TWI303664B - - Google Patents

Download PDF

Info

Publication number
TWI303664B
TWI303664B TW94116224A TW94116224A TWI303664B TW I303664 B TWI303664 B TW I303664B TW 94116224 A TW94116224 A TW 94116224A TW 94116224 A TW94116224 A TW 94116224A TW I303664 B TWI303664 B TW I303664B
Authority
TW
Taiwan
Prior art keywords
sequence
primer
chain reaction
polymerase chain
genus
Prior art date
Application number
TW94116224A
Other languages
Chinese (zh)
Other versions
TW200641138A (en
Inventor
Chiu Chung Young
Fo Ting Shen
Hui Ling Lu
Mann Jing Ho
Ta Chen Lin
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW094116224A priority Critical patent/TW200641138A/en
Publication of TW200641138A publication Critical patent/TW200641138A/en
Application granted granted Critical
Publication of TWI303664B publication Critical patent/TWI303664B/zh

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

1303664 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種快速鑑定戈登氏菌屬之引 子。具體而言,本發明係關於一種以聚合酶連鎖反應 (polymerase chain reaction,PCR)快速鑑定戈登氏菌屬之方 法。 【先前技術】 戈登氏菌spp·)是一種放射菌,分類上屬於 Gordcmz’aceae科、亞目,目前包含21 種, 其細胞壁含有黴菌酸(mycolic acid)為主要特徵之一,可由 環境中如活性污泥、污水處理池、生物濾床、工業廢水、 汽機車輪胎或被污染的土壤中分離篩選而得。許多研究已 證實戈登氏菌具有降解芳香族化合物(油污之主要物質)之 能力,可用於開發處理環境油污之生物復育技術。目前已 知戈登氏菌之降解代謝特性包括含硫化合物苯並噻吩 (benzothiophene)與二苯並嗟吩(dibenzothiophene)中硫的去 除,3·乙口比口定(3-ethylpyridine)、3-甲口比口定(3-methylpyridine) 的生物降解,鄰苯二甲酸丁苄酯(butyl benzyl phthalate)之 代謝,醚類化合物如乙基第三丁基(ethyl tertiary-butyl ether,ETBE)、甲基第三 丁基醚(methyl tert-butyl ether, MTBE)、三戊甲基醚(tertiary-amyl methyl ether,TAME)之 降解,橡膠降解及硝酸還原等;另外亦發現如柴油、引擎 油均可作為戈登氏菌株之碳源。 傳統細菌鑑定與分類主要依靠菌種之生理特性及生化代 100247.doc 1303664 謝活性等表現型特徵之差異’將細菌分門別類,包含以菌 落型態、$色性狀、酵素活性、碳源利用及至血清反應等 免疫方法’然而在傳統的分類方法上往往耗費許多時間及 成本’在環境微生物如戈登氏菌的研究上更由於菌種之多 樣性,常常無法準確得知菌株之分類地位,而須藉由多種 分析方法配合後才可狀菌種。例如,利用生理特性(如放 線菌共有的黴菌酸特徵)可應用於戈登氏菌之鑑別,以氣相 層析儀分析戈登氏菌之細胞壁組成亦可與其他放線菌加以 區分,但微生物菌體之組成易因培養環境之改變而發生變 異,故在測定上仍有許多限制。 分子鑑定技術的發展提供了 一個更有效率、準確度更高 之細菌偵測技術,在臨床細菌診斷上已成為重要之辅助工 具。放線菌在分類上亦歸類於細菌界,故其分類方法與細 菌相似,許多學者嘗試利用基因型分析方法加以鑑別放線 菌’如限制片段長度多型性分析(Restricti〇n卜叫咖以 Length Polymorphism,RFLP)、逢機複製多型性 DNA分析 (Random Amplified P〇lymorphism DNA,RApD)與 BOX-PCR、REP-PCR等分析技術。目前已知可作為細菌鑑 別之分子標記如16S rRNA基因、23S rRNA基因及介於16S 和 23 S rRNA基因間之 DNA 區域(Integenic spacer,ITS)。基 因型分析法之靈敏度及專一性均較傳統生理生化特性為 佳’在快速鑑別細菌上扮演重要角色,然而在戈登氏菌之 鑑別及偵測上至今仍無適當之方法。 有鑑於近年來對於環境復育之需求日增,因此有需要發 100247.doc 1303664 展一種快速且正確之戈登氏菌鑑定方法,以 確筛選生物復育微生物之目的。 達㈣且正 【發明内容】 發明概述 本發明之一目的在於提供一種鑑定戈登氏菌屬之引子 對’其係選自下列引子對及彼等之變異體: (〇正向引子G268F,其具有如序列辨識編號丨所示之序 列,與反向引子G1096R,其具有如序列辨識編號2 所示之序列;及 (u)正向引子G699F,其具有如序列辨識編號3所示之序 歹J與反向引子G1134R,其具有如序列辨識編號4 所示之序列。 本發明之另一目的在於提供一種鑑定戈登氏菌屬之套 組’其包含上述之引子對。 本發明之再-目的在於提供一種鑑定戈登氏菌屬之方 法,其包含下列步驟: (a) 提供待測菌體之染色體DNA ; (b) 使用一引子對進行聚合酵素連鎖反應,該引子對係 選自下列引子對及彼等之變異體·· (i) 正向引子G268F,其具有如序列辨識編號丨所示 之序列,與反向引子G1096R,其具有如序列辨 識編號2所示之序列;及 (ii) 正向引子G699F,其具有如序列辨識編號3所示 之序列,與反向引子G1134R,其具有如序列辨 100247.doc 1303664 識編號4所示之序列;及 (c) 分析該增幅放大之片段長度。 發明詳細說明 本發明係針對鑑定戈登氏菌屬所需,設計專一性之募核 苷酸引子對,可於聚合酶連鎖反應增殖戈登氏菌之16S rRNA基因片段以鑑別戈登氏菌,並有效自環境中筛選分離 目標微生物,以開發環境中之微生物資源。 本發明係關於一種鑑定戈登氏菌屬之引子對,其係選自 下列引子對及彼等之變異體: (i)正向引子G268F,其具有如序列辨識編號i所示之序 列’與反向引子G1096R’其具有如序列辨識編號2 所示之序列;及 (11)正向引子G699F,其具有如序列辨識編號3所示之序 列’與反向引子G1134R,其具有如序列辨識編號4 所示之序列。 聚合酶連鎖反應通常包含三個步驟:(1)使一模版進行變 性’以形成兩單股;(2)使兩引子分別與步驟(1)之兩股進行 黏合;(3)以DNA聚合酶延伸該等引子以取得兩雙股之 DNA。重複循環上述之諸等步驟,而一特定之dna片段即 可獲得擴增。一般而言,為使反應充分進行,通常於循環 反應之如先進行一第一階段變性步驟。 本文中所言之「變異體」乙詞,係指可取代本發明引子 對中單一引子而仍可與引子對中另一引子共同放大同一特 定片段序列之引子。因聚合酶連鎖反應本身之特性,引子 100247.doc 1303664 與欲放大之模版間之序列即便存在變異性,仍可藉調節聚 合酶連鎖反應中黏合步驟之反應溫度而合成特定之⑽入片 奴 知而δ,係指與根據本發明之引子序列相似度高於 75%之引+。舉例言之,如引子與欲放大之模版間之序列 變異性越大,黏合步驟之反應溫度越低;反言之,如引子 與欲放大之模版間之序列變異性越小,則可提高黏合步驟 之反應溫度。故於該特定領域中具一般知識之人士根據本 發明之揭示,即可根據欲增幅放大之DNA片段設計不同之 引子’任何針對本發㈣子之驗基置換、加人或縮減,如 其仍可與本發明引子放大特以段之引子皆為本發明所欲 保護之範圍。 本發明另提供一種鑑定戈登氏菌屬之方法,其包含下列 步驟; (a) 提供待測菌體之染色體dna ; (b) 使用一引子對進行聚合酵素連鎖反應,該引子對係 選自下列引子對及彼等之變異體: (I) 正向引子G268F,其具有如序列辨識編號1所示 之序列,與反向引子G1096R,其具有如序列辨 識編號2所示之序列;及 (II) 正向引子〇69917,其具有如序列辨識編號3所示 之序列,與反向引子G1134R,其具有如序列辨 識編號4所示之序列;及 (c) 分析該增幅放大之片段長度。 待測菌體染色體DNA之萃取、聚合酶連鎖反應以及聚合 100247.doc 10 1303664 每連鎖反應產物之分讲,在益山 、 析係糟由熟習該項技術者所熟知之 ^法而達成,較佳的待測菌屬_色體DNA萃取方法、聚合 酶連鎖反應及其產物分析方法說明於以下的實例中。 於本發明之一較佳具體實施例中,步驟(b)中聚合酶連鎖 反應之於循環前之第-階段變性溫度為自龜靖;其 反應時間為自1分鐘至i 〇分鐘·1303664 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a primer for rapidly identifying the genus Gordenia. In particular, the present invention relates to a method for rapidly identifying the genus Gordenia by a polymerase chain reaction (PCR). [Prior Art] Gord's bacteria spp·) is a kind of radiobacteria, which belongs to the Gordcmz'aceae family and suborders. It currently contains 21 species. Its cell wall contains mycolic acid as one of the main characteristics, which can be Separation and screening in activated sludge, sewage treatment tanks, biological filter beds, industrial wastewater, steam locomotive tires or contaminated soil. Many studies have demonstrated that Gordonia has the ability to degrade aromatics (the main substance of oil stains) and can be used to develop bioremediation techniques for treating environmental oils. It is known that the degradation and metabolism characteristics of Gordonella include the removal of sulfur in the sulfur-containing compounds benzothiophene and dibenzothiophene, 3-ethylpyridine, 3- Biodegradation of 3-methylpyridine, metabolism of butyl benzyl phthalate, ether compounds such as ethyl tertiary-butyl ether (ETBE), Degradation of methyl tert-butyl ether (MTBE), tertiary-amyl methyl ether (TAME), rubber degradation and reduction of nitric acid, etc. As a carbon source for the Gordon's strain. The identification and classification of traditional bacteria mainly depend on the physiological characteristics of the strains and the difference in phenotypic characteristics such as the biochemical generation 100247.doc 1303664. The bacteria are classified into different types, including colony type, color traits, enzyme activity, carbon source utilization and serum. Immune methods such as reaction 'however, it often takes a lot of time and cost in traditional classification methods'. In the study of environmental microorganisms such as Gordonia, the classification of strains is often not known accurately due to the diversity of strains. It can be mixed by a variety of analytical methods. For example, the use of physiological characteristics (such as the characteristics of mycotic acid shared by actinomycetes) can be applied to the identification of Gordonia, and the cell wall composition of Gordonella can be distinguished by gas chromatography to distinguish it from other actinomycetes, but microorganisms. The composition of the cells is easily mutated due to changes in the culture environment, so there are still many limitations in the measurement. The development of molecular identification technology has provided a more efficient and accurate bacterial detection technology, which has become an important auxiliary tool in clinical bacterial diagnosis. Actinomycetes are also classified in the bacterial world, so the classification method is similar to that of bacteria. Many scholars have tried to use genotyping methods to identify actinomycetes' such as restriction fragment length polymorphism analysis (Restricti〇n Bu called coffee to Length) Polymorphism (RFLP), Random Amplified P〇lymorphism DNA (RApD) and BOX-PCR, REP-PCR and other analytical techniques. It is currently known as a molecular marker for bacterial identification such as the 16S rRNA gene, the 23S rRNA gene, and the DNA region between the 16S and 23 S rRNA genes (Integenic spacer, ITS). The sensitivity and specificity of the genotype analysis method are better than the traditional physiological and biochemical characteristics, which play an important role in the rapid identification of bacteria. However, there is still no suitable method for the identification and detection of Gordonia. In view of the increasing demand for environmental rehabilitation in recent years, there is a need to develop a rapid and correct method for the identification of the organism, in order to screen for biological re-cultivation of microorganisms. SUMMARY OF THE INVENTION [0001] It is an object of the present invention to provide a primer pair for identifying the genus Gordenia which is selected from the following primer pairs and their variants: (〇 forward primer G268F, a sequence having a sequence identification number 丨, and a reverse primer G1096R having a sequence as shown in sequence identification number 2; and (u) a forward primer G699F having a sequence as shown in sequence identification number 3. J and a reverse primer G1134R having a sequence as shown in SEQ ID NO: 4. Another object of the present invention is to provide a kit for identifying the genus Gordonia which comprises the above-described primer pair. The object is to provide a method for identifying the genus Gordenia comprising the steps of: (a) providing chromosomal DNA of the cell to be tested; (b) performing a polymerization enzyme chain reaction using a primer pair selected from the following a pair of primers and their variants (i) a forward primer G268F having a sequence as shown in sequence identification number ,, and a reverse primer G1096R having a sequence as shown in sequence identification number 2; Ii) positive The primer G699F has a sequence as shown in sequence identification number 3, and a reverse primer G1134R having a sequence as shown in sequence number 100247.doc 1303664; and (c) analyzing the length of the amplified amplified fragment. DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the identification of the genus Gordenella, the design of a specific nucleotide primer pair, which can be used to identify the 16S rRNA gene fragment of Gordonella in a polymerase chain reaction to identify Gordonia. And effectively screening the target microorganisms from the environment to develop microbial resources in the environment. The present invention relates to a primer pair for identifying the genus Gordenia, which is selected from the following primer pairs and their variants: (i a forward primer G268F having a sequence ' and a reverse primer G1096R' as shown in sequence identification number i having a sequence as shown in sequence identification number 2; and (11) a forward primer G699F having sequence identification The sequence shown in Figure 3 and the reverse primer G1134R have the sequence as shown in Sequence Identification Number 4. The polymerase chain reaction usually involves three steps: (1) denaturation of a template. (2) bonding the two primers to the two strands of step (1); (3) extending the primers with DNA polymerase to obtain the DNA of the two double strands. Repeating the above steps, A specific DNA fragment can be amplified. Generally, in order to fully carry out the reaction, a first-stage denaturation step is usually performed in the cyclic reaction. The term "variant" is used herein. Refers to a primer that can replace a single primer in the primer pair of the present invention and can still amplify the same specific fragment sequence together with another primer in the primer pair. Due to the nature of the polymerase chain reaction itself, the primer 100247.doc 1303664 and the template to be enlarged Even if there is variability in the sequence, it can be synthesized by adjusting the reaction temperature of the bonding step in the polymerase chain reaction (10) into the tablet and δ, which means that the similarity with the primer sequence according to the present invention is higher than 75%. . For example, if the sequence variability between the primer and the template to be enlarged is larger, the reaction temperature of the bonding step is lower; in other words, if the sequence variability between the primer and the template to be enlarged is smaller, the adhesion can be improved. The reaction temperature of the step. Therefore, according to the disclosure of the present invention, a person having general knowledge in the specific field can design different primers according to the DNA fragment to be amplified, and any subject replacement, addition or reduction for the hair (4) can still be reduced. The introduction of the primers of the present invention is the scope of the invention to be protected. The present invention further provides a method for identifying a genus Gordenella, comprising the steps of: (a) providing a chromosome dna of the cell to be tested; (b) performing a polymerization enzyme chain reaction using a primer pair selected from the group consisting of The following primer pairs and their variants: (I) a forward primer G268F having a sequence as shown in SEQ ID NO: 1, and a reverse primer G1096R having a sequence as shown in SEQ ID NO: 2; II) Forward primer 〇69917 having a sequence as shown in SEQ ID NO: 3, and a reverse primer G1134R having a sequence as shown in SEQ ID NO: 4; and (c) analyzing the length of the amplified amplified fragment. The extraction of the chromosomal DNA of the cells to be tested, the polymerase chain reaction and the polymerization 100247.doc 10 1303664 The inter-segment of each chain reaction product is achieved in Yishan and the analysing system, which is well known to those skilled in the art. The genus to be tested _chromosome DNA extraction method, polymerase chain reaction and product analysis method are illustrated in the following examples. In a preferred embodiment of the present invention, the polymerase chain reaction in step (b) is from the first stage of the denaturation temperature before the cycle; the reaction time is from 1 minute to i 〇 minutes.

。 王…刀逢里,循裱中之黏合溫度為自6(TC 至72 C ’更佳為72〇C,於此 >、田疮τ 甘 於此度下,聚合酶連鎖反應之黏 合反應與延伸反應可一併進杆· 、 1汁退仃,黏合時間為大於30秒;較 佳為自3 0秒至3分鐘;循擇φ + 、 俯衣中之延伸溫度為自70。(:至75t ; 較佳為72°C ;循環數為自5至5〇。 於本發明之一更佳且體會始a丨丄 ^ ^ /、爲苑例中,步驟(b)中聚合酶連鎖 反應之條件包含: 第一階段起始變性溫度94t歷時5分鐘; 3 〇循環數之第二階段變性 交性/皿度94 C歷時1分鐘與黏合溫 度72t歷時3分鐘,·及 4 口狐 延伸溫度歷時7分鐘。 較佳地,步驟(c)包括以瓊 昊乃曰醣竑膠電冰分析經增幅放 之片段長度;其中如步驟(b)中 a放大 中分析之片段長度為829 b () 、以待測函鑑定為戈登氏菌 屬,另一方面,如步驟(”中 更用(11)引子對,且步驟( 分析之片段長度為430 bp,佐、ΒΪ „ J甲 mm n P ^相菌鑑定為戈登氏菌屬。 於本叙明所例不之實例中 成15式十六株戈登氏菌屬内之 滅株(共九種)及類緣㈣相近之其他菌屬共 十一種),經聚合酶連鎖反應拎裙您、备 一囷株(共 …曰殖後以瓊脂醣凝膠電泳分析 100247.doc 1303664 DNA片段大小,可知利用根據本發明之專一性引子之鐘定 方法可準確鑑定戈登氏菌,所有測試的非戈登氏菌皆呈陰 性反應,顯示根據本發明之方法之靈敏度高且具鑑別之特 異性,可快速鑑別此類菌屬,優於傳統生理生化測試之不 確定性。故根據本發明之引子可用以偵測環境中戈登氏菌 之夕樣,且有助於環境中戈登氏菌之篩選,開發微生物 資源篩k所得之戈登氏菌株亦可應用於污染物之生物復 育,並可於環境中有效監控菌種之族群變動。 本發明另提供一種鑑定戈登氏菌屬之套組,其包含上述 之引子對。 在本發明之較佳具體實施例中,本發明之套組更包括萃 取待測菌體染色體DNA所需之試劑。 在本發明之較佳具體實施例中,本發明之套組更包括進 仃電泳分析所需要之試劑,包括但不限於不連續瓊脂醣凝 膠電泳所需要之試劑。 在本發明之較佳具體實施例中,本發明之套組更包括進 行聚合酶連鎖反應所需要的試劑。 茲以下列實例予以詳細說明本發明,唯並不意味本發明 僅侷限於此等實例所揭示之内容。 【實施方式】 實例一·戈登氏菌屬專一性偵測引子之設計. Wang...The knives in the knives, the bonding temperature in the 裱 为 is from 6 (TC to 72 C ' is better 72 〇 C, in this >, the sore τ is the degree, the adhesion reaction and extension of the polymerase chain reaction The reaction can be carried into the rod, and the juice is removed. The bonding time is more than 30 seconds; preferably from 30 seconds to 3 minutes; the extension temperature in the selection φ + and the clothes is from 70. (: to 75t; Preferably, it is 72 ° C; the number of cycles is from 5 to 5 〇. In one of the inventions, the condition of the polymerase chain reaction in step (b) is included in the case of the invention. : The first stage of initial denaturation temperature 94t lasted 5 minutes; 3 The second stage of deuteration cycle number denaturation / dish degree 94 C for 1 minute and bonding temperature 72t for 3 minutes, and 4 fox extension temperature for 7 minutes Preferably, step (c) comprises analyzing the length of the amplified fragment by electrophoresis on a guar-pyrene gel; wherein the length of the fragment analyzed in a magnification in step (b) is 829 b (), The test letter was identified as Gordonella, on the other hand, as in step (", the (11) primer pair was used, and the step (the fragment length of the analysis was 430). Bp, 佐, ΒΪ „ J Amm n P ^ phase bacteria was identified as the genus Gordonia. In the examples described in this narration, the 16 strains of the 16 strains of the genus Gordenella (a total of nine Species) and the genus (4) are similar to other fungi belonging to 11 species). After polymerase chain reaction, you can prepare a strain of sputum. After co-culture, agarose gel electrophoresis analysis 100247.doc 1303664 DNA fragment size It can be seen that the Gordonella can be accurately identified by the method of the specific primer according to the present invention, and all tested non-Gardenia are negative, showing high sensitivity and specificity of identification according to the method of the present invention. It can quickly identify such genus, which is superior to the uncertainty of traditional physiological and biochemical tests. Therefore, the primer according to the present invention can be used to detect the environment of Gordonella in the environment and contribute to the environment of Gordonella. The screening and development of the microbial resource sieve k of the Gordon strain can also be applied to the biological re-conservation of pollutants, and can effectively monitor the ethnic variation of the strain in the environment. The invention further provides a method for identifying the genus Gordenella. a set containing the above-mentioned pair of primers In a preferred embodiment of the present invention, the kit of the present invention further comprises reagents required for extracting the chromosomal DNA of the cells to be tested. In a preferred embodiment of the present invention, the kit of the present invention further comprises Reagents required for electrophoretic analysis include, but are not limited to, reagents required for discontinuous agarose gel electrophoresis. In a preferred embodiment of the invention, the kit of the invention further comprises reagents required for performing a polymerase chain reaction. The present invention will be described in detail by the following examples, which are not intended to be construed as being limited to the disclosure of the examples. [Embodiment] Example 1 Design of Gordonella specific detection primer

以16SrDNA序列中變異性較高之區域作為引子設計之位 置。首先從美國國家生物資訊中心基因資料庫(ncbi GenBank)中搜尋戈登氏菌與其相似之放線菌株16S rDNA 100247.doc 1303664 序列,利用CLUSTAL X程式進行16S rDNA多序列比對分 析,選擇在戈登氏菌種中保留性較高、序列較相近但不同 於其他放線菌序列的基因位置設計大小約為2〇個核苷酸的 引子,發現於核苷酸位置291-3 09、1100-1119、722-741及 1140-1157四個區域為戈登氏菌屬之高度保留序列區。圖一 為戈登氏菌屬專一性引子設計位置示意圖。引子之設計包 括考慮其熔合溫度、二級結構、長度、G+c百分比、是否 會自行黏合之因素後以Primer®3軟體預測引子序列,所得 之引子序列即為所對應保留區序列之互補序列:G268F(序 列辨識編號1)為19個核苷酸之正向引子(5· CGA CCT GAG AGG GTG ATC G 31)、G1096R(序列辨識編號2)為20個核苷 酸之反向引子(5’ ATA ACC CGC TGG CAA TAC AG 31),此 引子之組合經聚合酶連鎖反應約可產生大小為829鹼基對 之產物;G699F(序列辨識編號3)為20個核苷酸之正向引子 (5, AGG CGG GTC TCT GGG TAG TA 3’)、G1134R(序列辨 識編號4)為18個核苷酸之反向引子(5, CGG CAG TCT CCT GCA AGT 3f),此組合之聚合酶連鎖反應產物大小約為436 驗基對。 實例二:戈登氏菌屬專一性偵測條件最適化 本實例所使用之參考菌株 參考菌株主要購自德國菌種中心(DSMZ)、台灣生物資源 保存及研究中心(BCRC),部分來自成功大學醫學檢驗生物 技術學系張長泉教授研究室,共測試戈登氏菌標準菌株10 株、戈登氏菌非標準菌株6株,其他放線菌種標準菌株9株, 100247.doc -13 - 1303664 非標準菌株13株(見下表1),戈登氏菌株以胰蛋白大豆培養 基(tryptic soy broth)培養於28至30 °C生長箱中。 染色體DNA萃取 將菌株接種至胰蛋白大豆培養基中培養於28至30°C,經 24小時後利用MO BI0®公司所提供之細菌染色體DNA分離 套組(UltraClean Microbial Genomic DNA Isolation Kits, MO BIO, USA)萃取。 兩組專一性引子之靈敏度試驗 本研究共測試16株戈登氏菌株,其中包括10株標準菌 株,以調整專一性引子之黏合溫度控制增殖反應之進行, 取戈登氏菌之染色體DNA作為模板進行聚合酶連鎖反應, 其結果示於下表1,發現在66°C黏合溫度時引子G268F/ G1096R可準確增殖一大小為829鹼基對之基因片段, G699F/G1134R亦成功增殖專一性之43 6鹼基對片段,隨著 黏合溫度的提高以增加反應條件之嚴苛度,於72 ° C黏合溫 度下戈登氏菌標準菌株仍然產生專一性之戈登氏菌片段, 然而兩株菌DSM 777與ATCC 21930則無法產生此一片段 (請參圖2與圖3),為確定此二菌株是否為戈登氏菌,以16S rRNA作為目標基因進行定序反應以鑑別菌種,經序列比對 後發現〇8]^ 777較接近馬紅球菌(7?/26^6^<9〔(:1«叫1//)(相似 度為100%)、ATCC 21930則較接近嗜吡啶紅球菌 (相似度為 99.9%)與紫紅紅球 菌⑽(相似度為99.7%),由研究結果可 知除上述兩株分類地位不確定之戈登氏菌株(非標準菌株) 100247.doc -14· 1303664 外,其餘測試之戈登氏菌皆可產生穩定明顯之專一性片 段,顯示此二組引子具極佳之靈敏度,可應用於偵測戈登 氏菌屬内之菌種。 兩組專一性引子之特異性試驗 以G268F/G1096R引子組合進行PCR後發現當黏合溫度為 66°C時,所有戈登氏菌株皆產生一大小為829鹼基對之片 段,然而在其他親緣關係極為相近之放線菌中有些亦產生 大小相同之片段(如下表1),如棒桿菌、 分歧桿菌(Mycokcier/wm)、紅球菌與史克曼 菌屬。以G699F/G1134R引子組合所得之聚合酶 連鎖反應產物亦同時存在於戈登氏菌與其他放線菌中,顯 示在此類放線菌中之16S rDNA序列具保留性,然而若將黏 合溫度提高至72°C時,無論以G268F/G1096R或G699F/ G1134R引子組合所測試之22株非戈登氏菌皆無法產生戈 登氏菌株之專一性片段(請參圖2與圖3),證明本研究所設計 之募核苷酸引子配合此聚合酶連鎖反應條件可明顯鑑別戈 登氏菌屬之菌株,此一利用聚合酶連鎖反應技術配合電泳 分析之方法經多次重複均獲得極佳之再現性,提供一快速 判定戈登氏菌屬之方法。 100247.doc 15 1303664The region with higher variability in the 16SrDNA sequence was used as the primer design position. Firstly, search for the 16S rDNA 100247.doc 1303664 sequence of Gordonella and its similar actinomycete from the National Bioinformatics Center gene database (ncbi GenBank), and use the CLUSTAL X program for 16S rDNA multiple sequence alignment analysis. In the species with higher retention and similar sequence but different from other actinomycetes, the primers with a design size of about 2 nucleotides are found at nucleotide positions 291-3 09, 1100-1119, The four regions 722-741 and 1140-1157 are highly retained sequence regions of the genus Gordenia. Figure 1 is a schematic diagram of the design position of Gordon's specificity primer. The design of the primer includes considering the fusion temperature, secondary structure, length, G+c percentage, whether it will self-adhesive, and then predicting the primer sequence with Primer®3 software. The resulting primer sequence is the complementary sequence of the corresponding reserved region sequence. :G268F (SEQ ID NO: 1) is a 19-nucleotide forward primer (5·CGA CCT GAG AGG GTG ATC G 31), and G1096R (SEQ ID NO: 2) is a 20-nucleotide reverse primer (5) 'ATA ACC CGC TGG CAA TAC AG 31), the combination of this primer can produce a product of 829 base pairs by polymerase chain reaction; G699F (SEQ ID NO: 3) is a forward primer of 20 nucleotides ( 5, AGG CGG GTC TCT GGG TAG TA 3'), G1134R (SEQ ID NO: 4) is a 18-nucleotide reverse primer (5, CGG CAG TCT CCT GCA AGT 3f), the polymerase chain reaction product of this combination The size is approximately 436. Example 2: Gordonella specific detection conditions optimization The reference strain reference strain used in this example was mainly purchased from the German Strain Center (DSMZ), the Taiwan Bioresource Conservation and Research Center (BCRC), and some from the successful university. Professor Zhang Changquan, Department of Medical Laboratory Biotechnology, has tested 10 standard strains of Gordonia, 6 non-standard strains of Gordonia, and 9 strains of other actinomycetes, 100247.doc -13 - 1303664 13 strains of standard strain (see Table 1 below), Gordon's strains were cultured in tryptic soy broth in a growth chamber at 28 to 30 °C. Chromosomal DNA extraction The strain was inoculated into tryptic soy medium and cultured at 28 to 30 ° C. After 24 hours, the bacterial chromosomal DNA isolation kit provided by MO BI0® was used (UltraClean Microbial Genomic DNA Isolation Kits, MO BIO, USA) )extraction. Sensitivity test of two sets of specific primers In this study, 16 strains of Gordon's strains were tested, including 10 standard strains, to adjust the adhesion temperature of specific primers to control the proliferation reaction, and the chromosomal DNA of Gordonella was used as a template. The polymerase chain reaction was carried out, and the results are shown in Table 1 below. It was found that the primer G268F/G1096R can accurately proliferate a gene fragment of 829 base pairs at a binding temperature of 66 ° C, and G699F/G1134R also successfully proliferated. The 6 base pair fragment, with the increase of the bonding temperature to increase the reaction conditions, the standard strain of Gordonia still produces a specific Gordonella fragment at 72 ° C bonding temperature, however, the two strains of DSM 777 and ATCC 21930 could not produce this fragment (see Figure 2 and Figure 3). To determine whether the two strains are Gordenella, 16S rRNA was used as the target gene for sequencing reaction to identify the strains. Later, it was found that 〇8]^ 777 is closer to Rhodococcus erythropolis (7?/26^6^<9[(:1«called 1//) (similarity is 100%), and ATCC 21930 is closer to pyridine red Cocci (similarity 99.9%) and Rhodococcus rhodochrous (10) ( The degree of similarity is 99.7%. From the results of the study, it can be seen that except for the above two Gordon strains (non-standard strains) with undetermined taxonomic status, 100247.doc -14·1303664, the other tested Gordonella can produce stable and obvious. The specific fragment shows that the two sets of primers have excellent sensitivity and can be used to detect the species in the genus Gordonia. The specificity test of the two groups of specific primers was carried out by PCR after the G268F/G1096R primer combination. When the binding temperature was 66 °C, all Gordon's strains produced a fragment of 829 bp, but some of the other closely related actinomycetes also produced fragments of the same size (see Table 1 below). Such as Corynebacterium, Mycokcier/wm, Rhodococcus and Skemannella. The polymerase chain reaction product obtained by the combination of G699F/G1134R primer is also present in Gordonia and other actinomycetes. The 16S rDNA sequence in this actinomycete is retentive. However, if the adhesion temperature is raised to 72 °C, 22 non-Gardenella strains tested by G268F/G1096R or G699F/G1134R primer combination cannot. The specific fragment of the genus Gordon's strain (see Figure 2 and Figure 3) proves that the nucleotide primers designed in this study can be used to identify the strains of the genus Gordenia. The use of polymerase chain reaction technology combined with electrophoretic analysis has achieved excellent reproducibility through repeated iterations, providing a method for rapid determination of the genus Gordenia. 100247.doc 15 1303664

表1 :本實例測試之參考菌株及聚合酶連鎖反應增殖結果 菌屬及菌株名 G268F/G1096R G699F/G1134R 66 °C 72 °C 66 °C 72 °C 戈登氏菌屬 烧源戈登氏菌(G a/A^m_wnms*)DSM 44369τ 1 烧源戈登氏菌(G a/A:am'wnmy) DSM 44187 1 厭氧戈登氏菌(G amar沉)DSM43392T 1 和善戈登氏菌(G 44461τ 1 支氣管戈登氏菌(G 6rcwc/^/zX)DSM43247T 1 脫硫戈登氏菌(G办似仿#7i(my)DSM 44462τ 1 光亮戈登氏菌(G mYzWa)DSM 44499τ 1 光亮戈登氏菌(G m%fo)DSM777 (1) 光亮戈登氏菌(G mY谈〇CC-JG39 1 紅樣戈登氏菌(G rw6n)7eriz>?cft^)DSM 43197τ 1 紅樣戈登氏菌(G 力^)DSM 43248 1 紅樣戈登氏菌(G 如c/zOJCM 3199 1 紅樣戈登氏菌(G rw&nj^r/z>?e/to)ATCC 21930 0 喷射戈登氏菌(G哕以/)DSM 43896τ 1 臺式戈登氏菌(G rem^)DSM 43249τ 1 韋斯法里戈登氏菌(G wrf/Wca)DSM44215T 1 其他菌屬 牛棒狀桿菌6(mX)DSM 20582τ (1) 穀胺酸棒狀桿菌(C g/wtomhm)DSM 20300τ (1) 穀胺酸棒狀桿菌(C. g/z^am/cww)ATCC 21179 (1) 結核桿菌(均^^erew/os^ATCC 25177 (1) 肉色奴卡氏菌car«ea)DSM 43397τ (1) 馬紅球菌(i?· ew〇DSM 20307τ (1) 紅城紅球菌(i?. er声/2rajw/zX)DSM 43188τ (1) 紅城紅球菌(7?. ay/7wO/^to)CC-BC01 (1) 紅城紅球菌(i?. er>T72rajwto)CC-BC04 (1) 紅城紅球菌(i?. 的CC-BC08 0 紅城紅球菌(i?. e/^/Tzrc^/^CC-BCOQ 0 紅城紅球菌(兄认rajw/的CC-BC11 0 紅城紅球菌(7?. 的CC-BC17 0 紅城紅球菌(i?. 的CC-BC20 0 紅城紅球菌(i?. erj^/z/Opo/^CC-BC]〗 0 红城紅球菌(R, erythropoIis)CC-BC25 0 紅帶紅球菌(7?· 43241τ (1) 赤紅球菌(i?. rw6〇CC-N4 (1) 赤紅球菌(兄n/&r)CC-7-2 (1) 松果狀史克曼菌(iSfermamb芦'mybrm^DSM (1) 43998τ 稱變卓卡密菌騰tah/a)DSM 0 20162τ 幕瑞威廉菌(奶//ζ·α·ζ·α mwra/e)DSM Φ4343τ 0 11 il 11 11 11 1X 11 PMU 11 11 11 il 11 11 11 11 11 11 11 il 11 11 11 11 11 11 ΊΧ 11 11 /i\ 11 11 11 Ίχ /(\ 11 11 11 11 11 11 11 1x 11 o o 11 11 11 11 A·^ 11 o o 100247.doc -16- 1303664 實例三:環境樣品中戈登氏菌分離株之鑑定 為測試本發明所設計之兩組募核苷酸引子與聚合酶連鎖 反應之條件是否可鑑別環境中戈登氏菌,聚合酶連鎖反應 所使用之DNA模板為各菌株之染色體DNA。將0.2 mM之 dNTP、20 pmol正向及反向引子、2U DNA聚合酶、聚合酶 缓衝液及1 μι染色體DNA混合於25 μί之溶液中,反應條件 為起始變性94°C五分鐘,94°C 一分鐘、72°C三分鐘、共30 循環及延伸反應72t:七分鐘。以1%瓊脂醣凝膠電泳分析聚 合轉連鎖反應增殖後之產物大小。利用專一性引子組合 G268F/G1096R所增殖之DNA片段為829鹼基對,以 G699F/G1134所增殖之DNA片段為436鹼基對。自台灣中部 山區不同地點篩選分離菌落型態為橘色、橘紅色、表面粗 糙、光滑、平坦或不規則邊緣之菌株共二十三株,經G268F/ G1096R與G699F/G1134R引子測試後發現其中十三株分離 株(CC-S2a、CC-S2b、CC-S2c、CC-S2d、CC-S5a、CC-S5b、 CC-S5d、CC-S5-卜 CC-S5-2、CC-S5-3、CC-S5-7、CC-S5-8、 CC-JiJMO)均可於兩組引子測試中產生戈登氏菌專一性 DNA片段(請見下表2)。以BOX-PCR DNA指紋圖譜分析後 可將十三株菌根據基因型區分為九類(請參圖4),其中 CC-S2b、CC-S2c、CC-S2d判定為同一菌株,CC-S5b、 CC-S5d、CC-S5-3 亦為同一菌株。 以16S rDNA序列分析菌種類緣關係Table 1: Reference strain tested by this example and polymerase chain reaction proliferation results. Genus and strain name G268F/G1096R G699F/G1134R 66 °C 72 °C 66 °C 72 °C Gordonella burned by Gordonella (G a/A^m_wnms*) DSM 44369τ 1 Burned-out Gordonella (G a/A: am'wnmy) DSM 44187 1 Anaerobic Gordon (G amar sink) DSM43392T 1 and Good Gold's ( G 44461τ 1 Phytophthora bronchii (G 6rcwc/^/zX) DSM43247T 1 Desulforative Gordonella (G-like imitation #7i(my)DSM 44462τ 1 G. glabrata (G mYzWa) DSM 44499τ 1 Bright Gordonella (G m%fo) DSM777 (1) G. glabrata (G mY 〇 CC-JG39 1 Red-type Gordonia (G rw6n) 7eriz>? cft^) DSM 43197τ 1 Red-like Dengue (G force ^) DSM 43248 1 Red-like Gordonia (G such as c/zOJCM 3199 1 Red-type Gordonia (G rw &nj^r/z>?e/to) ATCC 21930 0 Jet Gordonia (G哕 / /) DSM 43896τ 1 Desktop Gordonella (G rem^) DSM 43249τ 1 Wesfarid Gordon (G wrf / Wca) DSM44215T 1 Other bacteria Corynebacterium bovis 6(mX)DSM 20582τ (1) Corynebacterium glutamicum (C g/wtomhm) DSM 20300τ (1) Corynebacterium glutamicum (C. g/z^am/cww) ATCC 21179 (1) Mycobacterium tuberculosis (both ^^erew/os^ATCC 25177 (1) Carrion sinensis car«ea) DSM 43397τ (1) Rhodococcus equine (i?· ew〇DSM 20307τ (1) Red City Red Cocci (i?. er sound/2rajw/zX) DSM 43188τ (1) Rhodococcus erythropolis (7?. ay/7wO/^to) CC-BC01 (1) Rhodococcus rhodochrous (i?. er>T72rajwto) CC-BC04 (1) Rhodococcus erythropolis (i?. CC-BC08 0 Rhodococcus erythropolis (i?. e/^/Tzrc^/^CC-BCOQ 0 Red City Rhodococcus (brother recognized rajw/CC) -BC11 0 Rhodococcus erythropolis (7?. CC-BC17 0 Rhodococcus erythropolis (i?. CC-BC20 0 Rhodococcus erythropolis (i?. erj^/z/Opo/^CC-BC] 0 Rhodococcus rhodochrous (R, erythropoIis) CC-BC25 0 Rhodococcus rhodochrous (7?· 43241τ (1) Rhodococcus (i?. rw6〇CC-N4 (1) Rhodococcus (brother n/&r) CC-7-2 (1) Pineapple-like Skemannella (iSfermamb reed 'mybrm^DSM (1) 43998τ called 卓 卓 密 t tah/a) DSM 0 20162τ 幕瑞威廉菌(奶//ζ· α·ζ·α mwra/e)DSM Φ4343τ 0 11 il 11 11 11 1X 11 PMU 11 11 11 il 11 11 11 11 11 11 11 il 11 11 11 11 11 11 ΊΧ 11 11 /i\ 11 11 11 Ίχ /( \ 11 11 11 11 11 11 11 1x 11 oo 11 11 11 11 A·^ 11 oo 100247.doc -16- 1303664 Example : Identification of Gordonella isolates in environmental samples to test whether the conditions for the linkage reaction between the two sets of nucleotide primers designed by the present invention and the polymerase can identify the environment of Gordonella, which is used in the polymerase chain reaction. The DNA template is the chromosomal DNA of each strain. Mix 0.2 mM dNTP, 20 pmol forward and reverse primer, 2U DNA polymerase, polymerase buffer and 1 μ chromosome DNA in 25 μL solution under the initial denaturation of 94 ° C for five minutes, 94 °C one minute, 72 ° C three minutes, a total of 30 cycles and extended reaction 72t: seven minutes. The size of the product after propagation by the polymerization-transition reaction was analyzed by 1% agarose gel electrophoresis. The DNA fragment proliferated by G268F/G1096R was 829 base pairs using a specific primer, and the DNA fragment proliferated by G699F/G1134 was 436 base pairs. Twenty-three strains of strains with orange, orange-red, rough surface, smooth, flat or irregular edges were screened from different locations in the central mountainous area of central Taiwan. Ten of them were tested by G268F/G1096R and G699F/G1134R primers. Three isolates (CC-S2a, CC-S2b, CC-S2c, CC-S2d, CC-S5a, CC-S5b, CC-S5d, CC-S5-Bu CC-S5-2, CC-S5-3, CC-S5-7, CC-S5-8, CC-JiJMO) can produce Gordon's specific DNA fragments in both sets of primer tests (see Table 2 below). After BOX-PCR DNA fingerprinting analysis, thirteen strains can be divided into nine categories according to genotype (please refer to Figure 4), wherein CC-S2b, CC-S2c, CC-S2d are judged to be the same strain, CC-S5b, CC-S5d and CC-S5-3 are also the same strain. Analysis of bacterial species relationship by 16S rDNA sequence

利用細菌泛用性引子1F(序列辨識編號5)(5’ GAG TTT GAT CAT GGC TCA G 3’)與9R(序列辨識編號 6)(5’ AAG 100247.doc 1303664 GAG GTG ATC CAA CCG CA 3’)增殖細菌 16S rDNA片段, 將0.2 mM之dNTP、20 pmol正向及反向引子、2U DNA聚合 酶、聚合酶緩衝液及1 μΐ^染色體DNA混合於25 pL之溶液 中,反應條件為起始變性94°C五分鐘,94°C 一分鐘、45°C — 分三十秒、72°C二分鐘、共35循環及延伸反應72°C七分鐘。 利用螢光終止循環反應進行16S rDNA之定序,再以自動 DNA定序儀(ABI® PRISM 310,PE Applied Biosystems, CA,USA)判讀定序結果。利用MEGA2分子演化遺傳分析 程式進行菌種親緣關係分析並繪製種系發生樹狀圖,其結 果示於圖5。Use bacterial universal primer 1F (SEQ ID NO: 5) (5' GAG TTT GAT CAT GGC TCA G 3') and 9R (SEQ ID NO: 6) (5' AAG 100247.doc 1303664 GAG GTG ATC CAA CCG CA 3' Proliferating bacterial 16S rDNA fragment, mixing 0.2 mM dNTP, 20 pmol forward and reverse primer, 2U DNA polymerase, polymerase buffer and 1 μΐ chromosomal DNA in 25 pL solution, the reaction conditions are starting Denaturation at 94 ° C for five minutes, 94 ° C for one minute, 45 ° C - for thirty seconds, 72 ° C for two minutes, a total of 35 cycles and an extension reaction of 72 ° C for seven minutes. The sequence of 16S rDNA was sequenced using a fluorescent termination cycle reaction, and the sequencing results were interpreted using an automated DNA sequencer (ABI® PRISM 310, PE Applied Biosystems, CA, USA). The MEGA2 molecular evolution genetic analysis program was used to analyze the phylogenetic relationship and to map the phylogenetic tree. The results are shown in Fig. 5.

經16S rDNA序列分析發現上述九株菌皆為戈登氏菌(請 參圖5),依16S rDNA之相似度可將菌株歸類為和善戈登氏 菌(G· 、那米比亞戈登氏菌(G (CC-S5a)與臺式戈登氏菌(G. ierrw)(CC-S2a、CC_S2d、 CC-S5b、CC-S5-1、CC-S5-2、CC-S5-8、CC-JiJMO)三種。 自環境中篩選分離之戈登氏菌株亦可於此分析條件下得到 驗證,顯示此一鑑別戈登氏菌屬之寡核苷酸引子組合及聚 合酶連鎖反應條件不但可用於戈登氏菌標準菌株偵測,同 時亦可應用至環境中之戈登氏菌分離株。 100247.doc -18- 1303664According to the 16S rDNA sequence analysis, the above nine strains were all named Gordonella (please refer to Figure 5). According to the similarity of 16S rDNA, the strains can be classified as G. and Namibia Gordon. G (CC-S5a) and G. ierrw (CC-S2a, CC_S2d, CC-S5b, CC-S5-1, CC-S5-2, CC-S5-8, CC-JiJMO). The Gordant strains screened and isolated from the environment can also be verified under the conditions of this analysis, indicating that this combination of oligonucleotide primers and polymerase chain reaction conditions for the identification of Gordonella is not only available. It can be detected by the standard strain of Gordonia, and can also be applied to the environment of Gordonia isolate. 100247.doc -18- 1303664

^ 2 * f研九!減生菌株及聚合酶連鎖反應增殖結果 菌株 ^68F/gT〇96R G699F/G1134R _72 °C 72 °C CC-S2a CC-S2b CC-S2c CC-S2d CC-S2-2 CC-S2-5 CC-S5a CC-S5b CC-S5d CC-S5e CC-S5h CC-S5-1 CC-S5-2 CC-S5-3 CC-S5-6 CC-S5-7 CC-S5-8 CC-JiJi-7 CC-JiJi-8 CC-JiJi-10 CC-JiJi-11 S32a S32-1 11 11 1χ 11 ^ow Ίχ 11 11 1χ Ίχ 11 IX 1χ Λν Λν 11 11 11 11 Λυ 11 Ί1 11 11 11 11 11 IX 11 上述貫施例僅為說明本發明之原理及其功效,而非限制 本發明。習於此技術之人士對上述實施例所做之修改及變 化仍不違背本發明之精神。本發明之權利範圍應如後述之 申請專利範圍所列。 【圖式簡單說明】 圖1為戈登氏菌屬專一性引子設計位置示意圖。序列上方 之數字代表對應至大腸桿菌16S rRNA基因核苷酸位置。 圖2為利用G268F/G1096R專一性引子增殖戈登氏菌種特 異丨生片#又之電泳圖譜。Μ為1〇〇 bp DNA階梯標幟,數字1-38 戈表不同囷種· 1 ·烧源戈登氏菌(G. α/Α:㈣ 44369,2 :烷源戈登氏菌(G α/Α^ζ·讀)DSM 44187 ; 3 : I00247.doc •19- 1303664 厭氧戈登氏菌(G· 43392τ ; 4 :和善戈登氏菌(G·^ 2 * f research nine! Hypoplastic strain and polymerase chain reaction proliferation result strain ^68F/gT〇96R G699F/G1134R _72 °C 72 °C CC-S2a CC-S2b CC-S2c CC-S2d CC-S2-2 CC-S2-5 CC- S5a CC-S5b CC-S5d CC-S5e CC-S5h CC-S5-1 CC-S5-2 CC-S5-3 CC-S5-6 CC-S5-7 CC-S5-8 CC-JiJi-7 CC- JiJi-8 CC-JiJi-10 CC-JiJi-11 S32a S32-1 11 11 1χ 11 ^ow Ίχ 11 11 1χ Ίχ 11 IX 1χ Λν Λν 11 11 11 11 Λυ 11 Ί1 11 11 11 11 11 IX 11 The examples are merely illustrative of the principles of the invention and its effects, and are not intended to limit the invention. Modifications and variations of the embodiments described above will be apparent to those skilled in the art without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims. [Simple description of the diagram] Figure 1 is a schematic diagram of the design position of the Gordonella specific primer. The number above the sequence represents the nucleotide position corresponding to the E. coli 16S rRNA gene. Figure 2 shows the electrophoresis pattern of the Gordonella species specific polyglycoside using the G268F/G1096R specific primer. Μ is 1 〇〇 bp DNA ladder, number 1-38 戈 囷 different species · 1 · Burning Gordonella (G. α / Α: (4) 44369, 2: Alternate Gordonella (G α /Α^ζ·read)DSM 44187 ; 3 : I00247.doc •19- 1303664 Anaerobic Gordonella (G·43392τ ; 4 : and G. genus (G·

44461τ; 5:支氣管戈登氏菌(G 43247τ; 6 :脫硫戈登氏菌(G j⑽//謂·(:謝)DSM 44462τ; 7 ·· 光亮戈登氏菌(G· m7Wa)DSM 44499τ ; 8 :光亮戈登氏菌(G· m7z·心)DSM 777 ; 9 :光亮戈登氏菌(G. m·以如)CC-JG39 ; 10 : 紅樣戈登氏菌(G· 似)DSM 43 197T ; 11 :紅樣戈 登氏菌(G· 43248; 12:紅樣戈登氏菌44461τ; 5: bronchial Gordon's bacteria (G 43247τ; 6: desulforidation of Gordonia (G j (10) / / said · (: Xie) DSM 44462τ; 7 · · G. glabrata (G · m7Wa) DSM 44499τ 8 : G. glabrata (G· m7z·heart) DSM 777 ; 9 : G. glabrata (G. m·如如) CC-JG39 ; 10 : Red-like Gordonia (G·like) DSM 43 197T ; 11 : Red-like Gordonia (G·43248; 12: Red-like Gordonia)

(G. rubripertinctus)JCM 3199 ; 13 :紅樣戈登氏菌(G. rubripertinctus)ATCC 21930 ; 14 :噴射戈登氏菌(G· sputi)OSM 43896τ ; 15 :臺式戈登氏菌(G· krrw)DSM 43 249τ; 16 : # ^ ^ ^ ^ ^ g (G. westfalica)OSM 44215τ ; 17牛棒狀桿菌办以化,ζ’ι^δ(9νζ··$·)Β8Μ 20582τ; 18:穀 胺酸棒狀桿菌(C· g/wiamz_ewm)DSM 20300τ ; 19 :穀胺酸棒 狀桿菌(C· glutamicum)ATCC 21179 ; 20 :結核桿菌 iwZ^rew/c^z^ATCC 25177 ; 21 :肉色奴卡氏 菌43 397Γ ; 22 :馬紅球菌(i?.叫w/)DSM 20307τ ; 23 :紅城紅球菌(7?· ⑽他)DSM 43 1 88Τ ; 24 : 紅城紅球菌(兄eryi/zrapo/WCC-BCOl ; 25 :紅城紅球菌(兄 erythropolis)CC-BC04 ; 26 :紅城紅球菌(兄 erythropolis) CC-BC08 ; 27 :紅城紅球菌(兄 ^yArapo/z^s^CC-BCOQ ; 28 :紅 城紅球菌(凡 erj^i/zrcT^/z’OCC-BC 11 ; 29 :紅城紅球菌(i?· CC-BC17 ; 30 :紅城紅球菌(i?· erythropolis) CC-BC20 ; 31 :紅城紅球菌(兄 er少,/7Mpo/b)CC-BC22 ; 32 : 紅城紅球菌(i?· ; 33 :紅帶紅球菌(7?· 100247.doc -20- 1303664 r/zo如Mrow)DSM 43241τ ; 34 :赤紅球菌(i?· rMer)CC-N4 ; 35 :赤紅球菌(i?· rwZ?w)CC-7-2 ; 36 :松果狀史克曼菌 pz_mybrmb)DSM 43998τ ; 37 :務變卓卡密菌 (Tsukamurella paurometabola^DSM 20ί62τ I 3S ··幕瑞威蒹 菌mwra/e)DSM 44343τ 〇(G. rubripertinctus) JCM 3199; 13: G. rubripertinctus ATCC 21930; 14: G. sputi OSM 43896τ; 15: Desktop Gordonella (G· Krrw)DSM 43 249τ; 16 : # ^ ^ ^ ^ ^ g (G. westfalica) OSM 44215τ ; 17 Corynebacterium bacillus, ζ 'ι^δ(9νζ··$·)Β8Μ 20582τ; 18: Valley Corynebacterium aureus (C·g/wiamz_ewm) DSM 20300τ; 19: C. glutamicum ATCC 21179; 20: Mycobacterium tuberculosis iwZ^rew/c^z^ATCC 25177; 21: meat slave Cargill 43 397 Γ; 22: Rhodococcus equine (i?. called w/) DSM 20307τ; 23: Rhodococcus erythropolis (7?· (10) him) DSM 43 1 88Τ; 24: Rhodococcus rhodochrous (brother eryi/ Zrapo/WCC-BCOl; 25: Rhodococcus erythropolis (brother erythropolis) CC-BC04; 26: Rhodococcus erythropolis (brother erythropolis) CC-BC08; 27: Rhodococcus erythropolis (brother ^yArapo/z^s^CC -BCOQ ; 28 : Rhodococcus rhodochrous (where erj^i/zrcT^/z'OCC-BC 11 ; 29 : Rhodococcus rhodochrous (i?· CC-BC17; 30: Rhodococcus rhodochrous (i?· erythropolis) ) CC-BC20 ; 31 : Rhodococcus erythropolis (brother er less, /7Mpo/b) CC-BC22 ; 32 : Rhodococcus erythropolis i?· ; 33 : Rhodococcus erythropolis (7?· 100247.doc -20- 1303664 r/zo as Mrow) DSM 43241τ; 34: Rhodococcus (i?·rMer) CC-N4; 35: Rhodococcus (i ?·rwZ?w)CC-7-2; 36: pineal-like Skekeman's pz_mybrmb) DSM 43998τ; 37: Tsukamurella paurometabola^DSM 20ί62τ I 3S · · 瑞瑞蒹菌 mwra /e)DSM 44343τ 〇

圖3為利用G699F/G1134R專一性引子增殖戈登氏菌種特 異性片段之電泳圖譜。Μ為100 bp DNA階梯標幟,數字1-38 代表不同菌種:1 :烧源戈登氏菌(Gl 44369τ; 2:烧源戈登氏菌(G· 似)DSM44187; 3 : 厭氧戈登氏菌(G. amww)DSM 43392τ ; 4 :和善戈登氏菌(G· amz’ca/z’ODSM 44461τ ; 5:支氣管戈登氏菌(G.Figure 3 is an electropherogram showing the specificity of the Gordonella species specific strains using the G699F/G1134R specific primer. Μ is a 100 bp DNA ladder, and the number 1-38 represents different strains: 1: burned Gordonella (Gl 44369τ; 2: burned Gordonella (G·like) DSM44187; 3 : anaerobic G. amww DSM 43392τ ; 4 : G. amz'ca / z' ODSM 44461τ ; 5: Bronchial Gordon (G.

DSM 43247τ ; 6 :脫硫戈登氏菌(G· 似)DSM 44462τ ; 7 :光亮戈登氏菌(G· 44499τ ; 8 :光亮 戈登氏菌(G· wzWa)DSM 777 ; 9 :光亮戈登氏菌(G· /7ζ·ίζ·ί/β) CC-JG39 ; 10 ··紅樣戈登氏菌(G· 43197τ ; 11 :紅樣戈登氏菌(G. 43248 ; 12 :紅樣戈登氏菌(G. rwZ?rz>eriz-??ciz^)JCM 3 199 ; 13 :紅樣 戈登氏菌(G· rwZ>ri/7eri/^7ciz^)ATCC 21930; 14:喷射戈登氏 菌(G· mW/)DSM 43896τ ; 15 :臺式戈登氏菌(G· ierrae)DSM 43249τ; 16 :韋斯法里戈登氏菌(G·體,/a"ca)DSM 44215τ ; 17牛棒狀桿菌((7<9 7/?^(2(7化厂/1/772办6^))〇8]^ 20582丁;18:榖 胺酸棒狀桿菌(C. 20300τ ; 19 :穀胺酸棒 狀桿菌(C glutamicum)ATCC 21179 ; 20 :結核桿菌 iwZ^rcw/c^z^ATCC 25 177 ; 2 1 :肉色奴卡氏 100247.doc -21 - 1303664 菌(TV^ar山43397τ ; 22 :馬紅球菌(7?· 叫wj?)DSM 20307τ ; 23 :紅城紅球菌(i?· eryi/z〜户<9/z、)DSM 43 188τ ; 24 :紅城紅球菌(兄 er;;i/^q^/&)CC-BC01 ; 25 : 紅城紅球菌(7?. er少i/zrc^0/h)CC_BCO4 ; 26 :紅城紅球菌(7?. e^yi/zrc^c^/OCC-BCOS ; 27 :紅城紅球菌(几 erythropolis) CC-BC09 ; 28 :紅城紅球菌(i?· 以)CC-BC11 ; 29 : 紅城紅球菌(i?· ; 30:紅城紅球菌(i?·DSM 43247τ ; 6 : Desulforative Gordon (G·like) DSM 44462τ ; 7 : G. glabrata (G· 44499τ ; 8 : G. wzWa) DSM 777 ; 9 : Bright Dengue (G· /7ζ·ίζ·ί/β) CC-JG39; 10 ··Red-like Gordonia (G·43197τ; 11: Red-like Gordonia (G. 43248; 12: red-like) Gordonella (G. rwZ?rz>eriz-??ciz^) JCM 3 199 ; 13 : Red-like Gordonia (G·rwZ>ri/7eri/^7ciz^) ATCC 21930; 14: Jet Ge Dengue (G· mW/) DSM 43896τ ; 15 : G. ierrae DSM 43249τ; 16 : Wesfarid Gordon (G·body, /a"ca) DSM 44215τ 17 Corynebacterium bovis ((7 < 9 7 /? ^ (2 (7 chemical plant / 1772 office 6 ^)) 〇 8] ^ 20582 butyl; 18: Corynebacterium glutamicum (C. 20300τ; 19: C glutamicum ATCC 21179; 20: Mycobacterium tuberculosis iwZ^rcw/c^z^ATCC 25 177 ; 2 1 : Meat color Nocardi 100247.doc -21 - 1303664 bacteria (TV^ar Mountain 43397τ; 22: Rhodococcus equine (7?·called wj?) DSM 20307τ; 23: Rhodococcus rhodochrous (i?· eryi/z~ household<9/z,) DSM 43 188τ; 24: Red City Red Cocci (brother er;; i/^q ^/&)CC-BC01; 25: Rhodococcus erythropolis (7?. er less i/zrc^0/h) CC_BCO4; 26: Rhodococcus rhodochrous (7?. e^yi/zrc^c^/ OCC-BCOS ; 27 : Rhodococcus erythropolis (several erythropolis) CC-BC09 ; 28 : Rhodococcus erythropolis (i? · to) CC-BC11; 29: Rhodococcus erythropolis (i?· ; 30: Red City Red Cocci (i?·

eai/zropo/iOCC-BCSO ; 31 :紅城紅球菌(几 erythropolis) CC-BC22 ·,32 :紅城紅球菌(i?. ; 33 : 紅帶紅球菌(i?· r/zc^oc/zrowdDSM 43241T ; 34 :赤紅球菌(及· rwZ>er)CC-N4 ; 35 :赤紅球菌(/?· rwZ?er)CC-7-2 ; 36 :松果狀 史克曼菌(Skr所0⑴a p/”zybrmb)DSM 43998τ ; 37 :稍變卓 ^ ^ @1 {Tsukamurella paurometabola)OSM 20162τ ; 38 · ^ 瑞威廉菌mwra/e)DSM 44343τ οEai/zropo/iOCC-BCSO; 31: Rhodococcus erythropolis (several erythropolis) CC-BC22 ·, 32: Rhodococcus erythropolis (i?.; 33: Rhodococcus erythropolis (i?·r/zc^oc/ zrowdDSM 43241T ; 34 : Rhodococcus erythropolis (and · rwZ > er) CC-N4 ; 35 : Rhodococcus erythropolis (/?· rwZ?er) CC-7-2; 36: Pineal-shaped Skemannella (Skr 0(1)a p /"zybrmb"DSM 43998τ ; 37 : slightly changed ^ ^ @1 {Tsukamurella paurometabola) OSM 20162τ ; 38 · ^ S. wilfordii mwra / e) DSM 44343τ ο

圖4為戈登氏菌分離株經BOX-PCR增殖後之電泳圖譜。Μ 為100 bp DNA階梯標幟,數字1至13代表不同菌株:1: CC-S2a ; 2 : CC-S2b ; 3 : CC-S2c ; 4 : CC-S2d ; 5 : CC-S5a ; 6 : CC_S5b ; 7 : CC-S5d ; 8 : CC-S5-3 ; 9 : CC-S5-1 ; 10 : CC-S5-2 ; 11 : CC-S5-7 ; 12 : CC-S5-8 ; 13 : CC-JiJi-10。 圖5為以16S rDNA序列差異繪製之戈登氏菌種系發生樹 狀圖。 100247.doc -22-Figure 4 is an electropherogram of the Gordonella isolate after proliferation by BOX-PCR. Μ is a 100 bp DNA ladder, and numbers 1 to 13 represent different strains: 1: CC-S2a; 2: CC-S2b; 3: CC-S2c; 4: CC-S2d; 5: CC-S5a; 6: CC_S5b 7 : CC-S5d ; 8 : CC-S5-3 ; 9 : CC-S5-1 ; 10 : CC-S5-2 ; 11 : CC-S5-7 ; 12 : CC-S5-8 ; 13 : CC -JiJi-10. Figure 5 is a tree diagram of the germline generation of Gordon's bacteria, which is based on the 16S rDNA sequence difference. 100247.doc -22-

Claims (1)

•-1303祕116224_ 論衾本 中文申請專利範圍替換本年5 ,’#修(更)正本| ’、申請專利範圍: — ^ 一種鑑μ登氏㈣(―⑷之引子對,其係選自下列 引子對: W正向引子⑽叮,其具有如序列辨識編號!所示之序 ”反向引子G1096R ’其具有如序列辨識編號2 所示之序列;及 (11)正向引子06991?,其具有如序列辨識編號3所示之序 歹J與反向引子G1134R,其具有如序列辨識編號4 所示之序列。 •種鑑定戈登氏菌屬(Gw而mh)之方法,其包含下列步 (a) 提供待測菌體之染色體DNA ; (b) 使用一引子對進行聚合酶連鎖反應,該引子對係選自 下列引子對: (1)正向引子G268F,其具有如序列辨識編號1所示 之序列’與反向引子G1096R,其具有如序列辨 識編號2所示之序列;及 (!i)正向引子G699F,其具有如序列辨識編號3所示 之序列,與反向引子G1134R,其具有如序列辨 識編號4所示之序列; 其中聚合酶連鎖反應之黏合溫度為72。(:;及 13〇3$輪I6224料利申請案 中文申請專利範圍替換本^97年5月) (c)分析該增幅放大之片段長度。 3.如請求項2之方法,其中步驟⑻中聚合酶連鎖反應之黏合 時間為大於3 〇秒。 4·如請求項3之方法,其中步_中聚合酶連鎖反應之黏合 時間為自3 0秒至3分鐘。 5. 如請求項2之方法’其中步驟(b)中聚合酶連鎖反應之延伸 溫度為自70°C至75。〇。 6. 如請求項5之方法,其中步驟⑻中聚合酶連鎖反應之延伸 溫度為7 2 °C。 7. 如請求項2之方法’其中㈣(b)巾聚合酶連鎖反應之循環 數為自5至50。 8·如請求項2之方法,其巾步驟⑻巾聚合酶連鎖反應之條件 包含: 第一階段起始變性溫度94<t歷時5分鐘; 3〇循環數之第^段變性溫度9代歷時❸鐘與黏合溫度 72°C歷時3分鐘;及 X 延伸溫度歷時7分鐘。 9.如請求項2之方法’其中步驟⑷包括以竣脂醣凝膠電泳分 析經增幅放大之片段長度。 乃 i〇.如請求項2之方法,其中如步驟耐使用⑴引子對,且牛 驟咐分析之片段長度_9bp,㈣待測_定為戈二 13 03會6224號專利申請案 中文申請專利範圍替換本\97年5月) 氏菌屬。 U.如請求項2之方法’其中如步驟⑻中使用(U贈對,且 步驟⑷中分析之片段長度為436 bp,則該待測_ 登氏菌屬。 X 一種鑑定戈登氏菌屬(―⑷之套組,其由如請 之引子對及其所需要試劑所組成。 菌體染色 13. 如請求項12之套組’其中該試劑包含萃取待測 DNA所需要的試劑。 合酶連鎖反應 15.如請求項12之套組,其中該試 痛恭* X 進仃瓊脂醣凝膠電4 所需要之試劑。 ^电永 14. 如請求項12之套組’其中該試劑包含進行聚 所需要的試劑。 A•-1303秘116224_ On the Chinese patent application scope to replace this year 5, '#修(more) original | ', the scope of the patent application: — ^ A kind of primer (four) (- (4) the pair of primers, which is selected from The following pairs of primers: W forward primer (10), which has the sequence "redirect primer G1096R" as shown in sequence identification number!, which has a sequence as shown in sequence identification number 2; and (11) forward primer 06991? It has a sequence J and a reverse primer G1134R as shown in SEQ ID NO: 3, which has a sequence as shown in SEQ ID NO: 4. A method for identifying the genus Gordonella (Gw and mh), which includes the following Step (a) provides the chromosomal DNA of the cell to be tested; (b) performs a polymerase chain reaction using a primer pair selected from the following primer pairs: (1) a forward primer G268F having a sequence identification number a sequence 'and a reverse primer G1096R having a sequence as shown in sequence identification number 2; and (!i) a forward primer G699F having a sequence as shown in sequence identification number 3, and a reverse primer G1134R, which has the sequence identification number 4 The sequence; wherein the polymerase chain reaction has a bonding temperature of 72. (:; and 13〇3$ round I6224 material application application Chinese patent application scope is replaced by May 1997) (c) Analysis of the fragment length of the amplification. 3. The method of claim 2, wherein the binding time of the polymerase chain reaction in step (8) is greater than 3 〇 seconds. 4. The method of claim 3, wherein the bonding time of the polymerase chain reaction in step _ is from 3 0 The method of claim 2, wherein the extension temperature of the polymerase chain reaction in step (b) is from 70 ° C to 75 ° 6. 6. The method of claim 5, wherein step (8) The extension temperature of the polymerase chain reaction is 72 ° C. 7. The method of claim 2 wherein (4) (b) the number of cycles of the polymerase chain reaction is from 5 to 50. 8. The method of claim 2, The condition of the towel step (8) towel polymerase chain reaction includes: the first stage initial denaturation temperature 94 < t duration of 5 minutes; 3 〇 cycle number of the first section of the denaturation temperature 9 generations of the chronograph clock and bonding temperature 72 ° C duration 3 Minutes; and X extension temperature lasts 7 minutes. 9. As requested in item 2 Method [4] wherein step (4) comprises analyzing the length of the fragment amplified by the agarose gel electrophoresis. The method of claim 2, wherein the method is as follows: (1) the pair of primers, and the length of the fragment of the bovine sputum analysis _ 9bp, (4) to be tested _ is determined to be Ge 2 13 03 6224 patent application Chinese application patent scope replacement this \97 May) genus. U. If the method of claim 2 'which is used in step (8) ( U gift pair, and the length of the fragment analyzed in step (4) is 436 bp, then the test is _ genus. X A kit for the identification of the genus Gordonella ("(4), which consists of a primer pair and its required reagents. Cell staining 13. The kit of claim 12] wherein the reagent contains an extract to be tested Reagents required for DNA. Synthase chain reaction 15. The kit of claim 12, wherein the test reagent is required for the agarose gel electrophoresis. ^ 电永 14. As requested in claim 12 Kit 'where the reagent contains the reagents needed to carry out the polymerization. A
TW094116224A 2005-05-19 2005-05-19 Primer pair, kit and method for identifying Gordonia spp. TW200641138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW094116224A TW200641138A (en) 2005-05-19 2005-05-19 Primer pair, kit and method for identifying Gordonia spp.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094116224A TW200641138A (en) 2005-05-19 2005-05-19 Primer pair, kit and method for identifying Gordonia spp.

Publications (2)

Publication Number Publication Date
TW200641138A TW200641138A (en) 2006-12-01
TWI303664B true TWI303664B (en) 2008-12-01

Family

ID=45070764

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094116224A TW200641138A (en) 2005-05-19 2005-05-19 Primer pair, kit and method for identifying Gordonia spp.

Country Status (1)

Country Link
TW (1) TW200641138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110283755A (en) * 2019-07-17 2019-09-27 广东海洋大学 One plant of land gordonella RL-JC02 and its application in terms of degradable organic pollutant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110283755A (en) * 2019-07-17 2019-09-27 广东海洋大学 One plant of land gordonella RL-JC02 and its application in terms of degradable organic pollutant

Also Published As

Publication number Publication date
TW200641138A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
Liu et al. Deep sequencing reveals high bacterial diversity and phylogenetic novelty in pit mud from Luzhou Laojiao cellars for Chinese strong-flavor Baijiu
Großkopf et al. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval
Dojka et al. Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria
Manefield et al. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny
Ouellette et al. Toxic cyanobacteria: the evolving molecular toolbox
Nocker et al. Genotypic microbial community profiling: a critical technical review
Le Bourhis et al. Development and validation of PCR primers to assess the diversity of Clostridium spp. in cheese by temporal temperature gradient gel electrophoresis
US9650682B2 (en) Methods of identifying and classifying organohalide-respiring bacteria
Hung et al. Application of Clostridium-specific PCR primers on the analysis of dark fermentation hydrogen-producing bacterial community
Valdes la Hens et al. Prevalence of L actobacillus plantarum and O enococcus oeni during spontaneous malolactic fermentation in P atagonian red wines revealed by polymerase chain reaction‐denaturing gradient gel electrophoresis with two targeted genes
Vegas et al. Evaluation of representativity of the acetic acid bacteria species identified by culture-dependent method during a traditional wine vinegar production
Priha et al. Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields
González-Arenzana et al. Oenococcus oeni strain typification by combination of multilocus sequence typing and pulsed field gel electrophoresis analysis
Shewmaker et al. Reevaluation of the taxonomic status of recently described species of Enterococcus: evidence that E. thailandicus is a senior subjective synonym of “E. sanguinicola” and confirmation of E. caccae as a species distinct from E. silesiacus
Suddin et al. Molecular barcoding based 16S rRNA gene of Thermophilic bacteria from vulcanic sites, Linow Lake, Tomohon
Bassis et al. Methods for characterizing microbial communities associated with the human body
TWI303664B (en)
Han et al. Improved detection of microbial risk of releasing genetically modified bacteria in soil by using massive sequencing and antibiotic resistance selection
Wang et al. Dinoflagellate community analysis of a fish kill using denaturing gradient gel electrophoresis
Volokhov et al. Discovery of natural atypical nonhemolytic Listeria seeligeri isolates
Shen et al. Detection of filamentous genus Gordonia in foam samples using genus-specific primers combined with PCR–denaturing gradient gel electrophoresis analysis
Kataoka et al. PCR primers for selective detection of intra-species variations in the bloom-forming cyanobacterium, Microcystis
Rodrigues et al. Molecular Diversity of Environmental Prokaryotes
Alpermann et al. Six new microsatellite markers for the toxic marine dinoflagellate Alexandrium tamarense
Graeber et al. 3–Molecular methods for studying biocorrosion

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees