TWI309430B - A method for cleaning wafer - Google Patents

A method for cleaning wafer Download PDF

Info

Publication number
TWI309430B
TWI309430B TW91118963A TW91118963A TWI309430B TW I309430 B TWI309430 B TW I309430B TW 91118963 A TW91118963 A TW 91118963A TW 91118963 A TW91118963 A TW 91118963A TW I309430 B TWI309430 B TW I309430B
Authority
TW
Taiwan
Prior art keywords
wafer
cleaning
semiconductor wafer
material layer
wafer according
Prior art date
Application number
TW91118963A
Other languages
Chinese (zh)
Inventor
Hung Wei Liu
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW91118963A priority Critical patent/TWI309430B/en
Application granted granted Critical
Publication of TWI309430B publication Critical patent/TWI309430B/en

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

1309430 98-1-17 六、發明說明: 本發明是有關於一種半導體清洗製程,且特別是有關 於一種半導體晶圓之清洗方法。 在積體電路元件的製程中,最頻繁之製程步驟就是晶 圓洗淨。晶圓洗淨之目的乃是爲了去除附著於晶圓表面上 的有機化合物、金屬雜質或微粒(Particle)。而這些污染物 會對於產品後續製程的影響非常大。金屬雜質的污染會造 成p-n接面之漏電、縮減少數載子的生命期、降低閘極氧 化層之崩潰電壓。微粒之附著則會影響微影製程圖案轉移 之真實性,甚至造成電路結構之短路。因此,在晶圓清洗 製程中,必須有效的去除附著於晶圓表面之有機化合物、 金屬雜質以及微粒(Particle),同時在清洗後晶圓表面必須 沒有原生氧化層(Native Oxide),表面粗糙度要極小。 刷洗製程(Scrubber Process)是目前業界常用來移除金 屬導線製程、化學氣相沈積製程(Chemical Vapor Deposition,CVD) '與磊晶製程之後,去除微粒之方法。 習知的刷洗製程是將晶圓片置於刷洗機內,利用大量的去 離子水(壓力爲12MPa至20MPa左右)沖洗晶圓表面,同時 並利用刷洗機內的刷頭刷洗晶圓片表面,如此可以有效的 清除附著於晶圓表面的粒子。 然而,在上述的刷洗過程之後,在晶圓的表面上常有 出現水痕的現象。而水痕的生成易造成良率與電性不佳等 問題。而且,空氣中之氧(〇2)也很容易和去離子水在晶圓表 面形成弱酸,而影響元件之效能。因此,如何防止晶圓表 3 1309430 98-1-17 面產生水痕’以及防止空氣中之氧和去離子水在晶圓表面 形成弱酸是很重要的。 有鑑於此’本發明之一目的爲提供一種半導體晶圓之 清洗方法’可以防止晶圓表面產生水痕,並防止空氣中之 氧和去離子水在晶圓表面形成弱酸,而能夠提升元件效 能,並且提高製造產能。 根據本發明之上述目的,提出一種半導體晶圓之清洗 方法’此方法係提供具有材料層之晶圓。然後,進行刷洗 製程’以刷頭與去離子水移除晶圓表面之微粒。之後,以 惰性氣體噴吹晶圓,以移除晶圓表面之水痕與防止晶圓受 氧影響。 本發明係以金屬導線製程、化學氣相沈積製程、或磊 晶製程於一晶圓表面形成一材料層後,對此晶圓進行一刷 洗製程時,先供給去離子水至晶圓表面,並以刷頭刷洗晶 圓表面後,在甩乾附著於晶圓表面之去離子水之同時,以 惰性氣體噴吹晶圓表面,不但可以防止晶圓表面形成水 痕’並且可以避免空氣中之氧(〇2)和去離子水在晶圓表面形 成弱酸,而影響元件之效能。 爲讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳 細說明如下: 【實施方式】 第1圖所繪示爲本發明之一較佳實施例之半導體晶圓 之清洗方法流程圖。第2圖所繪示爲本發明之一較佳實施 4 1309430 98-1-17 例之半導體晶圓之的刷洗裝置示意圖。第3A圖與3B圖所 繪耶爲本發明之一較佳實施例之半導體晶圓之的刷洗裝置 口丨】面不局'圖。以下請同時參照第1圖、第2圖、第3Α圖與 第3Β圖,其係用以說明本發明之較佳實施例。而且,在第 2圖、第3Α圖與第3Β圖中’相同之構件給予相同之符號。 首先’提供一預定進行刷洗之晶圓2〇〇,並將此晶圓 200放進設置於刷洗系統2〇2之晶圓承載台2〇4上(步驟 100)。其中,晶圓2〇〇上已形成一材料層,此材料層之材 質包括導體材料(例如是多晶矽、多晶矽化金屬、銅、鋁或 其他金屬等)、介電材料(例如氧化矽、氮化矽等)。形成 此材料層之方法例如是濺鍍法、化學氣相沈積法、磊晶法 等。而且’晶圓200之表面在材料層之形成製程中會附著 許多微粒。 接著,供給去離子水至晶圓200表面,以進行刷洗製 程’移除晶圓200表面之微粒(步驟1 〇2)。在此步驟中,利 用刷頭臂(Brush Arm)2〇6移動刷頭208至晶圓200表面, 並以噴射噴頭臂210移動噴射噴頭212晶圓200上方。然 後,晶圓承載台204帶動晶圓200 —方面以方向A轉動, 刷頭208則以方向B來移動(如第3A圖所示),同時利用噴 射噴頭212供給去離子水至晶圓200表面,以刷洗移除晶 圓200之粒子,藉以使晶圓200的整個表面得以被清洗乾 淨。接著,移動噴射噴頭臂210使噴射噴頭212從晶圓200 上方移開,並停止供應去離子水至晶圓200表面,同時以 刷頭臂206使刷頭208從晶圓200表面移開。接著,再以 1309430 98-1-17 去離子水清洗噴頭216供給去離子水至晶圓200表面以進 行清洗。 之後,以一情性氣體噴吹晶圓200表面,以移除晶圓 200表面之水痕以及防止空氣中之氧(〇2)和去離子水在晶圓 表面形成弱酸(步驟104)。在此步驟中,首先,停止供給去 離子水,並持續旋轉晶圓承載台204使晶圓200旋轉,以 甩乾附著於晶圓200表面之去離子水。由於,以此方式甩 乾晶圓200時,很容易在晶圓200表面形成水痕,而且空 氣中之氧(〇2)也會和去離子水在晶圓表面形成弱酸,而影響 元件之效能。因此,爲了移除晶圓200表面之水痕以及防 止空氣中之氧(〇2)和去離子水在晶圓表面形成弱酸,在本步 驟中,進行旋轉晶圓承載台204以甩乾附著於晶圓200表 面之去離子水時,同時從氣體噴頭214供給一惰性氣體噴 吹晶圓200表面,以移除晶圓200表面之水痕並防止空氣 中之氧(〇2)和去離子水在晶圓表面形成弱酸。其中,惰性氣 體例如是氮氣、氪氣、或氬氣(如第3B圖所示)。 依照本發明實施例所述,以金屬導線製程、化學氣相 沈積製程、或磊晶製程於晶圓表面形成一材料層後,對此 晶圓進行一刷洗製程時,先供給去離子水至晶圓表面,並 以刷頭刷洗晶圓表面後,在甩乾附著於晶圓表面之去離子 水之同時,以惰性氣體噴吹晶圓表面,不但可以防止晶圓 表面形成水痕,並且可以避免空氣中之氧(〇2)和去離子水在 晶圓表面形成弱酸,而影響元件之效能。 雖然本發明已以一較佳實施例揭露如上,然其並非用 6 1309430 98-1-17 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍內,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者爲準。 【圖式簡單說明】 第1圖所繪示爲本發明之一較佳實施例之半導體晶圓 之清洗方法流程圖。 第2圖所繪示爲本發明之一較佳實施例之半導體晶圓 之的刷洗裝置示意圖。 第3A圖與第3B圖所繪示爲本發明之一較佳實施例之 半導體晶圓之的刷洗裝置剖面示意圖。 【主要元件符號說明】 100、102、104 :步驟 200 :晶圓 202 :刷洗系統 204 :晶圓承載台 206 :刷頭臂 208 :刷頭 210 :噴射噴頭臂 212 :噴射噴頭 214 :氣體噴頭 216 :去離子水清洗噴頭1309430 98-1-17 VI. Description of the Invention: The present invention relates to a semiconductor cleaning process, and more particularly to a method of cleaning a semiconductor wafer. In the process of integrating circuit components, the most frequent process steps are wafer cleaning. The purpose of wafer cleaning is to remove organic compounds, metal impurities or particles attached to the surface of the wafer. These contaminants can have a significant impact on the subsequent process of the product. Contamination of metal impurities can cause leakage of p-n junctions, reduce the lifetime of the number of carriers, and reduce the breakdown voltage of the gate oxide layer. The adhesion of the particles affects the authenticity of the transfer of the lithography process pattern and even causes a short circuit in the circuit structure. Therefore, in the wafer cleaning process, organic compounds, metal impurities, and particles attached to the surface of the wafer must be effectively removed, and the surface of the wafer must have no native oxide layer (Native Oxide) after surface cleaning. Be very small. The Scrubber Process is a method commonly used in the industry to remove metal wires, chemical vapor deposition (CVD) and epitaxial processes to remove particles. The conventional brushing process involves placing the wafer in a brushing machine, rinsing the surface of the wafer with a large amount of deionized water (pressure of about 12 MPa to 20 MPa), and scrubbing the surface of the wafer with a brush head in the brushing machine. This effectively removes particles attached to the surface of the wafer. However, after the above-described brushing process, water marks often appear on the surface of the wafer. The formation of water marks is likely to cause problems such as poor yield and electrical conductivity. Moreover, the oxygen in the air (〇2) is also very easy to form a weak acid on the surface of the wafer with deionized water, which affects the performance of the component. Therefore, it is important to prevent the wafer from appearing on the surface of the wafer 3 1309430 98-1-17 and to prevent oxygen in the air and deionized water from forming a weak acid on the surface of the wafer. In view of the above, an object of the present invention is to provide a method for cleaning a semiconductor wafer, which can prevent water marks on the surface of the wafer and prevent oxygen and deionized water in the air from forming weak acid on the surface of the wafer, thereby improving component performance. And increase manufacturing capacity. In accordance with the above objects of the present invention, a method of cleaning a semiconductor wafer is proposed. This method provides a wafer having a material layer. Then, a brushing process is performed to remove particles from the surface of the wafer with a brush head and deionized water. The wafer is then sprayed with an inert gas to remove water marks from the wafer surface and prevent the wafer from being affected by oxygen. The invention adopts a metal wire process, a chemical vapor deposition process, or an epitaxial process to form a material layer on a surface of a wafer, and after performing a brushing process on the wafer, first supplying deionized water to the surface of the wafer, and After brushing the surface of the wafer with the brush head, the surface of the wafer is sprayed with inert gas while drying the deionized water attached to the surface of the wafer, which not only prevents water marks from forming on the surface of the wafer, but also avoids oxygen in the air. (〇2) and deionized water form a weak acid on the surface of the wafer, which affects the performance of the component. The above and other objects, features, and advantages of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A flow chart of a method of cleaning a semiconductor wafer according to a preferred embodiment of the present invention. FIG. 2 is a schematic diagram of a brushing device for a semiconductor wafer according to a preferred embodiment of the present invention 4 1309430 98-1-17. 3A and 3B are diagrams showing a brushing device for a semiconductor wafer according to a preferred embodiment of the present invention. In the following, reference is made to Figs. 1, 2, 3, and 3, which are intended to illustrate preferred embodiments of the present invention. Further, the same reference numerals are given to the same members in the second, third, and third drawings. First, a wafer 2 to be scrubbed is provided, and the wafer 200 is placed on the wafer carrier 2〇4 provided in the brushing system 2〇2 (step 100). Wherein, a material layer has been formed on the wafer 2, and the material of the material layer comprises a conductor material (for example, polycrystalline germanium, polycrystalline germanium metal, copper, aluminum or other metal, etc.), dielectric material (such as yttrium oxide, nitriding)矽, etc.). The method of forming the material layer is, for example, a sputtering method, a chemical vapor deposition method, an epitaxial method, or the like. Moreover, the surface of the wafer 200 will adhere to many particles during the formation process of the material layer. Next, deionized water is supplied to the surface of the wafer 200 to perform a brushing process to remove particles on the surface of the wafer 200 (step 1 〇 2). In this step, the brush head 208 is moved to the surface of the wafer 200 by a Brush Arm 2, 6 and moved over the wafer 200 of the ejection head 212 by the jetting head arm 210. Then, the wafer carrier 204 drives the wafer 200 to rotate in the direction A, and the brush head 208 moves in the direction B (as shown in FIG. 3A) while supplying the deionized water to the surface of the wafer 200 by using the ejection nozzle 212. The particles of the wafer 200 are removed by brushing, so that the entire surface of the wafer 200 can be cleaned. Next, the jetting nozzle arm 210 moves the jetting head 212 away from the wafer 200 and stops supplying deionized water to the surface of the wafer 200 while the brush head 208 moves the brush head 208 away from the surface of the wafer 200. Next, the deionized water cleaning head 216 is further supplied with deionized water to the surface of the wafer 200 for cleaning by 1309430 98-1-17. Thereafter, the surface of the wafer 200 is sprayed with an inert gas to remove water marks on the surface of the wafer 200 and to prevent oxygen (?2) in the air and deionized water from forming weak acid on the surface of the wafer (step 104). In this step, first, the supply of deionized water is stopped, and the wafer carrier 204 is continuously rotated to rotate the wafer 200 to dry the deionized water attached to the surface of the wafer 200. Since the wafer 200 is dried in this manner, it is easy to form water marks on the surface of the wafer 200, and the oxygen in the air (〇2) and the deionized water form a weak acid on the surface of the wafer, thereby affecting the performance of the device. . Therefore, in order to remove water marks on the surface of the wafer 200 and prevent oxygen in the air (〇2) and deionized water from forming a weak acid on the surface of the wafer, in this step, the wafer carrier 204 is rotated to adhere to the wafer. When the surface of the wafer 200 is deionized water, an inert gas is supplied from the gas nozzle 214 to spray the surface of the wafer 200 to remove water marks on the surface of the wafer 200 and prevent oxygen (〇2) and deionized water in the air. A weak acid is formed on the surface of the wafer. Among them, the inert gas is, for example, nitrogen, helium or argon (as shown in Fig. 3B). According to an embodiment of the invention, after forming a material layer on the surface of the wafer by a metal wire process, a chemical vapor deposition process, or an epitaxial process, the wafer is subjected to a brushing process, and the deionized water is first supplied to the crystal. After the surface of the wafer is brushed by the brush head, the surface of the wafer is sprayed with inert gas while drying the deionized water attached to the surface of the wafer, which not only prevents water marks from forming on the surface of the wafer, but also avoids Oxygen in the air (〇2) and deionized water form a weak acid on the surface of the wafer, which affects the performance of the component. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to be limited to the scope of the present invention. The scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a method of cleaning a semiconductor wafer according to a preferred embodiment of the present invention. 2 is a schematic view of a brushing device for a semiconductor wafer according to a preferred embodiment of the present invention. 3A and 3B are schematic cross-sectional views showing a brushing device for a semiconductor wafer according to a preferred embodiment of the present invention. [Main Component Symbol Description] 100, 102, 104: Step 200: Wafer 202: Brushing System 204: Wafer Carrier 206: Brush Head Arm 208: Brush Head 210: Jet Head Arm 212: Spray Head 214: Gas Head 216 : Deionized water cleaning nozzle

Claims (1)

1309430 98-1-17 七、申請專利範圍: 1. 一種半導體晶圓之清洗方法,該方法包括: 提供一刷洗裝置,該刷洗裝置具有一刷頭; 放置一晶圓於該刷洗裝置內; 以一去離子水沖洗該晶圓,並以該刷頭刷洗該晶圓; 以一惰性氣體噴吹該晶圓,以移除該晶圓表面之水痕 與防止該晶圓受氧影響。 2. 如申請專利範圍第i項所述之半導體晶圓之清洗方 法,其中該惰性氣體包括氮氣。 3. 如申請專利範圍第1項所述之半導體晶圓之清洗方 法,其中該惰性氣體係選自氮氣、氬氣與氪氣所組之族群。 4. 如申請專利範圍第1項所述之半導體晶圓之清洗方 法’其中該晶圓上具有一材料層。 5_如申請專利範圍第4項所述之半導體晶圓之清洗方 法’其中該材料層包括導體材料。 6.如申請專利範圍第4項所述之半導體晶圓之清洗方 法’其中該材料層包括介電材料。 7·如申請專利範圍第4項所述之半導體晶圓之清洗方 法,其中該材料層係選自多晶矽、多晶矽化金屬、銅、鋁、 氧化矽與氮化矽所組之族群。 8.如申請專利範圍第4項所述之半導體晶圓之清洗方 法’其中該材料層之形成方法包括濺鍍法。 9·如申請專利範圍第4項所述之半導體晶圓之清洗方 法’其中該材料層之形成方法包括化學氣相沈積法。 δ 1309430 98-1-17 10.如申請專利範圍第4項所述之半導體晶圓之清洗方 法,其中該材料層之形成方法包括磊晶法。 •1309430 98-1-17 四、指定代表圖: (一) 本案指定代表圖為:第( )圖。 (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學 式: 21309430 98-1-17 VII. Patent application scope: 1. A method for cleaning a semiconductor wafer, the method comprising: providing a brushing device, the brushing device having a brush head; placing a wafer in the brushing device; The wafer is rinsed with deionized water, and the wafer is brushed with the brush head; the wafer is sprayed with an inert gas to remove water marks on the surface of the wafer and prevent the wafer from being affected by oxygen. 2. The method of cleaning a semiconductor wafer according to claim i, wherein the inert gas comprises nitrogen. 3. The method of cleaning a semiconductor wafer according to claim 1, wherein the inert gas system is selected from the group consisting of nitrogen, argon and helium. 4. The method of cleaning a semiconductor wafer according to claim 1, wherein the wafer has a material layer thereon. 5) A method of cleaning a semiconductor wafer as described in claim 4, wherein the material layer comprises a conductor material. 6. The method of cleaning a semiconductor wafer according to claim 4, wherein the material layer comprises a dielectric material. 7. The method of cleaning a semiconductor wafer according to claim 4, wherein the material layer is selected from the group consisting of polycrystalline germanium, polycrystalline germanium, copper, aluminum, cerium oxide and tantalum nitride. 8. The method of cleaning a semiconductor wafer according to claim 4, wherein the method of forming the material layer comprises a sputtering method. 9. The method of cleaning a semiconductor wafer according to claim 4, wherein the method of forming the material layer comprises a chemical vapor deposition method. δ 1309430 98-1-17 10. The method of cleaning a semiconductor wafer according to claim 4, wherein the method of forming the material layer comprises an epitaxial method. • 1309430 98-1-17 IV. Designated representative map: (1) The representative representative of the case is: ( ). (2) A brief description of the symbol of the representative figure: 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: 2
TW91118963A 2002-08-22 2002-08-22 A method for cleaning wafer TWI309430B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91118963A TWI309430B (en) 2002-08-22 2002-08-22 A method for cleaning wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91118963A TWI309430B (en) 2002-08-22 2002-08-22 A method for cleaning wafer

Publications (1)

Publication Number Publication Date
TWI309430B true TWI309430B (en) 2009-05-01

Family

ID=45072039

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91118963A TWI309430B (en) 2002-08-22 2002-08-22 A method for cleaning wafer

Country Status (1)

Country Link
TW (1) TWI309430B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI569894B (en) * 2011-12-29 2017-02-11 Pollutant Treatment Method for Sprinkler with Silicon Carbide Coated

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI569894B (en) * 2011-12-29 2017-02-11 Pollutant Treatment Method for Sprinkler with Silicon Carbide Coated

Similar Documents

Publication Publication Date Title
US7498269B2 (en) Cleaning methods for silicon electrode assembly surface contamination removal
JP3395696B2 (en) Wafer processing apparatus and wafer processing method
US20040074526A1 (en) Method of manufacturing semiconductor device and apparatus for cleaning substrate
US7743449B2 (en) System and method for a combined contact and non-contact wafer cleaning module
TW200539330A (en) Ozone vapor clean method
US20050003088A1 (en) Method of depositing thin film on wafer
KR20180054598A (en) Substrate processing method, substrate processing apparatus, and storage medium
US20120285483A1 (en) Method of cleaning a wafer
WO2005096910A1 (en) Substrate brush scrubbing and proximity cleaning-drying sequence using compatible chemistries, and proximity substrate preparation sequence, and methods, apparatus, and systems for implementing the same
US20060003570A1 (en) Method and apparatus for electroless capping with vapor drying
TWI309430B (en) A method for cleaning wafer
JP5470746B2 (en) Manufacturing method of semiconductor device
US7067015B2 (en) Modified clean chemistry and megasonic nozzle for removing backside CMP slurries
CN1134828C (en) Semiconductor device production technology and the used washing device thereof
JP2002203824A (en) Method for cleaning wafer
US20230021398A1 (en) Integratead wet clean for bevel treatments
US20130098395A1 (en) Semiconductor substrate cleaning apparatus, systems, and methods
US6703317B1 (en) Method to neutralize charge imbalance following a wafer cleaning process
US20060196526A1 (en) Methods of spin-on wafer cleaning
JP2003124316A (en) Method for manufacturing semiconductor device and treatment liquid
KR20090121527A (en) Recycling method of silicon wafer and its recycled divice
CN1303652C (en) Method for cleaning wafer of semiconductor
US20050189001A1 (en) Method for cleaning substrates using supercritical fluids
JP3701193B2 (en) Manufacturing method of semiconductor device
US20240266184A1 (en) Method of manufacturing semiconductor structure

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent