TWI309059B - Field emission plane light source and method for making the same - Google Patents

Field emission plane light source and method for making the same Download PDF

Info

Publication number
TWI309059B
TWI309059B TW95111406A TW95111406A TWI309059B TW I309059 B TWI309059 B TW I309059B TW 95111406 A TW95111406 A TW 95111406A TW 95111406 A TW95111406 A TW 95111406A TW I309059 B TWI309059 B TW I309059B
Authority
TW
Taiwan
Prior art keywords
light source
field emission
cathode
anode
display light
Prior art date
Application number
TW95111406A
Other languages
Chinese (zh)
Other versions
TW200737280A (en
Inventor
Li Qian
Liang Liu
Peng Liu
Jie Tang
Yang Wei
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95111406A priority Critical patent/TWI309059B/en
Publication of TW200737280A publication Critical patent/TW200737280A/en
Application granted granted Critical
Publication of TWI309059B publication Critical patent/TWI309059B/en

Links

Description

1309059 ,九、發明說明: 【發明所屬之技術領域】 本發明係涉及一種場發射平面顯示光源及其製造 方法,尤其涉及一種藉由吸氣劑有效保持其内部具有正 常工作下所需真空度之場發射平面顯示光源及其製造 方法。 【先前技術】 按,平面顯示技術發展迅速,其已被廣泛地應用於 個人電腦、移動通訊及消費性電子産品等領域,成爲資 訊技術之一大平臺。目前應用較爲普遍之平面顯示技術 係液晶顯示(Liquid Crystal Display)技術、電漿顯 示(Plasma Display )技術和場發射顯示(Field Emission Display)技術等。其中,場發射平面顯示技 術與其他平面顯示技術相比,具有較高對比度、較廣視 角、較高亮度、較低能量消耗、較短回應時間以及較寬 工作溫度等優點。 習知之場發射平面顯示多藉由場發射平面顯示光 源實現,其主要包括可發射電子之陰極及與陰極相對應 設置且具有螢光層之陽極。陰極於電場作用下發射電 子,電子撞擊陽極之螢光層而使螢光層發光。對於場發 射平面顯示光源來說,通常需要進行大面積薄型平板結 構之高真空密封封裝,光源内部真空度越高,場發射性 能也就越好。根據彩色顯像管管内氣體分析實驗,工作 狀態下螢光屏放氣係場發射平面顯示光源工作中難於 維持真空之主因,故而,當場發射平面顯示光源内部體 積相對較小,而螢光屏面積相同之情況下,真空維持更 成爲該器件之關鍵技術難題之一。 1309059 先前技術中,場發射平面顯示光源爲獲得較長壽命 所採用之維持真空之措施主要係於其内部安裝吸氣 劑,其大致有兩種類型,即蒸散式以及集中非蒸散式。 對於蒸散式吸氣劑,需於場發射雙面顯示光源内部 設置一平面結構從而藉由預先之蒸散過程形成吸氣劑 層,惟,由此會增加製造成本,亦可能引起電極間短路 或漏電,導致光源失效。對於集中非蒸散式吸氣劑,其 通常集中設置於場發射平面顯示光源側端部位置。在場 發射雙面顯示光源内部靠近吸氣劑之位置真空度較 好,而在遠離吸氣劑之位置真空度較差,例如,對於陽 極與陽極之間距大約在500微米之場發射平面顯示光 源,靠近吸氣劑位置之真空度可達1(Γ5帕左右,而遠離 吸氣劑位置大約5厘米處真空度約為10_2帕左右,其已 不能滿足場發射平面顯示光源正常工作所應具備之水 平。 有鑒於此,確有必要提供一種場發射平面顯示光 源,其能有效地维持场場發射平面顯示光源内部具有正 常工作下所需之真空度。 【發明内容】 以下將以實施例說明一種場發射平面顯示光源及 其製造方法,該場發射平面顯示光源可有效維持其内部 具有正常工作下所需之真空度從而確保其具有良好之 工作品質。 一種場發射平面顯示光源,係包括陽極、與陽極對 應設置之陰極、設置於陽極與陰極間並使二者相互隔離 之複數支撐條以及固定陽極、陰極與支撐條並於其内部 形成一密封空間之邊封體。該陽極包括一陽極基板、設 置於陽極基板上之陽極導電層以及設置於陽極導電層 1309059 上之螢光層。該陰極包括一陰極基板、設置於陰極基板 上之陰極導電層以及設置於陰極導電層上且與陽極螢 光層相對應之電子發射層。其中,該電子發射層包含吸 氣劑微粒、金屬導電微粒、奈米材料以及玻璃。 一種場發射雙面顯示光源之製造方法,係包括以下 步驟: 提供吸氣劑微粒、導電金屬微粒、玻璃微粒以及奈 米材料、陽極、具有陰極導電層之陰極基板以及複數支 撐條; 將吸氣劑微粒、導電金屬微粒、玻璃微粒以及奈米 材料於有機載體中進行充分混合以形成漿料; 將上述漿料置於陰極基板之陰極導電層之表面; 將置有漿料之陰極基板於300〜600°C下進行烘乾及 焙燒從而於陰極基板之陰極導電層之表面形成電子發 射層以得到陰極;以及 組裝陽極、陰極以及支撐條並於其端側部位加上邊 封材料,一併加熱至400〜500°C,邊封材料熔融從而形 成密封之場發射平面顯示光源。 上述場發射平面顯示光源中吸氣劑微粒係分散於 陰極之電子發射層中,其可有效地吸收螢光層發出之氣 體或由其他各種原因進入場發射平面顯示光源内部之 氣體,從而保持場發射平面顯示光源内部具有良好之真 空度進而提高其使用品質。 【實施方式】 以下將結合附圖詳細說明本實施例場發射雙面顯 示光源10之結構以及其製造方法。 請參閱圖1,本實施例場發射平面顯示光源10係包 括陽極20、與陽極對應設置之陰極30、設置於陽極20 1309059 與陰極30間使二者間隔一定距離之複數支撐條4〇以及 封裝陽極20、陰極30與支撐條40之邊封體50。 陽極20係包括一陽極基板202、設置於陽極基板 202表面之陽極導電層2〇4以及設置於陽極導電層204 •^之螢光層206。該陽極基板202選用透明玻璃板。該 陽極導電層204選用透明導電膜,優選地,採用透明氧 =鋼錫膜作爲陽極導電層2〇4。該螢光層2〇6選用高光 %轉換效率、低應用電壓及長餘輝並且含有彩色榮光粉 =榮光層。可選擇地’螢光層206外設置一層鋁膜208, -可防止螢光粉過早老化,還可提高光源亮度。 ,極3G係包括_陰極基板3()2、設置於陰極基板 夕^之陰極導電層304以及設置於陰極導電層304 該险榀奠306。該陰極基板302選用透明玻璃板。 ϋ銦锡二選用透明導電膜,優選地,採用透明 可選用半導體發層或2”G4。該陰極導電層304還 ㉔一併參閱圖2和 ^曰 材料310 '玻璃31?、、首 电卞土耵層別b含有奈未 粒316。豆中,节% — &電金屬微粒314以及吸氣劑微 劑材料,直徑^卜粒^係採时蒸散型吸氣 面吸著或體擴散吸氣,:m吸氣劑係靠表 者其合金等成分爲主,j鈦锆、铪、钍、稀土金屬或 鍅釩鐵。該導電金屬微t 、電子漿料級鈦粉、 確保奈米材料與陰極導】或氧化銦錫’其可 金屬微粒314由銀繁成電層間笔性連接,優選地,導電 場發射之奈米碳管j他:= 4系包括能用於 棒或奈米級微极,其^材枓之奈米管、奈米線、奈米 奈米。 八、又爲5〜15微米,直徑爲1〜100 1309059 ^撐條40係由透明、堅固之材料製成,其主要作 =確f各種尺寸之場發射平面顯示光源10能承受外 亚安全H數量視實際需要而定,本實 施例中,設置四去庐伙八从 , 个貝 之兩㈣_。 於場發射平面顯示光源10 ^ 〇岔封連接陰極基板302與陽極基板202 =間:於場發射平面顯示光源丨◦内部形= 菩井厚電t 發射電子,電子撞擊陽極2〇之 f \ 攸而使螢光層206發光形成亮點。此過程 :二由於均勾分散於陰極3°之電子發 由i他各吸收瑩光層2G6發出之氣體或 ”各種原因進入場發射平面顯示光源10内部之氣 光一部具有良好之 侧平面顯 屬微Π: —i I提供一定量吸氣劑微· 316、導電金 f❹314、玻璃微粒及奈米材料310、陽極2〇、帶有 U3丨〇4之陰極基板3〇2以及複數支撐條4〇 ;1309059, IX. Description of the Invention: [Technical Field] The present invention relates to a field emission flat display light source and a method of fabricating the same, and more particularly to a method for effectively maintaining the required vacuum under normal working conditions by a getter Field emission plane display light source and its manufacturing method. [Prior Art] According to the rapid development of flat panel display technology, it has been widely used in personal computers, mobile communications and consumer electronics, and has become a platform for information technology. Currently, the flat display technologies that are commonly used are liquid crystal display technology, plasma display technology, and field emission display (Field Emission Display) technology. Among them, field emission plane display technology has higher contrast, wider viewing angle, higher brightness, lower energy consumption, shorter response time and wider operating temperature than other flat display technologies. The conventional field emission plane display is mostly realized by a field emission plane display light source, which mainly includes a cathode capable of emitting electrons and an anode corresponding to the cathode and having a fluorescent layer. The cathode emits electrons under the action of an electric field, and the electrons strike the phosphor layer of the anode to cause the phosphor layer to emit light. For a field emission flat display light source, a high vacuum sealed package of a large-area thin flat structure is usually required, and the higher the internal vacuum of the light source, the better the field emission performance. According to the gas analysis experiment in the color picture tube, the field emission plane of the fluorescent screen venting system in the working state shows that the main cause of the vacuum is difficult to maintain in the working of the light source. Therefore, the field emission plane shows that the internal volume of the light source is relatively small, and the area of the fluorescent screen is the same. In this case, vacuum maintenance has become one of the key technical challenges of the device. 1309059 In the prior art, the field emission flat display light source used to maintain a longer life is mainly based on the internal installation of the getter, which is roughly of two types, namely evapotranspiration and concentrated non-evaporable. For the evapotranspiration getter, a planar structure is provided inside the field emission double-sided display light source to form a getter layer by a pre-evaporation process, which may increase the manufacturing cost and may cause short circuit or leakage between the electrodes. , causing the light source to fail. For concentrated non-evaporable getters, they are typically placed centrally on the field emission plane to show the source side end position. The field emission double-sided display light source has a better vacuum near the getter, and the vacuum is poor at a position away from the getter. For example, for a field emission display with a distance of about 500 micrometers between the anode and the anode, The vacuum near the getter position can reach 1 (Γ5 Pa or so, and the vacuum is about 10 2 Pa at a distance of about 5 cm away from the getter position, which can not meet the level of the normal operation of the field emission plane display light source. In view of the above, it is indeed necessary to provide a field emission planar display light source, which can effectively maintain the vacuum required for normal operation under the field emission plane display light source. [Description] A field will be described below by way of example. The emission plane display light source and the manufacturing method thereof, the field emission plane display light source can effectively maintain the vacuum degree required for normal working inside to ensure the good working quality. A field emission plane display light source includes an anode, and a cathode corresponding to the anode, a plurality of supports disposed between the anode and the cathode and separating the two from each other And a side sealing body for fixing the anode, the cathode and the supporting strip and forming a sealed space therein. The anode comprises an anode substrate, an anode conductive layer disposed on the anode substrate, and a fluorescent layer disposed on the anode conductive layer 1309059 The cathode comprises a cathode substrate, a cathode conductive layer disposed on the cathode substrate, and an electron emission layer disposed on the cathode conductive layer and corresponding to the anode fluorescent layer, wherein the electron emission layer comprises getter particles and metal Conductive particles, nano materials and glass. A method for manufacturing a field emission double-sided display light source comprises the steps of: providing getter particles, conductive metal particles, glass particles and nano materials, an anode, a cathode having a cathode conductive layer a substrate and a plurality of support strips; the getter particles, the conductive metal particles, the glass particles, and the nano material are thoroughly mixed in an organic carrier to form a slurry; and the slurry is placed on the surface of the cathode conductive layer of the cathode substrate; The cathode substrate provided with the slurry is dried and calcined at 300 to 600 ° C to form a cathode substrate. Forming an electron emission layer on the surface of the cathode conductive layer to obtain a cathode; and assembling the anode, the cathode and the support strip and adding a side sealing material to the end portion thereof, and heating to 400 to 500 ° C, and the sealing material is melted to form a seal. The field emission plane displays the light source. The field emission plane shows that the getter particles in the light source are dispersed in the electron emission layer of the cathode, which can effectively absorb the gas emitted by the phosphor layer or enter the field emission plane to display the light source inside by various other reasons. The gas is maintained to maintain a good degree of vacuum inside the light source and to improve the quality of use. [Embodiment] The structure of the field emission double-sided display light source 10 of the present embodiment and a method of manufacturing the same will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1 , the field emission plane display light source 10 of the present embodiment includes an anode 20 , a cathode 30 corresponding to the anode, a plurality of support strips 4 设置 disposed between the anode 20 1309059 and the cathode 30 and spaced apart from each other, and a package. The anode 20, the cathode 30 and the side of the support strip 40 are sealed 50. The anode 20 includes an anode substrate 202, an anode conductive layer 2〇4 disposed on the surface of the anode substrate 202, and a phosphor layer 206 disposed on the anode conductive layer 204. The anode substrate 202 is made of a transparent glass plate. The anode conductive layer 204 is made of a transparent conductive film. Preferably, a transparent oxygen=steel-tin film is used as the anode conductive layer 2〇4. The phosphor layer 2〇6 uses high light % conversion efficiency, low application voltage and long afterglow and contains a color glory powder = glory layer. Optionally, an aluminum film 208 is disposed outside the phosphor layer 206 to prevent premature aging of the phosphor powder and to increase the brightness of the light source. The pole 3G system includes a cathode substrate 3 (2), a cathode conductive layer 304 disposed on the cathode substrate, and a cathode conductive layer 304. The cathode substrate 302 is made of a transparent glass plate. A transparent conductive film is selected for the indium tin oxide. Preferably, a transparent semiconductor layer or 2" G4 is used. The cathode conductive layer 304 is also referred to FIG. 2 and the material 310 'glass 31? The soil layer b contains nai granules 316. In the beans, the section % — & electro-metal particles 314 and the getter micro-agent material, the diameter of the ^ ^ ^ ^ system evapotranspiration type suction surface suction or body diffusion inhalation , :m getter is mainly based on the alloy and other components of the watch, j titanium zirconium, hafnium, tantalum, rare earth metal or lanthanum vanadium iron. The conductive metal micro-t, electronic paste grade titanium powder, to ensure the nano material and Cathode Conductor or Indium Tin Oxide's metal particles 314 are electrically connected by silver to the electrical layer. Preferably, the conductive field emission of the carbon nanotubes j:= 4 series includes energy for rod or nanoscale The pole, the nano tube, the nanowire, the nanometer nanometer. The octagon is 5~15 micrometers and the diameter is 1~100 1309059. The struts 40 are made of transparent and sturdy material. Mainly = true f field emission plane display light source 10 can withstand the external Asian safety H number depends on actual needs, in this embodiment , set four to go to the gang of eight, two of the two (four) _. The field emission plane display light source 10 ^ 〇岔 seal connection cathode substrate 302 and anode substrate 202 = between: in the field emission plane display light source 丨◦ internal shape = The thick electric power t emits electrons, and the electrons strike the anode 2's f \ 攸 to cause the fluorescent layer 206 to emit light to form a bright spot. This process: two electrons are distributed by the respective absorption light layer 2G6 The gas or "for various reasons into the field emission plane shows that the gas light inside the light source 10 has a good side plane which is slightly microscopic: - i I provides a certain amount of getter micro 316, conductive gold f 314, glass particles and nano Material 310, anode 2〇, cathode substrate 3〇2 with U3丨〇4, and a plurality of support strips 4〇;

該吸氣劑微粒316及導電金屬微粒3U 球磨機分別球磨,使吸氣劑微粒316 印 ,電金屬微粒314直徑爲…。微米。,二;也°从選卡用 激活二度在3GG〜500。(:間之吸氣劑,如錯紹合金吸氣 劑。該玻璃微粒選用低、熔點玻璃,其 砍⑽〇’直徑爲ΠΜ00,米,其溶點爲 該奈米材料310可預先藉由化學氣相沈積法、電弧放電 11 1309059 法或鐳射蒸發法等習知技術製備’其 過短會減弱奈米材料310之場發射料二又舄〜15微米, 米材料別相互_結團。射特性,過長容易使奈 陽極20可預先形成,其係先 # 他手段於透明玻璃202上形成—透二=積、瘵鍍或其 由沈積、印製或其他手段於陽極篆、包獏204,後藉 請。 ㈣為極導電膜204上形成螢光 積、蒸鍍或其他手段形成透明導# 、 預先错由沈 ^陰極導電層綱還糊 鎳、金或各種合金塗層。 ^ «次者銀、鋼、 、導電金屬微粒314、 載體中進行充分混合 步驟(二)’將吸氣劑微粒316 玻璃微粒以及奈米材料31〇於有機 形成漿料; 1,松油醇、作爲增塑劑之少 :鄰位苯二甲二丁醋以及作爲穩定劑之少量乙基纖; 素形成之混合劑。漿料中吸氣劑微粒316之質量百 濃度40〜80%,混合過程優選爲6〇〜8(rc混合、3 爲了更好地分散奈米材料310並得到奈米㈣31〇奸 :句勻之漿料,可進-步使用低功率之超聲波對含有奈米 材料31G之有機溶劑進行超聲波震蕩,後再對其 心處理。 步驟(三),將上述漿料置於陰極基板3〇2之陰極 導電層304之表面; 將漿料置於陰極導電層304上之過程可藉由塗敷、 絲網印刷或其他手段實現,整個過程應於潔淨之環境内 進行,優選地,環境内之灰塵度應小於1〇〇〇/m3。 步驟(四)’將置有漿料之陰極基板3〇2於3〇〇〜6〇〇〇c 1309059 下進行烘乾及焙燒從而於陰極基板3〇2之陰極導電層 3〇4之表面形成電子發射層3〇6以得到陰極3〇 ; 烘乾與培燒通常於真空環境下進行或者於烘乾與 培燒過程中通入惰性氣體加以保護防止烘乾與焙燒時 發生氧化反應同時防止吸氣劑飽和。烘乾之目的在於使 有機載體從陰極基板302上揮發。焙燒之目的在於使玻 螭微粒溶融從而將吸氣劑微粒316、導電金屬微粒314 及奈米材料310粘結於陰極導電層3〇4之上以形成電子 發射層306。另,熔融之玻璃312可調節整體之熱膨脹 係數防止所形成之電子發射層3〇6産生裂紋發生斷 裂。 、/ 爲進一步增強電子發射層3〇6之場發射特性,經烘 乾與焙燒過程後,可對電子發射層3〇6之表面進行摩 擦,部分奈米材料310末端經過摩擦後露出電子發射層 306表面。 步驟(五),組裝陽極20、陰極30以及支樓條40 並於其端侧部位加上邊封材料,一併加熱至 400 50G C,邊封材料溶融從而形成密封之 顯示光源10。 加熱過程料h料下騎或者於㈣過程— = =保護。於加熱過程中,吸氣劑微粒31 被激活。通“況’選㈣點於350〜議。C間之低熔3 玻璃粉作^封材料。由於破璃粉微粒直 際溶點低於6町。當域至權〜刪粉 融,冷卻後’炫融之玻填凝固從而將陽極2〇玻璃^ 及支樓條40时並於㈣部職—㈣ 上:述,本發明確已符合發明專利要件麦:、 提出專射請。惟’以上所述者僅為本發明 1309059 -- 例,舉凡熟悉本案技藝之人士,於援依本案發明精神所 作之等效修飾或變化,皆應包含於以下之申請專利範圍 之内。 【圖式簡單說明】 圖1係本發明實施例場發射平面顯示光源之剖視示 意圖。 圖2係圖1之場發射平面顯示光源陰極之陰極導電 層及電子發射層之剖視示意圖。 圖3係圖2III部分之放大圖。 圖4係本發明實施例場發射平面顯示光源製造方法 之步驟示意圖。 【主要元件符號說明】 場發射平面顯示光源 10 陽極 20 陽極基板 202 陽極導電層 204 螢光层 206 鋁膜 208 密封空間 210 陰極 30 陰極基板 302 陰極導電層 304 電子發射層 306 奈米材料 310 玻璃 312 導電金屬微粒 314 吸氣劑微粒 316 支撐條 40 邊封體 50 14The getter particles 316 and the conductive metal particles 3U ball mill are respectively ball-milled to make the getter particles 316, and the electric metal particles 314 have a diameter of .... Micron. , two; also ° from the selection card to activate the second degree at 3GG~500. (: between the getter, such as the wrong alloy getter. The glass particles are selected from low-melting glass, the cut (10) 〇 ' diameter is ΠΜ 00, m, the melting point of the nano-material 310 can be pre-chemical The vapor deposition method, the arc discharge 11 1309059 method or the laser evaporation method and the like are prepared by the prior art, which is too short to weaken the field emission material of the nano-material 310 and then 舄 15 μm, and the rice materials are mutually _ agglomerated. If the length is too long, the anode anode 20 can be pre-formed, and the method is formed on the transparent glass 202 by means of a transparent coating, a ruthenium plating or a deposition, printing or other means on the anode, the package 204, (4) Forming a transparent conductive film by forming a fluorescent product on the conductive film 204, vapor deposition or other means, and pre-disposing the conductive layer of the cathode to a paste of nickel, gold or various alloys. ^ «Second Silver, steel, and conductive metal particles 314, and a sufficient mixing step in the carrier (2) 'The getter particles 316 glass particles and the nano material 31 are entangled in an organic slurry; 1, terpineol, as a plasticizer Less: ortho-phthalic acid and as a stable a small amount of ethyl cellulose; a mixture of pigments formed. The mass of the getter particles 316 in the slurry is 40 to 80% by mass, and the mixing process is preferably 6 to 8 (rc mixing, 3 in order to better disperse the nanomaterial) 310 and get the nano (four) 31 traitor: the slurry of the sentence uniform, you can use the low-power ultrasonic wave to ultrasonically oscillate the organic solvent containing the nano-material 31G, and then treat it with the heart. Step (3), The slurry is placed on the surface of the cathode conductive layer 304 of the cathode substrate 3〇2; the process of placing the slurry on the cathode conductive layer 304 can be achieved by coating, screen printing or other means, and the whole process should be cleaned. In the environment, preferably, the degree of dust in the environment should be less than 1〇〇〇/m3. Step (4) 'The cathode substrate 3〇2 with the slurry is placed under 3〇〇~6〇〇〇c 1309059 Drying and baking to form an electron-emitting layer 3〇6 on the surface of the cathode conductive layer 3〇4 of the cathode substrate 3〇2 to obtain a cathode 3〇; drying and cultivating are usually carried out in a vacuum environment or in drying and cultivating Inert gas is supplied during the burning process to prevent drying and roasting The oxidation reaction occurs while preventing the getter from being saturated. The purpose of the drying is to volatilize the organic carrier from the cathode substrate 302. The purpose of the baking is to dissolve the glass particles to form the getter particles 316, the conductive metal particles 314 and the nano material. 310 is bonded over the cathode conductive layer 3〇4 to form the electron-emitting layer 306. Further, the molten glass 312 can adjust the overall thermal expansion coefficient to prevent the formation of cracks in the formed electron-emitting layer 3〇6. The field emission characteristics of the electron-emitting layer 3〇6 are enhanced. After the drying and baking processes, the surface of the electron-emitting layer 3〇6 is rubbed, and the end of the portion of the nano-material 310 is exposed to expose the surface of the electron-emitting layer 306. In step (5), the anode 20, the cathode 30, and the fulcrum strip 40 are assembled and a side sealing material is applied to the end portion thereof, and heated to 400 50 G C, and the side sealing material is melted to form a sealed display light source 10. The heating process is carried out under the material or in the (four) process - = = protection. The getter particles 31 are activated during the heating. Through the "conditions" selection (four) point at 350 ~ discussion. C between the low-melting 3 glass powder as a sealing material. Because the broken glass particles directly dissolve the point below 6 towns. When the domain to the right ~ delete powder melt, after cooling 'Hyun Rong's glass is filled and solidified so that the anode 2 〇 glass ^ and the branch strip 40 and in the (four) ministry - (4): The invention has indeed met the invention patent requirements Mai:, the special shot please. The above is only the present invention 1309059 -- For example, those skilled in the art, equivalent modifications or variations of the invention in the spirit of the invention should be included in the following patent application. 1 is a cross-sectional view of a field emission planar display light source in accordance with an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a cathode conductive layer and an electron emission layer of a cathode of a light source in the field emission plane of FIG. 1. FIG. Fig. 4 is a schematic diagram showing the steps of a method for manufacturing a field emission plane display light source according to an embodiment of the present invention. [Description of main component symbols] Field emission plane display light source 10 Anode 20 Anode substrate 202 Anode conductive layer 204 Fluorescent layer 206 Aluminum film 208 dense Sealing space 210 Cathode 30 Cathode substrate 302 Cathode conductive layer 304 Electron emitting layer 306 Nano material 310 Glass 312 Conductive metal particles 314 Getter particles 316 Support strip 40 Edge seal 50 14

Claims (1)

1309059 十、申請專利範圍 1. 一種場發射平面顯示光源,係包括: 陽極,包括一陽極基板、設置於陽極基板上之陽極 導電層以及設置於陽極導電層上之螢光層; 陰極,與陽極對應設置,包括一陰極基板、設置於 陰極基板上之陰極導電層以及設置於陰極導電層上之 電子發射層,該電子發射層與陽極之螢光層相對應,其 包含吸氣劑微粒、金屬導電微粒、奈米材料及玻璃; 複數支撐條,設置於陽極與陰極之間使其相互隔 開;以及 邊封體,固定陽極、陰極及支撐條並於該場發射平 面顯示光源内部形成一密封空間。 2. 如申請專利範圍第1項所述之場發射平面顯示光 源,其中該吸氣劑微粒爲非蒸散型吸氣劑。 3. 如申請專利範圍第2項所述之場發射平面顯示光 源,其中該吸氣劑微粒直徑爲1〜10微米。 4. 如申請專利範圍第3項所述之場發射平面顯示光 源,其中該奈米材料之長度爲5〜15微米,直徑爲1〜100 奈米。 5. 如申請專利範圍第3項所述之場發射平面顯示光 源,其中該陰極導電層爲氧化銦錫膜。 6. 如申請專利範圍第3項所述之場發射平面顯示光 源,其中該陰極導電層爲矽層或者銀、銅、鎳、金或其 任意組合的合金塗層。 7. 如申請專利範圍第3項所述之場發射平面顯示光 源,其中該陽極導電層爲氧化銦錫膜。 8. 如申請專利範圍第3項所述之場發射平面顯示光 源,其中該導電金屬微粒選用銀或氧化銦錫,其直徑爲 15 1309059 0. 1〜10微米。 9. 如申請專利範圍第3項所述之場發射平面顯示光 源,其中該陽極進一步包括一鋁膜,其係設置於螢光層 外表面。 10. —種場發射平面顯示光源之製造方法,係包括以下 步驟: (一) 提供吸氣劑微粒、導電金屬微粒、玻璃微粒 及奈米材料、陽極、具有陰極導電層之陰極基板以及複 數支撐條; (二) 將吸氣劑微粒、導電金屬微粒、玻璃微粒及 奈米材料於有機載體中進行充分混合形成漿料; (三) 將上述漿料置於陰極基板之陰極導電層之表 面; (四) 將置有漿料之陰極基板於300〜600°C下進行 烘乾與焙燒從而於陰極基板之陰極導電層之表面形成 電子發射層以得到陰極;以及 (五) 組裝陽極、陰極及支撐條並於其端側部位加 上邊封材料,一併加熱,邊封材料溶融從而形成密封之 場發射平面顯示光源。 11. 如申請專利範圍第10項所述場發射平面顯示光源之 製造方法,其中,於步驟(一)中,該吸氣劑微粒爲非 蒸散型吸氣劑,其激活溫度爲3 0 0〜5 0 0 ° C。 12. 如申請專利範圍第11項所述場發射平面顯示光源之 製造方法,其中,於步驟(一)中,該玻璃微粒爲低熔 點玻璃微粒,其熔點為350〜600 °C,微粒直徑爲10〜100 奈米。 13. 如申請專利範圍第12項所述場發射平面顯示光源之 製造方法,其中,於步驟(一)中,該陽極可預先藉由 16 .1309059 =二上成形成-透明導電膜後於導電膜上形成- 製造方申^專/!^圍第13項所述場發射平面顯示光源之 醇、鄰位策:甲’於步驟(二)中,該有機載體爲松油 U 甲二丁醋及乙基纖維素的混合劑。 製迭方/專/If㈣14顯料軸平_示光源之 粒;質Ϊ:分:=。中,該崎吸氣劑微 平面顯示光源之 _。〇下進^5 =(—)中’該混合過程係於 以發光源之 ,之過程係於灰塵丄)上==極 圍第17項所述場發射平面顯^i之 。方法,其中’於步驟(四)中,該扭弘咖L 係於真空或惰性氣體保護之情況下進行。k、、°燒過程 項所述場發射平面顯示光源之 衣&方法,其中,於實施步驟(五)之 極之電子發射層表面進行摩擦,部分奈^先對陰 摩擦後露出電子發射層之表面。丁切科末端經過 17 .1309059 、 Λ—、圖式 1309059 、 七、指定代表圖: (一) 本案指定代表圖為:圖3。 (二) 本代表圖之元件符號簡單說明: 310 314 陰極導電層 304 奈米材料 玻璃 312 導電金屬微粒 吸氣劑微粒 316 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:1309059 X. Patent Application Range 1. A field emission planar display light source comprising: an anode comprising an anode substrate, an anode conductive layer disposed on the anode substrate, and a phosphor layer disposed on the anode conductive layer; a cathode, and an anode Correspondingly, a cathode substrate, a cathode conductive layer disposed on the cathode substrate, and an electron emission layer disposed on the cathode conductive layer, the electron emission layer corresponding to the phosphor layer of the anode, comprising getter particles and metal Conductive particles, nano material and glass; a plurality of support strips disposed between the anode and the cathode to be separated from each other; and an edge seal body, the anode, the cathode and the support strip are fixed, and a seal is formed inside the light source in the field emission plane space. 2. The field emission plane display light source as described in claim 1 wherein the getter particles are non-evaporable getters. 3. The field emission plane display light source of claim 2, wherein the getter particles have a diameter of 1 to 10 microns. 4. The field emission plane display light source as described in claim 3, wherein the nanomaterial has a length of 5 to 15 microns and a diameter of 1 to 100 nm. 5. The field emission plane display light source of claim 3, wherein the cathode conductive layer is an indium tin oxide film. 6. The field emission planar display light source of claim 3, wherein the cathode conductive layer is a tantalum layer or an alloy coating of silver, copper, nickel, gold or any combination thereof. 7. The field emission planar display light source of claim 3, wherein the anode conductive layer is an indium tin oxide film. 8. The field emission plane display light source according to claim 3, wherein the conductive metal particles are made of silver or indium tin oxide, and the diameter thereof is 15 1309059 0. 1~10 μm. 9. The field emission planar display light source of claim 3, wherein the anode further comprises an aluminum film disposed on an outer surface of the phosphor layer. 10. The method for manufacturing a field emission plane display light source comprises the following steps: (1) providing getter particles, conductive metal particles, glass particles and nano materials, an anode, a cathode substrate having a cathode conductive layer, and a plurality of supports (2) mixing the getter particles, the conductive metal particles, the glass particles and the nano material in an organic carrier to form a slurry; (3) placing the slurry on the surface of the cathode conductive layer of the cathode substrate; (4) drying and baking the cathode substrate provided with the slurry at 300 to 600 ° C to form an electron emission layer on the surface of the cathode conductive layer of the cathode substrate to obtain a cathode; and (5) assembling the anode and the cathode and The support strip is provided with a side sealing material at its end side portion, and is heated together, and the side sealing material is melted to form a sealed field emission plane display light source. 11. The method of manufacturing a field emission flat display light source according to claim 10, wherein in the step (1), the getter particles are non-evaporable getters, and the activation temperature is 3 0 0~ 5 0 0 ° C. 12. The method of manufacturing a field emission flat display light source according to claim 11, wherein in the step (1), the glass particles are low melting glass particles having a melting point of 350 to 600 ° C and a particle diameter of 10~100 nm. 13. The method of manufacturing a field emission planar display light source according to claim 12, wherein in the step (1), the anode is preliminarily formed by forming a transparent conductive film by 16.1309059=two-upper. Forming on the film - manufacturing side Shen ^ special /! ^ surrounding the field emission plane of the 13th item shows the light source of the alcohol, ortho position: A 'in step (two), the organic carrier is pine oil U A butyl vinegar And a mixture of ethyl cellulose. Making a stack / special / If (four) 14 material axis flat _ show the source of the light; quality: points: =. In the middle, the Qi getter micro-plane shows the light source _. 〇下进^5 = (-) in the 'mixing process is based on the light source, the process is tied to the dust 丄) == Circumference of the field emission plane shown in item 17. The method wherein, in step (4), the twisted coffee is carried out under vacuum or inert gas protection. The field emission plane of the k, and the burning process item shows a light source coating method, wherein the surface of the electron emission layer is subjected to friction at the extreme of the step (5), and the electron emission layer is exposed after the partial friction The surface. The end of Ding Cecco passes through 17.1309059, Λ-, Figure 1309059, and VII. Designated representative map: (1) The representative representative figure of this case is: Figure 3. (2) Brief description of the symbol of the representative figure: 310 314 Cathode conductive layer 304 Nano-material Glass 312 Conductive metal particles Getter particles 316 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW95111406A 2006-03-31 2006-03-31 Field emission plane light source and method for making the same TWI309059B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95111406A TWI309059B (en) 2006-03-31 2006-03-31 Field emission plane light source and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95111406A TWI309059B (en) 2006-03-31 2006-03-31 Field emission plane light source and method for making the same

Publications (2)

Publication Number Publication Date
TW200737280A TW200737280A (en) 2007-10-01
TWI309059B true TWI309059B (en) 2009-04-21

Family

ID=45071965

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95111406A TWI309059B (en) 2006-03-31 2006-03-31 Field emission plane light source and method for making the same

Country Status (1)

Country Link
TW (1) TWI309059B (en)

Also Published As

Publication number Publication date
TW200737280A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
US8177599B2 (en) Method for making cathode of emission double-plane light source and emission double-plane light source
KR100479014B1 (en) Display device and method of manufacturing the same
JP2007027088A (en) Cathode of field emitter, its manufacturing method and plane light source
KR20030059291A (en) Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode
WO2003094193A1 (en) Cold cathode electric field electron emission display device
JP5021450B2 (en) Field emission lamp and manufacturing method thereof
CN101383264A (en) Field emission light source
CN100573809C (en) Field emission displaying light source and manufacture method thereof
US7915799B2 (en) Field emission lamp having carbon nanotubes
US20070111628A1 (en) Method for manufacturing electron-emitting device and method for manufacturing display having electron-emitting device
JP4327747B2 (en) Electronic device having non-evaporable getter and method for manufacturing the electronic device
KR101309537B1 (en) Carbon nanotube paste and manufacturing method of carbon nanotube paste
TWI297169B (en) Field emission illumination light source and method for making the same
JP2008124015A (en) Electron emission material and electron emission display element equipped with it
EP2620974B1 (en) Field emission light source device and manufacturing method thereof
TWI309059B (en) Field emission plane light source and method for making the same
JP2000063726A (en) Electroconductive paste
TWI303075B (en) Field emission double planes light source and method for making the same
JP2003249166A (en) Manufacturing method for electron emitting body, manufacturing method for cold cathode electric field electron emitting element, and manufacturing method for cold cathode electron emitting display device
TW483016B (en) Manufacturing method of electron emitter stack and structure of field emission display
TWI307907B (en) Field emission electron source and method for making the same
TWI276135B (en) Field emission lamp and method for making the same
TWI364055B (en) Field emission light source
TWI321804B (en) Field emission tube and method for making the same
KR20120058136A (en) Metal-carbon nanotube composite powder, metal-carbon nanotube composite paste, and field emission device using the same