems and services, resulting in increased data throughput and additional The demand for services. However, when it is necessary to replace existing old hardware (such as transmitters and receivers), it is more difficult to implement old system improvements and new services, and new systems and services are more advantageous in the use of existing old hard materials. In the field of wireless communication, this principle is made clear by the limited availability of the electromagnetic spectrum. Therefore, it is not possible to transmit enhanced or additional data only at new frequencies on a monthly basis (or at least not practically). Traditional methods are moved to higher order modulation, such as from quadrature phase shift keying (QPSK) to eight phase shift keying (8pSK) or ten Quadrature modulation 06QAM). Unfortunately, the QPSKM cannot demodulate the traditional 8ps = wqam signal. As the legacy users of the QpSK receiver continue to receive any signals transmitted using the 8PSKW6QAM modulation, their receivers must be upgraded. - Advantageously, the system and method of transmitting signals accommodates enhanced and increased data transmission without additional frequency. In addition, it is advantageous to enhance and increase the transmission of heavy signals to make the new receiver compatible with legacy receivers. more

有利做法係’线及方法允許使—來源(與舊式發射 的傳輪信號升級。 J 、、已提議可利用層狀調變信號(上下層信號皆非相干地傳 送)q足此等需求。此類層狀調變系統容許具回湖相容性 的較南#訊輸送量。然而’甚至不f要回射目容性(諸如使 全新系、·充)時’因為對於一已知輸送量,層狀調變所需 88886-971107.doc 1309515 、一皮‘放大态(trave川ng wave tube amp】ifierTwta)波 峰功率顯著低於傳統8PSK5iU6QAM調變袼式所需的斯八 波峰功率,因此層狀調變仍較有利。 層狀調變藉由使㈣和衛星高功率放A||在—下行鍵路 上發送干擾數位載波而有效率地使用頻寬。但是,若各載 在”自已個別頻寬部分(即未干擾)經由一饋送器鍵路(即 仃鏈路)傳送至衛星,則所需的饋送器鏈路頻寬會遠多於 所需的下行鏈路頻寬。 因此,需要用於饋送器鏈路組態以支援層狀調變的系統 或方法,本發明滿足此等需求。 【發明内容】 本發明中揭示四種不同技術,可茲利用以支援在一衛星 下行鏈路上使用層狀調變(見美國專利申請案序號 9/844,401) ’衛星通信頻帶幾乎始終以成對的大體上等頻 f(—饋送H鏈路(即上行鏈路)頻寬與—制下行鍵路頻 予以配置°例如’在—區域中的廣播衛星服務(BSS)的 二形’將饋送器鏈路被配置在173至178咖,而將對應下 仃鏈路配置在12 2至12 7 gHz。 &quot; 層狀凋變藉由使用飽和衛星高功率放大器在一下行鏈库 上發送干擾數位載波而有效率地使用頻寬。若各載波在姜 =己個別頻寬部分(即未干擾)上傳至衛星,則所需的饋送罗 鏈路頻寬會遠多於所需的下行鏈路頻寬。因&amp;,本發明; :用於衛星饋送器鏈路的系統及方法,其利用大體… 下仃鏈路頻寬相同或較少的饋送器鏈路頻寬。 88g86-97H07.doc 13 〇9515 在該衛星饋送器錘跋μ ά 鍵路上使用饋送器鏈路點波束天線、使 所窄饋送器鏈路天後油击眘 、、良皮束寬I乂照明個別衛星及使用較 同步調變皆已在各種場人裎+ &gt; Μ^ % 0麩出建議以作為用以上傳饋送廣 播k號至衛星之機制。 M . 一疋,在此等情形中,未如本發明 數個實施例般,裎嗜弊,矣 挺4饋送盗鏈路點波束天線 層狀調變下行鏈路。 非相干 本發明一實施例中,一, 種饋迗器鏈路系統包括一第一接 器,其使用一第一衛星詢复 J α 益 C transponder)的一第 _ 送器鏈路點波束天線,以接 _ 钱收一第一饋达器鏈路信號; °亥第一衛星詢答器係用以將— 町層狀調變栺號的一上層信號 一 U y 一整合式接收器’解碼器(ird)。該系統包括一第 :接收器’其使用一第二衛星詢答器的第二饋送器鏈路點 L束天線,以接收一第二饋送器鏈路信號·該第二衛星詢 =器係用以將該層狀調變信號的一下層信號傳送給該至少 — IRD。該第—饋送器鏈路點波束天線從—第—覆蓋區域發 射,而該第二饋送器鏈路點波束天線從異於該第一覆蓋區 域的一第二覆蓋區域發射,並且該第二饋送器鏈路信號再 使用該第一饋送器鏈路信號的頻譜。 本發明第二實施例中,一種馈送器鏈路系統包括一第一 純器’用以在一第一衛星接收一第—衛星詢答器的一第 一饋送器鏈路信號,該第一衛星詢答器係用以將一層狀調 變信號的一上層信號傳送給至少一整合式接收器/解碼器 (IRD)。該系統進一步包括一第二接收器,用以在一第二衛 星接收一第二衛星詢答器的一第二饋送器鏈路信號,二= 88S86-97H07.doc -9- 1309515 =星詢答器係用以將該層狀調變信號的一 給该至少-則。該第二饋送器鏈路信號再使用1达 器鏈路信號的頻帶,並且 ^弟—饋送 — 儿且該第一衛星及該第二衛 以谷許再使用該頻帶之—執道分隔。 〃、有足 本發明第二實施例中,—種饋送器鏈路系統包括 調變接收器/解調變器,用以收比七A 凡匕括一層狀 路信號的一上層饋送器鏈路信號及一 :,鏈 解調變。一第一調變琴 送器鏈路信號 支态5周變该上層饋送器鏈路 生—層狀調變下行鏈路作號 σ,,以產 5虎的一上層k號給至少一整人彳 接收器/解碼器(则)。_第二調變器調變該 = 信號,以產生該層妝噌徽饋达鏈路 至少-⑽。 于鍵路信號的—下層信號給該 树明第四實施例中,—種饋送器鏈路系統包括· 接收器/解調變器,用以接收-饋送器鏈路㈣, 亥饋送器鏈路信號解調變成一第-位元流;及-解多 工。,用以將該第一位元流解多工 二你一士 乂弟一位兀流及一第 —兀〜。一第一較低階調變器將該第— 狀調變信號的一上層㈣,以值、“調變成-層 解碼考加、· 至少一整合式接收器/ B ,一第二較低階調變器將該第二位元冷調#成 該層狀調變彳古铼沾 IT S P 々丨L調隻成 m二 層信號,以傳送給該至少―則,該 貝、’路k號包括一較高古 該下層信號的較低階調變,俾㈣饋Γ该上層信號及 送哭鏈踗植* I #使該饋以鏈路信號的-饋 “鏈路頻π不大於該上層信號 路頻帶。 ,尽乜琥的一下行鏈 88886-971107.doc 1309515 【實施方式】 以下較佳實施例的說明中,參照至數個形成其部分的附 圖’其中並舉例說明用以實施本發明的特定實施例;應了 解’不背離本發明的範壽,亦可利用其他實施例及作出數 個組態性的變化。 1.概論 美國申請案序號剛44,4G1說明使用多個非相干載波傳 送數位資訊的技術,該等載波佔用一 RF頻帶或頻道的重疊 部T。此技術在衛星傳輸環境中最有效率,其中干擾載波β 之每-者各通過-分開的行波管放大器(TWAT)。通常可將 ,放大器(取決於該載波所使用的調變類型)飽和操作(通常 最能有效率使用此類衛星式TWTA)。 知用美國申請案序號09/844,4〇1所述技術的複雜地面接 收器可將此等載波之每一者解調變,其中一載波的頻譜可 大體上或完全重疊用㈣送其他載波的頻譜。 將各載波傳送至其個別衛星TWTA的習用技術,係在各载 ,其自己專屬(非干擾)饋送器鏈路頻寬部分傳送各載波。但· 是,因該層狀調變技術使用干擾下行鏈路載波以增益可觀 、頻丸效帛®此右利用此習用技術,則所使用的下行鍵 路頻寬量會明顯少於饋送器鏈路所需頻寬量。 仁疋4乎所有由國際電信聯盟無線通信部門(丨Tu_R)所 -置的係ί生通頻帶中’對饋送器鍵路的頻寬配置相等於 置'、α對應下仃鏈路的頻寬。不用一些方案而在對應下行 鏈路所使用的相同頻寬量中,使該等載波上傳至該衛星, 88886-971107 do&lt; •11- 1309515 無法充分使用下行鏈路配置。 、可抓用本發明說明的數種技術以使饋送器鏈路頻寬要求 減少至使不超過該下行鏈路的頻寬要求。 2.視訊散佈系統 圖1繪示單衛星視訊散佈系統1〇〇的圖式。視訊散佈系統 100包括:一控制中心102,其透過一地面或其他鏈路114與 一上行鏈路中心104通信,並透過一公眾交換電話網路 (PSTN)或其他鏈路12〇與一用戶接收台11〇通信。控制中心 102將節目材料(例如視訊節目 '音訊節目及資料)提供給上 行鏈路中心104並且與用戶接收台11〇協調,以提供計次付 費(PPV)節目服務,包括視訊節目的收費及相關聯解密。 上行鏈路中心104從控制中心102接收節目材料及節目控 制資訊,並使用一上行鏈路天線1〇6及發射器1〇5,將節目 材料及節目控制資訊經由饋送器鏈路信號丨16傳送至衛星 108。衛星1〇8接收且處理此資訊,並使用發射器或詢答器 107,將該視訊節目及控制資訊透過下行鏈路信號1丨8傳送 至用戶接收台110。用戶接收台11〇使用戶外單元(〇du)i 12 接收此資訊,戶外單元112包括一用戶天線及一低雜訊區塊 轉換器(low noise block converter ; LNB)。 在一實施例中,該用戶接收台天線係一 1 8英吋略呈橢圓 的Ku頻帶天線,微呈橢圓係由於LNB(低雜訊區塊轉換器) 的2 2.5度偏離饋入,位元線係用以接收反射自該用戶天線 的信號。偏離饋入使LNB位於不妨礙位置,俾使其未阻礙 天線的任何表面積,而使傳入之微波信號的衰減減至最小。 88886-971107.doc -12- 1309515 為提供較廣的陸地覆蓋範圍、提供額外的頻道或提供每 頻道的額外頻寬,視訊散佈系統1〇〇可包括複數個衛星 1〇8在本發明一實施例中,各衛星包括16個詢答器,其用 以從上行鏈路中,㈣4接收及傳送節目材料及其他控制資 ^ ’並將其提供給用戶接收台m。使用相對於頻道能力的 貝料[縮及多工技術,兩個一起工作的衛星⑽可透過” 個詢答器在15〇個習用(非HDTV)影音頻道上接收及廣播。The advantage is that the 'line and method allow the source to be upgraded with the old-style transmitted transmission signal. J, it has been proposed to use the layered modulation signal (the upper and lower signals are transmitted non-coherently) q. The layered modulation system allows a more southerly traffic volume with backwater compatibility. However, 'even if you want to retrospectively (such as making a new system, charge), because for a known throughput , the layer power modulation required 88886-971107.doc 1309515, a skin 'magnification state (travechuan ng wave tube amp)ifierTwta) peak power is significantly lower than the traditional 8PSK5iU6QAM modulation 所需 type required eight wave power, so the layer The modulating change is still advantageous. The layered modulation effectively uses the bandwidth by transmitting (4) and the satellite high-power A||on-down key to transmit the interfering digital carrier. However, if each is carried in the "self-frequency" The wide portion (ie, undisturbed) is transmitted to the satellite via a feeder key (ie, the 仃 link), and the required feeder link bandwidth is much larger than the required downlink bandwidth. Therefore, it is necessary to use Configured on the feeder link to support layered modulation The present invention satisfies such needs. SUMMARY OF THE INVENTION Four different techniques are disclosed in the present invention that can be utilized to support the use of layered modulation on a satellite downlink (see U.S. Patent Application Serial No. 9/844,401). The 'satellite communication band is almost always configured with a pair of substantially equal frequency f (-feed H link (ie uplink) bandwidth and system downlink frequency). For example, 'in-area' broadcast satellite service The (BSS) dimorphic 'feeder link is configured at 173 to 178 cafés, while the corresponding squat link is configured at 12 2 to 12 7 gHz. &quot; Layered fading by using saturated satellite high power amplifiers Efficiently use the bandwidth by transmitting the interfering digital carrier on the downlink library. If each carrier is uploaded to the satellite in the individual bandwidth part of the ginger (ie, no interference), the required link bandwidth of the feed will be far. More than the required downlink bandwidth. The present invention;: a system and method for a satellite feeder link that utilizes a feed link that has the same or less link bandwidth Bandwidth. 88g86-97H07.doc 13 〇9515 The satellite feeder hammer 跋μ ά uses the feeder link spot beam antenna on the keyway, makes the narrow feeder link after the day, and the good skin beam width I illuminates the individual satellites and uses the synchronous modulation. Various fields 裎+ &gt; Μ^% 0 bran is suggested as a mechanism for uploading the feed broadcast k to the satellite. M. In this case, not as in the several embodiments of the present invention, In a non-coherent embodiment of the invention, in one embodiment, a feeder link system includes a first connector, which uses a first A satellite _ _ _ C transponder) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ An upper layer signal of the layered modulation nickname - U y an integrated receiver 'decoder' (ird). The system includes a first: receiver that uses a second feeder link point L-beam antenna of a second satellite interrogator to receive a second feeder link signal. Transmitting the underlying signal of the layered modulated signal to the at least IRD. The first feeder link spot beam antenna is transmitted from a first coverage area, and the second feeder link spot beam antenna is transmitted from a second coverage area different from the first coverage area, and the second feed The link signal reuses the spectrum of the first feeder link signal. In a second embodiment of the present invention, a feeder link system includes a first multiplexer for receiving a first feeder link signal of a first satellite interrogator at a first satellite, the first satellite The interrogator is configured to transmit an upper layer signal of the layered modulated signal to at least one integrated receiver/decoder (IRD). The system further includes a second receiver for receiving a second feeder link signal of a second satellite interrogator on a second satellite, 2 = 88S86-97H07.doc -9- 1309515 = Star Query The device is configured to give one of the layered modulation signals to the at least one. The second feeder link signal reuses the frequency band of the 1st link signal and is separated from the first satellite and the second satellite. In the second embodiment of the present invention, the feeder link system includes a modulation receiver/demodulation transformer for receiving an upper feeder chain of seven A. The road signal and one: the chain demodulation changes. A first modulation transformer link signal branch state changes to the upper layer feeder link-layered modulation downlink number σ, to produce a tiger's upper layer k number to at least one whole person彳 Receiver/Decoder (then). _ The second modulator modulates the = signal to produce the layer of the 噌 馈 馈 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到The lower layer signal of the key signal is given to the fourth embodiment, and the feeder link system includes a receiver/demodulation transformer for receiving-feeder link (4), the feeder link The signal demodulation becomes a first-bit stream; and - the solution is multiplexed. To use the first bit stream to solve multiplexes. You are a sergeant, a slut and a squat. A first lower-order modulator converts an upper layer (four) of the first-order modulation signal by a value, "transforms into a layer decoding, adds at least one integrated receiver / B, and a second lower order The modulator cools the second bit into the layered modulation, and the IT SP 々丨L adjusts to the m second layer signal to be transmitted to the at least ―, the shell, the 'road k number Including a higher order modulation of the lower layer signal, 俾 (4) feeding the upper layer signal and sending the crying chain * * I # so that the feed signal is fed-to-link frequency π is not greater than the upper layer Signal path band. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; It should be understood that 'there is no departure from the scope of the invention, and other embodiments may be utilized and several configuration changes may be made. 1. Introduction The US application number just 44, 4G1 illustrates a technique for transmitting digital information using a plurality of non-coherent carriers occupying an RF band or overlapping portion T of a channel. This technique is most efficient in satellite transmission environments where each of the interfering carriers β passes through a separate-divided traveling wave tube amplifier (TWAT). It is usually possible to saturate the amplifier (depending on the type of modulation used by the carrier) (usually the most efficient use of such a satellite TWTA). It is known that a complex terrestrial receiver of the technique described in U.S. Application Serial No. 09/844, 4-1 can demodulate each of these carriers, wherein the spectrum of one carrier can be substantially or completely overlapped (4) for other carriers. Spectrum. The conventional technique of transmitting each carrier to its individual satellite TWTA is to carry each carrier in its own dedicated (non-interfering) feeder link bandwidth portion. However, because the layered modulation technique uses the interfering downlink carrier to gain considerable gain, the frequency of the downlink is less than the feeder chain. The amount of bandwidth required for the road. Renqi 4 is all set by the International Telecommunications Union's Wireless Communications Department (丨Tu_R), the bandwidth of the feeder key is set to be equal to the bandwidth of the lower link. . These carriers are uploaded to the satellite in the same amount of bandwidth used for the corresponding downlink without some scheme, 88886-971107 do&lt; •11- 1309515 The downlink configuration cannot be fully utilized. Several techniques described herein can be utilized to reduce the feeder link bandwidth requirements to such that the bandwidth requirements of the downlink are not exceeded. 2. Video Dispersion System Figure 1 shows a diagram of a single satellite video distribution system. The video distribution system 100 includes a control center 102 that communicates with an uplink center 104 via a ground or other link 114 and receives it with a subscriber via a public switched telephone network (PSTN) or other link 12 Taiwan 11 〇 communication. The control center 102 provides program material (e.g., video program 'audio programs and materials) to the uplink center 104 and coordinates with the user receiving station 11 to provide pay-per-view (PPV) program services, including video program charging and related Unlocked. The uplink center 104 receives program material and program control information from the control center 102, and transmits the program material and program control information via the feeder link signal 丨16 using an uplink antenna 1〇6 and a transmitter 〇5. To satellite 108. The satellite 1 8 receives and processes this information and transmits the video program and control information to the user receiving station 110 via the downlink signal 1 使用 8 using a transmitter or interrogator 107. The user receiving station 11 receives the information using the outdoor unit (i), which includes a user antenna and a low noise block converter (LDB). In one embodiment, the user receiving station antenna is a 18-inch, slightly elliptical Ku-band antenna, and the micro-elliptical system is offset by a 2.5-degree offset of the LNB (low-noise block converter). The line is used to receive signals reflected from the user antenna. Off-feeding places the LNB in an unobstructed position so that it does not obstruct any surface area of the antenna, minimizing the attenuation of incoming microwave signals. 88886-971107.doc -12- 1309515 In order to provide a wider range of terrestrial coverage, provide additional channels or provide additional bandwidth per channel, the video distribution system 1 may include a plurality of satellites 1 〇 8 in an implementation of the invention In the example, each satellite includes 16 interrogators for receiving and transmitting program material and other control resources from the uplink, (4) 4 and providing them to the user receiving station m. Using the shell material [shrinking and multiplexing technology with respect to channel capability, two satellites working together (10) can be received and broadcast on 15 (non-HDTV) video channels.

雖然文中所揭示之本發明將引用以衛星為基礎的視訊散 佈系統1GG力&quot;X說明,但本發明亦可透過廣播手段、有線電 視或其他手段利用以陸地為基礎的節目資訊傳輸加以實 作此外,不用背離本發明欲設定的範圍,亦可按需要在 士上述之控制中心1〇2與上行鏈路中心1〇4之間集體配置不 同功能。 ,雖然上述相關的實施例中傳遞至用戶122的節目材料係 視訊(及音訊)節目材料(諸如一影片),但上述方法亦可用以、 傳遞包括純音訊資訊或其他資料的節目材料。 2.1上行鏈路組態 圖2繪示用於單一衛星108詢答器的典型上行鍵路組態的 方塊圖’說明如何藉由控制中心1〇2及上行鏈路中心1〇4, 將視訊節目材料上傳至衛星1Q8。圖2繪示三個視訊頻道(其 可分別利用一或多個音訊頻道加以擴大,用於高保真度音 樂、聲音軌道資訊,或用於傳送外國語言的副音訊節目)、 -來自節目表子系統2〇6的資料頻道,及來自一電腦資料來 源208的電腦資料資訊。 88886-9711〇7.do&lt; -13- 1309515 典型視訊頻道係由視訊封料砧α +λ .Although the invention disclosed herein will cite a satellite-based video distribution system, the invention can also be implemented by means of broadcast, cable television or other means using terrestrial-based program information transmission. In addition, different functions may be collectively configured between the control center 1〇2 and the uplink center 1〇4 as described above without departing from the scope to be set by the present invention. Although the program material delivered to the user 122 in the above related embodiments is video (and audio) program material (such as a movie), the above method can also be used to deliver program material including pure audio information or other materials. 2.1 Uplink Configuration Figure 2 shows a block diagram of a typical uplink configuration for a single satellite 108 interrogator. How to display a video program via Control Center 1〇2 and Uplink Center 1〇4 Material uploaded to satellite 1Q8. 2 shows three video channels (which can be expanded by one or more audio channels, respectively, for high fidelity music, sound track information, or sub-audio programs for transmitting foreign languages), - from the program table The data channel of System 2〇6 and the computer data information from a computer data source 208. 88886-9711〇7.do&lt;-13- 1309515 The typical video channel is composed of video seal anvil α +λ.

類似壓縮方案,但此類壓縮並非必要, 但亦可使用實作其他編碼技術 由一編碼器(未示)而附屬於一 並非必要’或由電腦資料來源 中的電腦程式來執行(例如,照片資料通常在傳輸前先壓縮 成.TIF檔案或*.jpg槽案)。由編碼器202編碼後,藉由與各 來源200相關聯的封包化器2〇4A_2〇4F (下文統稱為封包化 器204)將信號轉換成資料封包。 使用來自系統時鐘214(SCR)及來自條件存取管理員21〇 的參照而組譯資料封包,條件存取管理員21〇將服務頻道識 別項SCID提供給封包化器以供產生資料封包過程中使用, 然後將此等資料封包多工成序列資料並加以傳送。 2.2廣播資料流格式及協定 圖3 A繪示一代表性資料流。第一封包3〇2包括來自視訊頻 道1的資訊(例如來自第一視訊節目來源2〇〇a的資料)。下— 封包304包括自電腦資料來源2〇8獲得的電腦資料資訊。下 一封包306包括來自視訊頻道5(來自視訊節目來源2〇〇之— 88886-971107.doc -14- 1309515 者)〆的資Dfl。下-封包308包括節目表資訊下諸如由節目表 子系統2〇6所提供的資訊’如圖3A所示’由空值封包模組212 所產生的空值封包31()可視需要插入於資料流中其後接著 來自即目來源200的進一步資料封包312、3i4、。 =參照回圖2 ’因此資料流包括來自任何一資料來源(例 :即目來源200、節目表子系統2〇6、電腦資料來源的 一系列封包’由控制器216判定順序。資料流由加密模組218 予以加密、由調變器220予以調變(通常使用一 QpsK調變方 案)並提供至發射益! 〇5(其將經調變資料流透過天線1 〇6籲 在一頻率頻寬上廣播至該衛星)。接收器_在接收台110接 收此等信號,並使㈣耻譯封包,以再生詩各頻道的 節目材料。Similar to the compression scheme, but such compression is not necessary, but it can also be implemented by an encoder (not shown) attached to a computer program (not shown) or by a computer source (for example, a photo). The data is usually compressed into a .TIF file or a *.jpg slot before transmission. After being encoded by the encoder 202, the signals are converted into data packets by a packetizer 2〇4A_2〇4F (hereinafter collectively referred to as the packetizer 204) associated with each source 200. The data packet is parsed using a reference from the system clock 214 (SCR) and from the conditional access manager 21〇, and the conditional access manager 21 provides the service channel identification SCID to the packetizer for generating the data packet. Use, then multiply the data into a sequence of data and transmit it. 2.2 Broadcast Data Stream Format and Agreement Figure 3A shows a representative data stream. The first packet 3〇2 includes information from video channel 1 (e.g., data from the first video source 2〇〇a). Next - Packet 304 includes computer data obtained from computer data source 2〇8. The next packet 306 includes the funds Dfl from the video channel 5 (from the video program source 2 - 88886-971107.doc -14 - 1309515). The lower-packet 308 includes information such as that provided by the program listing subsystem 2〇6 under the program listing information. The null value packet 31 () generated by the null value encapsulation module 212 as shown in FIG. 3A can be inserted into the data as needed. The stream is followed by further data packets 312, 3i4 from the immediate source 200. = Refer back to Figure 2 'Therefore the data stream includes sequences from any one of the sources (eg, source 200, program table subsystem 2〇6, computer data source's) determined by controller 216. The data stream is encrypted The module 218 is encrypted, modulated by the modulator 220 (usually using a QpsK modulation scheme) and provided to the transmit benefit! 〇5 (which passes the modulated data stream through the antenna 1 〇6 to a frequency bandwidth Broadcast to the satellite) Receiver_ Receives these signals at the receiving station 110 and causes (4) to translate the packets to reproduce the program material of each channel.

圖3B繪示—f料封包。各資料封包(例如302-3丨6)長度係 147個位元組,並包括數個封包區段,第-封包區段320包 兩個位元組的寅訊’其包括SCID及旗標。該SdD係一獨 々寺2位;? t數值’其獨特地識別該資料封包的資料頻道。該 等旗標包括4個位元’其用以控制其他特徵。第二封包區段 322由-4位元封包類型指示項及—4位元連續計數器所構 成。封包類型通常將封包識別為四種資料類型(視訊、音 訊、資料或空值)之-者。_ID合併日夺,封包類型判定將 如何使用資料封包,連續計數器對於各封包類型及SCID累 加—。下一封包區段324包括127個位元組的酬載資料,立 在封包搬或鳩的情形中,代表由視訊節目來源細所提供 的-部分視訊節目。最後的封包區段咖係執行前向錯誤校 88886-97ll〇7.d〇c •15· 1309515 正所需的資料。 圖4繪不調變器220的一實施例的方塊圖,調變器22〇視情 況包括一前向錯誤校正(FEC)編碼器404,其接受第一信號 符號402並添加用以減少傳輸錯誤的冗餘資訊。經編碼符號 405由調變器406根據第一載波4〇8加以調變,以產生上層調 變k號410,將第二符號420同樣提供至選用之第二FEC編 碼w 422,以產生經編碼第二符號422。將經編碼第二符號 422提供至第二調變器414,其根據第二載波416將經該編碼 第二信號調變,以產生一下層調變信號418。然後由一或多 個發射器420、422傳送所得信號。因此上層調變信號彻 與下層調變信號418非互相相關,並且傳送各層所用的頻率 範圍可大體上或完全重疊傳送其他層所用的頻譜。例如, 如圖4所示,上層信號41〇的頻譜力%…可重疊於在頻帶 /2—々 436中之下層信號418的頻譜力―力434。但是,上層俨 號彻必須是比下層信號418具夠大振幅的信號,以維持曰圖: 及圖7所示的信號通信星座。調變器細亦可利用脈衝成形 技術(由脈衝州43〇表示),以考量有限頻道頻寬,雖然圖* 說明在兩層施加相同脈衝形狀州43〇,但亦可在 不同脈衝形狀。 加 士應,意,較有效率的方式可能是藉由使用分離衛星 s旬答器將現存系統改型翻新, L ^ 以在現存售式下行鏈路作垆 ^下層下行鏈路信號,而非用待傳送兩個下行物 廣播 ^的-衛星來取代舊式衛星。在實施層狀下行鍵路。 中重點可放在適應下行鏈路舊式信號。 88886-97IJ07.doc -16 - 1309515 2_3整合式接收器/解碼器 圖5繪示一整合式接收器/解碼器(IR D) 5 0 0 (以下亦稱為 接收器500)的方塊圖’接收器5〇〇包括一調諧器/解調變器 5〇4 ’其通地耦合至具有一或多個低雜訊區塊(位元線) 的ODU 112。LNB 502將來自衛星1〇8的12 2至12 7 G沿 下仃鏈路#號118轉換成(例如)IRD 5〇〇的調諧器/解調變器 5〇4所需的950_145〇MHz信號。通常,lnb5〇2可提供雙輸 出或單輸出。單輸出LNB 5〇2只具有—RF連接器,而雙輸 出LNB 5 02具有兩個rf輸出連接器,並可用以饋送一第二 調譜器5G4、-第二接收器·,或某些其他形式的散佈系 統。 調諧器/解調變器504隔離一單個數位調變的24 MHz詾答 器信號,並將經調變資料轉換成一數位資料流,然後將數 位資料流供應至前向錯誤校正(FEC)編碼器506。此容許IRD 5〇〇將上行鏈路中心104(其在傳輸至用戶接收台ιι〇之前先 將珂向錯誤校正應用至期望信號)所傳送的資料重新組 譯,用以證實收到正確資料信號,並校正錯誤(若有的話卜 經杈正錯誤的資料可經由一 8位元並列介面而從fec解碼 器模組506饋送至傳輸模組5〇8。 傳輸模組508執行由IRD 500執行的許多資料處理功能。 傳輪模組508處理接收自FEC解碼器模組5〇6的資料,並將 處理過的資料提供至視訊MPEG解碼器514及音訊MpEG解 碼器517。在本發明一實施例中,傳輸模組處理、視訊MpEG 解碼器514及音訊MPEG解碼器517皆實作於積體電路上,此 88886-971107,doc -17- 1309515 設計亦提昇空間及功率效率,並增加傳輪模組5〇8内所執行 功月b的女王I·生。傳輸模組508亦提供一通道用於微控制器 510與視訊MPEG解碼器514及音訊MpEG解碼器517之間的 通信。如以下所詳述,傳輸模組亦與條件式存取模組(CAM) 512共同工作,以判定是否允許用戶接收站ιι〇存取某些節 目材料,來自傳輸模組508的資料亦供應至外部通信模組 526。 ' ' CAM 512配合其他元件執行功能,而將來自傳輸模組地 的經加密信號加以解碼。CAM 512亦用以追蹤此等服務並 計費。在本發明一實施例中,CAM 512係可卸除式智慧卡, 其具有數個接觸點以與IRD 5〇〇中的數個接觸點協作互 動,用以傳遞資訊。為實施CAM512中所執行的處理,则 5〇〇(明確地說傳輸模組508)將一時脈信號提供至cam5i2。 視訊資料由MPEG視訊解碼器514加以處理。ΜρΕ(}視訊 解碼器5 14使用視訊隨機存取記憶體(R A Μ) 5 3 6而將經麼縮 視訊資料解碼,並將其傳送至編碼器或視訊處理器516,其 按次將接收自視訊MPEG模組514的數位視訊f訊轉換成顯 示器或其他輸出裝置可使用的輪出信號。舉例而言,處理 器516可包括_國際電視標準委員會(ntsc)或進階電視系 統委員會(ATSC)編碼h本發明—實施例中,同時提供s_ 2訊及一般視訊(NTSC或ATSC)信號。亦可利用其他輸出, 若處理高清晰度節目亦為有利。 音訊資料同樣由MPEG音訊解碼器517加以解碼。然後可 將經解碼的音訊資料傳送至數位至類比Φ/Α)轉換器518。 88886-971107.doc -18- 1309515 在本發明一實施例中,d/a轉換器518係一雙D/A轉換器, 右聲道及左聲道各用一D/A轉換器。若有需要,可添加額外 的聲道,以供在環繞音響處理或副音訊節目(SAP)使用。在 本發明一實施例中,雙D/A轉換器518本身將右聲道資訊及 左聲道資訊(以及任何額外的聲道資訊)加以分離;可支援其 他音訊格式,例如,諸如多聲道D〇LBY mGITAL AC_3(杜 比數位AC-3)等其他音訊格式。 對視汛流編碼及解碼中所執行處理的說明(尤其相關於 MPEG 及 JPEG 編碼/解碼),可參看 Michael R〇bin 及 Michei φ Poulin所著 Digital Television Fundamentals(數位電視原 理)’’一書第8章(McGraw-Hill出版,1998年),其以引用方式 併入本文。 微控制器510接收來自遙控器524 ' 一 IRD 5〇〇鍵盤介面, 及/或另一輸入裝置的命令信號’並加以處理。該微控制器 接收命令’用以從一處理器程式記憶體執行其操作,該處 理器程式記憶體永久儲存此類指令用以執行此類命令。該 處理器程式記憶體可包括一唯讀記憶體(R〇M) 538、一電可 _ 拭除可程式化唯讀記憶體(EEPr〇M) 522,或一類似記憶體 裝置’微控制器510亦透過位址及資料線(分別指圖5中的 &quot;A”及&quot;D&quot;)控制IRD 500的其他數位裝置。 數據機540透過PSTN埠120連接至客戶的電話線。數據機 可用以撥打電話給節目供應商,並用以傳送用於計費目的 的客戶購買資訊’及/或其他資訊。數據機540由微處理器 510控制。數據機540可輸出資料至其他1/0埠類型,其包括 88886-971107.doc -19- 1309515 標準並列及串列電腦I/O埠。 本發明亦包括—太p Ait + trcr 用以儲存得自傳以 ’諸如視訊儲存裝置532, 于目傳輸模組508的視訊及/或音 存裝置532可為硬磾機、況貝枓。視訊儲 更磲機、續/可寫DVD碟片、固離 其他任何適合物體。在本發明一實施例中::儲: 、置532係具有特殊平行讀取/寫入能力 子 時從視訊儲存萝罟% a 叹系機,俾可同 事置532二 資料並將資料寫入至視訊儲存 ^。°為元成此技術,可使用視訊錯存|置532或其控 處理器別可用以管理儲存穿置#^擇疋,一視訊儲存 取視笊資料.目 存裝置,並伙視訊儲存裝置532擷 /枓。視訊儲存處理器別亦可包括心緩衝資料傳 人傳出視訊儲存裝置532的記憶體。加以替代或與上述結 口’可使用複數個視訊儲存裝置532。亦可加以替代或血上 述結合’微控制器510亦可執行在視訊儲存裳置⑶中健存 及/或擷取視訊及其他資料所需的操作。 ^訊處理模組516輸入可直接作為視訊輸出而供應至觀 4置(諸如視訊或電腦監視器),此外,可將視訊及/或音 訊輪出供應至RF調變器534’以產生RF輪出及/或適用於習 ^電視調諸器輸入信號的8殘邊帶(VSB),此容許接收器5〇〇 一電視一起操作而不用視訊輸出。 f星1叫包括一詢答器’其接受來自上行鏈路中心_ 1節目資訊,再將此資訊中繼傳送至用戶接收台ιι〇。使用 習知多工技術,俾可提供多頻道給使用者。此等多工技術 例如包括多種不同統m他時域多卫的技術及極化多 88886-97H〇7.d〇{ -20- 1309515 工在本發明一實施例中,以單一頻帶操作的單一詢答器 運运藉由個別服務頻道識別(SCID)識別的複數個頻道。 D 5〇〇較佳亦接收一節目表並儲存於微控制器5 1 0可用 的5己憶體中。通常,在來自衛星108的資料流中一或多個資 料封I中接收節目表。可藉由微控制器510實施的數個合適 操作步驟來存取並搜尋該節目表,並將其儲存於處理器 OM 538中。s亥節目表可包括用以映射觀看者頻道號碼至 衛生珣答器及服務頻道識別(SCID)的資料,並且亦將τν節 目β單資訊提供至用戶122,以識別節目事件。 可藉由一或多個硬體模組' 用以定義一處理器所執行指 π的或多個軟體模組或兩者的組合),來實施圖5所示實 施於IRD 500的功能, 本發明提供不同功率位準的信號調變,並有利地提供來 自各層非相干的信號。此外,可執行該等信號的獨立調變 、扁馬實現與舊式接收器(諸如正交移相鍵控(QPSK)接收 器)的回溯相容性’並將新服務提供至新接收器。如以下所 將詳述,本發明-典型新接收器使用兩個解調變器及—個 再調變器。 在本發明典型回湖相容實施例中,將舊式QPSK信號功率 升高至較高傳送(或接收)位準。舊式接收器將無法分辨新較 低層信號與加成性白色高斯雜訊,因此以慣常方式㈣。 層功率位準之最佳選擇係以適應 思售式δ又備以及期望的新輪 送量與服務為基礎。 新下層信號具備有足夠載油$抽她^ 心幻戰砹至熱雜訊比以合適地作用。 88886-97n07.doc -21 - 1309515 新下層信號與升高的舊式信號彼此非相干。因此,可從不 同的TWTA且甚至從不同的衛星實施新下層信號。下層信號 格式亦獨立於舊式格式,其例如可能是使用習用串連FEc 碼或使用新Turbo碼的QPSK或8PSK。該下層信號甚至可以 是類比信號。 經組合層狀信號係藉由先上層解調變以移除上層載波而 予以解调變及解碼。然後,經穩定化之層狀信號可具有經 FEC解碼之上層及傳達至上層傳輸的輸出上層符號。於再 調變器中亦採用上層符號,以產生一理想化上層信號。然 後,從經穩定化之層狀信號中減除該理想化上層信號,以 顯路下層信號。然後將下層信號解調變及FEC解碼,並傳 達至下層傳輸。 可使用本發明的信號、系統及方法以在回溯相容應用中 補充與舊式接收硬體相容的現存傳輸,或作為預先規劃層 狀調變方案的一部分,其在目前或未來用以提供一或多個 額外層。 2·4層狀信號 圖6A-6C繪示經接收之層狀調變傳輸中的信號層基本關 係。圖6Α繪示傳輸信號的第一層信號通信星座6〇〇,其繪示 數個信號點或符號602。圖⑽繪示在上層信號通信星座S6〇〇 之上的下層信號通信星座符號6〇4,其中該等層係相干(或 同步)。圖6C繪示在上層通信星座上的第二傳輸層之下層信 號606’其中該等層為非相干。由於在非相干傳輸中該兩層 的相對調變頻率,下層606繞著該上層通信星座6〇2旋轉7 88886-971107.doc -22- 1309515 由於如路徑608所示第一層調變頻率,因此上層及下層兩者 皆繞著原點旋轉。 圖7A-7C繪示在上層解調變後,在上傳輸層上的下傳輸層 之間的非相干關係。圖7A繪示上層之第一載波恢復迴路 (CRL)之前的通信星座700’其中通信星座環7〇2繞虛線所指 示之大半徑圓旋轉。圖7B繪示CRL之後的通信星座7〇4,其 中通信星座環702旋轉停止。。通信星座環7〇2係繞上層節 點602的下層訊號點圖7C繪示接收信號相對於節點6〇2的相 位分佈。 非相干上層信號與下層信號的相對調變頻率使下層通信 星座繞著上層通信星座的節點6〇2旋轉,以形成環7〇2。在 下層CRL之後,此旋轉被排除並且顯現下層節點(如圖忉所 示)。下層通信星座環702的半徑係下層功率位準之指示。 環702的厚度係下層的載波至雜訊比(CNR)之指示。由於該 兩層係非相干,所以可使用下層傳送相異的數位或類比信 號。FIG. 3B illustrates a f-package. Each data packet (e.g., 302-3丨6) is 147 bytes in length and includes a plurality of packet segments. The first packet segment 320 includes two bytes of packets, which include SCIDs and flags. The SdD is a 2-digit 々 temple; t value ' uniquely identifies the data channel of the data packet. These flags include 4 bits' to control other features. The second packet section 322 is composed of a -4 bit packet type indication item and a -4 bit continuous counter. The packet type usually identifies the packet as four data types (video, audio, data, or null). The _ID merges the day and the packet type determines how the data packet will be used. The continuous counter accumulates for each packet type and SCID. The next packet section 324 includes 127 bytes of payload data, in the case of a packet move or slap, representing a portion of the video program provided by the video program source. The last packet section is executed by the forward error school 88886-97ll〇7.d〇c •15· 1309515. 4 depicts a block diagram of an embodiment of a non-modulator 220 that includes a forward error correction (FEC) encoder 404 that accepts a first signal symbol 402 and adds a transmission error to reduce transmission errors. Redundant information. The encoded symbol 405 is modulated by the modulator 406 based on the first carrier 4〇8 to produce an upper modulation k number 410, and the second symbol 420 is also provided to the selected second FEC encoding w 422 to produce an encoded Second symbol 422. The encoded second symbol 422 is provided to a second modulator 414 that is modulated by the encoded second signal in accordance with the second carrier 416 to produce a lower layer modulated signal 418. The resulting signal is then transmitted by one or more of the transmitters 420, 422. Thus, the upper modulated signal is not cross-correlated with the underlying modulated signal 418, and the frequency range used to transport the layers can substantially or completely overlap the spectrum used to transmit the other layers. For example, as shown in FIG. 4, the spectral force % of the upper layer signal 41 可 can be overlapped with the spectral force - force 434 of the lower layer signal 418 in the band /2 - 436. However, the upper layer must be a signal having a larger amplitude than the lower layer signal 418 to maintain the map: and the signal communication constellation shown in FIG. The modulator can also be fine-tuned using pulse-forming techniques (represented by Pulse State 43〇) to account for the limited channel bandwidth, although Figure * illustrates the application of the same pulse shape to the two layers of the state, but can also be in different pulse shapes. It is possible that the more efficient way is to retrofit existing systems by using separate satellites, and to use the existing downlinks as the lower-level downlink signals instead of Replace the old satellite with the satellite that is to be transmitted with two downlink broadcasts. The layered downlink is implemented. The focus can be placed on adapting the downlink legacy signals. 88886-97IJ07.doc -16 - 1309515 2_3 Integrated Receiver/Decoder Figure 5 shows a block diagram of an integrated receiver/decoder (IR D) 500 (hereinafter also referred to as receiver 500) The device 5A includes a tuner/demodulation transformer 5〇4' that is coupled to the ODU 112 having one or more low noise blocks (bit lines). The LNB 502 converts the 12 2 to 12 7 G from the satellite 1 〇 8 along the 仃 link # 118 to the 950 _ 145 MHz signal required for, for example, the IRD 5 调谐 tuner/demodulator 5 〇 4 . In general, lnb5〇2 can provide dual output or single output. The single output LNB 5〇2 has only an RF connector, while the dual output LNB 5 02 has two rf output connectors and can be used to feed a second modulator 5G4, a second receiver, or some other Formal distribution system. The tuner/demodulator 504 isolates a single digit-modulated 24 MHz responder signal and converts the modulated data into a digital data stream, and then supplies the digital data stream to a forward error correction (FEC) encoder 506. This allows the IRD 5 to re-interpret the data transmitted by the uplink center 104 (which applies the error correction application to the desired signal before transmitting to the user receiving station ιι) to verify receipt of the correct data signal. And correcting the error (if any, the wrong data can be fed from the fec decoder module 506 to the transmission module 5〇8 via an 8-bit parallel interface. The transmission module 508 is executed by the IRD 500. A plurality of data processing functions. The transfer module 508 processes the data received from the FEC decoder module 5〇6 and provides the processed data to the video MPEG decoder 514 and the audio MpEG decoder 517. In an implementation of the present invention In the example, the transmission module processing, the video MpEG decoder 514, and the audio MPEG decoder 517 are all implemented on the integrated circuit. The 88886-971107, doc -17-1309515 design also improves space and power efficiency, and increases the number of transmissions. The Queen of the Power Month b is executed in the module 5〇8. The transmission module 508 also provides a channel for communication between the microcontroller 510 and the video MPEG decoder 514 and the audio MpEG decoder 517. Detailed description, transmission module Working with the Conditional Access Module (CAM) 512 to determine whether the user is allowed to receive access to certain program material, the data from the transmission module 508 is also supplied to the external communication module 526. ' ' CAM 512 The encrypted signal from the transmission module is decoded in conjunction with other component execution functions. CAM 512 is also used to track and service such services. In one embodiment of the invention, CAM 512 is a removable smart card. , having a plurality of contact points to interact with a plurality of contact points in the IRD 5〇〇 for communicating information. To perform the processing performed in CAM 512, 5〇〇 (specifically, the transmission module 508) will A clock signal is provided to cam5i 2. The video data is processed by MPEG video decoder 514. 视ρΕ(} video decoder 5 14 decodes the video data using video random access memory (RA Μ) 5 3 6 and It is transmitted to an encoder or video processor 516, which converts the digital video received from the video MPEG module 514 into a round-out signal that can be used by a display or other output device. For example, the processor 516 can Including the _ International Television Standards Committee (ntsc) or the Advanced Television Systems Committee (ATSC) code h in the present invention - in the embodiment, both s_2 and general video (NTSC or ATSC) signals are provided. Other outputs may also be used, if processed High definition programming is also advantageous. The audio material is also decoded by the MPEG audio decoder 517. The decoded audio data can then be transmitted to a digital to analog Φ/Α converter 518. 88886-971107.doc -18- 1309515 In an embodiment of the invention, the d/a converter 518 is a dual D/A converter, and each of the right channel and the left channel uses a D/A converter. Additional channels can be added for use in surround sound processing or sub-audio programs (SAP) if needed. In an embodiment of the invention, the dual D/A converter 518 itself separates the right channel information and the left channel information (and any additional channel information); it can support other audio formats, such as, for example, multi-channel Other audio formats such as D〇LBY mGITAL AC_3 (Dolby Digital AC-3). For a description of the processing performed in the video stream encoding and decoding (especially related to MPEG and JPEG encoding/decoding), see Michael R〇bin and Micheli φ Poulin's Digital Television Fundamentals. Chapter 8 (McGraw-Hill, 1998), which is incorporated herein by reference. Microcontroller 510 receives and processes command signals from an remote control 524'-IRD 5" keyboard interface, and/or another input device. The microcontroller receives commands 'for performing its operations from a processor program memory that permanently stores such instructions for executing such commands. The processor program memory can include a read only memory (R〇M) 538, an electrical EEPROM eraseable programmable read only memory (EEPr〇M) 522, or a similar memory device 'microcontroller. 510 also controls other digital devices of the IRD 500 through the address and data lines (referred to as &quot;A" and &quot;D&quot; in Figure 5.) The data machine 540 is connected to the customer's telephone line through the PSTN 120. The data machine is available. To call the program provider and to transmit customer purchase information 'and/or other information for billing purposes. The data machine 540 is controlled by the microprocessor 510. The data machine 540 can output data to other 1/0 type It includes 88886-971107.doc -19- 1309515 standard side-by-side and serial computer I/O埠. The present invention also includes - too p Ait + trcr for storing autobiography to 'such as video storage device 532, in the transmission mode The video and/or audio storage device 532 of the group 508 can be a hard disk drive, a video memory device, a continuous/rewritable DVD disc, and any other suitable object. In an embodiment of the invention: : Storage: 532 Series has special parallel read/write capability When I use the video to store the 罟 罟 a a a a , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , You can also use it to manage the storage settings. The video storage device is 532撷/枓. The video storage processor can also include the heart buffer data transmission and outgoing video storage. The memory of the device 532. Alternatively or in combination with the above-mentioned interface, a plurality of video storage devices 532 can be used. Alternatively, the above-mentioned combination of the microcontroller 510 can also be performed in the video storage device (3) and/or Or the operations required for video and other information. The input of the processing module 516 can be directly supplied as a video output to a viewing device (such as a video or computer monitor). In addition, video and/or audio can be rotated. Supply to the RF modulator 534' to generate an RF round-trip and/or 8 residual sideband (VSB) for the TV transmitter input signal, which allows the receiver 5 to operate with a television without video output f star 1 call includes a query The device 'receives program information from the uplink center _ 1 and relays the information to the user receiving station ιι 〇. Using the multiplexed technology, multiple channels can be provided to the user. Such multiplex technologies include, for example, A variety of different techniques, his time domain multi-guard technology and polarization multi-88886-97H〇7.d〇{ -20- 1309515 In one embodiment of the invention, a single interrogator operation operating in a single frequency band is used A plurality of channels identified by the individual service channel identification (SCID). D 5 preferably receives a program list and stores it in the 5 memory available to the microcontroller 51. Typically, the program listing is received in one or more of the data blocks I in the data stream from satellite 108. The program listing can be accessed and searched by a number of suitable operational steps implemented by the microcontroller 510 and stored in the processor OM 538. The program list may include information for mapping the viewer channel number to the health answerer and service channel identification (SCID), and also provides the τν program β list information to the user 122 to identify the program event. The function implemented in the IRD 500 shown in FIG. 5 can be implemented by one or more hardware modules 'for defining a π or a plurality of software modules or a combination of the two executed by a processor. The invention provides signal modulation at different power levels and advantageously provides signals from incoherent layers. In addition, independent modulation of the signals can be performed, flat horses achieve backwards compatibility with legacy receivers such as Quadrature Phase Shift Keying (QPSK) receivers, and new services are provided to new receivers. As will be described in more detail below, the present invention - a typical new receiver uses two demodulators and a remodulator. In a typical backwater compatible embodiment of the present invention, the legacy QPSK signal power is boosted to a higher transmit (or receive) level. Older receivers will not be able to distinguish between new lower layer signals and additive white Gaussian noise, so in the usual way (4). The best choice of layer power levels is based on the new rounds and services that are available for the δ and the expected. The new lower layer signal has enough oil to pump $^ to the heart and to the hot noise ratio to function properly. 88886-97n07.doc -21 - 1309515 The new lower layer signal and the raised old signal are not related to each other. Therefore, new underlying signals can be implemented from different TWTAs and even from different satellites. The lower layer signal format is also independent of the old format, which may be, for example, a conventional serial concatenated FEc code or QPSK or 8PSK using a new Turbo code. This lower layer signal can even be an analog signal. The combined layered signal is demodulated and decoded by first layer demodulation to remove the upper layer carrier. The stabilized layered signal can then have an FEC decoded upper layer and an output upper layer symbol that is conveyed to the upper layer. The upper layer symbols are also used in the remodulator to produce an idealized upper layer signal. The idealized upper layer signal is then subtracted from the stabilized layered signal to reveal the underlying signal. The lower layer signal is then demodulated and FEC decoded and passed to the lower layer transmission. The signals, systems, and methods of the present invention can be used to supplement existing transmissions that are compatible with legacy receiving hardware in backtracking compatible applications, or as part of a pre-planned layered modulation scheme that is used to provide a current or future Or multiple additional layers. 2·4 Layered Signals Figures 6A-6C illustrate the basic relationship of signal layers in a received layered modulated transmission. Figure 6A shows a first layer of signal communication constellation 6A of the transmitted signal, which depicts a number of signal points or symbols 602. Figure (10) shows the underlying signal communication constellation symbol 6〇4 above the upper layer signal communication constellation S6〇〇, where the layers are coherent (or synchronized). Figure 6C illustrates a second transport layer under layer signal 606' on the upper communication constellation where the layers are non-coherent. Due to the relative modulation frequency of the two layers in the non-coherent transmission, the lower layer 606 rotates around the upper communication constellation 6〇2 7 88886-971107.doc -22- 1309515 due to the first layer modulation frequency as indicated by path 608, Therefore, both the upper layer and the lower layer rotate around the origin. Figures 7A-7C illustrate the incoherent relationship between the lower transport layers on the upper transport layer after the upper layer demodulation. Figure 7A illustrates the communication constellation 700' prior to the first carrier recovery loop (CRL) of the upper layer with the communication constellation ring 7〇2 rotated about the large radius circle indicated by the dashed line. Figure 7B illustrates the communication constellation 7〇4 after the CRL, in which the communication constellation ring 702 is rotated. . The communication constellation ring 7〇2 is wound around the lower layer signal point of the upper node 602. Figure 7C shows the phase distribution of the received signal with respect to the node 6〇2. The relative modulation frequency of the non-coherent upper layer signal and the lower layer signal causes the lower layer communication constellation to rotate about the node 6〇2 of the upper layer communication constellation to form a loop 7〇2. After the lower CRL, this rotation is excluded and the underlying nodes appear (as shown in Figure )). The radius of the lower communication constellation ring 702 is indicative of the underlying power level. The thickness of the ring 702 is indicative of the carrier-to-noise ratio (CNR) of the lower layer. Since the two layers are non-coherent, the lower layer can be used to transmit different digital or analog signals.

圖8A繪示用以傳送及接收層狀調變信號的系統。可韵 於諸如衛星嶋、刪等任何合適平台的分開詢: 職、刪(其包括TWTA用以放大該等信號)被用來非和 地傳送本發明之-信號的不同層。通常利用—或多倘發 器⑽透過天線106,而將一或多個饋送器鏈路信號ιΐ6: 或多個上行鏈路中心1〇4傳送至各衛星i〇8a、!嶋。本 明說明在-層狀調變系統中使用的特殊饋送器鏈路架構 圖肋繪^ ^範何星詢答器1〇7,用以在一衛星⑽上 88886i97n〇7.rfoc -23- 1309515 收及傳送層狀調變信號。饋送器鏈路信號丨丨6由衛星1 〇8接 政’並經由一輪入多工器(IMUX) 814加以傳遞。隨後,用 一或多個行波管放大器(TWTA) 816將信號放大’然後在下 行鏈路信號118傳送至接收器8〇2、500之前,先經過一輸出 放大盗(OMUX) 8 1 8。如此項技術所習知,TWTA 8 1 6區塊 可為一功率合併器中的多個TWTA,尤其在上層信號的情 $。本發明的數項實施例相關於饋送器鏈路及衛星詢答器 丄〇7的特定架構(如下文章節5所詳述)。 在接收益天線812 A、8 12B (諸如衛星碟等)接收層狀信號 808A、808B(例如多重下行鏈路信號118),各接收器天線具 有一低雜訊區塊(LNB)810A、81〇B,其中再將它們耦合至 整合式接收器/解碼器(IRD) 500、802。例如,第一衛星1〇8A 及詢答器107A可傳送一上層舊式信號8〇8A,而第二衛星 108B及詢答器ι〇7Β可傳送一下層信號8〇8B。雖然兩個信號 808A、808B到達各天線812A、812B&amp;LNB 81〇A、81〇b, 但只有層調變IRD 802能將兩信號808A、8〇8B解碼;舊式 接收器500只能將上層舊式信號8〇8八解碼;下層信號8〇沾 對舊式接收器500似乎僅是雜訊。 因可非相干地傳送該等信號層,因此在任何時間使用不 同衛星1〇8Α、1〇8Β或其他合適平台(諸如地面式或高海拔平 台等)加入分開的傳輸層。因此,任何複合信號(包括新額外 信號層)將與忽視新信號層的舊式接收器5〇〇回溯相容。為 確保該等信號未干擾,在特殊接收器天線812Α、8ΐ2β,用 於下層的經組合信號及雜訊位準必須在(或低於)容許用於 88886-97U07.doc -24- 1309515 上層的雜訊下限。 層狀調變應用包括回溯相容及非回溯相容應用,”回溯相 容”就此意義描述未因額外信號層而廢棄不用舊式接收器 5〇〇的系統。反而’即使舊式接收器500不能將額外信號層 解碼,仍能接收該層狀調變信號,並將原始信號層解碼。 在此等應用中,由額外信號層之架構來適應現存系統架 構。”非回溯相容”說明利用層狀調變的系統架構,但所利 用的調變方案致使現存設備不能接收(數個)額外信號層上 的資訊及將其解碼。 現存舊式IRD 500僅解碼及接收來自設計其以接收的解 碼,而未受到額外層的影響。但是,如以下所說明,可修 改舊式信號以最佳地實作新層。本發明可應用於廣播給個 別使用者的現存直接衛星服務,以用新接收器來實現額外 特徵及服務,而未不利地影響舊式接收器且不需額外信號 頻寬。 2.5解調變器及解碼器 3 9繪示加強型ird 802實施例的方塊圖,加強型ird 8〇2 能接收層狀調變信號。IRD包括類似於圖5中舊式ird 5〇〇 的組件的許多組件。但是,加強型IRD 802包括一回饋路徑 902,其中將經FEC解碼符號回饋至加強型經修改調諧器/ 解调變态904及傳輪模組9〇8,而將兩信號層解碼,如以下 所詳述。 圖10A緣示加強型調諧器/解調變器9〇4及FEc解碼器5〇6 的-實施例的方塊圖。圖心描述接收,其中對在已解調變 88886-97II07.doc •25· 1309515 上層載波之一信號執行層減除。來自LNB 5 〇2的經接收組合 L號1016的上層(其可包括舊式調變格式)被提供至上層解 調蝥1004並且藉由上層解調變器予以處理以產生 ,-二疋化之解調變信號丨〇2〇。將經解調變信號丨〇2〇通信耦 合至FEC解碼器1〇02 ’ FEC解碼器1〇〇2將上層解碼以產生上 層符號,該等上層符號被輸出至一上層傳輸模組9〇8。亦使 用該等上層㈣以產生一理想化上層信號。在熟諸此項技 術者習知的典型解碼操作中,於vherbi解碼(BER約小於 10 )之後,或 Reed-Solomon (RS)解碼(BER約小於 10·9)之 後,可自解碼器1002產生該等上層符號。該等上層符號透 過回饋路徑902從上層解碼器1〇〇2提供至重編碼器/再調變 器1006,其可有效率產生一理想化上層信號,自經解調變 上層信號1020中減除該理想化上層信號。 為使該減除產出適合的下層信號,必須準確地再生上層 信號。經調變信號可能已失真,例如因傳輸頻道中的行波 管放大斋(TWTA)非線性失真,或其他非線性或線性失真。 失真效應在事實發生後由接收信號估計出,或由TWTA特性 估計出,可將TWTA特性下載至AM-AM及/或AM-PM映射 1014中的IRD ’ AM-AM及/或AM-PM映射1〇14用於使用非線 性失真映射模組1 〇 18以消除失真。 然後一減法器1012將從經穩定化之解調變信號1 〇2〇中減 除理想化上層信號,而留下該較低功率第二層信號。減法 器1 012可包括一緩衝器或延遲功能,用以在建構理想化上 層k號的同時’亦保留經穩定化之解調變信號1 〇2〇。根據 88886-971107.doc 26· 1309515 #號格式’第二層信號係由較低階解調變器咖將予以解 調變,並且由解碼器1008予以FEC解碼,以產生下層符號, 該等下層符號被提供至傳輸模組9〇8。 圖10B說明另-實施例,其中在接收的層狀信號上執行層 減除,在此情形中,上層解調變器咖產生上載波信^ 1022(以及經穩定化之解調變信號輸出1〇2〇),一上载波信號 1022提供至重編碼器/再調變器_。重編碼器/再調變器 1006將經重編碼且經再調變信號提供至非線性失真映射器 1018,其有效率地產生一理想化上層信號。不同於圖心 所示實施例’在此實施例中,理想化上層信號包括上層載 波,以供自經接收組合信號808A、808B減除。 熟諳此項技術者將想到其他同等的層減除方法,本發明 非限於本文所提供的數項範例。此外,熟諳此項技術者將 了解本發明非限於兩層,亦可包括數個額外層。理想化上 層係經由自其個別層符號再調變而產生並且予以減除。 可對經接收組合信號或經解調變信號實行減除。最後,所 有信號層並非必要皆為數位傳輸;最低層可為類比傳輸。 以下分析說明示範的兩層解調變及解碼。熟諳此項技術 者明顯可知額外層亦可以類似方式加以解調變及解 入的經組併信號表示為: (卜 exp(yey ⑷ +/{^exp^+^)£e^-mr+Arjj+n(〇 Μ&quot;係上層QPSK信號的量值’而此係下層信號 88886-971107.doc •27· 1309515 的1值,並且&lt;Mi。用於上層信號及下層信號的信號 頻率及相位分別為公U,“及〜,心。上層與下層間的符 號k序未對準係△ 。冲-㈣代表信號調變中所使用脈衝 成形遽波器尸⑴414的日夺間偏移版本。QPSK#號^及^係 jexpO-γ), λ = 0,1,2,31. 的元素;/[;(.)及/£( ·)表 示用於個別信號的TWTA的失真函數。 忽略/t/( · ) Λ(.)及雜訊„(〇,以下代表移除上載波後解 調變器1004至FEC解碼器1002的輪出: 〇 (0 = Μν Σ^υηρ(ί-mT) + ML exp{/(〇,£ + -mT + Mm) 因^^;與&amp;間的量值差異,上層解碼器4〇2忽略〆以⑺的 指數。 在減法器1012中,將自夕π⑴減除上層後,留下以下: C0 〜(0 = M L εχρ[/(ω£ - Oy )r + - ^} Σ S^p^t ^mT + ATj jw»^e 估計諸如T W T A非線性效應等的任何失真效應,以用於信號 減除。在本發明一典型實施例中,上層頻率及上層頻率大 致上相等。藉由使用數層間的頻率偏移可獲得系統效率方 面之重大改良。 使用本發明,具有QPSK的兩層回溯相容調變藉由在一現 有TWTA功率之上加上約6.2 dB的TWTA,可使目前6/7比率 容量增加一倍。可從一分開的發射器(例如不同的一衛星) 傳送新的QPSK信號。此外,不需要用到與16QAM—樣的線 性行波管放大器(TWTA)。此外,亦無相位誤差報應會強加 88886-97lJ07.doc -28- 1309515 於諸如8PSK及16QAM等較高階調變上。 3 · 0調變層的功率位準 在層狀調變系統中’可建構個別調變層間的關係以促進 回溯相容應用。或者可設計新的層結構以最佳化層狀調變 系統的組合效率及/或效能。 3.1回溯相容應用 圖11A描繪本發明示範實施例的相對功率位準1100,而未 考量雨天效應。對雨天衰弱效應之適應得自於在計算傳輸 功率位準中納入晴天邊限’並且在下文章節中處置。圖11Α φ 並未按比例繪製。此實施例藉由使用比現存(舊式”臀丁八高 6.2 dB功率位準的TWTA及比現存(舊式)TWTA低2 dB功率 位準的第二TWTA,而使現存比率6/7容量增加一倍。此實 施例使用非相干的上qPSK層及下qPSK層。兩層皆使用6/7 的FEC碼率。在此實施例中,舊式QPSK信號1102的信號係 用以產生上層1104’並且新QpSK層係下層mo。舊式qPSK 信號1102的臨限CNR(即達成可接受效能所需的載波雜 訊比)約為7dB。新下層QpSκ層lll0的臨限CNR約為5 · dB °在本發明中,接著先設定下QPSK層傳輸功率位準,使 接收之下層功率為5 dB,高於參考熱雜訊下限丨丨〇8。對於 上層之舊式QPSK信號而言,熱雜訊及下層信號皆是雜訊, 並且當設定上層傳輸功率位準時,必須考慮到組合之雜訊 功率。這兩個雜訊源之組合功率為6.2 dB,高於參考熱雜訊 下限11 08。舊式qpsk信號的功率必須升高約6.2 dB,而得 以局於舊式信號功率位準,促使上層11〇4的新功率位準為 88886-971107.doc -29· 1309515 約2 dB。在此方式中,組合之下層信號功率與熱雜訊功 ^維持在等於或低於上層的可容許雜訊下限ιι〇6。在本發 月中,應注意本發明亦可延伸至具有混合調變、編碼及碼 率的多層。 此回溯相容應用的一替代實施例中,一2/3 FEC碼率可用 於上層1104及下層111G兩者。在此情形中,f sQpsK信號 1叱(具2/3 FEC碼率)的CNR約為5 8犯。舊式信號i i 〇2由約 ^3 dB提高至約u」dB(比具2/3啦碼率的舊式信號· 高dB),以形成上(^8〖層11〇4。新的下QpsK層ιιι〇具 有約3.8 dB的CNR。下層m〇的總信號及雜訊維持在(或低 於)約5.3 dB(上QPSK層的可容許雜訊下限11〇6)。在此情形 中,整體容量係舊式信號1102的! 55倍。 本發明回溯相容應用的另一實施例中,可將上層丨〗⑽與 下層1110之間的碼率加以混合。例如,可將舊式QPSK信號 502由約5_3 dB提高至約12.3 dB(FEC碼率在6/7保持不變), 以產生上QPSK層1104。新的下qPSK層111〇可使用2/3的 FEC碼率,其約具3_8dB的臨限CNR。在此情形中,總容量 係舊式彳§號11 0 2的總容量的1.7 8倍。 3.2非回溯相容應用 如刖述,本發明亦可用於&quot;非回溯相容&quot;應用中。在第一 不範實施例中’使用各在2/3碼率的兩個QPSK層丨丨〇4、 1110,上QPSK層1104具有比雜訊下限11〇6高約41 dB的 CNR,下QPSK層1110亦具有約41dB的c:NR。上Qpsκ層 1110的總碼及雜訊位準約為55(18。用於上卩1)8&amp;信號11〇4 88886-971l07.doc -30 - 1309515 的總CNR約為9·4 dB,僅高於舊式QpsK信號比率6/7達2 4 dB。相較於舊式比率6/7,該容量約為丨74。 圖〗1B描繪一替代實施例的相對功率位準,其中上層】】⑽ 及下層1110皆低於舊式信號位準1102。該兩個卿層 1104 111 〇皆使用丨/2的碼率。在此範例中,上層11 比dB的雜訊下限11〇6高約為2〇犯。下卩以尺層具有約 2.0 dB的CNR,並具有在(或低於)41 dB的總碼及雜訊位 準。相較於舊式比率6/7,此實施例的容量約為131。 4.硬體環境 圖12說明一示範電腦系統12〇〇,其可用以實施本發明的 選取模組及/或功能。電腦12〇2包括一處理器12〇4及一記憶 體1206(諸如隨機存取記憶體(RAM))。電腦12〇2操作地搞合 至一=示器1222,其在圖形使用者介面上向使用者呈現諸 如視窗等影像。可將電腦12〇2耦合至其他裝置,諸如鍵盤 1214、滑鼠裝置、印表機等。熟諳此項技術者當然會了解 上述組件或任何數目的不同組件、周邊設備及其他裝置的 任何組合皆可與電腦1202配合使用。 通系,電腦1202係在記憶體12〇6所儲存作業系統的控制 下操作,並以介面與使用者連接以接受輸入及指令,並透 過圖形使用者介面(GUI)模組1218A以呈現結果。雖然將 GUI模組1218A描繪成分開模組,但用以執行〇1;1功能的指 7可$駐或分散於作業系統丨2〇8、電腦程式12丨〇中,或使 用特殊目的δ己憶體及處理器加以實作。電腦1亦實作一 、扁厚态1212,其容許一應用程式121〇以程式語言(諸如 8S886-971I07.doc 1309515 他語言予以撰寫,再輓譯 ’應用程式1210利用使用 COBOL、C++、FORTRAN等)或其 成處理器l2〇4可讀碼。完成之後 編譯器1212所產生的關係及邏輯,將電腦則存取及操縱 的記憶體薦中所儲存的資料。電腦12〇2視需要亦包括一 外部通信裝置’諸如數據機、衛星鏈路、乙太網路卡,或 用以與其他電腦通信的其他裝置。 在一實施例中m施作㈣、統⑽、電腦程式i2i〇 及編譯器1212的指令皆有形地體現於—電腦可讀媒體例 如資料儲存裝置122〇,其可包括—或多個固定式或可卸除 式資料儲存裝置,諸如zip磁碟機、軟碟機1224、硬碟機、 CD-ROM光碟機、磁帶機等。此外,作業系統12〇8及電腦 程式1210包括數個指令,其由電腦12〇2讀取及執行時,令 電腦1202執行實作及/或使用本發明所需的數個步驟;電腦 程式1210及/或操作指令亦可有形地體現於記憶體丨2〇6及/ 或資料通信裝置1230中,藉此作出根據本發明的電腦程式 產品或製造物品。如此一來,本文所使用&quot;製造物品&quot;、&quot;程 式儲存裝置,,及&quot;電腦程式產品&quot;等用詞,希望涵蓋可存取自 任何電腦可讀裝置或媒體的電腦程式。 熟諳此項技術者將了解,不用背離本發明的範疇,亦可 對此配置作出許多修改,例如,熟諳此項技術者將了解上 述組件,或任何數目的不同組件、周邊設備及其他裝置的 任何組合皆可與本發明配合使用。 5 ·饋送器鏈路架構 以下說明饋送器鏈路架構的四種組態,其僅需與下行鏈 88886-971107.doc -32- 1309515 路層狀調變頻譜一樣多的饋送器鏈路頻譜。本發明的此等 實施例包括以下由圖13A、14A、15A及16A所示範例所代表 的饋送器鏈路架構。如以下所詳述,此等實施例可包括基 本調變器220及詢答器1〇8(於先前圖4及8B所述示範系統) 的數個變化及/或詳述,例如,本發明的數個饋送器鏈路架 構未揭限於該上層信號係一舊式信號的應用。 在圖13A、14A、15A及16A的各組態中,若適當設計上 層信號808A及下層信號808B,則上層信號808A可為一舊式 信號。因此,一舊式IRD 500可直接從層狀信號將上層信號 8〇8A解調變。下層信號8〇8B受到忽略而作為舊式IRD 5〇〇 中的雜訊。或者,在層狀調變IRD 802中,將上層8〇8A及下 層信號808B兩者解調變。 5.1饋送器鏈路點波束 圖13A說明用於一層狀調變信號的第一饋送器鏈路系統 1300。在此系統1300中,上行鏈路信號116包括兩個不同的 饋送器鏈路信號1302A、1302B。為不超過層狀調變在該下 行鏈路上的頻寬,可在衛星108上利用饋送器鏈路點波束天 線1304A、1304B ’以再使用饋送器鏈路頻譜。饋送器鏈路 系統1300包括:一第一饋送器鏈路天線i3〇6A,其位於第一 饋送器鏈路點波束天線1304A的第一覆蓋區域13〇8八内;一 第二饋送器鏈路天線1306B,其位於第二饋送器鏈路點波束 天線1304B的第二覆蓋區域ι3〇8Β内。第一覆蓋區域13〇8八 及第二覆蓋區域1308B互異且未重疊’藉由各饋送器鏈路點 波束天線1304A、13(MB而於衛星1〇8上形成此等信號 88886-971107d〇c 33- 1309515 1302A、1302B。 在此實施例中,第一饋送器鏈路天線丨3 〇6A以第一頻率發 送第一饋送器鏈路信號1302A。第一饋送器鏈路信號13〇2a 包括將在上層下行鏈路信號808a所攜帶的資訊。第二饋送 态鏈路天線130 6B以第二頻率發送第二饋送器鏈路信號 1302B,此饋送器鏈路信號13〇2B包括將在下層下行鏈路信 號808B所攜帶的資訊。雖然該兩個饋送器鏈路頻率係大體 上在相同頻帶中,但使用具不同覆蓋區域13〇8A、13〇犯的 點波束天線13(MA、1304B,而防止第一饋送器鏈路信號修 1302A及第二饋送器鏈路信號13㈣受到干擾。此饋送器鍵 路系統ποο要求該兩個饋送器鏈路信號13〇2a、之間 應具有足夠的隔離。當應用於較小區域(較小國家,其中可 能無足夠空_於該兩個饋送器鏈路點波束的形成)時,更 難達到此要求。 珣善器107A、1〇7Β(其可包括傳統衛星接Figure 8A illustrates a system for transmitting and receiving layered modulated signals. Separate queries for any suitable platform, such as satellites, deletions, etc.: Jobs, deletions (which include the TWTA to amplify the signals) are used to non-transport the different layers of the signal of the present invention. One or more feeder link signals ιΐ6: or multiple uplink centers 1〇4 are typically transmitted to each satellite i〇8a, through the antenna 106, using or more than the transmitter (10)! Hey. This is a description of the special feeder link architecture used in the layered modulation system. ^^范何星答答器1〇7, used on a satellite (10) 88886i97n〇7.rfoc -23- 1309515 Receive and transmit layered modulation signals. The feeder link signal 丨丨6 is relayed by the satellite 1 〇 8 and passed through a wheel multiplexer (IMUX) 814. Subsequently, the signal is amplified by one or more traveling wave tube amplifiers (TWTA) 816 and then passed through an output amplification OMUX 8 1 8 before the downlink signal 118 is transmitted to the receivers 8 2, 500. As is known in the art, the TWTA 8 1 6 block can be a plurality of TWTAs in a power combiner, especially in the upper layer signal. Several embodiments of the present invention are related to the specific architecture of the feeder link and satellite interrogator 7 (described in Section 5 of the following article). Receiving layered signals 808A, 808B (e.g., multiple downlink signals 118) at receive antennas 812A, 812B (such as satellite dishes, etc.), each receiver antenna having a low noise block (LNB) 810A, 81A B, where they are coupled to an integrated receiver/decoder (IRD) 500, 802. For example, the first satellite 1 8A and the responder 107A can transmit an upper layer old signal 8 〇 8A, and the second satellite 108B and the acknowledgment ι 〇 7 Β can transmit the lower layer signal 8 〇 8B. Although the two signals 808A, 808B reach the respective antennas 812A, 812B &amp; LNB 81A, 81〇b, only the layer modulated IRD 802 can decode the two signals 808A, 8〇8B; the old receiver 500 can only be used in the upper layer. The signal 8〇8 is decoded; the lower layer signal 8 对 seems to be only noise for the old receiver 500. Since the signal layers can be transmitted non-coherently, separate transport layers can be added at any time using different satellites, 1 〇 8 Α, 1 〇 8 Β or other suitable platforms (such as terrestrial or high altitude platforms, etc.). Therefore, any composite signal (including the new extra signal layer) will be compatible with the old receiver 5〇〇 traceback that ignores the new signal layer. To ensure that these signals are undisturbed, the special receiver antennas 812Α, 8ΐ2β, the combined signal and noise level for the lower layer must be (or below) allowed for the upper layer of 88886-97U07.doc -24-1309515. The lower limit of noise. Layered modulation applications include back-tracking compatible and non-backtracking compatible applications. In this sense, "backtracking content" describes a system that does not obviate the old receivers without additional signal layers. Instead, even if the legacy receiver 500 is unable to decode the additional signal layer, it can still receive the layered modulated signal and decode the original signal layer. In these applications, the architecture of the additional signal layer is adapted to the existing system architecture. "Non-backtracking compatibility" describes a system architecture that utilizes layered modulation, but the modulation scheme used causes existing devices to not receive (several) additional signal layers and decode them. Existing legacy IRD 500 only decodes and receives decoding from the design it is designed to receive without being affected by additional layers. However, as explained below, old signals can be modified to best implement the new layer. The present invention is applicable to existing direct satellite services broadcast to individual users to implement additional features and services with new receivers without adversely affecting legacy receivers without the need for additional signal bandwidth. 2.5 Demodulation Transducer and Decoder 3 9 shows a block diagram of an enhanced ird 802 embodiment, the enhanced ird 8〇2 can receive a layered modulation signal. The IRD includes many components similar to the components of the old ird 5〇〇 in Figure 5. However, the enhanced IRD 802 includes a feedback path 902 in which the FEC decoded symbols are fed back to the enhanced modified tuner/demodulation metamorphosis 904 and the flywheel module 9〇8, and the two signal layers are decoded, such as Detailed. Fig. 10A is a block diagram showing an embodiment of the enhanced tuner/demodulation transformer 9〇4 and the FEC decoder 5〇6. The graph describes the reception, where a layer subtraction is performed on one of the signals on the upper carrier of the demodulated variable 88886-97II07.doc • 25· 1309515. The upper layer of the received combination L number 1016 from LNB 5 〇 2 (which may include the old modulation format) is supplied to the upper layer demodulation 蝥 1004 and processed by the upper layer demodulation transformer to generate a solution of - bismuthization The modulation signal is 丨〇2〇. The demodulated variable signal 丨〇2〇 is communicatively coupled to the FEC decoder 1〇02' FEC decoder 1〇〇2 to decode the upper layer to generate upper layer symbols, which are output to an upper layer transmission module 9〇8 . The upper layers (4) are also used to produce an idealized upper layer signal. In a typical decoding operation well known to those skilled in the art, after vherbi decoding (BER is less than about 10), or Reed-Solomon (RS) decoding (BER is less than about 10.9), it can be generated from decoder 1002. The upper layer symbols. The upper layer symbols are provided from the upper decoder 1〇〇2 to the re-encoder/remodulator 1006 via the feedback path 902, which can efficiently generate an idealized upper layer signal, which is subtracted from the demodulated upper layer signal 1020. The idealized upper layer signal. In order for this to be subtracted to produce a suitable underlying signal, the upper layer signal must be accurately reproduced. The modulated signal may be distorted, for example due to traveling wave tube amplification (TWTA) nonlinear distortion in the transmission channel, or other non-linear or linear distortion. The distortion effect is estimated by the received signal after the fact occurs, or estimated by the TWTA characteristic, and the TWTA characteristic can be downloaded to the IRD 'AM-AM and/or AM-PM mapping in the AM-AM and/or AM-PM mapping 1014. 1〇14 is used to use the nonlinear distortion mapping module 1 〇18 to eliminate distortion. A subtractor 1012 then subtracts the idealized upper layer signal from the stabilized demodulated signal 1 〇 2 , leaving the lower power second layer signal. The subtractor 1 012 may include a buffer or delay function to maintain the stabilized demodulated signal 1 〇 2 在 while constructing the ideal upper layer k. According to the 88886-971107.doc 26· 1309515 #号 format 'the second layer signal is demodulated by the lower order demodulator, and FEC decoding is performed by the decoder 1008 to generate the lower layer symbols, the lower layers The symbol is provided to the transmission module 9〇8. Figure 10B illustrates another embodiment in which layer subtraction is performed on the received layered signal, in which case the upper demodulation generator generates the upper carrier signal 1022 (and the stabilized demodulated signal output 1)上2〇), an upper carrier signal 1022 is provided to the re-encoder/remodulator_. The re-encoder/remodulator 1006 provides the re-encoded and re-modulated signal to a nonlinear distortion mapper 1018 that efficiently produces an idealized upper layer signal. Unlike the illustrated embodiment, in this embodiment, the idealized upper layer signal includes an upper layer carrier for subtraction from the received combined signal 808A, 808B. Other equivalent layer subtraction methods will be apparent to those skilled in the art, and the present invention is not limited to the examples provided herein. Moreover, those skilled in the art will appreciate that the invention is not limited to two layers and may include several additional layers. The idealized upper layer is produced by remodulating from its individual layer symbols and is subtracted. The subtraction may be performed on the received combined signal or the demodulated converted signal. Finally, all signal layers are not necessarily digitally transmitted; the lowest layer can be analogous. The following analysis illustrates an exemplary two-layer demodulation and decoding. It is obvious to those skilled in the art that the additional layer can also be demodulated and decoded in a similar manner and the signal is represented as: (b exp(yey (4) +/{^exp^+^)£e^-mr+Arjj +n(〇Μ&quot; is the magnitude of the upper QPSK signal' and this is the value of the lower layer signal 88886-971107.doc •27·1309515, and &lt;Mi. The signal frequency and phase for the upper layer signal and the lower layer signal respectively For the U, "and ~, heart. The symbol k-order misalignment between the upper and lower layers is △. Chong-(4) represents the inter-day offset version of the pulse-formed chopper corpse (1) 414 used in signal modulation. QPSK #号^和^系jexpO-γ), λ = 0,1,2,31. The elements; /[;(.) and /£( ·) represent the distortion function of TWTA for individual signals. Ignore /t /( · ) Λ(.) and noise „(〇, the following represents the removal of the demodulation transformer 1004 to the FEC decoder 1002 after removing the carrier: 〇(0 = Μν Σ^υηρ(ί-mT) + ML exp{/(〇, £ + -mT + Mm) Because of the difference in magnitude between ^^; and &amp;, the upper decoder 4〇2 ignores the exponent of (7). In the subtractor 1012, it will be ππ(1) After subtracting the upper layer, leave the following: C0 ~ (0 = ML Χχρ[/(ω£ - Oy )r + - ^} Σ S^p^t ^mT + ATj jw»^e Estimate any distortion effects such as TWTA nonlinear effects for signal subtraction. In an exemplary embodiment, the upper layer frequency and the upper layer frequency are substantially equal. A significant improvement in system efficiency can be obtained by using frequency offsets between the layers. With the present invention, two layers of backtrack compatible modulation with QPSK are used by Adding about 6.2 dB of TWTA over an existing TWTA power can double the current 6/7 ratio capacity. New QPSK signals can be transmitted from a separate transmitter (eg, a different satellite). A linear traveling wave tube amplifier (TWTA) similar to 16QAM is used. In addition, no phase error reimbursement imposes 88886-97lJ07.doc -28-1309515 on higher order modulation such as 8PSK and 16QAM. The power level of the variable layer can be used in a layered modulation system to construct a relationship between individual modulation layers to facilitate backtracking compatible applications. Alternatively, a new layer structure can be designed to optimize the combined efficiency of the layered modulation system and/or Or performance. 3.1 Backtracking compatibility application Figure 11A depicts this The relative power level of the exemplary embodiment is 1100, and the rainy day effect is not considered. The adaptation to the rainy day weakening effect is derived from the inclusion of the sunny margin in the calculated transmission power level and is handled in the following sections. Figure 11 Α φ Draw proportionally. This embodiment increases the existing ratio 6/7 capacity by using a TWTA that is 6.2 dB higher than the existing (old-style) but with a second TWTA lower than the existing (old) TWTA. This embodiment uses an incoherent upper qPSK layer and a lower qPSK layer. Both layers use a 6/7 FEC code rate. In this embodiment, the legacy QPSK signal 1102 signal is used to generate the upper layer 1104' and new The QpSK layer is the lower layer mo. The threshold CNR of the old qPSK signal 1102 (ie, the carrier-to-noise ratio required to achieve acceptable performance) is about 7 dB. The threshold CNR of the new lower QpSκ layer 111 is about 5 · dB ° in the present invention. In the middle, the QPSK layer transmission power level is set first, so that the receiving lower layer power is 5 dB, which is higher than the reference thermal noise lower limit 丨丨〇 8. For the old QPSK signal of the upper layer, the thermal noise and the lower layer signal are both It is noise, and when setting the upper layer transmission power level, the combined noise power must be taken into consideration. The combined power of these two noise sources is 6.2 dB, which is higher than the reference thermal noise lower limit of 11 08. The power of the old qpsk signal Must be raised by about 6.2 dB, and the old signal The rate level is such that the new power level of the upper layer 11〇4 is 88886-971107.doc -29· 1309515 about 2 dB. In this way, the combined lower layer signal power and thermal noise power are maintained at or below The allowable noise floor of the upper layer is ιι〇6. In this month, it should be noted that the invention may also be extended to multiple layers with mixed modulation, coding and code rate. In an alternative embodiment of this backtracking compatible application, The 2/3 FEC code rate can be used for both the upper layer 1104 and the lower layer 111G. In this case, the CNR of the f sQpsK signal 1 叱 (with 2/3 FEC code rate) is about 58. The old signal ii 〇 2 is approximated. ^3 dB is increased to approximately u"dB (compared to the old signal with a 2/3 rate) high to form the upper (^8 layer 11〇4. The new lower QpsK layer ιιι 〇 has approximately 3.8 dB CNR. The total signal and noise of the lower layer m〇 is maintained at (or below) about 5.3 dB (the allowable noise floor of the upper QPSK layer is 11〇6). In this case, the overall capacity is the old signal 1102! In another embodiment of the backtracking compatible application of the present invention, the code rate between the upper layer (10) and the lower layer 1110 can be mixed. For example, the old QP can be used. The SK signal 502 is increased from about 5-3 dB to about 12.3 dB (the FEC code rate remains unchanged at 6/7) to produce the upper QPSK layer 1104. The new lower qPSK layer 111 can use a 2/3 FEC code rate, Approximately 3_8dB of the threshold CNR. In this case, the total capacity is 1.7 8 times the total capacity of the old type 彳§11 0 2. 3.2 Non-backtracking compatible applications As described above, the present invention can also be used for &quot;non-backtracking Compatible &quot;application. In the first exemplary embodiment, 'two QPSK layers 丨丨〇4, 1110 each at a 2/3 code rate are used, and the upper QPSK layer 1104 has a CNR about 41 dB higher than the noise lower limit 11〇6, and the lower QPSK Layer 1110 also has a c:NR of about 41 dB. The total code and noise level of the upper Qpsκ layer 1110 is about 55 (18. for the top 1) 8 &amp; the signal 11〇4 88886-971l07.doc -30 - 1309515 has a total CNR of about 9.4 dB, only Higher than the old QpsK signal ratio of 6/7 up to 2 4 dB. This capacity is approximately 丨74 compared to the old ratio of 6/7. Figure 1B depicts the relative power level of an alternate embodiment in which the upper layer [10] and the lower layer 1110 are both lower than the old signal level 1102. Both of the two layers 1104 111 丨 use a code rate of 丨/2. In this example, the upper layer 11 is about 2 高 higher than the noise lower limit 11 〇 6 of dB. The lower jaw has a CNR of approximately 2.0 dB in the ruler and has a total code and noise level at (or below) 41 dB. The capacity of this embodiment is about 131 compared to the old ratio of 6/7. 4. Hardware Environment Figure 12 illustrates an exemplary computer system 12 that can be used to implement the selection modules and/or functions of the present invention. The computer 12〇2 includes a processor 12〇4 and a memory 1206 (such as random access memory (RAM)). The computer 12 〇 2 is operatively coupled to a display unit 1222 which presents an image such as a window to the user on the graphical user interface. The computer 12〇2 can be coupled to other devices, such as a keyboard 1214, a mouse device, a printer, and the like. Those skilled in the art will of course appreciate that any combination of the above components or any number of different components, peripherals and other devices can be used with the computer 1202. Throughout the system, the computer 1202 operates under the control of the operating system stored in the memory 12〇6, and interfaces with the user to accept input and commands, and through the graphical user interface (GUI) module 1218A to present the results. Although the GUI module 1218A is depicted as a separate module, the finger 7 for performing the 〇1;1 function can be resident or dispersed in the operating system 丨2〇8, the computer program 12丨〇, or use a special purpose δ The memory and the processor are implemented. The computer 1 also implements a flattened state 1212, which allows an application 121 to be written in a programming language (such as 8S886-971I07.doc 1309515 in his language, and then translation] 'application 1210 using COBOL, C++, FORTRAN, etc. Or it is a processor readable code. After completion, the relationship and logic generated by the compiler 1212 will store the data stored in the memory that the computer accesses and manipulates. The computer 12 〇 2 also includes an external communication device such as a data modem, satellite link, Ethernet card, or other device for communicating with other computers as needed. In one embodiment, the instructions for m (4), system (10), computer program i2i, and compiler 1212 are tangibly embodied in a computer readable medium, such as data storage device 122, which may include - or a plurality of fixed or Removable data storage device, such as zip disk drive, floppy disk drive 1224, hard disk drive, CD-ROM drive, tape drive, and the like. In addition, the operating system 12〇8 and the computer program 1210 include a plurality of instructions that, when read and executed by the computer 12〇2, cause the computer 1202 to perform several steps required to implement and/or use the present invention; the computer program 1210 And/or operational instructions may also be tangibly embodied in memory 丨2〇6 and/or data communication device 1230, thereby making a computer program product or article of manufacture in accordance with the present invention. As such, the terms "manufacturing items", "program storage devices," and "computer program products" are used herein to encompass computer programs that can be accessed from any computer-readable device or media. Those skilled in the art will appreciate that many modifications can be made to this configuration without departing from the scope of the invention. For example, those skilled in the art will be aware of the above-described components, or any number of different components, peripherals, and other devices. Combinations can be used in conjunction with the present invention. 5 • Feeder Link Architecture The following describes four configurations of the feeder link architecture that require only as many feeder link spectra as the downlink 88886-971107.doc -32 - 1309515 layered modulation spectrum. These embodiments of the present invention include the following feeder link architecture represented by the examples shown in Figures 13A, 14A, 15A, and 16A. As described in more detail below, such embodiments may include several variations and/or details of the basic modulator 220 and the interrogator 1 8 (the exemplary system previously described in FIGS. 4 and 8B), for example, the present invention The number of feeder link architectures is not limited to the application of the upper signal to an old signal. In the configurations of Figs. 13A, 14A, 15A and 16A, if the upper layer signal 808A and the lower layer signal 808B are appropriately designed, the upper layer signal 808A can be an old type signal. Therefore, an old IRD 500 can demodulate the upper layer signal 8〇8A directly from the layered signal. The lower layer signal 8〇8B is ignored as the noise in the old IRD 5〇〇. Alternatively, in the layered modulation IRD 802, both the upper layer 8A8A and the lower layer signal 808B are demodulated. 5.1 Feeder Link Spot Beam Figure 13A illustrates a first feeder link system 1300 for a layered modulated signal. In this system 1300, the uplink signal 116 includes two different feeder link signals 1302A, 1302B. In order to not modulate the bandwidth of the layered modulation on the downlink, the feeder link spot beam antennas 1304A, 1304B' can be utilized on the satellite 108 to reuse the feeder link spectrum. The feeder link system 1300 includes a first feeder link antenna i3〇6A located within a first coverage area 13〇8 of the first feeder link spot beam antenna 1304A; a second feeder link Antenna 1306B is located within the second coverage area ι 〇 8 第二 of the second feeder link spot beam antenna 1304B. The first coverage area 13 8 8 and the second coverage area 1308B are mutually different and do not overlap 'by the respective feeder link spot beam antennas 1304A, 13 (MB and form these signals 88886-971107d on the satellite 1〇8) c 33- 1309515 1302A, 1302B. In this embodiment, the first feeder link antenna 丨3 〇 6A transmits the first feeder link signal 1302A at a first frequency. The first feeder link signal 13 〇 2a includes The information carried by the upper layer downlink signal 808a. The second feed state link antenna 130 6B transmits the second feeder link signal 1302B at a second frequency, the feeder link signal 13 〇 2B including the downlink to be downlinked Information carried by link signal 808B. Although the two feeder link frequencies are substantially in the same frequency band, spot beam antennas 13 (MA, 1304B) with different coverage areas 13 〇 8A, 13 使用 are used. The first feeder link signal repair 1302A and the second feeder link signal 13(4) are prevented from being disturbed. This feeder key system ποο requires that there should be sufficient isolation between the two feeder link signals 13〇2a. When applied to smaller areas (smaller When the home, which may not have enough space _ forming the two feeder link spot beams), is more difficult to meet this requirement. Xun good device 107A, 1〇7Β (which may include conventional satellite access

1310B)各接收饋送器鏈路信號13〇2八、13〇28之—。藉g 個別接收器1310A、131GB中各層對其指派下行鍵路㈣ 適當濾波、轉譯,及該層功率位準的㈣,㈣&amp; Μ 路層狀信號_Α、咖。已知該等指派下行鏈路頻率導 層之間的部分或完全信號頻寬重叠。在此之後將各層 信號嶋、嶋料至㈣下行鏈路放 : !312Β(其包括可設置於_ / TWTA n 刀手《併器中的—或多 ,尤/、對上層信號808A而言)。在此範例中,使用 開的衛星天線1314A、1314B,將上屏 將上層下行鏈路信號808Α 88886-97I107.doc •34- 1309515 ^ 亍鏈路彳5唬808B分別發送至大體上相同的覆蓋區 S A、層下行鏈路信號808A及下層下行鏈路信號808B在空 中合併以形成該層狀調變信號。使用者的則·、8〇2經 專1J申%案序號G9/844,4G1中所述技術而接收該兩個重 疊信號:並能將各層狀信號δ〇8Α、咖之一或兩者解調變。 、在此範例中,支援層狀調變下行鏈路信號808所要求的饋 送器鍵路頻譜量^多於所要求的下行鏈路頻譜。此饋送器 鏈路系統1300保留下行鏈路層狀信號請a、麵之間非同 v關係的優勢,亦保留分開的飽和衛星下行鏈路放大器 1312A 1312B用於各層的優勢。兩個層狀信號議a、8趣 之門非同v (非相干)關係使該兩個層狀信號能以不同符號 率操作,施使用獨立調變格式,並能使用獨立前向錯誤校 正技術。使用分開的飽和衛星下行鏈路放大器1312八、 1312B谷許上層放大1312a在飽和輸出功率中明顯低於 要求。此明顯減低在此等放大器丨3丨2A、i 3丨2β上的線性要 求。亦應注意,詢答器107八、1〇7B可如圖所示位於共同衛 星108上或位於不同衛星1〇8A、1〇8B上,然而若詢答器 107A、107B位於相同衛星108上,更容易達成信號的位準 控制。 圖13B繪示本發明用於第一饋送器鏈路架構的一示範方 法1340的流程圖。在步驟1342,使用一第一衛星詢答器的 第一饋送器鏈路點波束天線’以接收一第一饋送器鏈路信 號,其中該第一饋送器鏈路點波束天線從一第一覆蓋區域 發送。該第一衛星詢答器係用以將一層狀調變信號的上層 88886-971107.doc -35- 1309515 信號傳送給至少一整合式接收器/解碼器(IRD)。接下來在步 驟1344,使用-第二衛星詢答器的第二饋送器鏈路點波束 天線’以接收一第三饋送器鏈路信號,其+該第二饋送器 鏈路點波束天線從異於該第一覆蓋區域的第二覆蓋區域發 达,並且該第二饋送器鏈路信號再使用該第一饋送器鏈路 信號的頻瑨,該第二衛星詢答器將該層狀調變信號的下層 信號傳送給該一或多個IRD。方法134〇可經進一步改良以與 上述饋送器鏈路系統1300—致。 5.2饋送器鏈路天線波束鑑別 圖14A說明用於一層狀調變信號的第二饋送器鏈路系統 1400。此系統1400採用饋送器鏈路信號鑑別,以便再使用 饋送器鏈路頻譜以支援在下行鏈路信號8〇8A、8〇8B中的層 狀調變。在此情形中,必須從兩衛星1〇8A、1〇8B產生下行 鏈路層狀信號808A、808B,俾使一執道分隔14〇8提供適當 饋送器鏈路信號鑑別。例如,兩個衛星1〇8A、1〇8B可在與 地球旋轉同步的軌道中,由一標稱〇·4度經度的軌道分隔 1408加以隔開。使用極大型饋送器鏈路天線1406Α、1406Β 提供極窄及高度聚焦波束以傳送至衛星1〇8Α、1〇8Β。大型 天線1406Α、1406Β係典型傳統饋送器天線,例如在直徑約 7至10公尺的範圍内用於17 GHz饋送器鏈路頻帶。可將饋送 器鏈路信號1402A、1402B各聚焦於個別衛星1〇8A、1〇8B 的接收态天線1404A、1404B上(如所示),但軌道分隔14〇8 提供從饋送器鏈路信號1402a、14〇2B至其他衛星1〇8A、 108B適當隔離,以容許頻率再使用。此容許兩饋送器鏈路 88886-971107.doc -36· 1309515 天線 1406A、14〇63皆力·知 η 6在相冋頻帶部分發送並且不互相干 擾。本發明數項實施例可庵田μ同垂*丨士 ι〜』應用美國專利申請案序號 10/305,490才目關於储读哭細灿 η π頌送Is鏈路天線波束鑑別所利用的技 術’而實施層狀調#下; 巧雙卜仃鏈路信號808A、808B。 在此fe例中,-第一饋送器鍵路天線】4〇6A以—第一頻 率,將帛-饋送器鏈路信號14〇2A發送至一第一衛星 108A的第一 5旬荅益107A。_第二饋送器鏈路天線&quot;〇6B以 一第二頻率’將—第二饋送器鏈路信號14G2B發送至一第二 衛星108B的第:詢答器1Q7b。如同先前圖13的饋送器鍵路 系統1300 ’認定該兩個饋送器鏈路頻率極接近俾便一饋 送器鏈路信號(例如14G2A)係在另—饋送器鏈路信號(例如 魔B)所㈣料請路頻帶㈣同料。但是,執道分 1^ 1408適當地容許該饋送器鏈路頻帶中的再使用。1310B) Each of the receiving feeder link signals 13 〇 2 八, 13 〇 28 -. Each layer in the individual receivers 1310A and 131GB is assigned a downlink key (4) to properly filter, translate, and (4), (4) &amp; 层 layer signal _Α, 咖. It is known that some or all of the signal bandwidths between the assigned downlink frequency layers overlap. After that, the signals of each layer are 嶋, 嶋, to (4) downlink: ! 312 Β (which includes _ / TWTA n knives - or more, especially / for the upper signal 808A) . In this example, using the open satellite antennas 1314A, 1314B, the upper screen sends the upper downlink signals 808 Α 88886-97I107.doc • 34 - 1309515 ^ 亍 link 彳 5 唬 808B to substantially the same coverage area, respectively. The SA, layer downlink signal 808A and the lower layer downlink signal 808B are combined in the air to form the layered modulated signal. The user's then, 8〇2 receives the two overlapping signals by the technique described in the special case number G9/844, 4G1: and can one or both of the layered signals δ〇8Α Demodulation changes. In this example, the amount of feeder key spectrum required to support the layered modulated downlink signal 808 is greater than the required downlink spectrum. This feeder link system 1300 retains the advantage of a non-uniform relationship between the a and the planes of the downlink layered signal, and also preserves the advantages of the separate saturated satellite downlink amplifier 1312A 1312B for each layer. The two layered signals discuss a and 8 different gates. The v (incoherent) relationship enables the two layered signals to operate at different symbol rates, using independent modulation formats, and using independent forward error correction techniques. . Using separate saturated satellite downlink amplifiers 1312, 1312B, the upper layer amplification 1312a is significantly lower than the required saturation output power. This significantly reduces the linearity requirements on these amplifiers 丨3丨2A, i 3丨2β. It should also be noted that the interrogators 107, 1〇7B may be located on the common satellite 108 or on different satellites 1〇8A, 1〇8B as shown, however, if the responders 107A, 107B are located on the same satellite 108, It is easier to achieve level control of the signal. Figure 13B is a flow diagram of an exemplary method 1340 of the present invention for a first feeder link architecture. At step 1342, a first feeder link spot beam antenna ' of a first satellite interrogator is used to receive a first feeder link signal, wherein the first feeder link spot beam antenna is from a first coverage Area sent. The first satellite interrogator is configured to transmit an upper layer 88886-971107.doc -35 - 1309515 signal of the layered modulated signal to at least one integrated receiver/decoder (IRD). Next at step 1344, the second feeder link spot beam antenna of the second satellite interrogator is used to receive a third feeder link signal, which + the second feeder link spot beam antenna is different The second coverage area of the first coverage area is developed, and the second feeder link signal reuses the frequency of the first feeder link signal, and the second satellite interrogator modulates the layer The underlying signal of the signal is transmitted to the one or more IRDs. Method 134 can be further modified to coincide with feeder link system 1300 described above. 5.2 Feeder Link Antenna Beam Identification Figure 14A illustrates a second feeder link system 1400 for a layered modulated signal. This system 1400 employs feeder link signal authentication to reuse the feeder link spectrum to support layered modulation in the downlink signals 8〇8A, 8〇8B. In this case, the downlink layered signals 808A, 808B must be generated from the two satellites 1A, 8A, 8B, such that a lane separation 14?8 provides appropriate feeder link signal discrimination. For example, two satellites 1〇8A, 1〇8B may be separated by a track separation 1408 of nominal 〇·4 degrees longitude in orbit synchronized with the earth's rotation. Extremely narrow and highly focused beams are provided for transmission to satellites 1〇8Α, 1〇8Β using the Max Feeder Link Antennas 1406Α, 1406Β. Large antennas 1406A, 1406 are typical conventional feeder antennas, for example, in the range of about 7 to 10 meters in diameter for the 17 GHz feeder link band. The feeder link signals 1402A, 1402B can each be focused on the receive antennas 1404A, 1404B of the individual satellites 1A 8A, 1 〇 8B (as shown), but the track separation 14 〇 8 provides the slave feeder link signal 1402a , 14〇2B to other satellites 1〇8A, 108B are properly isolated to allow frequency reuse. This allows the two feeder links 88886-971107.doc -36· 1309515 Antennas 1406A, 14〇63 to know that η 6 is transmitted in the phase band portion and does not interfere with each other. Several embodiments of the present invention can be applied to the U.S. Patent Application Serial No. 10/305,490 for the application of the US Patent Application Serial No. 10/305,490. And the implementation of layered tone #下; Qiao double dip link signal 808A, 808B. In this example, the first feeder key antenna 4〇6A transmits the 帛-feeder link signal 14〇2A to the first 5th benefit 107A of the first satellite 108A at the first frequency. . The second feeder link antenna &quot;〇6B transmits the second feeder link signal 14G2B at a second frequency&apos; to the first:interviewer 1Q7b of a second satellite 108B. As with the previous feeder key system 1300' of Figure 13, it is assumed that the two feeder link frequencies are very close to the squat-a feeder link signal (e.g., 14G2A) is tied to the other-feeder link signal (e.g., Magic B). (4) Please ask for the road band (4). However, the waypoint 1^ 1408 appropriately allows for reuse in the feeder link band.

各衛星接收器1410A、141〇B接收一饋送器鏈路信號 1402A、1402B,藉由在個別接收器141〇A、141卯中各層對 其指派下行鏈路頻率的適當壚波、轉譯’及該層功率:準 的调整’而形成下行鏈路層狀信號8〇8A、8幽。已知該等 指:下行鏈路頻率係該等層之間部分或完全信號頻寬=叠 所w成,在此之後,將各層狀信號8〇8A、8〇8b傳送至個別 了行鏈路放大E]412A、1412b(其包括可設置於—功率合併 器中的一或多個TWTA,尤其對上層信號8〇8A而言)。在此 範例中,使用分開的衛星天線丄4 i 4 A、工4工,將上層下行 鍵路信號8G8A及下層下行鏈路信號808B分別發送至大^ 相同的覆蓋區域。上層下行鏈路信號8〇8A及下層下行鏈 88886-971 l〇7.d〇c •37· 1309515 路k號808B在空中合併以形成該層狀調變信號。使用者的 IRD 500、802經由專利申請案序號〇9/844,4〇1中所述技術而 接收該兩個重疊信號,並能將各層狀信號8〇8A、8〇8b之一 或兩者解調變。 同樣在此範例中,支援層狀調變下行鏈路信號8〇8所要求 的饋送器鏈路頻譜量不多於所要求的下行鏈路頻譜。如在 第一饋送器鏈路系統1300中,此饋送器鏈路系統14〇〇保留 層狀信號8〇8A、808B之間非同步關係的優勢,亦保留分開 的飽和衛星下行鏈路放大器1412A、1412B用於各層的優 勢。兩層狀信號808A、808B之間非同步(非相干)關係使它 們能以不同符號率操作,能使用獨立調變格式,並能使用 獨立前向錯誤校正技術。使用分開的飽和衛星下行鏈路放 大斋1412A、1412B容許上層放大器1412八在飽和輸出功率 中明顯低於要求。此明顯減低在此等放大器1412A、i4i2B 上的線性要求。 雖然此饋送器鏈路系統1400要求存在兩個分開的衛星 1〇7A、1〇7B’以乾淨地接收饋送器鏈路信號1402A、1402B, 並產生層狀調變下行鏈路信號8〇8,但是可使用傳統饋送器 鏈路天線1406A、1406B,而無在衛星1〇8A、麵上的點波 束接收天線。 圖14B繪示本發明用㈣二饋送器鍵路架構的—示範方 法1440的流程圖。在步驟1442,在—第一衛星上接收用於 一第一衛星詢答器的第一饋送器鏈路信號,該第—衛星詢 答器將一層狀調變信號的上層信號傳送給至少一整合式接 88886-971107.doc -38- 1309515 二:::::)。接下來在步驟1444,在-第二衛星上接 _ —衛星詢答器的第二饋送器鏈路信號,其 第二饋送器鏈路传號涵_伯田兮哲 '、以 〜路^再使用遠第-饋送器鏈路信號的頻 τ &quot;且遠第—衛星及第二衛星具有足以容許再使用該頻 帶的一軌道分隔。㈣二衛星詢答器制以將層狀調變信 號的下層信號傳送給該至少—IRD。方法⑽可 良以與前述饋送器鏈路系統1400 一致。 、 ッ改 5.3層狀調變饋送器鏈路 圖15八說明—用於層狀調變信號的第三饋送器鏈路系統 1500。在此情形中’包括—上層饋送器鏈路信號15G2A及-下層饋送器鏈路信號15_的饋送器鏈路層狀調變信號在 饋送器鏈路站U行㈣中心、1()4)予以產生,然後上傳至衛 星108。如圖15A所示,在上行鏈路中心1〇4中用於各上行鏈 路信號1502A、1502B的各饋送器鏈路天線15〇6A、15〇6B, 利用其分開的調變器、增頻轉換器及高功率放大器鏈,可 在空中執行該兩個饋送器鏈路信號1502A、1502B的合併。 或者,該兩個饋送器鏈路信號15〇2A、15〇2B可在單一上行 鏈路調變器中予以合併,並經由上行鏈路中心1〇4中的高度 線性増頻轉換/高功率放大器組合加以處理而傳至單一饋 送器鍵路天線1506(未圖示)。 位於該衛星的一層狀調變接收器/解調變器1510接收兩 個層狀饋送器鏈路信號1502八、1502B,並將該兩個層狀饋 送1§鏈路信號1502A、1502B分成其個別相關聯位元流。將 接收器/解調變器1 5 1 〇的輸出位元流耦合至調變器丨5丨6A、 88886-971107.doc -39- 1309515 1516B(其可併成單一單元)。一第—調變器isi6a產生一上 層信號808A,在上層信號808A被耦合至—第一下行鏈路放 大器1512A及衛星天線1514A之前,上層信號8〇8a經過適當 濾波、轉譯成其指派下行鏈路頻率,並且調整其功率位準, 以傳送至一 IRD 500、8〇2。一第二調變器1S16B產生一下層 信號808B,在下層信號808B被耦合耦合至一第二下行鏈^ 放大器1512B及衛星天線1514B之前,下層信號8〇8b經過適 當濾波、轉譯成其指派下行鏈路頻率,並且調整其功率位 準,以傳送至一 IRD 500、802。上層信號8〇8八及下層信號 · 808B在空中合併以形成該層狀調變下行鏈路信號,已知該 等指派下行鏈路頻率導致層之間的部分或完全信號頻寬重 疊。。使用者的層狀調變接收器8〇2可接收該兩個信號 808A、8G8B ’並經由專利中請案序號。9/844,4()1中所述技 術可將各層解調變。 如同先前饋送器鏈路系統13〇〇、14〇〇,本饋送器鏈路系 統1500中,支援層狀調變下行鏈路信號8〇8所要求的饋送器 鏈路頻譜量不多於所要求的下行鏈路頻譜。此饋送器鍵路φ 系統1 500保留下行鏈路層狀信號8〇8A、8_之間非同步關 係的優勢,亦保留分開的飽和衛星下行鏈路放大器1512A、 1512B用於各層的優勢。兩個層狀信號麵A、之間非 同步(非相干)關係使該兩個層狀信號能以不同符號率操 作’能使用獨立調變格式,並能使用獨立前向錯誤校正技 術。使用分開的飽和衛星下行鏈路放大器1512α、ΐ5ΐ2β容 許上層放大器15 12 A在飽和輸出功率中明顯低於要求。此明 88886-971107.doc ,40- 1309515 顯地減低在此等放大器1412A、1412B上的線性要求。 雖然饋送器鏈路系統15〇0要求一層狀調變解調變器及層 狀調變調變II位於單-衛星上,但在饋送器鏈路天: 15〇6A、1506B的相對位置並無要求(只要該等天線各朝衛星 1〇8(例如conus覆蓋範圍)發送,並只要在衛星ι〇8適當控 制該兩個層狀信號的相對接收功率位準 輸出功率的高度線性衛星放大器,則可排除在:星= 有解調變及再調變功能’在此情形中,可使用一彎管衛星Each satellite receiver 1410A, 141B receives a feeder link signal 1402A, 1402B, which is assigned an appropriate chopping, translation of the downlink frequency by the layers in the individual receivers 141A, 141A and Layer power: quasi-adjusted' to form a downlink layered signal 8〇8A, 8 幽. These fingers are known: the downlink frequency is the partial or complete signal bandwidth between the layers = stacking, after which the layered signals 8 〇 8A, 8 〇 8b are transmitted to the individual row chains. The path is amplified E] 412A, 1412b (which includes one or more TWTAs that can be placed in the power combiner, especially for the upper layer signals 8 〇 8A). In this example, the upper downlink signal 8G8A and the lower downlink signal 808B are transmitted to the same coverage area using separate satellite antennas i4 i 4 A, respectively. Upper layer downlink signal 8〇8A and lower layer downlink 88886-971 l〇7.d〇c •37· 1309515 Road k number 808B is combined in the air to form the layered modulated signal. The user's IRD 500, 802 receives the two overlapping signals via the technique described in Patent Application Serial No. 9/844, 4-1, and can one or both of the layered signals 8 〇 8A, 8 〇 8b Demodulation changes. Also in this example, the amount of feeder link spectrum required to support the layered modulated downlink signal 8〇8 is no more than the required downlink spectrum. As in the first feeder link system 1300, this feeder link system 14〇〇 retains the advantage of the asynchronous relationship between the layered signals 8〇8A, 808B, and also preserves the separate saturated satellite downlink amplifier 1412A, 1412B is used for the advantages of each layer. The non-synchronous (non-coherent) relationship between the two layered signals 808A, 808B allows them to operate at different symbol rates, can use independent modulation formats, and can use independent forward error correction techniques. Using separate saturated satellite downlinks, the Lattice 1412A, 1412B allows the upper amplifier 1412 to be significantly below the required output power in saturation. This significantly reduces the linearity requirements on these amplifiers 1412A, i4i2B. Although this feeder link system 1400 requires the presence of two separate satellites 1〇7A, 1〇7B' to cleanly receive the feeder link signals 1402A, 1402B and generate a layered modulated downlink signal 8〇8, However, conventional feeder link antennas 1406A, 1406B can be used without the spot beam receiving antenna on the side of the satellite 1A8A. Figure 14B is a flow diagram of an exemplary method 1440 of the (four) two-feeder keyway architecture of the present invention. At step 1442, a first feeder link signal for a first satellite interrogator is received on the first satellite, and the first satellite interrogator transmits the upper layer signal of the layered modulated signal to at least one Integrated 88886-971107.doc -38- 1309515 two:::::). Next, in step 1444, the second feeder link signal of the satellite responder is connected to the second satellite, and the second feeder link is transmitted by the number _ _ _ _ _ _ _ _ _ _ The frequency τ &quot; of the far-feeder link signal is used and the far-satellite and second satellites have a track separation sufficient to allow reuse of the frequency band. (d) A second satellite interrogator system for transmitting the underlying signal of the layered modulated signal to the at least-IRD. Method (10) may be consistent with the aforementioned feeder link system 1400. Tampering 5.3 Layered Modulation Feeder Link Figure 15-8 illustrates a third feeder link system 1500 for layered modulated signals. In this case 'the feeder link layered modulation signal including the upper layer feeder link signal 15G2A and the lower layer feeder link signal 15_ is at the feeder link station U line (four) center, 1 () 4) It is generated and then uploaded to satellite 108. As shown in FIG. 15A, each of the feeder link antennas 15 〇 6A, 15 〇 6B for each of the uplink signals 1502A, 1502B in the uplink center 1-4 uses its separate modulator and frequency doubling. The converter and high power amplifier chain can perform the merging of the two feeder link signals 1502A, 1502B over the air. Alternatively, the two feeder link signals 15〇2A, 15〇2B can be combined in a single uplink modulator and passed through a highly linear chirp/high power amplifier in the uplink center 1〇4 The combination is processed and passed to a single feeder key antenna 1506 (not shown). A layered modulation receiver/demodulation transformer 1510 located at the satellite receives two layered feeder link signals 1502 VIII, 1502B and divides the two layered feed 1 § link signals 1502A, 1502B into Individually associated bitstreams. The output bit stream of the receiver/demodulation transformer 1 5 1 耦合 is coupled to a modulator 丨5丨6A, 88886-971107.doc -39- 1309515 1516B (which can be combined into a single unit). A first modulator, isi6a, generates an upper layer signal 808A. The upper layer signal 8〇8a is appropriately filtered and translated into its assigned downlink before the upper layer signal 808A is coupled to the first downlink amplifier 1512A and the satellite antenna 1514A. The path frequency is adjusted and its power level is adjusted to be transmitted to an IRD 500, 8〇2. A second modulator 1S16B generates a lower layer signal 808B, which is properly filtered and translated into its assigned downlink before the lower layer signal 808B is coupled coupled to a second downlink amplifier 1512B and satellite antenna 1514B. The path frequency is adjusted and its power level is adjusted for transmission to an IRD 500, 802. The upper layer signal 8 8 8 and the lower layer signal 808B are combined in the air to form the layered modulated downlink signal, which is known to cause partial or full signal bandwidth overlap between layers. . The user's layered modulation receiver 8〇2 can receive the two signals 808A, 8G8B' and pass the patent number. The techniques described in 9/844, 4() 1 can demodulate the layers. As in the previous feeder link system 13A, 14〇〇, in the feeder link system 1500, the amount of feeder link spectrum required to support the layered modulated downlink signal 8〇8 is not more than required. Downlink spectrum. This feeder key φ system 1 500 retains the advantage of the asynchronous relationship between the downlink layered signals 8 〇 8A, 8_ and also preserves the advantages of separate saturated satellite downlink amplifiers 1512A, 1512B for each layer. The two layered signal planes A, with an asynchronous (non-coherent) relationship, enable the two layered signals to operate at different symbol rates' using independent modulation formats and using independent forward error correction techniques. The use of separate saturated satellite downlink amplifiers 1512α, ΐ5ΐ2β allows the upper layer amplifier 15 12 A to be significantly lower than required in the saturated output power. This Ming 88886-971107.doc, 40-1309515 significantly reduces the linearity requirements on these amplifiers 1412A, 1412B. Although the feeder link system 15〇0 requires a layered modulation demodulator and layered modulation modulation II to be located on a single-satellite, the relative position of the feeder link days: 15〇6A, 1506B is not Requirements (as long as the antennas are transmitted towards the satellite 1〇8 (eg conus coverage) and as long as the satellite ι〇8 properly controls the highly linear satellite amplifiers of the relative received power level output power of the two layered signals, then Can be excluded: star = demodulation and remodulation function 'in this case, a curved satellite can be used

中繼器。 圖15B繪示本發明用於第三饋送器鏈路系統1500的示箱 方法⑽的流程圖。在步驟⑽,接收一層狀調變饋送器 鏈路信號,該層狀調變饋送考〜1 文碩迗盗鏈路仏旒包括一上層饋送器 鏈路信號及一下層饋送3|h姑 、态鍵路化唬。接下來在步驟1544, 從層狀調變饋送器鏈路作號技L &amp; M ^ ‘ 硬塔彳。唬將上層饋送器鏈路信號解胡 變。在步驟1546,從層妝,微址2 層狀凋變饋送器鏈路信號將下層饋i| 器鏈路信號解調變。在步驟1&lt;/(。 。 隹步驟1548,調變上層饋送器鏈路有Repeater. Figure 15B is a flow chart of the illustrated method (10) for the third feeder link system 1500 of the present invention. In step (10), receiving a layered modulation feeder link signal, the layered modulation feed test includes an upper layer feeder link signal and a lower layer feed 3|h State transitions. Next, at step 1544, the layered modulation feeder link is numbered L &amp; M^ ‘hard tower.解 Unwind the upper feeder link signal. At step 1546, the layer-by-layer, fade-in-feed feeder link signal demodulates the lower layer feed signal from the layer makeup. In step 1 &lt;/(..) Step 1548, modulating the upper feeder link has

號’而將一層狀調變下杆絲% i 鍵路彳έ號之上層下行鏈路信號價 送給至少一整合式接收器/紐 °解馬器(IRD)。最後在步驟1550 調變第二饋送器鏈路作鲈, 〇說而將層狀調變下行鏈路信號之 下層下行鏈路信號傳送給兮 &lt; °孩-或多個IRD。方法154〇可經过 -步改良以與前述饋送器鍵路系統15〇〇 一致。' 5.4較高階調變饋送器鏈路 圖16A說明用於層狀調 。在此情形中,—習用5^808的第四饋送器鏈路系· 白用雨階同步調變(諸如16Qam等 88886-97ll07.doc -41· 1309515 用於饋送讀路ϋ16〇2。與下行鏈路的上層信號8⑽A或 下層信號咖相比,饋送器鏈路信號刪包括較高階同步 調欠藉此,饋送器鏈路信號的位元流輸送量至少如同上 層下行鏈路信號808A及下層下行鏈路信號⑽犯的合併位 ^流輸送量—樣高。可在詢答器107中使用-高功率合併 器用以在必要¥合併來自一個以上功率放大器的輸出, 以提供超過使用I一功率放大器所能達成的功率位準。 在衛星108上使用一16QAM(在此範例中)接收器/解調變 益1610,以接收且解調變來自饋送器鏈路信號“⑽的資料 流。然後使用一解多工器1616將較高速率饋送器鏈路位元 流分成兩個較慢的位元流。該兩個位元流各被傳達至較低 階層狀信號調變器1618A、1618B(圖16A範例中示為兩個 QPSK調變器)。第一較低階調變器16I8A將第一位元流施加 至一載波頻率,並適當地加以濾波、將其轉譯至其指派下 行鏈路頻率,並調整層功率位準,以產生用於下行鏈路的 上層信號808A。同樣地,第二較低階調變器丨6丨8B將第二 位元流施加至一載波頻率,並適當地加以濾波、將其轉譯 至其指派下行鏈路頻率,並調整層功率位準,以產生用於 下行鏈路的下層信號808B。已知該等指派下行鏈路頻率導 致層之間的部分或完全信號頻寬重疊。然後將各信號 808A、808B傳送至對應下行鍵路放大器1612A、1612B,並 且然後該兩個層狀信號808A、808B在空中合併。使用者的 層狀調變接收器802可接收該兩個層狀信號8〇8a、808B, 並經由專利申請案序號09/844,401所述技術,可將各層解調 88886-971107.doc -42· 1309515 如同先前饋送器鍵路系統咖、 器鏈路系統16〇〇中,支尸爲也 】5〇〇,在本饋遣 所要长的饉、p 定曰狀调變下行鏈路信號808的傳輸 银…=鏈路頻譜量不多於於所要求的下行鏈路頻 鏈㈣統16GG料τ行鏈路層狀信號 8二間的同步關係’並以相同符號率發送該等信號 器16以、。但是’系統16GG容許使用飽和下行鏈路放大 16UB °使$分開的飽和衛星下行鏈路放大器 、⑸2B容許上層放大器1612A在飽和輸出功率中明 顯低於要求。此日相地減低在此等放大器1612A、1612B上 的線性要求。 雖然此饋送器鏈路系統1600要求上層信號8〇从與下層信 號80则步,但是系統_可提供—對應下行鏈路頻道, 其具有16QAM位準的輸送量。用以提供16qam輸送量的習 用技術要求極高功率及高度線性衛星放大器,以一傳統 16QAM信號從衛星傳送到地面接收器。此系統16〇〇容許使 用非線性方式操作的多個較低功率放大器。 圖16B繪示本發明用於第四饋送器鏈路系統16〇〇的示範 方法1640的流程圖。首先在步驟1642,接收一包括高階調 變之饋送器鏈路信號,並將其解調變成一第一位元流。在 步驟1644,將該第一位元流解多工成一第二位元流及一第 三位元流。在步驟1646,將該第二位元流調變成一層狀調 變k號之上層信號,以傳送給至少一整合式接收器/解碼器 (IRD),該上層信號包括一較低階調變,其低於該饋送器鏈 88886-97H07.doc •43· 1309515 路信號之高階調變,俾使該饋送器鏈路信號之饋送器鏈路 頻帶不大於該上層信號及該下層信號之下行鏈路頻帶。最 後在步驟1648,將該第三位元流調變成該層狀調變信號之 下層彳s號,以傳送給該一或多個IRD,該下層信號具有該上 層信號之較低階調變;方法164〇可經進一步改良以與前述 饋送器鏈路系統1600—致。 茲將包括本發明較佳實施例的說明作一結論:為例證及 說明目的而提出本發明較佳實施例的前述說明,非用以誇 大或將本發明侷限於所揭示的精確形式;由以上教示的觀 點,可作出許多修改及變化。 希望非由此詳細說明,而是由本文後附申請專利範圍限 制,發明的範膂’以上說明書、範例及資料提供本發明裝 =製造及方法使用的完整說明;由於不背離本發明的範 疇’可作出本發明許多實施例’因此本發明隸屬於後附申 請專利範圍。 【圖式簡單說明】 圖1繪示單衛星視訊散佈系統的圖式; 圖2繪示用於單衛星詢答器的典型上行鏈路組態的方塊 , 圖3Α繪示一代表性資料流的圖式; 圖3Β繪示—代表性資料封包的圖式; 圖愤示用於饋送器鏈路信號的調變器實施例的方塊圖; 圖5、a不整合式接收器/解碼器(IRd)的方塊圖; 圖6A姻會示一層狀調變傳輸中數個信號層的基本關係 88886-971107.doc l3〇95!5 的圖式; _ 圖7A_7C繪示第一層解調變之後、在該第一傳輸層上第二 傳輪層的信號通信星座的圖式; 圖8A繪不用於傳送及接收層狀調變信號的系統的圖式; 圖8 B繪示用於接收及傳送層狀調變信號的示範衛星詢定 器的圖式; σ 圖9繪示加強型IRD實施例,其能接收層狀調變信號的 塊圖; 圖1 Ο A繪示加強型調諧器/調變器及F E c編碼器的一實施 例的方塊圖; ' 圖10B繪示加強型調諧器/調變器的另一實施例的圖式, 其中對收到的層狀信號執行層減除; 圖11A及11B繪示本發明示範實施例的相對功率位準; 、圖12繪示一示範電腦系統,其可用以實施本發明的數個 選取模組或功能; 圖13A繪示用於層狀調變信號的第一饋送器鏈路架構; 圖13B繪示本發明用於第一饋送器鏈路架構的示’ 的流程圖; 电 圖14A繪示用於層狀調變信號的第二饋送器鏈路架構; 圖14B繪示本發明用於該第二饋送器鏈路架構的示範方 法的流程圖; 圖15A繪示用於層狀調變信號的第三饋送器鏈路架構; 圖15B繪示本發明用於該第三饋送器鏈路架構的示範方 法的流程圖; 88886-97li〇7.d( •45- 1309515 圖1 6A繪示用於層狀調變信號的第四饋送器鏈路架構;及 圖1 6B繪示本發明用於該第四饋送器鏈路架構的示範方 法的流程圖。 【圖式代表符號說明】 100 視訊散佈系統 102 控制中心 104 上行鏈路中心 105,222 發射器 106 上行鏈路天線 107, 107A,107B 發射器或詢答器 108, 108A, 108B 衛星 110 用戶接收站 112, 112A, 112B, 812A, 812B 戶外單元(接收器天線) 114 地面或其他鏈路 116 饋送器鏈路信號(上行鏈路信號) 118 下行鏈路信號 200, 200A-200C 視訊源 202, 202A-202C, 404, 422 編碼器 204, 204A-204F 封包器 206 節目表子系統 208 電腦資料來源 210 條件式存取管理員 214 系統時鐘 88886-971J07.doc •46- 1309515 216 控制器 218 加密模組 220,406,414,1516A, 1516B 調變器 500, 802 整合式接收器/解碼器(IRD) 502,810Α, 810B 低雜訊區塊轉換器(LNB) 504, 904 調諧器/解調變器 506, 1002 FEC解碼器 508, 908 傳輸模組 510 微控制器 512 條件式存取模組(CAM) 514 視訊MPEG解碼器 516 視訊處理器 517 音訊MPEG解碼器 518 數位至類比(D/A)轉換器 522 電子式可拭除可程式唯讀記憶體 (EEPROM) 524 遙控器 526 外部通信模組 530 視訊儲存處理器 532 視訊儲存裝置 534 RF調變器 536 視訊隨機存取記憶體(RAM) 538 處理器唯讀記憶體(ROM) 88886-971107.doc -47- 1309515 540 數據機 808, 808A,808B, 1600, 1602, 1608 層狀信號 814 輸入多工器(IMUX) 816 行波管放大器(TWTA) 818 輸出多工器(OMUX) 1004, 1104, 1320 上層解調變器 1006 重編碼器/再調變器 1008, 1324 解碼器 1010, 1332 下層解調變器 1012 減法器 1018 非線性失真映射器 1200 電腦系統 1202 電腦 1204 處理器 1206 記憶體 1208 作業系統 1210 電腦程式 1212 編譯 1214 鍵盤 1216 滑鼠裝置 1218A 圖形使用者介面(GUI) 1220 資料儲存裝置 1222 顯示器 88886-971107.doc -48- 1302A, 1302B, 1402A, 1402B, 1502A, 1502B, 1602 1304A, 1304B, 1404A, 1404B 1306A, 1306B, 1406A, 1406B, 1506A, 1506B 1310A, 1310B, 1410A, 1410B 1312A, 1312B, 1412A, 1412B, 1512A, 1512B, 1612A, 1612B 1314A, 1314B, 1414A, 1309515 1224 1230 1300, 1400, 1500, 1600 1414B, 1514A, 1514B 1510 1616No.', the layered signal is changed to the lower layer signal price of the upper layer. The upper layer downlink signal price is sent to at least one integrated receiver/Nemo solution (IRD). Finally, at step 1550, the second feeder link is modulated, and the lower layer downlink signal of the layered modulated downlink signal is transmitted to 兮[°- or multiple IRDs. The method 154 can be modified in a step-by-step manner to conform to the aforementioned feeder key system 15A. '5.4 Higher Order Modulation Feeder Link Figure 16A illustrates the use of layered modulation. In this case, the fourth feeder link of the conventional 5^808 is white-synchronous modulation (such as 16Qam et al. 88886-97ll07.doc -41·1309515 for feeding the read path 〇16〇2. Compared with the upper layer signal 8(10)A or the lower layer signal of the link, the feeder link signal includes higher order synchronization tuned, whereby the bit stream of the feeder link signal is at least as high as the upper layer downlink signal 808A and the lower layer downlink. The combined signal flow rate of the link signal (10) is high. It can be used in the responder 107 - the high power combiner is used to combine the outputs from more than one power amplifier in order to provide more than one power amplifier. The power level that can be achieved. A 16QAM (in this example) receiver/demodulation gain 1610 is used on the satellite 108 to receive and demodulate the data stream from the feeder link signal "(10). Then use A demultiplexer 1616 splits the higher rate feeder link bitstream into two slower bitstreams. The two bitstreams are each conveyed to lower hierarchical signal modulators 1618A, 1618B (Fig. Two QPSK modulators are shown in the 16A example. The first lower order modulator 16I8A applies the first bit stream to a carrier frequency and filters it appropriately, translates it to its assigned downlink frequency, and adjusts the layer power level for generation. The upper layer signal 808A of the downlink. Similarly, the second lower order modulator 丨6丨8B applies the second bit stream to a carrier frequency and appropriately filters and translates it to its assigned downlink. The channel frequency, and the layer power level is adjusted to produce a lower layer signal 808B for the downlink. It is known that the assigned downlink frequencies cause partial or full signal bandwidth overlap between layers. Then each signal 808A, 808B is transmitted to the corresponding downstream key amplifiers 1612A, 1612B, and then the two layered signals 808A, 808B are combined in the air. The user's layered modulation receiver 802 can receive the two layered signals 8〇8a, 808B And the technology described in Patent Application Serial No. 09/844,401, the layers can be demodulated 88886-971107.doc -42· 1309515 as in the previous feeder key system, the link system 16 , For too] 5〇〇, in this The 遣, p 曰 调 下行 下行 下行 下行 下行 下行 下行 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = The two synchronization relationships 'and transmit the annunciators 16 at the same symbol rate. However, the system 16GG allows the saturated downlink downlink amplifier to be separated by 16 UB ° using saturated downlink, and the (5) 2B tolerant upper-layer amplifier 1612A is The saturation output power is significantly lower than required. This phase reduces the linearity requirements on these amplifiers 1612A, 1612B. While this feeder link system 1600 requires the upper layer signal 8 to follow the lower layer signal 80, the system_available - corresponding to the downlink channel, which has a 16QAM level of throughput. The conventional technology used to provide 16qam throughput requires extremely high power and highly linear satellite amplifiers that are transmitted from a satellite to a terrestrial receiver with a conventional 16QAM signal. This system 16〇〇 allows for the use of multiple lower power amplifiers that operate in a non-linear manner. Figure 16B is a flow diagram of an exemplary method 1640 for a fourth feeder link system 16A of the present invention. First at step 1642, a feeder link signal comprising a high order modulation is received and demodulated into a first bit stream. At step 1644, the first bit stream is multiplexed into a second bit stream and a third bit stream. At step 1646, the second bit stream is modulated into a layered modulation k number upper layer signal for transmission to at least one integrated receiver/decoder (IRD), the upper layer signal including a lower order modulation , which is lower than the high-order modulation of the signal of the feeder chain 88886-97H07.doc • 43·1309515, so that the feeder link frequency band of the feeder link signal is not greater than the upper layer signal and the lower layer signal below the chain Road band. Finally, in step 1648, the third bit stream is modulated into a layer 彳s number below the layered modulation signal for transmission to the one or more IRDs, the lower layer signal having a lower order modulation of the upper layer signal; Method 164 can be further modified to coincide with the aforementioned feeder link system 1600. The foregoing description of the preferred embodiments of the invention is intended to Many modifications and changes can be made from the teachings. It is intended that the invention not be described in detail, but by the scope of the appended claims. Many embodiments of the invention can be made. The invention is therefore intended to be included within the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a single satellite video distribution system; FIG. 2 is a block diagram showing a typical uplink configuration for a single satellite interrogator, and FIG. 3 is a diagram showing a representative data stream. Figure 3Β shows a diagram of a representative data packet; Figure illustrates a block diagram of a modulator embodiment for a feeder link signal; Figure 5, a non-integrated receiver/decoder (IRd) Figure 6A shows the basic relationship of several signal layers in a layered modulation transmission 88886-971107.doc l3〇95!5 pattern; _ Figure 7A_7C shows the first layer after demodulation a diagram of a signal communication constellation of the second transport layer on the first transport layer; FIG. 8A depicts a diagram of a system not used for transmitting and receiving layered modulated signals; FIG. 8B illustrates a scheme for receiving and transmitting Schematic diagram of an exemplary satellite interrogator for layered modulated signals; σ Figure 9 illustrates an enhanced IRD embodiment that can receive a block diagram of a layered modulated signal; Figure 1 Ο A shows a reinforced tuner/tuning A block diagram of an embodiment of a transformer and an FE c encoder; 'FIG. 10B illustrates another embodiment of a reinforced tuner/modulator a diagram in which layer depletion is performed on the received layered signal; FIGS. 11A and 11B illustrate relative power levels of an exemplary embodiment of the present invention; and FIG. 12 illustrates an exemplary computer system that can be used to implement the present invention. FIG. 13A illustrates a first feeder link architecture for a layered modulation signal; FIG. 13B illustrates a flow diagram of the present invention for a first feeder link architecture. Figure 14A shows a second feeder link architecture for layered modulation signals; Figure 14B shows a flow chart of an exemplary method for the second feeder link architecture of the present invention; Figure 3B is a flow chart of an exemplary method for the third feeder link architecture of the present invention; 88886-97li〇7.d (?45-1309515) Figure 16A illustrates a fourth feeder link architecture for layered modulated signals; and Figure 16B illustrates a flow chart of an exemplary method for the fourth feeder link architecture of the present invention. DESCRIPTION OF SYMBOLS 100 Video Dispersion System 102 Control Center 104 Uplink Center 105, 2 22 Transmitter 106 Uplink Antenna 107, 107A, 107B Transmitter or Provider 108, 108A, 108B Satellite 110 User Receiving Station 112, 112A, 112B, 812A, 812B Outdoor Unit (Receiver Antenna) 114 Ground or other chain Path 116 Feeder Link Signal (Uplink Signal) 118 Downlink Signal 200, 200A-200C Video Source 202, 202A-202C, 404, 422 Encoder 204, 204A-204F Packetizer 206 Program List Subsystem 208 Computer Source 210 Conditional Access Manager 214 System Clock 88886-971J07.doc • 46- 1309515 216 Controller 218 Encryption Module 220, 406, 414, 1516A, 1516B Modulator 500, 802 Integrated Receiver/Decoder (IRD) 502,810Α, 810B Low Noise Block Converter (LNB) 504, 904 Tuner/Demodulation Transformer 506, 1002 FEC Decoder 508, 908 Transmission Module 510 Microcontroller 512 Conditional Access Module (CAM) 514 Video MPEG Decoder 516 Video Processor 517 Audio MPEG Decoder 518 Digital to Analog (D/A) Converter 522 Electronic Erasable Programmable Read Only Memory (EEPROM) 524 Remote Control 526 External Pass Signal module 530 video storage processor 532 video storage device 534 RF modulator 536 video random access memory (RAM) 538 processor read only memory (ROM) 88886-971107.doc -47- 1309515 540 data machine 808 , 808A, 808B, 1600, 1602, 1608 Layered Signal 814 Input Multiplexer (IMUX) 816 Traveling Wave Tube Amplifier (TWTA) 818 Output Multiplexer (OMUX) 1004, 1104, 1320 Upper Demodulation Transmitter 1006 Recoding /remodulator 1008, 1324 decoder 1010, 1332 lower demodulation transformer 1012 subtractor 1018 nonlinear distortion mapper 1200 computer system 1202 computer 1204 processor 1206 memory 1208 operating system 1210 computer program 1212 compilation 1214 keyboard 1216 Mouse Device 1218A Graphical User Interface (GUI) 1220 Data Storage Device 1222 Display 88886-971107.doc -48- 1302A, 1302B, 1402A, 1402B, 1502A, 1502B, 1602 1304A, 1304B, 1404A, 1404B 1306A, 1306B, 1406A , 1406B, 1506A, 1506B 1310A, 1310B, 1410A, 1410B 1312A, 1312B, 1412A, 1412B, 1512A, 1512B, 1612A, 1612B 1314A, 1314B, 1414A, 130951 5 1224 1230 1300, 1400, 1500, 1600 1414B, 1514A, 1514B 1510 1616

1618A, 1618B 軟碟機 資料通信裝置 饋送器鏈路系統 饋送器鏈路信號 饋送器鏈路點波束天線 饋送器鏈路天線 衛星接收器 下行鏈路放大器 衛星天線 層狀調變接收器/解調變器 解多工器 較低階層狀信號調變器 88886-97JI07.doc •49-1618A, 1618B floppy disk data communication device feeder link system feeder link signal feeder link spot beam antenna feeder link antenna satellite receiver downlink amplifier satellite antenna layered modulation receiver / demodulation Debugger multiplexer lower level signal modulator 88886-97JI07.doc •49-

Claims (1)

1309515 拾、申請專利範圍: 統,包括 1'—種用於上行鏈路信號之系 第接收益,用以使H衛星詢I k 饋送器鏈路點波束夭給 认 ^ 年〜 反采天線,以接收一第一饋送器鏈路 旒,該第一衛1峋焚。。 ^ ^ 生力ο益將一層狀調變信號之一上屏 傳送至至少一接收器; “―5藏 一第一接收器,用以使用一第二衛星詢答器之—第二 广送器鏈路點波束天線,以接收一第二饋送器鏈路作 號,3亥第—衛星詢答器將該層狀調變信號之一下層信辦 傳送至該至少一接收器; 化 其中該第一饋送器鏈路點波束天線從—第一覆蓋區域 發射,而S亥第二饋送器鏈路點波束天線從異於該第—覆 蓋區域之一第二覆蓋區域發射,並且該第二饋送器鏈2 信號再使用該第一饋送器鏈路信號之一頻譜。 2·如申請專利範圍第i項之系、统,其中該上層信號之一第〜 頻率頻寬局部重疊於該下層信號之一第二頻率頻寬。 3. 如申請專利範圍第W之系統,其中該上層信號之一第一 頻率頻寬完全重疊於該下層信號之一第二頻率頻寬。 4. 如申請專職圍第1項之系、统,其中該上層信號包括一舊 式信號。 5. 6. 如申請專利範圍第1項之系統,其中該第一 二詢答器皆在一共同衛星上。 如申請專利範圍第1項之系統,其中該第一 二詢答器各在不同衛星上。 詢答器及該第 詢答器及該第 88886-971107.doc 1309515 7.如申請專利範圍第1項之系統,其中該第-詢答写及令第 —询善斋包括可大體上飽和操作之放大器。 人 Ϊ二:::::圍第1項之系統,其中用於該上層信號之該 弟一何星珣答器包括一功率合併器。 9· Γ請:利範圍,項之系統,其中該第-饋送器鏈路信 I及二::送㈣路信號之至少一者之功率位準被調 整,以、准持用純收之介於該上層信號與該下層 間的一相對功率位準。 ; —種用於上行鏈路信號之方法,包括: 使用-第-衛星詢答器之—第一饋送器鍵路點波束天 線’以接收-第-饋送器鏈路信號,該第—衛星詢答器 將-層狀調變信號之一上層信號傳送至至少—接收器· 使用-第二衛星詢答器之—第二饋送器鍵路點波束天 線’以接收-第二饋送器鏈路信號,該第二衛星詢答哭 將該層狀調變信號之一下層信號傳送至 ^ 1 ; 至―接收 其中該第一饋送器鏈路點波束天線從一第一 復龛區域 發射,而該第二饋送器鏈路點波束天線從異於該第一覆 蓋區域之一第二覆蓋區域發射,並且該第二饋。、 器鍵路 信號再使用該第一饋送器鏈路信號之一頻譜。 π.如申請專利範圍第10項之方法,其中該上層 曰現之—第 一頻率頻寬局部重疊於該下層信號之一第二頰率頻寬 12.如申請專利範圍第1〇項之方法,其中該上 。 s 現之—第 一頻率頻寬完全重疊於該下層信號之一第二頻 只丰頻寬。 88886-97ll07.doc -2 - 1309515 13. 如申請專利範圍第1〇項之方法,其中該上層信號包括— 舊式信號。 其中該第一詢答器及該 其中該第一詢答器及該 其中該第一詢答器及該 14. 如申請專利範圍第1〇項之方法 第二詢答器皆在一共同衛星上 15. 如申請專利範圍第1〇項之方法 第二詢答器各在不同衛星上。 16. 如申請專利範圍第1〇項之 ,、丨峨矛— 弟一询答器包括可大體上飽和操作之放大哭。 Π.如^專利範圍第1G項之方法,其中用料上層信號之 δ亥第一衛星詢答器包括-功率合併器。 18. 如申請專利範圍第 信號及該第二饋送其中該第一饋送器鍵路 調整,以維持用… 少一者之功率位準被 之間的一相::::::介於該上層信號與該下層信號 19. 一種用於上行鏈路信號之系統,包括: 第接收器,用LV fds 衛星詢答器之—第 衛星上#收用於-第— 器將-層狀調變二/之达器鏈路信號,該第-衛星詢答 器; ^叙-上層^料至至少—接收 -第二接收器,用以 衛星詢答器之—笛-蛛、,弟—衛生上接收用於一苐二 器將該層狀調變^11鏈路&amp;號’該第:衛星詢答 器; 4奴—下騎㈣送至駐少-接收 其中該第二饋送器 唬再使用該第-饋送器鏈路 88886*97 丨丨 07.doc 1309515 信號之一頻帶,並且該第一衛星及該第二衛星具有足以 容許再使用該頻帶之一轨道分隔。 20.如申請專利範圍第19項 弟 -〜一 一頻率頻寬局部重疊於該下層信號之一第二頻率頻寬。 21 ·如申請專利範圍第19項之系統,其中該上層信號之一第 一頻率頻寬完全重疊於該下層信號之一第二頻率頻寬。 22.如申請專利範圍第19項之系統,其中該上層信號包括— 舊式信號。 23.如申請專利範圍第19項之系統,其中用於該上層信號之 該第一衛星詢答器包括一功率合併器。 』 24.1 申請專利範圍第19項之系統,其中該第一饋送器鍵路 信號及該第二饋送器鏈路信號之至少—者之功率位準被 調正卩維持用於接收之介於該上層信號與該下層信 之間的一相對功率位準。 〇 , 25. 一徑用於上行鏈路信號之方法,包括: 在第衛星上接收用於一第—衛星詢答器之 饋送器鏈路信號,該第一衛星詢答器將一層狀調心 之-亡層信號傳送至至少一接收器; 。 在—第二衛星上接收用於-第二衛星詢答器之—第 饋送器鏈路信號, 乐 該第—衛星詢答器將該層狀調變 之一下層信號傳送 &lt;王。褒至少一接收器; 其中該第-與、¥ _ —貝、益鏈路信號再使用該第一饋送器鏈 j吕號之一頻帶, 、—命 並且該第—衛星及該第二衛星具有一 以谷許再使用該 乂頊帶之一軌道分隔。 88886-971107.doc 1309515 26·如申請專利範圍第25項之方法,其中該上層信號之一第 一頻率頻寬局部重疊於該下層信號之一第二頻率頻寬。 27,如申請專利範圍第25項之方法,其中該上層信號之一第 一頻率頻寬完全重疊於該下層信號之一第二頻率頻寬。 28·如申請專利範圍第25項之方法,其中該上層信號包括一 舊式信號。 29_如申清專利範圍第25項之方法,其中用於該上層信號之 X第衛星s旬答器包括一功率合併器。 30.如申凊專利範圍第25項之方法,其中該第一饋送器鍵路 k號及該第二饋送器鏈路信號之至少-者之功率位準被 調整,以維_於接收之介於該上層㈣與訂層信於 之間的一相對功率位準。 JU 31. 一種用於上行鏈路信號之系統 一層狀調變接收器/解調變器,用 自一層狀調變饋送器鏈路信號之一 及一下層饋送器鏈路信號;, 包括: 以接收且解調變皆來 上層饋送器鏈路信號 一第一調變器 產生一層狀調變 收器;及 ’:以調變該上層饋送器鏈路 下仃鏈路信號之-上層信號給. ,以—接 一第二調變器 產生該層狀調變 接收器。 ,用以調變該 下行鏈路信號 下層饋送器鏈路信 之一下層信號給該 號,以 至少一 斯〒印寻利範圍第3〗項之 信號及該下層饋 妝、、、·,其中該上層饋送 鏈路信號係自-共同位置 88886-971107.doc 1309515 33. 34. 35. 36. 37. 38. 39. 40. 送。 如申請專利範圍第31項 信號及該下層饋送芎“統’其中該上層饋送器鏈路 送。 饋^鏈路信號係自一不同位置予以發 如申請專利範圍第31項 ^ . 地 、系、”先’其中該上層下行赫收产 唬之一第一頻率頻窗 仃鍵路k ^ 11 °卩重疊於該下層下行鏈路作·號# 一弟二頻率頻寬。 唬之 如申請專利範圍第3丨項 號之一第一頻率頻寬」:糸統’其中該上層下行鏈路信 寬π王重疊於該下層下行鏈路 一第二頻率頻寬。 七就之 如申請專利範圍第31項 ^ ^ ^ a 糸統,其中該上層饋送器鏈路 仏號及該下層饋送器鏈 啤吟L唬相干地傳送至該層狀 接收器/解調變器。 《狀調變 如申請專利範圍第31項 备 項之系統,其中該上層饋送器鏈路 &quot;is號及該下層饋送哭赫攸产% 宫頭U 〇。鏈路尨唬非相干地傳送至該 變接收器/解調變器。 狀调 如申請專利範圍第31項之系統,其中該第一調變器及节 k調變ϋ包括多個上層下行鏈路放A||,每個該上層 下行鏈路放大器包括一功率合併器。 如申請專利範圍第3〗項之系統,其中該上層饋送器鍵路 信號及該下層饋送器鏈路信號之至少-者之功率位準被 调整,以維持用於接收之介於該上層信號與該下層信號 之間的一相對功率位準。 一種用於上行鏈路信號之方法,包括: 88886-971107.doc 1309515 接收一層狀調變饋诸哭 I頌送益鏈路“號,該層狀調變 鏈路信號包括一上層饋送 迗态 玲謂廷益鏈路k號及一下層 d ^站. r頌送器鏈 路信號 號將該上層饋送器鏈路信 從該層狀調變饋送器鏈路信 號解調變; 從該層狀調變饋送器鏈路信號將該下 號解調變; 、益鏈路信 調變β亥上層饋送器鍵 %崎娓,用U將一層狀調變 鏈路信號之一上層下行鍵 仃 仃鏈路化唬傳达到至少一接收器; 及 調I亥下層饋送器鍵路信號,用以將該層狀調變下 鏈路信號之—下層下行鏈路信號傳送到該至少—接: 器。 伐1J又 41. 42. 43. 44. 如申請專利範圍第4〇項之方法,其中該上層饋送器鏈路 信號及該下層饋送器鏈路信號係自一共同位置予以發 送0 如申請專利範圍第4〇 圍第4G項之方法,其中該上層饋送器鏈路 &quot;is 5^1及§亥下層谈哭, 貝廷器鏈路信號係自一不同位置予以 送。 ,申料利範圍第40項之方法,其中該上層下行鍵路信 號,帛一頻率頻寬局部重疊於該下層下行鏈路信號之 一第二頻率頻寬。 ,申請專利_第40項之方法,其中該上層下行鏈路信 號之帛-頻率頻寬完全重疊於該下層下行鏈路信號之 88886-971107.doc 1309515 一第二頻率頻寬。 45. 46. 47. 48. 如申請專利範圍第4〇項之方法,其中將該上層饋送器鏈 路信號及該下層饋送器鍵路信號相干地傳送至該至少一 接收器。 如申請專利範圍第40項之方法,其中將該上層饋送器鏈 路信號及該下層饋送器鏈路信號非相干地傳送至該至少 一接收器。 如申請專利範圍第4〇項之方法,其中該上層饋送器鏈路 信號及該下層饋送器鏈路信號之至少一者之功率位準被 調整’以維持用於接收之介於該上層信號與該下層信號 之間的一相對功率位準。 一種用於上行鏈路信號之系統,包括: 一較高階接收器/解調變器,用以接收一饋送器鏈路信 號,並將該饋送器鏈路信號解調變成一第一位元流; 一解多工器,用以將該第一位元流解多工成一第二位 元流及一第三位元流; 一乐一权低卩皆調變器,用以將該第二位元流調變成一 層狀調變信號之—上層信號,以傳送給至少-接收器; 一第二較低階調變器,田、,收# &amp; _ 用以將3亥第二位元流調變成該 層狀調變信號之一下層户 Γ層t唬’以傳送給該至少一接收哭, 其中該饋送器鏈路作辨± 崎L唬包括一較高階調變,其高於 上層信號及該下層、&quot; 。现之一較低階調變,俾使 鏈路信號之一饋送器鏈路 貝廷器 „ „ _ 員帶不大於該上層信號及該下 層#唬之一下行鏈路頻帶。 88886-971107.doc 1309515 49·如申請專利範圍第48項之系統,其中該上層信號之 一頻率頻寬局部重疊於該下層信號之一第二頻率頻寬 5〇.如中請專利範圍第㈣之系統,其中該上層信號之—第 -頻率頻寬完全重疊於該下層信號之—第二頻率頻寬。 如申請專利範圍第48項之系統,其巾純高階同步調變 包括16QAM,及該較低階調變包括QPSK。 &amp;如申請專利範圍第48項之系統,其中該上層下行鍵心 號藉由一具有一功率合併器之放大器系統而放大。。 Μ·如申請專利範圍第48項之系統,其中該上層鍵路信號及 该下層鏈路信號之至少-者之功率位準被調整,以維持 用於接收之介於該上層信號與該下層信號之間對 功率位準。 对 54. —種用於上行鏈路信號之方法,包括: /妾收—饋送器鏈路信號,並將該饋送器鏈路信號解調 變成一第一位元流; 將該第-位元流解多工成一第二位元流及一第三位元流; 。將該第二位元流調變成一層狀調變信號之一上層信 號,以傳送給至少一接收器; 將該第三位元流調變成該層狀調變信號之一下層信 號,以傳送給該至少一接收器; 其中該饋送器鏈路信號包括一較高階調變,盆高於該 上層㈣及該下層信號之-較低階調變,俾使該饋送; 鏈路#唬之饋送器鏈路頻帶不大於該上層信號及該下層 k號之一下行鏈路頻帶。 88886-971107.doc 1309515 55. 如申請專利範圍第“項之方法,其中該上層信號之一第 一頻率頻寬局部重疊於該下層信號之一第二頻率頰寬。 56. 如申請專利範圍第“項之方法,其中該上層信號之一第 一頻率頻寬完全重疊於該下層信號之一第二頻率頻寬。 57. 如中請專利範圍第54項之方法,其中該較高階同步調變 包括16QAM ’及該較低階調變包括QPSK。 58·如:請_範圍第54項之方法中該上層下行鍵路# 號措由-具有—功率合併器之放大器系統而放大。 59·如申請專利範圍第54項之方法,纟中該上層鏈路信號刀 該下層鏈路信號之至少一者之功率位準被調整,以控带 介於該上層信號與該下層信號之間的-相對功率位準。1309515 Pickup, patent application scope: The system includes 1'-type receiving benefit for the uplink signal, which is used to make the H satellite query Ik feeder link spot beam 夭 认 〜 反 反 反 反 反 反 反To receive a first feeder link, the first guard is burned. . ^ ^ 生力ο益 transmits one of the layered modulation signals to at least one receiver; "―5 contains a first receiver for using a second satellite interrogator - the second transmission Linking a spot beam antenna to receive a second feeder link number, and the 3Hai-satellite interrogator transmits the lower layer signal of one of the layered modulated signals to the at least one receiver; a first feeder link spot beam antenna is transmitted from the first coverage area, and a second feeder link spot beam antenna is transmitted from a second coverage area different from the first coverage area, and the second feed The chain 2 signal uses a spectrum of the first feeder link signal. 2. The system of claim i, wherein one of the upper signals has a frequency overlap partially overlapping the lower layer signal A second frequency bandwidth. 3. The system of claim 1, wherein the first frequency bandwidth of the upper layer signal is completely overlapped with the second frequency bandwidth of one of the lower layer signals. 1 item, system, wherein the upper layer signal includes 5. 6. The system of claim 1, wherein the first and second interrogators are on a common satellite, such as the system of claim 1, wherein the first and second interrogators Each of the different satellites. The responder and the answering device and the 88886-971107.doc 1309515 7. The system of claim 1 of the patent scope, wherein the first-inquiry answer and the order--inquiry Including an amplifier that can be substantially saturated. Ϊ二::::: The system surrounding the first item, wherein the brother of the upper layer signal includes a power combiner. The system of claim, wherein the power level of at least one of the first-feeder link signal I and the second::send (four) way signal is adjusted, and the pre-existing purely received signal is between the upper layer signal and a relative power level between the lower layers. A method for uplink signals, comprising: using a -first satellite interrogator - a first feeder key spot beam antenna to receive - a - feed a link signal, the first satellite interrogator transmits a signal to the upper layer of the layered modulated signal to At least - receiver - using - second satellite interrogator - second feeder key spot beam antenna 'to receive - second feeder link signal, the second satellite inquiring to layer the layered modulated signal One of the lower layer signals is transmitted to ^1; to "received" wherein the first feeder link spot beam antenna is transmitted from a first reclamation area, and the second feeder link spot beam antenna is different from the first coverage One of the second coverage areas of the area is transmitted, and the second feedback signal is used to re-use one of the first feeder link signals. π. The method of claim 10, wherein the upper layer Presently, the first frequency bandwidth is partially overlapped with one of the lower layer signals, and the second cheek rate bandwidth is 12. The method of claim 1, wherein the upper portion. s Now - the first frequency bandwidth is completely overlapped with one of the lower layers of the second frequency. The method of claim 1, wherein the upper layer signal comprises an old signal. The first interrogator and the first interrogator and the first interrogator and the second interrogator of the method of claim 1 of the patent application are all on a common satellite 15. The method of applying for the first paragraph of the patent scope is that the second responder is on a different satellite. 16. If the scope of the patent application is not included in the first paragraph, the spear-and-one-one responder includes a magnifying cry that can be substantially saturated. Π. For example, the method of the first aspect of the patent range, wherein the first satellite interrogator of the upper layer signal includes a power combiner. 18. The application of the patent range signal and the second feed wherein the first feeder key is adjusted to maintain a phase between the power levels of one less:::::: between the upper layers Signal and the underlying signal 19. A system for an uplink signal, comprising: a receiver, using an LV fds satellite interrogator - the first satellite on the satellite - the first will be - layered / 达 达 link signal, the first satellite responder; ^ Syria - upper layer to at least - receive - second receiver, for satellite responder - flute - spider, brother - health reception Used for one-to-two device to modify the layered ^11 link &amp; number 'this: satellite interrogator; 4 slave - down ride (four) to the station less - receive the second feeder 唬 reuse The first-feeder link 88886*97 丨丨07.doc 1309515 signals one of the frequency bands, and the first satellite and the second satellite have sufficient orbital separation to permit reuse of the frequency band. 20. As claimed in claim 19, the frequency bandwidth is partially overlapped with the second frequency bandwidth of one of the lower layer signals. 21. The system of claim 19, wherein one of the upper layer signals has a first frequency bandwidth that completely overlaps one of the lower layer signals and a second frequency bandwidth. 22. The system of claim 19, wherein the upper layer signal comprises - an old signal. 23. The system of claim 19, wherein the first satellite interrogator for the upper layer signal comprises a power combiner. 24. The system of claim 19, wherein at least a power level of the first feeder key signal and the second feeder link signal is adjusted and maintained for reception at the upper layer A relative power level between the signal and the underlying signal. 〇, 25. A method for an uplink signal, comprising: receiving, on a first satellite, a feeder link signal for a first satellite interrogator, the first satellite interrogator The heart-dead layer signal is transmitted to at least one receiver; The first feeder link signal for the second satellite interrogator is received on the second satellite, and the first satellite interrogator transmits the layered modulation to the lower layer signal.褒 at least one receiver; wherein the first-, __-be, and yi link signals reuse a frequency band of the first feeder chain j, and the first satellite and the second satellite have One uses the track to separate the track. The method of claim 25, wherein the first frequency bandwidth of the one of the upper signals is partially overlapped with the second frequency bandwidth of one of the lower signals. The method of claim 25, wherein the first frequency bandwidth of one of the upper signals completely overlaps the second frequency bandwidth of one of the lower signals. 28. The method of claim 25, wherein the upper layer signal comprises an old signal. 29_ The method of claim 25, wherein the X satellite sigma for the upper layer signal comprises a power combiner. 30. The method of claim 25, wherein the power level of at least the first feeder key k and the second feeder link signal is adjusted to maintain A relative power level between the upper layer (four) and the subscription layer. JU 31. A system layered modulation receiver/demodulation transformer for uplink signals, using one of a layered modulation feeder link signal and a lower layer feeder link signal; : receiving and demodulating all of the upper layer feeder link signals, a first modulator generating a layered modulation converter; and ': modulating the upper layer feeder link to the lower link signal - the upper layer The signal is given to the second modulator to generate the layered modulation receiver. And modulating the lower layer signal of the lower layer feeder link signal of the downlink signal to the number, and at least one signal of the third item of the profit-seeking range and the lower layer of makeup, and, wherein The upper layer feed link signal is from the common position 88886-971107.doc 1309515 33. 34. 35. 36. 37. 38. 39. 40. For example, the signal of the 31st item of the patent application and the lower layer feeding 芎 "the system" is sent by the upper layer feeder link. The signal of the feeding link is sent from a different position as in the 31st item of the patent application. "First" is one of the upper frequency downlink 收 唬 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 ^ ^ k ^ k ^ k k k ^ 卩 卩 卩 卩 卩 卩 卩 卩 卩 卩As for the first frequency bandwidth of one of the patent application scopes, the first frequency downlink π king overlaps the lower layer downlink and the second frequency bandwidth. Seventh as in the patent application scope 31 ^ ^ ^ a system, wherein the upper feeder link nickname and the lower layer feeder chain 唬 L唬 are coherently transmitted to the layered receiver/demodulation transformer . The system is changed to the system of claim 31, wherein the upper feeder link &quot;is number and the lower layer of the crying 攸 攸 % 宫 宫 宫 宫 〇. The link is transmitted non-coherently to the variable receiver/demodulation transformer. The system of claim 31, wherein the first modulator and the k-th transform include a plurality of upper-layer downlink A_|, each of the upper-layer downlink amplifiers including a power combiner . The system of claim 3, wherein the power level of at least the upper layer feeder signal and the lower layer link signal is adjusted to maintain the received signal between the upper layer and the upper layer. A relative power level between the underlying signals. A method for uplink signals, comprising: 88886-971107.doc 1309515 receiving a layered modulation feed crying I 颂 链路 link ", the layered modulation link signal includes an upper layer feed state Ling said the Tongyi link k number and the lower layer d ^ station. The r feeder link signal number demodulates the upper layer feeder link signal from the layered modulation feeder link signal; from the layered The modulation feeder link signal demodulates the next number; the benefit link link modulation β upper layer feeder key is rugged, and U is used to layer one of the layered modulation link signals. The link is transmitted to the at least one receiver; and the lower layer feeder key signal is transmitted to transmit the lower layer downlink signal of the layered modulated downlink signal to the at least one device. The method of claim 4, wherein the upper feeder link signal and the lower feeder link signal are transmitted from a common location, such as the patent application scope. Method 4 of item 4G, wherein the upper feeder link &q Uot;is 5^1 and §Hai lower layer talk about crying, Betting device link signal is sent from a different position. The method of claim 40, wherein the upper layer downlink signal, the frequency of the upper layer The method of claim 40, wherein the 帛-frequency bandwidth of the upper layer downlink signal is completely overlapped with the downlink signal of the lower layer. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; The method of claim 40, wherein the upper layer feeder link signal and the lower layer feeder link signal are transmitted non-coherently to the at least one receiver. The method of claim 4, wherein a power level of at least one of the upper layer feeder link signal and the lower layer feeder link signal is adjusted to maintain the upper layer signal and the lower layer for reception a relative power level between the signals. A system for an uplink signal, comprising: a higher order receiver/demodulation transformer for receiving a feeder link signal and connecting the feeder link The signal demodulation becomes a first bit stream; a demultiplexer is configured to multiplex the first bit stream into a second bit stream and a third bit stream; a modulator for converting the second bit stream into a layered modulated signal-upper layer signal for transmission to at least a receiver; a second lower order modulator, Tian, and ### ; _ is used to transform the 3 位 second bit stream into one of the layered modulating signals, the lower layer of the layer t唬' to transmit to the at least one receiving crying, wherein the feeder link is identifiable Including a higher order modulation, which is higher than the upper layer signal and the lower layer, &quot;. One of the lower-order modulations is such that one of the link signals is fed by the feeder. The „ _ _ member band is not greater than the downlink signal of the upper layer signal and the lower layer #唬. The system of claim 48, wherein a frequency bandwidth of one of the upper signals is partially overlapped with a second frequency bandwidth of the lower layer signal by 5 〇. For example, the patent scope (4) The system wherein the first-frequency bandwidth of the upper layer signal is completely overlapped with the second frequency bandwidth of the lower layer signal. For example, in the system of claim 48, the pure high-order synchronous modulation of the towel includes 16QAM, and the lower-order modulation includes QPSK. &amp;A system as claimed in claim 48, wherein the upper layer downlink key is amplified by an amplifier system having a power combiner. . The system of claim 48, wherein the power level of at least the upper layer signal and the lower layer signal is adjusted to maintain the upper layer signal and the lower layer signal for receiving The power level is between. 54. A method for an uplink signal, comprising: / collecting a feeder link signal, and demodulating the feeder link signal into a first bit stream; The stream is multiplexed into a second bit stream and a third bit stream; Transmitting the second bit stream into an upper layer signal of one layer modulation signal for transmission to at least one receiver; and transforming the third bit stream into one of the layer modulation signals to transmit Giving the at least one receiver; wherein the feeder link signal comprises a higher order modulation, the basin being higher than the upper layer (four) and the lower layer modulation of the lower layer signal, causing the feed; The link frequency band is not greater than the upper layer signal and one of the lower layer k numbers. The method of claim 1, wherein the first frequency bandwidth of the one of the upper signals partially overlaps the second frequency of the lower layer signal. 56. The method of item, wherein the first frequency bandwidth of one of the upper signals is completely overlapped with the second frequency bandwidth of one of the lower signals. 57. The method of claim 54, wherein the higher order synchronous modulation comprises 16QAM&apos; and the lower order modulation comprises QPSK. 58. For example, in the method of item 54 of the range _, the upper layer downlink key ## is amplified by an amplifier system having a power combiner. 59. The method of claim 54, wherein the power level of the at least one of the upper link signal knife is adjusted to control the band between the upper layer signal and the lower layer signal - relative power level. 88886-971107.doc •10-88886-971107.doc •10-
TW092129629A 2001-04-27 2003-10-24 Feeder link configurations to support layererd modulation for digital signals TWI309515B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/844,401 US7209524B2 (en) 2001-04-27 2001-04-27 Layered modulation for digital signals
US42132802P 2002-10-25 2002-10-25

Publications (2)

Publication Number Publication Date
TW200423585A TW200423585A (en) 2004-11-01
TWI309515B true TWI309515B (en) 2009-05-01

Family

ID=32685093

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092129629A TWI309515B (en) 2001-04-27 2003-10-24 Feeder link configurations to support layererd modulation for digital signals

Country Status (2)

Country Link
TW (1) TWI309515B (en)
WO (1) WO2004040820A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5791787B2 (en) 2012-03-28 2015-10-07 三菱電機株式会社 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
CN106572338A (en) * 2016-07-21 2017-04-19 李燕如 LNB (Low-noise block down-converter) module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619503A (en) * 1994-01-11 1997-04-08 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
US5642358A (en) * 1994-04-08 1997-06-24 Ericsson Inc. Multiple beamwidth phased array
AU2001284688B2 (en) * 2000-08-02 2006-07-06 Atc Technologies, Llc Coordinated satellite-terrestrial frequency reuse
US7209524B2 (en) * 2001-04-27 2007-04-24 The Directv Group, Inc. Layered modulation for digital signals

Also Published As

Publication number Publication date
WO2004040820A3 (en) 2004-07-15
TW200423585A (en) 2004-11-01
WO2004040820A2 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US8804605B2 (en) Feeder link configurations to support layered modulation for digital signals
US7706466B2 (en) Lower complexity layered modulation signal processor
US7920643B2 (en) Maximizing power and spectral efficiencies for layered and conventional modulations
TWI285034B (en) Carrier to noise ratio estimations from a received signal
US7469019B2 (en) Optimization technique for layered modulation
WO2004040924A1 (en) Method and apparatus for tailoring carrier power requirements according to availability in layered modulation systems
TWI310645B (en) Method, apparatus and system for estimating the operating point on a nonlinear traveling wave tube amplifier
NO333917B1 (en) Maximizing power and spectral efficiencies for layered and conventional modulations.
TWI309515B (en) Feeder link configurations to support layererd modulation for digital signals
US8005035B2 (en) Online output multiplexer filter measurement
CA2503432C (en) Feeder link configurations to support layered modulation for digital signals
US7173977B2 (en) Method and apparatus for tailoring carrier power requirements according to availability in layered modulation systems

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees