TWI307680B - Method for peoducing fe3o4-based magnetic nanowires - Google Patents

Method for peoducing fe3o4-based magnetic nanowires Download PDF

Info

Publication number
TWI307680B
TWI307680B TW094143396A TW94143396A TWI307680B TW I307680 B TWI307680 B TW I307680B TW 094143396 A TW094143396 A TW 094143396A TW 94143396 A TW94143396 A TW 94143396A TW I307680 B TWI307680 B TW I307680B
Authority
TW
Taiwan
Prior art keywords
patent application
mainly composed
nanowire body
triiron tetroxide
nanowire
Prior art date
Application number
TW094143396A
Other languages
Chinese (zh)
Other versions
TW200722379A (en
Inventor
Li Jen Chou
Ming Wei Lai
Yu Lun Chueh
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW094143396A priority Critical patent/TWI307680B/en
Publication of TW200722379A publication Critical patent/TW200722379A/en
Application granted granted Critical
Publication of TWI307680B publication Critical patent/TWI307680B/en

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Description

130^8^396 ¾ 九 專利發明申請案之說明書替換頁(97年9月修正) 發明說明: 【發明所屬之技術領域】 本發明是有關於一種奈米線體(nanowires)的製造方法, 特別是指一種以四氧化三鐵(Fe304)為主之磁性(magnetic)奈 米線體的製造方法。 【先前技術】 奈米材料之製作方法最常見者,不外乎是經液相途徑 (solution strategies)反應及氣固反應(vapor-solid reaction) > 其中,以氣固反應法所合成的奈米材料通常具有較佳的結 晶性質(crystalinity)。然而,對於合成Fe304奈米線體而言 ,由於其立方晶(cubic crystal)結構及其本質磁性(intrinsic magnetism)的影響導致其無法經由氣固反應途徑使原子自動 堆積成一維奈米結構,因此,目前合成Fe304奈米線體多採 水熱法(hydrothermal method)—類之液相途徑。 例如有配合使用界面活性劑(surfactant)的水熱法,則是 藉由混合溶解界面活性劑及反應物以形成一均質水溶液(即 ,含有Fe3+及Fe2+的水溶液),並將該均質水溶液置於一壓 力鋼(autoclave)内,同時維持一介於100°C ~ 200°C之間的 工作溫度約數小時,待冷卻後經過數次清洗及真空乾燥以 製得Fe304奈米線體,而此處的界面活性劑的作用是用來限 制Fe3〇4奈米線體做一維的非等向性(anisotropy)成長,由於 反應完成後移除界面活性劑不易,因此很難得到潔淨的 Fe304奈米線體。 另亦有一種無表面活化劑的水熱法(surfactant-free 1307680 method),是利用分散於一氫氧化鈉(Na〇H)水溶液中的 Fe3〇4奈米粒子做為前驅物(precurs〇r),並將該分散有务卡 粒子的氫氧化鈉水溶液放置於U(rc〜16〇。〇的壓力编中約 24小時’待析出物(precipkati〇n)完成過濾後加以清洗並真 空乾燥以製得Fe3〇4奈米線體。除此之外,亦有人採用弓丨入 磁場的水熱法來合成FhO4奈米線體,這種種方法就是為了 改良界面活性劑所造成的後遺症。 在咼岔度紀錄(high-density recording)及低雜訊比 (signal-to-noise rati〇)的要求之下’單一資訊位元 (information bit)對應單一材料粒子的垂直紀錄媒體 (perpendicular recording media)成為未來磁記錄發展的演化 方向。由於磁性奈米線體及奈米柱體(nan〇r〇ds)具有極小的 截面積及優異的長寬比(aspect rati〇),因此成為用於垂直紀 錄媒體的最佳選擇。特別是Fe3〇4奈米線體,因為其為人類 最早開始使用的磁性材料之一,同時其又為氧化物(使其有 相對於一般金屬磁性材料較高的穩定性),故使其在未來奈 米尺度的磁記錄應用上具有極高的潛力。另,基於Fhh奈 米線體的本質半金屬(intrinsic half_meta丨)特性,因此也適合 應用方;奈米自;$疋電子元件(nan〇_Spintr〇njC 來提高元 件的電子自旋選擇率(spin_selectivity)。 針對上述奈米磁性材料的特性及應用,更甚者可於 Fe3〇4奈米線體的表面形成—氧化層(⑽丨心iayer)以形成具有 核殼(core-shell)結構的Fe3〇4奈米線體。藉前述氧化層對 Fe3〇4奈米線體所提供的鏡面效應(specuiar effect)致使電子 1307680 在材料介面產生鏡面反射以降低電子的不規則反散,進而 提局電子的自旋選擇率並改善奈米自旋電子元件的效率。 以目前的技術而言’較不易合成核心部為Fe3〇4且外覆 奈米級氧化殼層的一維結構。就常理而言,若要製備具有 氧化物殼層結構之卜3〇4奈米線體,採蒸鑛―啊㈣法 並配合使用氧化氣氛應是較合理的選擇,因此法較易得到 W的奈米殼層。蒸鍵法雖然可在MW奈米線體表面披覆 氧化層但由於在蒸鑛氧化物的製程環境中’易導致Fe3〇4 奈米㈣被氧化形成三氧化二鐵(Fe2〇3)奈米線體’因此, 湘洛鍵製作具核殼結構之Fe3〇4奈米線體的方法仍有材料 氧化的問題存在。 太、,由上述可知,製備出雜質低且品質優異的四氧化三鐵 體,並降低四氧化三鐵奈米線體於製作外覆殼層結 體的^化問題進而改善具核殼結構之四氧化三鐵奈米線 被法’以使得具核殼結構之四氧化三鐵奈米線體 科技產業利用,是當前研究以四氧化三鐵為主之磁 不'未線體相關領域者所待努力的目標。 【發明内容】 <發明概要> 基於先前技術對於製作%〇4奈 液相途徑且卉古田工 J乃成夕枸限於 有效的方:: 劑待被移出的問題;同時無具體 有效的方法來製作具核殼 用在-還原環境中,㈣化本發明利 以3〇4的特性,來⑼F—n f 2〇3)本身易還原為 I付304奈米線體。此外,並配合在該 7 1307680 反應環境中提供-構成可包覆Fe3〇4奈米線體之氧化物的陽 離子源(cadon S〇Urce),進而製得具核殼結構之ho*奈米 首先’本發明使用複數叫〇3奈米線體做為形成 %〇4奈米線體的起使物(starting⑻,且對該等〜 Fe2〇3奈米線體加熱並提供—還原氛圍(㈣uctive130^8^396 3⁄4 Nine Patent Application Replacing Page (Amended in September, 1997) Description of the Invention: [Technical Field] The present invention relates to a method for manufacturing nanowires, It refers to a method for producing a magnetic nanowire body mainly composed of triiron tetroxide (Fe304). [Prior Art] The most common method for producing nanomaterials is the solution strategy reaction and vapor-solid reaction > wherein the naphthalene synthesized by gas-solid reaction method Rice materials generally have better crystalinity. However, for the synthesis of Fe304 nanowires, due to the influence of its cubic crystal structure and its intrinsic magnetism, it is impossible to automatically deposit atoms into a one-dimensional nanostructure via a gas-solid reaction pathway. At present, the synthesis of Fe304 nanowires is a hydrothermal method. For example, there is a hydrothermal method in which a surfactant is used in combination to dissolve a surfactant and a reactant to form a homogeneous aqueous solution (that is, an aqueous solution containing Fe3+ and Fe2+), and the homogeneous aqueous solution is placed. In an autoclave, while maintaining a working temperature between 100 ° C ~ 200 ° C for several hours, after several times of cleaning and vacuum drying to obtain Fe304 nanowire body, where The role of the surfactant is to limit the one-dimensional anisotropy growth of the Fe3〇4 nanowire. It is difficult to obtain a clean Fe304 nanowire because the surfactant is not easily removed after the reaction is completed. body. There is also a surfactant-free 1307680 method, which uses Fe3〇4 nanoparticles dispersed in an aqueous solution of sodium hydroxide (Na〇H) as a precursor (precurs〇r And placing the aqueous solution of sodium hydroxide dispersed in the card particles in U (rc~16〇. The pressure of the crucible is about 24 hours). The precipitate is filtered (precipkati〇n), washed, and vacuum dried. In addition, some people use the hydrothermal method of bow-in magnetic field to synthesize FhO4 nanowires. This method is to improve the sequelae caused by surfactants. Under the requirements of high-density recording and signal-to-noise rati〇, a single information bit (information bit) corresponding to a single material particle is used as a perpendicular recording media. The evolution direction of the future development of magnetic recording. Since the magnetic nanowire body and the nano cylinder (nan〇r〇ds) have a very small cross-sectional area and excellent aspect rati〇, they are used for vertical recording media. the best of Especially, Fe3〇4 nanowire, because it is one of the earliest magnetic materials used by humans, and it is also an oxide (making it have higher stability than general metal magnetic materials), so It has great potential in the future nano-scale magnetic recording applications. In addition, based on the intrinsic half-meta丨 characteristics of Fhh nanowires, it is also suitable for application; nanometers; (nan〇_Spintr〇njC to improve the electron spin selectivity (spin_selectivity). For the characteristics and applications of the above nano magnetic materials, it is even more possible to form an oxide layer on the surface of the Fe3〇4 nanowire body ( (10) ia iayer) to form a core-shell structure of Fe3〇4 nanowires. The speciar effect provided by the aforementioned oxide layer on the Fe3〇4 nanowire causes the electron 1307680 to The material interface produces specular reflection to reduce the irregular dispersion of electrons, thereby extracting the spin selectivity of the electrons and improving the efficiency of the nano-spintronic components. In the current technology, it is not easy to synthesize the core. It is Fe3〇4 and covers the one-dimensional structure of the nano-scale oxidation shell. In terms of common sense, if a 3〇4 nanowire body with an oxide shell structure is to be prepared, the steam-mine-ah (four) method is used. The use of an oxidizing atmosphere should be a reasonable choice, so the method can easily obtain the nano-shell of W. Although the steam-bonding method can coat the oxide layer on the surface of the MW nanowire, but in the process environment of the steam oxide oxide 'Easy to cause Fe3〇4 nanometer (4) to be oxidized to form ferric oxide (Fe2〇3) nanowires'. Therefore, the method of making the core-shell structure of Fe3〇4 nanowires by Xiangluo bond still has material oxidation. The problem exists. Too, from the above, it is known that a ferroferric oxide body having low impurities and excellent quality is prepared, and the problem of the formation of the outer shell layer is improved by reducing the structure of the ferro-nitride nanowire body and improving the core-shell structure. The ferroferric oxide nanowire is used by the technology to make the technology of the core structure of the ferroferric oxide nanowires. It is currently researched in the field of magnetoferric trioxide-based magnetic field. The goal to be worked hard. SUMMARY OF THE INVENTION <Summary of the Invention> Based on the prior art, the method for producing a % 〇 4 Nai liquid phase and the Hui Gutian gong is limited to an effective side: the problem that the agent is to be removed; and there is no specific effective method In order to produce a core-shell for use in a reducing environment, (iv) the present invention has the property of 3〇4, and (9)F-nf 2〇3) itself is easily reduced to an I-to-304 nanowire body. In addition, in combination with the cation source (cadon S〇Urce) which provides the oxide of the Fe3〇4 nanowire body in the reaction environment of the 7 1307680, the ho* nano-nuclear structure with the core-shell structure is firstly obtained. 'The present invention uses a plurality of 奈3 nanowires as a starting material for forming a % 〇 4 nanowire body (starting (8), and heating and providing the same to the Fe 2 〇 3 nanowire body - (4) uctive

伽〇Sphere),致使a_Fe2〇3奈米線體還原回奈米線體 。此外’利用a-Fe2〇3奈米線體在還原回Κ〇4奈米線體時 所釋出的氧做為形成該殼層氧化物的氧離子源;另,配合 對-含Μ且呈固態的陽離子源加熱致使其釋出M氣體粒子 以做為形成該氧化物的陽離子源。Gaya Sphere) causes the a_Fe2〇3 nanowire to be reduced back to the nanowire body. In addition, the oxygen released by the a-Fe2〇3 nanowire body during the reduction of the 4 nanowire body is used as the oxygen ion source for forming the shell oxide; Heating of the solid cation source causes it to liberate M gas particles as a source of cations for forming the oxide.

值得-提的是’為致使純2〇3奈米線體可完成相變化 (Phase transformaticmA Fe3〇4奈米線體,因此,實施於該 等a-Fe2〇3奈米線體的溫度及加熱時間至少分別需高於物 1及分鐘。此外’由於實施於該等奈米線體的 溫度越高B寺,其材料在熱力學上的不穩定及動力學的因素 ,將致使奈米線體崩塌或相互接觸的 a_Fe203奈米線體因 較 尚的擴散係數(diffusivity)而 免破壞最終所製得的Fe3〇4 以2〇3奈米線體的溫度最高為6〇(rc。 相互融合在一起,因此,為避 奈米線體,適合實施於該等a_ 由前述說明,a_Fe2〇3奈米線體在還原回以仙奈米線 體時,自奈米線體釋出的氧可在無雜質原子存在的環境下 同U β 3 Μ且固態的陽離子源中釋出的μ氣體粒子 相互反應,並在_4奈米線體表面直接化合形成—含有μ 1307680 質優異且無氧化問題之具 的氧化層,進而製得雜質少、 核殼結構之Fe3〇4奈米線體。 <發明目的> 因此,本發明之目的,即在提供一種以四氧化三 主之磁性奈米線體的製造方法。 … 本發明之另-目的,即在提供一種以四氧化 之磁性奈米線體。 驾马主 :是?發明以四氧化三鐵為主之磁性奈 以方法,包含下列步驟·· ⑷在-反應室中的一第一加熱區提供複數 二鐵奈米線體; —氧化 (b) 對該反應室予以減壓; (c) 對該反應室予以加熱; ⑷:該反應室内引入一還原氛圍;及 (Ο糟该逛原氛圍及該反應室的溫度還原該等α相三氧 此化:鐵奈米線體以形成複數四氧化三鐵奈米線體。 ’本發明是利用前述之方法製 主之磁性奈米線體。 寸四乳化—鐵為 本發明的功效在於: 氧化三鐵奈米線體,並降 化:質低且品質優異的四 极-層結構時的氧化問題進乍外 鐵奈米線體的製造方味、 ,、核忒結構之四軋化三 / ,以使得具核殼結構之四氧化二鐵 奈米線體破廣為科技產業利用。 &化-鐵 【實施方式】 9 1307680 <發明詳細說明> 本發明以四氧化三鐵為主之磁性奈米線體的製造方法 * ’包含下列步驟: ' ⑷在一反應室中的—第一加熱區提供複數料目三氧化 二鐵奈米線體; (b)對該反應室予以減逐; 0)對該反應室予以加埶; . (d)於該反應室内引入一還原氛圍;及 ⑷藉該還原氛圍及該反應室的溫度還原該等以相三氧 化二鐵奈米線體以形成複數四氧化三鐵奈米線體。 ,較佳地,於該步驟⑷之後更包含一步驟(〇,該步驟 ()是於β玄反應至的一第二加熱區提供一含M且呈固態的陽 離子源,致使每一α相三氧化二鐵奈米線體還原成四氧化三 鐵奈米線體時’藉以在每一四氧化三鐵奈米線體的一表面 形成一含Μ的氧化層進而製得具核殼結構之四氧化三鐵奈 _ $線體,·且該步驟⑷的還原氛圍是由—還原氣體及—惰性 氣體(inert gas)所構成。 適用於本發明該步驟(a,)的Μ是於室溫下氧化後呈固相 氧化物的元素;且適用於本發明之還原氣體是選自於下列 所構成之群組:氫氣(Η,)、一氧化碳(C〇)、氨氣(ΝΗ3)及烷 類(alkane);更佳地,Μ是選自於下列所構成之群組:矽 (Si)、鍺(Ge)及此等之一組合。 較佳地,該還原氣體是氫氣,該惰性氣體是氬氣(Ar); 該第一加熱區的反應溫度是介於45(rc〜6〇〇。〇之間;該步 10 1307680 驟(e)之反應時間是至少大於ίο分鐘。更佳地,該步驟(e)之 反應時間疋介於1Q分鐘〜12G分鐘之間;且氫氣於該還原 氛圍中的體積百分比是至少大於1 vol。/。;又更佳地,氫氣 於°亥還原氛圍中的體積百分比是介於1 vol% ~ 20 vol%之間 更佳地’氫氣於該還原氛圍中的體積百分比是介於1 vol% 〜10 vol%之間。 一在—具體實施例中,該步驟(a,)的Μ是矽,氫氣於該還 原氛圍中的體積百分比是介於2 vol%〜7 vol%之間;且較 ^[圭i也 5令歹赏一 4 缸 —加熱區的反應溫度是介於80(TC〜2000°C之間 也°亥第一加熱區的反應溫度是介於900°C〜1500。〇 之間°亥步驟(b)的工作壓力是介於〇 ] T〇rr〜1〇〇 T〇rr之間 〇 @在另-具體實施例中,該步驟(&,)的Μ是錯,氫氣於該 迺原氛圍中的體積百分比是介於2 ν〇1%〜7 v〇l%之間;且 車乂佳地s亥第二加熱區的反應溫度是介於7〇〇。〇〜15〇(rc之 更乜地,戎第二加熱區的反應温度是介於9〇〇〜1 2〇〇 t之間,該步驟(b)的工作壓力是介於〇丨Ton〜wo 丁〇灯之 間。 另本發明藉由前述之方法製得以四氧化三鐵為主之 磁性奈米線體。 關本^明之别述及其他技術内容、特點與功效,在 ' S 4考圖式之六個具體實施例的詳細說明中,將可 清楚的呈現。 C使用材料來源> (8) 1307680 1.錯(Ge)塊材··取自於由 silicon development international cooperation (SDIC) materials company所製作且型號為 材。 2. 氬氣(Ar):由聯華氣體公司所產之純度大於99.995 %的氬氣。 3. 氫氣(¾):由聯華氣體公司所產之純度大於 99.995%的氫氣。It is worth mentioning that 'Phase transformatic mA Fe3〇4 nanowire body can be completed for the pure 2〇3 nanowire body, therefore, the temperature and heating of the a-Fe2〇3 nanowire body are implemented. The time must be at least 1 and minutes higher than the material. In addition, due to the higher temperature of the nano-wire body, the thermodynamic instability and kinetic factors of the material will cause the nanowire body to collapse. Or the a_Fe203 nanowires in contact with each other are free from damage due to the higher diffusion coefficient (Diffusivity). The final temperature of Fe3〇4 is 2〇3 nanowires. The temperature is up to 6〇 (rc. Therefore, in order to avoid the nanowire body, it is suitable to be implemented in the above a_. From the foregoing description, when the a_Fe2〇3 nanowire body is reduced back to the senna nanowire body, the oxygen released from the nanowire body can be In the presence of impurity atoms, the μ gas particles released from the U β 3 Μ and solid cation source react with each other and form directly on the surface of the _4 nanowire body—containing μ 1307680 with excellent quality and no oxidation problem. The oxide layer, which in turn produces Fe3〇4 with less impurities and core-shell structure The present invention is directed to a method for producing a magnetic nanowire body having a main body of tetraoxide. The other object of the present invention is to provide a The magnetic nano-wire body of tetraoxide. The main character of the horse is: Inventing a magnetic nano-based method based on triiron tetroxide, including the following steps (4) providing a plurality of first heating zones in the reaction chamber Iron nanowire body; - oxidation (b) decompression of the reaction chamber; (c) heating the reaction chamber; (4): introducing a reducing atmosphere into the reaction chamber; and (smelling the original atmosphere and the reaction The temperature of the chamber restores the α phase trioxo: the iron nanowire body to form a plurality of ferroferric oxide nanowires. 'The present invention is a magnetic nanowire body made by the aforementioned method. Emulsification-iron is the effect of the invention: it oxidizes the triiron nitrite and degrades: the oxidation problem in the case of a quadrupole-layer structure with low quality and excellent quality, and the manufacturing taste of the outer iron nanowire body, , the core of the structure of the four rolling three /, in order to make the core shell structure of the four oxygen The ferritic nanowire body is widely used by the technology industry. &Iron-Iron [Embodiment] 9 1307680 <Detailed Description of the Invention> The method for producing a magnetic nanowire body mainly composed of triiron tetroxide 'Includes the following steps: ' (4) in a reaction chamber - the first heating zone provides a plurality of nanowires of ferric oxide; (b) the reaction chamber is depleted; 0) the reaction chamber is added (d) introducing a reducing atmosphere into the reaction chamber; and (4) reducing the phase of the ferric oxide nanowire by the reducing atmosphere and the temperature of the reaction chamber to form a plurality of triiron telecommunications Line body. Preferably, after the step (4), the method further comprises a step (〇, the step () is to provide a M-containing and solid-state cation source in a second heating zone to which the β-anthracene reaction is caused, so that each α phase three When the ferric oxide nanowire body is reduced to a ferroitride tetraoxide body body, 'by forming a niobium-containing oxide layer on one surface of each of the ferroferric oxide nanowires to form a core-shell structure The ferrocene oxide _ $ linear body, and the reducing atmosphere of the step (4) is composed of a reducing gas and an inert gas. The hydrazine suitable for the step (a,) of the present invention is at room temperature. An element which is a solid phase oxide after oxidation; and the reducing gas suitable for use in the present invention is selected from the group consisting of hydrogen (Η,), carbon monoxide (C〇), ammonia (ΝΗ3), and alkane ( Alkane); more preferably, cerium is selected from the group consisting of cerium (Si), germanium (Ge), and a combination thereof. Preferably, the reducing gas is hydrogen and the inert gas is argon. Gas (Ar); the reaction temperature of the first heating zone is between 45 (rc~6〇〇.〇; this step 10 1307680 (e) The reaction time is at least greater than ίο minutes. More preferably, the reaction time 疋 of the step (e) is between 1Q minutes and 12G minutes; and the volume percentage of hydrogen in the reducing atmosphere is at least greater than 1 vol. More preferably, the volume percentage of hydrogen in the reducing atmosphere is between 1 vol% and 20 vol%. More preferably, the volume percentage of hydrogen in the reducing atmosphere is between 1 vol% and 10 vol. Between %. In a specific embodiment, the enthalpy of the step (a,) is 矽, and the volume percentage of hydrogen in the reducing atmosphere is between 2 vol% and 7 vol%; i also 5 rewards a 4 cylinder - the reaction temperature of the heating zone is between 80 (TC ~ 2000 ° C also ° Hai first heating zone reaction temperature is between 900 ° C ~ 1500. 〇 between ° The working pressure of the step (b) is between 〇] T〇rr~1〇〇T〇rr〇 在@在其他- specific embodiment, the step (&,) is wrong, hydrogen is in the The volume percentage in the original atmosphere is between 2 ν 〇 1% and 7 v 〇 1%; and the reaction temperature in the second heating zone of the 乂 乂 佳 地 is 7 〇〇. ~15〇(r 之 乜 rc rc rc 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 戎 rc rc rc rc rc rc rc rc rc In addition, the present invention can be made into a magnetic nanowire body mainly composed of triiron tetroxide by the above-mentioned method. The other technical contents, characteristics and effects of Guan Ben ^ Ming are described in the 'S 4 test pattern. In the detailed description of the six specific embodiments, it will be clearly shown. C Use material source > (8) 1307680 1. Wrong (Ge) block · Taken from silicon development international cooperation (SDIC) materials company Made and modeled. 2. Argon (Ar): Argon gas produced by Lianhua Gas Company with a purity greater than 99.995%. 3. Hydrogen (3⁄4): Hydrogen produced by Lianhua Gas Company with a purity greater than 99.995%.

〈具體貫施例&gt; 在本么月以四氧化二鐵為主之磁性奈米線體的製造方 法之一具體實施例-中,該還原氛圍是由2.5咖的氏及 47.5 sccm 的 Ar 所構成(即,Η〗 ν〇ι% :斛 v〇以=$ % : % /〇),本發明該具體實施例一是簡單地說明於下。 於該反應室内的第-加熱區提供複數由氣固反應所合 成之單晶結構且平均直徑約為數十奈㈣❿办奈米線體<Specific Example> In one embodiment of the method for producing a magnetic nanowire body mainly composed of ferric oxide, this reduction atmosphere is composed of 2.5 ga and 47.5 sccm of Ar. The composition (ie, Η ν 〇 % % 斛 = 〇 = = = = = = = = = 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The first heating zone in the reaction chamber provides a plurality of single crystal structures formed by a gas-solid reaction and has an average diameter of about several tens of nanometers.

a technology G-1066的錄塊 ’並於該反應室内引人該具體實施例—之還原氛圍致使該 反應室的反應環境達i W的工㈣力。此外,於該第一 加熱區提供45Gt的反應溫度並持溫2G分鐘以對該等a_The recording block of a technology G-1066' and the reducing atmosphere of the specific embodiment introduced into the reaction chamber causes the reaction environment of the reaction chamber to reach a force of (iv). In addition, a reaction temperature of 45 Gt is provided in the first heating zone and held for 2 G minutes to treat the a_

Fe2〇3奈米線體加熱,並致使該等⑹叫奈米線體還原為 Fe304奈米線體。 多閱圖1,由掃描式電子顯微鏡(scanning eiectr〇n mlcroscope ’簡稱SEM)表面形貌圖顯示,本發明該具體實 施例-所使用的a_Fe203奈米線體平均直徑約介於i 0職〜 5〇_之間。另,參閱圖2 ’由㈣表面形貌圖顯示,該 (S) 12 1307680 具體實施例—經還原反應後所得之奈米線體密度降低且尺 寸無顯著的變化’此外,表面呈現有複數因a_F峨奈米線 體於還原反應過程中遭受破壞所構成的凸塊物。τ 參閲圖3 ’為該具.體實施例_之穿透式電子顯微鏡 (transmission electron micr〇sc〇pe ;以下簡稱 丁£峋的分析數The Fe2〇3 nanowires are heated and cause the (6) nanowires to be reduced to Fe304 nanowires. Referring to Figure 1, the scanning electron microscope (scanning electron microscope (SEM) surface topography shows that the specific diameter of the a_Fe203 nanowire used in this embodiment of the present invention is about i 0. Between 5 〇 _. In addition, referring to Fig. 2 'shown by (4) surface topography, the (S) 12 1307680 specific embodiment - the nanowire body density obtained after the reduction reaction is reduced and the size is not significantly changed 'in addition, the surface exhibits a complex factor The a_F峨 nanowire body is a bump formed by damage during the reduction reaction. τ Referring to Fig. 3' is the transmission electron micr〇sc〇pe (hereinafter referred to as the transmission electron micr〇sc〇pe;

據圖,由ΤΕΜ形貌圖顯示(圖3左上方插圖),該具體實施 例-之奈米線體的直徑約為1〇 nm ;另選區電子繞射 (selected area electron diffracti〇n,簡稱 saed)圖顯示(圖 3 右上方插圖)’由[111]之晶帶轴(z〇ne axis)所得的奈米線體 晶體結構為立方晶相(cubic phase)的%04;此外’由高解 析度 TEM(high resolution TEM;以下簡稱 HRTEM)影像圖 顯不(圖3下方插圖),該具體實施例一的奈米線體 是沿著[220]方向(即,[u〇]方向)成長’且㈣及(2〇2)的面間 距(d-spacing)分別為 〇.297 nm。 &lt;具體實施例二&gt; 本發明以四氧化三鐵為主之磁性奈米線體的製造方法 之一具體實施例二,大致上是與該具體實施例一相同,其 不同處僅在於該第一加熱區的反應溫度為5〇〇。匸。 參閱圖4 ’由SEM表面形貌圖顯示,由於500。〇時的擴 散係數及反應速率大於450°C,奈米線體之間因相互接觸的 表面擴散致使有些奈米線體融化在一起,因此,該具體實 施例一經還原反應後表面凸塊物的產量增加。 參閱圖5 ’為該具體實施例二之TEM的分析數據圖, 由TEM形貌圖顯示(圖5左上方插圖),該具體實施例二之 13 1307680 奈米線體的直徑約為10 nm;另SAED圖顯示(圖5右上方 插圖),由[111]之晶帶軸所得的奈米線體晶體結構為立方晶 相的Fe3〇4;此外,由HRTEM影像圖顯示(圖5下方插圖) ,該具體實施例二的Fe3〇4奈米線體是沿著[2叫方向(即, [Ϊ01]方向)成長’且陶及(〇22)的面間距分別為〇 297随。 在該具體實施例二中,由於當心处奈米線體相變化成 奈米線體時為了補償晶格參數㈣繼⑽)而產According to the figure, the shape of the nanowire is about 1 〇 nm in the shape of the top view (the upper left figure in Fig. 3); the selected area electron diffracti〇n, referred to as saed The graph shows (the upper right figure in Fig. 3) 'The crystal structure of the nanowire obtained from the z〇ne axis of [111] is %04 of the cubic phase; in addition, 'high resolution' The TEM (high resolution TEM; hereinafter referred to as HRTEM) image is not shown (the inset below in Fig. 3), and the nanowire of the first embodiment is grown along the [220] direction (i.e., [u〇] direction). And the interplanar spacing (d-spacing) of (4) and (2〇2) is 297.297 nm. &lt;Specific Embodiment 2&gt; The second embodiment of the present invention is a method for manufacturing a magnetic nanowire body mainly composed of triiron tetroxide. The second embodiment is substantially the same as the specific embodiment 1. The difference lies in the The reaction temperature of the first heating zone was 5 Torr. Hey. See Figure 4' for the SEM surface topography, due to 500. When the diffusion coefficient and the reaction rate of the ruthenium are greater than 450 ° C, the surface diffusion between the nanowires due to contact with each other causes some of the nanowires to melt together. Therefore, the surface of the specific embodiment after the reduction reaction Production increased. Referring to FIG. 5, the analysis data of the TEM of the specific embodiment 2 is shown by the TEM topography (the upper left diagram of FIG. 5), and the diameter of the 13 1307680 nanowire body of the specific embodiment 2 is about 10 nm; In addition, the SAED diagram shows (the upper right figure in Fig. 5) that the crystal structure of the nanowire obtained from the ribbon axis of [111] is the cubic crystal phase of Fe3〇4; in addition, it is shown by the HRTEM image (the illustration below in Fig. 5) The Fe3〇4 nanowire body of the second embodiment is grown along the [2 direction (ie, [Ϊ01] direction] and the surface spacing of the ceramics and (〇22) is 〇297. In the second embodiment, since the nanowire body phase changes to a nanowire body, it is produced in order to compensate for the lattice parameter (4) followed by (10)).

生扭曲目此,奈米線體在退火(⑽職^吨)期間的扭曲 (distortion)是由a_Fe2〇3及以3〇4晶體結構差異所構成。 &lt;具體實施例三&gt; 本鉍明以四氧化二鐵為主之磁性奈米線體的製造方法 之-具體實施例三’大致上是與該具體實施例二相同,其 不同處僅在於該具體實_三所使用的a_Fe2〇3奈米線體之 平均直徑約為數十到兩百奈米間。參閱圖6,由SEM表面 形貌圖顯示’該具體實施例三於還原後所形成的四氧化三 鐵奈米線體平均直徑約為數十到兩百奈米間。 本發明該具體實施例三所製得的Fe304奈米線 疋被滴置於一石夕基板之一卜主二1 上表面上,並進一步地對該矽基 板施予一磁場方向平行於兮其主π t , 丁 π % 4基板上表面的外加磁場。參閱 圖7 ’為該具體實施例二夕q c μ 士 _ —之SEM表面形貌圖。由於該具體 只知1例二所製得之Fe304争乎@ e &amp; μ , + 4不木線體自身的小尺度及外觀具高 長寬比㈣⑽帥。)的特點,導致奈米線體應是呈單 磁域㈣gle d⑽ain)的型態、。根據_的觀察,可發現 叫奈米線體的排列方向傾向於平行於該外加磁場的方向 14 1307680 參閱圖8及圖9,分別為本發明該具體實施例三藉由震 動試樣磁力計(vibrating-sample magnet〇meter,簡稱 vsm) 在磁場方向平行及垂直於該基板上表面的分析條件下所測 得的磁滯曲線圖。當磁場方向平行於奈米線排列方向時, 致使欲達到飽和磁化值(即,Μ值)所需的磁場強度(即,H 值)較低’而當磁場方向垂直於奈米線排列方向時,則不易 達到磁飽和。此現象是由於Fe3〇4奈米線體本身高長寬比的 外觀造成高度形狀的磁異向性(magnetic anisotropic),因此 ’造成在不同量測方向上產生不同的反磁化場。 &lt;具體實施例四&gt; 本發明以四氧化三鐵為主之磁性奈米線體的製造方法 之一具體實施例四,大致上是與該具體實施例一相同,其 不同處僅在於該第一加熱區的反應溫度為6〇〇。〇。 參閲圖10,由SEM表面形貌圖顯示,該具體實施例四 因在還原期間相互接觸的奈米線體之原子鍵結及表面擴散 ’致使大多數的奈米線體顯示出分支狀態的表面形貌,且 該具體貫施例四在還原反應後所得的Fe304奈米線體產量較 低。 參閱圖11 ’為該具體實施例四之TEM的分析數據圖, 由TEM形貌圖顯示(圖11左上方插圖),該具體實施例四之 奈米線體的直徑約為10 nm ;另SAED圖顯示(圖η右上方 插圖),由[110]之晶帶軸所得的奈米線體晶體結構為立方晶 相的FesO4 ;此外,由HRTEM影像圖顯示(圖11下方插圖) 15 1307680 ,該具體實施例四的Fe3〇4奈米線體是沿著网方向(即, [101]方向)成長’且(2刼的面間距為〇_24nm。 參閱圖12,為a-Fe2〇3晶體相變化為Fe3〇4晶體的演變 圖/、中垂直於紙面的方向為原子的密堆積(ci〇Sed 声㈣方向(即,a-Fe2〇3晶體及Fe304晶體的氧離子密堆 積方向是分別為[_及[⑴]),且實線箭號表示位於密堆積 面上之陰離子(即,氧離子)的堆疊方向。The distortion of the nanowire body during annealing ((10) jobs) is composed of a_Fe2〇3 and a crystal structure difference of 3〇4. &lt;Special Example 3&gt; The method of manufacturing a magnetic nanowire body mainly composed of ferric oxide is the same as that of the second embodiment, and the difference lies only in The average diameter of the a_Fe2〇3 nanowire body used in the specific three is about tens to two hundred nanometers. Referring to Fig. 6, the SEM surface topography shows that the average diameter of the ferritic oxide nanowire formed after the reduction in the third embodiment is about several tens to two hundred nanometers. The Fe304 nanowire prepared by the third embodiment of the present invention is dropped on the upper surface of one of the core substrates, and further the magnetic field is applied to the germanium substrate parallel to the main π t , π π % 4 The applied magnetic field on the upper surface of the substrate. Referring to Fig. 7', the SEM surface topography of the second embodiment of the present invention is q μ _ _. Because of this specificity, only one case of the two produced Fe304 contends @e & μ, + 4 does not have the small scale and appearance of the wood body itself with a high aspect ratio (four) (10) handsome. The characteristics of the nanowire body should be in the form of a single magnetic domain (four) gle d (10) ain). According to the observation of _, it can be found that the arrangement direction of the nanowire body tends to be parallel to the direction of the applied magnetic field 14 1307680. Referring to FIG. 8 and FIG. 9, respectively, the third embodiment of the present invention is a vibrating sample magnetometer ( Vibrating-sample magnet〇meter, abbreviated vsm) A hysteresis curve measured under analytical conditions in which the direction of the magnetic field is parallel and perpendicular to the upper surface of the substrate. When the direction of the magnetic field is parallel to the direction in which the nanowires are arranged, the magnetic field strength (ie, the H value) required to achieve the saturation magnetization value (ie, the enthalpy value) is low, and when the magnetic field direction is perpendicular to the arrangement direction of the nanowires. , it is not easy to achieve magnetic saturation. This phenomenon is due to the high aspect ratio of the Fe3〇4 nanowire itself, resulting in a highly anisotropic magnetic anisotropic, thus causing different reversal fields in different measurement directions. &lt;Detailed Embodiment 4&gt; The fourth embodiment of the present invention is a method for manufacturing a magnetic nanowire body mainly composed of triiron tetroxide. The fourth embodiment is substantially the same as the specific embodiment 1. The difference lies in the The reaction temperature in the first heating zone was 6 Torr. Hey. Referring to FIG. 10, the SEM surface topography shows that the atomic bonding and surface diffusion of the nanowires in contact with each other during the reduction show that most of the nanowires exhibit a branched state. The surface topography, and the specific yield of the Fe304 nanowire obtained after the reduction reaction is lower. Referring to Fig. 11 is an analysis data chart of the TEM of the fourth embodiment, which is shown by the TEM topography (the upper left diagram of Fig. 11), and the diameter of the nanowire body of the fourth embodiment is about 10 nm; The figure shows (the figure at the top right of Figure η), the crystal structure of the nanowire obtained from the ribbon axis of [110] is the cubic phase of FesO4; in addition, it is shown by the HRTEM image (inset below Figure 11) 15 1307680, The Fe3〇4 nanowire body of the fourth embodiment is grown along the mesh direction (i.e., [101] direction) and (the interplanar spacing of 2刼 is 〇24 nm. Referring to Fig. 12, the a-Fe2〇3 crystal The phase change is the evolution of the Fe3〇4 crystal/, and the direction perpendicular to the paper surface is the close packing of the atoms (the ci〇Sed sound (four) direction) (ie, the a-Fe2〇3 crystal and the Fe304 crystal are closely packed in the oxygen ion packing direction. It is [_ and [(1)]), and the solid arrow indicates the stacking direction of the anions (ie, oxygen ions) on the close packed surface.

根據此相變化之單分子反應(unim〇lecular reason)理論 機制並配σ本發明該具體實施例--四的觀察,a-Fe 0晶 立可藉由調整沿著密堆積方向的堆疊順序(即,ababab... 方式的堆疊順序)轉變成卜办晶體(即,ABCABC,··方式的 堆疊順序)。且於調整堆積順序㈣,㈣會導致密堆積面 之原子重排而造成密堆積面的相對指向產生旋轉,此外 η由於Fe3〇4晶體具有較大的晶格常數⑽^ c__),使 付此過程更容易發生。此等原因最後導致還原後的夺 米線體是沿著垂直於Fe3G4奈米㈣的氧料密堆積方向( 亦即,&lt;110&gt;方向族’如,[叫、[叫、[則]、[⑽According to the theoretical mechanism of the single-molecule reaction (unim〇lecular reason) of this phase change and the observation of the specific embodiment-four of the present invention, the a-Fe 0 crystallite can be adjusted by stacking order along the dense packing direction ( That is, the stacking order of the ababab... mode) is converted into a transistor crystal (ie, the stacking order of the ABCABC, the mode). And adjusting the stacking order (4), (4) will cause the atomic rearrangement of the close packed surface to cause the relative orientation of the close packed surface to rotate, and η because the Fe3〇4 crystal has a larger lattice constant (10)^c__), so that The process is more likely to happen. These reasons eventually lead to the reduction of the rice noodle body along the direction of the close packing of the oxygen material perpendicular to the Fe3G4 nanometer (4) (ie, the &lt;110&gt; direction family', eg [call, [call, [then], [(10)

、[〇li])及&lt;111&gt;方向族成♦。枯β I 、戚長值仵一提的是,本發明前述 e3〇4晶體的氧離子密堆積方向是以[111]舉例說明,適合 :本發明Fe3〇4晶體的氧離子密堆積方向是可以滿足 日日體結構之對稱性的方向(即,&lt;lu&gt;方向族)。 &lt;具體實施例五&gt; 本發明以四氧化二错氐七〜, —鐵為主之磁性奈米線體的製造方法 之一具體實施例五,大致卜s跑—口 致上疋與该具體實施例二相同,其 1307680 不同處僅在於該第二加熱區是設置有矽晶圓(即,在該具體 實施例四中,Μ是矽),且該第二加熱區的反應溫度是1〇〇〇 °C。, [〇li]) and &lt;111&gt; direction families become ♦. It is noted that the oxygen ion close packing direction of the above e3〇4 crystal of the present invention is exemplified by [111], and is suitable for: the oxygen ion close packing direction of the Fe3〇4 crystal of the present invention is The direction that satisfies the symmetry of the Japanese body structure (ie, the &lt;lu&gt; direction family). &lt;Specific Embodiment 5&gt; The present invention is a fifth embodiment of a method for producing a magnetic nanowire body mainly composed of arsenic pentoxide, and iron. The second embodiment is the same, and the difference of 1307680 is only that the second heating zone is provided with a germanium wafer (ie, in the fourth embodiment, the germanium is germanium), and the reaction temperature of the second heating zone is 1 〇〇〇°C.

參閱圖13,為該具體實施例五之TEM的分析數據圖, 由TEM开;j貌圖顯示(圖13左下方插圖),該具體實施例五之 奈米線體的直徑約為40 nm〜50 nm之間;另SAED圖顯示 (圖13左上方插圖),由[112]之晶帶軸所得的奈米線體晶體 結構為立方晶相的Fe3〇4 ;此外,由HRTEM影像圖顯示(圖 13右方插圖),該具體實施例五的Fe3〇4奈米線體是沿著 [in]方向成長’且(〇22)及(2〇0)的面間距分別為〇·3〇6 nm及 0.428 nm,而位於Fe3〇4外圍的非晶層則為含有矽奈米粒子 的氧化矽(SiOx)層,因此,由該具體實施例五之製造方法 所製得的以四氧化三鐵為主之磁性奈米線體是具有氧化矽 層之核殼結構的Fe3〇4奈.米線體。 另,參閱圖14,由TEM之高角度環形暗視野㈤钟 annular angle dark fie丨d ;簡稱HAADF)影像及其能量散佈能 譜儀(energy dispersive spectrometer;簡稱]5£)幻之成分分析 圖顯不,該具體實施例五之FesO4奈米線體外圍的確是含有 6夕奈米粒子的氧化石夕層。 &lt;具體實施例六&gt; 本發明以四氧化三鐵為主之磁性奈米線體的製造方法 之一具體實施例六,大致上是與該具體實施例五相同,其 不同處僅在於Μ是鍺,且反應時間是維持9〇分鐘。 芬閱圖15 ’為該具體實施例六之脑的分析數據圖, 17 1307680 由TEM形貌圖顯示(圖15左下方插圖),該具體實施例六之 奈米線體的直徑約為20 nm〜30 nm之間;另SAED圖顯示 (圖15左上方插圖)’由[1 〇 1 ]之晶帶軸所得的奈米線體晶體 結構為立方晶相的FesO4 ;此外,由HRTEM影像圖顯示(圖 15右方插圖),該具體實施例六的Fe3〇4奈米線體是沿著 [2〇2]方向(即,[101]方向)成長,且(士)的面間距為〇.25麵, 而位於FesO4外圍的非晶質層則為氧化鍺(Ge〇x)層’因此, 由該具體實施例六之製造方法所製得的以四氧化三鐵為主 之磁性奈米線體是具有氧化鍺層之核殼結構的Fe3〇4奈米線 體。 另,參閱圖16,由TEM之HAADF影像及其EDS之成 分分析圖顯示,該具體實施例六之FhO4奈米線體外圍是氧 化鍺層。值得一提的是,於製作該具體實施例五、六之外 覆氧化層時,是可藉由調變其製程參數以改變外覆氧化層 的氧化程度,因此,在該具體實施例六中的氧化層是沒有 錯奈米粒子存在。 本發明直接利用a-Fe2〇3晶體本身可直接還原回Fe3〇4 晶體的還原特性以製得FhO4奈米線體。此外,並配合在反 應過程中提供陽離子(即,M氣體粒子)源,使得a_Fe2〇3奈 米線體在還原回FqO4奈米線體時,自奈米線體釋出的氧可 在無雜質原子存在的環境下同時與到達的M氣體粒子相互 反應,並在Fe3〇4奈米線體表面直接化合形成一含有μ的 氧化層,進而製得雜質少、品質.優異且無FhO4氧化問題存 在之具核殼結構的Fe304奈米線體。 18 1307680 • 、 /上所述’本發明以四氧化三鐵為主之磁性奈米線體 的製Xe方法,可製備出雜質低且品質優異的四氧化三鐵奈 1線體IE Pf低四氧化三鐵奈米線體於製作外覆殼層結構 時的氧化問題,以使得具核殼結構之四氧化三鐵奈米線體 被廣為科技產業利用,確實達到本發明之目的。 - ^惟以上所述者,僅為本發明之較佳實施例而已,當不 , 2 X此限疋本發明實施之範圍’即大凡依本發明中請專利 • ㉟1®及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 、圖1疋- SEM表面形貌圖,說明本發明以四氧化三鐵 為主之磁性奈求線體的製造方法在—具體實施例一中所使 用的a-Fe2〇3奈米線體; 圖2疋SEM表面形貌圖,說明本發明該具體實施例 一於還原反應後所製得的Fe3〇4奈米線體; • 圖3疋TEM分析數據圖,說明本發明該具體實施例 的顯微形貌及晶體結構; _ ^ 4是—SEM表面形貌圖,說明本發明-具體實施例 —於還原反應後所製得的]pe3〇4奈米線體; . ® 5是—TEM分析數據圖,說明本發明該具體實施例 二的顯微形貌及晶體結構; • _ ®6是-SEM表面形貌圖,說明本發明-具體實施例 二於還原反應後所製得的!?以04奈米線體; 圖7疋SEM表面形貌圖,說明本發明該具體實施例 19 ⑧ 1^07680 二:4奈米線體受-外加磁場的影绝· 圖8是本發明該具體實施例ς, 線體排列方向的分析條件下所測得^=方向平行於奈米 圖9是本發明該具體實施例:曲線圖; 線體排列方向的分析條件下所測得方向垂直於奈米 圖10是—⑽表面形貌圖1明2曲線圖; 四於還原反應後所製得的Fe3〇4奈米線體&quot;—具體貫施例 圖11是一TEM分析數據圖,說 TO ^ +發明§亥具體貫施例 四的顯微形貌及晶體結構; F。圖曰12是一晶相演變圖’說明,晶體相變化為 e3〇4日日體的晶相演變; 圖13是一 TEM分析數據圖,說明本發明一具體 例五的顯微形貌及晶體結構; ' 圖14是本發明該具體實施例五之丁£%的haadf影像 及其EDS之成分分析圖; 圖15是一 TEM分析數據圖,說明本發明一具體實施 例六的顯微形貌及晶體結構;及 圖16是本發明該具體實施例六之TEM的HAADF影像 及其EDS之成分分析圖。 20 1307680 【主要元件符號說明】 無Referring to FIG. 13, the analysis data of the TEM of the fifth embodiment is shown by TEM; the image of j is shown (the lower left side of FIG. 13), and the diameter of the nanowire of the fifth embodiment is about 40 nm~ Between 50 nm; another SAED diagram shows (pictured at the top left of Figure 13), the crystal structure of the nanowire obtained from the ribbon axis of [112] is the cubic phase of Fe3〇4; in addition, it is shown by the HRTEM image ( Fig. 13 is a diagram on the right side), the Fe3〇4 nanowire body of the fifth embodiment is grown along the [in] direction and the interplanar spacing of (〇22) and (2〇0) is 〇·3〇6, respectively. Nm and 0.428 nm, and the amorphous layer located on the periphery of Fe3〇4 is a cerium oxide (SiOx) layer containing cerium nanoparticles. Therefore, the ferrotitanium oxide prepared by the manufacturing method of the fifth embodiment is The main magnetic nanowire body is a Fe3〇4 nanometer body with a core-shell structure of a ruthenium oxide layer. In addition, referring to Figure 14, the TEM's high-angle annular dark field (five) clock annular angle dark fie丨d; referred to as HAADF) image and its energy dispersive spectrometer (abbreviated as "5") phantom composition analysis No, the periphery of the FesO4 nanowire body of the fifth embodiment is indeed a oxidized stone layer containing 6 rythr nanoparticles. &lt;Specific Embodiment 6&gt; The sixth embodiment of the present invention is a method for manufacturing a magnetic nanowire body mainly composed of triiron tetroxide. The sixth embodiment is substantially the same as the fifth embodiment, and the difference is only in the case of Μ Yes, and the reaction time is maintained for 9 minutes. See Figure 15 for the analysis data of the brain of the specific embodiment 6, 17 1307680 is shown by the TEM topography (the lower left in Fig. 15), the diameter of the nanowire of the specific embodiment is about 20 nm. Between ~30 nm; another SAED diagram shows (pictured at the top left of Figure 15) 'The crystal structure of the nanowire obtained from the crystal axis of [1 〇1] is the cubic phase of FesO4; in addition, it is shown by HRTEM image (Fig. 15 right illustration), the Fe3〇4 nanowire body of the sixth embodiment grows along the [2〇2] direction (i.e., [101] direction), and the interplanar spacing of (士) is 〇. 25 faces, and the amorphous layer located on the periphery of FesO4 is a layer of yttrium oxide (Ge〇x). Therefore, the magnetic nanowire mainly composed of triiron tetroxide prepared by the manufacturing method of the sixth embodiment The body is a Fe3〇4 nanowire body having a core-shell structure of a ruthenium oxide layer. Further, referring to Fig. 16, the analysis of the HAADF image of the TEM and its EDS shows that the periphery of the FhO4 nanowire of the sixth embodiment is a ruthenium oxide layer. It is worth mentioning that when the oxide layer is coated in the fifth embodiment and the sixth embodiment, the oxidation degree of the outer oxide layer can be changed by modifying the process parameters. Therefore, in the sixth embodiment The oxide layer is present without the wrong nanoparticle. The invention directly utilizes the a-Fe2〇3 crystal itself to directly reduce the reducing property of the Fe3〇4 crystal to obtain a FhO4 nanowire body. In addition, in combination with providing a source of cation (ie, M gas particles) during the reaction, the oxygen released from the nanowire body can be free of impurities when the a_Fe2〇3 nanowire body is reduced back to the FqO4 nanowire body. In the environment where the atom exists, it simultaneously reacts with the arriving M gas particles, and directly combines on the surface of the Fe3〇4 nanowire to form an oxide layer containing μ, thereby obtaining less impurities, excellent quality, and no FhO4 oxidation problem. Fe304 nanowire body with core-shell structure. 18 1307680 • The above-mentioned Xe method of the magnetic nanowire body mainly composed of triiron tetroxide according to the present invention can produce a ferritic trioxide IE Pf low in low impurity and excellent in quality. The oxidation problem of the ferric oxide nanowire body in the production of the outer cladding structure is such that the ferroferric oxide nanowire body having a core-shell structure is widely utilized by the technology industry, and the object of the present invention is indeed achieved. - The above is only the preferred embodiment of the present invention, and if not, 2X is limited to the scope of the present invention, that is, according to the patent 351® and the description of the invention in the present invention. Simple equivalent changes and modifications are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a top view of an SEM surface, illustrating a method for producing a magnetic neviline body mainly composed of triiron tetroxide according to the present invention, and a-Fe2〇 used in the first embodiment. 3 nanowire body; Fig. 2 SEM surface topography, illustrating the Fe3〇4 nanowire body prepared by the specific embodiment of the present invention after the reduction reaction; • Fig. 3 TEM analysis data diagram, illustrating The microscopic morphology and crystal structure of the specific embodiment of the invention; _ ^ 4 is - SEM surface topography, illustrating the invention - a specific embodiment - prepared after the reduction reaction] pe3 〇 4 nanowire body; ® 5 is a TEM analysis data diagram illustrating the micromorphology and crystal structure of the second embodiment of the present invention; • _ ® 6 is a SEM surface topography diagram illustrating the present invention - specific example 2 in the reduction reaction After the production! Figure 4 is a SEM surface topography diagram illustrating the specific embodiment of the present invention. 19 8 1^07680 2: 4 nanowire body is subjected to an external magnetic field. Figure 8 is a view of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The measured direction of the direction in which the line body is arranged is parallel to the nanograph 9. This is a specific embodiment of the present invention: a graph; the direction measured under the analysis condition of the line body is perpendicular to The nanograph 10 is—(10) the surface topography of Fig. 1 and the second graph; the fourth Fe3〇4 nanowire body obtained after the reduction reaction&quot;-specific embodiment FIG. 11 is a TEM analysis data diagram, TO ^ + invention § hai specific embodiment 4 of the microscopic morphology and crystal structure; F. Figure 12 is a crystal phase evolution diagram 'illustration, the crystal phase change is the crystal phase evolution of the e3〇4 day; FIG. 13 is a TEM analysis data diagram illustrating the microscopic morphology and crystal of a specific example 5 of the present invention. Figure 14 is a compositional analysis diagram of the Haadf image and its EDS of the specific example 5 of the present invention; Figure 15 is a TEM analysis data diagram illustrating the microscopic appearance of a sixth embodiment of the present invention. And a crystal structure; and Fig. 16 is a compositional analysis diagram of the HAADF image of the TEM of the sixth embodiment of the present invention and its EDS. 20 1307680 [Explanation of main component symbols]

21 ⑧21 8

Claims (1)

13076^94143396號發明專利申請案之申^專利範g替換頁(97车i脸π:、, 十、申請專利範圍:年f Μ曰修⑵正替拓,: ._______ &quot; .....I Wl If - L 一種以四氧化三鐵為主之磁性奈米線體的製造方法,包含下列步驟 (a) 在一反應室中的一第一加熱區提供複數〇t相三氧化二鐵奈米線 體; 、〜 (b) 對該反應室予以減壓; (c) 對該反應室予以加熱; (d) 於該反應室内引入一還原氛圍;及13076^94143396 invention patent application application ^ patent van g replacement page (97 car i face π:,, ten, the scope of application for patent: year f Μ曰 repair (2) positive replacement,: ._______ &quot; .... .I Wl If - L A method for producing a magnetic nanowire body mainly composed of triiron tetroxide, comprising the following steps (a) providing a plurality of 〇t phase three oxidations in a first heating zone in a reaction chamber Iron nanowire body; , (b) decompressing the reaction chamber; (c) heating the reaction chamber; (d) introducing a reducing atmosphere into the reaction chamber; (e) 藉該還原氛圍及該反應室的溫度還原該等α相三氧化二鐵卉米 線體以形成複數四氧化三鐵奈米線體。 2·依據巾請專利細第丨項所述之以四氧化三鐵為主之磁性奈米線體 的製造方法,於該步驟(a)之後更包含一步驟(a,),該步驟(a,)是於該 反應室的-第二加熱區提供-含Μ且呈固態的陽離子源,致使每 一α相三氧化二鐵奈米線體還原成四氧化三鐵奈米線體時,藉以在 每-四氧化三鐵奈米線體的一表面形成_含Μ的氧化層進而製得 具核殼結構之四氧化三鐵奈米線體,該步驟(&amp;,)的Μ是於室溫下氧 化後呈_氧化物的元素’且該步尋’)的Μ是選自於下列所構成 之群組:矽、鍺及此等之一組合。 3. 依射請專機圍第2項所狀以四氧化三鐵為主之雜奈来線體 的製造方法,其中,該步驟(&amp;,)的Μ是矽。 4. 依據申請專利範圍帛3項所述之以四氧化三鐵為主之雜奈米線體 的製造方法,其中,該第二加熱區的反應溫度是介於800。(:〜20〇〇。(: 之間。 5.依射請專利細第4項所述之以四氧化三鐵為主之雜奈米線體 23 13 Ο 76 § 143396號發明專利申請案之_請專利範圍替換頁(97年9月修正) 的製造方法’其中,該第二加熱區的反應溫度是介於90(TC〜1500°C - 之間。 6.依據申请專利範圍第2項所述之以四氧化三鐵為主之磁性奈米線體 的製造方法,其中,該步驟(a,)的Μ是鍺。 7 -&gt; .依據申請專利範圍第ό項所述之磁性奈米線體的製造方法,其中, 威第二加熱區的反應溫度是介於700°C〜1500°C之間。(e) reducing the α phase ferric oxide ferric chloride body by the reducing atmosphere and the temperature of the reaction chamber to form a plurality of ferroferric oxide nanowires. 2. The method for manufacturing a magnetic nanowire body mainly composed of triiron tetroxide according to the patent application, further comprising a step (a) after the step (a), the step (a) ,) is provided in the second heating zone of the reaction chamber - a cation-containing and solid-state cation source, such that each α-phase ferric oxide nanowire is reduced to a triiron tetroxide body, thereby Forming a yttrium-containing oxide layer on one surface of each of the ferritic oxide nanowires to obtain a ferrocene oxide nanowire body having a core-shell structure, and the step (&amp;,) is in the chamber The enthalpy of the element _ oxide and the enthalpy of this step after oxidation is selected from the group consisting of hydrazine, hydrazine and a combination thereof. 3. According to the special shooting machine, please refer to the manufacturing method of the gangue wire which is mainly composed of triiron tetroxide in the second item. The Μ of this step (&amp;,) is 矽. 4. The method for producing a hetero-nanowire body mainly composed of triiron tetroxide according to claim 3, wherein the reaction temperature of the second heating zone is 800. (:~20〇〇.(: Between. 5. According to the patent, please refer to the patent application for the invention of the patent application No. 23 13 Ο 76 § 143396 _Please refer to the patent field replacement page (revised in September 1997). The reaction temperature of the second heating zone is between 90 (TC~1500 °C - 6. According to the second paragraph of the patent application scope The method for producing a magnetic nanowire body mainly composed of triiron tetroxide, wherein the enthalpy of the step (a,) is 锗. 7 -&gt; The method for manufacturing a rice noodle body, wherein the reaction temperature of the second heating zone is between 700 ° C and 1500 ° C. 8·依據申請專利範圍第7項所述之以四氧化三鐵為主之磁性奈米線體 的製造方法,其中,該第二加熱區的反應溫度是介於9〇〇〇c〜12⑻。c 之間。 •依據申請專利範圍f 1項所述之以四氧化三鐵為主之磁性奈米線體 的製造方法’其巾,該频⑹的還縣圍是由—縣氣體及一情性 氣體所構成;該還原氣體是選自於下列所構成之群組:氯氣、一氧 化碳、氨氣及烷類。 1〇.依據申請專利範圍第9項所述之以四氧化三鐵為主之雜奈米線體 的製造方法,其巾,該縣氣體是氫氣,該·纽是氨氣。 •依據帽專利I刪K)項所述之以四氧化三鐵駐之雜奈米線 體的製造方法,其中,氫氣於該還原氛圍中的體積百分比是至少大 於 1 V〇l%。 •依據㈣專·M u項所述之咖氧化三鐵躲之雜奈米線 的製这方法其中氯氣於該遊原氛圍中的體積百分比是介於丄 v〇l°/。〜20vol%之間。 項所述之以四氧化三鐵為主之磁性奈米線 氣於该還錢SI巾賴積百分比是介於1 13· &amp;據申請專利範圍第12 體的製造方法,其中,氫 vol% 〜10vol% 之間。 24 13 Ο 7 6 143396號發明專利申請案之申請專利範圍替換頁(97年9月修正) 14_依據申請專利範圍第13項所述之以四氧化三鐵為主之磁性奈米線 體的製造方法,其中,氫氣於該還原氛圍中的體積百分比是介於2 vol% 〜7 vol%之間。 15. 依據申請專利範圍第14項所述之以四氧化三鐵為主之磁性奈米線 體的製造方法,其中’該步驟(b)的工作壓力是介於〇.1 Torr〜1〇〇 Torr之間。 16. 依據申請專利範圍第1項所述之以四氧化三鐵為主之磁性奈米線體 的製造方法,其中,該第一加熱區的反應溫度是介於45(TC〜600 °C之間。 Π.依據申請專利範圍第1項所述之以四氧化三鐵為主之磁性奈米線體 的製造方法’其中’該步驟(e)之反應時間是至少大於10分鐘。 18.依據申請專利範圍第丨7項所述之以四氧化三鐵為主之磁性奈米線 體的製造方法,其中’該步驟(e)之反應時間是介於10分鐘〜120 分鐘之間。8. The method for producing a magnetic nanowire body mainly composed of triiron tetroxide according to the seventh aspect of the patent application, wherein the reaction temperature of the second heating zone is between 9 〇〇〇 c and 12 (8). Between c. • According to the method for manufacturing a magnetic nanowire body mainly composed of triiron tetroxide as described in the patent application scope f1, the frequency of the (6) is composed of county gas and an erotic gas. The reducing gas is selected from the group consisting of chlorine gas, carbon monoxide, ammonia gas and alkane. 1 . According to the method for producing a heterogeneous nanowire body mainly composed of triiron tetroxide according to claim 9 of the patent application scope, the gas of the county is hydrogen gas, and the neon is ammonia gas. • A method of producing a tetragonal body of ferroferric oxide according to the cap patent I, K, wherein the volume percentage of hydrogen in the reducing atmosphere is at least greater than 1 V〇l%. • According to the method of (4) special ·M u, the method of making the rice noodles to avoid the nano line is the volume percentage of chlorine in the original atmosphere is 丄 v〇l ° /. ~20vol% between. The magnetic nano-wire gas mainly composed of triiron tetroxide is a manufacturing method in which the percentage of the replenishing SI towel is between 1 and 13 according to the patent application scope, wherein the hydrogen vol% Between ~10vol%. 24 13 Ο 7 6 143396 Inventive Patent Application Replacement Page (Amended in September 1997) 14_The magnetic nanowire body based on triiron tetroxide as described in Item 13 of the patent application scope The manufacturing method, wherein the volume percentage of hydrogen in the reducing atmosphere is between 2 vol% and 7 vol%. 15. The method for manufacturing a magnetic nanowire body mainly composed of triiron tetroxide according to claim 14 of the patent application, wherein the working pressure of the step (b) is between 0.1 Torr and 1 Torr. Between Torr. 16. The method according to claim 1, wherein the reaction temperature of the first heating zone is between 45 (TC and 600 ° C). 。. The method for producing a magnetic nanowire body mainly composed of triiron tetroxide according to the first aspect of the patent application 'wherein the reaction time of the step (e) is at least more than 10 minutes. A method for producing a magnetic nanowire body mainly composed of triiron tetroxide according to Item 7 of the patent application, wherein the reaction time of the step (e) is between 10 minutes and 120 minutes. 2525
TW094143396A 2005-12-08 2005-12-08 Method for peoducing fe3o4-based magnetic nanowires TWI307680B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW094143396A TWI307680B (en) 2005-12-08 2005-12-08 Method for peoducing fe3o4-based magnetic nanowires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094143396A TWI307680B (en) 2005-12-08 2005-12-08 Method for peoducing fe3o4-based magnetic nanowires

Publications (2)

Publication Number Publication Date
TW200722379A TW200722379A (en) 2007-06-16
TWI307680B true TWI307680B (en) 2009-03-21

Family

ID=45071644

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094143396A TWI307680B (en) 2005-12-08 2005-12-08 Method for peoducing fe3o4-based magnetic nanowires

Country Status (1)

Country Link
TW (1) TWI307680B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI437106B (en) 2008-12-03 2014-05-11 Tatung Co One dimension nano magnetic wires and manufacturing method thereof

Also Published As

Publication number Publication date
TW200722379A (en) 2007-06-16

Similar Documents

Publication Publication Date Title
Fan et al. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials
Bepari et al. Controlled synthesis of α-and γ-Fe2O3 nanoparticles via thermolysis of PVA gels and studies on α-Fe2O3 catalyzed styrene epoxidation
Nielsch et al. Magnetic properties of template-synthesized cobalt∕ polymer composite nanotubes
Wang et al. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction
Green Organometallic based strategies for metal nanocrystal synthesis
Liu et al. Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method
TWI437106B (en) One dimension nano magnetic wires and manufacturing method thereof
Xie et al. A Hydrothermal Reduction Route to Single‐Crystalline Hexagonal Cobalt Nanowires
Li et al. HEPES-involved hydrothermal synthesis of Fe 3 O 4 nanoparticles and their biological application
Zhou et al. Single crystalline FeNi3 dendrites: large scale synthesis, formation mechanism, and magnetic properties
Zulhijah et al. Gas phase preparation of spherical core–shell α′′-Fe 16 N 2/SiO 2 magnetic nanoparticles
Kuwa et al. Ligand-stabilized CoO and NiO nanoparticles for spintronic devices with antiferromagnetic insulators
Liu et al. High-yield synthesis of dendritic Ni nanostructures by hydrothermal reduction
Wang et al. Colloidal synthesis of Au nanomaterials with a controlled morphology and crystal phase via the [Au (i)-oleylamine] complex
Krajewski et al. Magnetic-field-induced synthesis of amorphous iron-nickel wire-like nanostructures
JP2009215583A (en) Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME
Zhang et al. Controlled synthesis of monodisperse magnetic nanoparticles in solution phase
TWI307680B (en) Method for peoducing fe3o4-based magnetic nanowires
Rafique et al. Fabrication of CoNi alloy hollow-nanostructured microspheres for hydrogen storage application
Zhu et al. Solution route to single crystalline dendritic cobalt nanostructures coated with carbon shells
Chen et al. Template-free synthesis and characterization of dendritic cobalt microstructures by hydrazine reduction route
JP2005281786A (en) Magnetic metal particle and production method therefor
Jia et al. Synthesis of single crystalline hematite polyhedral nanorods via a facile hydrothermal process
JP2007250824A (en) Hard magnetic nanoparticles, manufacturing method therefor, magnetic fluid, and magnetic recording medium
JP2008248364A (en) METHOD FOR PRODUCING COMPOSITE NANOPARTICLE HAVING FePt CORE/Fe SHELL STRUCTURE

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees