TWI305296B - Systems and methods for reducing the influence of plasma-generated debris on the internal components of an euv light source - Google Patents

Systems and methods for reducing the influence of plasma-generated debris on the internal components of an euv light source Download PDF

Info

Publication number
TWI305296B
TWI305296B TW94123365A TW94123365A TWI305296B TW I305296 B TWI305296 B TW I305296B TW 94123365 A TW94123365 A TW 94123365A TW 94123365 A TW94123365 A TW 94123365A TW I305296 B TWI305296 B TW I305296B
Authority
TW
Taiwan
Prior art keywords
plasma
heater
debris
euv
mirror
Prior art date
Application number
TW94123365A
Other languages
Chinese (zh)
Other versions
TW200612208A (en
Inventor
Alexander I Ershov
William F Marx
Norbert R Bowering
Bjorn A M Hansson
Oleh Khodykin
Igor V Fomenkov
William N Partlo
Original Assignee
Cymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/900,839 external-priority patent/US7164144B2/en
Priority claimed from US10/979,945 external-priority patent/US8075732B2/en
Priority claimed from US11/174,442 external-priority patent/US7196342B2/en
Application filed by Cymer Inc filed Critical Cymer Inc
Publication of TW200612208A publication Critical patent/TW200612208A/en
Application granted granted Critical
Publication of TWI305296B publication Critical patent/TWI305296B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0064Cleaning by methods not provided for in a single other subclass or a single group in this subclass by temperature changes
    • B08B7/0071Cleaning by methods not provided for in a single other subclass or a single group in this subclass by temperature changes by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70175Lamphouse reflector arrangements or collector mirrors, i.e. collecting light from solid angle upstream of the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

1305296 九、發明說明: <相關申請案> 本案係為2004年11月1日申請之N〇. 10/979945美國專 利申請案“雷射製成電漿的極端紫外線光源,,(代理人編 5號^^0· 2004_0088_〇1)的部份後續申請案;亦為 2004年7月27日申請之No. 10/900839美國專利申請案 “極端紫外線光源”(代理人編號N〇. 2004-0044-01)的部份 後續申請案;亦為 2004年3月17日申請之No. 10/803526美國專利申請案 10 “高重複率雷射製成電漿的極端紫外線光源,’(代理人編 號No_ 2003-0125-01)的部份後續申請案;亦為 2004年3月10日申請之No. 10/798740美國專利申請案 “極端紫外線光收集器”(代理人編號N〇. 2003-0083-01)的 部份後續申請案;該各案之内容併此附送。 15 【發明所屬之技術領域】 發明領域 本發明係有關極端紫外線C‘EUV”)光產生器,其可由一 源材料所形成的電漿來提供EUV光,並收集及導引至一焦 點以供在該EUV光源產生腔室外部的應用,例如以大約 20 5〇11111以下的波長來供半導體積體電路製造的光微影法使 用。 L先前技術1 發明背景 極知务外線(“EUV”)光,例如波長約5〇nm或以下的電 1305296 磁輻射(有時亦稱為軟X光), 乃可被使用☆光微影製程中 極小的特徵細構。 及包含波長為約13.5nm的光, 而在基材(例如石夕晶圓)中製成1305296 IX. Description of the invention: <Related application> This application is filed on November 1, 2004, N. 10/979945, US Patent Application, "Extreme Ultraviolet Light Source for Laser Plasma, (Author Part 5: ^^0·2004_0088_〇1) Part of the follow-up application; also applied for the U.S. patent application No. 10/900839, filed July 27, 2004, "Extreme Ultraviolet Light Source" (Attorney No. N〇. Part of the follow-up application of 2004-0044-01); also applied to the U.S. Patent Application Serial No. 10/803,526, filed on Mar. Part of the follow-up application of the agent number No_ 2003-0125-01); also applied to the US Patent Application No. 10/798,740, filed on March 10, 2004, "Extreme Ultraviolet Light Collector" (Attorney No. N〇. Part of the follow-up application of 2003-0083-01); the contents of the cases are attached herewith. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extreme ultraviolet C' EUV" light generator that can provide EUV light from a plasma formed from a source material and collect and direct it to a focus for The application of the EUV light source outside the chamber is used, for example, by a photolithography method for manufacturing a semiconductor integrated circuit at a wavelength of about 20 5 〇 11111 or less. L Prior Art 1 Background of the Invention Extreme E-mail ("EUV") Light, such as 1305296 magnetic radiation (sometimes referred to as soft X-ray) with a wavelength of about 5 〇 nm or less, can be used ☆ very fine features in the photolithography process and contain wavelengths of about 13.5 nm. Light, made in a substrate (such as Shi Xi Wa Wa)

10 1510 15

成包括但:限於:將-材料轉變 EUV·^有—發、在例如L或錫,而在該 (,,的方法中,該電激二種通常稱為放電製成電聚 生。在另-方法中,所需/在—對電極之間放電而來產 _ 的電聚能藉以-雷射束照射-標 1 °具有所f線發射元素的材料滴、流、團等 A 此另一種製法係被稱為雷射製成電漿(“LPP”)。 於該等製法中,電衆典型係被產生於一密封容器例如 真工腔室内,並使用各種_的計量設備來監測。除了產 生顺輻射外,該等„製法通常亦會在該電漿腔室内產 生不要的副產品,其乃包括熱、高能離子、及由電漿形成 物中所散發的’’例如該源材料未在該電漿產生過程中 完全離子化的原子及/或團塊。 …11&㈣的副產品可能會損害或減低各種電漿腔 至光子it件的操作效率,該等元件包括但不限於收集鏡, 其3有多層鏡(MLM’s)能夠反射正常入射的EUV光,及掠擦 角入射鏡,4量檢—的表面,肖來顯像該電漿製程的窗 片’及(在LPP時的)雷射輸入窗。該熱、高能離子及/或源 材料碎4可▲會以許多方式來損及該等絲元件,包括: 將它們加熱’以會減低透光率的材料被覆它們,滲入其内, 及例如損及結構完整性及/或光學性質,例如—鏡可反射 20 1305296 该甚短波長之光的能力,侵蝕它們及/或擴散於其 外,某些光學元件,例如該雷射輸入窗亦會 ^内*此 室的-部份,故當有一真空存在於該電槳 該真工腔 於一痛Αλα比 &至内時將會處 ;一應力的情況下。對這些元件而言,沈積物Μ可能會 結合來使其破裂(即造成裂縫),故會導致番 曰 夭真空而須要昂 貴的修復。 進入清潔或更換該等被污染或損壞的電聚腔室中之光 % 學兀件將會很昂貴、勞力密集而且耗費時間。具令之,這 些系統通常於該電漿腔室被打開之後,在重新啟動之前須 10要相當繁複且費時的淨化及該電浆腔室的抽空。此冗長的 程序會負面地影響生產排程,並減低該光源的整體效率, 其典型是希望在操作時不會有或只有甚少的停俾時間。 有見於上述狀況,本申請案乃揭露可以減少電聚產生 的碎屑對EUV光源内部構件之影響的系統和方法。 15 【發明内容】 φ 發明概要 所揭係為彳4會因形成電1而產生碎屑的EUV光源之 聊計量監測器。該監測器會包含-ϋ射檢測器;-元件 可過;慮幸田射並將過據後的轄射導至該檢測器,該元件係設 在電聚所產生之碎屬會沈積在該元件上的位置;及—加 ,、.、裔此將該7L件加熱至_溫度而足以除去至少一部份所沈 積的碎屑。 在本發明之另—實施態樣中,一褒置會被揭露來由— EUV光源收集鏡除去電聚產生的碎屑。針對該裝置,該收 1305296 集鏡會相對於一電漿形成部位來被設置,且將會在該收集 鏡上的不同區域造成不同的碎屑沈積速率。該裝置可包含 一第一加熱系統能將該收集鏡的第一區域加熱至一第一溫 度乃來由其上除去碎屑;及一第二加熱系統可將該收集鏡 5 的第二區域加熱至一第二溫度T2來由其上除去碎屑,且該 τ>τ2。 在本發明的又另一實施態樣中,乃揭露一種能保護 EUV光源檢測器表面免遭電漿產生之碎屑破壞的系統。該 系統可包含至少一中空管具有一管壁會包圍一管腔,該管 10 係被介設於一電漿形成部位與該檢測器表面之間,且被定 向成能阻止至少一部份被導向該檢測器表面的碎屑來達到 該表面,並可使至少一部份在該電漿形成部位所產生的光 能通過該管腔而達到該檢測器表面;及一加熱器可加熱該 管壁來除掉沈積其上的碎屑。 15 在本發明之一實施態樣中,係揭露一種收集鏡系統可 供用於一EUV光源,該光源會因形成電漿而產生Li碎屑。 該收集鏡系統會包含一氫源可與Li碎屑結合而在該收集器 之一表面上形成L i Η ;及一濺射系統能將濺射分子導向該收 集器表面,而由該收集器表面來濺散LiH。 20 在本發明的另一實施態樣中,乃揭露一種裝置,其能 以一受控的電漿蝕刻速率來由一EUV光源收集鏡的表面上 钱掉碎屑。該系統會包含一電漿钱刻系統可錄掉碎屑,且 該蝕刻系統具有至少一可控制的參數能改變一電漿蝕刻速 率;一參考材料具有一表面而被設成能接收大致等同於該 1305296 2集鏡表面之至少_區域中的碎屑累積量·一儀器可 斤來自該參考材料表面的射彳電聚發射物,而產生該參 #材料表面上之碎屬累積量的輸出顯示;及—控制器能回 〜'於該輸㈣改變—糊速率參數來控制電雜刻速率。 5圖式簡單說明 第1 ®不ih本發明—態樣之雷射製成電漿EUV光源的 整體概念示意圖;Including: but: limited to: the material is converted to EUV · ^ has - in, for example, L or tin, and in the method, the electric excitation is usually called discharge to make electricity. In another - In the method, the electropolymerization required to discharge between the electrodes is generated by - laser beam irradiation - the material droplets, streams, clusters, etc. having the emission elements of the f line The system of manufacture is called laser-made plasma ("LPP"). In these processes, the electricity is typically produced in a sealed container, such as a real-life chamber, and monitored using various metering devices. In addition to producing cis-radiation, these processes typically also produce unwanted by-products in the plasma chamber, including heat, energetic ions, and emissions from the plasma formation, such as where the source material is not Fully ionized atoms and/or agglomerates during plasma generation. The by-products of ...11 & (4) may impair or reduce the operational efficiency of various plasma chambers to photonics, including but not limited to collection mirrors, 3 multilayer mirrors (MLM's) are able to reflect normal incident EUV light, and sweep angle The surface of the mirror, 4 gauges, the image of the plasma process window and the laser input window (at the LPP). The heat, high energy ions and / or source material can be ▲ There are many ways to damage the filament elements, including: heating them 'to coat them with reduced light transmission, to penetrate them, and to compromise structural integrity and/or optical properties, for example - mirror reflection 20 1305296 The ability of the very short wavelength light to erode and/or diffuse out of it, and some optical components, such as the laser input window, will also be part of the chamber, so when a vacuum exists in the The actual working cavity of the electric paddle will be at a time when the λα ratio & is inside; in the case of a stress, for these components, the deposit enthalpy may combine to cause it to rupture (ie cause cracks), so The Panyu vacuum requires expensive repairs. It is expensive, labor intensive and time consuming to enter the clean or replace the contaminated or damaged cells. These systems are Usually after the plasma chamber is opened, it is re Before the move, 10 must be quite complicated and time-consuming to clean up and the evacuation of the plasma chamber. This lengthy procedure will negatively affect the production schedule and reduce the overall efficiency of the light source, which is typically expected to be Or there is only a small amount of downtime. As can be seen from the above situation, the present application discloses a system and method for reducing the influence of debris generated by electropolymerization on internal components of an EUV light source. 15 [Summary of the Invention] For the E4, the EUV light source that generates debris due to the formation of electricity 1. The monitor will contain a - ray detector; - the component can pass; In the detector, the component is disposed at a position where the genus generated by the electropolymer is deposited on the component; and -, and, for example, heating the 7L member to a temperature sufficient to remove at least a portion of the component Deposition of debris. In another embodiment of the invention, a device is disclosed to remove debris from the electropolymerization by the EUV source collection mirror. For this device, the receiver 1305296 will be positioned relative to a plasma formation site and will result in different debris deposition rates in different regions of the collection mirror. The apparatus can include a first heating system capable of heating the first region of the collection mirror to a first temperature to remove debris therefrom; and a second heating system to heat the second region of the collection mirror 5 To a second temperature T2 to remove debris therefrom, and the τ > τ2. In yet another embodiment of the present invention, a system is disclosed that protects the surface of the EUV source detector from debris generated by plasma. The system can include at least one hollow tube having a tube wall surrounding a lumen, the tube 10 being disposed between a plasma forming portion and the detector surface and oriented to block at least a portion Debris directed to the surface of the detector to reach the surface, and at least a portion of the light energy generated at the plasma forming portion is passed through the lumen to reach the surface of the detector; and a heater can heat the surface The wall of the tube removes debris deposited on it. In one embodiment of the invention, a collection mirror system is disclosed for use with an EUV source that produces Li debris due to the formation of plasma. The collection mirror system may include a source of hydrogen coupled to the Li crumb to form Li on the surface of one of the collectors; and a sputtering system capable of directing the sputter molecules to the surface of the collector by the collector The surface is splashed with LiH. In another embodiment of the invention, a device is disclosed that is capable of collecting debris on the surface of a mirror by an EUV source at a controlled plasma etch rate. The system will include a plasma etching system capable of recording debris, and the etching system has at least one controllable parameter capable of changing a plasma etch rate; a reference material having a surface configured to receive substantially equivalent to The accumulation of debris in at least the region of the surface of the 1305296 2 mirror. An instrument can extract the emitted electrons from the surface of the reference material, and produce an output display of the cumulative amount of the material on the surface of the reference material. ; and - the controller can return ~ 'in the change (four) change - paste rate parameter to control the electrical scribe rate. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the overall concept of a laser EUV light source according to the invention.

10 15 第2圖示出_ m ^ _ ^ 钟賊系統實施例的側視示意圖,其可保護 電水^至光學70件免遭電漿源材料碎屬的破壞; 第圖係為多數中空管的側視示意圖,示出一光線穿過 中工g的路輕’及一碎屬微粒被-中空管所捕捉; 第4圖係為本發明—實施例的截面示意圖,其中有一 EUV計量監測器舍人 士 匕3 —加熱器來加熱一濾膜以除去所沈 積的電聚生成碎屑; 第5圖係為本發明另—實施例的截面示意圖,其中一 EUV計量監測器會句入10 15 Figure 2 shows a side view of the _ m ^ _ ^ thief system embodiment, which protects the electric water to the optical 70 pieces from the destruction of the plasma source material; A side view of the tube showing a path of light passing through the middle g and a fragment of the particle being captured by the hollow tube; Fig. 4 is a schematic cross-sectional view of the embodiment, with an EUV metering The monitor is used to heat a filter to remove the deposited electropolymer to generate debris; FIG. 5 is a schematic cross-sectional view of another embodiment of the present invention, in which an EUV metering monitor is sentenced

Tis —加熱器可加熱一多層鏡以除去所 沈積的電漿生成碎屑; 第6圖示出本路日日 Χ月之—貫施例的概念,其中一收集鏡的 不同區域會被以不同 „ . j的蝕刻速率來蝕刻除掉電漿產生的碎 屑, 第7圖示出本發明¥ n F . 實鉍例的概念,其中一收集鏡的 不冋區域會被以不同 m率來齡掉電漿產生的碎屑;及 弟8圖不出本發明又另—實 裝置能以一受控的啻將, ,、甲會5又有一 電水蝕刻速率來由一Euv光源收集鏡的 20 13〇5296 表面姓掉碎屑。 t實施方式:j 較佳實施例之詳細說明 10 15 20 現請爹閲第1圖,其中不出奉發明之一貫札〜_ π v 光源’例如一雷射製成電漿EUV光源20的示意圖。雖本笋 明的概念係以一雷射製成的電漿(LPP)來說明,惟應請瞭解 本發明亦同樣可應用於其它類型之可產生電漿的光源,包 括一放電製成的電漿(“DPP”),其一代表性結構係被揭示於 共同擁有的No. 6815700美國專利中,該内容併此附送表考 繼請參閱第1圖,一LPP光源20可包含一脈衝雷射系統 22,例如以高功率和高脈衝重複率來操作的氣體放電準八 子或分子氟雷射,且可為一種“ΜΟΡΑ”式的雷射系統,例如 在No. 6625191、6549551'6567450等各美國專利中所示者 該光源20亦包含一標靶輸送系統24,其可例如輪送呈广 滴、液流,固體顆粒或團塊,包含在液滴或液流中的^ 顆粒狀的標料。料絲能被該輸1%統24輸送至 一腔至26内部的電漿形成部位28處。 1如 雷射脈衝會由該雷射系統22沿-穿過一雷射輪 的雷射光轴被送人該腔室%内的照射部位,並適卷商57 來形成-電漿’其具有某些特性餘決於該=焦 料。這些特性可包括所形成之刪光的波長,及由^材 所釋出之碎屑的種類和數量等。 k電漿 該光源亦可包含—收集器3〇,例如—呈截 反射ϋ’其孔隙可容該雷射光穿過來達到該激^ 10 1305296 位28。該收集器30可例如為橢圓鏡,其在該激發部位28會 具有一第一焦點’並有一第二焦點位在一所謂的中間點4〇 處(亦稱中間焦點40),在該處該EUV光會由光源輸出,而輸 入例如一積體電路微影機具中(未示出)。 5Tis—The heater can heat a multilayer mirror to remove the deposited plasma to generate debris; Figure 6 shows the concept of a daily embodiment of the road, where different areas of a collection mirror will be Different etch rates of „.j are used to etch away the debris generated by the plasma. Figure 7 shows the concept of the invention. The concept of a collection mirror will be at different m rates. Age-removed plasma generated debris; and the younger brother 8 shows that the present invention can be controlled by a controlled enthalpy, and the A-Board 5 has an electro-etching rate to collect the mirror from an Euv light source. 20 13〇5296 The surface name is broken. t Embodiment: j Detailed description of the preferred embodiment 10 15 20 Please refer to Figure 1 for the consistent invention of the invention ~ _ π v light source 'such as a thunder A schematic diagram of the shot into a plasma EUV source 20. Although the concept of this bamboo shoot is described by a laser made of laser (LPP), it should be understood that the invention is equally applicable to other types of electricity. The source of the slurry, including a plasma made by electrical discharge ("DPP"), a representative structure of which is revealed In the U.S. Patent No. 6,815,700, the entire disclosure of which is incorporated herein by reference in its entirety in its entirety in its entirety, in its entirety, the LLP source 20 can include a pulsed laser system 22, such as a gas operating at high power and high pulse repetition rates. Discharge quasi-eight or molecular fluorine lasers, and may be a "ΜΟΡΑ" type of laser system, such as those shown in U.S. Patent Nos. 6,625,191, 6,,,,,,,,, For example, it can be rotated into a wide drop, a liquid stream, a solid particle or a mass, and a granular material contained in a droplet or a liquid stream. The wire can be transported by the 1% system 24 to a cavity to 26 The internal plasma is formed at the location 28. 1 If a laser pulse is transmitted by the laser system 22 along the laser beam passing through a laser wheel, the portion of the chamber is delivered to the portion of the chamber. To form a plasma, it has certain characteristics depending on the = focus. These characteristics may include the wavelength of the light to be formed, and the type and amount of debris released by the material. The light source may also comprise a collector 3〇, for example, a truncated reflection ϋ Light passes through to the position 10 of the 1 10 305 296. The collector 30 can be, for example, an elliptical mirror that will have a first focus ' at the excitation site 28 and a second focus position at a so-called intermediate point 4 〇 (also referred to as intermediate focus 40) where the EUV light is output by the light source and input, for example, into an integrated circuit lithography tool (not shown).

1〇 151〇 15

2〇 該脈衝系統22可包含二併設腔室,例如一主振蘯功率 放大器(“ΜΟΡΑ”)的氣體放電雷射系統,其具有一振盪器雷 射系統44和一放大器雷射系統48,並具有一磁性電抗器切 換的脈衝壓縮及定時電路50可供用於該振盪器雷射系統 4 4,與一供用於該放大器雷射系統4 8之磁性電抗器切換的 脈衝壓縮及定時電路52,以及該振盪器雷射系統44之一脈 衝功率時點監㈣統54,和該放大||雷射系統懒脈衝功 率時點監視系統56。該系統20亦可包含_EUV光源控制系 統60,其亦可包括例如—縣位置檢測反㈣統62與_發 射控制系統65,及一雷射束定位系統66。 ^尔、;^ ’刀叫匕έ —標靶位置檢測系統,其可包括— 或多個液_像H 7 〇能提供—標減_對於該激發部位 之位置的輸出指示,並將此輸出提供至該標乾位置檢測反 饋系統,其能計算出-標麵位置和執跡,並使標乾誤差 能據此來被算出’而若非依據逐滴的基礎則會以平均的方 式。該縣誤差嗣可被提供作為系統控制⑽的輸入,其 可例如提供—雷射位置、方向及時點修正信號至該雷射束 定位系祕,俾使《㈣祕_來控賴雷射定時電 路及/或控制該雷射位置與方向改變器秘,來將該 的焦點改變至一不同的激發點28處。 11 1305296 該標靶輸送控制系統9〇會 屬一來自系統控制器60的 ^ ’ M正該微送機構%釋放時的釋放 ^校正該標錄滴達到所㉔發部位28的誤差。-顺 光源檢㈣丨_可提供反龄㈣統控㈣6Q,其會例如 :出該等雷射脈衝的時點和焦點等之誤差,而來適當地將 餘液滴修正至正相位置和時點,以便有效且有效率地 產生EUV光。 如第1圖所示及如後所詳述,本發明之-實施態樣可包 含一屏蔽系統1〇2,其能保護-電装腔室之光學元件的表面 10免受該電漿形成部位28所產生的碎屬損壞。雖該屏蔽系統 102係被不出&來保護一Euv光源檢測器刚的表面,但請 瞭解該屏蔽系統102亦可用來保護該腔室26内的其它光學 元件。 第2圖係更詳細示出該系統1〇2,其能保護一光學元件 15例如EUV光源檢測器100之一表面1 〇4免遭電漿產生的碎屑 攻擊。如圖所示,該系統1〇2會包含多數的中空管丨26,例 如所明的毛細管,S亥各管皆具有一管壁包圍一管腔(即内 孔)。該各管126可由例如玻璃、金屬或陶瓷譬如硼矽酸鹽 材料等所製成’而會以入射掠擦角來反射EUV光,例如小 20掠擦入射角度(<10°)的掠擦入射反射,而大部份材料之光滑 表面的EUV反射率會較高。如圖所示,該等管126可被束集 在一起,並被容裝在一不銹鋼管128内,其形狀類似該等管 126。於一實施中’大約50支彎曲的玻璃毛細管126(lmm外 徑,0.78mm内徑’及150mm長)可被裝在一彎曲的不銹鋼管 12 -1305296 128内部。如第3圖所示,該各管126會被成型為具有一中段 130側向偏壓離於一由二管端134、136所界定的管軸132。 具言之,該中段130會偏移一距離138,其係大於該管126的 内徑。 5 帛3圖不㈣等f 126可被介設於該電漿形成部位28與 檢測器表面104之間。第3圖亦示出-舉例的EUV光握14〇、’ 與一碎屑微粒的行徑142。如圖所示,該Ew光線在經該管 φ 126的内壁表面—或多次小角度的掠擦人射反射之後,將會 通過一管腔(即内孔)而達到該表面1〇4上。相践,如圖所 1〇示,該等碎屑微粒將會撞擊該中空管的内壁,而黏滯於該 内壁上。且,在某些情況下,累積在内壁上的碎屬將會造 成表面#會光滑得能夠以掠擦入射角來適當地反射 EUV光。❹該等fl26會具有比使用平面鏡來將光導至— 檢測器更佳的優點,因它們能將光導至該管的末端,而不 15必如在重導鏡的情況需要複雜的調準。 _ §使料’該## 126可被置設在電漿腔室26的内部 (見第1圖),而位於該電漿形成部位28與—光學元件例如檢 測器酬之間,俾使剌驗暫時地沈積在各管!26的内壁 表面上。如圖所示,該檢測器⑽可包括_或多數的薄遽膜 2〇 146,—多層鏡148,及一光電二極體檢測器150。 再請參閱第2圖,該系統1〇2可包含_加熱器154以加熱 各管126的—部份,或在某些情況下該各管亦可被整體加 熱,至一足以除掉至少一部份所沈積碎屑的溫度,而來除 掉一或多種沈積物的一部份(或全部)。此加熱亦能平滑化沈 13 1305296 積物而促進掠擦角反射。例如,該加熱器能將該等管126加 熱至一足以蒸發至少部份沈積材料的溫度。針對一包含Li 的電漿源材料,該加熱器154可被設計成能將該屏罩1〇8,加 熱至約400〜550。(:的範圍來由該管表面上蒸發掉U。 5 在某些情況下,該加熱器能將該等管126加熱至一溫 度,其足以促使一沈積材料與一被注入管126内的蝕刻氣體 產生化學反應。第2圖示出該系統102亦包含一次系統144能 釋出一姓刻劑來注入各管126中。如圖所示,該次系統144 可被設成能釋出蝕刻劑並使其由該檢測器10 0朝向腔室2 6 10 來通過該各管126。適用的蝕刻劑可包括但不限於例如 HBr、Br2、Cl2、HC卜H2、HCF3及其組合物等。例如,一 數Torr濃度的HBr係可被使用。 針對一包含Sn的電漿源材料,則該加熱器154可被設計 成能將該等管126(或其某些部份)加熱至大約200〜350°C的 I5 溫度範圍’以促發Sn沈積物與一或多種氣體姓刻劑例如HBr 之間的反應,來形成一反應物而能由該等内管壁被除去。 於進一步的構造細節中’如第2圖所示,該加熱器154 可包含一加熱元件156會捲繞該等中空管126,並有一電流 源158能傳送一電流通過該加熱元件156。該加熱元件156係 20由一導電材料所製成,而在當電流通過時能藉電阻加熱來 被加熱。其它用來加熱該等管126的裝置可包括但不限於輻 射加熱器、微波加熱器、RF加熱器及其組合等。 第4示出本發明的另一實施態樣,其可包含一EUV計量 監測器100’具有一檢測器150,能測出EUV光指數,例如脈衝 14 1305296 能量或通量。在某些情況下,可能會須要該檢測器來測量 波長約為13.5nm及頻寬約為2%或更小的光。為此目的,故 發自該EUV光源的光會在該監測器100’中先被過濾。具言 之,如圖所示,該監測器100’會包含一或多數的濾膜146a’、 5 146b’、146c,、146d,,一或多數的CaF2窗 160a、b,及一或 多數的多層鏡148’能夠反射正常入射之13.5nm附近的光 帶。應請瞭解該多層鏡148’,譬如具有MOSi2和Si之間次交 替層的多層鏡,將會吸收光,例如在該13.5nm為中心之2% 頻帶外部的光,因此可作為一帶通濾光器。相反地,當有 10 一 CaF2窗160a、b沿該光徑來介設時,則EUV光將會被吸 收,而UV和可見光將會透射穿過該窗160a、b。故,該CaF2 窗160a、b亦可作為一濾光器。同樣地,該等濾膜146a’〜 d’(可由一薄銻層所構成)將會吸收或反射可見光而透射 EUV輻射。 I5 第4圖亦示出該監測器100’包含一對直線運動致動器 162a、b,可選擇地將一或多個濾光器146a’〜d,及160a、b 等插置於該光徑164中。該監測器1〇〇’亦包含一進入孔166 與一快門168。依據此裝置,該等濾光器146a’〜d’,160a、 b可能會不良地曝露於由入孔166進入該監測器1〇〇’内的電 20 漿生成碎屑。在某些情況下,碎屑沈積物會減低該等滤光 器146a’〜d’、160a、b的操作效率。因此,該監測器1〇〇, 會包含一加熱器Π0(就所示的監測器100’而言其可為一輕 射加熱器)來加熱一濾光器146a’〜d’,160a、b以除掉暫時 沈積其上的電漿生成碎屑。其它可用來加熱該等濾光器 15 1305296 146a’〜d’,160a、b的裝置乃包括但不限於電阻加熱器、輻 射加熱器、微波加熱器、RF加熱器及其組合等。 針對包含Li的電漿源材料,該加熱器17〇可被設計成能 將濾光器146a’〜d’,160a、b加熱至約4〇〇〜550°C的溫度範 5圍俾由其表面蒸發Li。而針對包含Sn的電漿源材料,該加 熱器170可被設計成能將遽光器146a’〜d,,160a、b加熱至 一約200〜325 C的溫度範圍,來促發sn沈積物與氣體飾刻 劑例如HBr之間的反應,以造成一反應生成物其可由該濾光 器表面被除去。乳體餘刻劑可被直接注入該監測器1 〇〇,中 10 或該腔室26内(見第1圖)。 第5圖示出一監測器之一變化實施(概示為1〇〇„)。如所 示’該EUV計直監測器1 〇〇”會具有_檢測器1可測量 EUV光參數,例如脈衝能量或通量,並會包含一或多數的 波光器 146a、146b ’、146c”、146d” 及 160a’、b,等,其中 15The pulse system 22 can include a chamber, such as a main vibrating power amplifier ("ΜΟΡΑ") gas discharge laser system having an oscillator laser system 44 and an amplifier laser system 48, and A pulse compression and timing circuit 50 having a magnetic reactor switching is available for the oscillator laser system 44, and a pulse compression and timing circuit 52 for switching the magnetic reactor for the amplifier laser system 48, and The oscillator laser system 44 has a pulse power point monitor (four) system 54, and the amplification | | laser system lazy pulse power time point monitoring system 56. The system 20 can also include an _EUV source control system 60, which can also include, for example, a county position detection inverse (four) system 62 and a _ emission control system 65, and a laser beam positioning system 66. ^尔,;^ 'knife 匕έ 标 — target position detection system, which may include - or a plurality of liquid _ like H 7 〇 can provide - mark minus _ output indication for the position of the excitation site, and output this Provided to the dry position detection feedback system, which can calculate the position and the track of the index, and enable the dry error to be calculated accordingly, and if not based on the basis of the drop by volume, the method will be averaged. The county error 嗣 can be provided as an input to the system control (10), which can provide, for example, a laser position, a direction, and a point correction signal to the laser beam positioning system, so that the (four) secret _ to control the laser timing circuit And/or controlling the laser position and direction changer to change the focus to a different excitation point 28. 11 1305296 The target delivery control system 9 is a release from the system controller 60. The release of the micro-transfer mechanism % is corrected. ^ The error of the label drop reaches the 24 position 28. - Shun light source detection (4) 丨 _ can provide reverse age (four) unified control (four) 6Q, which will, for example, out of the time and focus of the laser pulse, etc., to properly correct the remaining droplets to the positive phase position and time, In order to efficiently and efficiently generate EUV light. As shown in FIG. 1 and as described in more detail below, embodiments of the present invention may include a shielding system 1 2 that protects the surface 10 of the optical component of the electrical enclosure from the plasma formation site 28 The resulting shredded damage. Although the shield system 102 is protected from the surface of an Euv source detector, it is understood that the shield system 102 can also be used to protect other optical components within the chamber 26. Figure 2 shows the system 1 更 2 in more detail, which protects an optical element 15 such as the surface 1 〇 4 of the EUV source detector 100 from debris generated by the plasma. As shown, the system 1〇2 will contain a plurality of hollow tubes 26, such as the illustrated capillary tubes, each of which has a tube wall surrounding a lumen (i.e., an internal bore). The tubes 126 may be made of, for example, glass, metal or ceramic, such as a borosilicate material, and reflect EUV light at an incident sweep angle, such as a small 20 sweeping angle of incidence (<10°). The incident reflection, while the smooth surface of most materials has a higher EUV reflectivity. As shown, the tubes 126 can be bundled together and housed within a stainless steel tube 128 that is shaped like the tubes 126. In one embodiment, about 50 curved glass capillary tubes 126 (lmm outer diameter, 0.78 mm inner diameter ' and 150 mm long) can be mounted inside a curved stainless steel tube 12 -1305296 128. As shown in Fig. 3, the tubes 126 are shaped to have a midsection 130 laterally biased away from a tube axis 132 defined by the two tube ends 134,136. In other words, the middle section 130 is offset by a distance 138 that is greater than the inner diameter of the tube 126. 5 帛 3 (4), etc. f 126 may be interposed between the plasma forming portion 28 and the detector surface 104. Figure 3 also shows an exemplary EUV light grip 14", with a crumb particle diameter 142. As shown, the Ew light will reach the surface 1〇4 through a lumen (ie, an inner hole) after being reflected by the inner wall surface of the tube φ 126 or a plurality of small angles. . In contrast, as shown in Fig. 1, the debris particles will hit the inner wall of the hollow tube and stick to the inner wall. Moreover, in some cases, the shreds accumulated on the inner wall will cause the surface # to be smooth enough to properly reflect the EUV light by sweeping the angle of incidence. These fl26s will have the advantage of using a flat mirror to direct light to the detector, since they can direct light to the end of the tube, without the need for complex alignments in the case of heavy mirrors. _ § The material 'This ## 126 can be placed inside the plasma chamber 26 (see Figure 1), and between the plasma forming portion 28 and the optical component, such as the detector, The test is temporarily deposited in each tube! 26 on the inner wall surface. As shown, the detector (10) can include a plurality or a plurality of thin films 2, 146, a multilayer mirror 148, and a photodiode detector 150. Referring again to FIG. 2, the system 1 〇 2 may include a heater 154 to heat the portions of the tubes 126 or, in some cases, the tubes may be heated as a whole to a level sufficient to remove at least one The temperature of some of the deposited debris is removed to remove a portion (or all) of one or more deposits. This heating also smoothes the sinking 13 1305296 deposit and promotes sweeping angle reflection. For example, the heater can heat the tubes 126 to a temperature sufficient to vaporize at least a portion of the deposited material. For a plasma source material comprising Li, the heater 154 can be designed to heat the shield 1 to 8 to about 400 to 550. The range of (: is to evaporate U from the surface of the tube. 5 In some cases, the heater can heat the tubes 126 to a temperature sufficient to cause etching of a deposition material and an injection tube 126. The gas produces a chemical reaction. Figure 2 shows that the system 102 also includes a primary system 144 that releases a surname to each tube 126. As shown, the secondary system 144 can be configured to release an etchant. And passing the detectors 10 0 toward the chambers 2 6 10 through the tubes 126. Suitable etchants can include, but are not limited to, for example, HBr, Br2, Cl2, HC, H2, HCF3, combinations thereof, and the like. A Torr concentration HBr system can be used. For a plasma source material containing Sn, the heater 154 can be designed to heat the tubes 126 (or portions thereof) to about 200~ The I5 temperature range of 350 ° C is used to initiate a reaction between the Sn deposit and one or more gas surnames such as HBr to form a reactant that can be removed from the inner tube wall. Further structural details As shown in Fig. 2, the heater 154 may include a heating element 156 that will be wound in the middle Tube 126, and a current source 158 is capable of transmitting a current through the heating element 156. The heating element 156 is made of a conductive material and can be heated by electrical resistance when current is passed through. The devices of the tubes 126 may include, but are not limited to, radiant heaters, microwave heaters, RF heaters, combinations thereof, etc. Section 4 illustrates another embodiment of the invention, which may include an EUV metering monitor 100' Having a detector 150 capable of measuring an EUV light index, such as pulse 14 1305296 energy or flux. In some cases, the detector may be required to measure a wavelength of about 13.5 nm and a bandwidth of about 2% or more. Small light. For this purpose, light from the EUV source will be filtered first in the monitor 100'. In other words, as shown, the monitor 100' will contain one or more filters. 146a', 5 146b', 146c, 146d, one or more of the CaF2 windows 160a, b, and one or more of the multilayer mirrors 148' are capable of reflecting the normal band of light near 13.5 nm. Please understand the multilayer mirror 148', for example, with alternating layers between MOSi2 and Si The multilayer mirror will absorb light, such as light outside the 2% band centered at 13.5 nm, and thus act as a bandpass filter. Conversely, when there is a 10-caF2 window 160a, b along the path In time, the EUV light will be absorbed, and UV and visible light will be transmitted through the windows 160a, b. Therefore, the CaF2 windows 160a, b can also function as a filter. Similarly, the filters 146a '~d' (which may consist of a thin layer of tantalum) will absorb or reflect visible light and transmit EUV radiation. I5 Figure 4 also shows that the monitor 100' includes a pair of linear motion actuators 162a, b that selectively interpose one or more filters 146a'~d, and 160a, b, etc. Trail 164. The monitor 1' also includes an access aperture 166 and a shutter 168. According to this arrangement, the filters 146a'~d', 160a, b may be poorly exposed to the electrical charge generated by the entry aperture 166 into the monitor 1' to generate debris. In some cases, debris deposits may reduce the operational efficiency of the filters 146a'~d', 160a, b. Therefore, the monitor 1A will include a heater Π0 (which can be a light-emitting heater for the monitor 100' shown) to heat a filter 146a'~d', 160a, b Debris is generated by removing the plasma temporarily deposited thereon. Other means for heating the filters 15 1305296 146a'~d', 160a, b include, but are not limited to, electrical resistance heaters, radiation heaters, microwave heaters, RF heaters, combinations thereof and the like. For a plasma source material comprising Li, the heater 17 can be designed to heat the filters 146a'~d', 160a, b to a temperature range of about 4 〇〇 to 550 ° C. The surface evaporates Li. For the plasma source material containing Sn, the heater 170 can be designed to heat the choppers 146a'~d, 160a, b to a temperature range of about 200 to 325 C to promote the Sn deposit. The reaction with a gas engraving agent such as HBr to cause a reaction product which can be removed from the surface of the filter. The emulsion remnant can be injected directly into the monitor 1 中, the middle 10 or the chamber 26 (see Figure 1). Figure 5 shows a variant implementation of a monitor (generally 1 〇〇 „). As shown, the 'EUV gauge monitor 1 〇〇' will have _ detector 1 to measure EUV light parameters, such as pulses Energy or flux, and will include one or more of the wavers 146a, 146b', 146c", 146d" and 160a', b, etc., of which 15

20 的一或數者可被選擇性地插入光徑164,中。該監測器1〇〇,, 亦會包含一或多數的多層鏡148”。又可看出該監測器1〇〇” 亦包含一入孔166,及一快門168,。以此裝置,該多層鏡148” 可能會不良地曝露於由入孔166,進入監測器1〇〇,,内的電聚 生成碎屑。在某些情況下,碎屑沈積物將會減低該鏡148” 的操作效率。因此,該鏡刚”可包含—加熱器17〇,,針對 所示的監測器100’其可為-電阻加&器,π被裝在該鏡 148”的背面,俾能加熱該鏡148”來除掉暫時沈積其上的電 聚生成碎屑。其它能加熱該鏡148”的裝置可包括但不限於 輻射加熱器、微波加熱器、RF加熱器及其組人等。 16 !3〇5296 針對包含Li的電漿源材料,該加熱器17〇,可被設計成 能將該鏡148”加熱至·〜5赃的溫度範圍來由該鏡表面 二lx ·而針對包含Sn的電漿源材料,該加熱器170,可被 設計成能將該鏡148”加熱至2〇〇〜32rc的溫度範圍來促發 5 S η沈積物與氣舰刻_如·之間的反應,以造成一反應 生成物而能被由該鏡表面除掉。氣體敍刻劑可被直接注入 δ亥監測器1〇〇”中或該腔室26内(見第1圖)。 在本發明之一實施態樣中,如第1圖所示,一含Li的標 靶材料可被用來在該電漿形成部位28造成一電漿。以此裝 〇置,則包含1^1和合物的碎屑可能會沈積在該收集鏡30 上。本質上,Li係為非常活性的材料,而幾乎會與—收集 器表面上的任何污染物反應,故會造成鋰化合物。通常, 未化合的經可藉將該收集鏡3〇加熱至一較高溫度(如ho〜 450°〇而來蒸發。具言之,該溫度可被選擇來確保該u的蒸 15發速率更高於Li碎屑的沈積速度。不幸地,有些鋰化合物 並不會在此等適當溫度(即350〜450。〇蒸發。例如,Li2〇 或UAO3等化合物會須要更高的蒸發溫度,且不容易由該 收集器30表面滅散。欲蒸發鐘化合物須使該收集器加熱至 非常高的溫度(600〜700°C以上),其可能會減低或破壞一典 20 型多層鏡的反射率。故’鋰化合物的蒸發及/或濺散將會 發生問題。 因此,第1圖中示出一氫源200(例如一分子或原子的氫 源,譬如引自一遠處理電漿源的原子氫)可被設來將氫注入 該腔室26中,俾與裡反應而產生LiH。一濺射系統2〇2可被 17 1305296 设來產生濺射離子及/或分子,並以足夠的能量將它們導 至該收集器表面來濺散LiH。例如,該濺射系統能以氦或氬 作為濺射材料來構成一RF清潔電漿,例如電容性或電感性 耦合的。如所示,該收集器30可為RF偏壓式,而能選擇地 5控制用來轟擊已沈積在收集器30上之碎屑的離子能量。一 般而言’由收集器表面來濺散LiH會比Li2〇或Li2C03更容易 甚夕。且LiH沈積物會比LiCb更為透明。以此方式的激射乃 可被單獨地用來濺散Li和Li化合物,或與熱結合來蒸發Li 及/或電毁钮刻物。 10 第6圖示出本發明之一實施態樣,其中有一雷射300會 被聚焦於一腔室26,内的電漿形成部位28,。—收集器30,, 例如,一橢圓收集器具有一第一焦點位在或靠近該電漿形 成部位處,及一第二焦點位在一中間焦點處(參見第丨圖), 將會被提供。於此裝置中,電漿產生的碎屑可 能會以不同 15的速率沈積在該收集鏡30,上的不同區域處。例如,較多的 碎屑可能會沈積在位置302a處,而在位置302b處較少(請注 意,針對一橢圓收集器而言,該位置3〇2b係比位置3〇2a更 遠離電漿形成部位28’)。故,在第6圖所示之使用電漿蝕刻 來由該收集器30,除掉碎屑的系統中,在位置3〇2&處最好能 有比位置302b處更南的钱刻速率。(請注意:此可能會在所 沈積的碎屑已被除去之後仍繼續蝕刻該鏡的一部份而損及 該鏡)。因此’該系統會包含一電漿蝕刻劑源144,,及可獨 立各別控制的第一和第二RF電源供應器3〇4a、b,它們係分 別經由電容器來連接於個別的1^電極3〇6a、b,如圖所示。 18 -1305296One or more of 20 may be selectively inserted into the optical path 164. The monitor 1〇〇, will also include one or more multi-layer mirrors 148". It can also be seen that the monitor 1" also includes an access hole 166, and a shutter 168. With this arrangement, the multilayer mirror 148" may be poorly exposed to the electricity generated by the access holes 166 into the monitor 1 to generate debris. In some cases, the debris deposits will be reduced. The operating efficiency of the mirror 148". Thus, the mirror may include a heater 17A, which may be a - resistance plus & π for the illustrated monitor 100', which is mounted on the back of the mirror 148", which can heat the mirror 148 "To remove the electropolymer that is temporarily deposited thereon to generate debris. Other means of heating the mirror 148" may include, but are not limited to, radiant heaters, microwave heaters, RF heaters, and groups thereof. 16 !3〇5296 For a plasma source material containing Li, the heater 17A can be designed to heat the mirror 148" to a temperature range of ~5 来 from the mirror surface 2 lx · for inclusion The plasma source material of Sn, the heater 170, can be designed to heat the mirror 148" to a temperature range of 2 〇〇 32 rc to promote the deposition between the 5 S η deposit and the gas ship _ _ The reaction is caused to cause a reaction product to be removed from the surface of the mirror. The gas engraving agent can be directly injected into the chamber or into the chamber 26 (see Fig. 1). In one embodiment of the invention, as shown in Fig. 1, a Li-containing agent The target material can be used to create a plasma at the plasma formation site 28. With this arrangement, debris containing the 1^1 compound can deposit on the collection mirror 30. Essentially, Li It is a very active material that reacts almost with any contaminants on the surface of the collector, which can cause lithium compounds. Usually, the uncombined can be heated to a higher temperature by the collection mirror 3 (eg Ho~ 450°〇 evaporates. In other words, this temperature can be chosen to ensure that the v-evaporation rate of the u is higher than the deposition rate of Li crumbs. Unfortunately, some lithium compounds are not suitable here. Temperature (i.e., 350 to 450. Evaporation. For example, a compound such as Li2〇 or UAO3 would require a higher evaporation temperature and would not be easily dissipated by the surface of the collector 30. To evaporate the clock compound, the collector should be heated very much. High temperature (above 600~700 °C), which may reduce or destroy a model 20 The reflectivity of the multilayer mirror. Therefore, the evaporation and/or splattering of the lithium compound will cause problems. Therefore, Figure 1 shows a hydrogen source 200 (for example, a hydrogen source of one molecule or atom, for example, from a remote treatment). The atomic hydrogen of the plasma source can be configured to inject hydrogen into the chamber 26, which reacts with the inside to produce LiH. A sputtering system 2〇2 can be set by 17 1305296 to generate sputter ions and/or molecules. And directing them to the surface of the collector with sufficient energy to smear LiH. For example, the sputtering system can use cesium or argon as a sputter material to form an RF cleaning plasma, such as capacitively or inductively coupled. As shown, the collector 30 can be RF biased, and can selectively control the ion energy used to bombard debris that has been deposited on the collector 30. Generally, 'LiH is spattered from the collector surface. It will be easier than Li2〇 or Li2C03, and LiH deposits will be more transparent than LiCb. The lasing in this way can be used alone to sputter Li and Li compounds, or combined with heat to evaporate Li and / or electric damage button engraving. 10 Figure 6 shows an embodiment of the invention, which has a mine The shot 300 will be focused on a plasma forming portion 28 in a chamber 26, a collector 30, for example, an elliptical collector having a first focus at or near the plasma formation site, and a first The two focal points are located at an intermediate focus (see Figure )), which will be provided. In this device, debris generated by the plasma may be deposited at different rates on the collection mirror 30 at different rates of 15 For example, more debris may deposit at location 302a and less at location 302b (note that for an elliptical collector, this location 3〇2b is farther away from the plasma than position 3〇2a The portion 28') is formed. Therefore, in the system using the plasma etching to remove the debris from the collector 30 shown in Fig. 6, it is preferable to have a position at the position 3〇2 & The rate of money in the south. (Note: this may continue to etch a portion of the mirror and damage the mirror after the deposited debris has been removed). Therefore, the system will include a plasma etchant source 144, and independently controllable first and second RF power supplies 3〇4a, b, which are respectively connected to individual electrodes via capacitors. 3〇6a, b, as shown. 18 -1305296

10 1510 15

20 雖然所示係有二㈣統可分财呈環狀的收錢區域上操 作,但請瞭解二個以上的㈣統亦可被使用,且rf系統的 使用並不限於具有任何特定形狀㈣域,例如所示的環形。 適用的敍刻劑可包括但不限於例如·、Β^、 HC1 H2、HCF3及其組合物等〜非钮刻氣體例如氬或氦 亦可被注人來形成_刻電渡。於此所述之“電聚姓刻” 係指-種製程,其可包含以下的—或多個㈣:”在_電 槳中產生可反應物;2)將該等可反應物擴散至要·刻材 料的表面⑼將該等可反應物吸附在該表面上;4)使該等可 反應物與要被關的㈣之間產生種化學反應而 形成揮發性副產品;5)由該表面釋出該等副產品;_將所 釋出的副產品散佈於大量氣體中。f6圖所示的實施可被使 用於包含鐘、錫、氣及/或其它元素的標把材料。 第7圖示出本發明的另一實施態樣,其中一收集器资 的不同區域係能被以不同的速率來加熱。具言之,一蝕刻 速率可a會十分有賴於溫度。例如,使用撕及/或叫來 示掉錫的速率,已被發現甚為取決於在150〜4GG°C範圍内 的皿度。如第7圖所示,其中示出一舉例之機圓收集器3〇” 的背面,差動加熱可藉電阻加熱系统而用來針對不 同的收 域構成不同的_速率。具言之,各加熱系統會包 3电源4〇〇&、b連接於一對應的成型導線402a、b。其它 月b用來將不同收集器區域加熱至不同溫度的加熱器種類可 1括仁不限於輪射加熱器、微波加熱器、RF加熱器及其組 合等。第7圖所示的實施可被使用於包含if、錫、氤及/或 19 -1305296 其匕元素的標乾材料。 第8圖示出本發明之又另一實施態樣,其中設有一裝置 能以可控的電漿個速率來由—EUV光㈣集綱”,的表 面上蝕掉碎屑。如圖所示,該裝置會包含一參考材料,譬 5如一驗證板700 ’其具有一表面係被設成能接收與在收集器 3〇”’表面上的位置7〇2相等量的碎屑沈積物。例如,一很小 (大約lxlcm)的犧牲驗證板700可被設在靠近於該mlm收集 φ 益30”’處,其係由具有適當的齒素蝕刻速率之材料所製成, 例如In或Sb等。於此裝置中,一電漿餘刻系統可被用來以 大致相同的钱刻速率由該收集器3〇”,上的該板7〇〇和位置 702處蝕掉碎屑。如所示,該電漿蝕刻系統會包含一電漿蝕 刻劑源144”,及-可控的RF電源供應器3〇4,經由—電容器 來連接於RF電極306,。 ° 該系統更包含一儀器704可分析來自該驗證板7〇〇的餘 15刻電漿發射物。例如,該儀器704可為一光譜儀。如所示, .-域而’例如-光、賴線可細來將㈣謂發射光 該驗證板7〇0傳輸至該儀器7〇4。其它能有效地將姓刻電裝 發射光由該驗證板700傳輸至該儀器的適用技術可包括— 聚焦光學元件,例如透鏡(未示出)。於該姓刻控制系統中: 20該儀器會產生-輸出顯示該驗證板7〇〇上的碎屬累積量。 輸出將會被-控制器708所接收,並被用來改變—姓刻率失 數以控制該電漿餘刻速率。例如,該控制器能改變讀蚱 功率或該腔室26内的敍刻劑濃度。 要測量該驗證板7 0 〇上的碎屑累積量時,該儀器會挪出 20 1305296 /驗也板材料例如In^Sb的光譜線強度。假使該驗證材料 的譜線強度超過-最高的可容許預定值,則該指示即為該 餘刻效率超過剌例如_通量。於此情況下,該RF功率 或触刻劑濃度將會被該控制器減降。或者,若該驗證材 5料譜線強度變得比指定的最小值更小,則該指示即為紐 刻劑的清潔能力不足以達到碎屑例如如的通量,故該好功 率或姓刻劑濃度將會被提高。 • 紐證板材料的光譜線強度可被作為反饋來控制灯功 率及/或_劑濃度,以將該驗證板材料的光譜線強度(被 H)該儀器704所測出者)保持在_特定水準或在一指定範圍 内。或者,該請«躲,例㈣與職證材料的光譜 強度比可娜持在預定的目標值或在—指定範圍内。 △於該領域中的專業人士應會瞭解本發明之上述各實施 態樣係僅為較佳實施例,而非欲用來在任何方面限制本發 !5明,尤其並非要將本發明限制於某一特定的實施例。許多 φ ^化修正亦能被使用於所揭的本發明之各實施態樣中,而 為專業人士所易得知。所附申請專利範圍係欲用來涵括本 發明之各所揭的實施態樣,以及專業人士所易得知的該等 相同實質以及其它的修正變化。 20 【圖式簡單說明】 第1圖示出本發明-態樣之雷射製成電漿EUV光源的 整體概念示意圖; 第2圖示出-屏蔽系統實施例的侧視示意圖,其可保護 -電衆腔室光學元件免遭電漿源材料碎屑的破壞;” 21 1305296 第3圖係為多數中空管的側視示意圖’示出一光線穿過 —中空管的路徑,及—碎屑微粒被一中空管所捕捉; 第4圖係為本發明—實施例的截面示意圖,其中有一 EUV計量監測器會包含—加熱器來加熱一濾膜以除去所沈 5積的電漿生成碎屑; 第5圖係為本發明另—實施例的截面示意圖,其中一 EUV計量監測器會包含—加熱器可加熱一多層鏡以除去所 沈積的電漿生成碎屑; 第6圖示出本發明之一實施例的概念,其中一收集鏡的 10不同區域會被以不同的蝕刻速率來蝕刻除掉電漿產生的碎 屑; 第7圖示出本發明另一實施例的概念,其中一收集鏡的 不同區域會被以不同速率來加熱除掉電漿產生的碎屑;及 第8圖示出本發明又另一實施例的概念,其中會設有_ 15裝置能以一受控的電漿蝕刻速率來由一EUV光源收集鏡的 表面钱掉碎屑。 【主要元件符號說明】 20…LPP光源 22…脈衝雷射系統 24…標勒輪送系統 26…腔室 28."電聚形成部位 30···收集器 40.·.中間焦點 44··.振盪器雷射系統 48…放大器雷射系統 50…脈衝壓縮及定時電路 52…脈衝壓縮及定時電路 54…脈衝功率時點監視系統 56…脈衝功率時點監視系統 57…雷射輸入窗 22 130529620 Although there are two (four) systems that can be operated in a circular collection area, please understand that more than two (four) systems can also be used, and the use of the rf system is not limited to having any specific shape (four) domain. , for example, the ring shape shown. Suitable sizing agents may include, but are not limited to, for example, Β, HCl, HCF, HCF3, combinations thereof, etc., and non-knocking gases such as argon or helium may also be injected to form an electric charge. As used herein, "electrically-excited" refers to a process that may include the following - or a plurality of (four): "generating a reactant in the electric paddle; 2) diffusing the reactants to the desired The surface of the engraved material (9) adsorbs the reactants on the surface; 4) produces a chemical reaction between the reactants and (4) to be formed to form a volatile by-product; 5) is released from the surface The by-products are discharged; the released by-products are dispersed in a large amount of gas. The embodiment shown in Figure 6 can be used for the label material containing clock, tin, gas and/or other elements. In another embodiment of the invention, different regions of a collector can be heated at different rates. In other words, an etch rate can be very dependent on temperature. For example, using tear and/or call The rate at which tin is shown has been found to depend very much on the extent of the range of 150 to 4 GG ° C. As shown in Fig. 7, the back of an exemplary circular collector 3 〇" is shown, differential Heating can be used by the resistance heating system to form different _ rates for different fields. In other words, each heating system will be connected to a corresponding shaped wire 402a, b. Other types of heaters used to heat different collector zones to different temperatures are not limited to revolving heaters, microwave heaters, RF heaters, and combinations thereof. The embodiment shown in Fig. 7 can be used for a dry material comprising if, tin, antimony and/or 19 - 1305296. Figure 8 illustrates yet another embodiment of the present invention in which a device is provided to erode debris from the surface of the - EUV light (four) assembly at a controlled rate of plasma. The device will contain a reference material, such as a verification plate 700' having a surface system configured to receive a debris deposit equal to the position 7〇2 on the surface of the collector 3''. For example, a very small (about lxlcm) sacrificial verification plate 700 can be placed close to the mlm collection φ 益 30"', which is made of a material having an appropriate guilloche etch rate, such as In or Sb. Etc. In this apparatus, a plasma remnant system can be used to etch debris from the collector 3's and the position 702 at substantially the same rate. As shown, the plasma etch system will include a plasma etchant source 144", and a controllable RF power supply 〇4, coupled to the RF electrode 306 via a capacitor. ° The system further includes a The instrument 704 can analyze the remaining 15 plasma jets from the verification plate 7. For example, the instrument 704 can be a spectrometer. As shown, the .-domain and the 'light-ray, the line can be fined (4) That is, the verification plate 7〇0 is transmitted to the instrument 7〇4. Other suitable techniques for efficiently transmitting the surnamed emitted light from the verification board 700 to the instrument may include a focusing optical element, such as a lens ( Not shown.) In the last name control system: 20 the instrument will generate - output showing the cumulative amount of fragmentation on the verification board 7. The output will be received by the controller 708 and used to change The surname rate is controlled to control the plasma remnant rate. For example, the controller can change the read power or the engraving agent concentration in the chamber 26. To measure the accumulation of debris on the verification plate 70 When measuring, the instrument will remove the spectral intensity of 20 1305296 / inspection board material such as In ^ Sb. If the line strength of the verification material exceeds the highest allowable predetermined value, then the indication is that the residual efficiency exceeds, for example, _ flux. In this case, the RF power or etchant concentration will be controlled. If the intensity of the material of the verification material 5 becomes smaller than the specified minimum value, the indication is that the cleaning ability of the marking agent is insufficient to reach the flux such as, for example, the flux is good. The power or surname concentration will be increased. • The spectral line intensity of the plate material can be used as feedback to control lamp power and/or agent concentration to determine the spectral line intensity of the verification plate material (by H). The instrument 704 is determined to be at a certain level or within a specified range. Alternatively, the spectral intensity of the material should be within a predetermined target value or within a specified range. The above-described embodiments of the present invention should be understood that the above-described embodiments of the present invention are only preferred embodiments, and are not intended to limit the present invention in any way, and in particular, are not intended to limit the present invention. In a particular embodiment. Many φ ^ 修修It is also to be understood that the various embodiments of the present invention are disclosed and are readily apparent to those skilled in the art. The same substance and other corrections are easily known by the person. 20 [Simplified description of the drawings] Fig. 1 is a schematic diagram showing the overall concept of the laser-made EUV light source of the present invention. A side view showing an embodiment of a shielding system that protects the electrical cavity optics from debris from the source material of the plasma source;" 21 1305296 Figure 3 is a side view of a plurality of hollow tubes' Shows a path of light passing through the hollow tube, and - debris particles are captured by a hollow tube; Figure 4 is a schematic cross-sectional view of an embodiment of the invention, wherein an EUV metering monitor will contain - heating To heat a filter to remove the deposited plasma to form debris; Figure 5 is a schematic cross-sectional view of another embodiment of the invention, wherein an EUV metering monitor will include a heater capable of heating a plurality of layers Mirror to remove deposited plasma Figure 6 shows the concept of an embodiment of the invention in which 10 different regions of a collecting mirror are etched at different etch rates to remove debris generated by the plasma; Figure 7 shows another The concept of an embodiment in which different regions of a collection mirror are heated at different rates to remove debris generated by the plasma; and Figure 8 illustrates a concept of yet another embodiment of the present invention in which The device can collect debris from the surface of the mirror by an EUV source at a controlled plasma etch rate. [Description of main component symbols] 20...LPP light source 22...Pulse laser system 24...Billing transfer system 26...chamber 28."Electrical polymerization forming portion 30···Collector 40.·.Intermediate focus 44·· Oscillator Laser System 48...Amplifier Laser System 50...Pulse Compression and Timing Circuit 52...Pulse Compression and Timing Circuit 54...Pulse Power Time Point Monitoring System 56...Pulse Power Time Point Monitoring System 57...Laser Input Window 22 1305296

60…EUV光源控制系統 62…標乾位置檢測反饋系統 65…發射控制系統 66…雷射束定位系統 68…雷射位置與方向改變器 70…液滴顯像器 90·.·標把輸送控制系統 92…標把輸送機構 100…EUV光源檢測器 100’,100’’"_EUV監測器 102…屏蔽系統 104…光學元件表面 126…中空管 128···不銹鋼管 130…中段 132…管轴 134,136···管端 138···偏移距離 140,164···光徑 142…碎屑行徑 144…次系統 146…渡膜 148…多層鏡 150…光電二#體檢測器 154,170."加熱器 156…加熱元件 158…電流源 160 …CaF2 窗 162…致動器 166…入孔 168…快門 200…氮源 202…濺射系統 300…雷射 302,702."碎屑沈積位置 304…RF電源供應器 306…RF電極 400…電源 402…導線 700…驗證板 704…儀器 706…光纖 708…控制器 2360...EUV light source control system 62...dry position detection feedback system 65...emission control system 66...laser beam positioning system 68...laser position and direction changer 70...droplet imager 90·.·handle conveying control System 92...bar transport mechanism 100...EUV light source detector 100',100''"_EUV monitor 102...shield system 104...optical element surface 126...hollow tube 128···stainless steel tube 130...middle section 132...tube Shaft 134, 136 · · · Tube end 138 · · · Offset distance 140, 164 · · · Optical path 142 ... Debris line diameter 144 ... Sub-system 146 ... Transit membrane 148 ... Multi-layer mirror 150 ... Photoelectric two body detector 154 170. "Heater 156...Heating element 158...Current source 160 ...CaF2 Window 162...Actuator 166...Inlet hole 168...Shutter 200...Nitrogen source 202... Sputtering system 300...Laser 302,702." Debris deposition location 304...RF power supply 306...RF electrode 400...power supply 402...wire 700...verification board 704...instrument 706...fiber 708...controller 23

Claims (1)

1305296 第94123365號專利申請案申請專利範圍修正本97.09. 十、申請專利範圍:1305296 Patent application No. 94123365, the scope of application for patent modification is 97.09. X. Patent application scope: 10 1510 15 20 1. 一種極端紫外線(EUV)光源的EUV計量監測器,該光源 會因形成電漿而產生碎屑;該監測器包含: 一輻射檢測器; 一元件,係可過渡該EUV光源所產生的輻射並將過 濾後的輻射送至該檢測器,該元件係位在形成電漿所產 生之碎屑沈積在該元件上的位置處;及 一加熱器,係能將該元件加熱至足以除掉該沈積碎 屑之至少一部份的溫度。 2. 如申請專利範圍第1項之EUV計量監測器,其中該元件 係為一多層鏡。 3. 如申請專利範圍第2項之EUV計量監測器,其中該多層 鏡包含至少一MoSi〗層以及一 Si層。 4. 如申請專利範圍第1項之EUV計量監測器,其中該元件 係為一金屬箱。 5. 如申請專利範圍第4項之EUV計量監測器,其中該金屬 膜包含錯。 6. 如申請專利範圍第1項之EUV計量監測器,其中該加熱 器係選自下列組群:電阻加熱器、輻射加熱器、射頻加 熱、及微波加熱器。 7.如申請專利範圍第1項之EUV計量監測器,其中該電漿 包含一電聚形成材料,一用於該電聚形成材料的餘刻劑 會被注入該監測器内,且該加熱器會將該元件加熱至一 高於200 °C的溫度來促發所沈積的S η與該蝕刻劑之間的 24 1305296 5 化學反應。 8.如申請專利範圍第7項之EUV計量監啦,对該電蒙 形成材料包含Sn。 ’ 9· 1 申請專利範圍第7項之職十量監測器,其中_到 =選自下列組群.恥、α2、Ηα'賊其組合 物等。20 1. An EUV metering monitor for an extreme ultraviolet (EUV) light source that generates debris due to the formation of plasma; the monitor comprises: a radiation detector; a component that is translatable to the EUV source Radiating and delivering the filtered radiation to the detector at a location where debris from the formation of the plasma is deposited on the component; and a heater capable of heating the component sufficiently to remove The temperature at which at least a portion of the debris is deposited. 2. The EUV metering monitor of claim 1 wherein the component is a multilayer mirror. 3. The EUV metering monitor of claim 2, wherein the multilayer mirror comprises at least one MoSi layer and a Si layer. 4. The EUV metering monitor of claim 1, wherein the component is a metal box. 5. The EUV metering monitor of claim 4, wherein the metal film contains a fault. 6. The EUV metering monitor of claim 1, wherein the heater is selected from the group consisting of an electric resistance heater, a radiant heater, a radio frequency heating, and a microwave heater. 7. The EUV metering monitor of claim 1, wherein the plasma comprises an electropolymerization forming material, and a residual agent for the electropolymerization forming material is injected into the monitor, and the heater The element is heated to a temperature above 200 ° C to promote a chemical reaction between the deposited S η and the etchant. 8. If the EUV measurement is in accordance with item 7 of the patent application, the electric forming material contains Sn. </ br> </ br> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; 10 〇.二請專利範圍第1項之職十量監測器,其中該電聚 = 一電装形成材料,且該加熱器會將該元件加熱t 二的溫度來蒸發所沈積的電激形成材料。 如申&quot;專利範圍第10項之騰計量監測器,其中該電聚 形成材料包含Li。 15 種祕除去謂光馳集鏡之碎心裝置’該等诗屑 系口形成電;t所產生者,且該收集鏡係相對於電衆形成 部位來設置而在該收集鏡上的不同區域造成不同的碎 屑沈積速率;該裝置包含:10 〇. 2 The scope of the patent scope of the first ten-quantity monitor, wherein the electro-convergence = a electrical component forming material, and the heater will heat the component to a temperature of t two to evaporate the deposited electro-magnetization forming material. For example, the tens of metering monitor of claim 10, wherein the electropolymer forming material comprises Li. 15 kinds of secret removal means that the smashing device of the light-collecting mirror 'these swarf mouths form electricity; t is generated, and the collecting mirror is arranged with respect to the electric field forming portion and different regions on the collecting mirror Causing different rates of debris deposition; the device contains: 20 —第一加熱系統,係能將該收集鏡的第一區域加熱 至—第一溫度Τι來除去該第一區域之碎屑;及 一第二加熱系統,係能將該收集鏡的第二區域加熱 至—苐一溫度丁2來除去該第二區域之碎屑,且丁1:^丁2。 13·如申請專利範圍第12項之裝置,其中該第一加熱系統包 含—加熱器係選自下列組群:電阻加熱器、輻射加熱 器、射頻加熱器及微波加熱器。 14.如申請專利範圍第12項之裝置,其中該收集鏡係位於— 腔室内,而該電漿包含Sn,並有一蝕刻劑會被注入該腔 至内,且s玄第一溫度T!和第二溫度A皆在150〜400°C的 範圍内而可促發所沈積的Sn與該蝕刻劑之間的化學反 25 25 1305296 應。 15. 如申請專利範圍第14項之裝置,其中該蝕刻劑係選自下 列組群:HBr、Br2、Cl2、HC卜H2及其組合物等。 16. 如申請專利範圍第12項之裝置,其中該電漿包含Li,且 5 該第一溫度T!和第二溫度T2係各皆大於400°C而可蒸發 所沈積的Li。 17· —種保護一 EUV光源之光學元件表面使其免於形成電 漿所產生之碎屑的系統,該系統包含:20 - a first heating system capable of heating the first region of the collecting mirror to a first temperature 除去ι to remove debris of the first region; and a second heating system capable of secondizing the collecting mirror The zone is heated to a temperature of 2 to remove debris from the second zone, and D:2. 13. The device of claim 12, wherein the first heating system comprises a heater selected from the group consisting of a resistive heater, a radiant heater, a radio frequency heater, and a microwave heater. 14. The device of claim 12, wherein the collecting mirror is located in a chamber, and the plasma comprises Sn, and an etchant is injected into the chamber, and the first temperature T! The second temperature A is in the range of 150 to 400 ° C to promote the chemical reaction between the deposited Sn and the etchant. 15. The device of claim 14, wherein the etchant is selected from the group consisting of HBr, Br2, Cl2, HC, H2, combinations thereof, and the like. 16. The device of claim 12, wherein the plasma comprises Li, and wherein the first temperature T! and the second temperature T2 are each greater than 400 ° C to vaporize the deposited Li. 17. A system for protecting the surface of an optical component of an EUV source from debris generated by the plasma, the system comprising: 10 1510 15 一屏蔽物,係包含至少一中空管,該管具有圍繞一 管腔的管壁,該管係被設置於一電漿形成部位與該元件 表面之間,並被定向成能阻止至少一部份被導向該表面 的碎屑達到該表面,且可容許至少一部份在該電漿形成 部位所產生的光穿過該管腔而達到該表面;及 一加熱器,係能加熱該管壁來除掉沈積於其上的碎 屑。 18.如申請專利範圍第17項之系統,其中該加熱器係選自下 列組群:電阻加熱器、輻射加熱器、射頻加熱器及微波 加熱器。 19.如申請專利範圍第17項之系統,其中該電漿包含一電漿 20 形成材料,一用於該電漿形成材料的蝕刻劑會被導入該 監測器内,且該加熱器會將該元件加熱至一高於200°C 的溫度來促發所沈積的電漿形成材料與該蝕刻劑之間 的化學反應。 20.如申請專利範圍第19項之系統,其中該電漿形成材料包 26 1305296A shield comprising at least one hollow tube having a wall surrounding a lumen disposed between a plasma forming portion and the surface of the member and oriented to block at least one portion The debris directed to the surface reaches the surface and allows at least a portion of the light generated at the plasma forming portion to pass through the lumen to reach the surface; and a heater capable of heating the tube wall To remove the debris deposited on it. 18. The system of claim 17, wherein the heater is selected from the group consisting of a resistive heater, a radiant heater, a radio frequency heater, and a microwave heater. 19. The system of claim 17, wherein the plasma comprises a plasma 20 forming material, an etchant for the plasma forming material is introduced into the monitor, and the heater will The element is heated to a temperature above 200 ° C to promote a chemical reaction between the deposited plasma forming material and the etchant. 20. The system of claim 19, wherein the plasma forming material package 26 1305296 ίο 15Ίο 15 含Sn。 21. 如申請專利範圍第19項之系統,其中該蝕刻劑係選自下 列組群:HBr、Br2、Cl2、HQ、H2及其組合物等。 22. 如申請專利範圍第17項之系統,其中該電漿包含一電漿 形成材料,而該加熱器會將該管壁加熱至一高於400°C 的溫度來蒸發所沈積的電漿形成材料。 23. 如申請專利範圍第22項之系統,其中該電漿形成材料包 含Li。 24. 如申請專利範圍第19項之系統,其中該蝕刻劑會被導引 通過該管而遠離該檢測器表面。 25. 如申請專利範圍第17項之系統,其中該屏蔽物包含多數 的中空管,該各管皆具有一内腔,且各管係被定向成可 使在一電漿形成部位所產生的光能通過該各管内腔而 達到該檢測器表面,又該各中空管皆具有一第一端和一 第二端,一内徑d,並會由該第一端至第二端形成一直 線的管軸,且各管在第一端與第二端之間皆設有一中 段,而該中段係以一偏移距離D側向地偏離該管轴,其 中 D&gt;d。 26. 如申請專利範圍第17項之系統,其中該光學元件係選自 20 下列組群:一檢測器及一顯像窗。 27. —種供用於EUV光源的收集鏡系統,該光源因形成電漿 而產生碎屑;該系統包含: 一氫源,其可結合該等碎屑而在該收集鏡的表面上 形成氫化物;及 27 1305296 5 一濺射系統,其可將濺射分子導向該收集鏡表面以 使該氫化物從該收集鏡表面上賤散。 28·如申料利範圍第27項之收錢线,其巾該等碎肩包 含Li,而該氫化物係為LiH。 29.如申請專利範圍第27項之收集鏡系'统,其中該氫係以h2 來被注入。Contains Sn. 21. The system of claim 19, wherein the etchant is selected from the group consisting of HBr, Br2, Cl2, HQ, H2, combinations thereof, and the like. 22. The system of claim 17, wherein the plasma comprises a plasma forming material, and the heater heats the tube wall to a temperature above 400 ° C to evaporate the deposited plasma. material. 23. The system of claim 22, wherein the plasma forming material comprises Li. 24. The system of claim 19, wherein the etchant is directed through the tube away from the detector surface. 25. The system of claim 17, wherein the shield comprises a plurality of hollow tubes, each of the tubes having an internal cavity, and each tube is oriented to be produced at a plasma formation site The light energy reaches the surface of the detector through the inner cavity of each tube, and each of the hollow tubes has a first end and a second end, an inner diameter d, and a straight line is formed from the first end to the second end The tube shaft, and each tube is provided with a middle section between the first end and the second end, and the middle section is laterally offset from the tube axis by an offset distance D, wherein D&gt;d. 26. The system of claim 17, wherein the optical component is selected from the group consisting of: 20 a detector and a display window. 27. A collecting mirror system for an EUV source that produces debris due to the formation of a plasma; the system comprising: a source of hydrogen that can combine with the debris to form a hydride on the surface of the collecting mirror And 27 1305296 5 a sputtering system that directs sputter molecules to the surface of the collecting mirror to scatter the hydride from the surface of the collecting mirror. 28· If the money collection line of item 27 of the scope of claim is included, the shoulders of the towel include Li, and the hydride is LiH. 29. The collection mirror system of claim 27, wherein the hydrogen system is injected with h2. 10 30. 如申研專利範圍第27項之收集鏡系統,其中該濺射系統 會產生一 RF電黎_。 31. 如申請專職圍第3〇項之收集鏡祕,其巾該濺射分子 包含氬。 32·如申1專利’ 3()項之收集鏡系統,其中韻射分子包含氦。 33.如申請專㈣圍妨項之收集鏡系統 ,其中該系統包含 一多層收集鏡。 1510 30. The collection mirror system of claim 27, wherein the sputtering system generates an RF signal. 31. If the application of the full-length third item is collected, the sputter molecule contains argon. 32. The collection mirror system of claim 3, wherein the radiant molecule comprises 氦. 33. For the application of the special (4) enclosure of the collection mirror system, the system comprises a multi-layer collection mirror. 15 34.如申4專利範圍第33項之收集鏡祕,其巾該鏡包含至 少一 MoSi2層及一 Si層。 3 5.種以控制的電漿麵刻率來敍刻v光源收集鏡表面 之碎屑的裝置,該裝置包含: 20 一用來钕刻碎屬 至少一可控制的參數 之電漿蝕刻系統,該蝕刻系統具有 以改變電漿蝕刻速率; 收隼鏡參考材料,該表面係位於接收與該 收集鏡表面上之至少_輯大之碎屑累積量的 位置 一儀器 其能夠分析來自 «亥參考材料表面的發射 28 130529634. The collecting mirror of claim 33 of claim 4, wherein the mirror comprises at least one MoSi2 layer and one Si layer. 3 5. A device for engraving the debris of a v-light source collecting mirror surface with a controlled plasma engraving rate, the device comprising: 20 a plasma etching system for engraving at least one controllable parameter, The etching system has a function of changing the plasma etching rate; the receiving mirror reference material is located at a position of receiving at least a large amount of debris accumulation on the surface of the collecting mirror, and the instrument is capable of analyzing the material from the reference material Surface emission 28 1305296 10 1510 15 物,而產生一輸出以顯示在該參考材料表面上的碎屑累 積量;及 一控制器,其可回應該輸出而改變一蝕刻速率參數 來控制電漿钱刻速率。 5 36.如申請專利範圍第35項之裝置,其中該發射物包含一蝕 刻電漿發射物。 37.如申請專利範圍第35項之裝置,其中該參考材料包含 銦。 38.如申請專利範圍第35項之裝置,其中該參考材料包含 録。 39. 如申請專利範圍第35項之裝置,其中該儀器係為一光譜 儀。 40. 如申請專利範圍第39項之裝置,其中該輸出係為該參考 材料的譜線強度。 41.如申請專利範圍第39項之裝置,其中該EUV光源會造成 一含錫的電漿來產生EUV光,而該輸出係為該參考材料 與錫的譜線強度之比。 42.如申請專利範圍第35項之裝置,其中該電漿蝕刻系統會 形成一RF電漿,而該蝕刻速率參數係為RF功率。 20 43.如申請專利範圍第35項之裝置,更包含一光纖能夠將該 發射物傳輸至該儀器。 29 1305296And generating an output to display the amount of accumulated debris on the surface of the reference material; and a controller that can output an output etch rate parameter to control the plasma etch rate. The apparatus of claim 35, wherein the emitter comprises an etched plasma emitter. 37. The device of claim 35, wherein the reference material comprises indium. 38. The device of claim 35, wherein the reference material comprises a record. 39. The device of claim 35, wherein the instrument is a spectrometer. 40. The device of claim 39, wherein the output is the line intensity of the reference material. 41. The device of claim 39, wherein the EUV source causes a tin-containing plasma to produce EUV light, and the output is the ratio of the reference material to the tin line strength. 42. The device of claim 35, wherein the plasma etching system forms an RF plasma and the etch rate parameter is RF power. 20 43. The device of claim 35, further comprising an optical fiber capable of transmitting the projectile to the instrument. 29 1305296 第(1)圖。 簡單說明: 七、指定代表圖: (一) 本案指定代表圊為: (二) 本代表圖之元件符號 20…LPP光源 22…脈衝雷射系統 24·&quot;標乾輸送系統 26…腔室 28…電漿形成部位 3〇…收集器 40…中間焦點 44…振盪器雷射系統 48…放大器雷射系統 50…脈衝壓縮及定時電路 52…脈衝壓縮及定時電路 5:·.脈衝功率時點監視系統 56“·脈衝功率時點監視系統 57···雷射輸入窗 60.. .EUV光源控制系統 62···標靶位置檢測反饋 65.. .發射控制系統、統 66···雷射束定位系统 68…雷射位置與方向改 70…液滴顯像器 。 90…標乾輸送控制系統 92…標乾輸送機構 100…EUV光源檢測器 102…屏蔽系統 200…氣源 202…濺射系統 有化學式時,請揭示最能联示發明特徵的化學式:Figure (1). Brief Description: VII. Designated representative map: (1) The designated representative of the case is: (2) The component symbol 20...LPP light source 22...pulse laser system 24·&quot;standard dry conveying system 26...chamber 28 ...plasma forming part 3〇...collector 40...intermediate focus 44...oscillator laser system 48...amplifier laser system 50...pulse compression and timing circuit 52...pulse compression and timing circuit 5:·.pulse power time point monitoring system 56"·Pulse Power Time Point Monitoring System 57···Laser Input Window 60.. EUV Light Source Control System 62··· Target Position Detection Feedback 65.. Launch Control System, System 66···Laser Beam Positioning System 68... laser position and direction change 70... droplet developer. 90... standard dry conveying control system 92... standard dry conveying mechanism 100... EUV light source detector 102... shielding system 200... gas source 202... sputtering system has In the chemical formula, please reveal the chemical formula that best describes the characteristics of the invention:
TW94123365A 2004-07-27 2005-07-11 Systems and methods for reducing the influence of plasma-generated debris on the internal components of an euv light source TWI305296B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/900,839 US7164144B2 (en) 2004-03-10 2004-07-27 EUV light source
US10/979,945 US8075732B2 (en) 2004-11-01 2004-11-01 EUV collector debris management
US11/174,442 US7196342B2 (en) 2004-03-10 2005-06-29 Systems and methods for reducing the influence of plasma-generated debris on the internal components of an EUV light source

Publications (2)

Publication Number Publication Date
TW200612208A TW200612208A (en) 2006-04-16
TWI305296B true TWI305296B (en) 2009-01-11

Family

ID=36315387

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94123365A TWI305296B (en) 2004-07-27 2005-07-11 Systems and methods for reducing the influence of plasma-generated debris on the internal components of an euv light source

Country Status (2)

Country Link
JP (1) JP4689672B2 (en)
TW (1) TWI305296B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193229B2 (en) * 2004-12-28 2007-03-20 Asml Netherlands B.V. Lithographic apparatus, illumination system and method for mitigating debris particles
US7541603B2 (en) * 2006-09-27 2009-06-02 Asml Netherlands B.V. Radiation system and lithographic apparatus comprising the same
JP5277496B2 (en) * 2007-04-27 2013-08-28 ギガフォトン株式会社 Extreme ultraviolet light source device and optical element contamination prevention device of extreme ultraviolet light source device
NL2003405A (en) * 2008-09-29 2010-03-30 Asml Netherlands Bv System for contactless cleaning, lithographic apparatus and device manufacturing method.
US9539622B2 (en) * 2014-03-18 2017-01-10 Asml Netherlands B.V. Apparatus for and method of active cleaning of EUV optic with RF plasma field
KR102465328B1 (en) * 2015-08-28 2022-11-10 삼성전자주식회사 Apparatus for lithograpy and extreme ultra violet light source apparatus
WO2017090126A1 (en) 2015-11-25 2017-06-01 ギガフォトン株式会社 Extreme ultraviolet light generating device
US10128017B1 (en) * 2017-05-12 2018-11-13 Asml Netherlands B.V. Apparatus for and method of controlling debris in an EUV light source
JP6895518B2 (en) 2017-06-12 2021-06-30 ギガフォトン株式会社 Extreme UV sensor unit
US10495987B2 (en) 2017-09-28 2019-12-03 Taiwan Semiconductor Manufacturing Co., Ltd. Radiation source apparatus, EUV lithography system, and method for decreasing debris in EUV lithography system
US10824083B2 (en) 2017-09-28 2020-11-03 Taiwan Semiconductor Manufacturing Co., Ltd. Light source, EUV lithography system, and method for generating EUV radiation
DE102021106289A1 (en) * 2020-05-07 2021-11-11 Taiwan Semiconductor Manufacturing Co., Ltd. SYSTEM AND METHOD FOR CARRYING OUT EXTREME ULTRAVIOLET PHOTOLITHOGRAPHY PROCESSES
CN114485279B (en) * 2020-10-26 2023-03-07 北京大学 Sputtering shielding system and method for repetition frequency laser target shooting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566667B1 (en) * 1997-05-12 2003-05-20 Cymer, Inc. Plasma focus light source with improved pulse power system
EP1083777A4 (en) * 1998-05-29 2004-03-05 Nippon Kogaku Kk Laser-excited plasma light source, exposure apparatus and its manufacturing method, and device manufacturing method
JP2001326096A (en) * 2000-05-16 2001-11-22 Nikon Corp Plasma focus light source, lighting device, x-ray exposure equipment using the same, and manufacturing method of semiconductor device
FR2823949A1 (en) * 2001-04-18 2002-10-25 Commissariat Energie Atomique Generating extreme ultraviolet radiation in particular for lithography involves interacting a laser beam with a dense mist of micro-droplets of a liquefied rare gas, especially xenon

Also Published As

Publication number Publication date
JP2008508722A (en) 2008-03-21
TW200612208A (en) 2006-04-16
JP4689672B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
TWI305296B (en) Systems and methods for reducing the influence of plasma-generated debris on the internal components of an euv light source
US7732793B2 (en) Systems and methods for reducing the influence of plasma-generated debris on the internal components of an EUV light source
EP1853882B1 (en) Systems for protecting internal components of an euv light source from plasma-generated debris
US7355191B2 (en) Systems and methods for cleaning a chamber window of an EUV light source
JP6013528B2 (en) EUV light source component and its manufacture, use and repair method
KR101343805B1 (en) Alternative fuels for euv light source
TWI394009B (en) Laser produced plasma euv light source
TWI481315B (en) System, method and apparatus for laser produced plasma extreme ultraviolet chamber with hot walls and cold collector mirror
US8075732B2 (en) EUV collector debris management
EP1896197B1 (en) Method of cleaning and after treatment of optical surfaces in an irradiation unit
US8198612B2 (en) Systems and methods for heating an EUV collector mirror
US7641349B1 (en) Systems and methods for collector mirror temperature control using direct contact heat transfer
JP5489457B2 (en) Alternative fuel for EUV light source