TWI304098B - Method of manufacturing silicon-containing film and method of reducing number of particles - Google Patents
Method of manufacturing silicon-containing film and method of reducing number of particles Download PDFInfo
- Publication number
- TWI304098B TWI304098B TW95106262A TW95106262A TWI304098B TW I304098 B TWI304098 B TW I304098B TW 95106262 A TW95106262 A TW 95106262A TW 95106262 A TW95106262 A TW 95106262A TW I304098 B TWI304098 B TW I304098B
- Authority
- TW
- Taiwan
- Prior art keywords
- film
- reaction chamber
- chemical vapor
- vapor deposition
- temperature
- Prior art date
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Description
1304098 97-10-23 九、發明說明: 【毛明所屬之技術領域】 本發明是有關於一種薄膜的形成方法,且特別是有關於 種含分薄膜的形成方法與減少微粒數目的方法。 【先前技術】 化學氣相沈積法(Chemical Vapor Deposition,CVD)是一 種利用化學反應的方式 ,在反應室内使反應物生成固態的產 並沈積於基底表面的一種薄膜沈積技術。近年來,化學 氣相沈積法已然成為半導體製程中,最重要且主要的薄膜沈 積工具’舉凡半導體元件所需製備的薄膜,不論是導體、半 導體、或是介電材料,都可藉由化學氣相沈積法來進行製備。 一而在整個半導體製程,許多常用的材料,不論是導體、 半&體或是介電材料,均與r石夕」這個元素,脫離不了關係。 无;、、:如此’為了以化學氣相沈積法來形成以上這些材料,勢 必須要使用含矽的反應氣體作為矽來源。其中,最常使用、 應用最廣泛的含矽氣體就屬於矽甲烷㈦lane)。 然而’由於以矽曱烷為矽來源之製程需要較高的溫度, 且其所形成的含石夕薄膜的均勻性(Unif〇rmity)較差。當半導體 進入深次微米(deep Sub-micron)製程,必須更進一步降低反應 /皿度’以達到调降製程熱預算的目的時,一種 月b夠在較低的反應溫度之下進行解離的含石夕氣體如二石夕乙垸 (disilane)或三石夕丙烧(trisiiane)便逐漸取代矽甲烷的使用。再 者’二石夕乙烧(disilane)這類含矽氣體還兼具有增加沈積薄膜均 勻性的優點。 4 1304098 97-10-23 但疋,二發乙户、一 情況下容易於化歲矽丙烷這類含矽氣體在溫度較低的 微粒。這些微粒二反應室中發生氣相成核的反應而產生 膜的品質下降/,同^會造成沈積薄膜的均勻性變差,導致薄 尤其現今之半^切易附著在反應室㈣絲污染源。 容忍度更低。4已進人奈米級製程,對於微粒污染的 【發明内容】1304098 97-10-23 IX. Description of the invention: [Technical field to which Maoming belongs] The present invention relates to a method for forming a film, and more particularly to a method for forming a film containing a film and a method for reducing the number of particles. [Prior Art] Chemical Vapor Deposition (CVD) is a thin film deposition technique in which a reaction is formed in a solid state and deposited on a surface of a substrate by means of a chemical reaction. In recent years, chemical vapor deposition has become the most important and major thin film deposition tool in semiconductor manufacturing processes. For films prepared for semiconductor devices, whether it is a conductor, a semiconductor, or a dielectric material, chemical gas can be used. The phase deposition method is used for the preparation. Once in the entire semiconductor process, many commonly used materials, whether conductors, semi- & or dielectric materials, are inseparable from the element of r Shi Xi. No;,:: In order to form these materials by chemical vapor deposition, it is necessary to use a reaction gas containing ruthenium as a source of ruthenium. Among them, the most commonly used and most widely used helium-containing gas belongs to methane (seven) lane. However, the process of using decane as a source of ruthenium requires a higher temperature, and the uniformity (Unif〇rmity) of the film containing the ruthenium film is poor. When the semiconductor enters the deep sub-micron process, the reaction/dishness must be further reduced to achieve the purpose of reducing the thermal budget of the process, a month b can be dissociated below the lower reaction temperature. Shi Xi gas, such as disilane or trisiiane, gradually replaces the use of methane. Further, the ruthenium-containing gas such as disilane also has the advantage of increasing the uniformity of the deposited film. 4 1304098 97-10-23 However, in the case of second-hand B, it is easy to use particles such as propane, which are low in temperature. The reaction of the gas phase nucleation in the two reaction chambers causes a decrease in the quality of the film, and the uniformity of the deposited film is deteriorated, resulting in thinness, especially in the present case, which is liable to adhere to the reaction chamber (4). Less tolerance. 4 has entered the nano-scale process, for particle contamination [invention content]
成方法,可以減^vt的目的就是在提供一種含石夕薄膜的形 象,進而獲得品質較好的H在反應室中發生氣相成核的現In the method, the purpose of reducing the amount of ^vt is to provide a film containing a stone film, thereby obtaining a gas of good quality H in the reaction chamber.
適用於二::J膜供-種減少微粒數目的方法, 生氣相成核的機率在反應室中發 本發明提出-種切與反應室的潔淨度。 基底置於-反應室;法,此方法是先將-行化學氣相沈積掣程其心至中導入一含矽氣體,以進 控制反應室上 乙烧膜的形成方法中,含魏體例如是包括二石夕 上述含石夕薄膜的形成方t 的溫度實質上為娜。^^,更可控制反應室其他内壁 的溫度實質上為3W的方半/Γ制反應室上内壁(與其他内壁) 溫度實質上為30。(:。 ㈣如是控制反應室之冷卻裝置的 上述含韻膜的形成方法中,切薄膜例如是包括氧化 5 1304098 97-10-23 石夕薄膜、氮化矽薄膜、备与 石夕薄膜與”金屬薄膜^^溥膜、氮碳化韻膜、多晶 同a士 it:?薄?的形成方法的化學氣相沈積製程中,更可 口1氧氣及氟化物中至少—者為反應氣體。 力孰?ΓΓ薄膜的形成方法中,基底可以其下方之加敎哭 加熱’此加熱器的溫度例如是控制在_DC至7卿之間f 當上if薄臈的形成方法中’化學氣相沈積製程例如是 型ΐ學低學氣相沈積製程 '電聚增強 沉相心積衣程或高密度電漿化學氣相沈積製程。 的溫ΐ發Γί出之含料朗形成方法,係降低反應室内壁 、、:二w以減少氣相成核的發生機率,降低微粒的數目, 。更好的薄膜’並增加反應室的潔淨度。再者,冬 含矽氣體時,含矽薄膜的均勻度較佳。 T烷的 *本發明提出-種減少微粒數目的方法,適用於 膜的製程巾,此切薄膜係於反應室巾導人切氣體厚 :氣=積製程而形成。此方法例如是於化學氣相沈3 王 至夕控制反應室上内壁的溫度實質上為3〇〇C。、衣 上述減少微粒數目的方法中,含矽氣體例如是 乙烷或三矽丙烷。 —矽 一上述減少微粒數目的方法中,含矽薄膜例如是包括^ 矽薄膜、氮化矽薄膜、氮氧化矽薄膜、氮碳化矽薄膜、,化 矽薄膜與含矽金屬薄膜其中之一。 、夕晶 上述減少微粒數目的方法中,更可控制反應室的其他内 6 1304098 97-10-23 壁的溫度實質上為3〇。(:。 上述減少微粒數目的方法中,控制 實質上為㈣的方法例如是控制反應室之 質上為30°C。 π沛波置的/皿度實 上述減少微粒數目的方法中’於化 中 更可同時導入氨氣、氧氣及氟化物中 積衣私中’ 上述減少微粒數目的方法中,化學 積Applicable to two:: J film supply - a method for reducing the number of particles, the probability of gas phase nucleation in the reaction chamber is proposed by the present invention - the cleanliness of the seed and the reaction chamber. The substrate is placed in a reaction chamber; the method is a method in which a chemical vapor deposition process is first introduced into a gas containing a helium gas to control the formation of an ethylene film on the reaction chamber, and the inclusion body includes, for example, The temperature at which the formation of the above-mentioned stone-containing film of Ershi Xi is substantially Na. ^^, the temperature of the other inner wall of the reaction chamber can be controlled to be substantially 3W. The temperature of the inner wall (and other inner walls) of the square half/twisting reaction chamber is substantially 30. (4) In the method for forming the above-mentioned rhyme-containing film for controlling the cooling device of the reaction chamber, the cut film includes, for example, an oxide 5 1304098 97-10-23 Shi Xi film, a tantalum nitride film, a preparation and a stone film and In the chemical vapor deposition process of metal film ^^溥 film, nitrogen carbonized film, polycrystalline and ashiit: thin, the process is more delicious, at least one of oxygen and fluoride is the reaction gas. In the method of forming the ruthenium film, the substrate can be heated under the enthalpy of heating. The temperature of the heater is controlled, for example, between _DC and 7 qing, and f is formed in the method of forming a thin ruthenium. For example, the type of low school vapor deposition process of the type of ΐ 增强 电 电 电 增强 沉 沉 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或,,: two to reduce the incidence of gas phase nucleation, reduce the number of particles, better film 'and increase the cleanliness of the reaction chamber. In addition, the winter containing bismuth gas, the uniformity of the yttrium-containing film T. Alkane* is proposed by the present invention to reduce the number of particles The method is applicable to a process towel of a film, and the cut film is formed by introducing a gas thickness in a reaction chamber: a gas=product process. The method is, for example, a chemical vapor deposition process to control the inner wall of the reaction chamber. The temperature is substantially 3 〇〇 C. In the above method for reducing the number of particles, the ruthenium-containing gas is, for example, ethane or trioxane. In the above method for reducing the number of particles, the ruthenium-containing film includes, for example, ^ One of the film, the tantalum nitride film, the yttrium oxynitride film, the yttrium carbonitride film, the bismuth film and the ruthenium-containing metal film. In the above method for reducing the number of particles, the other inside of the reaction chamber can be controlled. 1304098 97-10-23 The temperature of the wall is substantially 3 〇. (: The above method for reducing the number of particles, the method of controlling substantially (4) is, for example, controlling the temperature of the reaction chamber to 30 ° C. In the above method for reducing the number of particles, in the method of reducing the number of particles, the chemical product can be introduced into the ammonia gas, the oxygen gas, and the fluoride in the process.
氣Γ積製程、健化學氣相沈積製Ϊ == 里化學亂相脉系統或高密度電漿化學氣相沈積_程。曰 本發明提出之減少微粒數目的方法,人'^ 中降低反應室内壁溫度’以減少所能提二 ^置’使—成核的發生機率下降,進而降低微粒的數目體 ,此,不但可以獲得品質更好的薄膜,也可以增加反 =淨度。再者’當上述含魏料二⑦乙料三^ 應性高树曱_含魏體時,含㈣_均勻度較件。Gas accumulation process, chemical vapor deposition Ϊ == Li chemical phase system or high density plasma chemical vapor deposition _ Cheng. The method for reducing the number of particles proposed by the present invention reduces the temperature of the interior wall of the reaction to reduce the probability of occurrence of nucleation, thereby reducing the number of particles, thereby not only Obtaining a better quality film can also increase the inverse = clarity. Furthermore, when the above-mentioned containing material, the second material, the three materials, the high-tree 曱 _ containing the Wei body, the (four) _ uniformity is compared.
為讓本發明之上述和其他目的、特徵和優點能更I顯易 重,下文特舉較佳實施例,並配合所附圖式,作詳細說明如 卜' 〇 【實施方式】 圖1是緣示本發明之含々薄__成方法之步驟流程 圖’此方法所產生的微粒數目很少。以下實施例特別辅以圖2 之反應室剖面示意圖,使本發明能夠獲得充分的理解。 +产請參照圖1與圖2,反應室200例如是包括冷卻裝置21〇、 喷氣頭220、基座230與加熱器25〇。冷卻裝置21〇例如是設 7 1304098 97-10-23 置於反應室200上内壁,或是圍繞著整個反應室的内壁而設 置,冷卻裝置210例如是提供有冷卻水或其他冷卻流體而達 到冷卻的功能,且例如是包括位在反應室内壁中流有冷卻流 體的管道。喷氣頭220例如是具有多個喷氣孔22〇a的平板 (faceplate)。加熱器250設置於基座230下方,用以提供基底 240表面產生化學反應所需要的能量。當然,反應室22〇還可 以&又置其他構件,唯為说明方便起見,僅緣示前述之幾種構 件。另外,值得一提的是,圖2繪示之反應室220為單一晶 片式(single wafer)的設計,唯本發明也可以適用於整批式batch type)設計的反應室。 本發明實施例之含矽薄膜的形成方法是將基底24〇置於 反應室200中(步驟11〇),其例如是將基底24〇置於反應室 200之基座230上。基底240的材質例如是矽基底、絕緣層上 有矽基底、陶瓷材料、玻璃、塑膠(如聚碳酸酯(pc)、聚苯乙 浠(ps))、碳化矽、單晶材料、石英、類鑽石竣(DLC)、砷化 鎵和金屬氧化物。基底240上例如是已形成有膜層或元件(未 繪示)。 然後,於反應室22〇中導入一含石夕氣體,以進行化學氣 相沈積製程,於基底240上形成含”膜,其中,至少控制 反應室220上内壁的溫度低於5〇〇c (步驟12〇)。含石夕氣體 是經由噴氣頭220分散至基底24〇表面,基底24〇則以其下 的加,器250加熱至所需溫度,q丨發切氣體的化學反應。 反應室22〇上内壁的溫度例如是藉由冷卻裝置no中之冷卻 水的溫度來控制。冷卻裳置別中之冷卻水(或其他冷卻流 8 .1304098 97-10-23 體)的溫度例如是控制在低於50X,車交佳例如是低於3 若冷部裝置210侧繞著反應室mo而設置,馳制冷 置210的溫度,#可控制反應室22〇上、側、下内壁的^度: 上述之化學氣相沈積製程可以是常壓化學氣相沈積風^程 (APCVD)、健化學氣相沈積製^(LpcVD)、電嘴 型化學氣相沈積製程(PECVD)、電_助魏學氣相^ 製程(PACVD)或高密度電漿化學氣相沈積製程(HDpc =The above and other objects, features and advantages of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A flow chart showing the steps of the method for forming a thin film of the present invention. The number of particles produced by this method is small. The following examples are in particular supplemented with a schematic cross-sectional view of the reaction chamber of Figure 2 to enable a sufficient understanding of the present invention. Referring to FIG. 1 and FIG. 2, the reaction chamber 200 includes, for example, a cooling device 21, a jet head 220, a susceptor 230, and a heater 25A. The cooling device 21 is, for example, disposed on the inner wall of the reaction chamber 200 or disposed around the inner wall of the entire reaction chamber, and the cooling device 210 is provided with cooling water or other cooling fluid for cooling. The function, and for example, includes a conduit in which a cooling fluid flows in the interior wall of the reaction chamber. The air jet head 220 is, for example, a face plate having a plurality of air holes 22〇a. A heater 250 is disposed beneath the susceptor 230 to provide the energy required to generate a chemical reaction on the surface of the substrate 240. Of course, the reaction chamber 22 can also be equipped with other components, and for the sake of convenience of description, only the foregoing components are shown. In addition, it is worth mentioning that the reaction chamber 220 illustrated in FIG. 2 is a single wafer design, and the present invention can also be applied to a reaction chamber designed in batch type. The ruthenium-containing film of the embodiment of the present invention is formed by placing the substrate 24 in the reaction chamber 200 (step 11A), for example, by placing the substrate 24 on the susceptor 230 of the reaction chamber 200. The material of the substrate 240 is, for example, a germanium substrate, a germanium substrate on the insulating layer, a ceramic material, glass, plastic (such as polycarbonate (pc), polystyrene (ps)), tantalum carbide, single crystal material, quartz, and the like. Diamond 竣 (DLC), gallium arsenide and metal oxides. For example, a film layer or component (not shown) has been formed on the substrate 240. Then, a gas containing gas is introduced into the reaction chamber 22 to perform a chemical vapor deposition process to form a "film" on the substrate 240, wherein at least the temperature of the inner wall of the reaction chamber 220 is controlled to be lower than 5 〇〇c ( Step 12:) The gas containing the gas is dispersed to the surface of the substrate 24 via the air jet head 220, and the substrate 24 is heated by the heater 250 to the desired temperature, and the chemical reaction of the gas is cut. The temperature of the upper wall of the 22 例如 is controlled, for example, by the temperature of the cooling water in the cooling device no. The temperature of the cooling water (or other cooling flow 8.1304098 97-10-23 body) in the cooling device is controlled, for example. At less than 50X, the vehicle crossover is, for example, lower than 3. If the cold unit 210 side is disposed around the reaction chamber mo, the temperature of the cooling unit 210 can be controlled, and the upper, lower, and inner walls of the reaction chamber 22 can be controlled. The chemical vapor deposition process described above may be an atmospheric pressure chemical vapor deposition process (APCVD), a chemical vapor deposition process (LpcVD), a nozzle chemical vapor deposition process (PECVD), and a power-assisted process. Gas phase ^ process (PACVD) or high density plasma chemical vapor deposition process (HDpc =
但不限於此。當然,依照薄膜的種類不同,應用的化學氣相 沈積製程種類也會不同。 反應室200中所導入的含矽氣體例如是二矽乙烷、三矽 丙烧等,由於這類含魏體可以在較低的溫度解離^因似 以降低製程的熱預算。 本發明所形成的含矽薄膜可以是氧化矽薄膜(包括 腦、PSG、BPSG、FSG)、氮切薄膜、氮氧化韻膜、 氮碳化㈣膜、多砂薄膜與含⑪金屬薄膜如雜鶴薄膜。But it is not limited to this. Of course, depending on the type of film, the type of chemical vapor deposition process used will vary. The ruthenium-containing gas introduced in the reaction chamber 200 is, for example, dioxane ethane, tridecyl propyl hydride or the like, and since such a sulphide-containing body can be dissociated at a lower temperature, it seems to lower the thermal budget of the process. The ruthenium-containing film formed by the invention may be a ruthenium oxide film (including brain, PSG, BPSG, FSG), a nitrogen-cut film, a nitrogen oxide film, a nitrogen-carbonized film, a multi-sand film and a metal film containing 11 such as a crane film. .
因,,反應室憎了含魏體之外,射雜狀形成的含 矽薄膜種類,導入氧氣、氨氣及氟化物中至少任一成分 應氣體。 基座23〇下方設置的加熱器25〇的溫度例如是控制於議 ^5〇°C之間。當然’加熱器25〇的溫度也需視所形成的薄膜 種類而不同。 以^㈣膜為例,其例如是以1⑽與氨氣為 :體。雖然二扣㈣可以在較低溫度下解離,但由於 茜要於高溫下才能解離而反應生錢切薄膜,因此加孰哭 1304098 97-10-23 250的溫度無法調降,需要控制在例如· 當冷卻裝置210的溫度為,c日夺,此來 10=現容/使彳Γ扣絲财魏頭22G之前就發;= =壁象 个知月肘令卻裝置21〇的溫度控制在50oC 广低對,近反應室壁的含砍氣體所提供的能量, 大;s減务生氣相成核的機率,如此不但能夠 大微粒的產生,也可以提高反應室的潔淨度。 -综上所述’本發明實施例之形成含梦薄膜的^法, 用二石夕,或三抑料氣體切來源,以形朗勻度較佳 的5石夕賴,·又降低反應室壁的溫度,使錢頭上方的溫产 下降,減少所能提供給含矽氣體的能量,以改善二 二 :含矽氣體容易產生氣相成核的問題’降低‘粒形成:: 此-來,不但可讀作出均勻度更好、品質更佳 雜’也可以提高反應㈣料度,減少反應室的清洗頻 率,進而提高製程品質,降低製造成本。 、 3本伽已以較佳實施例揭露如上,然其並非用以限 疋本务月’任何熟習此技藝者,在不脫離本發明之精神和範 圍内,當可作些許之更動與潤飾’因此本發明之保護範圍各 視後附之申請專利範圍所界定者為準。 田 【圖式簡單說明】 圖1係繪示本發明一實施例之一種含矽薄 之步驟流程圖。 j心風万忐 圖2係繪示本發明一實施例之反應室的剖面示音圖。 1304098 97-10-23 【主要元件符號說明】 110、120 ··步驟 200 :反應室 210 :冷卻裝置 220 :喷氣頭 220a :喷氣孔 230 :基座 240 :基底 250 :加熱器Therefore, the reaction chamber contains a type of ruthenium-containing film formed by the inclusion of a Wei body, and at least one of oxygen, ammonia, and fluoride is introduced into the reaction chamber. The temperature of the heater 25A disposed under the susceptor 23 is controlled, for example, between 5 〇 °C. Of course, the temperature of the heater 25 turns also depends on the type of film formed. Taking the ^(4) film as an example, it is, for example, 1 (10) and ammonia gas. Although the two buckles (four) can be dissociated at a lower temperature, the temperature can not be lowered due to the fact that the crucible can be dissociated at a high temperature, so the temperature of the crucible 1304098 97-10-23 250 cannot be lowered, and needs to be controlled, for example. When the temperature of the cooling device 210 is c, the current time is 10 = the current capacity / the 彳Γ 丝 丝 财 魏 魏 魏 22 22 22 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Wide and low, near the reaction chamber wall, the energy provided by the chopping gas, large; s reduce the probability of gas phase nucleation, so that not only can the production of large particles, but also improve the cleanliness of the reaction chamber. - In summary, the method for forming a dream-containing film according to the embodiment of the present invention uses a two-stone gas or a three-press gas to cut the source, and the shape is preferably 5 stone, and the reaction chamber is lowered. The temperature of the wall causes the temperature increase above the money head to decrease, reducing the energy that can be supplied to the helium-containing gas to improve the problem of the gas phase nucleation of the gas containing ruthenium. 'Reducing' grain formation:: Not only can read and make better uniformity, better quality, but also improve the reaction (4) material, reduce the cleaning frequency of the reaction chamber, and thus improve the process quality and reduce the manufacturing cost. 3 gamma has been disclosed above in the preferred embodiment, but it is not intended to limit the work of the art. Anyone who is familiar with the art can make some changes and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing the steps of a thin film according to an embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 2 is a cross-sectional view showing a reaction chamber of an embodiment of the present invention. 1304098 97-10-23 [Description of main component symbols] 110, 120 · · Step 200 : Reaction chamber 210 : Cooling device 220 : Air jet head 220a : Air vent 230 : Base 240 : Base 250 : Heater
1111
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95106262A TWI304098B (en) | 2006-02-24 | 2006-02-24 | Method of manufacturing silicon-containing film and method of reducing number of particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95106262A TWI304098B (en) | 2006-02-24 | 2006-02-24 | Method of manufacturing silicon-containing film and method of reducing number of particles |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200732496A TW200732496A (en) | 2007-09-01 |
TWI304098B true TWI304098B (en) | 2008-12-11 |
Family
ID=45070864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95106262A TWI304098B (en) | 2006-02-24 | 2006-02-24 | Method of manufacturing silicon-containing film and method of reducing number of particles |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI304098B (en) |
-
2006
- 2006-02-24 TW TW95106262A patent/TWI304098B/en active
Also Published As
Publication number | Publication date |
---|---|
TW200732496A (en) | 2007-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101597754B (en) | A method and apparatus for forming a high quality low temperature silicon nitride layer | |
TWI577821B (en) | Silicon film forming method, thin film forming method and cross-sectional shape control method | |
Kim et al. | Plasma-enhanced atomic layer deposition of cobalt using cyclopentadienyl isopropyl acetamidinato-cobalt as a precursor | |
TWI274790B (en) | Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition | |
US7816200B2 (en) | Hardware set for growth of high k and capping material films | |
TW200403354A (en) | System for depositing a thin film onto a substrate using a low vapor pressure gas precursor | |
TW538459B (en) | Method of growing a polycrystalline silicon layer, method of growing a single crystal silicon layer and catalytic CVD apparatus | |
US6054735A (en) | Very thin PECVD SiO2 in 0.5 micron and 0.35 micron technologies | |
JPS60200966A (en) | Composite coating | |
JPS62142770A (en) | Tungsten silicide film and method for deposition to said film | |
KR102100925B1 (en) | Substrate assembly, method of forming the substrate assembly, and electronic device comprising the same | |
JP2000012870A (en) | Multistage cvd method for thin-film transistor | |
Joshi et al. | LPCVD and PECVD silicon nitride for microelectronics technology | |
US5712001A (en) | Chemical vapor deposition process for producing oxide thin films | |
JP2002047066A (en) | FORMED SiC AND ITS MANUFACTURING METHOD | |
TWI251620B (en) | Process for CVD of Hf and Zr containing oxynitride films | |
TWI304098B (en) | Method of manufacturing silicon-containing film and method of reducing number of particles | |
JPS61272922A (en) | Semiconductor device wafer substrate and manufacture thereof | |
TWI343606B (en) | A metal oxide semiconductor device and a method of forming a gate stack containing a gate dielectric layer having reduced metal content | |
JP4717335B2 (en) | Film forming method, film, and element | |
CN100567565C (en) | The formation method of silicon-containing film and the method that reduces granule amount | |
TW418296B (en) | A low-pressure apparatus for carrying out steps in the manufacture of a device, a method of manufacturing a device making use of such an apparatus, and a pressure control valve | |
JPH01313974A (en) | Method of manufacturing polycrystalline silicon semiconductor resistance layer on silicon substrate and silicon pressure sensor manufactured by the method | |
JP2003155567A (en) | Film deposition method, film, element, alkylsilicon compound, and film deposition system | |
JP2907236B2 (en) | Method for manufacturing semiconductor device |