TWI308771B - Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, and computer program product - Google Patents

Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, and computer program product Download PDF

Info

Publication number
TWI308771B
TWI308771B TW91111571A TW91111571A TWI308771B TW I308771 B TWI308771 B TW I308771B TW 91111571 A TW91111571 A TW 91111571A TW 91111571 A TW91111571 A TW 91111571A TW I308771 B TWI308771 B TW I308771B
Authority
TW
Taiwan
Prior art keywords
facet
brightness distribution
radiation
projection
distribution
Prior art date
Application number
TW91111571A
Other languages
Chinese (zh)
Inventor
Melle Mulder Heine
Bernard Plechelmus Van Schoot Jan
Franciscus Antonius Eurlings Markus
Jacobus Smits Josephus
Dierichs Marcel
Original Assignee
Asml Netherlands Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml Netherlands Bv filed Critical Asml Netherlands Bv
Priority to TW91111571A priority Critical patent/TWI308771B/en
Application granted granted Critical
Publication of TWI308771B publication Critical patent/TWI308771B/en

Links

Description

1308771 A7 B7 五、發明説明(1 ) 本發明係關於微影投影設備,其包括: -—輻射系統用以提供一輻射投影光束; -支持結構用以支持圖案形成裝置,此圖案形成裝置用 作根據所需圖案形成投影光束圖案; -基板台用以固定基板; -投影系統用以將形成圖案之光束投影於基板之一目標 部分上;. ' 其中輻射系統包括用以將投影光束之亮度分布予以界定之 一照明系統。 本文中所使用之「圖案形成裝置」一詞應廣泛解釋為 種可使輸入輻射光束具有一形成圖案之橫截面之裝置。 圖案對應需產生於基板之—目標部分中之一圖案;「 閥」-詞亦可在此語意下使用。一般言之,該圖案對應: 在目標部分中所產生之裝置中之一特定功能層,此功能, 例如為一積體電路或^ W ί €1 ' \ 包吩他裝置(見下又),此種圖案形 置之舉例包括: 一尤卓。无罩《觀念為微影術中所熟知,其型式包 例如二進位,交替相移’及衰減之相移,以及各種 同混合光罩型式。此種光罩在赛射光束中之配置使 擊先罩(輻射依光罩圖案作選擇性傳送(傳送性光罩 況)或反射(反射性光罩情況)。力 一 有兄)在先罩情況,支持結 ,^ m . 便先罩在有輸入輻射 束情況可固足於所需位置,及 移動。 £及如有需要可相對於光 裝 訂1308771 A7 B7 V. INSTRUCTION DESCRIPTION (1) The present invention relates to a lithographic projection apparatus comprising: - a radiation system for providing a radiation projection beam; - a support structure for supporting a patterning device, the patterning device being used as Forming a projection beam pattern according to a desired pattern; - a substrate stage for fixing the substrate; - a projection system for projecting the patterned beam onto a target portion of the substrate; wherein the radiation system includes a brightness distribution for projecting the beam Define one of the lighting systems. As used herein, the term "patterning device" is used broadly to mean a device that allows the input radiation beam to have a patterned cross section. The pattern corresponds to one of the target parts of the substrate; the "valve"-word can also be used in this context. In general, the pattern corresponds to: a specific functional layer in the device generated in the target portion, such as an integrated circuit or ^W ί €1 ' \ package device (see below), Examples of such pattern formations include: The hoodless concept is well known in the art of lithography, and its type includes, for example, binary, alternating phase shift, and phase shift of attenuation, as well as various types of hybrid reticle. The configuration of the reticle in the firing beam enables the first hood (radiation responsive to the reticle pattern for selective transmission (transporting photomask condition) or reflection (reflexive reticle condition). In case, the support knot, ^ m . will be covered with the input radiation beam to fix the desired position and move. £ and can be bound to light if necessary

-5- 1308771 A7 B7 五、發明説明(2 ) -一可程式規劃之鏡陣列。此種裝置之一實例為具有一 兼具黏著性及伸縮性之控制層之一可以矩陣定址之表 面及一反射性表面。此種設備之基本原理(例如)為反 射表面之經定址區域將入射反射為繞射光,而未定址 區域則將入射光反射為、未繞射之光。該未繞射光使用 一適當之濾波器可自反射光束中濾出,僅留下繞射 光;在此種方式下,光束根據可以矩陣定址之表面之 定址圖案而形成圖案。可程式規劃之鏡陣列之一代替 性具體實例使用由微小之鏡組成之一矩陣排列,每— 鏡均可藉應用一適當之局部光電場,或藉應用壓電致 動裝置,而使之繞一軸而個別傾斜。再次使鏡為可定 址之矩陣列型式,以使可定址之鏡以不同方向反射輸 入之輻射光束至未定址之鏡;在此種方式下,反射之 光束根據可定址之矩陣鏡之定址圖案形成圖案。所需 要之矩陣址可使用適當之電子裝置實施。於上述二種 情況下’圖案形成裝置可包括一個或多個可程式規劃 之鏡陣列。本文中所提到之有關鏡陣列之進一步資訊 例如可自美國專利案US 5,296,891號及US 5,523,193號, 及PCT專利申請案第WO 98/38597號及WO 98/33096號中 獲得’此等文獻以引用方式併入本文中。如果為可程 式規劃之鏡陣列時,該支持結構,例如,可由一框或 台而具體實施,其可依需要為固定或活動型式。 -一可程式規劃LCD陣列。此種結構之一例係由以引用 方式併入本文中之美國專利案〇5 5,229,872號中提出。 -6- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) -----1-5- 1308771 A7 B7 V. INSTRUCTIONS (2) - A programmable mirror array. An example of such a device is a surface that can be matrix addressed and a reflective surface having a control layer that is both adhesive and flexible. The basic principle of such a device, for example, is that the addressed area of the reflective surface reflects the incident as diffracted light, while the unaddressed area reflects the incident light as undiffracted light. The un-diffracted light is filtered from the reflected beam using a suitable filter, leaving only the diffracted light; in this manner, the beam is patterned according to the addressing pattern of the surface that can be matrix-addressed. One of the alternative mirror arrays uses a matrix arrangement consisting of tiny mirrors, each of which can be applied by applying a suitable local optical field or by applying a piezoelectric actuator. One axis and individual tilt. Again, the mirror is a addressable matrix array pattern such that the addressable mirror reflects the incoming radiation beam in different directions to the unaddressed mirror; in this manner, the reflected beam is formed according to an addressable pattern of the addressable matrix mirror pattern. The required matrix address can be implemented using appropriate electronic devices. In either case, the patterning device can include one or more programmable mirror arrays. Further information regarding the mirror arrays referred to herein is obtained, for example, from U.S. Patent Nos. 5,296,891 and 5,523,193, and PCT Patent Application No. WO 98/38597 and WO 98/33096. The citations are incorporated herein by reference. In the case of a programmable mirror array, the support structure, for example, may be embodied by a frame or a table, which may be fixed or movable as desired. - A programmable LCD array. An example of such a structure is set forth in U.S. Patent No. 5,229,872, the disclosure of which is incorporated herein by reference. -6- This paper scale applies to Chinese National Standard (CNS) A4 specification (210 X 297 mm) -----1

裝 訂Binding

1308771 ^---- 、發明說明( :上述’在此種情況下之支持結構可以依需要為固定 .或活動型式之例如一框或台而具體實施。 Y門月计,於本文之其餘部分中,於某些處可具體以實例 說日月_ 罩及光罩台;但是就此等實例所討論之一般原理 α以士述所闡明之圖案形车裝置之更寬廣之語境而視之。 微影投影設備例如可用於製造積體電路(IC)。在此種情 下圖案形成裝置可產生對應於一個別1C層之一電路 圖衣此圖案可映射於業已塗有一輻射敏感材料(抗蝕材 料)層 <基板(矽晶圓)上之一目標部分(例如包含一個或多 =1二片)之上。—般言之,一單獨晶圓包括經由投影系 先連續予以輻照之相鄰目標部分之一整個網路,每次一個 目標部分。於現今之裝置中使用一光罩台上之一光罩形成 圖衣對於一不同型式之機器係有區別。於一種型式之微影 技〜a又備中,每一目標部分係藉使全部光罩圖案於一次閃 光期間曝光於目標部分上而被輻照,此種設備—般稱作晶 圓步進機。於一代替性設備中,一般稱作一步進及掃描設 備,每一目標部分係藉以一設定參考方向(「掃描」方向) 以投景ί光束順次掃描光罩圖案,同時以同步方式及平行或 反平行方向择描基板台,因為在一般情況下,投影系統將 會有一放大倍數Μ( —般小於1),掃描基板台之速度▽將 為Μ倍之抑'私光罩台之速度。有關本文中所述之微影裝置 之進一步資訊可自美國US 6,046,792號專利案中取得,此 專利案以引用方式併入本文中。 於使用微影投影設備之一已知製造方法中,一圖案(例 本纸張尺度適用中國國家標準(CMS) Α4規格(210X 297公釐) 1308771 A71308771 ^---- , invention description (: The above 'support structure in this case can be implemented as needed for fixed or active type, for example, a frame or a table. Y door month, in the rest of this article In some places, the sun and the moon _ hood and the reticle stage may be specifically exemplified; however, the general principle α discussed in these examples is to be seen in the broader context of the styling device illustrated by the syllabus. A lithographic projection apparatus can be used, for example, to fabricate an integrated circuit (IC). In this case, the patterning device can produce a circuit pattern corresponding to one of the other 1C layers. The pattern can be mapped to a radiation-sensitive material (resist material). a layer <substrate (on the wafer) on a target portion (for example comprising one or more = 1 two). In general, a single wafer comprises adjacent radiation directly adjacent to the projection system One of the target parts of the entire network, one target part at a time. In today's device, a mask is used on a reticle to form a picture for a different type of machine system. In a type of lithography ~ a preparation, each The target portion is irradiated by exposing all of the reticle pattern to the target portion during a flash. Such a device is generally referred to as a wafer stepper. In an alternative device, generally referred to as a step and scan. The device, each target part is configured to set the reference direction ("scanning" direction) to project the illuminating beam pattern, and simultaneously select the substrate table in a synchronous manner and parallel or anti-parallel direction, because in general, The projection system will have a magnification Μ (generally less than 1), and the speed of the scanning substrate will be Μ 之 ' 私 私 私 私 私 私 私 私 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 U.S. Patent No. 6,046,792, the disclosure of which is incorporated herein by reference in its entirety in its entirety in the the the the the the the the the the (210X 297 mm) 1308771 A7

:一罩中者)係使之成像於由-層輻射敏感材科(抗蚀 刎)至少部分遮蓋之一基板上。在此成像步騾之前,可使 基板接受例如塗底漆,塗抗蝕劑及款性烘烤之各種 理程序。m光之後’可使基板接受例如曝光後烘烤 (PEB) ’顯影—硬性烘烤及戌像特徵之測量/ 理程序。此-系列之程序係用為形成例如以一裝^ 個別層之圖案之基礎。此種圖案層然後可使之接受例如蝕 刻,離子植入(摻雜),金屬化,氧化,化學及機械拋光等 各種不同之處理,所有此種處理均有意以其完成一個別 層j如果需要數層,則必需就每一新層重複全部程序或此 程序之Μ »最後’纟置之—陣列將會存在於基板(晶圓) 上。此等裝置然後藉使用例如切割或鋸開之技術而使之分 離,隨後可將此等個別裝置裝於承載裝置或連接至腳端等 處。有關此等處理之進一步資訊例如可自1997年卜如Van Zant所著,書名為「半導體處理實用指南」第三版中取 得此書由 McGraw Hill Publishing Co.發行,其 ISBN為 0- (Π-〇67250-4 ’現以引用方式併入本文中。 為簡明計,投影系統於後文中可稱作「透鏡」;但是此 名稱應從寬解釋為涵括各種不同型式之投影系統,例如以 其包括折射光學裝置,反射光學裝置,及兼具反射及折射 之光學系統。此輻射系統亦可包括根據任何型式之用以導 引’使其成型或控制輻射投影光束而操作之組件,此等組 件亦可於後文中以集體或單獨方式稱作「透鏡」。此外, 微景> 裝置可有具有二個或多個基板台(及/或二個或多個光 -8- 本綠尺度適财g g家料χ挪公爱): a hood) is imaged on at least a portion of the substrate covered by a layer of radiation sensitive material (resist). Prior to this imaging step, the substrate can be subjected to various procedures such as priming, resisting, and baking. After m light, the substrate can be subjected to, for example, post-exposure bake (PEB) development-hard baking and imaging feature measurement/processing procedures. This series of procedures is used to form, for example, a pattern of individual layers. Such a patterned layer can then be subjected to various processes such as etching, ion implantation (doping), metallization, oxidation, chemical and mechanical polishing, all of which are intended to accomplish a different layer if needed. For several layers, it is necessary to repeat the entire program or the program for each new layer. » Finally, the array will be present on the substrate (wafer). These devices are then separated by techniques such as cutting or sawing, which can then be attached to the carrier or to the foot or the like. Further information on such treatments can be obtained, for example, from the third edition of the book "The Practical Guide to Semiconductor Processing" by Van Zant in 1997. This book was issued by McGraw Hill Publishing Co., and its ISBN is 0- (Π- 〇67250-4' is hereby incorporated by reference. For the sake of brevity, the projection system may hereinafter be referred to as a "lens"; however, the name should be interpreted broadly to encompass a variety of different types of projection systems, for example, including A refractive optical device, a reflective optical device, and an optical system that combines reflection and refraction. The radiation system can also include components that operate according to any type to guide the shaping or control of the radiation projection beam. It may be referred to as a "lens" collectively or separately in the following. In addition, the micro-view device may have two or more substrate stages (and/or two or more light-8 - the green scale Gg family χ χ public love)

裝 訂Binding

1308771 A7 B7 五、發明説明(5 ) 罩台)之型式。在此種「多級」裝置中,附加之台可以並 行使用,準備步騾可於一個或多個台上實施,同樣一個或 多個其他台可供曝光之用。雙級微影裝置例如為美國US 5,969,441號專利案及\^〇 98/40791號中所說明者,此二專 利案以引用方式併入本文t。 一投影裝置,有如用於微影技術中者,一般包括於後文 中簡稱為照明器又一照明系統。照明器自例如一雷射源接 收輻射,及產生用以照明例如為圖案形成裝置(例如一位 於光罩台上之一光罩)之一物體。於一典型之照明器中, 光束係使之成型及予以控制,如此於一瞳孔平面處光束可 有所需要之空間密度分布。於瞳孔平面之空間亮度分布係 作為一實質上之輻射源以產生照明光束。輻射遵循此瞳孔 平面而由於後文中稱作「耦合透鏡」之一透鏡组予以實質 上聚焦。此耦合透鏡實質上將經聚焦之輻射耦合進入例如 一石英桿之一積分器。積分器之功能為改善照明光束之空 間及/或角度亮度分布之均一性。於瞳孔平面處之空間亮 度分布於由耦合光學儀器所照明之一物體處轉換為一角度 亮度分布,因為瞳孔平面大體上與耦合光學透鏡之前方聚 焦平面重合。當有經照明之物體被投影於一基板上時,可 完成對於瞳孔平面之空間分布之控制。特別係建議使用具 有偶極,環形或四極之離軸照明側面之空間亮度分布以改 善解析度及其他投影參數為然,此種參數例如為投影透鏡 像差,曝光寬容度及聚焦深度。 一種已知之照明器包括於後文中稱作「zoom-axicon」之 -9- 本纸張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1308771 A7 I_______ B7 五、發明説明(6 ) 一種光學系統。ZO〇m-axic〇n為用以調節瞳孔平面之亮度分 布之裝置。得自輕射源之輻射通過產生一角度亮度分亦之 第一光學元件。隨後’ #射光束穿過_圖像縮故透鏡。於 圖像縮放透鏡之後方聚焦平面中,發生一空間度分布’此 分布適合用作瞳孔平面中#要光源。因此,圖像縮放透鏡 之後方聚焦平面一般在大體上係與瞳孔平面(即耦合光學 儀器之前方平面)¾纟。於瞳孔表面之空間亮度之外部徑 向長方可靠改變縮放透鏡之聚焦長度而予以改變。然而, 圖像縮放透鏡必須有二自由度’—自由度改變縮放圖像透 鏡之焦距及第二自由度改變主平面之位置,以使當焦距改 變時,後方焦平面維持位於照明器之曈孔平面上。由於此 種功能性,圖像伸縮透鏡係由數個(例如至少三個)串列分 離之透鏡組成,其中數個為活動型。如上述,藉修整影像 縮放透鏡焦距,即可設定位於瞳孔平面之碟形及實施之較 佳者亦可設定均勻亮度分布之徑向長度。於後文中於曈孔 平面中之任何瞳孔表面之預先選定之較佳空間亮度分配均 可稱作「照明設定」。 位於鄰近曈孔平面處之axic〇n 一般由具有互補之圓錐形 表面组成,axicon係用以產生環形空間亮度分布或在其他 圍繞其中心處大體上無:¾度,亦即無軸向照明之空間亮产 分布。修整axicon之二圓錐形表面間之距離可因此調整^ 環形。當axicon為封閉時,圓錐形表面間之間隙為零,此 時可產生傳統之(亦即碟狀)照明設定。當圓錐表面間有— 間隙時,即會產生環狀亮度分布,且環環内部徑向長度係 -10-1308771 A7 B7 V. Description of invention (5) Type of cover. In such a "multi-stage" device, additional stations can be used in parallel, and the preparatory steps can be implemented on one or more stations, and one or more other stations can be used for exposure. The two-stage lithography apparatus is described, for example, in U.S. Patent No. 5,969,441, the disclosure of which is incorporated herein by reference. A projection device, such as that used in lithography, is generally referred to hereinafter as a further illumination system for the illuminator. The illuminator receives radiation from, for example, a laser source and produces an object for illuminating, for example, a patterning device (e.g., a reticle on a reticle stage). In a typical illuminator, the beam is shaped and controlled so that the beam has a desired spatial density distribution at a pupil plane. The spatial brightness distribution in the pupil plane acts as a substantial source of radiation to produce an illumination beam. The radiation follows this pupil plane and is substantially focused by a lens group which will be referred to as a "coupling lens" hereinafter. The coupling lens essentially couples the focused radiation into an integrator such as a quartz rod. The function of the integrator is to improve the uniformity of the spatial and/or angular brightness distribution of the illumination beam. The spatial brightness distribution at the pupil plane is converted to an angular luminance distribution at an object illuminated by the coupling optics because the pupil plane substantially coincides with the front focal plane of the coupling optical lens. Control of the spatial distribution of the pupil plane can be accomplished when an illuminated object is projected onto a substrate. In particular, it is recommended to use the spatial brightness distribution of the off-axis illumination side with dipole, ring or quadrupole to improve resolution and other projection parameters such as projection lens aberration, exposure latitude and depth of focus. A known illuminator is included in the hereinafter referred to as "zoom-axicon" -9- This paper scale applies to the Chinese National Standard (CNS) A4 specification (210X 297 mm) 1308771 A7 I_______ B7 V. Description of invention (6) An optical system. ZO〇m-axic〇n is a device for adjusting the brightness distribution of the pupil plane. The radiation from the light source is passed through a first optical element that produces an angular brightness. Then the 'beam' passes through the image retracting lens. In the focal plane behind the image scaling lens, a spatial distribution is generated. This distribution is suitable for use as a source in the pupil plane. Therefore, the focus plane behind the image zoom lens is generally approximately 3⁄4 inch from the pupil plane (i.e., the front plane of the coupling optics). The outer radial length of the spatial brightness of the pupil surface is changed by reliably changing the focus length of the zoom lens. However, the image zoom lens must have two degrees of freedom' - the degree of freedom changes the focal length of the zoomed image lens and the second degree of freedom changes the position of the main plane so that when the focal length changes, the rear focal plane remains at the pupil of the illuminator on flat surface. Due to this functionality, the image telescopic lens consists of several (e.g., at least three) serially separated lenses, several of which are active. As described above, by adjusting the image zoom lens focal length, the dish shape on the pupil plane and the better implementation can also be set to set the radial length of the uniform brightness distribution. The pre-selected preferred spatial brightness distribution for any pupil surface in the pupil plane will be referred to as "illumination setting". The axic〇n located adjacent to the pupil plane generally consists of a complementary conical surface that is used to create an annular spatial brightness distribution or substantially no other than 3⁄4 degrees around its center, ie without axial illumination. The space is brightly distributed. The distance between the two conical surfaces of the axicon can be adjusted to adjust the ring shape. When axicon is closed, the gap between the conical surfaces is zero, at which point a conventional (i.e., dish) illumination setting can be produced. When there is a gap between the conical surfaces, a circular brightness distribution is generated, and the inner radial length of the ring is -10-

1308771 A7 B7 五、發明説明(7 ) 由二圓錐表面間之距離決定;在另外一方面圖像縮放透鏡 係決定外部徑向長度及因此決定環之寬度。亮度分布之預 先選定之内部及外部徑向長度經常稱作σ設定,特別分別 稱作σ内部設定及部設定。此處σ内部及σ外部為現正 討論之半徑對於曈孔之最大半徑之測量。 圖像縮放-axicon」一詞包用於本文中應解釋係涉及包 括一圖像縮放透鏡及一axicon之模组。 多極照明設定可於已知照明器中以各種不同方式產生, 例如藉修改位於縮放透鏡前方之第一光學元件以便使角度 党度分布形成適當形狀,或藉插入孔隙板或薄片進入例如 靠近瞳孔平面之光束路徑等措施而產生。有關一已知圖像 -axicon模组及多極模式產生之資訊係提供於(例如)美國專 利編號第09/287,014號,此專利案係於1999年4月6日提出 申請(ΕΡ-Α-0 950 924),現以引用方式併入本案中。 於上述已知之照明器中,顯然如需產生所需要之照明設 定範圍,圖像縮放-axicon模組—般將會有數個(例如,5 個或更多)光學组件,特別係如果數個元件必須獨立移動 時為然。另一問題為包括圖像縮放透鏡及axk〇n之二圓錐 形兀件之透鏡會形成相當大透鏡材料厚度及大量表面界 面。此即意指傳輸效率因為吸收’反射,無效塗層,效果 降低及污染而變為不佳。此問題在當有需要使較高密度之 更小特徵成像時而加劇,此種成像需要使用例如Η], 157,126 mn或甚至為超紫外線(EUV)(例如為5 2〇 n叫之較 短波長輻射。例如為Cab及石英之適當傳輸材料之效率由 -11- ί纸银尺度適用中®家標準(CNS) A4規格(21〇X297公爱) 1308771 A71308771 A7 B7 V. INSTRUCTIONS (7) Depending on the distance between the surfaces of the two cones; on the other hand, the image scaling lens determines the outer radial length and hence the width of the ring. The pre-selected internal and external radial lengths of the luminance distribution are often referred to as σ settings, and are specifically referred to as σ internal settings and partial settings, respectively. Here σ inside and σ outside are the radius of the radius currently being discussed for the measurement of the maximum radius of the pupil. The term "image scaling - axicon" is used herein to describe a module that includes an image zoom lens and an axicon. Multi-pole illumination settings can be generated in known illuminators in a variety of different ways, such as by modifying a first optical element located in front of the zoom lens to cause the angular party distribution to form an appropriate shape, or by inserting an aperture plate or sheet into, for example, near the pupil Generated by measures such as the beam path of the plane. Information relating to a known image-axicon module and multi-pole mode generation is provided, for example, in U.S. Patent No. 09/287,014, filed on April 6, 1999 (ΕΡ-Α- 0 950 924), which is hereby incorporated by reference. In the above known illuminators, it is obvious that if the required illumination setting range is to be generated, the image scaling-axicon module will generally have several (for example, five or more) optical components, especially if several components Must be moved independently. Another problem is that lenses comprising an image zoom lens and an axk〇n two conical element form a relatively large lens material thickness and a large number of surface interfaces. This means that the transmission efficiency becomes poor due to absorption of 'reflection, ineffective coating, reduced effect and contamination. This problem is exacerbated when there is a need to image smaller features of higher density, such imaging requiring the use of, for example, Η], 157, 126 mn or even ultra-ultraviolet (EUV) (for example, 5 2〇n Short-wavelength radiation. For example, the efficiency of suitable transmission materials for Cab and quartz is -11- ί paper silver scale applicable to the standard (CNS) A4 specification (21〇X297 public) 1308771 A7

發明説明 B7 傳^加而於較短波長降低並且無已知之材料有足夠之 供咖輻射之用。此等組件之光學塗層之效能一 故,皮長會降低。因此,整體而t,由於傳輸降低之 佔》t可發生生產量〈顯著降。另一問題為已知之照明器 麵:u影設備中較大體積:此種現象可導致機器有過大之 頁及増加製造成本(特別係當使用例如材料時為 然)。 、如上述,具有偶極,環形或四極之照明側面之空間亮度 刀布可提升投影特性。此種侧面之選擇決定於微影處理之 σ〗尤、用及其他之應用。如需對一特定之應用提供所需之 非標準照明模式’ fjf要大量工作及化費用在特別設計專 用之光學裝置方面。 — 歐'州EP 〇 744 641 A專利案說明一種用於微影設備中之 照明系統,此系統使用一可變形之鏡以改善光罩照明之均 一性。 歐’州EP 〇 486 3 16 A專利案說明各種不同之微影設備, 此等設備包括各種不同之用以提供偶極及四極之照明設定 足配置。此等設備包括使用光纖束之配置,光纖束出口點 為可移動以界疋極之位置。其他配置使用可於一曝光期間 在一位置間及多次拍攝曝光之拍攝之間可移位之一鏡。 本發明之一目的為提供具有一照明器之改良之微影設 備以其避免或減輕上述問題。另一目的為提供一種裝置 用以產生投影光束之近乎任何所需之亮度分布。 根據本發明之一特點為提供本文開始一段所說明之一種DESCRIPTION OF THE INVENTION B7 is transmitted at a shorter wavelength and there is no known material for sufficient coffee radiation. The effectiveness of the optical coating of these components will reduce the length of the skin. Therefore, as a whole, t, the production volume can be significantly reduced due to the decrease in transmission. Another problem is the known illuminator surface: a large volume in the u-shadow device: this can cause the machine to have an excessive page and increase manufacturing costs (especially when using materials such as materials). As mentioned above, the spatial brightness of the illumination side with dipole, ring or quadrupole can improve the projection characteristics. The choice of such side is determined by the lithography, utilisation, and other applications of lithography. It is necessary to provide the required non-standard lighting mode for a specific application. fjf requires a lot of work and cost in specially designed optical devices. — The European Patent 744 744 641 A patent describes a lighting system for use in lithography equipment that uses a deformable mirror to improve the uniformity of reticle illumination. The European EP 486 3 16 A patent describes various lithographic devices that include a variety of different lighting settings to provide dipole and quadrupole settings. These devices include configurations using fiber bundles with the fiber exit point being movable to the boundary of the bungee. Other configurations use a mirror that can be shifted between shots during a single exposure and multiple shots. It is an object of the present invention to provide an improved lithographic apparatus having a illuminator that avoids or alleviates the above problems. Another object is to provide a device for producing nearly any desired brightness distribution of a projected beam. According to one feature of the invention, one of the features described in the opening paragraph is provided

1308771 A7 B7 五、發明説明(9 ) 微影設備,其特點為其照明系統包括導引裝置用以將投影 光束之不同部分導引至不同方向,以提供投影光束之所需 角度亮度分布,該導引裝置包括多個分立之鏡,每一鏡均 導引一部分投影光束及其方向可予以個別控制,以將投影 光束之對應部分導引至所f方向。 本發明之一基本概念在於控制多個分立之鏡之構想。實 施之較佳者,分立之鏡可予以控制以便將微影光束之彼等 相對應部分導引至(大體上)任何所需方向。然後可將所得 之角度亮度分布例如藉一聚焦透鏡而變換為空間亮度分 布。導引元件例如為一反射元件以其將入射輻射反射至一 方向或方向範圍,或一繞射元件以其使入射輻射繞射及因 此使其發散。任何其他型式之能將輻射導引至一特定方向 或方向範圍或多個方向之裝置均可使用,只要其一方向或 多個方向能予以控制即可。可使用任何裝置,例如以機械 方式實施使導引元件確定方向及/或以電方式直接或間接 改變導引特性及/或導引元件之方向。亦可有其他之影響 此導引元件及藉此設定一方向或多個方向之方法,例如使 用電磁輻射或輕射場之方法。 近來業已開發出有微電子機械或微光學電子機械系統 (MEMS及MOEMS)以其用作裝置中之光學開關以傳輸光學 資料。若干此等MEMS包括由超過1,000個之微小之鏡所組 成之陣列,其中每一鏡均以彼此垂直之二不同平面傾斜。 因此,入射於此等裝置之輻射可反射至(大體上)一半球形 範圍中之任何所需方向。可使用此一反射元件之陣列以其 -13- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 13087711308771 A7 B7 V. INSTRUCTION DESCRIPTION (9) A lithography apparatus characterized in that its illumination system includes guiding means for directing different portions of the projected beam to different directions to provide a desired angular brightness distribution of the projected beam. The guiding device includes a plurality of discrete mirrors, each of which directs a portion of the projected beam and its direction can be individually controlled to direct a corresponding portion of the projected beam to the direction f. One of the basic concepts of the present invention is the concept of controlling multiple discrete mirrors. Preferably, the separate mirrors can be controlled to direct the corresponding portions of the lithographic beams to (substantially) any desired direction. The resulting angular luminance distribution can then be transformed into a spatial luminance distribution, e.g., by a focusing lens. The guiding element is, for example, a reflective element that reflects incident radiation to a range of directions or directions, or a diffractive element that diffracts the incident radiation and thereby diverges it. Any other type of device that directs radiation to a particular direction or range of directions or directions can be used as long as it can be controlled in one or more directions. Any means may be used, such as mechanically implementing the direction of the guiding element and/or electrically or directly changing the guiding characteristics and/or the direction of the guiding element. There may be other methods of affecting the guiding element and thereby setting one or more directions, such as electromagnetic radiation or a light field. Recently, microelectromechanical or micro-optical electromechanical systems (MEMS and MOEMS) have been developed for use as optical switches in devices for transmitting optical data. Several of these MEMS include an array of more than 1,000 tiny mirrors, each of which is tilted in two different planes perpendicular to each other. Thus, radiation incident on such devices can be reflected to any desired direction in the (substantially) half sphere range. An array of such reflective elements can be used for its -13- paper scale to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1308771

當作多個分立之鏡及個別予以定向,以將投影輻射反射至 不同預定方向。 本發明 < 一優點在於其可應用於EUV輻射以提供所需亮 度分布之事實。迄今尚不能提供配合EUV輻射發揮功能之 縮故圖像-axicon或相當之芎置。 #於本發明之-特別有利之具體實例中,導引裝置包括— 第-小平面鏡,每-分立之鏡均為第一小平面鏡之一小平 面及用作藉控制其定向而將一輻射源之定向投影於—第二 J平面鏡之一經選擇之小平面。根據此種配置,第—小平 面鏡用為一場鏡及—蠅眼反射器,以其於第二小平面鏡上 產生大量虛據源,此等源然後經重新導引以重疊於光罩 上,因而提供所需之照明均一性。實施之較佳者,第二小 平面鏡位於投影系統之瞳孔平面中,如此第二小平面鏡可 決足光罩之模式。因此,照明模式可藉控制第一小平面鏡 足小平面之定向而被控制以對第二小平面鏡之小平面中之 經選擇之小平面照明。如果照明模式係由瞳孔平面中選擇 性光罩作用而設定,此可避免可能發生之光束亮度之損 失。 又、 本發明不限於輻射系統提供一單獨輻射光束情況。而 係,不同子光束或成束之子光束可於不同位置產生及藉導 引裝置導引以產生所需之角度亮度分布。此外,投影光束 或至少一投影光束可予以分割以於到達導引元件之前形成 分離(子光束。此即意指角度亮度分布可能受到一投影光 束或多個投影光束在抵達導引元件之前產生之方式或被操 -14, 本紙張尺度適用中國國家標竿(C^Si^ox297公爱) 1308771 A7 B7 五、發明説明(11 ) 縱=方式之若干影響,但是導引元件之控制能使用戶藉選 ,見範圍之可能分布而產生所需之角度亮度分布。特別 疋,只施(較佳者,導引元件可予以控制以將投影輻射之 每一入射部分導引至(大體上)任何一半球形之方向。 如上述,所需之空間亮4分布係在某些情況下產生。在 此等情況τ,實施之較佳者,係產生一對應角度亮度分布 =使用重新導f丨裝置以其重新導引至少一部分經導引之投 影光束,以於投影光束之橫截面,特別是於焦點平面中, 產生所需(空間亮度分布。特別&,如果聚焦光學裝置使 用例如-凸透鏡時,每一(所產生之角度亮度分布之)輻射 傳送之不同方向係對應於空間亮度之一特別區域,特別是 對應焦點平面中之一特定局部焦點。 例如為環形,四極,偶極及(軟)多極之空間亮度分布之 =同型式及/或側面業經有人提出。本發明可使微影投影 〃又備之用戶生產例如具有任意及可界定型式之任何所希望 之空間亮度分布。 根據本發明之-較佳特點,至少有若干子光束可予以導 引及重新導引,以使此等光束可對應於其中界定有空間亮 度刀布之橫截面中之輻射之光點及短劃。視光點及/或短 d疋大小,及因此視一單獨子光束由導引裝置引進入方向 範圍之大小,空間凴度分布可包括亮度在經照明地區之間 之零值或幾乎為零值(非經照明或黑暗區)之地區。 於一較佳之具體實例中,一單獨之子光束傳播進入之方 向範園係受到影響,如此可有足夠之連續亮度分布。於光 -15- 1308771 A7 _____B7 1、發明説明(12一) ~ ~ '— 束抵達導引元件之前及/或之後’影響各別之子光束或光 束係屬可能。於一特定具體實例中,子光束係被引導,因 此其係各^在實質上係送至-單—之點。此等點對於不同 又子光束言可為相同或不同。此具體實例之一優點為子光 束易於調整以入射於導引元件上之正確位置。此外,由於 入射於導引元件之邊界處之輻射之不希望有之效應可以減 少或避免。例如,如果導引元件為具有特定大小之反射區 域之一反射元件,此配置可易於調整以使子光束入射於反 射區域之中心區中之反射元件上。 為能增加被導引之子光束之傳播方向之範圍,可使用例 如一擴散板之擴散裝置。然而,此亦可影響子光束之極化 及使隨後階段或步驟之極化之利用變為困難或不可能。 於另一具體實例中,子光束因此係於抵達一元件或若干 元件之前而被操縱。具體言之,各別之子光束係予以操縱 以使被操縱之子光束傳播進入傳播方向之界定範圍。例如 此種工作可藉使用集中裝置將子光束集中於導引元件上而 5E成。此種集中亦有使子光束入射於導引元件上之例如— 反射區域之中心區之正確位置之優點。 除去上述之具體實例或代替性具體實例之外,子光束或 光束之傳播方向之範圍可使用一個或多個導引元件而得以 增大。特別疋,反射元件之反射表面區域可因此成型,例 如具有凸鏡型狀。 本文中所使用之「子光束」一詞不應以限制方式就有關 一投影光束或多個光束在彼等到達導引元件之前之亮度分 -16- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)It is treated as multiple discrete mirrors and individually oriented to reflect the projected radiation to different predetermined directions. The present invention <an advantage is the fact that it can be applied to EUV radiation to provide a desired brightness distribution. Up to now, it has not been possible to provide a shrinking image-axicon or equivalent device that functions in conjunction with EUV radiation. In a particularly advantageous embodiment of the invention, the guiding device comprises a first-small plane mirror, each of the discrete mirrors being a facet of the first facet mirror and serving as a source of radiation by controlling its orientation The orientation is projected onto a selected facet of one of the second J-plane mirrors. According to this configuration, the first facet mirror is used as a mirror and a fly-eye reflector, which generates a large number of virtual data sources on the second facet mirror, and the sources are then redirected to overlap the mask. Provide the required illumination uniformity. Preferably, the second facet mirror is located in the pupil plane of the projection system such that the second facet mirror can determine the mode of the reticle. Thus, the illumination mode can be controlled to control the selected facet in the facets of the second facet mirror by controlling the orientation of the first facet mirror facet. If the illumination mode is set by the selective mask in the pupil plane, this avoids the loss of beam brightness that may occur. Again, the invention is not limited to the case where the radiation system provides a single radiation beam. Alternatively, different sub-beams or bundled sub-beams can be generated at different locations and guided by the guiding device to produce the desired angular brightness distribution. Furthermore, the projection beam or the at least one projection beam can be segmented to form a separation (sub-beam) before reaching the guiding element. This means that the angular brightness distribution may be generated by a projection beam or a plurality of projection beams before reaching the guiding element. Mode or be operated -14, the paper scale applies to the Chinese national standard (C^Si^ox297 public) 1308771 A7 B7 V. Invention description (11) Vertical = several effects of the mode, but the control of the guiding element enables the user By lending, see the possible distribution of the range to produce the desired angular brightness distribution. In particular, only (preferably, the guiding element can be controlled to direct each incident portion of the projected radiation to (substantially) any The direction of the semi-spherical shape. As mentioned above, the required spatial bright 4 distribution is generated under certain circumstances. In these cases τ, preferably, a corresponding angular luminance distribution is generated = using a re-directing device Redirecting at least a portion of the guided projection beam to produce a desired cross-section of the projected beam, particularly in the focal plane (spatial brightness distribution. Special & When the focusing optics use, for example, a convex lens, the different directions of radiation transmission (of the resulting angular luminance distribution) correspond to a particular region of spatial brightness, in particular a particular local focus in the corresponding focal plane. , the quadrupole, the dipole and the (soft) multipole spatial brightness distribution = the same type and / or the side has been proposed. The invention allows the lithography projection and the user to produce, for example, any of the arbitrary and definable types Desirable spatial brightness distribution. According to a preferred feature of the invention, at least a plurality of sub-beams can be guided and redirected such that the beams correspond to radiation in a cross-section of the spatially-defined knife cloth Light spot and short stroke. Sight spot and/or short d疋 size, and thus the size of a single sub-beam guided by the guiding device into the direction range, the spatial mobility distribution may include brightness between the illuminated regions An area of zero or almost zero (non-illuminated or dark areas). In a preferred embodiment, a single sub-beam propagates into the direction The system is affected so that there is sufficient continuous brightness distribution. In the light -15-1308771 A7 _____B7 1, the invention description (12 a) ~ ~ '- before and after the beam reaches the guiding element, 'affects the individual sub-beams or Beams are possible. In a particular embodiment, the sub-beams are directed so that they are essentially delivered to a single-point. These points may be the same or different for different sub-beams. An advantage of this specific example is that the sub-beams are easily adjusted to be incident on the correct position on the guiding element. Furthermore, the undesirable effects of the radiation incident at the boundary of the guiding element can be reduced or avoided. For example, if The lead element is a reflective element having a reflective area of a particular size that can be easily adjusted to cause the sub-beam to be incident on a reflective element in the central region of the reflective area. In order to increase the range of propagation directions of the guided sub-beams, a diffusion device such as a diffusion plate can be used. However, this can also affect the polarization of the sub-beams and make the use of polarization in subsequent stages or steps difficult or impossible. In another embodiment, the sub-beams are therefore manipulated prior to reaching an element or elements. In particular, the individual sub-beams are manipulated to cause the manipulated sub-beam to propagate into a defined range of propagation directions. For example, such work can be accomplished by concentrating the sub-beams onto the guiding elements using a concentrating device. This concentration also has the advantage of causing the sub-beam to be incident on the guiding element, for example, the correct position of the central region of the reflective region. In addition to the specific examples or alternative embodiments described above, the range of propagation directions of the sub-beams or beams can be increased using one or more guiding elements. In particular, the reflective surface area of the reflective element can be shaped, for example, in the form of a convex mirror. The term "sub-beam" as used herein shall not be used in a limiting manner with regard to the brightness of a projection beam or beams before they reach the guiding element - 16 - This paper scale applies to the Chinese National Standard (CNS) A4 size (210 X 297 mm)

裝 訂Binding

line

1308771 A7 B7 五、發明説明(13 ) 布加以解釋。更確切言之,各別之投影光束可為具有連續 亮度分布之一單獨光束,但同時可認為係包括一束子光 束。至少若干子光束經導引裝置導引之後可變為個別光束 而與投影光束之其他部分分離。在任何情況下,每一經導 引之子光束均對應於原始專生之一投影光束或多個光束之 相關部分。 本發明之一主要優點為可產生各種不同之投影光束之亮 度分布,而無需設計特別供每一特定照明設定用之對應之 光學配置及/或取代至少部分現有光學配置。特別是,可 產生先前僅於理論上或成立之亮度分布。 根據本發明之另一特點為提供一種裝置製造方法,包 括: - 提供一具有輕射敏感材料之基板; - 提供至少一輻射投影光束; - 修改投影光束之亮度分布; - 使用圖案形成裝置以使經修改之投影光束於其橫截面 中具有一圖案; - 將所形成之輕射光束圖案投影至最少具有一部分輕射 敏感材料之目標上, 其特點為投影光束之亮度分布之修改包括控制輻射傳播進 入之方向,其中投影光束包括多個子光束,其中至少若干 子光束係使用多個導引元件而被導引至不同方向,及其中 導引元件係予以個別控制以將對應之子光束導入所希望之 方向。 -17- 本纸張尺度適用中國國家標準(CNS) A4規格(210X297公釐)1308771 A7 B7 V. Explanation of invention (13) Explained. More specifically, the respective projection beam can be a single beam having a continuous luminance distribution, but at the same time it can be considered to include a beam of beams. At least some of the sub-beams are guided by the guiding means and then become individual beams separated from the rest of the projected beam. In any case, each of the guided sub-beams corresponds to a portion of the original pupil or a plurality of beams. One of the main advantages of the present invention is that it produces a different light distribution of the projected beam without the need to design a corresponding optical configuration for each particular illumination setting and/or to replace at least some of the existing optical configurations. In particular, a luminance distribution that was previously only theoretically or established can be produced. According to another feature of the present invention, there is provided a method of fabricating a device comprising: - providing a substrate having a light-sensitive material; - providing at least one radiation projection beam; - modifying a brightness distribution of the projection beam; - using a patterning device to The modified projection beam has a pattern in its cross section; - projecting the formed light beam pattern onto a target having at least a portion of the light-sensitive material, characterized by modification of the brightness distribution of the projection beam including controlling radiation propagation In the direction of entry, wherein the projected beam comprises a plurality of sub-beams, wherein at least some of the sub-beams are directed to different directions using a plurality of guiding elements, and wherein the guiding elements are individually controlled to direct the corresponding sub-beams to the desired direction. -17- This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm)

線 1308771 A7 B7 五、發明説明(μ 根據本發明之另—特點為提供一種控制系統用以控制輻 射投影光束之亮度分布以供微影技術之使用,包括: -一計算裝置用以根據一特定之投影光束之亮度分布計 算對於此特足分布所作之必需之修改以產生所希望之 亮度分布; '輸入裝置用以輸入有關所需亮度分布之資訊; '輸出裝置用以將多個輸出信號輸出至能重新導引部分 投影光束之多個導引元件; /、中片算裝置係使之適合計算控制信號以便導引元件可被 控制以將特定之輻射光束之亮度分布修改或對應於所需亮 度分布之一角度亮度分布。 口计异裝置根據一特定之亮度分布而計算控制信號。特別 疋特疋冗度力布係使之應用於重複將同一圖案投影於— 個或多於一個之基板之各別之輻射敏感區域之輻射投影光 束。於-種方案中,特定之亮度分布對於每一投影週期均 相同,此一分布可為不具有輻射敏感材料之照明之時間週 期所中斷。然而,亦可能藉使用同樣之多個 用不同之亮度分布。在此種情況下,控制系統輸出= 也制仏號至多個導引元件以便改變二投影週期之間Line 1308771 A7 B7 V. Description of the Invention (μ According to another aspect of the present invention, a control system is provided for controlling the brightness distribution of a radiation projection beam for use in lithography, including: - a computing device for The brightness distribution of the projected beam calculates the necessary modifications to this particular distribution to produce the desired brightness distribution; 'the input device is used to input information about the desired brightness distribution; 'the output device is used to output multiple output signals Up to a plurality of guiding elements capable of redirecting a portion of the projected beam; /, the middle computing device is adapted to calculate a control signal such that the guiding element can be controlled to modify or correspond to the desired brightness distribution of the particular radiation beam The brightness distribution is an angular brightness distribution. The mouth-counting device calculates the control signal according to a specific brightness distribution. In particular, the redundancy device is used to repeatedly project the same pattern on one or more substrates. Radiation projection beams of the respective radiation-sensitive areas. In the scheme, the specific brightness distribution is used for each projection period. Again, this distribution can be interrupted by the time period of illumination without radiation-sensitive materials. However, it is also possible to use different brightness distributions using the same multiple. In this case, the control system output = also nickname To multiple guiding elements to change between two projection cycles

特:系當導引=係以電辑1於單―,可個別控 ’ ·^引裝置之質量及慣性’係較例如具有很多妒, 成組之繞射光學元件之整組光學裝置之f量及慣 U 因此照明設定可迅速改變。因此現在可能在適當時間:變 •18-Special: When the guidance = is to use the electricity series 1 in the single -, the quality and inertia of the device can be individually controlled. For example, the whole set of optical devices of the group of diffractive optical elements are compared. Quantity and habit U so the lighting settings can change quickly. So now it may be at the right time: change • 18-

1308771 A7 B7 五、發明説明(15 ) 二次照明閃光間之照明設定及於一基板上使用不同之亮度 分布。 根據本發明之另一特點為提供一控制系統用以控制投影 光束之亮度分布以用於微影術中,包括: -一計算裝置用以根據該與影光束之一特定亮度分布計 算對於特定之分布作出必需之修改以產生所需之亮度 分布; - 輸入裝置用以輸入有關所需之亮度分布之資訊; - 輸出裝置用以將多個控制信號輸出至能重新導引部分 投影光束之多個分立之反射器; 其中計算裝置以其適合計算控制信號,如此可使輻射光束 之特定亮度分布修改成對應於所需亮度分布之一角度亮度 分布。 控制系統亦可備有輸入裝置用以接收實際獲得之鏡位置 及/或曈孔分布。瞳孔分布可有如歐洲專利申請案第 00307558.7號中所說明之方法予以測量,此申請案現以引 用方式併入本文中。 根據本發明之另一特點係備有一電腦程式用以產生所需 要之輻射投影光束之空間亮度分布以用於微影技術中,其中 - 投影光束之輻射傳播之一角度亮度分布對應於投影光 之一橫截面中之一空間亮度分布;及 - 導引裝置可予以控制以藉重新導引部分投影光束而形 成用於任何所需空間亮度分布之一角度亮度分布; 電腦程式包括代碼裝置以其適合計算導引裝置之必需狀態 -19- 本纸張尺度適用中國國家標準(CMS) A4規格(210X297公釐) 1308771 A7 B7 五、發明説明(16 ) 及/或控制信號用以控制導引裝置以形成對應於所需要空 間亮度分布之角度亮度分布。 於一較佳具例中,於投影光束之一橫截面中之一任意空 間亮度分布可予以界定及代碼裝置係使之適合計算導引裝 置之必需狀態及/或控制i言號以形成對應之角度亮度分 布。 一般言之,無法產生在理論上之任何可能之角度亮度分 布。特別係如果導引裝置包括如上述之導引元件時為然, 由於每一導引元件僅將對應之部分投影光束導引至一有限 之方向範圍(見上文)之事實,因此將會有一些分立之亮度 分布特性。視導引元件之數目,其特有之性質,及其他因 素而定,亮度分布之分立特性有不同程度之顯著性。較佳 者電腦程式之代碼裝置係將此分立特性納入考慮及計算導 引裝置之必需狀態及/或計算導致相當於所需空間亮度分 布之最近似之角度亮度分布之控制信號。 實施之較佳者,為能增加可藉將角度亮度分布變換成對 應之空間亮度分布而產生之空間亮度分布之數目,將角度 亮度分布變換為空間分布之光學裝置(例如縮放透鏡)可予 以修改及交換。在此種情況下,電腦程式必須能接達經修 正之變換行為。於一較佳具體實例中,代碼裝置係使之適 合在不同之變換配置及/或變換配置之特性之間作一選擇 及使之適合不僅計算導引裝置之狀態及/或計算用於控制 導引裝置之控制信號,並且亦使之適合計算對應之產生所 需要之空間亮度分布之變換配置。舉例而言,變換裝置可 -20- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝 訂1308771 A7 B7 V. INSTRUCTIONS (15) Illumination settings between secondary illumination flashes and different brightness distributions on a substrate. Another feature of the present invention is to provide a control system for controlling the brightness distribution of a projected beam for use in lithography, comprising: - a computing device for calculating a particular distribution based on a particular brightness distribution of the image beam Making the necessary modifications to produce the desired brightness distribution; - input means for inputting information about the desired brightness distribution; - output means for outputting a plurality of control signals to a plurality of discretes capable of redirecting a portion of the projected beam The reflector; wherein the computing device is adapted to calculate the control signal such that the particular brightness distribution of the radiation beam is modified to correspond to an angular brightness distribution of the desired brightness distribution. The control system may also be provided with input means for receiving the actual obtained mirror position and/or pupil distribution. The pupillary distribution can be measured by the method described in European Patent Application No. 0 030 755 8.7, which is incorporated herein by reference. According to another feature of the invention, a computer program is provided for generating a spatial brightness distribution of the desired radiation projection beam for use in lithography, wherein - the angular spread of the radiation of the projected beam corresponds to the projected light a spatial brightness distribution in a cross section; and - the guiding means is controllable to form an angular brightness distribution for any desired spatial brightness distribution by redirecting the partial projection beam; the computer program includes code means for its suitability Calculate the necessary state of the guiding device-19- This paper size applies to the Chinese National Standard (CMS) A4 specification (210X297 mm) 1308771 A7 B7 V. Invention description (16) and/or control signals for controlling the guiding device An angular luminance distribution corresponding to the desired spatial luminance distribution is formed. In a preferred embodiment, any spatial luminance distribution in one of the cross-sections of the projected beam can be defined and the code device is adapted to calculate the necessary state of the guiding device and/or control the i-symbol to form a corresponding Angle brightness distribution. In general, it is impossible to produce a theoretical brightness distribution at any possible angle. In particular, if the guiding device comprises a guiding element as described above, since each guiding element only directs a corresponding partial projection beam to a limited range of directions (see above), there will be Some discrete brightness distribution characteristics. Depending on the number of guiding elements, their peculiar properties, and other factors, the discrete nature of the brightness distribution is of varying degrees of significance. Preferably, the code means of the computer program takes this discrete characteristic into account and calculates the necessary state of the navigation means and/or calculates a control signal that results in the most approximate angular brightness distribution corresponding to the desired spatial brightness distribution. Preferably, the optical device (for example, a zoom lens) that converts the angular luminance distribution into a spatial distribution can be modified in order to increase the number of spatial luminance distributions that can be generated by transforming the angular luminance distribution into a corresponding spatial luminance distribution. And exchange. In this case, the computer program must be able to access the corrected conversion behavior. In a preferred embodiment, the code means is adapted to select between different transform configurations and/or transform configuration characteristics and to adapt to not only calculate the state of the pilot device and/or calculate for control The control signal of the device is also referenced and is also adapted to calculate a transformation configuration corresponding to the spatial brightness distribution required to produce it. For example, the conversion device can be -20- This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm).

線 I3〇877lLine I3〇877l

發明説明( 包括一縮放透鏡及代碼裝置然後可使之選擇,或計算縮放透 鏡之焦距之一適當數值。 —種代替方式或者當作一種添加之特性為亦可能使代碼 裳置能於不同之用以影響投影光束之配置之間作一選擇, 而此種影響則係於投影光專抵達導引裝置之前為之。 維然於本文中係特別以積體電路(1C)之製造討論使用根 據本發明之設備,但是可明確瞭解者’此種設備可適合很 夕其他可能之應用。例如,其可用於製造積體之光學系 統,用於磁域記憶器之導引及檢測圖案,液晶顯示板,薄 膜磁頭等。熟練之技術人員將可瞭解,在此種代替性應用 之語意上,於本文中任何「標線」,「晶圓」或「小晶 片」之名詞之使用均應認為可由更廣義之名詞「光罩」, 「基板」及「目標部分」分別所取代。 於本文件中,g射」及「光束」二詞係、用以涵蓋所有 型式之電磁輻射,此包括紫外線輻射(例如具有 365 ’ 248 ’ 193,157或126 nm者)及_(超紫外線輕射例 如具有波長在5-20咖者),以及例如為離子束或電子束之 附之間圖而予以 本發明之具體實例現僅藉舉例及參考所 說明,於附圖中: Γ?7 · _ , 角度亮度分 圖I例示根據本發明之第一具體實例之一簡 圖2以簡圖例示根據先前之技藝之配置將— 布轉換成一空間亮度配置; 具體實例之輻射系 圖3以更詳細方式顯示本發明之第一 •21- 1308771 A7 B7 五、發明説明(18 ) 統; 圖 4及5描繪二相似空間亮度分布; 圖 6顯示根據本發明之第二具體實例 之一微影設備 t 圖 7顯示根據本發明之第三具體實例 之一微影設備 之 輻 射系 統; < 圖 8描縮可用於本發明之第一至第三 具體實例之反射 性 元件 f 圖 9描繪根據本發明第四具體實例之 一微影投影裝置 , 圖 1 0至1 2描繪根據本發明之第四具 體實例之各種 不 同 狀態 之一微影設備之輻射系統; 圖 1 3描繪根據第四具體實例之一變 體之微影設備 之 輻 射系 統; 圖 14A及B描繪本發明之第四具體實 例之圖場及瞳 孔 小 平面 鏡; 圖 1 5描繪根據第四具體實例之一變體之成組之 小 平 面; 圖 1 6描繪可用於本發明之第四具體 實例中之一可 控 制 之一 小平面;及 圖 17及18描繪可用於本發明之第四 具體實例中之 一 代 替形 成之可控制之小平面。 於 圖式中,相同符號指示相同零件。 具體 實例1 圖 1以簡圖描繪根據本發明之一特別 具體實例之一 微影 投影 裝置。此裝置包括: -22- 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 1308771 A7 19 五、發明説明( H系統Ex,IL以其供應赛射之投影 射)光束PB。於此特別情況,輻射系統亦包括=泉每 LA ; —輻射源 —=物件台(光罩台)MT備有一光罩固定器用 =罩,A(例如-標線u及連接至第—定位裝置用 先罩相對於項目P L標確定位; 將 第二物件台(基板台)WT備有—基板固定器用以 、基板W(例如經塗有抗蝕劑之矽晶圓),及連接至第二— 位裝置用以將基板相對於項目P L準確定位; 足 -投影系統(「透鏡」)PL用以將光罩MA之 昭 成像於基板W之-目標部分c之上(例如包括 ^ : 小晶片)。 — 叫及夕個 如本文所說明,本發明之設備為一種傳送型式(亦即且 有一傳送性光罩)。然而,在—般情形下,例如其可為I 反射型式(具有-反射光罩)。一種代替性方式為此設備可 使用另一種圖案形成裝置,例如為上文中所提及之一種可 程式規劃之鏡陣列型式。 ^ 源LA(例如一雷射)產生一輻射光束。此光束例如係經 直接或在橫過例如一光束擴展器Ex之調理裝置之後而^ 入一照明系統(照明器)IL。照明SIL包括調整裝置AM = 以修改光束亮度分布。此外此照明器一般包括例如一積分 器IN及一聚光器C0之各種不同之其他組件。在此種方式 下,撞擊於光罩MA上之光束PB在其橫截面中具有所需要 之均一性及亮度分布。 -23- 本紙張尺度適用中國國家標竿(CNS) A4规格(210 X 297公釐) 裝 訂 1308771 A7 B7 五、發明説明(20 ) - 對於圖1言,需注.意者,源L A可置於微影投影裝置之外 设中(例如當源L A為-一水銀燈時,即經常係為此種情 況),但亦可設置於遠離微影投影裝置之處,其所產生之 輻射光束即被導引至投影裝置中(例如由適當之導引鏡協 助);後述之方案經常為當源LA為一準分子雷射之情況。 本發明及申請專利範圍涵蓋此二種方案。 光束P B然後攔截固定於一光罩台MT上之光罩!^八。光 束PB在橫過光罩MA之後即通過將光束pB聚焦於基板w 之一目標部分C之上之透鏡PL。藉第二定位裝置(及干涉 測量裝置I F )之助,基板台w τ可使之精確移動,以便例 如將不同之目標部分c定位於光束ΡΒ之路徑中。同樣, 例如在以機械方式自一光罩程式庫取回之後或於—掃描期 間,第一定位裝置可用於將光罩!^八相對光束1>8予以定 位。一般言之,物件$MT&WT將可藉助長行程模組(粗 足位)及短行程模組(細定位)而完成,此種定立未於圖^中 明白π出。然而,如使用晶圓步進器(相對於一步進及掃 裝置)貝1J僅需將光罩台Μ T連接至一短行程致動器或予 以固定即可。 以上所述之裝置可以二不同模式使用: 1. 於步進模式中,光罩台1^丁保持實質上為固定型式,及 一全部光罩影像在一次閃光(亦即一單獨「閃光」中投影於 -目標部分C上。基板#WT然後在…或丫方向位移:使 一不同之目標部分C可由光束P B輻照; 2. 於掃描模式中,實質上可適用同樣之方案,例如者 _ -24- 本纸張尺度適财g g家標準(CNS) M规格⑽χ297公幻 1308771 A7 B7 五、發明説明(21 )DESCRIPTION OF THE INVENTION (including a zoom lens and code device can then be selected, or calculate the appropriate value of one of the focal lengths of the zoom lens. - Alternative or as an added feature to enable the code to be used for different purposes A choice is made between the configurations that affect the projection beam, and this effect is prior to the projection light reaching the guiding device. This is especially discussed in the context of the fabrication of the integrated circuit (1C). The device of the invention, but it is clear that the device can be adapted to other possible applications. For example, it can be used to manufacture integrated optical systems, for guiding and detecting patterns of magnetic domain memories, liquid crystal display panels. , thin film heads, etc. It will be appreciated by those skilled in the art that in the context of such alternative applications, the use of any terms such as "line", "wafer" or "small wafer" in this document shall be considered to be more The broad terms "mask", "substrate" and "target" are replaced respectively. In this document, the words "g" and "beam" are used to cover all types. Electromagnetic radiation, which includes ultraviolet radiation (for example with 365 '248 '193, 157 or 126 nm) and _ (ultraviolet light, for example with a wavelength of 5-20 coffee), and for example an ion beam or an electron beam The specific examples of the present invention are illustrated by way of example and with reference to the accompanying drawings in which: FIG. 7: _, angular brightness map I illustrates one of the first specific examples according to the present invention. The diagram illustrates the conversion of the cloth into a spatial brightness configuration according to the prior art configuration; the radiation pattern of the specific example is shown in a more detailed manner. The first 21-1308771 A7 B7 of the present invention 5. The invention description (18); Figures 4 and 5 depict two similar spatial luminance distributions; Figure 6 shows a lithographic apparatus t according to a second embodiment of the present invention. Figure 7 shows a radiation system of a lithographic apparatus according to a third embodiment of the present invention; < Figure 8 depicts a reflective element f that can be used in the first to third embodiments of the present invention. Figure 9 depicts a lithographic projection apparatus in accordance with a fourth embodiment of the present invention, Figure 10 12 to depict a radiation system of a lithography apparatus according to one of various different states of the fourth embodiment of the present invention; FIG. 13 depicts a radiation system of a lithography apparatus according to a variation of the fourth embodiment; FIGS. 14A and B A field and a pupil facet mirror depicting a fourth embodiment of the present invention; FIG. 15 depicts a group of facets according to a variant of the fourth embodiment; FIG. 16 depicts a fourth embodiment that can be used in the present invention One can control one of the facets; and Figures 17 and 18 depict one of the fourth embodiments of the present invention instead of forming a controllable facet. In the drawings, the same symbols indicate the same parts. DETAILED DESCRIPTION OF THE INVENTION Figure 1 is a diagrammatic view of a lithographic projection apparatus in accordance with one particular embodiment of the present invention. This device includes: -22- This paper scale is applicable to China National Standard (CNS) A4 specification (210 x 297 mm) 1308771 A7 19 V. Invention description (H system Ex, IL with its supply projection projection) Beam PB . In this special case, the radiation system also includes = spring per LA; - radiation source - = object table (mask table) MT is provided with a mask holder = cover, A (for example - marking line u and connected to the first positioning device The first cover is used to determine the position relative to the item PL; the second object stage (substrate table) WT is provided with a substrate holder for the substrate W (for example, a resist-coated silicon wafer), and is connected to the second a bit device for accurately positioning the substrate relative to the item PL; a foot-projection system ("lens") PL for imaging the photomask MA onto the target portion c of the substrate W (for example including: small wafer As explained herein, the apparatus of the present invention is a transmission type (i.e., has a transmissive mask). However, in the general case, for example, it may be an I-reflective type (with - reflection) Photomask. An alternative way for this device is to use another patterning device, such as a programmable mirror array pattern as mentioned above. ^ Source LA (e.g., a laser) produces a beam of radiation. This beam is, for example, directly or across After the conditioning device of the beam expander Ex, an illumination system (illuminator) IL is included. The illumination SIL includes an adjustment device AM = to modify the beam brightness distribution. Further, the illuminator generally includes, for example, an integrator IN and a concentrator. In this manner, the beam PB impinging on the reticle MA has the required uniformity and brightness distribution in its cross section. -23- This paper scale applies to the Chinese national standard ( CNS) A4 size (210 X 297 mm) Binding 1308771 A7 B7 V. Invention description (20) - For the sake of Figure 1, it is necessary to note that the source LA can be placed outside the lithographic projection device (for example, when When the source LA is - a mercury lamp, this is often the case), but it can also be placed away from the lithographic projection device, and the generated radiation beam is guided into the projection device (for example, by appropriate guidance) Mirror assisted; the scheme described later is often the case where the source LA is a quasi-molecular laser. The invention and the patent application cover both schemes. The beam PB then intercepts the reticle fixed to a reticle stage MT! ^8. Beam PB is at After passing through the mask MA, the lens p is focused on the lens PL above the target portion C of the substrate w. With the aid of the second positioning device (and the interferometric device IF), the substrate table w τ can be accurately moved. In order, for example, to position the different target portion c in the path of the beam 。. Similarly, for example after mechanical retrieval from a reticle library or during a scan, the first positioning device can be used to reticle! Relative beam 1 > 8 is positioned. In general, the object $MT & WT will be completed by means of long-stroke module (coarse position) and short-stroke module (fine positioning), which is not understood in Figure ^ π out. However, if a wafer stepper (relative to a stepper and sweep device) is used, it is only necessary to connect the mask stage T to a short-stroke actuator or to fix it. The device described above can be used in two different modes: 1. In step mode, the reticle stage remains substantially fixed and a full reticle image is flashed once (ie, in a separate "flash" Projected on the target portion C. The substrate #WT is then displaced in the ... or 丫 direction: a different target portion C can be irradiated by the light beam PB; 2. In the scan mode, substantially the same scheme can be applied, for example _ -24- This paper scale is suitable for gg standard (CNS) M specification (10) χ 297 public fantasy 1308771 A7 B7 V. Invention description (21)

是’ 一特定之目標c並不曝光於一單獨之「閃光」中。代 替之方式為光罩台Μ T係在一特定之方向(即所謂「掃描」 方向’例如為y方向)以—速度V移動,如此可致使投影光 束P B於一光罩影像上方掃描;與此同時,基板台w T係同 時以一速度V = Mv沿同一箱反方向移動,於式中Μ為透鏡 PL之放大倍數(一般情況下’ 1/4或1/5)。在此種方式 下’一較太之目標部分C可予以曝光,且不會有損於解折 度。 圖2例示投影束ρ β之對應之角度及空間亮度分布原理。 根據先前技術之配置,用以設定外部及/或内部徑向長度 (—般分別稱之為σ -外部及σ -内部)包括具有一列微透鏡4 之一繞射光學元件(「DOE」)3。每一微透鏡4形成一擴散 光線錐5。每一光線錐5對應於入射於d〇e 3之投影光束之 一部分或其子光束。光線錐5入射於聚焦透鏡6。於透鏡6 之背後焦點平面8中,每一光線錐對應於一經照明之地 區。此地區之大小決定於光線錐5傳播進入之方向。如果 此光線範圍小,則背後焦點平面8中之經照明地區之面積 亦小。此外’光錐5之所有相同方向,亦即所有彼此平行 之光線’均對應於背後焦點平面8中之一完全相同之特定 之點。 屬於已知者,為於投影光束PB之橫截面區域中,特別 疋具有環形之瞳孔平面中(有如圖4及5中所例示者)產生 芝間亮度分布。對應於具有零亮度或接近零亮度之中央區 域之内部徑向長度可藉選擇一適當之D〇e 3而設定。例 _____-2 5- 本紙張尺度適財g时料(CNS) M規格(⑽“公爱)Yes, a specific target c is not exposed to a separate "flash". Instead, the mask stage T is moved in a specific direction (so-called "scanning direction", for example, the y direction) at a speed V, which causes the projection beam PB to be scanned over a mask image; At the same time, the substrate table w T is simultaneously moved in the opposite direction of the same box at a speed V = Mv, where Μ is the magnification of the lens PL (generally '1/4 or 1/5). In this way, the target part C of a lesser one can be exposed without detracting from the degree of disambiguation. Fig. 2 illustrates the principle of the angle and spatial brightness distribution of the projection beam ρ β . According to the prior art configuration, the outer and/or inner radial lengths (generally referred to as σ-outer and σ-inside, respectively) are included to include a diffractive optical element ("DOE") 3 having a column of microlenses 4 . Each microlens 4 forms a diffusing ray cone 5. Each ray cone 5 corresponds to a portion of the projected beam incident on d〇e 3 or a sub-beam thereof. The light cone 5 is incident on the focus lens 6. In the back focus plane 8 of the lens 6, each ray cone corresponds to an illuminated area. The size of this area is determined by the direction in which the light cone 5 travels. If the light range is small, the area of the illuminated area in the back focus plane 8 is also small. Furthermore, all of the same directions of the light cone 5, i.e., all of the rays parallel to each other, correspond to specific points at which one of the back focus planes 8 is identical. It is known that in the cross-sectional area of the projection beam PB, particularly in the plane of the pupil having a ring shape (as exemplified in Figures 4 and 5), an inter-chid brightness distribution is produced. The internal radial length corresponding to the central region having zero or near zero brightness can be set by selecting an appropriate D〇e 3 . Example _____-2 5- The paper size is suitable for the time (CNS) M specification ((10) "Public love"

裝 訂Binding

線 1308771 A7 ------— B7___ 五、發明説明(22 ) ----- 如,所有微透鏡4可予以定向以便無光線錐5入射於 區域及僅入射於環形區域(當然,由於此種分散效應於中 央區域將會有大於零之亮度)。藉將微透鏡4確定於^同方 向。即可於橫截面區域產生其他空間亮度分布。但是1 = 能之亮度分布之數目係受鄂限制及亮度設定之改變需要: 費時間更換及/或重新將微透鏡定向。 圖3顯示根據本發明之第一具體實例之輻射系統之配 置。一雷射3 1輸出通過快門光閘1 1,1 2,1 3之較窄之準 直光束。此光束然後通過光束發散透鏡32,此透鏡將光 束擴展至對應於由反射元件33a,33b,33c,33d,33e組成 之一陣列3 3之大小。在理想情況下,發散透鏡3 2應輸出 準直之光束;但是在光束邊緣處仍可有發散差別。實施之 較佳者,經擴展之光束之大小係足夠使光束入射於所有反 射元件33a至33e。於圖3中,顯示經擴展之光束之三子光 束之舉例。光束發散透鏡可以代替方式包括在背面焦點之 後之一正透鏡或透鏡陣列。 一第一子光束入射於反射元件33b處。與陣列33b之其他 反射元件3 3 a,3 3 c至3 3 e相同,反射元件3 3 b可予以控制以 調整其定向以便子光束可反射至所需預定之方向。藉重新 導引可包括一聚焦透鏡之透鏡16,子光束可被重新導 引’如此其可入射於光束之一橫截面平面18中之一所希 望之點或小面積。橫截面平面18可與作為一虛擬輻射源 (如上述)之瞳孔平面重合。其他示於圖3中之子光束由反 射元件33c ’ 33d反射及被重新導引透鏡1 6重新導引。藉控 -26- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇x297公釐) 1308771 A7 _ ____B7 五、發明説明(23 ) ' ' 制反射33a至33e之定向,可在橫截面平㈣+產生幾乎^ 任何空間之亮度分布。 例如,陣列3 3 4包括1152(例如32χ36)個鏡及每一鏡之定 向均可個別調整。 圖4及圖5冑示可利用根據本發明之一照明系統,例如 使用連同圖3,圖6及/或圖7所說明之照明系統所產生之 不同之空間亮度分布。圖4及圖5應可瞭解其為例示使用 多個子光束產生一空間亮度分布原理之簡圖。圖4及圖5 (圖式平面係與投影光束之橫截面區域,例如圖3之橫截 面1 8重合。圖4及圖5描繪代表具有大於一臨限值之—照 明亮度區域15個小圓形區域。於圖4中,圓形區域23具有 較小面積,於圓形區域23之間之區域之亮度小於特定臨 限值。照明之侧面圖具離散特性及可能導致不令人滿意之 照明。藉增加圓形區域子光束傳播進入方向之範圍,例如 藉使用上逑或與後文中連同圖6所述之透鏡,可使圓形區 域23a加大而彼此重疊。結果圖5所示之亮度分布近似平行 四邊形《由於投影光束之子光束可將其導引至橫截面區域 中之任何所希望之位置,所以幾乎可產生任何亮度侧面 Η Λ’:而亦可此產生標準之例如具有環形之亮度分布。 特別是位於圖4與5之内部與外部圓形間之區域21可以圓 形區域23或23a填充。所謂之0内部及σ外部可藉將子光束 導引至分別之内部圓形與分別之外部圓形間之對應位置而 予以調整。 具體f你丨?Line 1308771 A7 ------- B7___ V. Description of the invention (22) ----- For example, all microlenses 4 can be oriented so that no ray cone 5 is incident on the area and only incident on the annular area (of course, due to This dispersion effect will have a brightness greater than zero in the central region). The microlens 4 is determined in the same direction. Other spatial brightness distributions can be created in the cross-sectional area. However, the number of luminance distributions of 1 = energy is subject to changes in the e-limit and brightness settings: Time-consuming replacement and/or reorientation of the microlenses. Fig. 3 shows the configuration of a radiation system according to a first specific example of the present invention. A laser 3 1 output passes through a narrower collimated beam of shutter shutters 1, 1, 2, and 13. This beam then passes through a beam diverging lens 32 which expands the beam to a size corresponding to an array 33 of reflector elements 33a, 33b, 33c, 33d, 33e. Ideally, the diverging lens 32 should output a collimated beam; however, there may still be divergence differences at the edge of the beam. Preferably, the expanded beam is of sufficient size to cause the beam to be incident on all of the reflective elements 33a to 33e. In Fig. 3, an example of three sub-beams of an expanded beam is shown. The beam diverging lens may alternatively comprise a positive lens or a lens array behind the back focus. A first sub-beam is incident on the reflective element 33b. Like the other reflective elements 3 3 a, 3 3 c to 3 3 e of array 33b, reflective element 3 3 b can be controlled to adjust its orientation so that the sub-beams can be reflected to the desired predetermined direction. By redirecting the lens 16 including a focusing lens, the sub-beam can be redirected' such that it can be incident on a desired or small area of one of the cross-sectional planes 18 of the beam. The cross-sectional plane 18 may coincide with the pupil plane as a virtual radiation source (as described above). The other sub-beams shown in Fig. 3 are reflected by the reflecting elements 33c' 33d and redirected by the redirecting lens 16.借控-26- This paper scale applies to China National Standard (CNS) A4 specification (21〇x297 mm) 1308771 A7 _ ____B7 V. Invention description (23 ) ' 'The orientation of reflections 33a to 33e can be flat in cross section (4) + produces almost the brightness distribution of any space. For example, array 3 3 4 includes 1152 (e.g., 32 χ 36) mirrors and the orientation of each mirror can be individually adjusted. Figures 4 and 5 illustrate different spatial brightness distributions that may be produced using an illumination system in accordance with the present invention, e.g., using the illumination system illustrated in conjunction with Figures 3, 6 and/or 7. 4 and 5 are to be understood as a simplified diagram illustrating the principle of generating a spatial luminance distribution using a plurality of sub-beams. 4 and 5 (the plane of the drawing is in cross section with the cross-sectional area of the projected beam, such as the cross section 18 of FIG. 3. Figures 4 and 5 depict 15 small circles representing the illumination brightness area having a threshold value greater than a threshold. In Fig. 4, the circular area 23 has a small area, and the brightness of the area between the circular areas 23 is less than a certain threshold. The side view of the illumination has discrete characteristics and may result in unsatisfactory illumination. By increasing the range in which the sub-beams of the circular area propagate into the direction, for example, by using the upper or the lens described later in conjunction with Fig. 6, the circular regions 23a can be made larger and overlap each other. As a result, the brightness shown in Fig. 5 is obtained. Distribution of approximately parallelograms "Because the sub-beams of the projected beam can direct them to any desired position in the cross-sectional area, almost any brightness side Η Λ' can be produced: but also a standard such as having a ring-like brightness In particular, the region 21 between the inner and outer circular shapes of Figures 4 and 5 can be filled with a circular region 23 or 23a. The so-called zero internal and σ outer can be guided by the sub-beams to the respective inner circular and Adjust the corresponding position of the outer circular circle. What are you?

裝 訂Binding

線 -27-Line -27-

1308771 A7 B7 五、發明説明(24 圖6顯示本發明之第二具體實例,此實例除去下述以外 其他均可與第一具體實例相同。 投影光束PB入射於可與圖3之發散透鏡32相同之集中 透鏡4 1。集中透鏡4 1完成二種功能。第一係將投影光束 PB之子光束彼此分離。第二係將子光束集中於陣列3 3之 反射7L件上。具體言之,集中及分離均以具有一拋物線或 雙曲線表面剖面之反射表面區域實施。實施之較佳者,將 投影光束之不同部分集中於導引元件(例如陣列3 3之反射 元件)之不同導引元件上之表面區域,係使之彼此相鄰配 置以便於彼此之間不留下間隙。此即意指具有連續亮度之 側面之投影光束可分成分離之子光束,且不會有顯著之亮 度損失。 ' 集中透鏡41可包括沿投影光束pB之傳播路徑於不同位 置配置之多個集中元件(未示於圖6中)。舉例而言,一第 一集中元件將輕射相對於垂直於傳送方向之一第一方向予 以集中以產生集中之餐射之連續之線或帶。於本具體實例 中,一第二集中元件將此等線或帶相對於垂直於第一方向 及垂直於輻射傳播之方向之一方向集中。此具體實例之一 優點為特別係當將集中反射表面區域彼此相鄰配置而不會 在彼此之間留有孔隙時,可便利集中元件之製造。 投影光束PB<若干部分之集中相當於產生子光束傳播 進入方向之經界定之範圍。於圖6之例示之具體實例中, 子光束係由陣列3 3之反射元件反射於重新導引透鏡16a, 16b。於下游處,投影光束Ρβ(於圖6中由亮度可能為零之 -28- 未紙張尺度適用中圉國家標準(CNS) Α4規格(210X 297公复)1308771 A7 B7 V. INSTRUCTION DESCRIPTION (24) Fig. 6 shows a second embodiment of the present invention, which may be the same as the first specific example except for the following. The projection beam PB is incident on the same as the diverging lens 32 of Fig. 3. Concentrating the lens 41. The concentrating lens 4 1 performs two functions. The first system separates the sub-beams of the projection beam PB from each other. The second system concentrates the sub-beams on the reflection 7L of the array 33. Specifically, Separation is performed with a reflective surface area having a parabolic or hyperbolic surface profile. Preferably, different portions of the projection beam are concentrated on different guiding elements of the guiding elements (e.g., reflective elements of array 33). The surface regions are arranged adjacent to each other so as not to leave a gap between each other. This means that the projection beam having the side of continuous brightness can be divided into separate sub-beams without significant loss of brightness. 41 may include a plurality of concentrating elements (not shown in Figure 6) disposed at different locations along the propagation path of the projected beam pB. For example, a first concentrating element will be light Concentrating with respect to one of the first directions perpendicular to the direction of transport to produce a continuous line or strip of concentrated meal. In this embodiment, a second concentrating element aligns the lines or bands relative to the first direction. And concentrating in one direction perpendicular to the direction in which the radiation propagates. One of the advantages of this specific example is that the concentrating elements can be facilitated, particularly when the concentrated reflecting surface regions are disposed adjacent to each other without leaving voids between each other. The concentration of the projection beam PB<; is equivalent to the defined range in which the sub-beam propagation direction is generated. In the illustrated example of Figure 6, the sub-beams are reflected by the reflective elements of the array 33 to the redirecting lens 16a, 16b. At the downstream, the projection beam Ρβ (in Figure 6, the brightness may be zero -28 - the paper size is applicable to the Chinese National Standard (CNS) Α 4 specification (210X 297)

裝 訂Binding

線 1308771 A7 --—-----5!_ _—— 五、發明説明(25 ) 光軸所代表)係由鏡43反射及然後由耦合透鏡45耦合進入 例如為—石英桿之一積分器4 7。 差體實例\ 圖7拖繪本發明之第三具體實例,此實例除去下述以外 其餘可與第一具體實例相同。一極化之輸入投影光束p B 入射於一極化敏感鏡5 3處。光束p B之極化係經選擇以使 光束R1被反射(於圖7中例示為向下之方向)。當光束 R1經由一1/4λ板5 1傳輸時,光束R1之極化方向即旋轉。 光束ri(具旋轉極化方向)入射於陣列33。對應之子光束 (未示於圖7中)被反射進入不同方向。此等經反射之子光 束構成經由1/4λ板5丨傳輸之光束R2,極化方向再度使之 奴轉。由於極化方向之旋轉,光束R2即不被極化敏感鏡 5 3所反射,而係穿過鏡5 3傳輸。此具體實例考慮導引元 件I垂直照明。此外,整個之陣列係位於光束形成透鏡之 支架之物件平面上。 圖8顯不一反射元件之實例。具體言之,圖3,6及7之 陣列包括例如超過1,〇〇〇個此種反射元件,此種反射元件係 於投影光束PB之橫截面平面中彼此相鄰近校準。反射元 件包括具有一長方形反射表面區域之一反射構件61。一 般情況下,反射構件可有例如一圓形或六角形之任何所希 望 < 型式。反射構件6 1可藉例如機電致動器之致動器 65a’65b使之繞第一軸線旋轉。可以按需要就每一軸線裝置 很多致動器。致動器65a,65b固定於同一支持構件63上。 支持構件63亦可藉例如機電致動器之致動器67a,67b使之繞 _ -29- 本紙張尺度適用中國國家標準(CNS) A4規^i^__297公爱)Line 1308771 A7 --------5!_ _ - V. Description of the invention (25) The optical axis is reflected by the mirror 43 and then coupled by the coupling lens 45 into, for example, one of the quartz rods. 4 7 . Example of the difference body Fig. 7 shows a third embodiment of the present invention, which is the same as the first specific example except for the following. A polarized input projection beam p B is incident on a polarization sensitive mirror 53. The polarization of beam p B is selected such that beam R1 is reflected (illustrated in the downward direction in Figure 7). When the beam R1 is transmitted via a 1/4 λ plate 51, the polarization direction of the beam R1 is rotated. The light beam ri (with a rotational polarization direction) is incident on the array 33. The corresponding sub-beams (not shown in Figure 7) are reflected into different directions. These reflected sub-beams constitute a light beam R2 transmitted through the 1/4 λ plate 5丨, and the polarization direction is again turned. Due to the rotation of the polarization direction, the light beam R2 is not reflected by the polarization sensitive mirror 53, but is transmitted through the mirror 53. This specific example considers the vertical illumination of the guiding element I. In addition, the entire array is located on the plane of the object of the beam forming lens holder. Figure 8 shows an example of a reflective element. In particular, the array of Figures 3, 6 and 7 includes, for example, more than one such reflective element that is aligned adjacent to each other in the cross-sectional plane of the projected beam PB. The reflective element includes a reflective member 61 having a rectangular reflective surface area. In general, the reflective member can have any desired <type of a circular or hexagonal shape, for example. The reflective member 61 can be rotated about the first axis by an actuator 65a' 65b, such as an electromechanical actuator. Many actuators can be mounted on each axis as needed. The actuators 65a, 65b are fixed to the same support member 63. The support member 63 can also be wound around the _-29 by the actuators 67a, 67b of the electromechanical actuator. The paper size applies to the Chinese National Standard (CNS) A4 regulation ^ i ^ _ _ _ _ _ _

裝 訂Binding

1308771 A7 _ B7 五、發明説明(26 ) 第二軸線Y而旋轉。_同樣,亦可按需要就每一軸裝置很多 致動器,亦可裝置感測器以提供對於鏡位置之反饋控制。 因此反射構件61之定向可予以調整以便將—入射光束 反射進入一半球形之任何所需方向。有關圖8中所示型式 及其他型式之反射元件之進—步細節經揭示於例如美國專 利术第 6,0j I,946號(Lucent Technologies, Inc.),此專利案以 引用方式併入本文中。 具體實例4 本發明之第四具體實例除去下述以外均與第一具體實 例,此貫例使用小平面鏡以其用為蠅眼型積分器及示於圖 9至1 5中。 圖9描繪第四具體實例之全知配置,此實例包含與第一 具體實例相同之组件,但係圍繞一反射光罩―配置。此 種设備可使用EUV作為投影光束輻射。其輕射及照明系統 係使用反射透鏡。 示於圖1 0中之照明系統100包括具有多個圖場小平面 1 1 1之圖場小平面鏡i 10,每一小平面可以有照明場型式 (於照明系.统中其他地方加添之曲率則為例外),此等小平 面於瞳孔小平面鏡120上形成源匕八之影像。可注意到影像 不具有良好品質,亦未確實位於瞳孔小平面鏡上。瞳孔小 平面鏡120之曈孔小平面121,藉聚光器鏡13〇(其可為—系 統鏡)之助而導引光線以適當充滿光罩丨4〇之上之照明場, 此鏡使圖案小平面成像於光罩140上。由於瞳孔小平面鏡 在位於投影系統PL之曈孔之共軛平面中,照明設定係由 -30-1308771 A7 _ B7 V. DESCRIPTION OF THE INVENTION (26) The second axis Y rotates. _ Similarly, many actuators can be mounted on each axis as needed, or sensors can be provided to provide feedback control of the mirror position. Thus the orientation of the reflective member 61 can be adjusted to reflect the incident beam into any desired direction of the hemispherical shape. Further details regarding the types of reflective elements shown in Figure 8 and other types of reflective elements are disclosed in, for example, U.S. Patent No. 6,0,1,946 (Lucent Technologies, Inc.), which is incorporated herein by reference. in. Specific Example 4 A fourth embodiment of the present invention is the same as the first specific example except that the small-plane mirror is used as the fly-eye integrator and is shown in Figs. 9 to 15. Figure 9 depicts a omni-directional configuration of a fourth embodiment that includes the same components as the first embodiment, but is configured around a reflective reticle. Such devices can use EUV as projection beam radiation. Its light and illumination systems use reflective lenses. The illumination system 100 shown in FIG. 10 includes a field facet mirror i 10 having a plurality of field facets 1 1 1 , each of which may have an illumination field type (added elsewhere in the illumination system) The exception is the curvature), which forms an image of the source 匕 on the pupil facet mirror 120. It can be noticed that the image does not have good quality and is not actually located on the pupil facet mirror. The pupil facet 121 of the pupil facet mirror 120 is guided by a concentrator mirror 13 (which can be a system mirror) to properly fill the illumination field above the mask ,4〇, the mirror makes the pattern The facets are imaged on the reticle 140. Since the pupil facet mirror is in the conjugate plane of the pupil of the projection system PL, the illumination setting is -30-

1308771 五、發明説明(27 暖孔小平面中之何者小平 制®傻I ϋ 被,、'、月而決疋。此係由個別控 之定向決定。每-小平面可㈣方⑽ 向移動y万向(繞7轴旋轉)行顯著之移動及可以ζ方 則為铲、二7及2表’一直角座標系統之方向,而Z方向 j為鏡 < 轴線方向)。實痛> # 7+1 小平面。 、較佳者瞳孔小平面多於圖像 :10:'在中性位置《圖小平面U1,於此位置處每一 宅' 果等i至瞳孔小平面120中之在對應位 广小平面處。因此,於圖1〇中標記為a,B,C之圖 :,小平面⑴分別將光線導引至曈孔小平面鏡12〇中央處標 ,B ’ C之瞳孔小平面121處。雖然為簡明起見未將 L出’其他三圖場小平面係將光線導引至標記為一圓 點《瞳孔平面處。藉此即產生—傳統之均—之照明模式。 為能產生-環形照明模式,圖場小平面ιη係自圖場小 平面鏡110之中心以相等角度向外傾斜及沿自彼等「中 性」位置照明次一瞳孔小平面。因此,如圖i !中所示, 標記為A ’ B ’ C之圖場小平面將光線導引至曈孔小平面 B,C,D,其中D為在小平面c外侧之曈孔小平面。如圖 1 〇中所示,三個未經標記之小平面鏡係將光線導引至經 標記之瞳孔小平面,然而為簡明計於圖中未示出對應之光 線。未位於瞳孔小平面鏡12〇中央處之小平面A未經照 明。瞳孔小平面B,C,D亦使之傾斜以適應發自傾斜之 圖場小平面之入射輻射角度之改變,同時亦可正確將赛射 分布使之進入圖場。 -31-1308771 V. INSTRUCTIONS (27 Which of the warm hole facets is a small flat system? Silly I ϋ is,, ', and the moon is determined. This is determined by the orientation of the individual control. Each - facet can be (four) square (10) to move y The universal direction (rotation around the 7-axis) significantly shifts and can be the direction of the shovel, the two 7 and 2 tables 'the constant angle coordinate system, and the Z direction j is the mirror < the axis direction). Real pain ># 7+1 facet. Preferably, the pupil facets are more than the image: 10: 'in the neutral position "the facet U1, at this position, each house', etc. i to the pupil facet 120 at the corresponding wide facet . Therefore, in Fig. 1A, the graphs of a, B, and C are shown: the facets (1) respectively guide the light to the center plane of the pupil facet mirror 12, and the pupil facet 121 of B'C. Although for the sake of brevity, the other three map field planes are directed to the mark as a dot at the pupil plane. This produces a traditional-average lighting mode. In order to generate the -to-circle illumination mode, the field facet ιη is tilted outward from the center of the small plane mirror 110 at equal angles and illuminates the next pupil facet from the "neutral" positions. Thus, as shown in Figure i!, the field facets labeled A ' B ' C direct the light to the pupil facets B, C, D, where D is the pupil facet outside the facet c . As shown in Figure 1 三个, three unmarked facet mirrors direct light to the marked pupil facets, however the corresponding light is not shown for simplicity. The facet A, which is not located at the center of the pupil facet mirror 12, is unilluminated. The pupil facets B, C, and D are also tilted to accommodate changes in the incident radiation angle from the facet of the tilted field, and the firing distribution can be properly entered into the field. -31-

1308771 五、發明説明(28 具有較f環形之-環形照明模式可藉使圖場小平面⑴C 傾斜,以將輕射導料瞳孔121C之上而產生,與此同時即 有如圖12所示之有如圖場小平面⑴崎作之動作。圖場 小平面⑴A將輕射導引於瞳孔小平面_之上。將可瞭 解者瞳孔小平面me無法以完美方式定向以自二不同入射 角將光線導引進入照明場。因此可能有小亮度損失’作是 遠小於t果不同照明模式因選擇性使光束暗淡,因而使不 同照明权=所受之影響。此外,亦可能有照明縫隙之亮度 側面之/里改變。如果每一瞳孔小平面】2】所產生之場= 於光罩處由個別曈孔小平面121所產生大量重叠之圖 構成之照明場,即可能播gi a |, 失之位置。 “匕將曈孔小千面121C置於一無輻射損 將可瞭解者,於實施時較之圖1〇幻2所示,將會 出很多之圖場中之小平面及瞳孔小平面鏡,如此可藉應用 上权原理獲致大出很多之照明設定範圍。同樣,圖場 平面可使之傾斜以Μ切線及徑向方向重新導引光線以產 生例如四極及偶極’或例如為就特定光罩圖案優化所得之 更複雜《照明楔式。如果可傾斜之小平面之 快速,則照明模式可於—次曝光或例 足夠 之多次爾光之拍攝之間之曝光期間二,射源 根據第四具體實例之一變體之一輻射系統經示 中。於此變體中,瞳孔小平面151係使之為校 孕圖卜 現在所備有之圖場小平面之二倍。由圖場小平 影像亦使之對應減小。於此變體中,照明模式可隨較= -32- 本紙張尺度適財S S家標準(CNS) A4S^";公& 1308771 五、發明説明(29 ) A7 B71308771 V. Description of the Invention (28 has a more circular ring-shaped illumination mode by which the field facet (1) C is tilted to create a light-emitting guide pupil 121C, at the same time as shown in FIG. The field facet (1) is the action of the singularity. The field facet (1)A directs the light shot on the pupil facet _. It will be understood that the pupil facet me cannot be perfectly oriented to guide the light from two different angles of incidence. Leading into the illumination field. Therefore, there may be a small loss of brightness. 'It is much smaller than the t. Different illumination modes make the beam dim due to the selectivity, so that different illumination rights are affected. In addition, there may be brightness side of the illumination gap. Change in / if the field generated by each pupil facet 2] = the illumination field formed by the large number of overlapping images generated by the individual pupil facets 121 at the reticle, that is, the position of the lost gi a | "When you put the pupil Xiaochao 121C on a radiation-free loss, you can understand it. In the implementation, as shown in Figure 1, Figure 2, there will be a lot of facets and pupil facets in the field. So you can borrow the right to apply A large range of illumination settings is achieved. Similarly, the field plane can be tilted to redirect light in tangent and radial directions to produce, for example, quadrupole and dipole ' or more complex, for example, optimized for a particular mask pattern. "Illumination wedge type. If the tiltable facet is fast, the illumination mode can be during the exposure between the exposure or the shot of the multiple times, and the source is according to one of the fourth specific examples. One of the radiation systems is shown. In this variant, the pupil facet 151 is twice as large as the facet of the field currently provided by the school. In this variant, the illumination mode can be compared with = -32- This paper scale is suitable for the SS standard (CNS) A4S^"; Public & 1308771 V. Invention description (29) A7 B7

步驟大小而改變及照明模式可予以安排,如此可使每一小 千面僅接收用於一圖場小平面m之輻射,因而避免+瞳 孔小平面以多m射角接收輻射及無法以優化方式定 位之問題^本變體之瞳孔小平面中可以成對或更多數目 編組’而以-组中不同之年成份子使其定向以接收來自不 同入射角度之輻射,如此在當圖場小平面之頻斜改變時, 無需使瞳孔小平面移位》 於如圖MA及MB所示之第四具體實例之另—變體中,圖 場小平面鏡170包括數個(在此變體中為4個)陣列η! a_d 之小平面172。每一圖場小平面172A,B ’ c等將輻射導引 至瞳孔小平面鏡180上之一對應陣列181八中之一對應之瞳 孔小平面182A’ B ’ C等之上。不同之照明模式係藉將圖 場小平面陣列171 A-D當作一整體与以傾斜及以對應方式 使曈孔小平面陣列181 A_D徑向移位及傾斜,或以其他方 向實施,而予以設定。在此種配置中,由於使用4個陣 列。遂可獲致傳統至準環形至4極之照明模式。如使用大 量之陣列即可有額外之模式。 當使圖場小平面以整體傾斜時,可如圖丨5所示,藉使 用父錯曲折之陣列繼續設定照明模式。二陣列191 a,19 1B 以一方向迂迴,然後行交錯。陣列i 9丨A,〖9〖B將輕射導引 至具有重疊運動範圍193A,193B之一組瞳孔小平面鏡 192 A,192B。亦有可能在二方向之迁迴。可注意到無需將 瞳孔或小平面鏡二者結合成組’如果二者結合成組,亦無 需要求成組之方式為相同。 -33- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)The step size can be changed and the illumination mode can be arranged so that each of the thousands of faces can receive only the radiation for the facet m of a field, thus avoiding the + pupil facet receiving radiation at multiple m angles and not being optimized. Problems with positioning ^ The pupil facets of this variant can be grouped in pairs or more, and the different components of the group are oriented to receive radiation from different angles of incidence, so that in the field facet When the frequency skew is changed, there is no need to shift the pupil facet. In another variant of the fourth specific example shown in FIGS. MA and MB, the field facet mirror 170 includes several (4 in this variant). The facet 172 of the array η! a_d. Each field facelet 172A, B'c, etc. directs radiation onto one of the pupil facet mirrors 180 corresponding to one of the array apertures 182A 182A' B' C or the like. The different illumination modes are set by taking the field facet arrays 171 A-D as a whole and tilting and tilting the pupil facet arrays 181 A_D radially and in a corresponding manner, or in other directions. In this configuration, four arrays are used.遂 A traditional to quasi-annular to 4-pole illumination mode is available. Additional modes are available if you use a large array. When the field facet is tilted as a whole, as shown in Fig. 5, the illumination mode can be continued by using the array of the father's zigzag. The two arrays 191a, 191B are detoured in one direction and then interlaced. Array i 9丨A, 〖9 〖B will direct the light to a 193A, 192B boring facet mirror with one of the overlapping motion ranges 193A, 193B. It is also possible to move back in the second direction. It may be noted that it is not necessary to combine both the pupil or the facet mirror into a group. If the two are combined into a group, there is no need to require the group to be the same. -33- This paper size applies to Chinese National Standard (CNS) A4 specification (210 X 297 mm)

裝 訂Binding

線 1308771 A7 _________B7 _____ 五、發明説明(3〇 ) 可用於上述具體實例及變體中之一可傾斜之小平面鏡 160以橫截面圖方式示於圖μ中。可於一基板上包括一經 調整之多層疊層之小平面鏡161係安装於一框162上,框具 有一圓錐形中央凹部及圍繞其下部邊緣之一鐵環163。一 磁性框架164於其上裝有一銷166,銷之頂端有一球167 , 框162之圓錐凹部即座落於球167上,以構成有高度位置穩 定性之接合。小平面由多個(至少三個)之線圈165致動, 線圈繞於磁性框架上並且相間隔及施力於鐵環丨63上,以 使框162傾斜及因此使鏡16丨傾斜。 可傾斜之小平面鏡200之一代替形式示於圖17及18中, 其中圖17為經由鏡2〇〇之腿部之一橫向橫截圖及圖18為一 側面圖。亦可為基板上一經調整之多層疊層之鏡2〇5係經 由一電樞紐206而藉腿部201得以支承》腿部201由壓電材 料形成及分成三個相等之扇形區域2〇2,203,204,此等區 域可分別單獨致動以將腿部2〇丨以_經選擇之方向予以弯 曲及因此使鏡205傾斜。 於上文中業已對本發明之特定具體實例予以說明,但可 瞭解本發月未於上文所述方式實施。此說明無意對本發明 加以限制。 -34- 本紙張尺度逋用中S國家標準(CNS) A4規格(210X 297公釐) 1308771 A7 B7 五、發明説明(31 ) 參考數字表 3 DOE(繞射光學元件) 151 (Α...Ε) 晴孔小平面 4 微透鏡陣列 160, 161 小平面鏡 5 發散光線錐 162 框 6 聚焦透鏡 ( 163 鐵環 8 透鏡6之背後焦點平面 164 磁框 11-13 快門光閘 165 線圈 16, 16a,16b 重新導引透鏡 166 銷 18 橫截面平面 167 球 21 區域 170 圖場小平面鏡 23, 23a 圓形區域 171A-D 圖場小平面陣列 31 雷射 172 (Α…C) 圖場小平面 32 光束發散透鏡 180 瞳孔小平面鏡 33 陣列 181A-D 瞳孔小平面陣列 33a-33e 反射元件陣列 191Α-Β, 圖場小平面陣列 41 集中透鏡 192Α-Β 瞳孔小平面鏡 43 鏡 193Α-Β 移動 45 耦合透鏡 200 小平面鏡 47 積分器 201 腿部 51 !Λλ-板 202-204 扇形區 53 極化敏感鏡 205 鏡 61 反射構件 206 電框紐 63 支持構件 65a, 65b 致動器 AM 修改光束中 -35 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)Line 1308771 A7 _________B7 _____ V. Description of the Invention (3〇) One of the above-described specific examples and variations of the tiltable facet mirror 160 is shown in cross section in FIG. A facet mirror 161, which may include an adjusted multilayer stack on a substrate, is mounted to a frame 162 having a conical central recess and an iron ring 163 surrounding a lower edge thereof. A magnetic frame 164 has a pin 166 mounted thereon, and a pin 167 is formed at the top end of the pin. The conical recess of the frame 162 is seated on the ball 167 to form a highly positionally stable joint. The facets are actuated by a plurality (at least three) of coils 165 wound around the magnetic frame and spaced and biased against the iron ring 丨 63 to tilt the frame 162 and thereby tilt the mirror 16 。. One of the alternatives of the tiltable facet mirror 200 is shown in Figures 17 and 18, wherein Figure 17 is a transverse cross-sectional view of one of the legs through the mirror 2 and a side view of Figure 18. Alternatively, the mirror 2 〇 5 of the multilayer laminate on the substrate can be supported by the leg portion 201 via an armature 206. The leg portion 201 is formed of a piezoelectric material and is divided into three equal sector regions 2 〇 2, 203, 204, these regions can be individually actuated to bend the leg 2 in the selected direction and thereby tilt the mirror 205. Specific specific examples of the invention have been described above, but it will be understood that this month has not been practiced as described above. This description is not intended to limit the invention. -34- This paper size is used in the S national standard (CNS) A4 specification (210X 297 mm) 1308771 A7 B7 V. Invention description (31) Reference numeral table 3 DOE (diffractive optical element) 151 (Α... Ε) Clearance facet 4 microlens array 160, 161 facet mirror 5 divergent ray cone 162 frame 6 focusing lens (163 iron ring 8 lens 6 behind focus plane 164 magnetic frame 11-13 shutter shutter 165 coil 16, 16a, 16b Redirecting lens 166 Pin 18 Cross-sectional plane 167 Ball 21 Area 170 Field facet mirror 23, 23a Circular area 171A-D Field facet array 31 Laser 172 (Α...C) Field facet 32 Beam divergence Lens 180 pupil facet mirror 33 array 181A-D pupil facet array 33a-33e reflective element array 191Α-Β, field facet array 41 concentrated lens 192Α-Β pupil facet mirror 43 mirror 193Α-Β moving 45 coupling lens 200 facet mirror 47 Integrator 201 Leg 51 !Λλ-plate 202-204 Sector 53 Polarization sensitive mirror 205 Mirror 61 Reflecting member 206 Frame spring 63 Support member 65a, 65b Actuator AM Modifying the beam -35 - Paper Zhang scale applies to China National Standard (CNS) A4 specification (210X297 mm)

Order

1308771 A7 B7 五、發明説明(32 ) 67a, 67b 致動器 亮度分布之 110 圖場小平面鏡 裝置 111 (A...C) 圖場小平面(圖10-12) C 目標區域 120 瞳孔小平面鏡 CO 聚光器 121 (A...E) 瞳孔小平面(圖10-12) IF 干涉測得 130 聚光鏡 裝置 140 光罩 IL 照明 PL 投影系統/透鏡 系統/照明器 R1 光束 IN 積分器 R2 光束 LA 輕射源 W 基板/晶圓 MT 光罩台/第一物體台 WT 基板台/第二物件 MA 光罩/標線 台 PB 投影光束 X 第一轴線 -36- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)1308771 A7 B7 V. INSTRUCTIONS (32) 67a, 67b Actuator brightness distribution 110 Field small plane mirror device 111 (A...C) Field facet (Fig. 10-12) C Target area 120 pupil facet mirror CO Condenser 121 (A...E) Pupil Facet (Figure 10-12) IF Interference Measurement 130 Condenser Device 140 Mask IL Illumination PL Projection System / Lens System / Illuminator R1 Beam IN Integrator R2 Beam LA Light source W substrate / wafer MT mask table / first object table WT substrate table / second object MA mask / marking station PB projection beam X first axis -36- This paper scale applies to Chinese national standards ( CNS) A4 size (210 X 297 mm)

Claims (1)

六、申請專利範園 1. 一種微影投影設備,包括: 輻射系統用以提供一輕射投影光走· --支持結構用以支持圖案形成;光置束此圖案形成裝置 用以根據所需圖案使投影光束形成圖案; • 一基板台用以支承一基板; -一投影系統用以將形成圖案之光束投影於基板之一目 標部分上; 其中輻射系m照明系統以其界定投影光束之亮度 分布; 其特點為照明系統包括導引裝置以其將投影光束之不同 部分導引至;f同方向以於圖案形成裝置處提供投影光束 之所需之角度亮度分布,該導引裝置包括多個分立之反 射器,每一反射器均用以導引—部分投影光束,光束之 定向可予以個別控制以將投影光束之對應部分導引至一 所需方向。 2. 如申請專利範圍第1項之設備’其中照明系統尚包括重 新導引裝置用以重新導引至少—部分經導引之投影光束 及用以於投影光束之一橫截面,特別係於一瞳孔平面中 產生一空間亮度分布,此分布對應於該角度亮度分布。 3. 如申請專利範圍第2項之設備,其中亮度系統尚包括加 寬裝置以其將導引之投影光束傳播方向之範圍加寬。 4. 如申請專利範圍第3項之設備,其中加寬裝置包括—擴 散器裝置,特別係一擴散板。 5. 如申請專利範圍第1 ’ 2 ’ 3或4項之設備,其中分立之 78357-960730.doc -1. 本紙張尺度it财S ®家料(CNS) A4规格(21G><297公釐「 ' ' -----__ 8 8 8 8 ABCD 1308771 六、申請專利範圍 反射器係、於投影光束之橫截面區域中以相鄰方式配置。 6. 如申請專利範圍第丨,2,3或4項之設備,其中照明。 統尚包括集中裝置以其將部分投影光束集中於分立、’、 射器上。 、兄又反 7. 如申請專利範圍第6項之設備,其中聚焦裝置包括 一拋物線或雙曲線橫截面型式之一反射表面區域或二 曲線或拋物線反射表面之陣列。 裝 8. 如申請專利範圍第1項之設備,其中該導引裝置包括— 第一小平面反射器,每一分立之反射器為第一小平面反 射器之一小平面及用以控制一第二小平面反射器之一經 選定之小平面之定向而將一輻射源之影像投影於此種選 定之小平面上。 9. 如申請專利範圍第8項之設備,尚包括用於每一該等分 立之反射器之致動器裝置,用以藉燒二個實施之較佳者 為垂直之轴之旋轉而改變此分立之反射器之定向,而此 二垂直軸實質上垂直於此分立之反射器之光軸。 10. 如申請專利範圍第8或9項之設備,其中該第二小平面之 每一小平面在定向上亦可控制》 11 ·如申請專利範圍第1項之設備,其中該導引裝置包括一 第一小平面反射器’第一小平面反射器之每一小平面用 以將一輕射源之一影像投影於一第二小平面反射器之一 小平面上。 12·如申請專利範圍第8,9或1 1項之設備,其中該第二小 平面反射器較之該第一小平面反射器具有較多之小平 78357-960730.doc - 2 - 本紙張尺度適用中國國家標準(CNS) A4规格(210X297公釐) ' " 1308771 g _____ ^ D8 六、申請專利範圍 "~ 面。 13. 如申請專利範圍第8,9或1 1項之設備,其中該小平面 反射器在實質上係位於該投影系統之一瞳孔之一共輛平 面中。 14. 一種裝置製造方法,包括: -提供包含輻射敏感材料之一基板; - 提供至少一投影輻射光束; - 修改投影光束之亮度分布; -使用圖案形成裝置以使經修改之光束於其橫截面有_ 圖案; -將成圖案之輻射光束投影於包含至少一部分輻射敏感 材料之一目標上, 其特點為對於投影光束之亮度分布之修改包括控制輻射 傳播之方向,其中投影光束包括多個子光束,其中至少 若干子光束係使用分立之反射器而被導引至不同方向, 及其中分立之反射器係予以個別控制以將對應之子光束 導引至所需方向。 15·如申請專利範圍第1 4項之方法,.其中於圖案形成裝置處 之輻射傳播之所需角度亮度分布係藉導引子光束而產 生’其中經導引之子光束有助於投影光束在其橫截面中 之所需空間亮度分布,及其中每一該等輻射傳播之不同 方向係對應於空間亮度分布於該橫截面之一特定區域, 特別係對應於焦點平面中之一特定局部點。 16.如申請專利範園第15項之方法,其中至少一子光束在其 78357-960730.doc _ 3 _ 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) A BCD 1308771 六、申請專利範圍 . 被引導前係予以操縱,如此經引導之子光束即可傳播至 傳播方向之經界定之範圍。 17. 如申請專利範圍第1 5項之方法,其中經引導之子光束係 各自在實質上係傳播至一單一方向。 18. 如申請專利範圍第1 5,1 6或1 7項之方法,其中至少一 經導引之子光束之傳播方向之範圍係使之增大,以使此 個別之子光束對應於該空間亮度分布分布之一增大區 域。 19. 一種控制投影輻射光束之亮度分布以供微影術使用之系 統,包括: -一計算單元,用以根據該投影光束之一特定亮度分布 計算對於此特定分布之所需修改以產生所需要之亮度 分布; -輸入裝置用以輸入有關所需亮度分布之資訊; - 輸出裝置用以將多個控制信號輸出至能重新導引若干 部分之投影光束之多個分立之反射器; 其中計算單元係使之適合計算控制信號,以使分立反射 器之定向可予以控制以將輻射光束之特定亮度分布修改 成對應於所需亮度分布之一角度亮度分布。 20. —種可使用於電腦之記錄媒體,包括儲存有電腦可讀取 之程式碼,用於產生投影光束之所需之空間亮度分布以 用於微影術之電腦程式,其中 -投影光束之輻射傳播之一角度亮度分布係對應於投影 光束之橫截面中之一空間亮度分布;及 78357-960730.doc 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝 η 線 8 8 8 8 A BCD 1308771 六、申請專利範圍 - 導引裝置可藉重新導引若干部分之投影光束而予以控 制以形成一角度亮度分布以供任何所空間亮度分布之 用; 該電腦程式包括代碼裝置以其適合計算導引裝置之必需 狀態及/或控制信號用以控制導引裝置以形成對應於空 間亮度分布之角度亮度分布。 78357-960730.doc 本紙張尺度逍用中國國家標準(CNS) A4规格(210X 297公釐)VI. Application for Patent Model 1. A lithography projection apparatus, comprising: a radiation system for providing a light projection light path, a support structure for supporting pattern formation, and a light beaming pattern forming device for The pattern forms a pattern of the projection beam; • a substrate stage for supporting a substrate; a projection system for projecting the patterned beam onto a target portion of the substrate; wherein the radiation system illumination system defines the brightness of the projection beam Distribution; characterized in that the illumination system includes a guiding device for guiding different portions of the projection beam to; f is oriented in the same direction to provide a desired angular brightness distribution of the projection beam at the patterning device, the guiding device comprising a plurality of Discrete reflectors, each for guiding a portion of the projected beam, the orientation of the beams being individually controllable to direct a corresponding portion of the projected beam to a desired direction. 2. The device of claim 1 wherein the illumination system further comprises a redirecting device for redirecting at least a portion of the guided projection beam and a cross section of the projection beam, in particular A spatial luminance distribution is generated in the pupil plane, the distribution corresponding to the angular luminance distribution. 3. The apparatus of claim 2, wherein the brightness system further comprises a widening device for widening the range of the direction of propagation of the guided projection beam. 4. The apparatus of claim 3, wherein the widening device comprises a diffuser device, in particular a diffuser plate. 5. For the equipment of the patent scope 1 ' 2 ' 3 or 4, the discrete 78357-960730.doc -1. This paper scale is the S + s material (CNS) A4 specification (21G> < 297 public PCT " ' ' -----__ 8 8 8 8 ABCD 1308771 VI. The scope of the patented reflector is arranged adjacently in the cross-sectional area of the projection beam. 6. If the scope of application is 丨, 2, Equipment of 3 or 4, in which lighting. The system includes a concentrating device for concentrating part of the projected beam on the discrete, ', and the ejector. Brother, and vice. 7. The device of claim 6 wherein the focusing device An array comprising a parabolic or hyperbolic cross-sectional pattern of a reflective surface area or a bi-curved or parabolic reflective surface. The device of claim 1, wherein the guiding device comprises - a first facet reflector Each discrete reflector is a facet of the first facet reflector and an orientation of the selected facet of one of the second facet reflectors to project an image of a source of radiation to the selected one On the facet. 9. If applying The apparatus of item 8 of the prior art, further comprising an actuator device for each of the discrete reflectors for changing the discrete reflector by rotating two of the preferred embodiments for vertical rotation Orientation, wherein the two vertical axes are substantially perpendicular to the optical axis of the discrete reflector. 10. The apparatus of claim 8 or 9, wherein each facet of the second facet is also oriented 11. The device of claim 1, wherein the guiding device comprises a first facet reflector 'each facet of the first facet reflector for imaging one of the light source Projected on a facet of a second facet reflector. The apparatus of claim 8, wherein the second facet reflector has a first facet reflector as compared to the first facet reflector More Xiaoping 78357-960730.doc - 2 - This paper scale applies Chinese National Standard (CNS) A4 specification (210X297 mm) ' " 1308771 g _____ ^ D8 VI. Patent application scope "~ face. Equipment for applying for the scope of patents 8, 9, or 1 The facet reflector is substantially in a common plane of one of the pupils of the projection system. 14. A device manufacturing method comprising: - providing a substrate comprising a radiation sensitive material; - providing at least one projection radiation beam; - modifying the brightness distribution of the projected beam; - using a patterning means such that the modified beam has a _ pattern in its cross section; - projecting the patterned radiation beam onto a target comprising at least a portion of the radiation sensitive material, characterized by Modification of the brightness distribution of the projected beam includes controlling the direction of radiation propagation, wherein the projected beam comprises a plurality of sub-beams, at least some of which are directed to different directions using discrete reflectors, and wherein the discrete reflectors are Individual controls are used to direct the corresponding sub-beams to the desired direction. 15. The method of claim 14, wherein the desired angular brightness distribution of the radiation propagation at the patterning device is generated by guiding the sub-beams, wherein the guided sub-beams contribute to the projection beam The desired spatial brightness distribution in its cross section, and the different directions of each of said such radiation propagations, correspond to a spatial brightness distribution in a particular region of the cross section, in particular corresponding to a particular local point in the focal plane. 16. The method of claim 15, wherein at least one sub-beam is applied to the Chinese National Standard (CNS) A4 specification (210X297 mm) at its 78357-960730.doc _ 3 _ paper scale A BCD 1308771 The scope of the patent application. It is manipulated before being guided, so that the guided sub-beam can be propagated to the defined range of the propagation direction. 17. The method of claim 15, wherein the guided sub-beams are each substantially propagated to a single direction. 18. The method of claim 15, wherein the direction of propagation of the at least one guided sub-beam is increased such that the individual sub-beams correspond to the spatial luminance distribution One of them increases the area. 19. A system for controlling the brightness distribution of a projected radiation beam for use in lithography, comprising: - a calculation unit for calculating a desired modification for the particular distribution based on a particular brightness distribution of the projected beam to produce a desired Brightness distribution; - input means for inputting information about a desired brightness distribution; - output means for outputting a plurality of control signals to a plurality of discrete reflectors capable of redirecting portions of the projected beam; wherein the calculation unit It is adapted to calculate a control signal such that the orientation of the discrete reflector can be controlled to modify the particular brightness distribution of the radiation beam to an angular brightness distribution corresponding to the desired brightness distribution. 20. A recording medium that can be used in a computer, comprising a computer readable code for generating a desired spatial brightness distribution of a projected beam for use in a computer program for lithography, wherein - a projection beam The angular intensity distribution of radiation propagation corresponds to a spatial brightness distribution in the cross section of the projected beam; and 78357-960730.doc This paper scale applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) with η line 8 8 8 8 A BCD 1308771 VI. Scope of Application - The guiding device can be controlled by redirecting a portion of the projected beam to form an angular brightness distribution for any spatial brightness distribution; the computer program includes code The device is adapted to calculate the necessary state and/or control signals of the guiding device for controlling the guiding device to form an angular brightness distribution corresponding to the spatial brightness distribution. 78357-960730.doc This paper scale uses Chinese National Standard (CNS) A4 specification (210X 297 mm)
TW91111571A 2002-05-30 2002-05-30 Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, and computer program product TWI308771B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91111571A TWI308771B (en) 2002-05-30 2002-05-30 Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, and computer program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91111571A TWI308771B (en) 2002-05-30 2002-05-30 Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, and computer program product

Publications (1)

Publication Number Publication Date
TWI308771B true TWI308771B (en) 2009-04-11

Family

ID=45071896

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91111571A TWI308771B (en) 2002-05-30 2002-05-30 Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, and computer program product

Country Status (1)

Country Link
TW (1) TWI308771B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804069A (en) * 2009-06-17 2012-11-28 Asml荷兰有限公司 Lithographic apparatus and method
TWI420257B (en) * 2009-11-18 2013-12-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI576613B (en) * 2012-06-25 2017-04-01 卡爾蔡司Smt有限公司 Method for designing an illumination optics and illumination optics
TWI742539B (en) * 2019-02-26 2021-10-11 荷蘭商Asml荷蘭公司 Reflector manufacturing method and associated reflector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804069A (en) * 2009-06-17 2012-11-28 Asml荷兰有限公司 Lithographic apparatus and method
CN102804069B (en) * 2009-06-17 2014-10-22 Asml荷兰有限公司 Lithographic apparatus and method
TWI420257B (en) * 2009-11-18 2013-12-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI576613B (en) * 2012-06-25 2017-04-01 卡爾蔡司Smt有限公司 Method for designing an illumination optics and illumination optics
TWI742539B (en) * 2019-02-26 2021-10-11 荷蘭商Asml荷蘭公司 Reflector manufacturing method and associated reflector

Similar Documents

Publication Publication Date Title
JP4401060B2 (en) Lithographic apparatus and device manufacturing method
US7015491B2 (en) Lithographic apparatus, device manufacturing method and device manufactured thereby, control system
KR101470769B1 (en) Illumination system of a microlithographic projection exposure apparatus
JP5871216B2 (en) Illumination system of microlithographic projection exposure apparatus
US8279405B2 (en) Lithographic apparatus and device manufacturing method
JP5345132B2 (en) Illumination system for illuminating a mask in a microlithographic exposure apparatus
JP4099423B2 (en) Lithographic apparatus and device manufacturing method
US7136214B2 (en) Active faceted mirror system for lithography
CN107390477B (en) Illumination system, exposure apparatus and manufacturing, image forming, illumination and exposure method
KR101813307B1 (en) Illumination system of a microlithographic projection exposure apparatus
TW200407681A (en) Kit of parts for assembling an optical element, method of assembling an optical element, optical element, lithographic apparatus, and device manufacturing method
JP5868492B2 (en) Illumination system of microlithographic projection exposure apparatus
TW546550B (en) An illuminator for a lithography apparatus, a lithography apparatus comprising such an illuminator, and a manufacturing method employing such a lithography apparatus
JP2018531412A (en) Method of operating a microlithographic projection apparatus and illumination system for such an apparatus
JP2018531412A6 (en) Method of operating a microlithographic projection apparatus and illumination system for such an apparatus
TW200411333A (en) Lithographic apparatus and device manufacturing method
TWI243289B (en) Lithographic apparatus and device manufacturing method
TWI308771B (en) Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, and computer program product
JP5864771B2 (en) Illumination system of microlithographic projection exposure apparatus

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent