TWI305334B - Method for the transition of liquid crystal display - Google Patents

Method for the transition of liquid crystal display Download PDF

Info

Publication number
TWI305334B
TWI305334B TW094130265A TW94130265A TWI305334B TW I305334 B TWI305334 B TW I305334B TW 094130265 A TW094130265 A TW 094130265A TW 94130265 A TW94130265 A TW 94130265A TW I305334 B TWI305334 B TW I305334B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal display
voltage
state
electrode
Prior art date
Application number
TW094130265A
Other languages
Chinese (zh)
Other versions
TW200713170A (en
Inventor
Jung Chieh Cheng
Chao Dong Syu
Original Assignee
Chunghwa Picture Tubes Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Picture Tubes Ltd filed Critical Chunghwa Picture Tubes Ltd
Priority to TW094130265A priority Critical patent/TWI305334B/en
Priority to DE102006020211A priority patent/DE102006020211A1/en
Priority to GB0608763A priority patent/GB2429823A/en
Priority to FR0651862A priority patent/FR2890459A1/en
Publication of TW200713170A publication Critical patent/TW200713170A/en
Application granted granted Critical
Publication of TWI305334B publication Critical patent/TWI305334B/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • G09G2300/0478Details of the physics of pixel operation related to liquid crystal pixels
    • G09G2300/0491Use of a bi-refringent liquid crystal, optically controlled bi-refringence [OCB] with bend and splay states, or electrically controlled bi-refringence [ECB] for controlling the color
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0245Clearing or presetting the whole screen independently of waveforms, e.g. on power-on
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • G09G2310/063Waveforms for resetting the whole screen at once
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/066Waveforms comprising a gently increasing or decreasing portion, e.g. ramp
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/026Arrangements or methods related to booting a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

1305334 16605twf.doc/r 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種顯示器狀態轉換的方法,且特別 是有關於一種適於使光學自我補償雙折射型(〇pticaUy compensated birefringence ’ OCB)液晶顯示器進行快速轉態 的狀態轉換的方法。 ~ 【先前技術】 液晶顯示器根據所使用的液晶種類、驅動方式與光源 配置位置專的不同而區分成許多種類。其中,光學自我補 償雙折射型(Optically Compensated Birefringence,OCB)液 晶顯示器具有快速的反應速度,可提供電腦於播放動晝或 電影等快速變化之連續晝面時,更加流暢之晝面表現,所 以其非常適合於高階液晶顯示器的應用。但是光學自我補 償雙折射型液晶顯示器(以下稱OCB液晶顯示器)必須 讓光學自我補償雙折射型液晶分子(以下稱液晶分 子)經由展曲態(Splay state)轉換到彎曲態(Bend state)後, 才能進入待機狀態,而提供快速反應之工作表現。 圖1A繪示為展曲態的〇cb液晶分子示意圖。圖 所繪示為彎曲態的OCB液晶分子示意圖。請共同參照圖 1A與圖1B ’習知的0CB液晶顯示器100具有〇cB液晶 分子130’其配置於彩色濾光基板110( c〇1〇r fllter substrate ) 與薄膜電日日體陣列基板120 (thin film transistor array substrate)之間。其中,彩色濾光基板11()具有一第一電 極112 (common electrode),而薄膜電晶體陣列基板120 51305334 16605twf.doc/r IX. Description of the Invention: [Technical Field] The present invention relates to a method for state transition of a display, and more particularly to an optical self-compensating birefringence type (〇pticaUy compensated birefringence) 'OCB) Liquid crystal display for fast transition state transitions. ~ [Prior Art] The liquid crystal display is divided into many types depending on the type of liquid crystal used, the driving method, and the position of the light source. Among them, the optical self-compensating Birefringence (OCB) liquid crystal display has a fast response speed, and can provide a smoother performance of the computer when playing a continuous change such as a moving movie or a movie, so that Ideal for high-end LCD applications. However, an optical self-compensating birefringence type liquid crystal display (hereinafter referred to as an OCB liquid crystal display) must allow optical self-compensating birefringent liquid crystal molecules (hereinafter referred to as liquid crystal molecules) to be converted to a Bend state via a Splay state. In order to enter the standby state, and provide a quick response performance. FIG. 1A is a schematic view showing a 〇cb liquid crystal molecule in a stretched state. The figure shows a schematic diagram of the OCB liquid crystal molecules in a curved state. Referring to FIG. 1A and FIG. 1B together, the conventional OCB liquid crystal display 100 has 〇cB liquid crystal molecules 130' disposed on a color filter substrate 110 (c〇1〇r fllter substrate) and a thin film electric solar array substrate 120 ( Between thin film transistor array substrate). The color filter substrate 11 () has a first electrode 112, and the thin film transistor array substrate 120 5

1305334 16605tw£doc/r 具有多數第二電極122 (在此僅繪示一個)。如圖ία所繪 示,當未施加電壓到第一電極112與第二電極122上時, OCB液晶分子130因未受到外加之電場作用,而以展曲態 方式排列。然而,如圖1Β所繪示,當〇CB液晶顯示器1〇〇 欲進入待機狀態時,必須對第一電極112與第二電極 分別施加電壓,而造成一垂直彩色濾光基板11〇以及薄膜 電晶體陣列基板120的轉態電場e,因受到垂直轉態電場 E的影響,OCB液晶分子130將漸漸轉變為彎曲態。 但是,習知的OCB液晶顯示器1〇〇若要正常驅動, 需要數分鐘的時間來進行這個轉態過程,即在進入待機狀 態剷,需要長時間暖機(warm up)。所以,這對於〇cb、夜 晶顯示器100所應具備之隨開即用的特性十分不利。= 此’要讓OCB液晶顯示器100更容易為消費者所接受, 快速轉態(Fast transition)是必須的。 、 ^習知技術中,使0CB液晶分子從展曲態快速轉離糾 ¥曲態的方法大致可分成三類設計。第—種方法是:ζ 濾、光基板110與薄膜電晶體陣列基板m之間施加I 壓,如圖1B所繪示。當0CB液晶分子13〇受到雷=二 造成之高轉態電場E的作用時,qCb液晶分子13二 地從展曲態轉換到彎曲,態。但是,此種施加高電壓广 其可對應使㈣源_動日日日片(WeeIC)較少万 這種方式也比較耗電。 利用 而第二種方法是添加聚合物到 0CB液晶分子的預傾角(pre_tilt OCB液晶層中而增加 Angle)。此方法是利 1305334 16605twf.d〇c/r ^添加會對%外光反應的聚合物,以穩定⑻B液晶分子 。此預傾角可用來控制液晶分子的傾倒方向,也 ,,液晶分子的長軸與電場的方向具有—傾斜角度, 、而使彈性力能夠快速在〇CB液晶分子之間傳遞。但是, 添加^合物的製程較為複雜,且量產可行性不高。1305334 16605 tw £doc/r has a plurality of second electrodes 122 (only one is shown here). As shown in Fig. ία, when no voltage is applied to the first electrode 112 and the second electrode 122, the OCB liquid crystal molecules 130 are arranged in a stretched state because they are not subjected to an applied electric field. However, as shown in FIG. 1A, when the 〇CB liquid crystal display 1 is intended to enter a standby state, a voltage must be applied to the first electrode 112 and the second electrode, respectively, to cause a vertical color filter substrate 11 and a thin film. The transitional electric field e of the crystal array substrate 120 is gradually affected by the vertical transition electric field E, and the OCB liquid crystal molecules 130 are gradually transformed into a curved state. However, if the conventional OCB liquid crystal display 1 is to be driven normally, it takes several minutes to perform this transition process, that is, when entering the standby state, it takes a long time to warm up. Therefore, this is very disadvantageous for the on-off characteristics that the 〇cb and the night crystal display 100 should have. = This makes the OCB LCD 100 more acceptable to consumers, and a fast transition is a must. In the conventional technique, the method of rapidly shifting the 0CB liquid crystal molecules from the curved state to the corrected state can be roughly divided into three types of designs. The first method is: ζ filtering, applying an I pressure between the optical substrate 110 and the thin film transistor array substrate m, as shown in Fig. 1B. When the 0CB liquid crystal molecule 13 is subjected to the high-transition electric field E caused by Ray=2, the qCb liquid crystal molecule 13 is switched from the expanded state to the curved state. However, such a high voltage application can be used to make (4) source_days (WeeIC) less than 10,000. This method is also relatively power-hungry. The second method is to add a polymer to the pretilt angle of the 0CB liquid crystal molecules (in the pre_tilt OCB liquid crystal layer to increase the Angle). This method is a 1305334 16605 twf.d〇c/r ^ added polymer that reacts with % external light to stabilize the (8) B liquid crystal molecules. The pretilt angle can be used to control the tilting direction of the liquid crystal molecules. Also, the long axis of the liquid crystal molecules has an oblique angle with the direction of the electric field, so that the elastic force can be rapidly transferred between the 〇CB liquid crystal molecules. However, the process of adding a compound is complicated and the feasibility of mass production is not high.

第三種方法是經由特殊的晝素設計(pixel design),使 β刀區,域-曲電場,而加速。CB液晶分子的轉態。 此方法疋在第二電極或第一電極上形成狹缝(slit)或是凸 起物(protrusion)以改變電場方向,其造成彎曲的電場將 可加速OCB液晶分子轉態的過程。但是,這種方法在晝 素的设計上較為複雜,且具有—定的製程困難度。 【發明内容】 、&有鑑於此,本發明的目的就是在提供一種液晶顯示! 狀態轉換的方法’適独減及/或低壓的電壓轉光學$ 償雙折射黯晶顯示器,進碰QCB液晶分子快速地〇 展曲態轉換到彎曲態,而縮短暖機時間。 ㈣目的或其他目的,本發明提出一種液晶顯7 二狀悲轉換的方法,適於驅動一液晶顯示器,其中液晶邊 示器〇括液阳顯示面板,而液晶顯示面板包括一第一 $ 極、-第二電極與位於第一電極與第二電極之間的: 液晶層。此液;顯示器狀態轉換的方; 進饤預‘,』垃步驟,其施加一參考電壓至第一卜、 =動=第二電極上,以在第—電極與二電; 之間形成-_場’其中驅動電壓之頻率為_電壓狗 1305334 16605twf.d〇c/r 變動之週期頻率波。 小於之—_實劇’上述之驅動«之頻率 ,照本發明之—較佳實施例,上述之 之 介於〇.2Hz到50Hz之間。 〜[之頻率 第一 發明之—較佳實施例,上述之驅動電壓具有- 私3"準位與一第二電壓準位,而該驅動電壓在& 位與該第二電壓準位之間變動,且該第f = ,、δ亥第二電壓準位之壓差小於等於30V。 依照本發明之一較佳實施例,上琉 一脈衝方波電壓。上34之‘轉電壓可以是 依照本發明之—钱實施例,上述 一脈衝三角波電壓。 勒包反可以疋 -脈彳 較佳實施例,上述之轉電壓可以是 -直-ΐϊΐ㈣之—較佳實劇’上述之參錢壓可以是 依照本發明之一較佳f y彳, 例如是介於。㈣10VJ 这之參考軸大小 依,本發明之—較佳實施例,上述· 電壓之壓差例如是小於等於爾。 屯1、參考 依照本發明之-較佳實施例,上述 轉換的方法,更包括進行 至咳液曰,,,貝々观其&供—影像訊號 曰如面板’以使該液晶顯示器回應該影像訊號而 1305334 I6605twf.doc/r 顯示一影像。 依照本發明之一較佳實施例,上述之液晶顯 轉換的方法,其中液晶顯示器更包括-背光模組,^德 顯不步驟時,更包括開啟此背光模組。 田進行 一 發明之—較佳實施例,上述之液晶顯示n ^ 一光子自我補償雙折射型液晶顯示器。 °匕括 依照本發明之一較佳實施 f 一彩㈣域板《及-包 極是設置在彩色縣基板上,第二電極是 ^弟1 。第一電極可以是-共用電極。第二Ϊ 括多數晝素電極。 %極包 本發明在液晶顯示器的預點燈步驟中,施 或低壓的鶴於其巾—電極上,讀位於兩1頻及/ 曲態,進而夜曰曰層月匕夠快速地由展曲態轉換為彎 ^ 、、伤紐液日日顯示器的暖機時間。 為,本發明之上述和其他目的、特 易Μ,下文特舉較祛訾 ^此*又匁顯 明如下。 乜貫施例,並配合所附圖式,作詳細說 【實施方式】 的轉^=:;:示!時,先形成™, 中的液晶分子能夠忿光學補償雙折射型液晶層 a es _ 刃咴連地由展曲態轉換為彎曲態,進而綠 作直:’非:态的暖機時間。以下將舉實施例說明本發明, 仁/、並_以限定本發明,熟f此技藝者可依照本發明气 1305334 16605twf.doc/r 精神對下述實施例稍做修飾,惟其仍屬於本發明之範圍。 以下將先舉實施例配合圖式說明本發明所欲驅動之液晶顯 示器。The third method is to accelerate the β-knife, domain-curved electric field, through a special pixel design. The transition state of CB liquid crystal molecules. The method 形成 forming a slit or protrusion on the second electrode or the first electrode to change the direction of the electric field, which causes a curved electric field to accelerate the transition of the OCB liquid crystal molecules. However, this method is complicated in the design of the element, and has a certain degree of process difficulty. SUMMARY OF THE INVENTION In view of the above, the object of the present invention is to provide a liquid crystal display! state transition method 'suitable to reduce and / or low voltage voltage to optical compensation birefringent twin crystal display, touch QCB liquid crystal The molecules rapidly transition to a curved state and shorten the warm-up time. (4) For the purpose or other purposes, the present invention provides a liquid crystal display 7 dimorphic conversion method, which is suitable for driving a liquid crystal display, wherein the liquid crystal display device includes a liquid positive display panel, and the liquid crystal display panel includes a first $ pole, a second electrode and a liquid crystal layer between the first electrode and the second electrode. The liquid; the state of the display state transition; the advancement step, the application step, which applies a reference voltage to the first b, = move = the second electrode to form a -_ between the first electrode and the second electrode; The frequency of the field where the driving voltage is _voltage dog 1305334 16605twf.d〇c/r varies the periodic frequency wave. Less than the frequency of the above-mentioned driving «, according to the preferred embodiment of the present invention, the above is between 〇.2 Hz and 50 Hz. 〜[The frequency of the first invention - the preferred embodiment, the driving voltage has a - private 3 " level and a second voltage level, and the driving voltage is between the & bit and the second voltage level The variation is that the voltage difference between the second voltage level of the f = and δ is less than or equal to 30V. In accordance with a preferred embodiment of the invention, a pulsed square wave voltage is applied. The 'turning voltage' of the upper 34 may be a pulsed triangular wave voltage as described above in accordance with the present invention. The preferred embodiment of the present invention is that the above-mentioned voltage can be - straight - ΐϊΐ (four) - preferably the actual drama - the above-mentioned parameter can be a preferred fy in accordance with the present invention, for example, to. (4) Reference axis size of 10 VJ According to the preferred embodiment of the present invention, the voltage difference of the above-mentioned voltage is, for example, less than or equal to er.屯 1. Referring to the preferred embodiment of the present invention, the method of converting further includes performing a cough solution, and, for example, a video signal such as a panel to cause the liquid crystal display to respond. Image signal and 1305334 I6605twf.doc/r displays an image. According to a preferred embodiment of the present invention, in the liquid crystal display conversion method, the liquid crystal display further includes a backlight module, and when the step is not displayed, the backlight module is further turned on. Field Inventively, a preferred embodiment, the above liquid crystal display n^-photon self-compensating birefringence type liquid crystal display. According to a preferred embodiment of the present invention, a color (four) domain plate "and - an envelope is disposed on a color county substrate, and a second electrode is a brother 1 . The first electrode may be a common electrode. The second includes a plurality of halogen electrodes. According to the invention, in the pre-lighting step of the liquid crystal display, the low-voltage crane or the low-voltage crane is placed on the towel-electrode, and the reading is located in the two-frequency and/or the curved state, and the night-time layer is fast enough to be composed by the singer. The state is converted to a warming time of the display of the curved day and the new day. The above and other objects and features of the present invention are set forth below.乜 施 , , , , , , , , , , 施 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 配合 TM TM TM TM TM TM TM The blade is transformed from a curved state to a curved state, and then the green is straight: 'non-state warm-up time. The invention will now be described by way of examples, which are intended to limit the invention, and the skilled artisan may modify the following examples in accordance with the spirit of the invention 1305334 16605 twf.doc/r, but still belong to the present invention. The scope. Hereinafter, the liquid crystal display to be driven by the present invention will be described with reference to the drawings.

圖2繪示為本發明之較佳實施例中一種光學補償雙折 射型液晶顯示器的剖面示意圖。請參照圖2,液晶顯=器 20〇包括一液晶顯示面板210與一背光模組220,其中,液 晶顯示面板210包括有一第一電極212、多個第二電極 與位於第一電極212與第二電極214之間的一光學自我補 償雙折射型液晶層216。第一電極212是形成在基板2〇2 上,此基板202例如是彩色濾光基板;而第二電極214是 开/成在另一基板204上,此基板204例如是薄膜電晶體陣 列基板。在一實施例中,若液晶顯示器2〇〇是一主動式液 :頁示器,苐一電極212疋一共用電極,而第二電極214 是多個畫素電極(圖中只晝出其中一個畫素電極),且每一 晝素電極會和一主動元件(例如是薄膜電晶體)電性連接。 在另一較佳實施例中,在第一電極212與基板2〇2之間更 包括形成有一彩色濾光層213。此外’背光模組22〇則配 置於液晶顯示面板210的下方,以提供液晶顯示器2〇〇顯 不影像所需之光線。 ‘ 圖3 I會示為本發明之較佳實施例中一種光學補償雙折 $型液晶顯示器的狀態轉換的方法之步驟流程圖。請同時 圖2與圖3 ’此液晶顯示器的狀態轉換的方法幻〇〇是 進行—預點燈步驟S310,其施加一參考電壓(Ve⑽)至第 兒極212上並施加一驅動電壓(Vdrive)至第二電極214 1305334 16605twf.doc/r i 極212與第二電極214之間形成-轉態電 :,件〜的是,驅動電壓(Vddve)之頻率為一電壓 準位變動之週義率波。在一實施彳 : 之頻率小於等於遍Z,更佳的是,^^動;^ (U 0 2H7 5.1 sou 此驅動電壓之頻率介於 S300 _ ^之間。另外,此液晶顯示器狀態轉換的方法 例如更包括進行一顯示步驟S32 號至液晶顯示面 〇, 私像汛 j而‘4不-影像’並且’當進行顯示步驟s32〇時 =啟背域組,叹録轉㈣板2 明光線。 厂而<”、、 #姑^別是’本發明可利用多種不同的施加電壓方式來形 = 以下將舉實施例說明之。圖4到輯示 驅峨=:!之光學贿折射型液晶顯示器的 同% &以及3先权纟且驅動電壓之波形示意圖。請先參照 二4 ^在-較佳實施例中,驅動電壓υ以是一脈衝方 /電壓。在進行預點燈步驟s31〇時,會使驅動電壓V =作用。此‘_電雙具有—第—電屡準位 第一電壓準位vdrive2,而驅動電廢vdrive在第一電壓辞 位Vddvel與第二電壓準位之間變動,且第一電壓辟 位Vddvel與第二電壓準位之壓差例如是小於等灰 5〇V值得注意的是,驅動電壓Vdrive之頻率是小於等灰 5〇Hz,也就是說,液晶顯示器200可以在低頻的狀態下 被驅動。在一較佳貫施例中,為使如圖2所纟會示之光學自 我補償雙折射型液晶層216快速地由展曲態轉換成彎連 1305334 166051wf. doc/r 態,此驅動電壓vdHve 間。 ^频率例如是介於〇.2Hz到 50Hz^2 is a cross-sectional view showing an optically compensated birefringent type liquid crystal display device in accordance with a preferred embodiment of the present invention. Referring to FIG. 2, the liquid crystal display panel 210 includes a liquid crystal display panel 210 and a backlight module 220. The liquid crystal display panel 210 includes a first electrode 212, a plurality of second electrodes, and a first electrode 212 and a second electrode. An optical self-compensating birefringent liquid crystal layer 216 between the two electrodes 214. The first electrode 212 is formed on the substrate 2〇2, which is, for example, a color filter substrate; and the second electrode 214 is opened/on another substrate 204, such as a thin film transistor array substrate. In one embodiment, if the liquid crystal display 2 is an active liquid: a pager, the first electrode 212 is a common electrode, and the second electrode 214 is a plurality of pixel electrodes (only one of the pixels is shown in the figure) The pixel electrode), and each of the halogen electrodes is electrically connected to an active component (for example, a thin film transistor). In another preferred embodiment, a color filter layer 213 is further formed between the first electrode 212 and the substrate 2〇2. In addition, the backlight module 22 is disposed under the liquid crystal display panel 210 to provide light required for the liquid crystal display 2 to display an image. FIG. 3I is a flow chart showing the steps of a method for state transition of an optically compensated bi-fold type liquid crystal display in a preferred embodiment of the present invention. Please also Fig. 2 and Fig. 3 'The method of state transition of the liquid crystal display is illusory--pre-lighting step S310, which applies a reference voltage (Ve(10)) to the second pole 212 and applies a driving voltage (Vdrive). To the second electrode 214 1305334 16605twf.doc / ri pole 212 and the second electrode 214 form a transition state:, the piece ~ is, the frequency of the driving voltage (Vddve) is a voltage level fluctuation of the rate wave . In an implementation 彳: the frequency is less than or equal to the pass Z, and more preferably, ^^ move; ^ (U 0 2H7 5.1 sou The frequency of the drive voltage is between S300 _ ^. In addition, the method of state transition of the liquid crystal display For example, it further includes performing a display step S32 to the liquid crystal display area, a private image 而j and a '4 no-image' and 'when performing the display step s32〇=initiating the domain group, the sighing (four) board 2 clear light. The factory can be used in a variety of different applied voltage modes. The following will be described by way of examples. Figure 4 is an illustration of the optical brittle refractive liquid crystal of the drive: =! A schematic diagram of the waveforms of the same % & 3 and the driving voltage of the display. Please refer to the second 4 - in the preferred embodiment, the driving voltage υ is a pulse side / voltage. In the pre-lighting step s31 When 〇, the driving voltage V = will be applied. This '_ electric double has - the first electric level is the first voltage level vdrive2, and the driving electric waste vdrive is at the first voltage level Vddvel and the second voltage level Between the changes, and the voltage difference between the first voltage level Vddvel and the second voltage level is, for example, small It is worth noting that the frequency of the driving voltage Vdrive is less than 5 Hz Hz, that is, the liquid crystal display 200 can be driven in a low frequency state. In a preferred embodiment, The optical self-compensating birefringent liquid crystal layer 216 as shown in FIG. 2 is rapidly converted from the expanded state to the bent 1305334 166051wf. doc/r state, and the driving voltage is between vdHve. ^ The frequency is, for example, between 〇. 2Hz to 50Hz^

的43=圖2與圖4,施加在第-電_上 的麥考電壓乂⑺“列如是一 + 上 較佳實施例中,參考電壓,、,、、、—固定值,在- 之間,其較佳的參^^的θ介於0^lov 動電壓Vdrive與參考電:疋之 诚意的是’驅 αΛΛ. „ 电& Vc0m之壓差例如是小於箅私 驅動。顯示器可以在低麵狀態下而被 /或低狀我補償雙折射型液晶層216在低頻及 型液μ 2二:,’將可以絲學自编償雙折射 顯一 ^曰nn a從展曲態轉換到弯曲態’因此,液晶 200的韻時間可從f知的數分鐘大幅縮短 秒鐘。 卜在本發明之一較佳實施例中,驅動電廢v =可以是如圖5崎示之脈衝三肖波電壓,或是如圖6所6 遗正弦波,其均可赌光學自我補償雙折射 曰次S日二216快速地從展曲態轉換到彎曲態。值得注意的 疋給為^卩省液晶顯示器2GG的驅動功率,如® 4到圖6中 所繪示的,會使背光模組22G在液晶顯示n·開啟後的 t心内處於關_狀態,直到丨秒後完成預點燈步驟,才使 f像=號開始輸人至液晶顯示器2⑻。於此同時,才開啟 月光模組220 ’以使液晶顯示器2〇〇開始正常顯示,其中 預點燈步驟的時間ί約為1〜3秒。 12 1305334 16605twf.doc/r 式。圖7繪示為本發明較佳本 電壓至第二電極之方 示意圖。請_參照圖2與〗=彳之液晶顯示面板的電路 包括一迦瑪電路元件2 、二_液晶顯不器200例如更 電壓vdrive至第二電極214 於圖7中),當施加驅動 連接到第二電極2M的多條資瑪電路元件230會令 入到每一個第二電極214沾s ^ 40形成短路,以使輪 圖2中繪示之轉態電場E,且古°°電壓VdHVe相同,因此, 驅動電壓\^ .之方6有與施加在第二電極214上之 光學自我補ϋ折射;跨壓方向。也就是說, 堡之驅動_ 受1 低頻及/或低 地由展曲態轉換至彎曲態。轉,^%£的作用’而快迷 優點:上所述,本發明之液晶顯示器的驅動方法具有下列 電壓之低似/或低壓的驅動 型液晶層能夠料地^的作用,使光學補償雙折射 液晶顯示器的暖機時間曲態轉換為f曲態,並進而縮短 可有完成轉態巧錢才啟動背賴_方式, ::效地降低液晶顯示器所消耗之功率,因而達到4之 付口而求所以,既不會增加驅動晶片的取 13 1305334 16605twf.doc/r 得難度,也兼具量產的可行性。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1A繪示為展曲態的OCB型液晶分子示意圖。 圖1B所繪示為彎曲態的OCB液晶分子示意圖。 圖2繪示為本發明之較佳實施例中一種光學補償雙折 射型液晶顯示器的剖面示意圖。 圖3繪示為本發明之較佳實施例中一種光學補償雙折 射型液晶顯示器的狀態轉換的方法之步驟流程圖。 圖4到圖6繪示為本發明較佳實施例中之光學補償雙 折射型液晶顯示器的驅動電壓以及背光模組驅動電壓之波 形示意圖。 圖7繪示為本發明較佳實施例之液晶顯示面板的電路 示意圖。 【主要元件符號說明】 100 :光學自我補償雙折射型液晶顯示器 110:彩色濾光基板 112 :第一電極 120 :薄膜電晶體陣列基板 122 :第二電極 130 :光學自我補償雙折射型液晶分子 14 1305334 16605twf.doc/r 200 :液晶顯示器 210 .液晶顯不面板 212 :第一電極 214 :第二電極 216:光學自我補償雙折射型液晶層 220 :背光模組 230 :迦瑪電路元件 240 :資料線 202、204 :基板 213 :彩色濾光層 E、E,:轉態電場 S300 :液晶顯示器狀態轉換的方法 S310 :預點燈步驟 S320 :顯示步驟 t:預點燈步驟的時間43 = Fig. 2 and Fig. 4, the imaginary voltage 乂 (7) applied to the first electric _ "column is a + in the preferred embodiment, the reference voltage, , , , , - fixed value, between - The preferred parameter θ is between 0^lov and the voltage Vdrive and the reference power: the sincerity of the 是 is the 'driver ΛΛ. „ electric & Vc0m differential pressure is, for example, less than the smuggling drive. The display can be in the low-side state and / or low-shaped I compensate the birefringent liquid crystal layer 216 in the low frequency and liquid type μ 2 2:, 'will be able to learn the self-compensation birefringence display ^ 曰 a a from the show The state transitions to the curved state. Therefore, the rhyme time of the liquid crystal 200 can be greatly shortened by a few minutes from the minute of the knowledge. In a preferred embodiment of the present invention, the driving electric waste v = may be a pulse three oscillating voltage as shown in FIG. 5, or a sine wave as shown in FIG. 6, which can be gambling optical self-compensation double The refracting 曰S S 2 216 quickly transitions from the curved state to the curved state. It is worth noting that the driving power of the liquid crystal display 2GG is as shown in FIG. 6 , which causes the backlight module 22G to be in the off state in the t center after the liquid crystal display n· is turned on. It is not until the leap second to complete the pre-lighting step that the f-like = sign begins to be input to the liquid crystal display 2 (8). At the same time, the moonlight module 220' is turned on to enable the liquid crystal display 2 to start normal display, wherein the time 355 of the pre-lighting step is about 1 to 3 seconds. 12 1305334 16605twf.doc/r. Figure 7 is a schematic view showing the voltage of the present invention to the second electrode. Please refer to FIG. 2 and the circuit of the liquid crystal display panel of FIG. 2 includes a gamma circuit component 2, a liquid crystal display device 200, for example, a voltage vdrive to the second electrode 214 in FIG. 7), when the driving connection is applied to The plurality of galvanic circuit elements 230 of the second electrode 2M are short-circuited to each of the second electrodes 214, so that the electric field E of the wheel shown in FIG. 2 is the same, and the voltage VdHVe is the same. Therefore, the side 6 of the driving voltage has an optical self-compensating refraction applied to the second electrode 214; the direction of the voltage across. That is to say, the drive of the castle _ is converted from the low frequency and/or the low ground to the curved state. Turning, the effect of ^% £' and the advantage of the fan: As described above, the driving method of the liquid crystal display of the present invention has the following low voltage/low voltage driving type liquid crystal layer capable of functioning, so that the optical compensation double The warm-up time of the refracting liquid crystal display is converted into a f-curve state, and then shortened, and the power can be turned on, and the power consumption of the liquid crystal display is reduced, thereby achieving the payment of 4 Therefore, it is difficult to increase the difficulty of taking 13 1305334 16605twf.doc/r to drive the wafer, and it is also feasible for mass production. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic view showing an OCB type liquid crystal molecule in a stretched state. FIG. 1B is a schematic view of a OCB liquid crystal molecule in a curved state. 2 is a cross-sectional view showing an optically compensated birefringent type liquid crystal display device in accordance with a preferred embodiment of the present invention. 3 is a flow chart showing the steps of a method for state transition of an optically compensated birefringent liquid crystal display in accordance with a preferred embodiment of the present invention. 4 to FIG. 6 are schematic diagrams showing the waveforms of the driving voltage of the optically compensated birefringent liquid crystal display and the driving voltage of the backlight module in the preferred embodiment of the present invention. FIG. 7 is a schematic circuit diagram of a liquid crystal display panel according to a preferred embodiment of the present invention. [Main component symbol description] 100: Optical self-compensation birefringence type liquid crystal display 110: color filter substrate 112: first electrode 120: thin film transistor array substrate 122: second electrode 130: optical self-compensating birefringence type liquid crystal molecule 14 1305334 16605twf.doc/r 200: liquid crystal display 210. liquid crystal display panel 212: first electrode 214: second electrode 216: optical self-compensating birefringence type liquid crystal layer 220: backlight module 230: gamma circuit component 240: data Lines 202, 204: substrate 213: color filter layers E, E,: transitional electric field S300: method of liquid crystal display state transition S310: pre-lighting step S320: display step t: time of the pre-lighting step

Vcom :參考電壓Vcom: reference voltage

Vdrive :驅動電壓Vdrive: drive voltage

Vdrivel :驅動電壓的第一電壓準位Vdrivel: the first voltage level of the driving voltage

Vdrive2 :驅動電壓的第二電壓準位 15Vdrive2: the second voltage level of the drive voltage 15

Claims (1)

1305334 16605tw£doc/r 十、申請專利範圍: 1.種液晶顯示器狀鲅韓括^ 顯示器,苴中哕液〜、轉換的方法,適於驅動一液晶 晶顯示面板包括;=包?1液晶顯示面板,而該i 極與該第二電極之間的—第一電極與位於該第一電 該液晶顯示器狀態轉換的補偾雙折射型液晶層, 、,進行一預點燈步驟,其施炎 上亚施加一驅動電壓至該第二你2电壓至該第一電極 ;第二電極之間形成-轉態ί;盆中:在該第-電極與 為一電屋準位變動之週期頻率坡。亥驅動電星之頻率 2.如申請翻朗第1項所述之洛曰 的方法,其中該驅動電塵之頻率小於等=顯示器狀態轉換 專利範圍第 之液?舰。 的方法’其中該驅動電壓之頻率介於0夜;;顯示器狀態轉換 4.如中請專利範圍帛i項所述之液2到5〇Hz之間。 =广其找驅動電壓具有一第一電器狀,轉換 i準位,而該驅動電壓在該第 '位與-第二電 位之間變動,且該第—電壓準位騎^與該第二電壓準 小於等於30V。 ” X〜電壓準位之壓差 A 5.如中請專利範圍第1項所述之液曰, 的方法,其中該驅動電壓包括__曰,器狀態轉換 6. 如申請專利範圍第i項所述/電壓。 的方法,其中該驅動電壓包括一脈曰,示器狀態轉換 7. 如申請專利範圍第“員所述之☆電壓。 心戍日日顯示器狀態轉換 16 1305334 16605twf.doc/r 的方法,其中該驅動電壓包括一脈衝正弦波電壓。 8.如申請專利範圍第1項所述之液晶顯示器狀態轉換 ' 的方法,其中該參考電壓包括一直流電壓。 • 9.如申請專利範圍第1項所述之液晶顯示器狀態轉換 的方法,其中該參考電壓的大小介於0V到10V之間。 10. 如申請專利範圍第1項所述之液晶顯示器狀態轉 換的方法,其中該驅動電壓與該參考電壓之壓差小於等於 鲁 30V。 11. 如申請專利範圍第1項所述之液晶顯示器狀態轉 換的方法,更包括進行一顯示步驟,其提供一影像訊號至 該液晶顯示面板,以使該液晶顯示器回應該影像訊號而顯 示一影像。 - 12.如申請專利範圍第11項所述之液晶顯示器狀態轉 換的方法,其中該液晶顯示器更包括一背光模組,當進行 該顯示步驟時,更包括開啟該背光模組。 13. 如申請專利範圍第1項所述之液晶顯示器狀態轉 • 換的方法,其中該液晶顯示器包括一光學自我補償雙折射 型液晶顯不益。 14. 如申請專利範圍第1項所述之液晶顯示器狀態轉 換的方法,其中該液晶顯示面板包括一彩色濾光基板以及 一薄膜電晶體陣列基板,其中該第一電極是設置在該彩色 濾光基板上,該第二電極是設置在該薄膜電晶體陣列基板 上。 15. 如申請專利範圍第14項所述之液晶顯示器狀態轉 17 1305334 16605twf.doc/r 換的方法,其中該第一電極包括一共用電極。 16.如申請專利範圍第14項所述之液晶顯示器狀態轉 換的方法,其中該第二電極包括多數晝素電極。1305334 16605tw£doc/r Ten, the scope of application for patents: 1. A variety of liquid crystal display 鲅 括 括 ^ display, 苴 哕 〜 ~, conversion method, suitable for driving a liquid crystal display panel includes; = package? 1 liquid crystal display a pre-lighting step of the first electrode between the i-pole and the second electrode and the complementary birefringent liquid crystal layer located in the first state of the liquid crystal display, and performing a pre-lighting step Sub-applying a driving voltage to the second voltage of the second to the first electrode; forming a -turn state between the second electrodes; in the basin: a periodic frequency slope at which the first electrode and the room are changed. The frequency of driving the electric star in the sea 2. For the method of applying the Luoyang described in item 1, the frequency of the driving electric dust is less than that of the liquid state of the patent state range of the display state conversion. Method 'where the frequency of the driving voltage is between 0 nights;; display state transition 4. As described in the patent range 帛i, the liquid is between 2 and 5 Hz. The wide driving voltage has a first electrical state, and the i-level is converted, and the driving voltage fluctuates between the first bit and the second potential, and the first voltage level rides the second voltage Less than or equal to 30V. </ RTI> A pressure difference of X to a voltage level A. The method of liquid enthalpy as described in claim 1, wherein the driving voltage includes __曰, and the state transition is 6. The method of voltage/voltage, wherein the driving voltage comprises a pulse, and the state of the indicator is converted. 7. The voltage of the ☆ voltage as described in the patent application. The method of 戍 戍 day display state transition 16 1305334 16605 twf.doc/r, wherein the drive voltage comprises a pulsed sine wave voltage. 8. The method of the liquid crystal display state transition of claim 1, wherein the reference voltage comprises a DC voltage. 9. The method of state transition of a liquid crystal display according to claim 1, wherein the reference voltage has a magnitude between 0V and 10V. 10. The method of changing the state of a liquid crystal display according to claim 1, wherein a voltage difference between the driving voltage and the reference voltage is less than or equal to 30V. 11. The method of converting a state of the liquid crystal display according to claim 1, further comprising performing a display step of providing an image signal to the liquid crystal display panel, so that the liquid crystal display returns an image signal to display an image. . The method of converting the state of the liquid crystal display according to claim 11, wherein the liquid crystal display further comprises a backlight module, and when the displaying step is performed, the backlight module is further turned on. 13. The method of changing the state of a liquid crystal display according to claim 1, wherein the liquid crystal display comprises an optical self-compensating birefringence type liquid crystal display. 14. The method of state transition of a liquid crystal display according to claim 1, wherein the liquid crystal display panel comprises a color filter substrate and a thin film transistor array substrate, wherein the first electrode is disposed on the color filter On the substrate, the second electrode is disposed on the thin film transistor array substrate. 15. The method of claim 1, wherein the first electrode comprises a common electrode. 16. The method of state transition of a liquid crystal display according to claim 14, wherein the second electrode comprises a plurality of halogen electrodes. 1818
TW094130265A 2005-09-05 2005-09-05 Method for the transition of liquid crystal display TWI305334B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW094130265A TWI305334B (en) 2005-09-05 2005-09-05 Method for the transition of liquid crystal display
DE102006020211A DE102006020211A1 (en) 2005-09-05 2006-05-02 Procedure for switching a liquid crystal monitor
GB0608763A GB2429823A (en) 2005-09-05 2006-05-03 Method for transition of a liquid crystal layer
FR0651862A FR2890459A1 (en) 2005-09-05 2006-05-22 METHOD FOR TRANSITIONING A LIQUID CRYSTAL DISPLAY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094130265A TWI305334B (en) 2005-09-05 2005-09-05 Method for the transition of liquid crystal display

Publications (2)

Publication Number Publication Date
TW200713170A TW200713170A (en) 2007-04-01
TWI305334B true TWI305334B (en) 2009-01-11

Family

ID=36603864

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094130265A TWI305334B (en) 2005-09-05 2005-09-05 Method for the transition of liquid crystal display

Country Status (4)

Country Link
DE (1) DE102006020211A1 (en)
FR (1) FR2890459A1 (en)
GB (1) GB2429823A (en)
TW (1) TWI305334B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759503B2 (en) 2006-12-20 2011-08-31 キヤノン株式会社 Image processing apparatus, image processing apparatus control method, and program
JP5273951B2 (en) * 2007-06-12 2013-08-28 キヤノン株式会社 Liquid crystal display
US8068079B2 (en) * 2007-10-18 2011-11-29 Canon Kabushiki Kaisha Liquid crystal display apparatus
TWI423240B (en) 2010-10-27 2014-01-11 Au Optronics Corp Method for controlling gate signals and device thereof
CN101976556B (en) * 2010-11-03 2013-01-09 友达光电股份有限公司 Method for controlling grid signal and related device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156452A (en) * 1989-07-20 1992-10-20 Paul Drzaic Encapsulated liquid crystal apparatus having low off-axis haze and operable by a sine-wave power source
DE4218206C2 (en) * 1992-06-03 1998-06-18 Loupi & Blinkie Elektronik Gmb Decorative or decorative object with an electrically operated display device
JP3074640B2 (en) * 1995-12-22 2000-08-07 インターナショナル・ビジネス・マシーンズ・コーポレ−ション Driving method of liquid crystal display device
JPH10206822A (en) * 1997-01-20 1998-08-07 Internatl Business Mach Corp <Ibm> Voltage application driving system
TW591264B (en) * 1998-09-03 2004-06-11 Matsushita Electric Ind Co Ltd Liquid crystal display device, method of producing thereof, and method of driving liquid crystal display device

Also Published As

Publication number Publication date
FR2890459A1 (en) 2007-03-09
GB0608763D0 (en) 2006-06-14
GB2429823A (en) 2007-03-07
TW200713170A (en) 2007-04-01
DE102006020211A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
TWI290251B (en) Display device
JP2007226271A (en) Method and apparatus for driving liquid crystal display
US8564520B2 (en) Method for driving a display panel and display apparatus for performing the method
JP5898307B2 (en) Liquid crystal driving method and liquid crystal display device
TWI305334B (en) Method for the transition of liquid crystal display
CN100507689C (en) Liquid crystal display and driving method thereof
CN103728796A (en) Display substrate and display device
CN104297997B (en) Liquid crystal display panel, and display method and display device thereof
TWI258028B (en) Aligning method under electric field for ferroelectric liquid crystal and liquid crystal display using the same
TWI311301B (en) Method for driving liquid crystal display
TWI280447B (en) OCB mode LCD and method for driving the same
TWI250504B (en) Pixel structure of a liquid crystal display and driving method thereof
TWI294979B (en)
JP4025787B2 (en) Bistable liquid crystal display device and driving method thereof
US10503033B2 (en) Blue phase liquid crystal display panel and liquid crystal display device
CN100370353C (en) Switch mode liquid crystal display unit in the plate and its manufacturing method and driving method
CN109154739B (en) Reflective liquid crystal display device and wearable device provided with same
TW201020660A (en) The manufacturing and driving method of OCB liquid crystal panel
JP2007249125A (en) Viewing angle controlled display device and terminal equipment provided therewith
CN1828712A (en) Driving method of bistable liquid crystal display
US8836687B2 (en) Driving method for bistable display
KR100870516B1 (en) Liquid crystal display and method of driving the same
JP2007256608A (en) Memory liquid crystal panel
CN101750773B (en) Method for manufacturing and driving optical compensation birefringence liquid crystal panel
CN101398552A (en) Liquid crystal display device and driving method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees