TWI304694B - A method and apparatus for ensuring high quality audio playback in a wireless or wired digital audio communication system - Google Patents

A method and apparatus for ensuring high quality audio playback in a wireless or wired digital audio communication system Download PDF

Info

Publication number
TWI304694B
TWI304694B TW094132495A TW94132495A TWI304694B TW I304694 B TWI304694 B TW I304694B TW 094132495 A TW094132495 A TW 094132495A TW 94132495 A TW94132495 A TW 94132495A TW I304694 B TWI304694 B TW I304694B
Authority
TW
Taiwan
Prior art keywords
digital data
data
signal
digital
fifo
Prior art date
Application number
TW094132495A
Other languages
Chinese (zh)
Other versions
TW200625903A (en
Inventor
Huat Chua Beng
Original Assignee
Free Systems Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Free Systems Pte Ltd filed Critical Free Systems Pte Ltd
Publication of TW200625903A publication Critical patent/TW200625903A/en
Application granted granted Critical
Publication of TWI304694B publication Critical patent/TWI304694B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/062Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers
    • H04J3/0632Synchronisation of packets and cells, e.g. transmission of voice via a packet network, circuit emulation service [CES]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Quality & Reliability (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

修正本 1304694 九、發明說明: 【發明所屬之技術領域】 本發明係關於數位資料通訊訊號之傳送與接收的裝置和方法,特 別係關於被接收的數位資料通訊訊號之同步化(synchroni zat丨on)。 【先前技術】 對於大多數無線或有線系統,數位資料的傳送與接收比較不複 雜。可是,由於音訊必要條件的等時性性質(is〇chronous nature), 故要數位聲音(digital audio)資料傳送並在接收器確實地將此聲音 傳送回去是較困難的。另,錄放系統利用標準的聲音數 位傳至類比轉換器以維持音頻(audioci〇ck),此音頻需要週期性地用 聲音脈波碼調整(pulse code modulation)以保持一個平穩的錄放。對 一個無線傳送器和沒有從已傳送的訊號中執行頻率復原(cl〇ck recovery)接收器而言,傳送器的音頻係有別於接收器的音頻,故數位 資料的產生速率與消耗成了一個問題。傳送器的頻率可能以較快的速 率過度供應數位資料,而超過接收器所消耗的數位資料,或者,傳送 裝置的頻率可能以較慢的速率供應數位資料不足而使接收裝置的數位 資料匱乏。 如第一圖所示,一數位資料通訊系統實例,係為一無線紅外線數 位聲音頭戴式耳機25。傳送器(transmitter)lO需要將之後使用同步 化訊號、控制訊號與錯誤訊號格式化的聲音訊號數位化解碼。此格式 化的解碼資料調整一利用脈波位置調變(pulse positioned modulation)的傳送訊號。此調整過的傳送訊號係用來控制從發光二極 體15所發出光訊號(light; signal)2〇傳播。光訊號2〇會廣播到頭戴 式耳機25 ’而頭戴式耳機25具有一光偵測器(photodetector)40。光 债測器40通常位在頭戴式耳機25的外侧係用來接收光訊號2〇。傳送 光谓測器40的偵測訊號至接收器30,解調(demodulate)和重新格式 化解碼過的聲音訊號轉換至味Xspeaker)35a和35b。味35a和35b 係位於接近一戴著頭戴式耳機25的人45之耳朵處。 數位資料的無線傳送時常係透過連續地傳送數位資料的格式化 修正本 1304694 架構(formatted frame)而完成。例如紅外線資料協會(irDA),在2001 年五月出版的 “Serial Infrared Physical Layer Specification,,, 之第1·4版所列舉的系統,如在5·4· 2的架構所示,具有一前導位場 (Preamble Field,PA),啟動標誌場(Start Flag Field,FA),資料 場(Data Field,DD),和一停止標諸場(stop Flag Field)。接收器 30利用前導位場將接收器30的頻率系統(clocking system)同步化至 進來的訊息。一般來說,一個鎖相迴路震盪器(phase i〇ck ι〇ορ oscillator)係用來同步化接收器30至前導位場。 一旦前導位場被偵測到且接收器30被同步化,則接收器30會開 始偵測啟動標誌場(Start Flag Field)以建立符號同步化。如果啟動 標誌場係正確的,接收器30會接著開始接收資料場(DataFieid)的資 料符號(data symbol),且會繼續接收直到停止標誌場(St〇p Flag Field)接收到為止。 第二圖係一數位化資料理想化的傳送圖式說明。在時間週期i 期間,一數位資料符號第一訊框ADO,其係藉著聲音類比訊號的取樣 與轉換取樣的結果成一代表類比訊號大小的數位解碼而產生的。在時 間週期期間,交錯(interleave)訊框符號且用一錯誤更正碼ECCE〇 解碼。同時在期間,一第二訊框舰被取樣且被轉換成一數位資料 的符號。在時間週期3期間,交錯與解碼的資料訊框係用來調整一傳 送訊號RF T0,其藉著LED15從傳送裝置1〇通過空氣至頭戴式耳機25 的發光二極體40播放出來。理想的話,這種情況會立刻發生在3期 間。接收者裝置30復原傳送出的訊號和復原接收資料即則的符號訊 框。同時,資料的第二個訊框被交錯且用一錯誤更正碼ECCE1解碼, 第二個取樣AD2被轉換成此數位資料。在時間週期4期間,接收到的 資料RF R0被去交錯(deinterleave),且有一錯誤修正,以及對接收 恢復原本數位訊號ECCD0的符號訊框進行债測。在同一時間,資料 ECCE1之被交錯和解碼的訊框,調整被發送的傳送訊號RFTi。傳送訊 號RF T1被接收而訊框即ri被回復。同時,符號的第三個訊框被交 錯和用錯誤修JL解碼、對職訊框腿2侧,以及_峨的一第 修正本 1304694 四取樣被轉換成第二訊框群組的符號AD〇之訊框。在時間週期期 間,原本的資料ECCD0符號訊框被轉換成一類比訊號ad〇 ,以應用於 喇叭35a和35b上。對於每一個時間週期%…,η·連續的順序, 如同藉著取樣(sample)類比訊號以接收數位資料的過程;用錯誤更正 碼交錯和解碼數位資料;調整和傳送數位資料;接收和復原數位資料; 交錯和解碼數位資料以及修正數位資料内的錯誤;轉換數位資料成一 類比訊號,以用來傳送至喇口八35a和35b。 在 5.4· 1 中,“Serial Infrared Physical LayerMODIFICATION 1304694 IX. DESCRIPTION OF THE INVENTION: 1. Field of the Invention The present invention relates to a device and method for transmitting and receiving digital data communication signals, and more particularly to synchronizing the received digital data communication signals (synchroni zat丨on) ). [Prior Art] For most wireless or wired systems, the transmission and reception of digital data is not complicated. However, due to the is〇chronous nature of the audio necessary conditions, it is more difficult to transmit the digital audio data and reliably transmit the sound back to the receiver. In addition, the recording and playback system uses standard sound digital data to transmit to the analog converter to maintain audio (audioci〇ck), which requires periodic pulse code modulation to maintain a smooth recording and playback. For a wireless transmitter and a receiver that does not perform a frequency recovery from the transmitted signal, the transmitter's audio system is different from the receiver's audio, so the rate and consumption of digital data is reduced. one question. The frequency of the transmitter may over-supply digital data at a faster rate than the digital data consumed by the receiver, or the frequency of the transmitting device may supply insufficient data at a slower rate to make the digital data of the receiving device scarce. As shown in the first figure, an example of a digital data communication system is a wireless infrared digital sound headset 25. The transmitter 10 needs to digitally decode the audio signal formatted by the synchronization signal, the control signal and the error signal. The formatted decoded data is adjusted to a transmitted signal using pulse positioned modulation. The adjusted transmission signal is used to control the propagation of the light signal 2 emitted from the LED 15. The optical signal 2 is broadcast to the headset 25' and the headset 25 has a photodetector 40. The optical debt detector 40 is typically located on the outside of the headset 25 for receiving optical signals. The detection signal of the optical pre-detector 40 is transmitted to the receiver 30, and the demodulated and reformatted decoded audio signals are converted to the flavor Xspeakers 35a and 35b. The flavors 35a and 35b are located near the ear of a person 45 wearing the headset 25. The wireless transmission of digital data is often accomplished by continuously translating the formatting of the digital data to the 1304694 formatted frame. For example, the Infrared Data Association (irDA), the system listed in the "Serial Infrared Physical Layer Specification,", May 2001, as listed in the 1st edition, has a lead as shown in the architecture of 5.4.2. A Preamble Field (PA), a Start Flag Field (FA), a Data Field (DD), and a Stop Flag Field. The Receiver 30 uses the Preamble Field to receive The clocking system of the device 30 is synchronized to the incoming message. In general, a phase-locked loop oscillator (phase i〇ck ι〇ορ oscillator) is used to synchronize the receiver 30 to the leading bit field. When the preamble field is detected and the receiver 30 is synchronized, the receiver 30 will begin to detect the Start Flag Field to establish symbol synchronization. If the start flag field is correct, the receiver 30 will continue. Start receiving the data symbol of the data field (DataFieid), and continue to receive until the stop flag field (St〇p Flag Field) is received. The second figure is an idealized transfer diagram description of a digital data. In time During the period i, the first frame ADO of the digital data symbol is generated by the sampling of the analog analog signal and the result of the conversion sampling into a digital decoding representing the analog signal size. During the time period, the interleave is interleaved. The block symbol is decoded with an error correction code ECCE. At the same time, a second frame ship is sampled and converted into a symbol of a digital data. During time period 3, the interleaved and decoded data frame is used to adjust A transmission signal RF T0 is played by the LED 15 from the transmitting device 1 through the air to the LED 42 of the headset 25. Ideally, this situation occurs immediately during the period 3. The receiver device 30 is restored. The transmitted signal and the symbol frame for restoring the received data. At the same time, the second frame of the data is interleaved and decoded with an error correction code ECCE1, and the second sample AD2 is converted into the digital data. During the period 4, the received data RF R0 is deinterleaved, and there is an error correction, and the symbol frame for receiving and recovering the original digital signal ECCD0 is performed. At the same time, the interleaved and decoded frame of the material ECCE1 adjusts the transmitted transmission signal RFTi. The transmission signal RF T1 is received and the frame ri is replied. At the same time, the third frame of the symbol is Interleaving and error correction JL decoding, the opposite side of the frame 2, and a first revision of the _ 130 130 1 146 464 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 During the time period, the original data ECCD0 symbol frame is converted into an analog signal ad〇 for use on the speakers 35a and 35b. For each time period %..., η·continuous sequence, like the process of receiving digital data by sampling analog signal; interleaving and decoding digital data with error correction code; adjusting and transmitting digital data; receiving and restoring digital data Data; interleaving and decoding digital data and correcting errors in digital data; converting digital data into an analog signal for transmission to Lakou 8 35a and 35b. In 5.4·1, “Serial Infrared Physical Layer

Specification”詳細說明資料的解碼。利用四脈波位置調變 (four-pulse position modulation)傳送數位資料。在這種實例下, 藉著在一符號内定位一脈波訊號,解碼一個二位元的資料結構。用每 -個位置代表二元猶結翻解碼,將此符賴分成符麟間持續期 間之四個時間位置。 刖導位場,啟動標誌場和停止標誌場都是獨一的編碼,其具有符 號流(symbol streams),且別將此符號流和用二位元資料結構的四脈 波的位置調整裝置混為一談。 接收器運用鎖相迴路的同步化係受到拖延本地接收器頻率抖動 (jitter)所影響而配合傳送資料的頻率。再者,本地錢器(1〇(^ os^llator)的任何漂移(shift)會導致本地震堡器必須週期性地重新 固疋(re locked)。無本地震蘯器對訊號週期性地重新固定,會有資料 接收的錯誤。且,多重路徑接收問題導致接收到⑽序資料"(tiffling data)會隨著在路徑的延遲差異變動。 大豕都知道彡神復縣構(elGek reeGvery 略)係不完美 的。由於傳送路徑的干擾,當在無線環境的接收器無法接錄位資料 鎖相迴路,同步化至此傳送辭,此傳送鮮會使此數位資料 損失或X顺壞。细卿的抑制技巧_輕損失數位資料符號的問 題,故而頻率同步化。 ⑼^專Γ號5,457,718 (Ande職,et al.)教導一簡潔的相位 復原丄構,其係细數位電路。相位復原電路實f上係—全然地積體 修正本 1304694 數位濾波器(integrated digital filter),其和一相位比較器(細e c〇峡ator)作動以提供-鎖相迴路和資料時序重定(dataretiming) ,函數。此數赠波器提供·《資料時序重定的函數係透過發送四位元 汁數器的輸iB至-數位延遲耕,啸位延遲冑料訊號 輸出和輸入至此相位比較器之間。當資料相對於本地時脈(1〇cal clock)係非同步的,醜位奴n從料的二元她,決定所需的相 位修正之極性,再將此送回延遲元件。延遲元件接著調整進來資料的 相位,其相對於本地時脈相位。 美國專利號5,887,040 (Jung, et al·)提供一高速數位資料時 序重定裝置(digital data retiming apparatus),其二進位資料能以 穩定的方式時序重定,甚至假如靜態偏斜(staticsk&¥)係由於在時序 重定的時脈脈波和資料間的差異,且此資料有在現場而動態偏移 (dynamic skew)係因根據時間和溫度造成的特徵變化。用一延遲區域 的方式’延遲外部的時脈脈波,故系統的執行與資料的形式無關。如 果資料相位顯示一連續差異(wandering)超過一特定時間週期,則一彈 性緩衝器(elastic buffer)吸收這差異,故因此沒有資料損失。 美國專利號5,886,552 (Chai,et al·)係揭露一資料時序重定 (retiming)電路,其係透過從鎖相迴路(phase-locked loop)的電壓控 制震盪器使用複數個頻率,能夠更有效時序重定外部輸入資料。 美國專利號5,608,357(Ta,et al·)有教導一資料時序重定系 統,負責時序重定傳入的資料和消除抖動(jitter)。資料時序重定系 統包括一局部頻率(local clock); —相位調準器(phase aiigner), 用來接收傳入的資料和從傳入的資料產生一復原的頻率,然後藉著用 此復原頻率時序重定傳入的資料,以產生具時序重定的傳入資料;以 及一緩衝記憶體(buffer memory),其藉由儲存時序重定過的傳入資 料,與復原頻率一致從時序重定的傳入資料將抖動移至緩衝記憶體, 以及與局部頻率一致讀取從緩衝記憶體所儲存的資料。即使在非常高 的資料速率時,資料時序重定提供可靠的操作。The Specification specifies the decoding of the data. The four-pulse position modulation is used to transmit the digital data. In this example, a two-bit signal is decoded by locating a pulse signal within a symbol. Data structure. Each position represents a binary hexadecimal decoding, which is divided into four time positions during the duration of the symmetry. The 刖 pilot field, the start flag field and the stop flag field are all unique codes. , which has symbol streams, and does not confuse this symbol stream with the four-pulse position adjustment device of the two-bit data structure. The synchronization of the receiver using the phase-locked loop is delayed by the local receiver frequency jitter. (jitter) is affected by the frequency of the transmitted data. Furthermore, any shift of the local money device (1 〇 (^ os^llator) will cause the earthquake to be re-locked periodically. Without this earthquake, the signal is periodically re-fixed, and there will be errors in data reception. Moreover, the multi-path reception problem causes the received (10) sequence data "(tiffling data) to follow the path. Delays in the change of the difference. Daxue knows that the Shenfu County (elGek reeGvery) is not perfect. Due to the interference of the transmission path, when the receiver in the wireless environment cannot access the data phase-locked loop, the synchronization is transmitted. This transmission will cause this digital data loss or X to be corrupted. The fine suppression technique _ light loss of the digital data symbol, and therefore the frequency synchronization. (9) ^Special number 5,457,718 (Ande, et al.) teach one A simple phase recovery structure, which is a fine-digit circuit. The phase-recovery circuit is a real-time integrated-body-corrected digital 1346949 digital filter, which is activated by a phase comparator (fine ec〇 s ator). To provide - phase-locked loop and data retiming, function. This number is provided by the wave device. "The function of data timing re-spinning is transmitted through the transmission of the four-bit juicer to the iB-to-digit delay tillage, and the whistling delay. The data signal is output and input between the phase comparators. When the data is asynchronous with respect to the local clock (1〇cal clock), the ugly slaves are the binary of her, and the required phase repair is determined. The polarity is then sent back to the delay element. The delay element then adjusts the phase of the incoming data relative to the local clock phase. US Patent No. 5,887,040 (Jung, et al.) provides a high speed digital data timing device (digital data) Retiming apparatus), its binary data can be re-timed in a stable manner, even if static skew (staticsk & ¥) is due to the difference between the clock pulse and data in the timing re-determination, and this data is dynamic in the field Dynamic skew is a change in characteristics due to time and temperature. The external clock pulse is delayed by a delay region, so the execution of the system is independent of the form of the data. If the data phase shows a continuous wandering for more than a certain period of time, an elastic buffer absorbs the difference, so there is no data loss. U.S. Patent No. 5,886,552 (Chai, et al.) discloses a data timing retiming circuit that uses a plurality of frequencies from a voltage controlled oscillator of a phase-locked loop to enable more efficient timing reconfiguration. External input data. U.S. Patent No. 5,608,357 (Ta, et al.) teaches a data timing reconfiguration system that is responsible for timing re-introduction of incoming data and jitter removal. The data timing re-routing system includes a local clock; a phase aiigner for receiving incoming data and generating a recovered frequency from the incoming data, and then using the recovered frequency timing Resizing the incoming data to generate incoming data with time series re-sequence; and a buffer memory, which stores the incoming data that has been re-scheduled by the timing, and the incoming data that is re-equalized from the timing is The jitter is moved to the buffer memory, and the data stored from the buffer memory is read in accordance with the local frequency. Even at very high data rates, data timing reconfiguration provides reliable operation.

Dennison 等人所提出的nLow-Latency Plesiochronous Data 1304694 修正本nLow-Latency Plesiochronous Data 1304694 Revised by Dennison et al.

Retiming",於1995年三月發表在1995年高等研究VLSI會議論文集 中’而係在 2002 年四月二日 www.mit.edu/pub/cva/plesio.ps.Z 網 站,才找到Dennison等人所提出的論文。Dennison等人藉著延遲資 料’時序重定已接收的資料,所以資料可以被接收裝置頻率所截取。 Sarmenta 等人於 1995 年十月,發表 “Rational cl〇cking„ 於 IEEE的電腦設計國際會議的論文集,敘述在時脈頻率關於有理因數 (rational factor)間之一個已知相位關係的維持,以及沒有編譯時間 判定競爭(run-time arbitration contest),利用其相對相位對於演 算地時間溝通之可預測性。 ' 、 【發明内容】 本發明的主要目的係提供一種在無線或有線數位聲音通訊系統 中可確保ifjna質聲音錄放之方法與裝置,其從一傳送媒介同步化所接 收並回復的資料至資料所傳輸到的傳送媒介。 本發明的另一目的係提供一種在無線或有線數位聲音通訊系統 中可確保高品質聲音錄放之方法與裝置,從一傳送媒介所接收並回復 的資料即使在傳送時脈和接收時脈不同時,也不會發生資料不足 (under-run)或資料溢出(overrun)的情形發生。 為達到上述目的以及其他目的,本發明係提供一種在無線或有線 數位聲音通訊系統中可確保尚品質聲音錄放之方法與裝置,該通訊'系 統包括一具有傳送器和接收器的資料通訊系統。此傳送器,包括一訊 框格式器(frame formatter)和一傳送元件。此訊框格式器會將數位資 料解碼成連續符號。數位資料的解碼包括將數位資料交錯 (interleave),以及提供錯誤偵測和正確的編碼。傳送元件係負責& 達訊框格《去接收此連續槪,和傳送_由此連續槪所組成的調 節訊號。 接收器係負責聯繫傳送器,以用來接收此調節訊號、重存此調節 訊號並重建調節訊號之數位資料的符號,以及將此數位資料同步化至 一第一參考訊號(reference signal)。接收器有一放大與調節電路, 以及用來接收、重存和取樣調節訊號的調節電路(c〇nditi㈤ing 1304694 修正本 circuit)。在複數個第一參考信號中取樣調節訊號,所以在調節訊號 内,代表邊界在數位資料的位元間的轉換被偵測到,且重建此數位資 料並同步化至第二參考信號。一旦放大與調節電路重建和同步化數位 資料,此數位資料會被轉送至一緩衝資料保留電路(buffer data retention circuit),使重建過的數位資料被保留。此緩衝資料保留 電路至少具有一用來保留符號群的緩衝電路。 將數位資料從緩衝資料保留電路轉送至一資料修正和交錯電 路,以用來重新組織數位資料至原本連續的符號。資料修正和交錯電 路會更進一步修正在調卽訊號的傳輸過程所產生的任何錯誤。根據數 位資料的交錯和修正,重新組織化和修正過的數位訊號在緩衝資料保 留電路被取代。 μ 一邊界標記訊號(boundary marker signal)偵測電路係負責聯繫 放大與調節電路以接收重建過的數位資料。從重建過的數位資料中, 邊界標記訊號偵測電路抽出一指示數位資料的記號之邊界的標記訊 號。此標記信號提供一個傳送裝置播放數位資料的時間指示。 接收器有一抖動管理(jitter management)單位,其將數位資料 同步化至第一參考訊號。抖動管理單元有一先進先出(FIF〇)資料保留 元件,其係從緩衝資料保留電路以第一參考訊號的速率接收和重建數 位資料,和傳送已同步化的數位資料為了以接近第三參考訊號的速率 更進-步的處理,其中,第二參考峨的速轉接近在傳送裝置數位 資料的時間。 抖動管理單元有-可調魏參考峨產生器,其與_資料保 留元件連_數位__姐提鄉二參考碱。緩衝資料保 留電路傳送數位資料至FIFO冑料保留元件,-直到FiF0資料保留元 件包含數位資料的-第-數量(大約係fifq資料㈣元件容量的一 半)’則FIFO資料保留元件開始傳送此數位資料。另外,緩衝資料保 留電路必齡兩個標記職間,轉換數位資騎提⑽所有符號以避 免數位資位(GVemin)。為完成麵_記減断有符號的轉 換,緩衝f祕航件必須啊麵健記滅之帛,讎第一和第 修正本 1304694 二訊框符號。這能預防被轉換至緩衝資料保留電路的資料溢位β 抖動管理單元有一產生器管理電路(generat〇r c〇ntr〇l circuit),係關於透過邊界標記訊號偵測電路,接收從調節訊號抽出 的標記訊號。此產生器管理電路更能與FIF0資料保留元件聯繫以接收 一佔據信號(occupation signal),此佔據信號係指出在FIFO資料保 留元件内的數位資料所呈現的數量大小。從標記訊號和佔據信號中, 產生器管理電路係產生一產生器控制訊號,導致可調變的參考訊號產 生器的調整,所以第二參考信號將數位資料同步化至在傳送數位資料 時的時間點。如果佔據信號指出FIFO資料保留元件包含數位資料的一 第二數量(大約係FIFO資料保留元件容量的一半),產生器控制電路使 得產生器控制訊號指示藉由可調變的參考信號產生器,將不會對第二 參考信號有調整。唯,倘若佔據信號指出FIF0資料保留元件包含少於 數位資料第二數量,藉著可調變參考信號產生器,控制電路產生產生 器控制訊號對第二參考信號作調整以增加FIFO資料保留元件的容量, 直到FIFO資料保留元件包含等於數位資料的第二數量大小為止。反 之’倘若佔據信號指出FIFO資料保留元件包含大於數位資料的第二數 量,則產生器控制電路會產生產生器控制訊號指示可調變參考訊號產 生器,應該對第二參考訊號作調整以減少FIF〇資料保留元件的容量, 直到FIFO資料保留元件包含等於數位資料的第二數量大小為止。 【實施方式】 本發明係提供一種通訊系統,可應用在有線或無線數位聲音通 訊,並對於高音質聲音錄放提供數位資料具等時性時序(is〇chr〇n〇us timing)。通訊系統包括傳送器和接收器,傳送器和接收器兩者將會利 用它們自身的本地時脈(local clock)作為通訊。此外,接收器包含一 抖動管理單元(jitter management unit),而抖動管理單元包括一先 進先出(FIFO)資料保留元件或緩衝器,一標準電壓控制晶格震盈器 (Voltage controlled crystal oscillator VCX0)和一VCX0控制邏輯 單元。抖動管理單元係藉著利用FIFO緩衝器追蹤傳送器的音頻,以及 簡易的執行或結合到用來分離聲音錄放和來源的數位聲音系統。 修正本 1304694 FIFO緩衝器係類似一個容器(container),且製造者(接收器)用 等於接收器的時脈週期速率在類比聲音訊號的數位資料符號傾瀉。一 開始’此容器是空的,消耗者(播放者)會直到數位資料符號已達門捏 程度才開始 一旦數位資料符號達到此門檀程度,消耗者會開始消耗 數位資料符號。理論上,如果製造者和消耗者以相同速率操作,然後 FIFO緩衝器或容器的標準將永遠係在門檻標準,因為係以同樣的速率 接收和輸出。 ^然而,假若製造者速率變快且數位資料符號被更快轉送到FIF0 緩衝器,而消耗者仍依舊以較慢的容器速率擷取數位資料,則容器〇r FIFO緩衝器的準位會增加。當這種以FIF〇緩衝器的準位增加持績, FIFO緩衝器將會溢出且數位資料符號的溢出將導致在數位資料上的 損失。反之,倘若是製造者的速率慢於消耗者且數位資料符號更慢轉 送到FIFO緩衝器,而消耗者卻仍以較快的容器速率擷取數位資料,則 容器或FIFO緩衝器的準位會減少。當這種以FIF〇緩衝器的準位減少 持續,FIFO緩衝器將會流空且數位資料符號的不足將導致錄放過程停 止’直到製造者供給更多的數位資料符號,因此在等時性數位資料符 號的錄放期間造成失真。 如果FIFO緩衝器擁有在其内現存數位資料符號的位準區分的指 示’則消耗者可以用從FIFO緩衝器内移除數位資料的速率來調整。如 果一個介在上限和下限之間的中間區域被稱作適用地帶(c〇mf〇rt zone),則消耗者沒有用從FIF〇緩衝器内移除數位取樣結果的速率來 改變。可是,當在FIFO緩衝器内資料現存的數量大小之位準超過上限 或下線時,消耗者必須增加或減少從FIF0緩衝器内數位資料符號消耗 的速率。 舉例來說,如果製造者提供數位資料符號給FIF〇緩衝器快於消 耗者正在取樣這些數位資料符號的話,則FIF〇緩衝器將會超過上限, 且在FIFO緩衝器内數位資料符號的數量就不再是於,,適用地帶,,。為 了避免容器發生溢滿和數位資料符號遺失的狀況,消耗者將會增加消 耗速率以配合製造者的傳送速率,並企圖要使FIF〇緩衝器内數位資料 12 修正本 1304694 再度接近舒賴帶的數量β每隔週雛_就監控 r器m Α符號現有的數量位準,消耗者增加從_緩 衝器傳送的速率。消耗者增加數位資料消耗的速率同步於觸 21現有數量開始要減少的階段,接著消耗者增加傳送速率和等 如數位資料符號的數量程度進人此舒適地帶。唯若, ^者傳送數«料的速率遠大於絲者所_,則觸 的上二ί硬的上限區域°—旦數位資料符號的現有數量進入此堅硬 ==域,雜者接著必須更加快傳送速率。透過傳送速率的消耗 # «耗者速率接近製造者速率。 透過《耗者’從FIF0緩衝紐位資料符號的消耗速率與 舒適ϊί轉^會完全—樣’但是絲者最終所具有_耗速率係在 舒適地帶’且肖耗速轉會有絲的純錢速。千* =同的原理應用於製造者一開始以慢於消耗者消耗的速率傳送 號簡f〇緩衝器係顯而易知的。消耗者會使傳送速率^來 4陵直到在F—IF0緩衝^内的數位資料符號接近舒適地帶。 wir第三圖’係本發明通域關。取樣—類比訊號如人類的演 ^或曰樂’且繼縫讀料瓶5G代 ^ ι?ρ η更正碼。然後’解碼過的數位資料係用來調節傳送訊號, 收器20〇H基主頻或紅外線傳送的光訊號。調節訊號150轉換至接 哭宙〃係負貝將數位資料恢復原狀,非連續化和同步化。接收 機260的:位細號50轉換成類比訊號250,以傳送到頭戴式耳 至資料斤二1係本气日月的傳送器100。傳送數位資料符號50 q暫存1§ 105。藉著傳送者時脈產生器135,資料輸入暫存器 芎f料鮮,同步化數位f料符號5Q。從資料輸入暫存 龍符號5G至錯誤細與更正碼電路11G,使數位 ,崎於_ 位資料符號 之,曰在1^貝,提供某一程度上的復原。 13 修正本 1304694 有伴隨其錯誤更正碼的數位資料符號,接著傳送到交錯電路 (interleave circuit)115。對於熟知該技術領域者,數位資料符號的 傳送往往會傳送時會發生毀損,所以短時間上相鄰的數位資料符號可 能會損壞。為了減緩這個問題,要交錯數位資料符號,則係相同錯誤 碼的數位資料符號就不會再短暫地鄰接,因此允許在數位資料符號的 接收端上任何毀損的修正。有錯誤更正碼的交錯數位資料符號接著轉 換到訊框格式電路(frame formatting circuit) 120。訊框格式電路 120連續化交錯數位資料符號,然後產生必要的同步場 (synchronization field )和一啟動模式(start pattern),其中啟動 模式附加到有連續化具錯誤更正碼的交錯資料符號,如第五圖所示。 每個訊框160a……160η以一同步模式163開始。同步模式163 係一連續時序脈波(timing pulse),在先前技術的接收裝置會用來同 步化一鎖相迴路。接著同步模式163係一啟動序列165 ,其指出訊號 的模式’而167a ·· 167η接在後頭。在通訊系統中的訊框,有交錯數 位資料符號之167a….· 167η固定數字。啟動序列165提供參照於第四 圖傳送者時脈產生器135之一參考時序。錯誤更正碼169係附加在最 末端,係用來修補和復原在傳送過程中任何受損的數位資料符號。 從訊框格式電路120格式化的數位資料符號發送到傳送訊號調節 器125。在紅外線傳送系統,調節結構通常係四脈波位置調變 (four-pulse position modulation,4-ΡΡΜ)結構,可是任何合適的脈 波位置調變係▲本發明的目的有關。傳送者時脈產生器135提供必要 的時序去製造此四脈波位置調變。傳送調整過的傳送訊號至傳送驅動 器130,傳送驅動器130係發送調節訊號150至一轉換器(transducer) 如LED傳遞調節訊號至一如大氣此類的傳送媒介或類似光纖的電纜。 參閱第三圖,調節訊號15〇透過傳送媒介傳送到接收器2〇〇。參 閱第六圖’係本發明的接收器。調節訊號15〇傳至轉換器195。在紅 外線系統實例,轉換器195將係一 PIN二極體接收光訊號。在射頻系 統實例,轉換器195會係一天線。轉換器195所發出的訊號接著會被 傳送到放大與調節電路(conditioning circuit)205。放大與調節電路 修正本 1304694 205係負責回復調節訊號的振幅,移除任何外來噪音,以及檢波 (demodulate)訊號回復數位資料符號。 在較佳實施例,利用時脈是接收時脈fi的多重因子(n),取樣復 原和調節的訊號。藉由接收者時脈產生器220產生接收時脈f!與其倍 數nfl,接收者時脈產生器220有一接近第四圖傳送者時脈產生器的 基頻。在較佳的實施例中,傳送者時脈產生器135和接收者傳送時脈 產生器220都有12·888ΜΗΖ+/-50ρριη的頻率。由於兩個時脈產生器間 在相位上的差異和部份容錯(tolerance),造成上述所討論的數位資料 符號溢出或不足。 接收者產生器220提供較高的頻率倍數nfl係用來偵測調節訊號 的轉換,和允許同步模式163的測定,調節訊號的啟動模式165 ,如 第五圖所示。放大與調節電路205接著偵測交錯電路符號之訊息包 (package)167a…· · 167η,並從調節訊號擷取交錯數位資料符號的訊息 包。其中,多頻時脈nfi最理想的話係接近5 nfi或6 nfi。取樣調解 訊號的其他頻率或用來擷取交錯數位資料符號的訊息包之其他方法可 藉由放大與調解電路205,而依舊與本發明目的有關。 從放大和調整電路205傳送交錯數位資料符號的訊息包之整體回 復的結構至起動/停止偵測電路225。啟動/停止偵測電路225將同步 模式和啟動模式釋義,以形成一標記訊號3丨即31)242。標記 訊號242係安排分界交錯數位資料符號的每個訊息包167a…· 167n訊 框起始範圍的時機。這種時間的安排相當於第四圖傳送者時脈產生器 135的週期。 ^從放大和調整電路2〇5傳送交錯數位資料符號復原的訊息包至緩 衝控制電路210。緩衝控制電路210將交錯數位資料符號的訊息包放 置到緩衝器215。緩衝控制電路210負責安排置放和移動緩衝器215 之數位資料符號進出的訊息包。 緩衝控制電路210從緩衝器215擷取數位資料符號的訊息包以傳 送到去交錯(deinterleave)和錯誤偵測和修正電路230。去交錯和錯 誤偵測和修正電路230係重新安排數位資料符號的訊息包順序為其^ 15 修正本 1304694 本的順序。接著檢查數位資料符號的訊息包在調節訊號傳送期間所發 生的錯誤,再接著修正回復到傳送時的數位資料符號。然後,數位資 料符號的去交錯和修正波包透過緩衝控制電路21〇回到緩衝器215。 傳送數位資料符號的訊息包必須等時性,以確保聲音類比訊號 250傳至頭戴式耳機260。為確保這點,必須以傳送時脈產生數位資料 符號訊息包的速率消耗數位資料符號的訊息包。因為接收者時脈220 的頻率和相位不同於第四圖的傳送者時脈135,故數位資料符號的訊 息包必須重新同步化以配合傳送者時脈135,以確保此等時性轉換至 數位資料符號的訊息包。從緩衝器215傳送數位資料訊息包至抖動管 理單元(jitter management unit)235以重新同步化至傳送者時脈 135 〇 緩衝控制電路210傳送從緩衝器215的數位資料符號訊息包至 FIFO緩衝器236。從緩衝器215用接收者時脈產生器220的頻率负所 決定的速率,傳送數位資料符號訊息包至FIFO緩衝器236。FIFO緩衝 器236係使數位資料符號用一頻率寫入(WCLK)與用另一頻率讀取 (RCLK)所構成。接收者時脈產生器220連接到FIFO緩衝器的寫入時脈 端WCLK ’以提供數位資料符號的傳送之時序至fifo緩衝器236。 從FIFO緩衝器236以頻率f2,以等時性順序傳送數位資料符號 至數位類比轉換器245。數化類比轉換器245將數位資料符號轉換成 聲音類比訊號250。傳送聲音類比訊號250至頭戴式耳機250的喇口八。 連接壓力控制震盪器(VCX0) 239至FIFO緩衝器236的讀取時脈 端RCLK’以提供頻率h讀取時脈。頻率h控制讀取時脈242如同消耗 者控制上述所提及的FIFO緩衝器236。透過VCX0控制電壓242控制 頻率f2。控制電壓242係一第二數位類比轉換器238的輸出,其受電 壓控制字元243所控制。VC0管理電路237產生電壓控制字元243且 電壓控制字元243與FIFO位準指示訊號240及標記訊號242有關。 FIFO位準指示訊號240代表FIFO緩衝器236的位準訊號,所以 壓力控制震盪器239的頻率的調整,VC0管理電路237決定消耗者的 調整。在較佳的實施例,有七個FIFO緩衝器236之位準指示-空 16 修正本 1304694 (Empty ’ 記為 E) ’ 低位準 2(L〇wer level 2,記為 LL2),低位準 1 (Lower Levell ’ 記為 LL1),半滿(記為% f),上限 i(upper Limit 1,ULl), 上限 2(Upper Limit 2,UL2),以及滿(Full ,記為 F)。 倘若FIFO位準指示訊號240指出FIFO緩衝器236係滿(F)或空 (E)時,則在數位資料符號的同步將會有錯誤。抖動管理單元挪接著 必須作適當的診斷以修正此錯誤情況❶在正常的操作下?11?〇位準指示 訊號240 ,調整頻率以保持在FIF〇緩衝器内數位資料符號現有的數 量,而其中在FIF0緩衝器區域係介在LL1和UL1訊號所指示的位準間。 參閱第四圖和第八a圖係本發明傳送器1〇〇的操作圖。在時間週 期1 ’類比訊號的取樣結果產生數位資料符號的第一個訊框·,並 將取樣轉換成數位編碼代表類比訊號的大小。將數位資料符號5〇放在 傳送器100的資料輸入暫存器105。在時間週期2,訊框的符號透過 ECC產生器11〇錯誤更正碼ECCE〇解瑪,以及被交錯電路丨15交錯。 同1在時間週期2,取樣第二訊框AD1和轉換成數位資訊符號,並置 於資料輸入暫存器105。在時間週期3,訊框格式器120將解碼和交 錯過的資料格式化。同一時間,資料的第二訊框被交錯和用錯誤更正 碼ECCE1解碼’而轉換第三個取樣結果綱成數位資料。在每個時間 週期4···· ,取樣類比訊號和產生一組新的數位資料符號,並 傳送到資料輸入暫存器105。在每個接下來的時間週期4···. 〇, 資料透過ECC產生器110錯誤更正碼ECCEn解碼,以及被交錯電路j i5 交錯。之後,時間週期4···· n,訊框格式器120將解碼和交錯過 的資料格式化以製造訊框用來傳送。在這段期間内,格式化訊框用傳 送訊號調節器125調整傳送訊號,傳送訊號調節器125係被傳送驅動 器130用來傳遞調節訊號15〇至傳送媒介。 參閱第六圖和第八a圖,係本發明接收器的操作。當調節訊號15() 穿過傳送媒介,調節訊號150延遲時間大小δ。再者,傳送媒介的品質 可能為調節訊號150受衰減和干擾而導致調節訊號15〇的損壞。在時 間週期3,接收器200將調節訊號15〇復原,以及將接收的訊號即肋 符號訊框回復。轉換器195從傳送媒介接測節城,並轉換調 17 修正本 1304694 =訊號150成一電性訊號,其應用於放大與調節電路2〇5。放大與調 節電路205如上述所述,其重存、取樣、復原置於緩衝器215的數位 資料符號RFR0。 在時間週期4,所接收的資料RFR〇有一錯誤修正。同時,傳送 訊號RFT1被接收而訊框RirR 1被恢復。在時間週期5,原始資料肊^〇 符號訊框置於抖動管理單元235的緩衝器236内。接著在時間職 5 ’數位資料符號與傳送者時脈時序一致,並應用於數位類比轉換器 245 ’然後如聲音類比訊號250傳送到耳機260。 在每個時間週期4···· n内,接收調節訊號並復原之。數>(立資 料符號的訊框被抽出而資料數位符號有對訊框錯誤偵測和修正。然 後,傳送數位資料符號至FIFO緩衝器236,在緩衝器236内同步化數 位資料符號至原本的等時性傳送時序。接著數位類比轉換器225作用 數位資料符號以傳送到頭戴式耳機260。 連接啟動/停止偵測電路225到緩衝控制電路210,所以標記訊號 242傳送到緩衝控制電路21〇。緩衝控制電路21〇。當數位資料符號訊 框(例如訊框ECCD0)已經被去交錯(deinterleave)和修正並回到緩衝 器215時,會準備將其置於FIFO緩衝器236内。 參閱第八b圖,對於每一數位資料符號訊框,在同步訊號與啟動 訊號的結束時產生標記訊號。因為記號發生在數位資料符號訊 框的起始邊界,記號係與傳送者時脈同步,且可以用來作為傳送者和 接收者時脈同步性之指示。在較佳實施例中,數位資料符號的訊框有 一固定數自的訊框,而固定在標記訊號間的時序係為傳送者時脈之因 數大小的頻率。 現在回到第六圖,接收標記訊號242,緩衝控制電路21〇開始將 數位資料訊框傳送到FIFO緩衝器。因為沒有在第三圖傳送時脈產生器 135的頻率和接收者時脈產生器220的頻率6間實際差異的指示或控 制’數位資料符號的訊框傳送必須發生在如第八b圖所示的兩個標記 訊號242之間。為確保此種傳遞,緩衝控制電路21〇開始數位資料符 號訊框的傳送,以相當同步地的步調傳送頭兩個數位資料符號S1和 修正本 1304694 S2。如第九圖所示’緩衝控制電路21〇藉著用相當同步地速率從緩衝 器215傳送頭兩個數位資料符號S1和S2至FIF〇緩衝器内,以開始數 位資料符賴訊框傳送》赌剩制私冑料舰⑽...&被連續以 接收者時脈產生器220的頻率Π傳送。當準位指示訊號24〇指出FIF〇 緩衝器係半滿(¾ F),管理電路237促使啟動腳訊號244去驅動 VCXO 239以提供讀取時脈訊號242給FIFO緩衝器236,以開始第九 圖的數位資料符號DA0之流動至數位類比轉換器245。 數位資料符號S3和Sn連續傳送到FIFO緩衝器236,直到訊框結 束為止。當下一個標記訊號242指出起始模式的偵測,第二訊框的頭 兩個符號S1和S2傳送到FIFO緩衝器236。在下一個隨後的標記訊號 之前,剩餘的數位資料符號S3和Sn傳送到FIFO緩衝器236。 當保留在FIFO緩衝器236内的數位資料符號數量介於下線LU 和上限UL1之間,從FIFO緩衝器236數位資料符號繼續以vcx〇 239的 頻率f2傳送。一旦,數位資料符號數量超過下線LU或上限^,會 適菖地起動FIFO準位指示訊號240指出此位準。vc〇管理電路237增 加或減少電壓控制字元243,以使得數位類比轉換器238增加或減少 vco控制電壓242。之後,vcxo 239將增加或減少讀取時脈訊號241 的頻率f2。 當在FIFO緩衝器236内數位資料符號現存的數量增加導致上限 UL1 FIFO準位指示訊號240被啟動,則VC0管理電路237增加電壓 控制字元243,所以數位類比轉換器238導致VC0控制電壓246增加, 因此造成頻率h增加。這係成為從FIFO緩衝器236内數位資料符號 的消耗速率增加之因素。vco管理電路237監控FIF〇準位指示訊號 240的活動以決定FIF〇緩衝器236内數位資料符號現存的數量改變的 梯度。如果FIFO準位指示訊號240的上限UL1指出在FIFO緩衝器236 内數位資料符號現存的數量依舊超過上限UL1,則VC0管理電路237 增加電壓控制字元243以使得頻率h再度增加,以增加消耗的速率。 反之,假若是FIFO準位指示訊號240的上限UL1指出在FIFO緩衝器 236内數位資料符號現存的數量不再超過上限uu,但是有啟動半滿指 修正本 1304694 示標記% F,貝丨j VC0管理電路237沒有改變電驗制字元243且頻率 f2保持固定的消耗速率。唯,偏若FIF〇準位指示訊號24〇的上限犯 不再指出在画緩觸挪魄位賴符舰存的數量沒有超過上限 1〇,可是半滿指示標記% F有指出在FIF〇緩衝器咖_位資料符 號現存的數量變化梯度太大,則VC〇管理電路237減少電壓控制字元 243以造成頻率h減少,而使FIF〇緩衝器咖喊位資料符號消耗速 率減少。 如果在接收者時脈產生器220的頻率h大於讀取時脈訊號241的 頻率f2,則在FIFO緩衝器236内數位資料符號的數量提升,故啟動 FIFO準位指示訊號240的上限訊號UL2,而VC0管理電路237改變電 壓控制字元243兩倍大,所以VCX0 239的頻率增加兩倍。這造成從 FIFO緩衝器236内的消耗用較快的速率增加,以導致在UFO緩衝器 236内數位資料符號現存的數量減少至接近半滿的位準。腳管理電路 237監控在FIFO緩衝器236内數位資料符號現存數量的改變程度,如 果數位資料符號的數量改變梯度太大,則VC0管理電路237減少電壓 控制子元243以使得頻率h減小。這樣會減慢從fifo緩衝器236數 位資料符號的消耗。 當在FIFO緩衝器236内數位資料符號現存的數量減少導致下限 LL1 FIFO準位指示訊號240被啟動,則VC0管理電路237減少電壓 控制字元243,所以數位類比轉換器238導致VC0控制電壓246減少, 因此造成頻率f2減小。這係成為從FIFO緩衝器236内數位資料符號 的消耗速率下降的原因。VC0管理電路237監控FIFO準位指示訊號 240的活動,以決定FIFO緩衝器236内數位資料符號現存的數量改變 的梯度。如果FIFO準位指示訊號240的下限LL1指出在FIFO緩衝器 236内數位資料符號現存的數量依舊超過下限lli,則VC0管理電路 237減少電麼控制字元243以使得頻率h再度減少,以降低消耗的速 率。反之,假若是FIFO準位指示訊號240的下限LL1指出在FIFO緩 衝器236内數位資料符號現存的數量不再超過下限LL1,但是有啟動 半滿指示標記% F,則VC0管理電路237沒有改變電壓控制字元243 修正本 1304694 且頻率&保持固定的消耗速率。唯,倘若FIF〇準位指示訊號24〇的 下限LL1不再指出在FIFO緩衝器236内數位資料符號現存的數量沒有 超過上限UL1,可是半滿指示標記% ρ有指出在^叩緩衝器236内數 位資料符號現存數量減少的梯度太大,則vc〇管理電路237減少電壓 控制字元243以造成頻率&減少,而使fifo緩衝器236内數位資料 符號消耗速率減少。 如果在接收者時脈產生器220的頻率f大於讀取時脈訊號241的 頻率L,則在FIFO緩衝器236内數位資料符號的數量下降,故啟動 FIFO準位指示訊號240的下限訊號LL2,而VC0管理電路237改變電 壓控制字元243兩倍大,所以VCX0 239的頻率減少兩倍。這造成從 FIFO緩衝器236内的消耗用較快的速率減少,以導致在FIF〇緩衝器 236内數位資料符號現存的數量下降至接近半滿的位準。vc〇管理電路 237監控在FIFO缓衝器236内數位資料符號現存數量的改變程度,如 果數位資料符號的數量改變梯度太大,則VC0管理電路237減少電壓 控制字元243以使得頻率h減小。這樣會減慢從pIF0緩衝器236數 位資料符號的消耗。 VC0管理電路237不斷地監控FIFO準位指示訊號240以決定在 FIFO緩衝器236内數位資料符號現存的數量,以及數位資料符號在消 耗上的變化梯度。從FIFO準位指示訊號240和所計算出的梯度大小, VC0管理電路237調整電壓控制字元243,以使讀取時脈訊號241的頻 率h維持在FIFO緩衝器236内數位資料符號數量的準位大小接近)^。 提供電壓控制字元243的位元η數目給數位類比轉換器238決定 抖動管理單元235的靈敏度。此較佳實施例係為電壓控制字元243有 三個位元,其允許從數位類比轉換器238控制電壓242之八個位元增 加。從具有控制電壓242之256位元的電壓控制字元243中選八個位 元,靈敏度會增加。且,FIFO準位指示訊號240可能增加,以提供一 FIFO準位指示訊號240之較精確的指示。 如果調節訊號150嚴重受損,則啟動/停止電路225無法決定同 步場和啟動模式,緩衝控制電路210破壞復原的資料並放空白字元於 21 修正本 1304694 緩衝器215内。當空白字元傳送到FIFO緩衝器236,會開始清除FIF〇 緩衝器236。VC0管理電路237將此釋義為錯誤(啟動空e的指示記號) 並使VCX0 239停止讀取時脈訊號24卜因而使數位類比轉換器245造 成的聲音類比訊號250無聲。當同步場和啟動模式重新建立時,如以 上所述接著傳送數位資料符號。 參閱第七a至七d圖,係本發明數位資料符號的通訊方法。對於 數位資料符號的通訊方法步驟,以三個不同的速率-傳送者時脈3〇〇 產生的速率(ft) ’接收者時脈4〇〇產生的速率(f!),抖動管理時脈goo 產生的速率(ω執行數位資料符號。藉著取樣類比訊號以接收(Β〇χ305) 數位資料符號,傳送數位資料符號的通訊方法步驟開始。一錯誤偵測 和更正碼產生(Box 310)並添加到數位資料符號。接著交錯數位資料符 號(Box 315)以藉著在數位資料符號内避免相鄰資料的損害,容許錯 誤和偵測碼被加強。連續化和格式化具有錯誤偵測和修正符號的交錯 數位資料符號,如第五圖所示。 此連續化和格式化的數位資料符號接著調整成(Β〇χ 325)一傳送 訊號。在較佳的實施例,連續化和格式化的數位資料符號用四脈波位 置調變結構解碼,如以上所述。調節訊號係傳送(Β〇χ 33〇)到一傳送媒 介,例如大氣壓力用來傳送至一接收裝置。在調節訊號(B〇xes 3〇5—33〇) 内,傳送數位資料符號的步驟係利用傳送時脈3〇〇的頻率匕同步化。 調節訊號被接收(Box 405)、放大、調節、取樣、解碼(βοχ 41〇) 以回復數位資料符號。調節訊號的取樣具有一取樣速率,其係為接收 者時脈400的頻率匕之11倍。此取樣允許在調節訊號内傳送的決定, 其接著解碼以復原數位資料符號。之後,復原的數位資料符號置於緩 衝器内(Box425),其保留數位資料符號以進一步處理。同時,檢查復 原的數位資料符號以偵測同步場與嵌入在復原的數位資料訊框内的啟 動模式。關於同步場和啟動模式的偵測,產生訊框標記(Β〇χ42〇)以定 數位資料符號訊框的開始的界限。 從緩衝器擷取數位資料符號以及去交錯(Β〇χ 43〇)以復原數位資 料符號的正確順序。然後,去交錯的數位資料符號有一錯誤偵測和修 22 修正本 1304694 正過程’其用來修正在調解訊號傳送期間所發生的錯誤。Retiming", published in the 1995 Proceedings of the VLSI Conference on Advanced Studies in March 1995, was attached on April 2, 2002. Mit. Edu/pub/cva/plesio. Ps. On the Z website, I found the paper presented by Dennison et al. Dennison et al. re-received the received data by delaying the data, so the data can be intercepted by the receiving device frequency. In October 1995, Sarmenta et al. published a paper entitled "Rational cl〇cking" at the IEEE International Conference on Computer Design, describing the maintenance of a known phase relationship between clock frequencies and rational factors, and There is no run-time arbitration contest, and the relative phase is used to predict the predictability of time communication. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method and apparatus for ensuring ifjna sound recording and playback in a wireless or wired digital sound communication system, which synchronizes received and replied data from a transmission medium to a data center. The transmission medium to which it is transmitted. Another object of the present invention is to provide a method and apparatus for ensuring high quality sound recording and playback in a wireless or wired digital sound communication system, and data received and replied from a transmission medium is different even when the transmission clock and the reception clock are different. There will also be no under-run or overrun. To achieve the above and other objects, the present invention provides a method and apparatus for ensuring quality sound recording and playback in a wireless or wired digital sound communication system, the communication system comprising a data communication system having a transmitter and a receiver. The transmitter includes a frame formatter and a transport component. This frame formatter decodes the digital data into consecutive symbols. The decoding of digital data includes interleaving digital data and providing error detection and correct encoding. The transport component is responsible for & the sash sash "to receive this continuous 槪, and to transmit _ the continuous adjustment signal. The receiver is responsible for contacting the transmitter for receiving the adjustment signal, re-storing the adjustment signal and reconstructing the symbol of the digital data of the adjustment signal, and synchronizing the digital data to a first reference signal. The receiver has an amplification and adjustment circuit, and an adjustment circuit for receiving, re-storing, and sampling the adjustment signal (c〇nditi (5) ing 1304694 to correct the circuit). The adjustment signal is sampled in the plurality of first reference signals, so that within the adjustment signal, a transition between the bits representing the boundary in the digital data is detected, and the digital data is reconstructed and synchronized to the second reference signal. Once the amplification and adjustment circuitry reconstructs and synchronizes the digital data, the digital data is forwarded to a buffer data retention circuit, so that the reconstructed digital data is retained. The buffer data retention circuit has at least one buffer circuit for retaining the symbol group. The digital data is transferred from the buffer data retention circuit to a data correction and interleaving circuit for reorganizing the digital data to the original continuous symbol. The data correction and interleaving circuitry will further correct any errors in the transmission of the tuning signal. Based on the interleaving and correction of the digital data, the reorganized and corrected digital signals are replaced in the buffer data retention circuit. The μ-boundary marker signal detection circuit is responsible for contacting the amplification and adjustment circuit to receive the reconstructed digital data. From the reconstructed digital data, the boundary mark signal detecting circuit extracts a mark signal indicating the boundary of the mark of the digital data. This flag signal provides a time indication that the transmitting device is playing digital data. The receiver has a jitter management unit that synchronizes the digital data to the first reference signal. The jitter management unit has a first-in first-out (FIF) data retention component that receives and reconstructs digital data from the buffer data retention circuit at a rate of the first reference signal, and transmits the synchronized digital data in order to approach the third reference signal. The rate is further advanced, wherein the speed of the second reference 接近 is close to the time of transmitting the digital data. The jitter management unit has a - adjustable reference 峨 generator, which is connected with the _ data retention component _ digital __ sister Tixiang two reference base. The buffer data retention circuit transfers the digital data to the FIFO data retention component, until the FiF0 data retention component contains the -number of the digital data (approximately half of the component capacity of the fifq data (four)). Then the FIFO data retention component starts transmitting the digital data. . In addition, the buffer data retention circuit must be two marked positions, and the number of digits (10) is converted to avoid all digits (GVemin). In order to complete the face _ record to reduce the signed conversion, the buffer f escaping must be 健 健 健 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , This prevents the data overflow that is converted to the buffer data retention circuit. The beta jitter management unit has a generator management circuit (generat〇rc〇ntr〇l circuit) for receiving the signal from the adjustment signal through the boundary marker signal detection circuit. Mark the signal. The generator management circuit is further operative to contact the FIF0 data retention component to receive an occupancy signal indicative of the amount of digital data present within the FIFO data retention component. From the mark signal and the occupation signal, the generator management circuit generates a generator control signal, resulting in adjustment of the adjustable reference signal generator, so the second reference signal synchronizes the digital data to the time when the digital data is transmitted. point. If the occupant signal indicates that the FIFO data retention component contains a second amount of digital data (approximately half of the FIFO data retention component capacity), the generator control circuit causes the generator control signal to be indicated by the tunable reference signal generator There is no adjustment to the second reference signal. However, if the occupation signal indicates that the FIF0 data retention component contains less than the second number of digital data, the control circuit generates a generator control signal to adjust the second reference signal to increase the FIFO data retention component by using the variable reference signal generator. Capacity until the FIFO data retention element contains a second quantity equal to the digit data. Conversely, 'if the occupancy signal indicates that the FIFO data retention component contains a second quantity greater than the digital data, the generator control circuit generates a generator control signal indicating the adjustable reference signal generator, and the second reference signal should be adjusted to reduce the FIF. The data retains the capacity of the component until the FIFO data retention component contains a second amount equal to the digital data. [Embodiment] The present invention provides a communication system that can be applied to wired or wireless digital audio communication, and provides digital data with isochronous timing (is〇chr〇n〇us timing) for high-quality sound recording and playback. The communication system includes a transmitter and a receiver, and both the transmitter and the receiver will use their own local clock for communication. In addition, the receiver includes a jitter management unit, and the jitter management unit includes a first in first out (FIFO) data retention component or buffer, and a standard voltage controlled crystal oscillator (VCX0). And a VCX0 control logic unit. The jitter management unit tracks the transmitter's audio by using a FIFO buffer, and is easily implemented or incorporated into a digital sound system that separates the sound recording and playback and source. The revision 1304694 FIFO buffer is similar to a container, and the manufacturer (receiver) dumps the digital data symbol of the analog sound signal with a clock cycle rate equal to the receiver. Initially, the container is empty, and the consumer (player) will not begin until the digital data symbol has reached the threshold. Once the digital data symbol reaches this level, the consumer will begin to consume digital data symbols. In theory, if the manufacturer and the consumer operate at the same rate, then the FIFO buffer or container criteria will always be at the threshold standard because the receivers receive and output at the same rate. ^ However, if the manufacturer speeds up and the digital data symbols are transferred to the FIF0 buffer faster, and the consumer still captures the digital data at a slower container rate, the container 〇r FIFO buffer will increase the level. . When this level is increased by the FIF buffer, the FIFO buffer will overflow and the overflow of the digital data symbols will result in loss of digital data. Conversely, if the manufacturer's rate is slower than the consumer and the digital data symbol is sent to the FIFO buffer more slowly, and the consumer still captures the digital data at a faster container rate, the container or FIFO buffer will be at the same level. cut back. When this level of FIF buffer is reduced, the FIFO buffer will be empty and the lack of digital data symbols will cause the recording and playback process to stop 'until the manufacturer supplies more digital data symbols, so the isochronous digits Distortion during recording and playback of data symbols. If the FIFO buffer has an indication of the level of the existing digital data symbols within it' then the consumer can adjust by the rate at which the digital data is removed from the FIFO buffer. If an intermediate region between the upper and lower limits is referred to as the applicable zone (c〇mf〇rt zone), the consumer does not change with the rate at which the digital sampling result is removed from the FIF buffer. However, when the amount of data existing in the FIFO buffer exceeds the upper or lower limit, the consumer must increase or decrease the rate of consumption of the digital data symbols from the FIF0 buffer. For example, if the manufacturer provides a digital data symbol to the FIF buffer faster than the consumer is sampling the digital data symbols, the FIF buffer will exceed the upper limit and the number of digital data symbols in the FIFO buffer will be No longer, apply zone,,. In order to avoid the overflow of the container and the loss of digital data symbols, the consumer will increase the consumption rate to match the manufacturer's transfer rate, and attempt to make the FIF 〇 buffer digital data 12 correction this 1304694 again close to the Shu Lai belt The number β is monitored every other week to monitor the current number of bits of the r m symbol, and the consumer increases the rate of transmission from the _buffer. The rate at which the consumer increases the amount of data consumed is synchronized with the phase at which the existing amount of touch 21 begins to decrease, and then the consumer increases the transfer rate and the number of digits such as digital data symbols into the comfort zone. However, if the rate of the number of material transmissions is much larger than that of the silker, then the upper limit of the upper two areas of the touch is entered. The current number of digits of the data symbol enters this hard == domain, and the miscellaneous must then be accelerated. Transfer rate. Through transmission rate consumption # «The rate of the consumer is close to the manufacturer rate. Through the "consumer" from the FIF0 buffer button data consumption rate and comfort ϊί ^ will be completely - like 'but the silker finally has _ consumption rate in the comfort zone' and the speed of the spine will be silky pure money speed. The principle of the same principle applies to the fact that the manufacturer initially transmits the signal at a rate slower than that consumed by the consumer. The consumer will make the transfer rate ^ 4 until the digital data symbol in the F-IF0 buffer ^ is close to the comfort zone. The third diagram of wir is the universal domain of the present invention. Sampling—analog signals such as human performance or 曰乐’ and subsequent reading of the bottle 5G generation ι?ρ η correction code. Then the 'decoded digital data is used to adjust the transmission signal, and the receiver transmits 20 Hz H-based or infrared-transmitted optical signals. The adjustment signal 150 is switched to the connection, and the digital data is restored to the original state, discontinuous and synchronized. The bit number 50 of the receiver 260 is converted into an analog signal 250 for transmission to the transmitter 100 of the headset to the data. Transfer digital data symbol 50 q temporary storage 1 § 105. By the transmitter clock generator 135, the data input register is fresh, and the digit f symbol 5Q is synchronized. From the data input temporary storage dragon symbol 5G to the error fine and correction code circuit 11G, so that the digits, the _ bit data symbol, 曰 in 1 ^ shell, provide a certain degree of recovery. 13 Amendment 1304694 has a digital data symbol accompanying its error correction code, which is then transmitted to an interleave circuit 115. For those skilled in the art, the transmission of digital data symbols tends to be corrupted when transmitted, so adjacent digital data symbols may be damaged in a short time. In order to alleviate this problem, if the digital data symbols are to be interleaved, the digital data symbols of the same error code will not be adjacent for a short time, thus allowing any damage correction at the receiving end of the digital data symbol. The interleaved digital data symbol with the error correction code is then converted to a frame formatting circuit 120. The frame format circuit 120 successively interleaves the digital data symbols, and then generates a necessary synchronization field and a start pattern, wherein the startup mode is attached to the interleaved data symbols having the continuous error correction code, such as The five figures are shown. Each frame 160a...160n begins in a synchronization mode 163. Synchronous mode 163 is a continuous timing pulse that is used in prior art receiving devices to synchronize a phase locked loop. The sync pattern 163 is then followed by a start sequence 165 which indicates the mode ' of the signal' and 167a ··167n is followed. In the communication system, there are interdigitated data symbols 167a.... · 167η fixed number. The start sequence 165 provides a reference timing reference to the transmitter clock generator 135 of the fourth diagram. The error correction code 169 is attached at the very end to fix and restore any damaged digital data symbols during transmission. The digital data symbols formatted from the frame format circuit 120 are sent to the transmission signal conditioner 125. In an infrared transmission system, the adjustment structure is typically a four-pulse position modulation (4-ΡΡΜ) configuration, but any suitable pulse position modulation system ▲ is relevant to the purpose of the present invention. The transmitter clock generator 135 provides the necessary timing to make this four-pulse position modulation. The adjusted transmission signal is transmitted to the transmission driver 130, and the transmission driver 130 transmits the adjustment signal 150 to a transducer such as an LED transmission adjustment signal to a transmission medium such as the atmosphere or a fiber-like cable. Referring to the third figure, the adjustment signal 15 is transmitted to the receiver 2 through the transmission medium. Referring to the sixth figure, the receiver of the present invention is used. The adjustment signal 15 is passed to the converter 195. In the infrared system example, converter 195 will receive a PIN diode to receive the optical signal. In the case of a radio frequency system, converter 195 will be an antenna. The signal from converter 195 is then transmitted to a conditioning circuit 205. Amplification and Adjustment Circuits Revision 1304694 205 is responsible for recovering the amplitude of the adjustment signal, removing any external noise, and demodulating the signal to recover the digital data symbol. In the preferred embodiment, the clock is used to receive multiple factors (n) of the clock fi, sampled and adjusted signals. The receive clock f is generated by the receiver clock generator 220 and its multiple nfl, and the receiver clock generator 220 has a fundamental frequency close to the fourth picture transmitter clock generator. In the preferred embodiment, both the transmitter clock generator 135 and the receiver transmit clock generator 220 have a frequency of 12.888 +/- +/- 50 ριη. Due to the phase difference and partial tolerance between the two clock generators, the above-mentioned digital data symbols are overflowing or insufficient. The receiver generator 220 provides a higher frequency multiplier, which is used to detect the conversion of the adjustment signal, and allows the measurement of the synchronization mode 163 to adjust the activation mode 165 of the signal, as shown in the fifth figure. The amplification and adjustment circuit 205 then detects the packets 167a...·167n of the interleaved circuit symbols and extracts the packets of the interleaved digital data symbols from the adjustment signals. Among them, the multi-frequency clock nfi is ideally close to 5 nfi or 6 nfi. Other methods of sampling the mediation signal or other methods for extracting the message packets of the interleaved digital data symbols may be related to the purpose of the present invention by amplifying and modulating the circuit 205. The overall reply structure of the packet of interleaved digital data symbols is transmitted from the amplification and adjustment circuit 205 to the start/stop detection circuit 225. The start/stop detection circuit 225 interprets the synchronization mode and the startup mode to form a marker signal 3, i.e., 31) 242. The flag signal 242 is arranged to divide the timing of the start range of each message packet 167a...·167n of the interleaved digital data symbol. This timing is equivalent to the period of the fourth picture transmitter clock generator 135. The packet reconstructed by the interleaved digital data symbol is transferred from the amplification and adjustment circuit 2〇5 to the buffer control circuit 210. The buffer control circuit 210 places the message packets of the interleaved digital data symbols into the buffer 215. The buffer control circuit 210 is responsible for arranging the message packets for placing and moving the digital data symbols of the buffer 215. The buffer control circuit 210 retrieves the packet of the digital data symbol from the buffer 215 for transmission to the deinterleave and error detection and correction circuit 230. The deinterleaving and error detection and correction circuit 230 rearranges the sequence of the message symbols of the digital data symbols for the order of the 1304694. Then, the packet of the digital data symbol is checked for errors occurring during the adjustment signal transmission, and then the digital data symbol returned to the transmission is corrected. Then, the deinterleaving and correction packet of the digital information symbol is returned to the buffer 215 through the buffer control circuit 21. The message packet carrying the digital data symbol must be isochronous to ensure that the audio analog signal 250 is transmitted to the headset 260. To ensure this, the packet of the digital data symbol must be consumed at the rate at which the digital clock symbol packet is generated by the transmission clock. Because the frequency and phase of the receiver clock 220 is different from the transmitter clock 135 of the fourth map, the packet of the digital data symbol must be resynchronized to match the transmitter clock 135 to ensure that this isochronous transition to digital The message packet of the data symbol. The digital data message packet is transmitted from the buffer 215 to the jitter management unit 235 for resynchronization to the transmitter clock 135. The buffer control circuit 210 transmits the digital data symbol packet from the buffer 215 to the FIFO buffer 236. . The digital data symbol message packet is transmitted from the buffer 215 to the FIFO buffer 236 at a rate determined by the negative frequency of the receiver clock generator 220. The FIFO buffer 236 is constructed by writing a digital data symbol with one frequency (WCLK) and another frequency reading (RCLK). The receiver clock generator 220 is coupled to the write clock terminal WCLK' of the FIFO buffer to provide the timing of the transfer of the digital data symbols to the fifo buffer 236. The digital data symbols are transferred from the FIFO buffer 236 at a frequency f2 in an isochronous order to the digital analog converter 245. The digitizing analog converter 245 converts the digital data symbols into a sound analog signal 250. The sound analog signal 250 is transmitted to the mouthpiece of the headset 250. The pressure control oscillator (VCX0) 239 is coupled to the read clock terminal RCLK' of the FIFO buffer 236 to provide a frequency h to read the clock. The frequency h controls the read clock 242 as the consumer controls the FIFO buffer 236 mentioned above. The frequency f2 is controlled by the VCX0 control voltage 242. Control voltage 242 is the output of a second digital analog converter 238 that is controlled by voltage control word 243. The VC0 management circuit 237 generates a voltage control word 243 and the voltage control word 243 is associated with the FIFO level indication signal 240 and the flag signal 242. The FIFO level indication signal 240 represents the level signal of the FIFO buffer 236, so the pressure controls the adjustment of the frequency of the oscillator 239, and the VC0 management circuit 237 determines the adjustment of the consumer. In a preferred embodiment, there are seven FIFO buffers 236 level indications - empty 16 corrections 1304694 (Empty ' denoted E) 'low level 2 (L 〇 wer level 2, denoted LL2), low level 1 (Lower Levell ' is denoted as LL1), half full (denoted as % f), upper limit i (upper Limit 1, ULl), upper limit 2 (Upper Limit 2, UL2), and full (full, denoted as F). If the FIFO level indication signal 240 indicates that the FIFO buffer 236 is full (F) or empty (E), there will be an error in the synchronization of the digital data symbols. The jitter management unit must then be properly diagnosed to correct this error condition under normal operation. 11? 〇 Level Indicator Signal 240, adjusts the frequency to maintain the current number of digital data symbols in the FIF buffer, where the FIF0 buffer area is interposed between the levels indicated by the LL1 and UL1 signals. Referring to Figures 4 and 8a, there is shown an operational diagram of the conveyor 1 of the present invention. The sampling result of the 1 ' analog signal in the time period produces the first frame of the digital data symbol, and converts the sample into a digital code representing the size of the analog signal. The digital data symbol 5 is placed in the data input register 105 of the transmitter 100. In time period 2, the symbol of the frame is transmitted through the ECC generator 11 〇 error correction code ECCE 以及, and interleaved by the interleave circuit 丨15. In the same time period 2, the second frame AD1 is sampled and converted into a digital information symbol, and placed in the data input register 105. At time period 3, frame formatter 120 formats the decoded and missed material. At the same time, the second frame of the data is interleaved and decoded with the error correction code ECCE1' and the third sample result is converted into digital data. At each time period 4····, the analog signal is sampled and a new set of digital data symbols is generated and transmitted to the data input register 105. In each of the following time periods 4···.  That is, the data is decoded by the ECC generator 110 error correction code ECCEn and interleaved by the interleaving circuit j i5 . Thereafter, the time frame 4····n, the frame formatter 120 formats the decoded and interleaved data to produce a frame for transmission. During this period, the formatted frame adjusts the transmission signal by the transmission signal conditioner 125, which is used by the transmission driver 130 to transmit the adjustment signal 15 to the transmission medium. Referring to Figures 6 and 8a, the operation of the receiver of the present invention. When the adjustment signal 15() passes through the transmission medium, the delay time δ of the signal 150 is adjusted. Furthermore, the quality of the transmission medium may cause damage to the adjustment signal 15 due to attenuation and interference of the adjustment signal 150. In time period 3, the receiver 200 restores the adjustment signal 15〇 and returns the received signal, i.e., the rib symbol frame. The converter 195 measures the node from the transmission medium and converts the adjustment 1304694 = signal 150 into an electrical signal, which is applied to the amplification and adjustment circuit 2〇5. The amplification and adjustment circuit 205 re-stores, samples, and restores the digital data symbol RFR0 placed in the buffer 215 as described above. In time period 4, the received data RFR has an error correction. At the same time, the transmission signal RFT1 is received and the frame RirR 1 is recovered. At time period 5, the original data frame is placed in the buffer 236 of the jitter management unit 235. The time-of-day 5' digit data symbol is then coincident with the transmitter clock timing and applied to the digital analog converter 245' and then transmitted to the headset 260 as the audio analog signal 250. In each time period 4···· n, the adjustment signal is received and restored. Number > (the frame of the data symbol is extracted and the data digit symbol has the frame error detection and correction. Then, the digital data symbol is transmitted to the FIFO buffer 236, and the digital data symbol is synchronized in the buffer 236 to the original The isochronous transfer timing is followed by the digital analog converter 225 acting on the digital data symbol for transmission to the headset 260. The start/stop detection circuit 225 is connected to the buffer control circuit 210, so the flag signal 242 is transmitted to the buffer control circuit 21. The buffer control circuit 21. When the digital data symbol frame (e.g., frame ECCD0) has been deinterleaved and corrected and returned to the buffer 215, it is ready to be placed in the FIFO buffer 236. In the eighth figure, for each digital data symbol frame, a mark signal is generated at the end of the synchronization signal and the start signal. Since the mark occurs at the start boundary of the digital data symbol frame, the mark is synchronized with the transmitter clock. And can be used as an indication of the synchronicity of the transmitter and the receiver. In the preferred embodiment, the frame of the digital data symbol has a fixed number of signals. The timing fixed between the marker signals is the frequency of the factor of the transmitter clock. Now returning to the sixth diagram, receiving the marker signal 242, the buffer control circuit 21 starts transmitting the digital data frame to the FIFO buffer. Since there is no indication of the actual difference between the frequency of the transmission of the clock generator 135 and the frequency 6 of the receiver clock generator 220 in the third diagram, the frame transmission of the digital data symbol must occur as shown in FIG. In order to ensure such transfer, the buffer control circuit 21 starts the transfer of the digital data symbol frame, and transmits the first two digit data symbols S1 and the correction book 1304694 S2 at a relatively synchronous pace. The snubber control circuit 21 shown in FIG. 9 transmits the first two digit data symbols S1 and S2 to the FIF buffer from the buffer 215 at a relatively synchronous rate to start the digital data frame transmission. Remaining private ship (10). . . & is continuously transmitted at the frequency of the receiver clock generator 220. When the level indication signal 24 indicates that the FIF buffer is half full (3⁄4 F), the management circuit 237 causes the enable pin signal 244 to drive the VCXO 239 to provide the read clock signal 242 to the FIFO buffer 236 to begin the ninth. The digital data symbol DA0 of the figure flows to the digital analog converter 245. The digital data symbols S3 and Sn are continuously transferred to the FIFO buffer 236 until the frame is terminated. When the next flag signal 242 indicates the detection of the start mode, the first two symbols S1 and S2 of the second frame are transferred to the FIFO buffer 236. The remaining digit data symbols S3 and Sn are passed to the FIFO buffer 236 before the next subsequent marker signal. When the number of digital data symbols retained in the FIFO buffer 236 is between the lower line LU and the upper limit UL1, the digital data symbols from the FIFO buffer 236 continue to be transmitted at the frequency f2 of vcx 239. Once the number of digital data symbols exceeds the lower line LU or the upper limit ^, the FIFO level indication signal 240 is appropriately activated to indicate this level. The vc〇 management circuit 237 increments or decrements the voltage control word 243 to cause the digital analog converter 238 to increase or decrease the vco control voltage 242. After that, vcxo 239 will increase or decrease the frequency f2 of the read clock signal 241. When the existing number of digital data symbols in the FIFO buffer 236 increases causing the upper limit UL1 FIFO level indication signal 240 to be activated, the VC0 management circuit 237 increments the voltage control character 243, so the digital analog converter 238 causes the VC0 control voltage 246 to increase. , thus causing the frequency h to increase. This is a factor in the increase in the rate of consumption of digital data symbols from the FIFO buffer 236. The vco management circuit 237 monitors the activity of the FIF 〇 level indication signal 240 to determine the gradient of the number of existing digital data symbols in the FIF buffer 236. If the upper limit UL1 of the FIFO level indication signal 240 indicates that the existing number of digital data symbols in the FIFO buffer 236 still exceeds the upper limit UL1, the VC0 management circuit 237 increments the voltage control character 243 to cause the frequency h to increase again to increase the consumption. rate. On the other hand, if the upper limit UL1 of the FIFO level indication signal 240 indicates that the existing number of digital data symbols in the FIFO buffer 236 no longer exceeds the upper limit uu, but there is a startup half full finger correction, the number 1304694 indicates the flag % F, and the parameter j VC0 The management circuit 237 does not change the syndrome character 243 and the frequency f2 maintains a fixed rate of consumption. However, if the FIF 〇 指示 指示 指示 指示 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再 不再If the existing number change gradient of the bit_data symbol is too large, the VC〇 management circuit 237 reduces the voltage control character 243 to cause the frequency h to decrease, and the FIF buffer buffer data bit symbol consumption rate to decrease. If the frequency h of the receiver clock generator 220 is greater than the frequency f2 of the read clock signal 241, the number of digital data symbols in the FIFO buffer 236 is increased, so the upper limit signal UL2 of the FIFO level indication signal 240 is activated. The VC0 management circuit 237 changes the voltage control word 243 twice as large, so the frequency of the VCX0 239 is doubled. This causes a faster rate of increase from the FIFO buffer 236 to cause the amount of digital data symbols present in the UFO buffer 236 to decrease to a level close to half full. The foot management circuit 237 monitors the degree of change in the number of existing digital data symbols in the FIFO buffer 236. If the number of digital data symbols changes too much, the VC0 management circuit 237 reduces the voltage control sub-unit 243 to cause the frequency h to decrease. This will slow down the consumption of digital data symbols from the fifo buffer 236. When the existing number of digital data symbols in the FIFO buffer 236 is reduced resulting in the lower limit LL1 FIFO level indication signal 240 being activated, the VC0 management circuit 237 reduces the voltage control word 243, so the digital analog converter 238 causes the VC0 control voltage 246 to decrease. , thus causing the frequency f2 to decrease. This is the reason for the decrease in the rate of consumption of digital data symbols from the FIFO buffer 236. The VC0 management circuit 237 monitors the activity of the FIFO level indication signal 240 to determine the gradient of the amount of digital data symbols present in the FIFO buffer 236. If the lower limit LL1 of the FIFO level indication signal 240 indicates that the existing number of digital data symbols in the FIFO buffer 236 still exceeds the lower limit 11i, the VC0 management circuit 237 reduces the control word 243 so that the frequency h is again reduced to reduce consumption. s speed. On the other hand, if the lower limit LL1 of the FIFO level indication signal 240 indicates that the existing number of digital data symbols in the FIFO buffer 236 no longer exceeds the lower limit LL1 but has the start half full indication flag % F, the VC0 management circuit 237 does not change the voltage. Control character 243 corrects this 1304694 and the frequency & keeps a fixed rate of consumption. However, if the lower limit LL1 of the FIF 〇 level indication signal 24 不再 no longer indicates that the existing number of digital data symbols in the FIFO buffer 236 does not exceed the upper limit UL1, the half full indication flag % ρ is indicated in the buffer 236. If the gradient of the existing number of digital data symbols is too large, the vc〇 management circuit 237 reduces the voltage control word 243 to cause a frequency & decrease, and the digital data symbol consumption rate in the fifo buffer 236 is reduced. If the frequency f of the receiver clock generator 220 is greater than the frequency L of the read clock signal 241, the number of digital data symbols in the FIFO buffer 236 decreases, so the lower limit signal LL2 of the FIFO level indication signal 240 is activated. The VC0 management circuit 237 changes the voltage control word 243 twice as large, so the frequency of the VCX0 239 is reduced by a factor of two. This causes a faster rate of consumption from the FIFO buffer 236 to cause the amount of digital data symbols present in the FIF buffer 236 to drop to a level close to half full. The vc〇 management circuit 237 monitors the degree of change in the number of existing digital data symbols in the FIFO buffer 236. If the number of digital data symbols changes too much, the VC0 management circuit 237 reduces the voltage control character 243 to reduce the frequency h. . This will slow down the consumption of digital data symbols from the pIF0 buffer 236. The VC0 management circuit 237 constantly monitors the FIFO level indication signal 240 to determine the amount of digital data symbols present in the FIFO buffer 236, as well as the variation gradient of the digital data symbols in the consumption. From the FIFO level indication signal 240 and the calculated gradient size, the VC0 management circuit 237 adjusts the voltage control word 243 to maintain the frequency h of the read clock signal 241 in the number of digital data symbols in the FIFO buffer 236. The bit size is close to ^. The number of bits n of the voltage control word 243 is provided to the digital analog converter 238 to determine the sensitivity of the jitter management unit 235. The preferred embodiment has voltage control word 243 having three bits that allow eight bits of control voltage 242 to be incremented from digital analog converter 238. The sensitivity is increased by selecting eight bits from the voltage control character 243 having 256 bits of the control voltage 242. Moreover, the FIFO level indication signal 240 may be incremented to provide a more accurate indication of the FIFO level indication signal 240. If the adjustment signal 150 is severely impaired, the start/stop circuit 225 cannot determine the sync field and the start mode, and the buffer control circuit 210 destroys the restored data and places a blank character in the 21304 buffer 215. When a blank character is transferred to the FIFO buffer 236, the FIF buffer 236 is cleared. The VC0 management circuit 237 interprets this as an error (indicating the indication of the empty e) and causes the VCX0 239 to stop reading the clock signal 24, thereby making the sound analog signal 250 of the digital analog converter 245 silent. When the sync field and the start mode are re-established, the digital data symbols are subsequently transmitted as described above. Referring to Figures 7a through 7d, the communication method of the digital data symbol of the present invention. For the communication method steps of the digital data symbol, at three different rates - the rate of the transmitter clock 3 ( (ft) 'receiver clock 4 〇〇 rate (f!), jitter management clock goo The generated rate (ω performs the digital data symbol. By sampling the analog signal to receive (Β〇χ305) the digital data symbol, the communication method step of transmitting the digital data symbol begins. An error detection and correction code generation (Box 310) and adding To the digital data symbol. Then interleaved the digital data symbol (Box 315) to avoid the damage of adjacent data in the digital data symbol, allowing the error and detection code to be enhanced. Continuous and formatted with error detection and correction symbols The interleaved digital data symbols are as shown in the fifth figure. The continuous and formatted digital data symbols are then adjusted to (Β〇χ 325) a transmitted signal. In the preferred embodiment, the continuous and formatted digits The data symbols are decoded using a four-pulse position modulation structure, as described above. The adjustment signal is transmitted (Β〇χ 33〇) to a transmission medium, such as atmospheric pressure for transmission to a reception. In the adjustment signal (B〇xes 3〇5-33〇), the step of transmitting the digit data symbol is synchronized by the frequency of the transmission clock 3〇〇. The adjustment signal is received (Box 405), amplified, adjusted , sampling, decoding (βοχ 41〇) to recover the digital data symbol. The sampling of the adjustment signal has a sampling rate which is 11 times the frequency of the receiver clock 400. This sampling allows the decision to be transmitted within the adjustment signal, It is then decoded to recover the digital data symbols. Thereafter, the restored digital data symbols are placed in the buffer (Box 425), which retains the digital data symbols for further processing. At the same time, the recovered digital data symbols are checked to detect the synchronized fields and are embedded in The startup mode in the restored digital data frame. Regarding the detection of the sync field and the start mode, a frame mark (Β〇χ42〇) is generated to determine the start of the digital data symbol frame. Symbols and deinterlacing (Β〇χ 43〇) to restore the correct order of the digit data symbols. Then, the deinterlaced digital data symbols have an error detection and repair 22 revisions 13046 94 Positive Process' It is used to correct errors that occur during the transmission of the mediation signal.

執行核對訊框標記訊號的情況(Box 440) 〇如果有一標記,一讀 取位址計數器會開始去控制數位資料符號的訊框傳送從緩衝器到 FIFO緩衝器。FIFO緩衝器係檢測在FIFO緩衝器内任何數位資料符號 的現存狀況。在數位資料符號傳送的一開始,沒有任何數位資料符號 會存在FIFO緩衝器。傳送讀取位址計數器X所指出的數位資料符號 (Box 455)從緩衝器到FIFO緩衝器。如果FIFO緩衝器已達到門播(ι/g 滿),則偵測FIFO缓衝器(Box 460)。假若未達到門檻的位準,增加讀 取位址計數器X以指向下一個位址並傳送下一個數位資料符號到HFQ 緩衝器(Box 465)。然後再度偵測FIFO緩衝器(Box 460)。 當在FIFO緩衝器的數位資料符號數量以達到門檻,數位資料符 號接著從FIF0緩衝器抽出。但是同一時間,增加讀取位址計數器χ(Β〇χ 480)以指向下一個位址並傳送下一個數位資料符號到fif〇緩衝器 (Box 470)。如果傳送訊框的數位資料符號全部的數目(n)至FIF〇緩衝 器,則測試讀取位址計數器(Box 475)。如果所有的符號未被傳送,則 增加讀取位址計數器x(Box480)和從緩衝器傳送數位資料符號(B〇x 470)至FIFO緩衝器,直到所有訊框的數位資料符號被傳送為止。 在接收下一個訊框標記,初使化讀取位址計數器X (Box 445), 及因為FIFO緩衝器現在不係空的,從緩衝器傳送數位資料符號的下一 個訊框至FIFO緩衝器。因為傳送時脈300頻率ft不完全等於接收時 脈400頻率之週期或相位,所有訊框的數位資料符號必須在其中兩個 訊框標記間之時間週期内從緩衝器傳送到FIFO緩衝器。這個方法的較 佳實施例,同時從緩衝器傳送數位資料符號其中兩個至FIFO緩衝器。 傳送時脈300的頻率ft對接收時脈400的頻率h決定同時傳送數位資 料符號的數目。因此,任何數位資料符號的數目必須同時傳送和依然 與本發明有關。 當在FIFO緩衝器内數位資料符號現存的數量偵測指出現存的數 量大於門檻時,會起動讀取位址計數器y以指出訊框之第一數位資料 符號傳送到FIFO緩衝器。 23 修正本 1304694 從FIFO緩衝器傳送讀取位址計數器y所指出的數位資料符號。 本發明的較佳實施例,傳送數位資料符號至一數位類比轉換器,以轉 換成應用於喇叭的聲音類比訊號。 如果數位資料符號現存的數量大於上限UL1(Box 506)或少於下 限LL1 (Box 508),則偵測在FIFO緩衝器内數位資料符號現存的數量 大小。如果在FIFO緩衝器内數位資料符號現存的數量大小不大於上限 ULl(Box 506)也不少於下限LLKBox 508),則偵測數位資料符號從 FIFO緩衝器的消耗vs數位資料符號對FIFO緩衝器的供給(Box 510) 之梯度。假若梯度指出最終速率係在FIFO緩衝器内數位資料符號現存 的數量之消耗或供給於FIFO緩衝器。若消耗或供給的速率太大,則增 加或減少抖動管理時脈400的頻率匕為(f2 +/- i) (Box 512)以降低 速率變化的梯度。反之,若梯度指出消耗的速率係在上限uu或下限 LL1的邊界内,則抖動管理時脈5〇〇的頻率f2係固定的。 倘若FIFO緩衝器係空的,增加讀取位址y(B〇x 514)和偵測在FIFO 緩衝器内的數位資料符號現存的數量。倘若FIFO緩衝器不係空的,從 FIFO緩衝器傳送下個數位資料符號。只要在FIF〇緩衝器内的數位資 料符號現存的數量少於上限ULl(Box 506)或大於下限LLl(Box 508), 則增加讀取位址計數器y(B〇x 514)和傳送數位資料符號(Box 504), 直到沒有數位資料符號從緩衝器傳送到FΠ?〇緩衝器且FIF0緩衝器係 空的。當FIFO緩衝器係空的時,方法係回到啟動接收調節訊號的過程 (Box 405) 〇 當偵測在FIFO緩衝器内數位資料符號現存的數量(Β〇χ 5〇6)大於 上限UL1且假若發現大於上限時,抖動管理時脈5〇〇有一頻率f2小於 傳送時脈300的頻率ft,則抖動管理時脈5〇〇必須提升以從FIF〇緩衝 器内增加數位資料符號的速率。最先偵測在緩衝器内數位資料符號現 存的數量大於上限LU2。若數位資料符號的數量沒有大於上限UL2,則 伽彳數位資料符號從FIFO緩衝器的消耗vs數位資料符號對F IF〇緩衝 器的供給(Box 510)之梯度(B〇x 520)。如果梯度指出消耗的速率或供 給的速率沒有太大,則增加抖動管理時脈4〇〇的頻率丨2為(丨2+〕·)(Β〇χ 24 修正本 1304694 522),以增加數位資料符號消耗的速率。如果雜的梯度指出供給的 速率太大,則增加抖動管理時脈400的頻率£2為(5 + k) (β〇χ 524), 以減少梯度的變化大小和更加增快消耗的速率。 ^唯,若數位資料符號的數量大於上限见2 ,則再度铜數位資料 符號從FIFO緩衝器的消耗vs數位資料符號對FIF〇緩衝器的供給之梯 度(Box 526)。若梯度指出消耗或供給的速率沒有太大,則增二動管 f時脈彻的頻率為⑶+1)較大的量(Box 528),以更加增大數位 資料符號的消耗速帛使在FIF〇緩衝ϋ數位資料符號的數量減少,避免 溢出的情況產生。若雜的梯度指出供給的速率太大,則增加抖動管 理時脈400的頻率h仍加遽為⑶+/一 m) (β〇χ 53〇),以減 化和更快速増加消耗的速率。 々口當對於少於下限LL1並發現低於LL1時要偵測在緩衝器數位資料 符號現存的數量’則抖動管理時脈_擁有的頻率&大於傳送時脈3〇〇 之頻率ft,且必須被降低以減少從FIF〇緩衝器數位資料符號的消耗速 率。首先偵測在緩衝器内數位資料符號現存的符號低於上限LL2。如 果,位資料槪的數量沒有少於下限⑽),從fifq緩衝輯數位資 料f號至FIFO緩衝器的供給,侧數位資料符號消耗的梯度。如果梯 ,指出消耗的速率或供給的速率不會太大,則抖動管理時脈棚的頻 率減至為(fa - j)(Box 522)以降低數位資料符號的消耗速率。如果消 耗的梯度指ίϋ供給的速率太快,抖動管_脈的鮮f2減至為(f2 - k) (Box 536)以降低梯度和更快減少消耗速率。 唯如果數位為料符號的數量低於下限LL2,再度债測數位資料 符號從FIFO緩衝器的消耗vs數位資料符號對FIF〇緩衝器的供給⑼X 510)之梯度。如果梯度指出消耗的速率或供給的速率不會太大則抖 動管理時脈400的頻率減至為(f2 — 1)(Β〇χ 542)以降低數位資料符號 的消耗速率減少數位資料符號的數量,避免溢出。如果消耗的梯度指 出供應的速率太大,則抖動管理時脈400的頻率f2減至為(f2-m)(Box 544)以降低梯度和更快減少消耗速率。 參閱第七b圖。假如測試訊框記號(Β〇χ 44〇)而沒有訊框記號被 25 修正本 1304694 測試到,則所接收的資料受損且無效。緩衝器清除了資料,且資料從 FIFO緩衝器中被清除以消除受損的資料。在如聲音訊號的錄放應用, 數位資料符號必須同時流動。為避免失真和不必要的音調,數位資料 符號必須設定為使聲音訊號空白(null)的值。一旦緩衝器被清除 (Box 180),偵測下一個啟動模式(Box 415),放置從調節訊號回復的 數位資料符號於緩衝器内,流動數位資料符號的過程持續啟動模式的 偵測(Box 415)。 旦FIFO緩衝器被清除(Box 180),偵測下一個啟動模式(βοχ 415) 和放置從調節訊號回復的數位資料符號在緩衝器中,且在啟動模式的 偵測後數位資料符號的流動繼續。 所述的緩衝器和FIFO緩衝器可以作為用一群狀態機器(state machine)提供存取的控制隨機存取記憶體(rand〇ffl access _〇ry)。 一群狀態機器如上面所述執行電路功能。仲裁電路(arbitrat〇r circuit)解決任何對於RAM讀寫過程的同時不一致。例如狀態機器獨 立完成兩組在訊框内數位資料符號的同時傳送,但同時和仲裁電路決 定何者狀態機器對FIFO緩衝器寫入資料。 以上所述之實施例僅係為說明本發明之技術思想及特 點’其目的在使热習此項技藝之人士能夠瞭解本發明之内容 並據以實施,當不能以之限定本發明之專利範圍,即大凡依 本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本 發明之專利範圍内。 【圖式簡單說明】 第一圖係習知技術之通訊系統圖。 第一圖係習知技術透過通訊系統時,數位資料理想傳送之時 間圖。 第三圖係本發明之通訊系統圖。 第四圖係本發明通訊系統之傳送裝置方塊圖。 第五圖係本發明通訊系統之數位資料訊框結構圖。 第六圖係本發明通訊系統之接收裝置之方塊圖。 26 修正本 1304694 第七a至七d圖係說明將接收裝置所接收的資料同步化之方 法流程圖’避免在傳送數位資料至接收裝置期間,發生數位 資料不足或溢位。 第八a圖係本發明在通訊系統數位資料同步化之時間圖。 第八b圖係本發明標記訊號、同步化訊號和啟動訊號關係之 時間圖。 第九圖係本發明資料傳送至FIFO資料保留元件之時間圖。 【主要元件符號說明】 1〇傳送器 15發光二極體led 20光訊號 25頭戴式耳機 30接收器 35a、35b剩叭 40光偵測器 45人 50數位資料符號 100傳送器 105暫存器 110錯誤偵測與更正碼電路 120訊框格式電路 130傳送驅動器 135傳送者時脈產生器 163同步模式 165啟動序列 150調節訊號 195轉換器 200接收器 210緩衝控制電路 215緩衝器 205放大與調整電路 220接收者時脈產生器 225起動/停止偵測電路 230錯誤彳貞測和修正電路 235抖動管理單元 236FIFO緩衝器 237 VC0管理電路 239壓力控制震盪器(VCX0) 242標記訊號 27 修正本 1304694 243電壓控制字元 250類比訊號 260頭戴式耳機 300傳送者時脈 400接收者時脈 500抖動管理時脈 28When the check mark signal is executed (Box 440) 〇 If there is a mark, the read address counter will start to control the frame transfer of the digital data symbol from the buffer to the FIFO buffer. The FIFO buffer detects the current state of any digital data symbols in the FIFO buffer. At the beginning of the digital data symbol transfer, there is no digital data symbol present in the FIFO buffer. The digital data symbol (Box 455) indicated by the read address counter X is transferred from the buffer to the FIFO buffer. If the FIFO buffer has reached the gatecast (ι/g full), the FIFO buffer (Box 460) is detected. If the level of the threshold is not reached, the read address counter X is incremented to point to the next address and the next digit data symbol is transferred to the HFQ buffer (Box 465). The FIFO buffer (Box 460) is then detected again. When the number of digital data symbols in the FIFO buffer reaches the threshold, the digital data symbols are then extracted from the FIF0 buffer. But at the same time, the read address counter χ (Β〇χ 480) is incremented to point to the next address and the next digit data symbol is transferred to the fif buffer (Box 470). If the number of digital data symbols of the frame is transmitted (n) to the FIF buffer, the test reads the address counter (Box 475). If all symbols are not transmitted, the read address counter x (Box 480) is incremented and the digital data symbols (B 〇 x 470) are transferred from the buffer to the FIFO buffer until the digital data symbols of all frames are transmitted. Upon receiving the next frame flag, the initial read address counter X (Box 445), and because the FIFO buffer is now not empty, the next frame of the digital data symbols is transferred from the buffer to the FIFO buffer. Since the transmit clock 300 frequency ft is not exactly equal to the period or phase of the receive clock 400 frequency, the digital data symbols of all frames must be transferred from the buffer to the FIFO buffer during the time period between the two frame marks. A preferred embodiment of this method simultaneously transfers two of the digital data symbols from the buffer to the FIFO buffer. The frequency ft of the transmit clock 300 determines the frequency of the digital data symbols transmitted simultaneously to the receive clock 400. Therefore, the number of any digital data symbols must be transmitted simultaneously and still be relevant to the present invention. When the number of existing data symbols in the FIFO buffer indicates that the number of occurrences is greater than the threshold, the read address counter y is started to indicate that the first digit of the frame is transmitted to the FIFO buffer. 23 Revision 1304694 Transfers the digital data symbols indicated by the read address counter y from the FIFO buffer. In a preferred embodiment of the invention, the digital data symbols are transmitted to a digital analog converter for conversion to a sound analog signal applied to the horn. If the existing number of digital data symbols is greater than the upper limit UL1 (Box 506) or less than the lower limit LL1 (Box 508), the amount of existing digital data symbols in the FIFO buffer is detected. If the existing number of digital data symbols in the FIFO buffer is not greater than the upper limit UL1 (Box 506) and not less than the lower limit LLKBox 508), the digital data symbols are detected from the FIFO buffer consumption vs digital data symbols to the FIFO buffer. The gradient of the supply (Box 510). If the gradient indicates that the final rate is consumed by the amount of digital data symbols present in the FIFO buffer or is supplied to the FIFO buffer. If the rate of consumption or supply is too large, the frequency of the jitter management clock 400 is increased or decreased (f2 +/- i) (Box 512) to reduce the gradient of the rate change. On the other hand, if the gradient indicates that the rate of consumption is within the boundary of the upper limit uu or the lower limit LL1, the frequency f2 of the jitter management clock 5〇〇 is fixed. If the FIFO buffer is empty, increase the read address y (B〇x 514) and detect the existing number of digital data symbols in the FIFO buffer. If the FIFO buffer is not empty, the next digital data symbol is transferred from the FIFO buffer. As long as the existing number of digital data symbols in the FIF buffer is less than the upper limit UL1 (Box 506) or greater than the lower limit LL1 (Box 508), the read address counter y (B〇x 514) and the transfer digital data symbol are added. (Box 504), until no digit data symbols are transferred from the buffer to the FΠ? buffer and the FIF0 buffer is empty. When the FIFO buffer is empty, the method returns to the process of starting the reception of the adjustment signal (Box 405). When detecting the existing number of digital data symbols in the FIFO buffer (Β〇χ 5〇6) is greater than the upper limit UL1 and If the jitter management clock 5 〇〇 has a frequency f2 that is less than the frequency ft of the transmission clock 300, the jitter management clock must be increased to increase the rate of the digital data symbols from the FIF buffer. The first to detect the number of digital data symbols in the buffer is greater than the upper limit LU2. If the number of digital data symbols is not greater than the upper limit UL2, then the gamma digit data symbol is derived from the FIFO buffer consumption vs. data symbol pair F IF buffer (Box 510) gradient (B 〇 x 520). If the gradient indicates that the rate of consumption or the rate of supply is not too large, increase the frequency of the jitter management clock 4 丨 2 to (丨2+]·) (Β〇χ 24 Amendment 1304694 522) to increase the digital data. The rate at which symbols are consumed. If the miscellaneous gradient indicates that the rate of supply is too large, the frequency of the jitter management clock 400 is increased by £2 (5 + k) (β 〇χ 524) to reduce the magnitude of the gradient change and the rate of increased consumption. ^Only, if the number of digital data symbols is greater than the upper limit, see 2, then the copper number data symbol is subtracted from the FIFO buffer consumption vs. the data symbol to the FIF buffer (Box 526). If the gradient indicates that the rate of consumption or supply is not too large, then the frequency of the second tube f is a large amount of (3) +1) (Box 528), so as to increase the consumption speed of the digital data symbol. The number of FIF 〇 buffer ϋ digit data symbols is reduced to avoid overflow. If the mixed gradient indicates that the rate of supply is too large, then increasing the frequency h of the jitter management clock 400 is still increased to (3) + / a m) (β 〇χ 53 〇) to reduce and more quickly increase the rate of consumption. When the mouth is less than the lower limit LL1 and found to be lower than LL1, it is detected that the number of existing data symbols in the buffer digits is 'the frequency of the jitter management clock_ is greater than the frequency ft of the transmission clock 3〇〇, and Must be reduced to reduce the rate of consumption of digital data symbols from the FIF buffer. First, the existing symbol of the digital data symbol in the buffer is detected to be lower than the upper limit LL2. If the number of bit data 没有 is not less than the lower limit (10), the gradient from the fifq buffer digital data f to the FIFO buffer supply, the side digital data symbol consumption. If the ladder indicates that the rate of consumption or the rate of supply is not too large, the frequency of the jitter management time slot is reduced to (fa - j) (Box 522) to reduce the rate of consumption of digital data symbols. If the consumption gradient is too fast, the fresh f2 of the jitter tube_pulse is reduced to (f2 - k) (Box 536) to lower the gradient and reduce the rate of consumption faster. Only if the number of digits is lower than the lower limit LL2, the re-debt measurement data symbol is the gradient from the FIFO buffer consumption vs. the data symbol to the FIF buffer (9) X 510). If the gradient indicates that the rate of consumption or the rate of supply is not too large, the frequency of the jitter management clock 400 is reduced to (f2 - 1) (Β〇χ 542) to reduce the consumption rate of the digital data symbols and reduce the number of digital data symbols. To avoid overflow. If the consumed gradient indicates that the rate of supply is too large, the frequency f2 of the jitter management clock 400 is reduced to (f2-m) (Box 544) to lower the gradient and reduce the consumption rate faster. See Figure 7b. If the test frame symbol (Β〇χ 44〇) and no frame symbol is tested by 25 Amendment 1304694, the received data is damaged and invalid. The buffer clears the data and the data is cleared from the FIFO buffer to eliminate corrupted data. In recording and playback applications such as audio signals, digital data symbols must flow simultaneously. To avoid distortion and unnecessary tones, the digital data symbol must be set to a value that nulls the audio signal. Once the buffer is cleared (Box 180), the next startup mode (Box 415) is detected, and the digital data symbol recovered from the adjustment signal is placed in the buffer. The process of flowing the digital data symbol continues to detect the startup mode (Box 415). ). Once the FIFO buffer is cleared (Box 180), the next startup mode (βοχ 415) and the digital data symbol placed from the adjustment signal are detected in the buffer, and the flow of the digital data symbol continues after the detection of the startup mode. . The buffer and FIFO buffer can act as a control random access memory (rand〇ffl access_〇ry) that is accessed by a group of state machines. A group of state machines perform circuit functions as described above. The arbitration circuit (arbitrat〇r circuit) resolves any inconsistencies in the RAM read and write process. For example, the state machine independently performs two simultaneous transmissions of digital data symbols within the frame, but at the same time determines with the arbitration circuit which state machine writes data to the FIFO buffer. The embodiments described above are merely illustrative of the technical spirit and characteristics of the present invention. The purpose of the present invention is to enable those skilled in the art to understand the contents of the present invention and to implement them. Equivalent changes or modifications made by the spirit of the present invention should still be included in the scope of the present invention. [Simple description of the diagram] The first diagram is a communication system diagram of the conventional technology. The first figure is a time map of the ideal transmission of digital data when the conventional technology is transmitted through the communication system. The third figure is a diagram of the communication system of the present invention. Figure 4 is a block diagram of a transmitting device of the communication system of the present invention. The fifth figure is a digital data frame structure diagram of the communication system of the present invention. Figure 6 is a block diagram of a receiving device of the communication system of the present invention. 26 Amendment 1304694 Figures 7a through 7d illustrate a method flow diagram for synchronizing data received by a receiving device to avoid the occurrence of insufficient or overflow of digital data during the transfer of digital data to the receiving device. The eighth diagram is a time diagram of the synchronization of the digital data of the communication system of the present invention. The eighth picture b is a time chart of the relationship between the mark signal, the synchronization signal and the start signal of the present invention. The ninth figure is a time chart of the transfer of the data of the present invention to the FIFO data retaining component. [Main component symbol description] 1〇transmitter 15 light-emitting diode led 20 optical signal 25 headset 30 receiver 35a, 35b remaining 40 light detector 45 person 50 digit data symbol 100 transmitter 105 register 110 error detection and correction code circuit 120 frame format circuit 130 transmission driver 135 transmitter clock generator 163 synchronization mode 165 start sequence 150 adjustment signal 195 converter 200 receiver 210 buffer control circuit 215 buffer 205 amplification and adjustment circuit 220 receiver clock generator 225 start/stop detection circuit 230 error detection and correction circuit 235 jitter management unit 236 FIFO buffer 237 VC0 management circuit 239 pressure control oscillator (VCX0) 242 mark signal 27 correction of this 1304694 243 voltage Control character 250 analog signal 260 headset 300 transmitter clock 400 receiver clock 500 jitter management clock 28

Claims (1)

1304694 竹年?月μ曰修正本 修正本 十、申請專利範圍: 1· 一種在無線或有線數位聲音通訊系統中可確保高品質聲音錄放之 該裝置包括: & 接收器,其用來接收調節訊號並重存該調節訊號,和從該調節訊號重建數 位資料的符號且將該數位資料同步化至一第一參考訊號,該接收器包括: :抖動管理單元,其將該數位資制步化至該第—參考滅,該抖動管 理單元包括: -先進先出雜健元件,其接收該4建數位㈣和傳賴同步 位資料使更進一步作動; -可調變的參考娜產生器,其連接至該先進先出資料保留元件,以提 供該第一參考訊號對於該數位資料的同步化;及 -產生器控織路,其接收從該調節訊號中所抽出的—標記訊號,並傳 達該先進先出資料健元相純—佔據信號,齡據健·出在該先 進先出資料保留元件内,數位資料現存的數量,且該佔據健產生一 器控制訊號以造成該參考峨之碰,使該第—參考峨同步化該數位 料至係在該數位資料被傳送時的時間。 2如申請專利細第丨項所述的在無線或有線數位聲音通訊 尚品質聲音錄放之裝置,該接收器,更包括: 雉保 „節電路,該調節電路用來接收、重存和取樣該調節訊號用_ ,一參考訊賴倍數取樣該調節職,所以在瓣訊制,代表邊界在該 St 項·^的在無線•絲减音通訊祕中可確保 4:士溆二:φ々 < ’〜接收器更包括:一緩衝資料保留電路,其傳達 二ί : 1 接收和保留該重建數位資料,和傳達該先進先出資料 保留元件以傳送該數位資料至該先進先出資料保留元件。 出讀 ί ΐί ΐϊ: 17 絲或有線數姉音通鱗統中可確保 每-緩衝電路皆保留一群該留電咖^ 29 修正本 1304694 專概圍第3項所麟在無線或有線數岭音通訊祕中可確保 質聲音錄放之裝置,該接收器更包括: 二資=修正和去交錯電路,其傳達該緩衝保留電路以接收該重建數位資 22重新_該數位餅成-原本連續的瓶,从修正任何在該調節 生的錯誤’和代換在該緩衝保留電路内的重新組織化與 6二如申請專概圍帛3賴賴在絲或桃數轉音軌祕中可確保 =品質聲音錄放之裝置,其中該緩衝資料健電路以第二參考訊號的速 傳送該數位資料至該先進先出資料保留元件。 7lt申請專利範圍第3項所述的在無線或有線數位聲音通訊祕中可確保 兩品質聲音錄放之裝置,其中該緩衝資料保留電路傳送 進先出資料保留元件直到該先進先出資料保留元件有—第—數 進先出資料保留元件開始傳送該數位資料。 8二如申請專概㈣7項觸的核錢桃触聲^^祕中可確保 =品質聲音錄放之裝置,其帽緩衝資料保留電路傳送介在兩個標記訊號 間所有數位資料現存的符號,以避免溢出。 ^如申請專讎圍第2栖賴絲線或有紐⑽音通鱗統中可確保 局品質聲音錄放之裝置,該接收器更包括: 邊界標記訊號偵測電路,其傳達該放大與調節電路以接收該重建數位資 料’而從該重建數位資侧取用來指示該數位資料符號標界的標記訊號, 並傳達該產生器控制電路以提供該標記訊號至該產生器控制電路。 =·如申,專娜®第1項所述的絲線或有絲鱗音通訊祕中可確保 同《口質聲音錄放之裝置,其中假若該佔據信號指示該先進先出資料保留元 件包含一第二數量大小的數位資料,則該產生器控制訊號指示該產生器控 制電路對該第二參考訊號不作調整。 1」·。如申4專_@第1項所勒在無誠有線紐聲音舰祕巾可確保 高品質聲音錄放之裝置,其中假若該佔據信號指示該絲先出資料保留元 ,包含少於該第二數量大小的數位資料,則該產生器控制訊號指示該產生 斋控制電路對該第二參考訊號作調整,以增加該先進先出資料保留元件的 1304694 修正本 含量直到其含量大小係為該第二數量為止。 =·如申/耷專利範圍第1項所述的在無線或有線數位聲音通訊系統中可確保 咼品I聲音錄放之裝置,其中假若該佔據信號指示該先進先出資料保留元 件包含大於該第二數量大小的數位資料,則該產t器控带m號指示該蓋生 器控制電路對該第二參考職作赃,以減少該先進先出資料保留元件的 含量直到其含量大小係為該第二數量為止。 13·種在無線或有線數位聲音通訊系統中可確保高品質聲音錄放之裝 置,該裝置包括: 一傳送裝置,其包括: 一訊框格式器,其解碼數位資料成連續的符號; 一傳送器,其傳達該訊框格式器以接收該連續的符號,並傳送一由該連續 的符號所組成的調節訊號;及 一接收裝置,其傳達該傳送裝置以接收該調節訊號,重存該調節訊號,且 從該調節訊號重建該數位資料的符號並將該數位資料同步化至一第一參 考訊號,該接收裝置包括: 一抖動管理單元,其同步化該數位資料至該第一參考訊號,該抖動管 理單元包括: 一先進先出資料保留元件,其接收該重建數位資料並傳送該同步化的數 位資料以更一步的作動; 一可調變的參考訊號產生器,其連接至縣絲出資料保留猶,以提 供該第一參考訊號對於該數位資料的同步化;及 一產生器控制電路,其接收從該調節訊號中所抽出的一標記訊號,並傳 達該先進先出資料保留元件以接收一佔據信號,該佔據信號係指出在該 先進先出資料保留元件内,數位資料現存的數量,且該佔據信號產生一 產生器控制訊號以造成該參考訊號之調整,使該第一參考訊號同步化該 數位資料至係在該數位資料被傳送時的時間。 14·=申研專利範圍帛13項所述的在無線或有線數位聲音通訊系統中可確 保兩品質聲音錄放之裝置,其中該接枚裝置更包括· -放大與㈣電路’該調節·絲接收、重存和取樣該調節訊號 ,以一 31 修正本 1304694 第一參考訊號的倍數取樣該調節訊號,所以在調節訊號内,代表邊界在數 位資料的位元間的轉換被偵測到,且重建該數位資料並將該數位資料同步 化至該第二參考信號。 15·如申請專利範圍第14項所述的在無線或有線數位聲音通訊系統中可確 保尚品質聲音錄放之裝置,其中接收裝置更包括: 一緩衝資料保留電路,其傳達該放大與調節電路以接收和保留該重建數位 資料,和傳達該先進先出資料保留元件以傳送該數位資料至該先進先出資 料保留元件。 16·如申請專利範圍第15項所述的在無線或有線數位聲音通訊系統中可確 保高品質聲音錄放之裝置,其中該緩衝資料保留電路至少具有一緩衝電 路,每一緩衝電路皆保留一群該數位資料的符號。 17·如申請專利範圍第15項所述的在無線或有線數位聲音通訊系统中可確 保高品質聲音錄放之裝置,其中接收裝置更包括: 一資料修正和去交錯電路,其傳達該緩衝保留電路以接收該重建數位資 料,並重新組織該數位資料成一原本連續的符號,以及修正任何在該調節 訊號傳送過程所產生的錯誤,和代換在該緩衝保留電路内的重新組盥 修正過的數位資料。 〃 18·如申請專利範圍第15項所述的在無線或有線數位聲音通訊系統中可確 保高品質聲音錄放之裝置,其中該緩衝資料保留電路係以第二參考訊號的 速率傳送該數位資料至該先進先出資料保留元件。 ° ' 19·如申請專利範圍第15項所述的在無線或有線數位聲音通訊系統中可確 保高品質聲音錄放之裝置,其中該緩衝資料㈣電路傳送該^位資該 先進先出資料保留元件直到該先進先出資料保留元件有一第一 ' = 先進先出資料保留元件開始傳送該數位資料。 “ 20·如申請專利範圍第19項所述的在無線或有線數位聲音通訊 保高品質聲音錄放之裝置,其中該緩衝資料保留電 號間所有數位資料現存的符號,以避免錄位資料溢出。㈣ 21·如申請專利範圍第14項所述的在無線或有線數位聲音 保高品質聲音錄放之裝置,其中該接收裝置更包括: § ^ 32 修正本 1304694 二邊界標記訊號細電路,其傳達該放A_節電路以齡該重建數位資 料’而從該重建數位資料齡用來指示該數位資料符號標界的標記訊號, 並傳達該產生n控制電路崎供該標記訊號至該產生雜制電路。 22·=申^專利範圍第13項所述的在無線或有線數位聲音通訊系統中可確 保南品2聲音錄放之裝置,其巾假若齡據健指示該先進先出 資料保留 το件包含-第二數量大小的數位資料,則該產生器测減指示該產生器 控制電路對該第二參考訊號不作調整。 23·=申凊專利範圍第13項所述的在無線或有線數位聲音通訊系統中可確 保间品質聲音錄放之裝置,其巾假若雜據信雜*該先進先出資料保留 7G件包含少於該第二數量大小的齡資料,麟產生器測訊號指示該產 生器,制電路賴第二參考减個整,明加該先進先出資料保留元件 的含量直到其含量大小係為該第二數量為止。 24·=申請專利範圍第13項所述的在無線或有線數位聲音通訊系統中可確 保南品質聲音錄放之裝置,其中假若該佔據信號指示該先進先出資料保留 兀,包含大於該第二數量大小的數位資料,則該產生器控制訊號指示該產 生器控制電路對該第二參考訊號作調整以減少該先進先出資料保留元件的 含量直到其含量大小係為該第二數量為止。 25· —種數位資料同步電路,其將參照一第一參考訊號週期的數位資料時脈 同步化至一第二參考週期,該數位資料同步電路包括: 一先進先出資料保留元件,其接收以該第一參考訊號為時脈的數位資料, 和以該第二參考週期傳送該同步化的數位資料; 一可調變的參考訊號產生器,連接至該先進先出資料保留元件,對該數 位資料同步化提供具有該第二參考週期的時脈;及 一產生器控制電路,其接收一標記訊號,其指示一群該數位資料符號的 開始’並傳達該先進先出資料保留元件以接收一佔據信號,該佔據信 號係指出在該先進先出資料保留元件内,數位資料現存的數量,且該 佔據信號產生一產生器控制訊號以造成該參考訊號之調整,使具有該 第二參考週期的時脈訊號同步化該數位資料至該第二參考週期。 26.如申請專利範圍第25項所述的數位資料同步電路,其中該數位資料傳 33 1304694 修正本 送至該先進先出資料保留元件直到該先進先出資料保留元件有一第一數 量,則該先進先出資料保留元件開始傳送該數位資料。 27·如申請專利範圍第26項所述的數位資料同步電路,其中介在兩個標記 訊號間所有資料符號現存的符號傳送到該緩衝資料保留電路,以避免該數 位資料溢出。 以 28·如申請專利範圍第25項所述的數位資料同步電路,其中假若該佔據信 號指示該先進先出資料保留元件包含一第二數量大小的數位資料,則產生 器控制訊號指示產生器控制電路對第二參考訊號不作調整。 29·如申請專利範圍第25項所述的數位資料同步電路,其中假若該佔據信 號指示該先進先出資料保留元件包含少於該第二數量大小的數位資料,貝1 產生器控制訊號指示產生器控制電路對第二參考訊號作調整以增加該先進 先出資料保留元件的含量直到其含量大小係為該第二數量為止。 3〇·如申請專利範圍第25項所述的數位資料同步電路,其中假若該佔據信 號指示該先進先出資料保留元件包含大於該第二數量大小的數位資料,則 產生器控制訊號指示產生器控制電路對第二參考訊號作調整以減少該先進 先出資料保留元件的含量直到其含量大小係為該第二數量為止。 31· —種同步化數位資料時間的方法,其根據一具有一第一週期的時脈轉換 至具有一第二週期時脈的電路系統,其步驟包括: 提供一先進先出資料保留元件; 傳送該數位資料至具有該第一週期的時脈之該先進先出資料保留元件; 傳送該數位資料,係從具有該第二週期的時脈之該先進先出資料保留元件; 監控一佔據訊號,其從該先進先出資料保留元件,指出在該先進先出資料 保留元件數位資料現存的數量; 監控一標記訊號,其指出介於數位資料群集間的一邊界;及 取決於該佔據信號和該標記訊號,調整該第二週期的該時脈使同步化該數 位資料至該第二時脈週期。 32·如申請專利範圍第31項所述的同步化數位資料時間的方法,其中傳送 該數位>料至該先進先出資料保留元件直到該先進先出資料保留元件有一 第一數量,則該先進先出資料保留元件開始傳送該數位資料。 34 1304694 修正本 33·如申清專利範圍第31項所述的同步化數位資料時間的方法,其中傳送 存在於兩個標記訊號間的所有數位資料符號至該先進先出資料保留元件, 在介於該兩個標記間的時間週期内,以避免該數位資料的溢出。 34·如申請專利範圍第31項所述的同步化數位資料時間的方法,其中假若 該佔據信號指示該先進先出資料保留元件包含一第二數量大小的數位資 料,則不調整具有第二週期的時脈。 35.如申請專利範圍第31項所述的同步化數位資料時間的方法,其中假若 該佔據信號指示該先進先出資料保留元件包含少於該第二數量大小的數位 資料,則調整具有該第二週期的時脈使該時脈具有第二週期,以增加該先 進先出資料保留元件的含量直到其含量大小係為該第二數量為止。 36·如申清專利範圍第31項所述的同步化數位資料時間的方法,其中假若 =佔據信號指示該先進先出資料保留元件包含大於該第二數量大小的數位 資料,則嫌帛二週躺雜使爾脈具#帛二獅,喊傾先進先出 資料保留元件的含量直到其含量大小係為該第二數量為止。 37· —種接收數位資料的方法,該數位資料係以一第一時脈速率所傳送,豆 步驟包括: 〃 接收和重存該調解訊號,該調節訊號係被該數位資料所調節; ^建和同步化數位資料的符號,其係從具有一第一週期時脈的該瓣訊號; 傳送至該具有一第二週期的時脈之電路系統,其步驟包括: 提供一先進先出資料保留元件; 傳送該數位資料至具有該第一週期的時脈之該先進先出資料保留元件; 傳送该數位㈣,係從具有該第二週期的時脈之該先進先出資料保留元 件; 監控-佔據訊號,其從該先進先出資料保留元件,指出在該先進先出資料 保留元件數位資料現存的數量; 監控一標記訊號,其指出介於數位資料群集間的一邊界;及 取決於該佔據信號和該標記訊號,調整該第二職的該時脈使同步化該數 位資料至該第二時脈週期。 38·如申清專利範圍第37項所述的接收數位資料的方法,更包括從賴節 35 修正本 1304694 訊號抽取該標記訊號的步驟。 39·如申請專利範圍第37項所述的接收數位資料的方法,更包括修正在該 調節訊號傳送期間所發生的錯誤。 40·如申請專利範圍第37項所述的接收數位資料的方法,更包括去交錯該 數位資料以重新組織該數位資料為一原本連續的符號之步驟。 41·如申請專利範圍第37項所述的接收數位資料的方法,其中傳送該數位 資料至該先進先出資料保留元件直到該先進先出資料保留元件有一第一數 量,則從該先進先出資料保留元件開始傳送該數位資料。 42·如申請專利範圍第37項所述的接收數位資料的方法,其中傳送存在於 兩個標§己訊號間的所有數位資料符號至該先進先出資料保留元件,在介於 該兩個標記間的時間週期内,以避免該數位資料的溢出。 43·如申請專利範圍第37項所述的接收數位資料的方法,其中假若該佔據 信號指示該先進先出資料健元件包含-第二數量大小的數位資料,則不 調整具有第二週期的時脈。 44·如申請專利麵帛37項所述的接錄位資料的方法,其中假若該佔據 信號指示該先進先出資料保留元件包含少於該第二數量大^的數位資料, 則調整具有該第二週_時脈使該時脈為第二職,以增加該先進先出資 料保留元件的含量直到其含量大小係為該第二數量為止。 、 45·如申請專利範圍帛37項所述的接收數位資料的方法,其中假若該佔據 信號指示該先進先出資料侧元件包含大於該第二數量大小的數位資料, 則調整第二職鱗脈使該時脈具有第二聊,喊少該先 留元件的含量直到其含量大小係為該第二數量為止。 出資枓保 46·、-種傳達數位資料的方法,從_第—位置傳到—第二位置,其步驟包括: 傳送藉由該數位資料調解的-調解訊號,該數位資料__第—時脈速率 同步化;及 接收該數位資料,其步驟包括: 接收並重存該調節訊號,重建和同步化數位化的符號,其係從具 週期的時脈之該調節訊號,傳送至該具— 二’、,、一弟一 4有第-週_時脈之電路系統, 36 修正本 / 1304694 提供一先進先出資料保留元件,· 傳送該數位資料至具有該第一週期的時脈之該先進先出資料保留元件; 傳送該數位資料,係從具有該第二週期的時脈之該先進先出資料保留元 件; 監控一佔據訊號,其從該先進先出資料保留元件,指出在該先進先出資料 保留元件數位資料現存的數量; 監控一標記訊號,其指出介於數位資料群集間的一邊界;及 取決於該佔據信號和該標記訊號,調整該第二週期的該時脈使同步化該數 位資料至該第二時脈週期。 47·如申請專利範圍第46項所述的傳達數位資料的方法,更包括從該調節 訊號抽取該標記訊號的步驟。 48·如申請專利範圍第46項所述的傳達數位資料的方法,其中該接收該數 位資料的方式,係傳送該數位資料至該先進先出資料保留元件直到該先進 先出資料㈣元件有-第-數4,則從賊歧出資料保留元件開始傳送 該數位資料。 49.如申請專利範圍第46項所述的傳達數位資料的方法,其中傳送存在於 兩個標記訊號間的所有數位資料符號至該先進先出資料保留耕,在介於 該兩個標記間的時間週動,以避免該數位資料的溢出。 5〇·如申請專利範圍第46項所述的傳達數位資料的方法 信號指示該先進先岭料鋪元件包含—第二數量大 == 調整具有帛二週_時脈。 w胃tt Μ不 ^如申請專利範圍第46項所述的傳達數位資料的方法,其中假若該佔據 =號指不贼献出資料保留元件包含少於該第二數量大小的數位資料, ^调整具有娜二·的時脈使辦脈衫項期, 料保留讀的含量直顺含量大顿驗第二數量為止。4進先出貝 37 修正本 1304694 七、指定代表圖: (一) 本案指定代表圖為:第6圖。 (二) 本代表圖之元件符號簡單說明: 150調節訊號 195轉換器 200接收器 210緩衝控制電路 205放大與調整電路 215緩衝器 220接收者時脈產生器 225啟動/停止偵測電路 230錯誤偵測和修正電路235抖動管理單元 236FIFO緩衝器 237 VCO管理電路 238數位類比轉換器 242標記訊號 245數位類比轉換器 260頭戴式耳機 239壓力控制震盪器(VCXO) 243電壓控制字元 250類比訊號 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:1304694 Year of the Bamboo?曰μ曰 Amendment to this amendment. Scope of application: 1. A device for ensuring high-quality sound recording and playback in a wireless or wired digital sound communication system includes: & a receiver for receiving an adjustment signal Adjusting the signal, and reconstructing the symbol of the digital data from the adjustment signal and synchronizing the digital data to a first reference signal, the receiver comprising: a jitter management unit that steps the digital resource to the first reference Off, the jitter management unit comprises: - a first-in first-out hash component that receives the 4 digits (four) and the relay sync bit data to make further actuations; - a variable reference reference generator that is connected to the advanced first Generating a component to provide synchronization of the digital data by the first reference signal; and generating a device-controlled weave that receives the -mark signal extracted from the adjustment signal and communicates the FIFO data Yuan Xiangchun—occupies the signal, the age is based on the number of existing data in the FIFO data retention component, and the occupancy is controlled. To cause the reference number of touch-e, so that the first - with reference to the synchronization Bauer fed to the digital system time at which digital data to be transmitted. 2 The device for recording or reproducing sound quality in wireless or wired digital audio communication as described in the patent application specification, the receiver further includes: 雉 „ 电路 circuit, the adjusting circuit is used for receiving, re-storing and sampling The adjustment signal is _, and the reference signal is multiplied to sample the adjustment position, so in the valve system, the boundary is represented in the St. item in the wireless wire reduction communication secret. 4: 士溆二: φ々&lt The '~receiver further includes: a buffer data retention circuit that communicates two: 1 receives and retains the reconstructed digital data, and communicates the first in first out data retention component to transmit the digital data to the first in first out data retention component Read out ί ΐί ΐϊ: 17 silk or cable 姊 通 可 可 可 可 可 可 可 可 可 可 可 可 每 每 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 The audio communication secret device can ensure the quality sound recording and playback device, and the receiver further comprises: a secondary asset=correction and deinterleaving circuit, which communicates the buffer retention circuit to receive the reconstructed digital bit 22 re_the digital pie into the original The continuous bottle, from correcting any errors in the adjustment's and replacements in the buffer retention circuit within the reorganization of the 6th as applied for a special encirclement 3 depends on the silk or peach number in the audio track secret A device for ensuring quality sound recording, wherein the buffer data transmission circuit transmits the digital data to the FIFO data retention component at a speed of the second reference signal. 7 lt. The wireless or wired digital sound described in claim 3 The communication secret device can ensure two quality sound recording and playback devices, wherein the buffer data retention circuit transmits the first-in first-out data retention component until the first-in first-out data retention component has a first-to-first-in first-out data retention component to start transmitting the digital data. 8 2 If you apply for a special (4) 7-touch nuclear money peach touch ^^ secret to ensure = quality sound recording device, its cap buffer data retention circuit transmits the existing symbols of all digital data between the two marked signals to avoid Overflow. ^If you want to apply for the 2nd perch silk thread or the New Zealand (10) sound channel system to ensure the quality sound recording and playback device, the receiver further includes: a signal detecting circuit that transmits the amplifying and adjusting circuit to receive the reconstructed digital data and extracts a marking signal from the reconstructed digital side for indicating the digital data symbol demarcation and communicates the generator control circuit to provide The mark signal is sent to the generator control circuit. =· For example, the thread or the scalar audio communication secret mentioned in the first item of the Sina® can ensure the same device as the sound recording and recording device, wherein if the occupation signal is indicated The FIFO data retention component includes a second amount of digital data, and the generator control signal indicates that the generator control circuit does not adjust the second reference signal. 1". Such as the application of the 4th _@1 item in the Wucheng cable, the sound of the ship can ensure the high-quality sound recording and playback device, wherein if the occupation signal indicates that the silk first-out data retention element, contains less than the second quantity The size of the digital data, the generator control signal instructs the generation control circuit to adjust the second reference signal to increase the 1304694 corrected content of the FIFO data retention component until the content is the second quantity until. = The device for ensuring the sound recording and playback of the product I in the wireless or wired digital sound communication system as described in claim 1 or claim 1, wherein the occupation signal indicates that the first in first out data retention component contains greater than the first The two-digit digital data, the t-control device with the m-number indicates that the cover control circuit controls the second reference job to reduce the content of the FIFO data retention component until the content is The second number. 13. A device for ensuring high quality sound recording and playback in a wireless or wired digital sound communication system, the device comprising: a transmitting device comprising: a frame formatter that decodes digital data into consecutive symbols; Transmitting the frame formatter to receive the continuous symbol and transmitting an adjustment signal consisting of the continuous symbol; and a receiving device conveying the transmitting device to receive the adjustment signal and re-storing the adjustment signal And reconstructing the symbol of the digital data from the adjustment signal and synchronizing the digital data to a first reference signal, the receiving device includes: a jitter management unit that synchronizes the digital data to the first reference signal, The jitter management unit comprises: a first-in first-out data retention component, which receives the reconstructed digital data and transmits the synchronized digital data for further operation; and a variable reference signal generator connected to the county silk data Retaining to provide synchronization of the digital data by the first reference signal; and a generator control circuit, Receiving a mark signal extracted from the adjustment signal, and transmitting the FIFO data retention component to receive an occupation signal indicating the existing quantity of the digital data in the FIFO data retention component, and The occupancy signal generates a generator control signal to cause the reference signal to be adjusted such that the first reference signal synchronizes the digital data to a time when the digital data is transmitted. 14·=Application scope of the patent application 帛13, the device for ensuring two-quality sound recording and playback in a wireless or wired digital sound communication system, wherein the connection device further comprises: - amplification and (four) circuit 'the adjustment · wire reception And re-storing and sampling the adjustment signal, and sampling the adjustment signal by a multiple of the first reference signal of the reference 1304694, so in the adjustment signal, the transition between the bits representing the boundary in the digital data is detected and reconstructed. The digital data is synchronized to the second reference signal. 15) The device for ensuring quality sound recording and playback in a wireless or wired digital sound communication system according to claim 14, wherein the receiving device further comprises: a buffer data retention circuit that communicates the amplification and adjustment circuit Receiving and retaining the reconstructed digital data, and communicating the first in first out data retaining component to transmit the digital data to the first in first out data retaining component. 16. The apparatus for ensuring high quality sound recording and playback in a wireless or wired digital sound communication system according to claim 15, wherein the buffer data retention circuit has at least one buffer circuit, and each buffer circuit retains a plurality of the buffer circuits. The symbol of the digital data. 17. The apparatus for ensuring high quality sound recording and playback in a wireless or wired digital sound communication system according to claim 15, wherein the receiving apparatus further comprises: a data correction and deinterleaving circuit that communicates the buffer retention circuit Receiving the reconstructed digital data, reorganizing the digital data into an original continuous symbol, and correcting any errors generated during the adjustment signal transmission, and substituting the re-group corrected digital digits in the buffer retention circuit data. 〃18. The device for ensuring high quality sound recording and playback in a wireless or wired digital sound communication system according to claim 15, wherein the buffer data retention circuit transmits the digital data at a rate of the second reference signal to The FIFO data retention component. ° ' 19 · A device for ensuring high-quality sound recording and playback in a wireless or wired digital sound communication system as described in claim 15 wherein the buffered data (4) circuit transmits the first-in first-out data retention component Until the FIFO data retention component has a first '= FIFO data retention component to begin transmitting the digital data. "20. The device for recording high quality sound recording in wireless or wired digital voice communication as described in claim 19, wherein the buffer data retains existing symbols of all digital data between the electric numbers to avoid overflow of the recording data. (4) 21. The device for recording high quality audio in wireless or wired digital sound according to claim 14 of the patent application, wherein the receiving device further comprises: § ^ 32 Amendment 1 146 469 2nd boundary mark signal fine circuit, which conveys the Putting the A_section circuit to reconstruct the digital data from the age and reconstructing the digital signal from the reconstructed digital data age to indicate the marking signal of the digital data symbol boundary, and transmitting the generating n control circuit to supply the marking signal to the generated hybrid circuit 22·=申^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The second quantity of digital data, the generator measurement and reduction indication, the generator control circuit does not adjust the second reference signal. The device for ensuring quality sound recording and playback in a wireless or wired digital sound communication system according to Item 13 of the scope, wherein the FIFO data is confusing* the FIFO data retention 7G component contains less than the second quantity Age data, the numerator test signal indicates the generator, and the circuit is reduced by the second reference, and the content of the FIFO data retention component is increased until the content is the second quantity. 24·=Application The device for ensuring south quality sound recording and playback in a wireless or wired digital sound communication system according to Item 13 of the patent scope, wherein if the occupation signal indicates that the FIFO data is retained, the digital data larger than the second quantity is included And the generator control signal instructs the generator control circuit to adjust the second reference signal to reduce the content of the FIFO data retention component until the content is the second number. a synchronization circuit that synchronizes a digital data clock of a first reference signal period to a second reference period, the digital data synchronization The method includes: a first-in first-out data retention component, receiving digital data with the first reference signal as a clock, and transmitting the synchronized digital data in the second reference period; a variable reference signal generator, Connecting to the FIFO data retention component, synchronizing the digital data to provide a clock having the second reference period; and a generator control circuit receiving a flag signal indicating a start of a group of the digital data symbols And communicating the FIFO data retention component to receive an occupancy signal indicating the amount of digital data present in the FIFO data retention component, and the occupancy signal generating a generator control signal to cause the reference The signal is adjusted to synchronize the digital signal with the second reference period to the second reference period. 26. The digital data synchronization circuit of claim 25, wherein the digital data is transmitted 33 1304694 The correction is sent to the FIFO data retention component until the FIFO data retention component has a first number Quantity, the FIFO data retention component begins to transmit the digital data. 27. The digital data synchronizing circuit of claim 26, wherein the existing symbols of all data symbols between the two marked signals are transmitted to the buffer data retaining circuit to prevent the digital data from overflowing. The digital data synchronization circuit of claim 25, wherein if the occupation signal indicates that the FIFO data retention component comprises a second amount of digital data, the generator control signal indication generator control The circuit does not adjust the second reference signal. The digital data synchronization circuit of claim 25, wherein if the occupancy signal indicates that the FIFO data retention component contains less than the second amount of digital data, the beta 1 generator control signal indication generates The controller control circuit adjusts the second reference signal to increase the content of the FIFO data retention component until the content is the second number. 3. The digital data synchronization circuit of claim 25, wherein the generator control signal indicator generator is generated if the occupancy signal indicates that the FIFO data retention component comprises digital data greater than the second number of magnitudes The control circuit adjusts the second reference signal to reduce the content of the FIFO data retention component until its content is the second number. 31. A method for synchronizing digital data time, according to a circuit having a first period clock transition to a circuit having a second periodic clock, the steps comprising: providing a first in first out data retention component; The digital data to the FIFO data retaining component having the clock of the first period; transmitting the digital data from the FIFO data retaining component having the clock of the second period; monitoring an occupied signal, From the FIFO data retention component, indicating the number of existing data in the FIFO data retention component; monitoring a marker signal indicating a boundary between the digital data clusters; and depending on the occupancy signal and the Marking the signal, adjusting the clock of the second period to synchronize the digital data to the second clock cycle. 32. The method of synchronizing digital data time as described in claim 31, wherein the digit is transmitted to the FIFO data retaining component until the FIFO data retaining component has a first quantity, The FIFO data retention component begins to transmit the digital data. 34 1304694 A method for synchronizing the digitized data time as described in claim 31, wherein all digital data symbols existing between two marker signals are transmitted to the FIFO data retention component, During the time period between the two tags, the overflow of the digital data is avoided. 34. The method of synchronizing digital data time as described in claim 31, wherein if the occupancy signal indicates that the FIFO data retention component comprises a second amount of digital data, the second cycle is not adjusted. The clock. 35. The method of synchronizing digital data time as described in claim 31, wherein if the occupancy signal indicates that the FIFO data retaining component contains less than the second amount of digit data, the adjustment has the first The two-cycle clock causes the clock to have a second period to increase the content of the FIFO data retention component until its content is the second amount. 36. The method for synchronizing the digital data time according to claim 31 of the patent scope, wherein if the occupant signal indicates that the FIFO data retaining component contains digital data larger than the second quantity, the two weeks are suspected Lying the miscellaneous worms #帛二狮, shouting the content of the FIFO data retention component until the content is the second amount. 37. A method for receiving digital data, the digital data being transmitted at a first clock rate, the bean step comprising: 接收 receiving and re-storing the mediation signal, the adjustment signal being adjusted by the digital data; And synchronizing the symbols of the digital data from the valve signal having a first periodic clock; to the circuitry having the clock of a second period, the steps comprising: providing a first in first out data retention component Transmitting the digital data to the FIFO data retaining component having the clock of the first period; transmitting the digit (4) from the FIFO data retaining component having the clock of the second period; monitoring-occupying a signal, from the FIFO data retention component, indicating the number of existing data in the FIFO data retention component; monitoring a marker signal indicating a boundary between the digital data clusters; and depending on the occupancy signal And the mark signal, adjusting the clock of the second job to synchronize the digital data to the second clock cycle. 38. The method for receiving digital data as described in claim 37 of the patent scope includes the step of extracting the mark signal from the Lai section 35 amendment 1304694 signal. 39. The method of receiving digital data as set forth in claim 37 of the patent application, further comprising correcting an error occurring during the transmission of the adjusted signal. 40. The method of receiving digital data as recited in claim 37, further comprising the step of deinterlacing the digital data to reorganize the digital data into an original continuous symbol. 41. The method of receiving digital data according to claim 37, wherein the digital data is transmitted to the FIFO data retaining component until the FIFO data retaining component has a first quantity, from the first in first out The data retention component begins transmitting the digital data. 42. A method of receiving digital data as described in claim 37, wherein all digital data symbols present between two standard signals are transmitted to the first in first out data retention component, between the two markers Avoid the overflow of the digital data during the time period between. 43. The method for receiving digital data according to claim 37, wherein if the occupancy signal indicates that the FIFO data component comprises a second number of digits of data, the second period is not adjusted. pulse. 44. The method of claiming a location data according to claim 37, wherein if the occupation signal indicates that the FIFO data retention component contains less than the second number of digits, the adjustment has the first The second week_clock causes the clock to be the second job to increase the content of the FIFO data retention component until the content is the second amount. 45. The method of receiving digital data according to claim 37, wherein if the occupation signal indicates that the FIFO data side component contains digital data larger than the second quantity, adjusting the second job scale The clock has a second chat, shouting less of the content of the first remaining component until its content is the second amount. The method of investing in the protection of the digital data, from the _th-position to the second position, the steps include: transmitting a mediation signal mediated by the digital data, the digital data __ Synchronizing the pulse rate; and receiving the digital data, the steps comprising: receiving and re-storing the adjustment signal, reconstructing and synchronizing the digitized symbol, and transmitting the adjusted signal from the periodic clock to the device - ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, a first-out data retaining component; transmitting the digital data from the first-in first-out data retaining component having the clock of the second period; monitoring an occupied signal, the retaining component from the first-in first-out data, indicating that the advanced The data retains the existing quantity of the component digital data; monitors a marker signal indicating a boundary between the digital data clusters; and depends on the occupancy signal and the marker signal Adjusting the second period of the clock synchronization of the digital data to the second clock cycle. 47. The method of communicating digital data as set forth in claim 46, further comprising the step of extracting the marker signal from the adjustment signal. 48. The method of communicating digital data as set forth in claim 46, wherein the method of receiving the digital data is to transmit the digital data to the FIFO data retaining component until the FIFO data component has - The first-number 4 starts transmitting the digital data from the thief's data retention component. 49. A method of communicating digital data as set forth in claim 46, wherein all digit data symbols present between two marker signals are transmitted to the FIFO data for retention, between the two markers Time is moving to avoid overflow of the digital data. 5. The method of communicating digital data as described in claim 46 of the patent application section signals that the advanced Xianling material component comprises - the second quantity is large == the adjustment has a two weeks_clock. w stomach tt Μ Μ 不 ^ As described in the scope of patent application, the method of communicating digital data, wherein if the occupation = number refers to the thief donation data retention component contains less than the second amount of digital data, ^ adjust With the clock of Na's second, the period of the period of the shirt is expected to be the highest. 4 in and first out of the shell 37 Amendment 1304694 VII. Designated representative map: (1) The representative representative of the case is: Figure 6. (b) The symbol of the representative figure is briefly described: 150 adjustment signal 195 converter 200 receiver 210 buffer control circuit 205 amplification and adjustment circuit 215 buffer 220 receiver clock generator 225 start/stop detection circuit 230 error detection Measure and Correction Circuit 235 Jitter Management Unit 236 FIFO Buffer 237 VCO Management Circuit 238 Digital Analog Converter 242 Mark Signal 245 Digital Analog Converter 260 Headset 239 Pressure Control Oscillator (VCXO) 243 Voltage Control Character 250 Analog Signal Eight If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention:
TW094132495A 2004-09-22 2005-09-20 A method and apparatus for ensuring high quality audio playback in a wireless or wired digital audio communication system TWI304694B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61200704P 2004-09-22 2004-09-22

Publications (2)

Publication Number Publication Date
TW200625903A TW200625903A (en) 2006-07-16
TWI304694B true TWI304694B (en) 2008-12-21

Family

ID=36090381

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094132495A TWI304694B (en) 2004-09-22 2005-09-20 A method and apparatus for ensuring high quality audio playback in a wireless or wired digital audio communication system

Country Status (5)

Country Link
EP (1) EP1797665A4 (en)
JP (1) JP2008514148A (en)
KR (1) KR20070085235A (en)
TW (1) TWI304694B (en)
WO (1) WO2006032978A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005003652D1 (en) * 2004-03-05 2008-01-17 Xytratex Technology Ltd METHOD OF JAMMING A NETWORK, DRAWING PROTOCOL, MEDIATION, END STATION AND NETWORK
EP2050199B1 (en) * 2006-07-19 2016-08-24 Dragonwave, Inc. Expedited communication traffic handling apparatus and methods
DE102009031995A1 (en) * 2009-07-06 2011-01-13 Neutrik Aktiengesellschaft Method for the wireless real-time transmission of at least one audio signal
US8577209B2 (en) * 2010-06-15 2013-11-05 Mediatek Inc. Method for utilizing at least one storage space sharing scheme to manage storage spaces utilized by video playback operation and related video playback apparatus thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284270A (en) * 1996-04-19 1997-10-31 Nec Corp Symbol synchronization tracking method and symbol synchronization tracking device adopting it
US6188496B1 (en) * 1997-11-25 2001-02-13 International Business Machines Corporation Wireless communication system
US6400683B1 (en) * 1998-04-30 2002-06-04 Cisco Technology, Inc. Adaptive clock recovery in asynchronous transfer mode networks
US6741659B1 (en) * 1999-10-25 2004-05-25 Freesystems Pte. Ltd. Wireless infrared digital audio transmitting system
JP3417392B2 (en) * 2000-09-08 2003-06-16 ヤマハ株式会社 Synchronous control device

Also Published As

Publication number Publication date
EP1797665A2 (en) 2007-06-20
WO2006032978A3 (en) 2006-12-28
KR20070085235A (en) 2007-08-27
WO2006032978A2 (en) 2006-03-30
EP1797665A4 (en) 2010-05-26
JP2008514148A (en) 2008-05-01
TW200625903A (en) 2006-07-16

Similar Documents

Publication Publication Date Title
EP1096715B1 (en) Data recovery for wireless digital audio system
CN111031437B (en) Wireless earphone assembly and communication method thereof
US4945548A (en) Method and apparatus for detecting impending overflow and/or underrun of elasticity buffer
JP5233165B2 (en) Data transmission device
EP1096716B1 (en) Data recovery for a wireless digital audio receiving system
US7027544B2 (en) Data clocked recovery circuit
JPH02247709A (en) Method for removing skew
US6741659B1 (en) Wireless infrared digital audio transmitting system
US8675742B2 (en) Method and system for synchronously transmitting asynchronous data
US8804607B2 (en) Method and apparatus for maintaining synchronization in a communication system
CN110769347A (en) Synchronous playing method of earphone assembly and earphone assembly
TWI304694B (en) A method and apparatus for ensuring high quality audio playback in a wireless or wired digital audio communication system
US20060062338A1 (en) Method and apparatus for ensuring high quality audio playback in a wireless or wired digital audio communication system
US7701978B2 (en) Method and apparatus for maintaining synchronization in a communication system
JP2001077854A (en) Data transmission device and data reception device
US4964142A (en) Receiver synchronization in encoder/decoder
EP0396669B1 (en) Method and apparatus for detecting impending overflow and/or underrun of elasticity buffer
US7366207B1 (en) High speed elastic buffer with clock jitter tolerant design
JPH0621929A (en) Transmission apparatus and equalization circuit device
JPH0669937A (en) Method and device for correcting delay time difference in loop type transmission line
EP1467507A2 (en) Method and apparatus for maintaining synchronization in a communication system
JP3787108B2 (en) Asynchronous data communication device
JP3631616B2 (en) Staff synchronous multiplex communication equipment
JP3990064B2 (en) Path monitoring method and path monitoring circuit
JPH05102956A (en) Frame synchronization detecting device in asynchronous serial communication

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees