TWI305664B - Sidewall smoothing in high aspect ratio/deep etching using a discrete gas switching method - Google Patents

Sidewall smoothing in high aspect ratio/deep etching using a discrete gas switching method Download PDF

Info

Publication number
TWI305664B
TWI305664B TW92122472A TW92122472A TWI305664B TW I305664 B TWI305664 B TW I305664B TW 92122472 A TW92122472 A TW 92122472A TW 92122472 A TW92122472 A TW 92122472A TW I305664 B TWI305664 B TW I305664B
Authority
TW
Taiwan
Prior art keywords
gas
chamber
etching
deposition
reactive
Prior art date
Application number
TW92122472A
Other languages
Chinese (zh)
Other versions
TW200405457A (en
Inventor
David J Johnson
Russell Westerman
Shouliang Lai
Original Assignee
Unaxis Usa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unaxis Usa Inc filed Critical Unaxis Usa Inc
Publication of TW200405457A publication Critical patent/TW200405457A/en
Application granted granted Critical
Publication of TWI305664B publication Critical patent/TWI305664B/en

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

1305664 玖、發明說明: 【相關申請參考文獻】 本申請案係以公開之美國臨時專利申請案第 60/403, 891號,申請日為2002年8月16日,名聪·、 々稱·使用 不連續氣體切換方法之高深寬比/深蝕刻之側壁平滑化主 張優先權,且與其相關,此臨時專利申請案内容在此一、, 列為參考資料。 【發明所屬之技術領域】 本發明大體而言係有關於半導體製造領域,尤其本 明之較佳具體實例係指使用可調快速不連續氣體切換 改善分時多工沈積/领刻製程之裝置,以交替地輸 氣體至沈積/蝕刻腔室與繞過腔室。 又 背景 微機電系統(MEMS)元件的制、Α ^ , 匕仟的製造廣泛地使用於矽 尚深寬比之特徵圖樣,此特 冓 百锨米的深度。為確保其 數 . 了氣纪性,蝕刻製程須於高蝕刻 速羊下知作,以維持適當的 ^ At ^ 里。而為確保有適當的元件 效月b,其側壁平滑度通常 午 X 個關鍵條件。 【先前技術】 傳統的單一步驟電漿蝕 m _ . 亥丨製程無法同時符合這肽需炎 ,因而發展出分時“製_ —為求 製程交替實施,每一飿刻V 積製程連續地與兹刻 it ο α -V Ri ^ 積製裎組合構成一個製程循 %以分時多工(TDM)之方 倨 飞餘刻矽已為Laermer等人提 1305664 =美國專利第5,5()1,893號亦為習知之,,博世(B⑽ ;° i的TDM I虫刻製程於一架構有高密度電聚源, 典型為誘導相合電漿(icp)源,以及射頻⑽偏塵基板電 極之反應器中進行。最常用於矽蝕刻製程的製程氣體 為典型地,六I化硫(sFe)作為㈣ 氣體’而八氟丁烧(c4F8)作為沈積氣體。於韻刻步驟中, SF6有利於自發的石夕等向性㈣,而於沈積步驟中,认有 利於將保漠的聚合層沈積於敍刻結構的側壁與底部上。 TM韻刻/沈積交替製程或,,博世,,製程循環地交替㈣與沈 積製程步驟深寬比結構得以定義於幕罩的石夕基板。 由於蝕刻步驟中具充沛能量與方向性離子的㈣,先前沈 積步驟巾覆蓋於㈣結構底部的聚合_將被移除,而暴 露出矽基板,卩進行進一步的蝕刻。而側壁上的聚合薄膜 仍將存在,因其未受到直接的離子轟擊,目而抑制了側向 蝕刻雖然TDM製程是由多個蝕刻-沈積循環所構成,但 此循環之任一蝕刻或沈積(或兩者)部分皆可被進一步分割 為多步驟區段。藉TDM方法的應甩,而得以將高深寬比的 特徵圖樣以高的S i蝕刻率定義於矽基板内。 習知於傳統TDM㈣製程的過程中,f要製裎調節(習 知技藝之製程轉化)來維持垂直特徵輪廓,尤其是更高的 深寬比。Bhardwaj 等人(U.S.專利 6 〇515〇3)與 等人(U. S.專利6, 284’ 148)指出,於製程開始時增加沈積 速率和/或降低蝕刻速率為可解決此問題之方法。 Bhardwa j指出可以改變TDM製程中各循環與循環間之製程 1305664 氣^IL末達成此沈積/蚀刻速率之調節。 傳統的TDM姓刻裝置是以多個質流控制器(MFC)與隔離 閥的組合來控制氣體輸入製程腔室,於蝕刻區間,SFs ‘‘開 尸(t、應SFe至製程腔室)時常有利於(但非本質的)將沈積 氣體(cj8)排出製程腔室。同樣地,於沈積步驟中,‘‘ 開(供應至製程腔室)時常有利於(但非本質的)將蝕 刻氣體(SFe)排出製程腔室。 習知於製程步驟開始時打開MFc會產生一短壓“衝” 入腔至,直到MFC穩定到設定值。對於較長步驟時間的製 程而言’ “衝”塵力對於製程產生的效應是無關緊要的。 然而’當製裎步驟時間減短時,“衝,’壓力會使製程壓力 於區段製程時間的一顯著部分期間不受控制。對於TDM蝕 刻製耘而$,當區段時間處於每區段5秒鐘的等級時,這 些重複性的壓力衝出會不利地影響製程的再現性與穩定性 。此亦為習知於“關,’狀態將MFC維持在稍低的設定值( 接近/ seem),而非零流量,可改善穩定性。然而,仍需 要-氣體控制系統,以於需要快速重覆氣體組成變化的製 程中,便利穩定系統的操作。 TDM方法對於蝕刻的一個限制是會形成粗糙不平的特 徵側壁,此限制是導因⑤TDM蝕刻製程中使用的週期性蝕 刻/沈積系統,且為習知技藝之側壁“扇形化,,。對彼多 MEMS元件的應用而言,需要將此側壁粗糙或扇形化減 二。TDM蝕刻製程中扇形化的程度通常是測量扇形長度= 深度,扇形長度為粗糙側壁之尖峰與尖峰間的距離,古 旦 13056641305664 发明, invention description: [Related application reference] This application is published in the US Provisional Patent Application No. 60/403, 891, the application date is August 16, 2002, and the name is used by Ming Cong, nickname The high aspect ratio/deep etch sidewall smoothing of the discontinuous gas switching method claims priority and is related thereto, and the contents of this provisional patent application are hereby incorporated by reference. FIELD OF THE INVENTION The present invention relates generally to the field of semiconductor fabrication, and more particularly to a preferred embodiment of the invention for improving time-division multiplex deposition/etching processes using adjustable fast discontinuous gas switching. Gas is alternately delivered to the deposition/etching chamber and bypasses the chamber. BACKGROUND OF THE INVENTION The manufacture of microelectromechanical systems (MEMS) components, Α^, and yttrium are widely used in the aspect ratio of the aspect ratio, which is the depth of a hundred meters. In order to ensure the number of gas, the etching process must be known under high etching speed to maintain the proper ^ At ^. To ensure proper component b, the sidewall smoothness is usually X critical conditions. [Prior Art] The traditional single-step electric erosion m _ . The 丨 丨 process cannot meet the inflammation of the peptide at the same time, thus developing a time-sharing system. Inscribed ο α -V Ri ^ 裎 裎 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 构成 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 , No. 893 is also known, Bosch (B (10); ° i TDM I insect engraving process in a structure with high-density electric polymerization source, typically induced plasma (icp) source, and radio frequency (10) dust substrate electrode The process gas most commonly used in the ruthenium etching process is typically hexafluoride (sFe) as the (iv) gas and octafluorobutane (c4F8) as the deposition gas. In the rhyme step, SF6 is beneficial. Spontaneous Shixi isotropic (IV), and in the deposition step, it is beneficial to deposit the polymeric layer of the aquifer on the sidewall and bottom of the sculpt structure. TM rhyme/deposition alternate process or, Bosch, process cycle Ground alternation (four) and deposition process step width to width ratio structure is defined in the mask Due to the abundant energy and directional ions in the etching step (4), the previous deposition step covers the polymerization at the bottom of the (4) structure, which will be removed, and the germanium substrate is exposed, and further etching is performed. The polymeric film will still be present because it is not subject to direct ion bombardment, thereby inhibiting lateral etching. Although the TDM process consists of multiple etch-deposit cycles, any etching or deposition (or both) of this cycle The part can be further divided into multi-step sections. By the TDM method, the high aspect ratio feature pattern can be defined in the germanium substrate with a high S i etch rate. Conventionally, in the process of the traditional TDM (four) process , f must be adjusted (process transformation of conventional techniques) to maintain vertical feature contours, especially higher aspect ratios. Bhardwaj et al. (US Patent 6 〇 515 〇 3) and others (US Patent 6, 284) '148' indicates that increasing the deposition rate and/or reducing the etch rate at the beginning of the process is a solution to this problem. Bhardwa j points out that the process between cycles and cycles in the TDM process can be changed 1305664 The gas/IL finalizes the adjustment of the deposition/etch rate. The traditional TDM surrogate device uses a combination of multiple mass flow controllers (MFC) and isolation valves to control the gas input process chamber, in the etch zone, SFs '' Opening the body (t, SFe to the process chamber) is often advantageous (but not essential) to discharge the deposition gas (cj8) out of the process chamber. Similarly, in the deposition step, ''open (supply to the process chamber) It is often advantageous (but not essential) to vent the etching gas (SFe) out of the process chamber. It is known that opening the MFc at the beginning of the process step will produce a short pressure "flush" into the chamber until the MFC stabilizes to the set value. For processes with longer step times, the effect of 'punching dust' on the process is irrelevant. However, 'when the manufacturing step time is shortened, the 'rush,' pressure will make the process pressure uncontrolled during a significant portion of the section process time. For TDM etching, $, when the zone time is in each zone At 5 seconds, these repetitive pressure flushes can adversely affect process reproducibility and stability. This is also known in the "off," state to maintain MFC at a slightly lower set point (close to / seem ), rather than zero flow, improves stability. However, there is still a need for a gas control system to facilitate stable system operation in processes that require rapid re-adjustment of gas composition changes. One limitation of the TDM method for etching is the formation of rough feature sidewalls that are caused by the periodic etch/deposition system used in the 5TDM etch process and are "sectorized" to the side walls of the prior art. For the application of MEMS components, the sidewalls need to be roughened or fanned. The degree of fanning in the TDM etching process is usually measured by the fan length = depth, and the fan length is the distance between the peak and the peak of the rough sidewall. Gudan 1305664

接與單-触刻循環期間達成的姓刻深度有關。扇形深 粗糙側j之大峰與低凹處的距離,且直接與單—蝕刻;驟 的非等向r生程度有關。可藉由縮短每一㈣/ 的 持續時間(較短的敍刻/沈積循環,且以高頻率重複“的 將扇形形成的程度減至最低,或是使每一姓刻步: 更為非等向性(例如,使㈣劑與少量純化 蝕刻步驟中)。 了仔任於The connection is related to the depth of the surname reached during the single-touch cycle. The distance between the large peak of the rough side j and the low recess is directly related to the degree of asymmetry of the single-etching; By shortening the duration of each (four) / (short sculpt / deposition cycle, and repeating at high frequency "to minimize the degree of fan formation, or to make each surname step: more non-equal Directional (for example, in the (four) agent with a small amount of purification in the etching step)

除了較平滑的特徵側壁之外,也需要達到更高的 雙㈣速率,簡㈣製程的整體㈣速率可藉由增加 環所花費的時間,或是藉由增進每—㈣循環 二::來提兩,此二方式皆會導致更大扇形與最終 :壁的形成。在傳統的而敍刻製程中,僅能於㈣較粗 趟的側壁時達到較快的錄刻速率,因此,需要一用於 滑特徵側壁時,具較高速率的TDM飯刻製程。 ' 一 y η等人於1 999年在無提供支持訊息下發表宣稱“ 一般而言’較高的功率對愿力比與較短的钮刻週期會傾向In addition to the smoother feature sidewalls, a higher double (four) rate is also required, and the overall (four) rate of the simple (four) process can be increased by increasing the time spent by the loop, or by increasing each of the (four) loops two: Both, these two methods will lead to a larger fan shape and the final: the formation of the wall. In the conventional and engraving process, a faster recording rate can be achieved only for the (four) thicker sidewalls. Therefore, a TDM meal process with a higher rate is required for the sidewall of the sliding feature. 'Y y η et al. published in 1999 without a support message, claiming that "generally" higher power versus willpower ratio and shorter button cycle tend to

於減輕此(扇形)效應”,吾人可輕易瞭解的是:於一給定 的電毁功率等級下’較低的SFe愿力會得到較低的敍刻速 率,較低的c4F8麼力會得到較多的聚合物沈積,隨而產生 車父低的㈣速率。雖然AyQn建議使用較低的循環時間, 但其描述結果僅探究6秒或以上沈積循環時間與^秒或 以上_循環時間的製程範圍,而未揭露於更快時間尺度 控制製程氣體的方法。 於傳統的™姓刻反應器,即使當氣體MFCs於“關,, 10 1305664 狀態Bf被設定於低設定值,其個另"fc的回 實用的製程區段時間要切2秒鐘。因此,⑽^制 更快的氣體切換,以得到較短的製程區段時間。 需要 有許多團隊已發表使用道㈣方法進行深㈣ 結果’這些團隊發表的製程皆❹ 〆 η* 〇 ^ ^ ^ ^更長的沈積循 哀夺曰1 ’且其發表㈣刻時間為1G秒鐘或更長。心 人提出使用快㈣流控制器可得具較短循環時間的 ::::提出使…鐘的沈積週期,以及5秒鐘的钱 招广BI_並未揭露在製程的沈積與钱刻區段過 。,使質流控制器可將㈣與沈積氣體維持於近乎 氣流之氣體切換方法。 亦為習知地’可以非等向性敍刻步驟來取代等向性钮 刻步驟,以將深石夕姓刻中扇形化程度減至最低。例如,在 银刻循環過程中,於蚀刻區段將氧氣(〇2)或氮氣(N2)加入 %乳體’可減緩側壁的钮刻速率(側向钱刻速率)。此減 少的側向㈣是由於㈣】壁上形成了二氧切或氮化物。 =方法雖減少扇形化,但其犧牲了整體的特徵輪庵。請注 思所生成的氧化物或氮化物保護層典型地僅是幾個單層 厚,其會使得製程更難以控制。us.專利 6’3〇3,5l2(Laermer等人)經由使用基於SiF4/〇2之交替製 :化學強調此限制。此技巧之一缺點是需要於電漿中加入 清=氧氣的氣體(例如CHF3,认,Cf4等等),以將蚀刻前 底σ卩上形成的氧化物減至最少,以獲得所需的整體蝕刻 速率6 ’ 3 0 3,512專利並未揭露每區段低於5秒的TDM循 1305664 環時間’或是使用製程氣體旁路管線來幫助使製程區段循 環時間少於5秒。 分時多工麵刻專利(U. S·專利5,501,893,Laermer等 人)揭露氣體切換,5,5〇1,893號專利指出每製程區段以接 近1分鐘的時間長短做氣體切換,但其並未提出使用氣體 旁路g線來抽氣,以及以截止閥作為於蝕刻與沈積步驟間 快速切換製程氣體的工具。To alleviate this (fan) effect, we can easily understand that at a given power-destroy power level, the lower SFe will have a lower characterization rate, and the lower c4F8 will get More polymer deposition, which leads to a lower (four) rate of the car's father. Although AyQn recommends a lower cycle time, the description results only explore the process of deposition cycle time of 6 seconds or more and ^ seconds or more _ cycle time. Scope, but not exposed to faster time scales to control process gas. In the traditional TM surname reactor, even when the gas MFCs are "off, 10 1305664 state Bf is set to a low set value, its other" The time back to the practical process section of fc is 2 seconds. Therefore, (10) enables faster gas switching to achieve shorter process section times. There are a number of teams that have been published using the (4) method for deep (four) results. 'These processes published by these teams are all 〆 * 〇 ^ ^ ^ ^ ^ longer sedimentary 曰 曰 1 ' and its publication (four) engraved time is 1G seconds Or longer. The person proposes to use a fast (four) flow controller to obtain a shorter cycle time:::: propose a deposition cycle of the clock, and 5 seconds of money to recruit BI_ not disclosed in the deposition and money engraving of the process The paragraph has passed. The gas flow switching method that allows the mass flow controller to maintain (4) the deposited gas in a near-flowing manner. It is also customary to replace the isotropic buttoning step with an anisotropic step to minimize the degree of fanning in the deep stone. For example, the addition of oxygen (〇2) or nitrogen (N2) to the % emulsion during the silver engraving cycle slows the button engraving rate of the sidewalls (lateral engraving rate). This reduced lateral direction (four) is due to the formation of dioxins or nitrides on the walls. The = method reduces fanning, but it sacrifices the overall feature rim. Note that the resulting oxide or nitride protective layer is typically only a few single layers thick, which makes the process more difficult to control. US Patent 6'3〇3, 5l2 (Laermer et al.) emphasizes this limitation by using an alternating system based on SiF4/〇2: chemistry. One of the disadvantages of this technique is the need to add a clear = oxygen gas (such as CHF3, Cf4, etc.) to the plasma to minimize the oxide formed on the etched front σ卩 to achieve the desired overall The etch rate 6 ' 3 0 3, 512 patent does not disclose a TDM cycle of 1356664 ring time of less than 5 seconds per segment or use a process gas bypass line to help make the process section cycle time less than 5 seconds. The time-division multiplexed engraving patent (U.S. Patent 5,501,893, Laermer et al.) discloses gas switching, and the 5,5,1,893 patent states that gas switching is performed for each process section in a length of approximately one minute. However, it does not propose the use of a gas bypass g-line for pumping, and a shut-off valve as a tool for rapidly switching process gases between the etching and deposition steps.

Suzuki等人亦揭露一種TDM製程之氣體切換方法 (U. S.專利4, 579, 623) ’ Suzuki提出使用截止閥與針閥來春 進行氣體脈衝,以維持固定的氣體流,截止閥可使氣體氣 體輸人I程腔至或是排出’以防止針闕與腔室截止闊之間 產生壓力。由於使用針閥做氣體切換,Suzuki所揭露的技 術僅限於固定氣體流製程,而不容許“轉化”,如灿並 未揭露可用於循&内或循環間變換氣體流t 了⑽製程之氣 體切換。 'Suzuki et al. also disclose a gas switching method for TDM processes (US Patent 4, 579, 623) 'Suzuki proposes to use a shut-off valve and a needle valve to perform a gas pulse in spring to maintain a fixed gas flow, and the shut-off valve can convert gas gas. The human I cavity is either discharged or discharged to prevent pressure between the needle and the chamber. Due to the use of needle valves for gas switching, the technology disclosed by Suzuki is limited to fixed gas flow processes and does not allow for "conversion". For example, Chan does not disclose gases that can be used to change the gas flow in the process of (10). Switch. '

S讀ki亦提出在氣體未輸入真空腔室(氣體未輸入製 程之“關”循環)期間,於針閥與截止閥間排放氣體,此 排放可防止針間與截止閥間產生壓力。Suzuki並未提出於 關”循環將氣體排至反應區下游相同的腔室,以當製程 氣體循環時間超過時間時’供給”系統更均勾的氣體。 另外,Suzuld雖然提出用氣體切換進行猶環性與重複 性的電漿表面處理製程,Suzuki纟未提出用氣體切換進行 由交替的蝕刻與聚合步驟構成的TDM製程。 6 61)已揭露經由使用S-read ki also proposes to discharge gas between the needle valve and the shut-off valve during the period when the gas is not input into the vacuum chamber (the "off" cycle of the gas not input process), which prevents pressure between the needle and the shut-off valve. Suzuki did not propose to circulate the gas to the same chamber downstream of the reaction zone to supply the system with a more uniform gas when the process gas cycle time exceeded the time. In addition, although Suzuld proposed a gas-repellent and repetitive plasma surface treatment process with gas switching, Suzuki did not propose a gas switching to perform a TDM process consisting of alternating etching and polymerization steps. 6 61) Revealed via use

Heinecke 等人(U. S·專利 4, 935 12 1305664 截止閥與質流控制器(MFCs)的氣體脈衝,He—團隊提 出於IU呈乳體@ MFX之後使用截止閥來將製程氣體形成脈 衝。Heinecke並未提供於“關”㈣供製程氣體繞道的路 徑。Heinecke提出當截止閥處於“關”位置時使mfc “ 開”,以使MFC與閥間的管路形成壓力。如此__來,#閥 打開以供下—個製程循環使用那個氣體,那氣體的“衝” 壓力便釋放到製程腔室。Heinecke並未提出使用繞道路徑 以使得當製程氣體為“關” I態(不被輸入製程腔室)時 ’MFC仍維持纟“開”,而不會在管線中形成塵力。此外Heinecke et al. (U.S. Patent 4, 935 12 1305664 shut-off valves and mass flow controllers (MFCs) gas pulses, He-Team proposes to use a shut-off valve to pulse the process gas after the IU is in the form of a milk body @ MFX. Heinecke did not provide a “close” (four) path for the process gas bypass. Heinecke suggested that mfc should be “opened” when the shut-off valve is in the “off” position to create pressure between the MFC and the valve line. So __ come, The #valve is opened for the next process to recycle the gas, and the "rushing" pressure of the gas is released to the process chamber. Heinecke does not propose to use the bypass path to make the process gas "off" I state (not input) Process chamber) 'MFC still maintains "open" without creating dust in the pipeline.

Heinecke並未提出在循環的蝕刻/沈積製程使用氣體脈 衝。Heinecke did not propose the use of gas pulses in the cyclic etch/deposition process.

Bhardwa】等人(U.S.專利6,〇515〇3)提出用氣體切換 進行於循環内或循環與循環間變換氣體㈣TM飾刻製程 。Bhardwaj並未提出使用氣體旁路管線抽氣,以及使用截 止閥作為於蝕刻與沈積步驟之間快速切換製程氣體的工具 〇Bhardwa et al. (U.S. Patent 6, 〇 515 〇 3) propose to use a gas switching to perform a gas-to-cycle or cycle-to-cycle gas-to-cycle process. Bhardwaj did not propose pumping with a gas bypass line and using a shut-off valve as a tool to quickly switch process gases between etching and deposition steps.

Van Suchtelen等人(u s.專利4 916 〇89)提出將氣體 產生脈衝以進行磊晶沈積。Van Suchtelen雖提出使用質 流控制器,並配合氣體旁路管線來切換氣體,然該等人並 未提出使用氣體脈衝來進行蝕刻製程、運用電漿的製程、 或循環的蝕刻/沈積製程。 【發明内容】 本發明之概述 13 1305664 本發月之一較佳具體實例係指一裝置,用以提供氣體 至-用於沈積與蝕刻製程之腔室。此裝置包含一蝕刻氣體 :應盗’ I有一相關氣體入口,用以提供一蝕刻氣體至腔 至及一相關氣體出口,位於相同真空系統中反應區域之 下游’以排出蝕刻氣體;具有一相關氣體入口之沈積氣體 供應器,提供—沈積氣體至腔室,及—排出沈積氣體之相 關氣體出ϋ,位於相同真空系統中反應區域之下游;以及 :氣體控制切換器’控㈣刻氣體供應器與沈積氣體供應 器’使得氣體人口與氣體排出f架構為#該氣體人口關閉 時’氣體可由氣體排出管流出。氣體控制切換器控制触刻 氣體與沈積氣體由其相關氣體人口往腔室的流動,以使當 氣體開始流入腔室日夺,不會產生壓力脈衝。因此,來自: 關氣體入口往腔至的氣體流得以使氣體以本質固定之壓力 流入腔室。於一尤其鮫伟夕I鹏每 衩隹之具體實例,乳體排出管將由氣 體排出管流出的氣體導入-氣體排出腔室。Van Suchtelen et al. (u s. patent 4 916 〇 89) proposes to pulse a gas for epitaxial deposition. Van Suchtelen, while proposing the use of a mass flow controller and a gas bypass line to switch gases, did not suggest the use of gas pulses for the etching process, the plasma process, or the cyclic etch/deposition process. SUMMARY OF THE INVENTION Overview of the Invention 13 1305664 One preferred embodiment of the present invention refers to a device for providing gas to a chamber for deposition and etching processes. The apparatus includes an etching gas: an associated gas inlet for providing an etching gas to the chamber and an associated gas outlet downstream of the reaction zone in the same vacuum system to discharge the etching gas; having an associated gas a deposition gas supply at the inlet, providing a deposition gas to the chamber, and - an associated gas exiting the deposition gas, downstream of the reaction zone in the same vacuum system; and: a gas control switcher's (four) engraved gas supply and The deposition gas supply 'makes the gas population and the gas discharge f structure as # when the gas population is closed, the gas can flow out from the gas discharge pipe. The gas control switch controls the flow of the etched gas and the deposited gas from its associated gas population to the chamber so that when the gas begins to flow into the chamber, no pressure pulses are generated. Therefore, the flow of gas from the gas inlet to the chamber allows the gas to flow into the chamber at a substantially constant pressure. In a specific example of the 鲛 夕 夕 鹏 鹏 , , , , , , , , , , 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳 乳

本發明另-較佳具體實例係指一氣體供應系統,用』 提供氣體至一製造半導體夕、、 干等體之沈積/蝕刻腔室,該氣體供/ 系統包含一質流控制器,用妲 ^ ^ 用以軚供—氣體流;一氣體入t ,將該質流控制器之氣體導入兮★灶“ 札歷导入5亥沈積/蝕刻腔室;一氣是 旁路’當該氣體入口關閉昧拉 關閉時,接收來自質流控制器的氣避 ’此氣體可以是蝕刻氣體或沈藉海 . 旭^ a,兄槓矾體,以及一不連續氣韻 切換器,控制來自質流控制呆的#规* 貝-徑制盗的矾體流,使得來自該質流Another preferred embodiment of the present invention is directed to a gas supply system for supplying a gas to a deposition/etching chamber for manufacturing semiconductor wafers, dry bodies, etc., the gas supply/system comprising a mass flow controller for ^ ^ used to supply gas flow; a gas into t, the gas of the mass flow controller is introduced into the 灶 ★ stove "Zhao Li introduced 5 Hai deposition / etching chamber; one gas is bypass" when the gas inlet is closed 昧When the pull is closed, the gas from the mass flow controller is received. 'This gas can be an etching gas or a sinking sea. Xu ^ a, a brother bar, and a discontinuous gas switch, control from the mass flow control stay #规 * - - 制 制 矾 矾 , , , , , , , , ,

控制器之氣體流可於該氣體Λ π 斗a A 乳體入口與該氣體旁路之間交替地 脈衝輸入。 14 1305664 本發明之又一較佳且<1*鲁y ”触ώ L 〃體實例係指控制來自質流控制器 之軋體流至半導體製造腔室 衣丨丨龙.E 之方去’以最大化矽基板上蝕 刻溝渠之側壁平滑度。參昭本 所m > A ,、、、奉方去,由質流控制器提供本 貝固疋的氣體流,當氣鞒# 田孔體處於工作狀態時,將該來自質流 控制器之氣體流供應至腔室,冬 至田乳體處於停止工作狀態時 ’將由質流控制器流至胪官备 腔至之氣體流輸出,使得質流控制 盗供應之氣體壓力維持於相對定值。 本發明之又一較伯 JL _杳·七丨γThe gas flow of the controller can be alternately pulsed between the gas π hopper a A milk inlet and the gas bypass. 14 1305664 Another preferred and <1*lu y ” touch ώ L 〃 body example of the present invention refers to controlling the flow of the rolled body from the mass flow controller to the semiconductor manufacturing chamber 丨丨 .. In order to maximize the smoothness of the sidewall of the etched trench on the ruthenium substrate, the reference to the M > A, ,, and Fengfang, the gas flow of the Benbegu 疋 is provided by the mass flow controller, when the gas 鞒# 田孔体When in working state, the gas flow from the mass flow controller is supplied to the chamber, and when the winter solstice milk body is in a stopped state, the gas flow output from the mass flow controller to the sputum preparation chamber is turned to the mass flow, so that the mass flow The gas pressure for controlling the stolen supply is maintained at a relative constant value. Another comparative JL _杳·七丨γ of the present invention

實例係指於一腔室非等向性電 水餘刻石夕之方法,以形成 — 战從側面疋義的凹槽結構,且其内 邛具有平滑的侧壁。參昭太 、 ,',、本方去,提供一反應性蝕刻氣體 脈衝至该腔室,以蝕刻矽,同時 體脈衝,以沈積一聚人居。 ’、 "/合氣 衫 、a δ層。反應性蝕刻氣體與反應性聚合 氣體由質流控制器以本質固定夕、φ、安认山 个負国疋之速率輸出。於至少一蝕刻 步驟與該反應性餘玄丨梟 、 。丨蚀到軋體接觸,以電漿蝕刻該矽之一表面The example refers to the method of a chamber anisotropic electro-hydraulic engraving, in order to form a groove structure with a side-by-side definition, and the inner crucible has smooth sidewalls. Shen Zhaotai, ',, the party goes, provides a reactive etching gas pulse to the chamber to etch the ruthenium while the body is pulsed to deposit a living room. ', "/ aerated shirt, a δ layer. The reactive etching gas and the reactive polymerization gas are output by the mass flow controller at a rate that is substantially fixed, φ, and Anshan. At least one etching step with the reactive Yu Xuan, . Etching to the contact of the rolling body, etching the surface of the crucible with plasma

,並移除矽表面之物質,而形成暴露的表面。於至少一聚 合步驟與該反應性聚合氣體接觸,以聚合至少一聚合物至 該石夕之表面,同時以—聚合層覆蓋於該先前㈣步驟令所 暴露出的表面’因而形成—暫時的㈣中纟,並交替重複 韻刻步驟與聚合步驟。較佳地,反應性則氣體與聚合氣 體於乱體脈衝工作狀態與氣體脈衝停止工作狀態期間,皆 :質地維持於,,此可以提供一氣體旁路來達成,以 當反應性氣體停止產生脈衝時,使反應性氣體得以繞過腔 室之反應區。 上述本發明之具體實例提供數種先前技藝之改善,藉 15 1305664 由輪入製程腔室之蝕刻與沈積氣體壓力變化之最小化,本 發明之具體實例可減少#刻人石夕基板之特徵圖樣側邊上形 成扇形。此外’減少輸入的壓力脈衝可使得姓刻/沈積交 替製程之製程循環時間大為縮短,而縮短製程時間可以增 加f程的生產帛,因而降低最終產物的成本。因此,本發 明實為優於先前技藝之改良。 本發明之詳細說明And removing the material from the surface of the crucible to form an exposed surface. Contacting the reactive polymerization gas in at least one polymerization step to polymerize at least one polymer to the surface of the stone, while covering the surface exposed by the previous (four) step with a polymerization layer - thus forming a temporary (four) Lieutenant, and alternately repeat the rhyming step and the aggregation step. Preferably, the reactivity of the gas and the polymerization gas during the disordered pulse working state and the gas pulse stop working state are: the texture is maintained, which can provide a gas bypass to achieve when the reactive gas stops generating pulses. At this time, the reactive gas is allowed to bypass the reaction zone of the chamber. The above specific examples of the present invention provide several prior art improvements. By 15 1305664, the etching of the wheel-in process chamber and the variation of the pressure of the deposition gas are minimized, and the specific example of the present invention can reduce the characteristic pattern of the engraved stone substrate. A fan shape is formed on the side. In addition, reducing the input pressure pulse can greatly shorten the process cycle time of the surname/deposition replacement process, and shortening the process time can increase the production cycle of the f process, thereby reducing the cost of the final product. Therefore, the present invention is an improvement over the prior art. Detailed description of the invention

本發明之較佳具體實例係指使用可調快速不連續氣骨 切換輸入製程氣體,以改善分時多工蝕刻製程的裝置,^ 架構可經由扇形化的削減而改善側壁平滑度,同時維持s 钮刻率。A preferred embodiment of the present invention refers to a device for improving the time division multiplex etching process using an adjustable fast discontinuous gas bone switching input process gas, which can improve sidewall smoothness through fanning reduction while maintaining s Button engraving rate.

為快速變換供給製程腔室的製程氣體組纟,必須避3 =MFC設定點作大的改變。財發明較佳具體實例所提μ 輪送架構中,可將MFC設定點於㈣與沈積製奉 :驟間維持於近乎固定的程度’同時保持於製程步驟" 、赃大小的自由度,請見圖丨。於新的架構中,打開棄 _ 〇)腔室入口閥4並關閉氣體A(10)腔室旁路閥2, 〇 將^ ’ U計量的第一氣體(氣體A)10輸入製程腔室i 。於需要氣體A(10)不需要氣體β〇2)的製程步驟中,打 ^氣體Β腔室旁路閥8並關閉氣體Β腔室人口閥6,以將 3汁量的氣體β (1 2 )直接輸到排出管2 〇,請見圖 二(:)。腔室的排出管可以是腔室内反應區外任何適合的低 堅曰’腔室的反應區為製程氣體與基板反應的腔室容積。 16 1305664 遐J J rn 體A(10)之製程步驟範例 ” 使用本氣體輸送架構可藉由同 時打開氣體A腔室旁路閥2釦备触n 士 a 勾Z和虱體β腔室入口閥6 ,並同 時關閉氣體A腔室入口閥4如> μ 间4和軋體β腔室旁路閥8, 腔室14内從製程氣體八(10)切拖士· uu)切換成製程氣體B(1 程氣體10或12總是流到排屮其 U表 j徘出官,不是流經腔室14就是 流經旁路1 6和18,故供靡痛躲,Λ 就疋 仏應風體1〇和12的MFC可維捭在 特定的製程設定值,而不會 T、准持在 L N . 會在裝程氧體處於“關,,(#踗 的)狀態的過程中,於教體总^ 得……°和12内形成背壓。值 二二:,圈i之範例顯示腔室旁路氣體流ΜIn order to quickly change the process gas group supplied to the process chamber, it is necessary to avoid a large change in the 3 = MFC set point. In a preferred embodiment of the invention, the MFC can be set at (4) and deposited to maintain a near-fixed degree while maintaining the degree of freedom in the process steps " See Figure 丨. In the new architecture, open the abandon chamber inlet valve 4 and close the gas A (10) chamber bypass valve 2, and enter the first gas (gas A) 10 metered into the process chamber i . In the process step requiring gas A (10) without gas β 〇 2), the gas Β chamber bypass valve 8 is closed and the gas Β chamber population valve 6 is closed to 3 gas amount of gas β (1 2 ) Directly to the discharge pipe 2 〇, see Figure 2 (:). The discharge tube of the chamber may be the chamber of any suitable low-retent chamber outside the reaction zone within the chamber for the chamber volume of the process gas to react with the substrate. 16 1305664 遐JJ rn Example of Process Procedure for Body A(10)" Using this gas delivery architecture, the gas chamber A can be opened by simultaneously opening the gas chamber A bypass valve 2 and the β body β chamber inlet valve 6 And simultaneously close the gas A chamber inlet valve 4 such as > μ 4 and the rolling body β chamber bypass valve 8, and the chamber 14 is switched from the process gas eight (10) to the process gas B. (1) The gas 10 or 12 always flows to the sputum, and the U table is out of the official. It does not flow through the chamber 14 or flows through the bypasses 16 and 18, so it is difficult to hide. The MFC of 1〇 and 12 can be set at a specific process setting, and will not be held by LN. It will be in the process of the process of oxygen in the state of “off, (#踗). The total ^ is ... ° and 12 to form a back pressure. Value 22:, the example of circle i shows the chamber bypass gas flow

皆可改道流至任何適;任一腔室旁路氣體流16和W 循環時間介於!秒以下至數負何循環可介於卜99%,總 【實施方式】 進行==二體實例中’氣體切換的頻率可於製程 不連續的時間=行頻換可於製程中的一個或以上 值得注意的是,M製程中連續進行。亦 示’使用本發明可 厅不之一~氣體例 體產生脈衝。目同方路和抽氣原理使任何數量的氣 於又一具體實衣丨由丄 的製程,其中至發明可應用於使用複數種氣體 少—種製程氣體流於製程過程中不產生脈 17 1305664 衝。從整個製程開始到結束,可將連續流動的氣體流速率 維持固定,或可不連續地或連續地在整個製程中使用傳統 MFC改變之’且至少有一氣體使用本發明產生脈衝,連續 流動的氣體可與產生脈衝的氣體之一相同。All can be diverted to any suitable; any chamber bypass gas flow 16 and W cycle time is between! The cycle below the number to the negative cycle can be 99%, the total [implementation] == two-body example in the 'gas switching frequency can be discontinuous in the process time = line frequency can be one or more in the process It is worth noting that the M process is continuously performed. It is also shown that the pulse can be generated using a gas sample of the present invention. The principle of the same way and the principle of pumping allows any quantity of gas to be processed by another process, wherein the invention can be applied to the use of a plurality of gases - the process gas flow does not generate veins during the process of processing 17 1305664 . From the beginning to the end of the entire process, the continuous flow rate of the gas can be maintained constant, or the conventional MFC can be changed discontinuously or continuously throughout the process and at least one gas can be pulsed using the present invention. The continuously flowing gas can be Same as one of the gases that generate the pulse.

由習知技藝中可知,可將製程循環之蝕刻或沈積部分( 或兩者)分割成多個區段,一範例是將循環的蝕刻部分分 ,兩個區段,可最佳化第一蝕刻循環區段,以從先前沈二 部分移除水平面上的保護聚合薄膜(典型是使用更高的肿 偏壓動力),而第二蝕刻循環區段可被最佳化,以達成高 的Si移除速率(典型是以更高的蝕刻製程壓力、更高的反 :性氣體流、4更高的電漿密度)。因此,本發明用於分 。夺多工製程亦是有利的,其脈衝製程氣體MFC流速不是在 區段内内變換,就是在區段間。 本發明亦可用於其他分時多工參數,例如RF動力、/ 或任何其他製程參數可於同相或異相以不連續氣體㈣ 。仃分時多工,其他時間多工參數並不限於氣體切_As is known in the art, the etching or deposition portion (or both) of the process cycle can be divided into a plurality of segments. One example is to divide the etched portion of the cycle into two segments to optimize the first etch. a circulation section to remove the protective polymeric film on the horizontal plane from the previous sinker (typically using a higher swollen bias power), while the second etch cycle section can be optimized to achieve a high Si shift The rate of removal (typically at higher etch process pressures, higher reverse gas flow, 4 higher plasma density). Therefore, the present invention is used for the division. It is also advantageous to have a multiplex process in which the pulse process gas MFC flow rate is not changed within the zone, or between zones. The invention may also be used with other time-division multiplex parameters, such as RF power, and/or any other process parameters, which may be in-phase or out-of-phase with a discontinuous gas (4).仃 Time-division multiplex, other time multiplex parameters are not limited to gas cutting _

使用本發明’製程氣體組成可藉由隔絕閥於一秒内 決:於本發明中,製程腔室滯留時間,而不是閥回應時 由:TM钱刻可能的最小區段時間。腔室的滯留時間可 短,低製程壓力、增加製程氣體流、或縮小腔室體積來 來蔣!可藉由將隔絕閥放置於靠近製程腔室氣體輸送口. 裎二支管的滯留時間縮到最短,而最小化隔絕閥與: 間的歧管體積可最小化氣體歧管的滞留時間^ 18 1305664 本發明的另一優點是其總氣體流與傳統商業化電毁餘 刻設備的氣體流架構相比較為穩定,其於MFC中的氣體後 方不會有壓力形成,因其永遠為“開”,此避免壓力於氣 體組成改變時“衝”出’可得到較佳的控制能力與穩定性 此處說明之發明可應用於高密度電漿蝕刻製程,像是 ICP(誘導耦合電漿)、ECR(電子迴旋加速共振)、或是如反 應性離子#刻(1?1£)的低密度系統,氣體切換方法可應用 於需隨時間變化一種或更多氣體的蝕刻製程。亦為重要且 需注意的是,即使本方法以深Si蝕刻作範例,其亦可用 於蝕刻其他材料,像是介電材料和金屬,其需要在短的時 間尺度内急遽改變組成的製程。 現參照圖2(a-d),其係依照本發明一較佳具體實例, 其使用 25 sccm c4F8、80 sccm %、2〇 w rie 和 12_ icp的㈣方法來韻刻梦基板,本_ MFC氣體流設定量 、製程屋力、溫度肖RF動力於整個製程皆維持固定,其 循環負荷維持於50%,實際氣體切換時間於圖中為W 秒姓刻/10秒沈積,於圖2⑻中為5秒钮刻々秒沈積、 圖2(c)中為2.5秒敍刻/2.5秒沈積,於_ 2⑷ 、 :::/1:5秒沈積。當使用相當長的沈積/蝕刻循環時, …比溝渠3“則壁32上的扇形3〇报明Using the present invention, the process gas composition can be interrupted by a shut-off valve in one second: in the present invention, the process chamber residence time, rather than the valve response, is caused by: TM money engraving the minimum period of time possible. The chamber's residence time can be short, low process pressure, increased process gas flow, or reduced chamber volume. By placing the isolation valve close to the process chamber gas delivery port. The residence time of the second branch tube is minimized, and the manifold volume between the isolation valve and the: minimizes the residence time of the gas manifold. ^ 18 1305664 Another advantage of the present invention is that its total gas flow is relatively stable compared to the gas flow architecture of a conventional commercial electro-destruction device, and there is no pressure behind the gas in the MFC because it is always "on". This avoids pressure "flushing out" when the gas composition changes. It can obtain better control ability and stability. The invention described here can be applied to high-density plasma etching processes, such as ICP (induced coupling plasma), ECR ( Electron cyclotron resonance), or a low-density system such as reactive ion #1 (1 £1), the gas switching method can be applied to an etching process that requires one or more gases to change over time. It is also important to note that even though the method is exemplified by deep Si etching, it can be used to etch other materials, such as dielectric materials and metals, which require a rapid change in the composition process in a short time scale. Referring now to Figure 2(ad), which is a preferred embodiment of the present invention, which uses a method of 25 sccm c4F8, 80 sccm%, 2〇w rie and 12_icp to engrave the substrate, the _MFC gas stream The set amount, process house force and temperature Xiao RF power are kept constant throughout the whole process, and the cyclic load is maintained at 50%. The actual gas switching time is deposited in the figure for W seconds and 10 seconds, which is 5 seconds in Figure 2 (8). The button engraved with the second deposition, 2.5 seconds for 2.5 seconds in Figure 2(c), and deposited at _ 2(4), :::/1:5 seconds. When using a fairly long deposition/etch cycle, ...the sector 3 on the wall 32 is more pronounced than the trench 3

I:::,而當使用本發明之快速氣體切換時: 大為目、,如⑷和2⑷所示。圖3所示之高解析 M照片顯示,如2⑷所示之1.5秒則/U 19 1305664 秒沈積製程最大的屬形 40,其尖峰到尖峰的 ⑽,尖峰到谷底的深度約為3〇仙。 ^於 值得注意地,製和^ 體切槌眸μ μ , 南蝕刻率5〇可被維持直到氣 二夺間52接近腔室内之氣體滯留時間,如圖4所示 /2^ ^虫刻710秒沈積的循環時間56到2.5秒敍刻 /2:?、沈積的循環時間52,扇形幅度“ ,但蝕刻率5〇仍維持近乎 上 ώΙ 71 _ 于f亙疋於3叫/分,使用1· 5秒蝕 刻/U秒沈積的製程除外,因其_率降低了 5q% 腔室的計算顯示出這此實 $々 —實驗的軋體滯留時間約為1.5秒。 當乳體切換循環時間52接# μί_ ώ 士 雨去6““ 程度時’沈積與姓刻步驟 兩者的效力可能是妥協的。 值得注意的是,以低的CF盥 沒 的_ 5。,且得知_率5〇、:;=^ 古* 』丰50會隨氣體流速加快而升 间’其於固定功率循環下與氣體切換頻率無關。 吾人將瞭解的是’此處說明與描述之本發明特定 ^列僅為示範性實例’各種的變化、更改、取代和相等物 在不偏離本發明之精神與範圍下,皆可為熟知此項技菽之 人所思及。因此,所有此處所描述與顯 : ,其用意僅可視Λ兮昍夕田二外 闽心知的物 1 了視為說明之用’而非限制之意,本發明之範 圍70王由附加之申請專利範圍決定。 【圖式簡單說明】 (一)圖式部分 圖 1 (a-b)為本發明較佳具體實 例之氣體旁路路徑操作 20 1305664 示意圖; 圖2 (a-d)為扇形幅度及其隨矽蝕刻製程中氣體循環時 間縮短所產生的漸進式削減示意圖; 圖3為以本發明較佳具體實例所達成如圖2(d)所示削 減扇形之高解析度示意圖; 圖4(a-b)分別為整體矽蝕刻率對氣體循環時間與扇形 幅度對氣體循環時間之示意圖。 (二)元件代表符號 2 腔室旁路閥 4 腔室入口閥 6 腔室入口閥 8 腔室旁路閥 10 製程氣體 11 MFC 12 製程氣體 13 MFC 14 輸入製程腔室 16 旁路 18 旁路 20 排出管 21I:::, and when using the fast gas switching of the present invention: large, as shown in (4) and 2 (4). The high-resolution M photograph shown in Fig. 3 shows that the maximum shape of the deposition process is 1.5 seconds as shown by 2(4)/U 19 1305664 seconds, and the peak to peak (10), the depth from the peak to the bottom is about 3 〇. ^ Intentionally, the system and the body cut 槌眸μ μ, the south etch rate of 5 〇 can be maintained until the gas entanglement 52 approaches the gas residence time in the chamber, as shown in Figure 4 / 2 ^ ^ insect 710 The cycle time of the second deposition is 56 to 2.5 seconds, the quotation is 2:?, the cycle time of the deposition is 52, and the fan amplitude is ", but the etch rate is 5 〇, which remains near the upper ώΙ 71 _ at f 亘疋 3 / / min, using 1 · Except for the 5 second etch/U sec deposition process, the _ rate is reduced by 5q%. The calculation of the chamber shows that this is the actual 々 - the experimental rolling body retention time is about 1.5 seconds. When the milk switching cycle time 52接#μί_ ώ 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士,:;=^古* 』Feng 50 will increase with the gas flow rate and increase it. It is independent of the gas switching frequency under the fixed power cycle. I will understand that the specific description of the invention described and described here is only Exemplary variations, variations, alterations, and equivalents may be made without departing from the spirit and scope of the invention. Anyone who is familiar with this technology thinks about it. Therefore, all of the descriptions here and below: The purpose of this article is to use only the meaning of the object of the Λ兮昍天田二外闽1 as a description, not a limitation. The scope of the present invention is determined by the scope of the appended patent application. [Simplified illustration of the drawings] (1) Figure 1 (ab) is a schematic diagram of a gas bypass path operation 20 1305664 of a preferred embodiment of the present invention; (ad) is a schematic diagram of the fan-shaped amplitude and the progressive reduction caused by the shortening of the gas circulation time in the etching process; FIG. 3 is a high resolution of the reduced fan shape as shown in FIG. 2(d) by the preferred embodiment of the present invention. Figure 4 (ab) is a schematic diagram of the overall etch rate versus gas cycle time and fan amplitude versus gas cycle time. (2) Component symbol 2 Chamber bypass valve 4 Chamber inlet valve 6 Chamber inlet valve 8 Chamber bypass valve 10 Process gas 11 MFC 12 Process gas 13 MFC 14 Input process chamber 16 Bypass 18 Bypass 20 Discharge pipe 21

Claims (1)

Predicate :)止尽j > 备、申請專利範圍: 1. 一種改良氣體切換之裝置,該裝置包含: 一電漿室; 至少一電漿源,用以於該電漿室内產生一電漿; 一位於該電漿室内之基板支架; 一蝕刻氣體供應器,其具有一相關氣體入口,用以提 供一蝕刻氣體至該電漿室,及一相關氣體旁路,用以排出 該银刻氣體,:) 止尽 j > Preparation, patent application scope: 1. A device for improving gas switching, the device comprises: a plasma chamber; at least one plasma source for generating a plasma in the plasma chamber; a substrate holder located in the plasma chamber; an etching gas supply having an associated gas inlet for supplying an etching gas to the plasma chamber, and an associated gas bypass for discharging the silver engraving gas, 一沈積氣體供應器,其具有一相關氣體入口,用以提 供一沈積氣體至該電漿室,及一相關氣體旁路,用以排出 該沈積氣體;以及 一氣體控制切換器,用以控制該蝕刻氣體供應器與該 沈積氣體供應器中之至少一者,使得該至少一氣體供應器 之該氣體入口與該氣體旁路架構為當該氣體入口關閉時’ 氣體流繞過該電槳室。a deposition gas supply having an associated gas inlet for providing a deposition gas to the plasma chamber, and an associated gas bypass for discharging the deposition gas; and a gas control switch for controlling the gas At least one of the etching gas supply and the deposition gas supply such that the gas inlet of the at least one gas supply and the gas bypass structure are such that the gas flow bypasses the electric pumping chamber when the gas inlet is closed. 2. 如申請專利範圍第1項所述之裝置,其中繞過該電 漿室之該蝕刻氣體供應器與該沈積氣體供應器中之至少一 者被導入電漿室排出管。 3. —種氣體供應系統,用以提供氣體至一製造半導體 之交替沈積/蝕刻腔室,該氣體供應系統包含: 一質流控制器,用以提供一氣體流; 一氣體入口,用以將該質流控制器之氣體導入該沈積/ 蝕刻腔室;以及 一氣體旁路,當該氣體入口關閉時,用以將氣體排出 22 1305664 該質流控制器。 4. 如申請專利範圍第3項所述之氣體供應系統,其中 該氣體更包含一蝕刻氣體。 5. 如申請專利範圍第3項所述之氣體供應系統,其中 該氣體更包含一沈積氣體。 6_如申請專利範圍第3項所述之氣體供應系統,其更 包含一不連續氣體切換器,用以控制來自該質流控制器之 氣體流’使得來自該質流控制器之氣體流可於該氣體入口2. The apparatus of claim 1, wherein at least one of the etching gas supply bypassing the plasma chamber and the deposition gas supply is introduced into the plasma chamber discharge tube. 3. A gas supply system for supplying gas to an alternate deposition/etching chamber for fabricating a semiconductor, the gas supply system comprising: a mass flow controller for providing a gas stream; a gas inlet for The gas of the mass flow controller is introduced into the deposition/etching chamber; and a gas bypass is used to discharge the gas to the mass flow controller 22 when the gas inlet is closed. 4. The gas supply system of claim 3, wherein the gas further comprises an etching gas. 5. The gas supply system of claim 3, wherein the gas further comprises a deposition gas. 6_ The gas supply system of claim 3, further comprising a discontinuous gas switch for controlling a gas flow from the mass flow controller such that a gas flow from the mass flow controller is At the gas inlet 與該氣體旁路之間交替切換。 7. —種控制一來自一質流控制器之氣體流至一半導體 製过腔至之方法,以最大化一矽基板上蝕刻溝渠之側壁平 滑度,該方法包含: 提供一來自該質流控制器之一特定氣體流; 於氣體工作狀態’將來自該質流控制器之該氣體流直 接供應至該半導體製造腔室;以及Switching alternately with the gas bypass. 7. A method of controlling a gas flow from a mass flow controller to a semiconductor via cavity to maximize sidewall smoothness of an etched trench on a substrate, the method comprising: providing a control from the mass flow a specific gas flow; supplying the gas flow from the mass flow controller directly to the semiconductor manufacturing chamber in a gas operating state; 、氣體停止工作狀恶,將來自該質流控制器之該氣 流直接轉向到該半導體製造腔室的排出管。 8·如申請專利範圍帛7項所述之方法,纟中於氣體 止工作狀態將該氣體流從該腔室轉向,以使氣體於該質 控制器出口之壓力維持於相對定值。 9. 一種於一腔室非等向性電漿蝕刻矽之方法,以形 從侧面定義的凹槽結構,且其内部具有平滑的側壁,該 法包含: 反應性钱刻氣體脈 於第一氣體工作狀態,直接提供—The gas stops working and the gas flow from the mass flow controller is diverted directly to the discharge tube of the semiconductor manufacturing chamber. 8. The method of claim 7, wherein the gas flow is diverted from the chamber in a gas-operated state to maintain a constant pressure of the gas at the outlet of the mass controller. 9. A method for anisotropic plasma etching of a chamber, the groove structure defined from the side, and having smooth sidewalls therein, the method comprising: reactive gas engraved gas to the first gas Working status, directly provided - 23 1305664 衝至该腔室,以蝕刻矽,同時交替於第二氣體工作狀態, 直接提供一反應性聚合氣體脈衝至該腔室,以沈積一聚合 - 層; 於第一氣體停止工作狀態,經由一反應性氣體旁路將 S亥反應性蝕刻氣體直接轉向到與該腔室呈流體相通的排出 官,以及於第二氣體停止工作狀態,經由一聚合氣體旁路 將該反應性聚合氣體直接轉向到該腔室的該排出管; 於至少一蝕刻步驟,於第一氣體工作狀態下將該矽與 該反應性蝕刻氣體接觸,以電漿蝕刻該矽之一表面,並移 _ 除矽表面之物質,而形成暴露的表面; 於至少一聚合步驟,於第二氣體工作狀態下將該矽與 該反應性聚合氣體接觸,以聚合至少一聚合物至該矽之表 面,同時以一聚合層覆蓋於該先前蝕刻步驟中所暴露出的 表面,因而形成一暫時的蝕刻中止;以及 交替重複該蝕刻步驟與該聚合步驟。 1 〇 ·如申請專利範圍第9項所述之方法,其中於該蚀刻 步驟中,該反應性蝕刻氣體脈衝為不連續產生之脈衝。 鲁 11. 如申睛專利範圍第9項所述之方法,其中於沈積步 驟中,該反應性聚合氣體脈衝為不連續產生之脈衝。 12. 如申請專利範圍第9項所述之方法,其更包含於該 第-氣體工作狀態與該第一氣體停止工作狀態期間,於一 反應性f流控制器出口處本質地維持該反應性姓刻氣 體於一定壓。 13. 如申請專利範圍第9項所述之方法,其更包含於該 24 1305664 二氣體停止工作狀態期間,於一 口處本質地維持該反應性聚合氣 第二氣體工作狀態與該第 反應性聚合質流控制器出 體於一定壓。 。月專利轭圍第9項所述之方法,1中於$室 斤 電水蝕刻矽更包含變換一個或以上下列夂M. 軋體流速、腔宮厭+ >數. 亲率、 電聚功率、基板偏壓、餘刻速率、 匕貝t、循王辰時間、以及蝕刻/沈積之時間比。23 1305664 flushing into the chamber to etch the crucible while alternately operating in the second gas state, directly providing a reactive polymerization gas pulse to the chamber to deposit a polymerization layer; after the first gas is stopped, via A reactive gas bypass directs the S-reactive etching gas directly to the discharge officer in fluid communication with the chamber, and the second gas is stopped, and the reactive polymerization gas is directly diverted via a polymerization gas bypass. The discharge tube to the chamber; contacting the ruthenium with the reactive etching gas in a first gas working state in at least one etching step to plasma etch one surface of the crucible, and shifting the surface of the crucible Forming an exposed surface; contacting the ruthenium with the reactive polymerization gas in a second gas working state in at least one polymerization step to polymerize at least one polymer to the surface of the crucible while covering with a polymeric layer The surface exposed in the previous etching step thus forms a temporary etch stop; and the etching step and the polymerization step are alternately repeated. The method of claim 9, wherein the reactive etching gas pulse is a discontinuous pulse generated in the etching step. The method of claim 9, wherein the reactive polymerization gas pulse is a discontinuous pulse during the deposition step. 12. The method of claim 9, further comprising maintaining the reactivity substantially at the outlet of a reactive f-flow controller during the first gas operating state and the first gas shutdown state The surname is engraved with a certain pressure. 13. The method of claim 9, further comprising maintaining the second gas working state of the reactive polymerization gas and the first reactive polymerization at one mouth during the 24 1305664 two gas shutdown state The mass flow controller is produced at a certain pressure. . The method described in Item 9 of the patent yoke of the month, in which the etched $ 于 包含 包含 包含 包含 包含 变换 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , substrate bias, residual rate, mussel t, cycle time, and etching/deposition time ratio. -個1 或5·:::Λ利範圍第14項所述之方法,其中該變換 ’,數係於每一製程循環中實施。 、 16·如申請專利範圍帛14項所述之方法, -個或以上參數係於製程循環中實施。 …交換 項所述之方法’其更包含—步 ,將該反應性蝕刻氣體由—質 1 7 ·如申清專利範圍第g 驟:以一本質卜[5! — u + 十貝上囡疋的速率 流控制器輪出。 18.如申請專利範 驟.以一本質上固定 流控制器輪出。 圍苐9項所述之方法,其更包含 的速率,將該反應性聚合氣體由 —步 —質- 1 or 5:::: The method of claim 14, wherein the transformation ', the number is implemented in each process cycle. 16. If the method described in claim 14 is applied, one or more parameters are implemented in the process cycle. ...the method described in the exchange item's further includes the step of, the reactive etching gas is made of -1 1 · If the patent scope of the patent clears the g-th step: with an essence of [5! - u + ten shells The rate flow controller is turned out. 18. As in the patent application form, an essentially fixed flow controller is rotated. The method of claim 9, which further comprises a rate of the reactive polymeric gas from 拾壹、圖式: 如次頁Pick up, pattern: like the next page
TW92122472A 2002-08-16 2003-08-15 Sidewall smoothing in high aspect ratio/deep etching using a discrete gas switching method TWI305664B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US40389102P 2002-08-16 2002-08-16

Publications (2)

Publication Number Publication Date
TW200405457A TW200405457A (en) 2004-04-01
TWI305664B true TWI305664B (en) 2009-01-21

Family

ID=45071197

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92122472A TWI305664B (en) 2002-08-16 2003-08-15 Sidewall smoothing in high aspect ratio/deep etching using a discrete gas switching method

Country Status (1)

Country Link
TW (1) TWI305664B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557197B2 (en) 2014-10-17 2020-02-11 Lam Research Corporation Monolithic gas distribution manifold and various construction techniques and use cases therefor
US10215317B2 (en) 2016-01-15 2019-02-26 Lam Research Corporation Additively manufactured gas distribution manifold

Also Published As

Publication number Publication date
TW200405457A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
EP1543540B1 (en) Sidewall smoothing in high aspect ratio/deep etching using a discreet gas switching method
TWI326112B (en) A method and apparatus for reducing aspect ratio dependent etching in time division multiplexed etch processes
US7223701B2 (en) In-situ sequential high density plasma deposition and etch processing for gap fill
CN109906500A (en) The side SiN of selectivity is to indent
TW201023235A (en) A remote plasma clean process with cycled high and low pressure clean steps
EP1420438A2 (en) Method and apparatus for etching a deep trench
TW201005822A (en) Method and apparatus of a substrate etching system and process
Chabloz et al. Improvement of sidewall roughness in deep silicon etching
CN102459704A (en) Method and apparatus for etching
EP1357584A3 (en) Method of surface treatment of semiconductor substrates
Akashi et al. Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask
CN104025246B (en) Pressure control valve assembly of plasma processing chamber and rapid alternating process
TW200806567A (en) Method of deep etching
Dixit et al. Effect of SF6 flow rate on the etched surface profile and bottom grass formation in deep reactive ion etching process
Iliescu et al. Low stress PECVD—SiNx layers at high deposition rates using high power and high frequency for MEMS applications
US5846886A (en) Metal film etching method
TWI305664B (en) Sidewall smoothing in high aspect ratio/deep etching using a discrete gas switching method
US20130203259A1 (en) Pressure control valve assembly of plasma processing chamber and rapid alternating process
Shul et al. Selective deep-Si-trench etching with dimensional control
JP2008243918A (en) Dry etching method
US8685266B2 (en) Monocyclic high aspect ratio titanium inductively coupled plasma deep etching processes and products so produced
Lai et al. Scalloping minimization in deep Si etching on Unaxis DSE tools
CN110211870A (en) Wafer thining method
CN112041966A (en) Topographically and regioselectively ALD using fluorocarbon blocking layers
JP2019532512A (en) Apparatus and method for anisotropic DRIE etching using fluorine gas mixture

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent