TWI303392B - A method and system for automatically focusing an image detector for defect detection and analysis - Google Patents
A method and system for automatically focusing an image detector for defect detection and analysis Download PDFInfo
- Publication number
- TWI303392B TWI303392B TW93137954A TW93137954A TWI303392B TW I303392 B TWI303392 B TW I303392B TW 93137954 A TW93137954 A TW 93137954A TW 93137954 A TW93137954 A TW 93137954A TW I303392 B TWI303392 B TW I303392B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- defect
- focal length
- focus
- test
- Prior art date
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
1303392 九、發明說明: 【發明所屬之技術領域】 本發明係有,機器檢查,_是有_機器檢查 對焦演譯法及系統之製作施行。 一μ 的自動 【先前技術】 有多種的影像系統㈣_g systems)可適於對其峨 行對焦,並在物件相對於影像系統移動時維持其對焦。本發明中 論的自動對焦方法,係為可供液晶及平板顯視器,印刷電路板,L MEMS域礎之線路,半導體元件/晶圓,生醫樣本等進行測試/檢視 利用調整影像_器細哪detect〇r,例如絲^ 間距來進订對焦。下面的討論將描述利用相對於目標物件而移動影像 _器以調整聚焦面,但亦可應用於採科調鏡頭組構 igurations)之系統中的自動對焦系統。細如咖與说他⑽於2㈣ 年1月22日财4 ’題為「制紅外雜圖像術以供缺關測及分 (Methods and Systems Employmg infrared e聰gmphy for Defect Detection and Analysis,,)之美國專 10/3叫_餘,其中即描述了這樣的一種系統,其在4列為參考。 I】.機々檢查系統之自動對焦方法,可以廣泛地分為兩種主要的類 型、·位置感應_iti〇n sensing)及内容分析(c〇ntem analysis)。位置感應 方去係測量影像伽jf|及物件之_距離,並據喊影軸測器對 焦。j典型的檢查系統之中,位置感應自動對焦方法係在物件及影像 σ之間轉一個常定的距離。位置感應自動對焦系統通常會包括 σ、私動物件與/或影像系統以便維持正確距離的一個回饋控制系 1303392 統。加州聖塔巴巴拉(Santa Barbara,cA)的Teletrac〗加的 LaserTmckTM Laser Tracking Aut〇F〇cus即為位置感應自動對焦的 一個實例。 ......... 位置感應方法有純缺點。首先,自動對焦控㈣統所維持的距 離必須要調校到與影像偵測器的最佳焦距位置重合。豆a, /、夂,目標物件 只有-小部份被拿來制距離,致使物件的其餘赌可絲能對焦良 好。第三,距離_量對於某些物件而言可能並不適合;例如,= 件上有孔洞,則以雷射為基礎的距離偵測,可能便不適用。 内谷分析方法彻對影像系統所獲取的影像進行處麵可以達成並 維持最佳難位置。採用鱗方法的錢料個 得 -系列影像中的每一個皆施加一個焦距量測函= f_-m_nng㈣㈣。其结果之焦距量測值集即被分析以便決 定最佳對紐置。祕内容分析方法係依據影像而純點距離的某些 次要指數,因此内容讀方法可以克服_於位職應方法的許多缺 點’並得以計算出最佳對焦位置。 在典型的檢錢統之巾,FMF可部份依據影像侧器及物件之間 的距離而得出„_健距量難。職距量難作為距離的函數而描 纷,便可得出—織距量測值曲線圖,其中的峰值可與位置相關聯起 來,以便找出最佳對焦位置。FMF之較齡應具有如下列之主要性質. 1·相關範圍内之單模態(unimo捕⑺,或單一峰值,極大值或極小 值之存在; 2·峰值相對於最佳對焦位置之精確度,或重合性; 3·可再現性(reprodudW%),或一個尖銳的峰; 圍(例如FMF#以在其中不模糊地決定躺著最佳對焦位置 之方向的焦距範圍); 5.廣泛之可適用性,或可作用在不同類型影像上的能力; 1303392 6·對於不為對焦產生衝擊的參數,其變動的不靈敏性,諸如平均 影像強度之變動; 7·視雛號之相雜,或使用影像分析所朗之相同影像信號之 能力;以及 8· 速度:其應能以較快的速度計算FMF。 「有關於FMF的其他額外背景資訊可參考,ch〇i及 之對焦技術」(“Focusing Technique,,,J〇umal 〇f 〇pti心 2824—2836,Ν〇ν· 1993),以及頒予 Price 之美國第 5,932,872 號專利, 此兩文件在此舰參考。該兩參考資料之部份魄係總結如下。 、已對焦之-影像,於點㈣上以/(χ,減示,係被定義為一次曝 光H &著相對於(^)之方向而來自於物件點,並人射至入口瞳 (entrancepupi卜即攝影機之光圈)的總光能量。當影像未能對焦時, ^η〇ύ〇η 之單點上的权糊度(或散佈度式W供了一 psF的一個實 模型: 、、 i^2+72<i? 〇 otherwise (1) 其中及係為模糊圓> ψ PSF,其中U之+徑,而理想焦距係對應於⑽,…知,少)之一 定· ( 則為代爾他函數(deltafunction)。模糊半徑係依下式泠1303392 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a machine inspection, which is a production and execution of a focus interpretation method and system. One μ Auto [Prior Art] There are a variety of imaging systems (4) _g systems that can be used to focus on them and maintain their focus as the object moves relative to the image system. The autofocus method in the present invention is used for liquid crystal and flat panel display, printed circuit board, L MEMS domain line, semiconductor component/wafer, biomedical sample, etc. for testing/viewing and adjusting image _ Fine detectr, such as wire ^ spacing to customize the focus. The following discussion will describe an autofocus system in a system that uses an image to move the image relative to the target object to adjust the focus plane, but can also be applied to the igurations. As detailed as the coffee and said that he (10) in the 2nd and 4th of January 2nd, 4th of the year, entitled "Methods and Systems Employmg infrared e-gmphy for Defect Detection and Analysis," The US special 10/3 is called _余, which describes such a system, which is referenced in 4 columns. I]. The autofocus method of the machine inspection system can be broadly divided into two main types, Position sensing _iti〇n sensing) and content analysis (c〇ntem analysis). The position sensing side is to measure the image gamma jf| and the distance of the object, and focus according to the stunner. j typical inspection system The position-sensing autofocus method rotates a constant distance between the object and the image σ. The position-sensing autofocus system usually includes a feedback control system 1303392 that includes σ, private animal parts and/or imaging systems to maintain the correct distance. The TeleTracTM Laser Tracking Aut〇F〇cus from Santa Barbara (cA) is an example of position-sensing autofocus. ......... The position sensing method has pure disadvantages. .first The distance maintained by the autofocus control (4) must be adjusted to coincide with the best focal length position of the image detector. Bean a, /, 夂, target object only - a small part is used to make the distance, resulting in the object The rest of the bets can be well focused. Third, the distance _ amount may not be suitable for some objects; for example, if there is a hole in the piece, the laser-based distance detection may not be applicable. The analysis method can achieve and maintain the best difficult position by capturing the image acquired by the image system. Each of the series of images using the scale method applies a focal length measurement function = f_-m_nng (4) (4). The resulting focal length measurement set is analyzed to determine the optimal pair. The secret content analysis method is based on the image and some minor indices of the pure point distance, so the content reading method can overcome many of the methods The shortcoming 'and the best focus position can be calculated. In the typical money-checking towel, FMF can be based in part on the distance between the image side device and the object. Difficult to work as a function of distance, you can get a – weaving measurement curve, where the peaks can be correlated with the position to find the best focus position. The age of FMF should have the following main properties: 1. Single mode within the relevant range (unimo catch (7), or single peak, maximum or minimum value; 2. accuracy of peak relative to the best focus position , or coincidence; 3· reproducibility (reprodudW%), or a sharp peak; circumference (for example, FMF# in a range of focal lengths in which the direction of the best focus position is determined without blurring); Applicability, or the ability to act on different types of images; 1303392 6. For the parameters that do not impact the focus, the insensitivity of the changes, such as the variation of the average image intensity; Or use image analysis to analyze the same image signal; and 8· speed: it should be able to calculate FMF at a faster rate. "For additional background information on FMF, see "ch〇i and focus technology" ( "Focusing Technique,,,J〇umal 〇f 〇pti heart 2824-2836, Ν〇ν·1993), and US Patent No. 5,932,872 to Price, both of which are referenced in this ship. The system is summarized as follows , Focused-image, at point (4) with / (χ, minus, is defined as a single exposure H & with respect to the direction of (^) from the object point, and the person shoots to the entrance 瞳 ( Entrancepupi is the total light energy of the aperture of the camera. When the image fails to focus, the weight of the single point on ^η〇ύ〇η (or the degree of dispersion W is a real model of psF: ,, i^2+72<i? 〇otherwise (1) where the system is a fuzzy circle> ψ PSF, where U is + diameter, and the ideal focal length corresponds to (10), ... know, less) The delta function. The fuzzy radius is as follows:
RR
(2) -中D係為光,,為焦距長度1為鏡頭平面與影像侦測哭 1303392 之成像表面(例如,對焦平面陣列)間的距離,而w則為鏡頭平面與物件 平蚊間的距離。在此式巾啊為正(若成絲面録雌影像之後) 或負(若成絲面係在對絲像之前)。在實際的影像緖之巾,以利用 移動影輸).___兩者其-可祕變。就理想的對焦 影像而言,此式給出及之結果。 PSF Λ〇,3;)之傅立葉轉換(F〇uriertransform)被稱為是一種「光學轉 私函數」(OTF,Optical Transfer Functi〇n”)。就模糊圓的較大半徑及 言,〇TF會在影像/(以内造成更為嚴重的高空間頻率(銳度)之衰減; 換言之,較大的__表示更為模糊的影像。如輯可依據一影像 的高空間頻率内容來測量銳度並進行對焦。另外更可以咖對每-影 像來相以-高通渡波(線性或非線性)處王里,並取紐後影像之平均 強,值(或平均能量),而得出可指示—影像之高空_轴容的一個焦 距里測值。各於單獨不同難距離上所取得的—⑽列的影像,便得 以經由類似的分析處理而提供乡個對焦社的焦距制值。此些焦距 里測值接著便可進行分析,崎雜^最佳難位置。 數篇參敎件巾贿了如何獲致可雜供練影彳㈣統,目標物 件’以及放大程度等來辨識出—個最佳對焦位置的焦距量測值之方 法。此些參考文件包括:美國第5,231,443 ; 5,932,872 ·,6,〇37,892 ; 6,201,619 ’ 6,463,214 ; 6,151,415 ; 6,373,481 ;與 6,222,588 號專利;以 及 Subbaro 及 Tyan 出版於 ieee Transactions on Pattern Analysis and(2) - The middle D is light, and the focal length 1 is the distance between the lens plane and the imaging surface of the image detecting crying 1393392 (for example, the focusing plane array), and w is the lens plane and the object flat mosquito. distance. In this style, it is positive (if the silk image is recorded after the female image) or negative (if the silk surface is attached to the silk image). In the actual image of the towel, to use the mobile shadow to lose.) ___ both of them - can be secret. For an ideal focus image, this gives the result. The Fourier transform (F〇uriertransform) of PSF Λ〇,3;) is called an "Optical Transfer Functi〇n". In terms of the larger radius of the fuzzy circle, 〇TF will Attenuation of more severe high spatial frequencies (sharpness) in the image/(in other words, a larger __ indicates a more blurred image. The sequence can measure the sharpness according to the high spatial frequency content of an image and Focusing on it. In addition, you can use the high-pass wave (linear or non-linear) at the image of each image, and take the average intensity, value (or average energy) of the image after the image, and get an indication. In the high-altitude _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The measured value can then be analyzed, and the best position is difficult. Several pieces of ginseng robbed how to get the confession (four) system, the target object 'and the degree of magnification to identify the best focus Method of measuring the focal length of the position. This References comprising: a first U.S. 5,231,443; 5,932,872 *, 6, 〇37,892; 6,201,619 '6,463,214; 6,151,415; 6,373,481; and Patent No. 6,222,588; and published Subbaro and Tyan ieee Transactions on Pattern Analysis and
Machine Intelligence,Vol· 20, Να 8, pp. 864—870, Aug· 1998,題為「為 自動對焦及焦距深度選定最佳焦距量測值」(“Selecting the 〇ptimalMachine Intelligence, Vol. 20, Να 8, pp. 864-870, Aug· 1998, entitled “Selecting the best focus measurement for autofocus and focal depth” (“Selecting the 〇ptimal”
Focus Measure for Autofocusing and Depth-from-Focus”)之文章 :此些文 件在此列供參考。應用了以電腦為基礎之自動對焦方法的一種習知之 系統,係為來自於 TNP lnstruments Inc (Cars〇n,CA)之 Pr〇beMagicTM 系 、、充σ亥系統係利用FMF之所謂的羅勃茲橫越梯度cross gra(jient) !3〇3392 而執行自動對焦。其作法係將對焦馬達上下移動以決定最佳焦距。此 : 種作法的一個缺點是為其係使用了無法適應於多種影像的單一濾波器 q (羅勃茲)。此外,此種作法亦並不包括適應性自動對焦,亦即,其自動 對焦並非是真時(real-time)執行的。 有許多種目前可獲得之方法並未通體適用於不同類級的影像上, · 此為用於檢視不種類影像的影像系統之嚴重缺陷。此外,適應性動作 · 控制演譯法(adaptive m〇ti〇n-contr〇l algorithm)通常係以電子或内置式 微處理器(embedded microprocessor)的方式來施作執行,因此亦難以就 不同型態的影像而重新組構。因此便需要有一種快速,精確的自動對 焦方法,其可易於適應不同影像系統以及不同型態影像之應用。 寒 自動對焦方法可應用於自動化系統中以供缺陷偵測及分析之用途。例 如’諸如印刷電路板(printed circuit boards,PCB),積體電路,以及平板 顯示器(flat_panel displays,FPD)等電子電路,可以利用紅外線㈤熱圖 影像術對之進行測試,以便找出缺陷。通常,電源會被供應給受測元 件(device under test,DUT),以便將其各種元件構造(device加 加熱。一個紅外線偵測器接著便可以捕捉被加熱DUT的測試影像。其 結果之影像,即空間上與被取得影像物件相關聯的一組像素_強度值, 便可被拿來與參考影像資料的一組類似的集合互相比較。測試及參考 _ 貧料之_差異,通常被齡作為—個「合成影像」(“eompositeimage) 者’即可指示缺陷的存在。 缺陷辨識演譯法可分析合成影像以自動地辨識缺陷,並因而增進 70件製造時的推送率(thr〇ughput)及品質。此類檢查系統的實例包括 有,但不限於,FPD,PCB,以MEMS為基礎的元件,半_元件, 以及生樣本等的檢查。此類系統的一個目的,係為測試元件製作期 間的某些_點上,於元件上所可能出現的缺陷,且—旦辨識出來, 此匕缺1¾便可利用修護系統加以修復,或者亦可選擇剔除該元件,以 10 1303392 在兩種情況之中皆達成製造成本的節省。其他的應用包括研究樣本, 例如生物樣本,其中之人工類構造的檢查及辨識。 IR熱圖影像術的一種特別重要應用係為液晶顯示器(LCD)面板之 主動層(activelayer),或「主動板」(“activeplate”),的測試。利用缺陷 分析可以增進製程並增加製造良率。同樣重要的是,只要缺陷的數量 及程度並未太大,有缺陷的面板便得以修復,更增加製造良率。 圖1(習知技術)顯示可應用於一 LCD面板上的一主動板觸之局部。(圖 1係取自2000年8月29日頒予B〇Sacchi的美國第6,1U,424號專利, 該案在此列為參考)。主動板謂包括有經由一組源極線11$而連接至 -像素陣列的每-像素HO的-第一短路棒祕,以及經由一組問極線 (控制線)125而連接至每一像素no的一第二短路棒12〇。 依據Bosacchi,主動板1〇〇係在電壓被供應予短路棒1〇5及 的情況下,_評估主動板励的IR放射情形,而輯職的。在如 此供應電源的情況之下,板励的局部係作為電阻性電路而動作,因 而會散放熱I。接著即評估板励的加熱反應特性,其最好是在板⑽ 達到一個穩定的操作溫度(熱平衡讨進行。 在缺陷不存在的情況之下,整個像素陣列應會平均地熱起來。竹 為不正常IR強度而被酬出來的不均勻鱗徵,_便可以指出伽 的存在。參考強度值可湘對-給定影像框求取像隸度值之平均, 或對知一理想或無缺陷參考板的一個參考框而與得。 圖聊顯示-f知像素⑽之局部;;,其在此數 可=的缺陷。圖中所示像素110之構造係相關於一液晶顯示器之主鸯 ^ ’其包括編繼鱗115 m—辑理端,^ 閘極線125之-的-控制端’以料接至_電容2 年 流處理端的一薄膜電晶體20〇。 乐一笔 其中之缺陷,圖中以說明性質顯 不但並未顯現其所有細節者 包 11 1303392 括了短路及開路兩種。兩者間之短路係出現於:源極線us與間極線: 125(短路215)或共通線212(短路216);電晶體200之兩電流處理端(短· 路22〇);電晶體200之閘極與第二電流處理端(短路225);與電容21〇 之兩端(短路226)。開路則將源極,閘極,與共通線分裂成段(開路奶, 228,及229),而其兩者間之開路係出現於:源極線丨丨5與電晶體2〇〇(開-路230),閘極線125與電晶體200之控制端(開路232),電容21〇與共‘ 通線212(P竭路235),以及電晶體2〇〇與電容21〇(開路233)之間。 圖2中的每一個缺陷,加上其他的數個缺陷,會不利地衝擊像素 110之操作。不幸地,若利用習知之測試方法,許多的此類缺陷乃是難 以發現的。因此本技藝巾即需要有增進之方法及系統,其可錢行缺鲁 陷的辨識及定位。 某些檢查系統包括有一個激勵源,其可對處於測試下之物件,利 用可將缺陷對-影像系統標示出來之方式而激勵該物件。激勵的型態 係依影像祕而定,其中影像系統可能是根據可見光,紅外線,址合 頻譜,磁場等而獲取其影像。不論是採用何種影像系統,受測物件二 膝式影像皆被拿來與某種參考影像互概較,以獲得—個合成影像: 測試及參考影像兩者之間的顯著差異便會在合成影像之中顯現出來, 以便辨識可能的缺陷。 ^ 某些形式的激勵會產生缺陷人工徵象,此為測試及參考影像兩者 之間,因缺陷所引起,但並不實f與缺陷區域互有關聯的差異。兩線 之間的短路會增加流經該錄_糕,因而提升了該些線路沿著短 路處的溫度。如此,此些線,其本身雖未為具有缺陷者,卻會隨同短 路而出現於合成影像之中。代表了此短路的缺陷資料,如此便是藏置 於缺陷人工徵象資料(defect_artifact data,亦即,一「缺陷人工徵象」 (“祕⑽㈣,,))之中。缺陷人工徵象時常會遮蔽了相關的缺陷,使其· 12 1303392 難以精確定位。人類操作員在顯微鏡下利用細心研究,可以在一個缺 陷人工徵象之將缺蚊位出來,但人的速度通常相對較慢,並且报快 便曰疲疫。本技蟄中因此需要有可由其相關聯之缺陷人工徵象中自動 分辨出缺陷的方法及裝置。 【發明内容】 -本t明揭不機器檢查應用上的自動對焦演譯法及系統之製作施 行/廣澤法之“作與影像之型態(視覺,紅外線,頻譜性,掃描 =影=_II之型式皆無M。本發明所揭示之影像毅技術,影像 j巨里測函數及適應性速度控制方法皆可應用於以電腦為基礎之檢查 系統中,供許W關柄卿觀_如及錄的放大程度之應 用。本㈣之自動對«統可顧現有檢錢統之既有取像硬體,^ 且並不需要任何額外的組件。Articles of Focus Measure for Autofocusing and Depth-from-Focus": These documents are hereby incorporated by reference. A conventional system for applying computer-based autofocus methods is from TNP Instruments Inc. (Cars〇 n, CA) The Pr〇beMagicTM system, and the σ 亥 system use FMF's so-called Roberts traverse gradient cross gra (jient) !3〇3392 to perform autofocus. The method is to move the focus motor up and down to Determining the best focal length. One of the disadvantages of this approach is that it uses a single filter q (Roboz) that cannot be adapted to multiple images. In addition, this approach does not include adaptive autofocus, ie The autofocus is not real-time. There are many currently available methods that are not suitable for different types of images. · This is a serious image system for viewing unspecified images. Defects. In addition, adaptive m〇ti〇n-contr〇l algorithms are usually implemented in the form of electronic or embedded microprocessors. Therefore, it is difficult to reconfigure images of different types. Therefore, a fast and accurate autofocus method is needed, which can be easily adapted to different image systems and different types of image applications. Cold autofocus method can be applied to Used in automated systems for defect detection and analysis, such as 'electronic circuit such as printed circuit boards (PCB), integrated circuits, and flat-panel displays (FPD), which can utilize infrared (five) heat maps Video is tested to find defects. Typically, the power supply is supplied to the device under test (DUT) to structure its various components (device plus heat. An infrared detector can then capture The test image of the heated DUT. The resulting image, ie a set of pixel_intensity values spatially associated with the acquired image object, can be compared to a similar set of reference image data. Reference _ poor material _ difference, usually referred to as "a synthetic image" ("eompositeimage" person can refer to Defects are identified. Defect recognition interpretation can analyze synthetic images to automatically identify defects and thus increase the push rate and quality of 70 pieces. Examples of such inspection systems include, but are not limited to, , FPD, PCB, MEMS-based components, semi-components, and raw samples. One purpose of such a system is to detect defects that may occur on the component at certain points during the fabrication of the test component, and if it is identified, the defect can be repaired by the repair system, or The component can be culled, with 10 1303392 achieving manufacturing cost savings in both cases. Other applications include research samples, such as biological samples, in which the inspection and identification of artificial structures. A particularly important application of IR thermography is the active layer of a liquid crystal display (LCD) panel, or the "active plate". Using defect analysis can increase process and increase manufacturing yield. Equally important, as long as the number and extent of defects are not too large, defective panels can be repaired, increasing manufacturing yield. Figure 1 (Prior Art) shows a portion of an active panel that can be applied to an LCD panel. (Figure 1 is taken from U.S. Patent No. 6,1,424, issued to B.Sacchi on August 29, 2000, which is incorporated herein by reference). The active board includes a first shorting bar connected to each pixel HO of the pixel array via a set of source lines 11$, and is connected to each pixel via a set of questioning lines (control lines) 125. A second shorting bar 12 of no. According to Bosacchi, the active board 1 is used to evaluate the IR radiation of the active board excitation in the case where the voltage is supplied to the shorting bars 1〇5 and . In the case where the power source is supplied as such, the local portion of the plate excitation operates as a resistive circuit, and heat I is dissipated. Next, the heating reaction characteristics of the plate excitation are evaluated, and it is preferable to achieve a stable operating temperature at the plate (10) (heat balance is discussed. In the absence of the defect, the entire pixel array should be heated evenly. The bamboo is abnormal. The uneven scale sign of IR intensity is rewarded, _ can indicate the existence of gamma. The reference intensity value can be obtained by averaging the average image value of the image frame, or the ideal or defect-free reference plate. A reference frame shows that -f knows the part of the pixel (10);;, the defect in which the number can be =. The structure of the pixel 110 shown in the figure is related to the main function of a liquid crystal display. Including the finishing scale 115 m - the processing end, ^ the gate line - the - control end 'to the thin film transistor 20 料 to the _ capacitor 2 years of processing end. Le one of the defects, in the picture In order to explain the nature of the package, 11 1303392 includes both short-circuit and open-circuit. The short circuit between the two appears in the source line us and the interpolar line: 125 (short circuit 215) or common line 212. (short circuit 216); two current processing terminals of transistor 200 (short road 2 2〇); the gate of the transistor 200 and the second current processing terminal (short circuit 225); and the two ends of the capacitor 21〇 (short circuit 226). The open circuit splits the source, the gate, and the common line into segments (open circuit) Milk, 228, and 229), and the open circuit between them appears in the source line 丨丨5 and the transistor 2〇〇 (open-way 230), the gate line 125 and the control end of the transistor 200 ( Open circuit 232), capacitor 21〇 and common 'pass line 212 (P exhaust 235), and between transistor 2〇〇 and capacitor 21〇 (open circuit 233). Each defect in Figure 2, plus other numbers A defect that adversely affects the operation of the pixel 110. Unfortunately, many of these defects are difficult to detect using conventional testing methods. Therefore, the art towel requires an improved method and system. Identification and localization of deficiencies. Some inspection systems include an excitation source that energizes the object under test by means of a defect-to-image system. The type of excitation is The image is secret, where the imaging system may be based on visible light, infrared light, combined spectrum, magnetic field, etc. Obtaining the image. Regardless of the image system used, the two knee images of the object being tested are compared with a reference image to obtain a composite image: significant difference between the test and the reference image. It will appear in the synthetic image to identify possible defects. ^ Some forms of excitation will produce artificial artifacts of defects, which are caused by defects between the test and the reference image, but not true f and The defect areas are related to each other. The short circuit between the two lines increases the flow through the record, thus increasing the temperature of the lines along the short circuit. Thus, the lines themselves are not defective. However, it will appear in the composite image along with the short circuit. It represents the defect data of this short circuit, so it is hidden in defect_artifact data (ie, a "defective artificial sign" ("secret (10) (4),)). Defective artificial signs often obscure the relevant The flaws make it difficult for 12 1303392 to be accurately positioned. Human operators can use the careful study under the microscope to remove the mosquito in a defective artificial sign, but the speed of the person is usually relatively slow, and the report is exhausted. Therefore, there is a need in the art for a method and apparatus for automatically distinguishing defects from artificial fingerprints associated with them. [Summary of the Invention] - This is an autofocus interpretation method and system for machine inspection applications. The production/image format of the implementation/Guangze method (visual, infrared, spectral, scanning = shadow = _II type has no M. The image technology disclosed in the present invention, the image j giant measurement function and the adaptive speed The control method can be applied to the computer-based inspection system, which can be used for the application of the degree of amplification. Seized the money system of the existing imaging hardware, ^ and does not require any additional components.
在使用紅外線熱影像的某些實施例之中,測試向量_vector)將受 檢,件上的構造特徵加熱,以產生辨識缺陷時有用的熱特徵。測試 :里I树施加以便增強缺陷麵邊特徵之間的熱對比,錢IR影像 又備知X獲取从的熱圖影像。對應用前述自轉焦演譯法所獲取聲 像所施加的數學轉換,可提供缺關耻分析上之增進。料缺陷: f遮蔽其缺關影像人讀象,或「缺陷人錢象」,造成缺陷定I 处理上的困難。某些實施綱採用可分析缺陷人錢象以便精確將對 應之缺陷加以定位的缺陷定位演譯法。 【實施方式】 圖3顯示依據本發明一實施例之一檢查系統300。於此實例之中 系統·包括有—或更多個的適當影像偵測器…紅外線攝影機渐 以及-視頻攝影機3K),其係指向目標物件315以便獲取影像。一影 1303392 处理及控制系統32G經由f知之框抓取離_㈣㈣奶而由 攝域305及310之處捕捉影像。影像_器3〇5及训包括 2式的對域構,或者係由此麵構加以支援。於此實例之中,二 月自控制之動作控制||伽向各顧化且以馬達轉之Z載台335及 340發出控制信號,以便改變每_攝影機與物件315之間的距離。一 ♦、械化馬達驅動之χ_γ載台柳,其亦係以電腦控制者,將物件犯 在攝影機之視線範圍内移動。在_實施例之中,系統32G係為_通用 之電驷錢以軟體之形式,以_影像分析模組奶及一動 組360來代表。/市m 。反應於來自動作控制模組36〇之指令,動作控制器將觸發信 號傳达至框抓取器325,以便以捕捉到之影像協調X,γ及2載么。 模組355分析所捕捉到的影像,並且,假使該影像被認定是偏離_ 的居便對動作控制模組⑽發出指令,以改變適恰z载台之速度及 /或方向。 & 、依據本發日月一實施例’影像分析模、组355會獨立於攝影機之型 式放大之域,或影像之型態等因素之外而計算F·。此特質使得 本發明此些實施例在機驗查系統的顧之中變得極為重要,特別是 ^卜線及視頻’可供測職視平板舰器,pcB板,以職S為^ 礎之線路’铸體元件/晶圓,生醫樣本等。 ‘、、、土 FMF 所選 ^某些貝化例之中,影像分析模組355合併一個具彈性的通用 使用-組*通(尖銳度)濾波器。為—特定高通濾、波器 疋的FMF架構係依下式給定: () ^(ι) = |fc][ σ (3) 其中I係為所獲取之影像,#(1)為影像之像素強度平均值, 而丨 14 1303392 及σ則為可在找尋最佳FMF時容許其彈性的參數。α通常為1或2, ; 且係為經濾波影像之冪次(亦即,經濾波後之影像可能會被平方處 、 理)’ CT係為一個尺度因數(通常為1,〇〇〇)。雖非必要,但以及7或兩者 之任一可為其左側之量之函數。在此情況下,FMF架構〜⑴可利用 改變函數而進一步最佳化。此架構的不同FMF之間的主要差異係為 · 咼通濾波态φ()。此架構的彈性及適應性乃是本發明某些實施例的 ‘ 一個優點,如同下面所將顯現者。 下面的數段說明文字將界定並列明某些實施例中所採用的濾波 為。其詳細討論以及期他額外濾波器可在影像處理的教科書及顯現本 技藝技術的技術手冊之中找到(例如,National Instruments,Austin,ΤΧ籲 所出版的IMAQ Vision Concept Manual,其在此列供參考)。 圖4A及4B係為一對樣本影像4〇〇及4〇5,其係用以顯示本發明 某些實施例所依據之方法。影像400顯示一片受檢測基板經高度放大 後的週期性構造,而影像4〇5則顯示同一基板上的一個參考定位標示 (fiducial mark)。圖5A,6A,7A,8A及9A分別為針對影像400而將 焦距量測值作為Z位置的函數所繪製者。每一圖各皆採用式32FMF 結構的-種不同的排列。圖5B,6B,7B,犯及犯則分別為針對圖 4B之影像405而將焦距量測值作為z位置的函數所繪製者。對應各 _ 組圖(例如5A及5B)亦係應用與式3相同的排列。式3的多種排列係 採用下面所敘述的不同濾波器φ,以及σ約為丨^㈧的參考值。^之參 數值係為圖5Α/Β,6Α/Β,7Α/Β,以及8Α/Β的FMF中之-,及圖9Α/Β 中FMF中之二。此些圖代表影像尖銳度作為聚焦面(例如,攝影機之 距離)之聽;理想情況之巾,其峰值鑛應於最佳之雜面。 、辛丨生拉晋拉斯濾波器(linear Laplacian filter)係為應用於自動對焦 的最常見線性驗||巾之—種。在離散式媒體(di_e副㈤之巾, 们拉g拉"斤/慮波為係被定義為具有下列核心(kemei)的一個迴旋淚 15 1303392 波器(convolution filter): Η M kll Η W · (4) Η Μ H (4) 其中x = —2^l + W+kl + M)。特別地,連續拉普拉斯運算元(Laplace operator)的最簡單有限差異類比係為下列核心: 0 1 0 1 -4 1 0 1 0 ⑶ 如圖5A中所顯示的,式3之FMF於影像400而言並非為單模 態者。應用此濾波器的一個内置自動對焦系統可能會選出對應於錯誤 峰值的一個Z位置’並因此而無法適恰地對焦。此缺慽係為使用非線 性滤波器的一種平衡,雖然其亦具有其他的優點,例如,其通常只需 要進行較少的計算。 非線性羅勃茲濾波器可以描繪輪廓,以將沿著對角軸線發生強度變化 的像素標示出來。一個像素經濾波後之數值,即變為其左上方鄰近區 域之變動與其另兩個其他區域之變動之間的極大絕對值,其係依下 給定: (6) 其中仿係指影像I第(i,j)個像素的強度。此濾波器係廣泛應用於 商用機錢查產品的自動對㈣統之中(例如,㈣㈣麵咖,In some embodiments using infrared thermal images, the test vector _vector will be examined, and the structural features on the piece are heated to produce useful thermal features when identifying defects. Test: The I tree is applied to enhance the thermal contrast between the features of the defect face, and the money IR image is also known to obtain the heat map image from the X. The mathematical transformation applied to the application of the aforementioned autofocus transfer method can provide an improvement in the analysis of the lack of shame. Material defects: f occlusion of the image of the person who is missing the image, or "defective person money", causing difficulties in the processing of defects. Some implementations use defect location interpretation that analyzes the defector's money image to accurately locate the corresponding defect. [Embodiment] FIG. 3 shows an inspection system 300 in accordance with an embodiment of the present invention. In this example, the system includes one or more suitable image detectors (infrared camera fader - video camera 3K) that point to the target object 315 for image acquisition. A shadow 1303392 processing and control system 32G captures the image from the fields 305 and 310 via the frame of the 知(4)(4) milk. The image_device 3〇5 and the training include the two-dimensional domain structure, or the surface structure is supported. In this example, the second self-control action control || gamma directional and the motor-turned Z stages 335 and 340 send control signals to change the distance between each camera and the object 315. A ♦, mechanical motor driven χ γ γ 台 台 柳, which is also a computer controller, the object is moved within the line of sight of the camera. In the embodiment, the system 32G is a general-purpose electronic money in the form of a software, represented by an image analysis module milk and a motion group 360. / city m. In response to an instruction from the motion control module 36, the motion controller communicates a trigger signal to the frame grabber 325 to coordinate X, γ, and 2 loads with the captured image. The module 355 analyzes the captured image and, if the image is deemed to be a deviation from the stool, issues an instruction to the motion control module (10) to change the speed and/or direction of the appropriate stage. & According to the embodiment of the present invention, the image analysis module and the group 355 calculate F· independently of the type of the camera, or the type of the image. This trait makes the embodiments of the present invention extremely important in the inspection of the machine inspection system, in particular, the cable and the video 'available for measuring the tablet ship, the pcB board, and the job S is the basis. Line 'casting components / wafers, biomedical samples, etc. ‘、、、土 FMF Selected ^ In some cases, the image analysis module 355 incorporates a flexible universal use-group* pass (sharpness) filter. For the specific high-pass filter, the FMF architecture of the filter is given by: () ^(ι) = |fc][ σ (3) where I is the acquired image, #(1) is the image The average pixel intensity, while 丨14 1303392 and σ are parameters that allow for flexibility when looking for the best FMF. α is usually 1 or 2, and is the power of the filtered image (that is, the filtered image may be squared) 'CT is a scale factor (usually 1, 〇〇〇) . Although not necessary, and either 7 or both can be a function of the amount to the left. In this case, the FMF architecture ~(1) can be further optimized by using the change function. The main difference between the different FMFs of this architecture is the 滤波-filtered state φ(). The flexibility and adaptability of this architecture is an advantage of some embodiments of the present invention, as will be apparent from the following. The following paragraphs of the description text will define and list the filtering used in some embodiments. A detailed discussion of it and its additional filters can be found in textbooks for image processing and in technical manuals showing the art (for example, National Instruments, Austin, IMAQ Vision Concept Manual, which is hereby incorporated by reference. ). Figures 4A and 4B are a pair of sample images 4A and 4〇5 which are used to illustrate the method by which certain embodiments of the present invention are based. Image 400 shows a periodically magnified periodic structure of the substrate under test, while image 4〇5 shows a fiducial mark on the same substrate. Figures 5A, 6A, 7A, 8A and 9A are plots of the focal length measurement as a function of Z position for image 400, respectively. Each of the figures uses a different arrangement of the 32FMF structure. Figures 5B, 6B, and 7B, and the offense are plotted against the image 405 of Figure 4B as a function of the z position for the image 405 of Figure 4B, respectively. Corresponding to each _ group map (for example, 5A and 5B), the same arrangement as that of Equation 3 is applied. The various arrangements of Equation 3 employ different filter φ as described below, and a reference value of σ approximately 丨^(8). The numerical values of the parameters are shown in Figure 5Α/Β, 6Α/Β, 7Α/Β, and 8Α/Β in the FMF, and Figure 9Α/Β in the FMF. These figures represent the sharpness of the image as the focus surface (for example, the distance of the camera); ideally, the peak mine should be the best. The linear Laplacian filter is the most common linear test used for autofocus. In the discrete media (di_e vice (five) towel, we pull g pull " kg / wave is defined as a whirl of tears with the following core (kemei) 15 1303392 convolution filter: Η M kll Η W · (4) Η Μ H (4) where x = —2^l + W+kl + M). In particular, the simplest finite difference analogy of the continuous Laplace operator is the following core: 0 1 0 1 -4 1 0 1 0 (3) As shown in Figure 5A, the FMF of the Equation 3 is imaged. 400 is not a single mode. A built-in autofocus system to which this filter is applied may select a Z position corresponding to the peak of the error and thus may not focus properly. This deficiency is a balance of using a non-linear filter, although it has other advantages, for example, it usually requires less computation. A non-linear Roberts filter can depict the contour to indicate pixels that vary in intensity along the diagonal axis. The filtered value of a pixel becomes the maximum absolute value between the change of its upper left adjacent region and the variation of its other two other regions, which is given by: (6) where the imitation refers to the image I (i, j) the intensity of pixels. This filter is widely used in the automatic (4) system of commercial machine money checking products (for example, (4) (four) face coffee,
Ca=0n,CA之Pr〇beMagic)。圖6A所描繪的是,此種據波器,其雖係 屬早核態者’卻有著一個不利的「平坦」區_。式6中的遽波器因 此即非為影像4〇〇的最佳選擇。 德去,用將其本身與其三個左上方區域之間發生強度變化的每一個 ’、払示出來,非線性差異濾波器便會產生連續的輪廓。一個像素經 16 (7)1303392 濾波後之數值即變為其左上方區域之最大變動的絕對值。 ,./-1 如圖7A中所顯示者,此濾波器會產生與圖6A之區域6 的-個不利的平坦區域7GG,其因此亦非影像·的最佳選擇。、、 非線性梯度濾、波料將沿㈣直軸線發生強度變化者的麵描修出 來。-像素的新數值即變為其上方區域之變動與其兩個左方區域^ 動之間的極大絕對值: ⑻ 圖SA所描緣的應用於影像_上的此種遽波器,其係屬單模態 並且沒有圖6Α及7Α中的平坦區。式8中的滤波器對於影像4〇〇 ^ 應用而言因此即比式6及7中者為較佳。 圖9Α顯tf影像400利用式8之濾波器所導得,與圖8α之曲線 圖相似之-FMF曲線圖。不過,圖9Α及8Α巾之曲線圖仍有所不同, 即圖9Α之曲線圖巾㈣(記得圖8Α之曲線圖巾㈣)。比較圖8Α及 9Α中之曲線圖,前者具有較佳之可再生性^腕办,即較尖銳 的極大值),而後者則具有較寬廣的綱。依所採用的自動對焦方法 而疋,可再生性多少較寬度來得重要。如同下面所詳細_者,掃描 自動對焦方法於可再生性上所獲得的益處,傾向於多於寬度的利益, 而=梯度為基礎之演譯法,則傾向於獲得寬度的益處多於可再生性的 利^。式3中FMF架構的部份利益係在於其得以適合於給定系統需 求之可適應性。 其他的常用濾波器包含非線性普利威特(N〇niine讀e她),非線 ㈣格瑪⑽nllnear Sigma) ’以及非線性索朗(祕輪s。㈣等。 在本發明所描述並予討論的攄波器之中,非線性羅勃茲及非線性梯度 17 1303392 係為相對而言計算較為簡單者。羅勃茲比之梯度更具對稱性,並且通 · 常是屬較佳之選擇。不過,由於非線性羅勃茲在偏離對焦的位置上有 ; 一個「平坦」區之故,非線性梯度濾波器對影像400而言因此係為較 佳者。 圖5A至9A的討論說明了式3所揭示之FMF架構的彈性及適應 性,其可使本發明所揭示之自動對焦方法得以適應於多種影像及系 - 統。此外,相同的自動對焦軟體可加以參數化(parameterized),並得 以適用於多種的影像獲取型態(例如,紅外線及視頻),放大程度,影 像之型態(如圖4A及4B中所顯示者),以及機器檢查系統中的許多其 他重要的性質。 # 前面的說明詳細描述了獲取可被接受之焦距量測值之方法;下面 則將詳細描述如何利用焦距量測值來達成並維持最佳對焦。利用式3 所提出的FMF架構,本發明揭示達成此目的的兩種技術。雖然此兩 種技術係較佳者’但腳帛躺朗_並未限定於此。 第-種技術’其掃描最佳對焦位置<附近,係掃描攝影機及被取像之 物件間的轉,包括包含了對纽置的關。在掃描_間,_ =數值係對照於最大焦距量測值,或請值1二種技術,以梯度 為基礎之自動,則湖麟、適應性動作控制來找尋並轉峰值 之焦距量測值。 、 來並予=種作法ί中’對焦位置為了被固定的物件而被小心量測出 疋’而在弟二種作法之中,物件則真時維持對焦,甚至在物 i目對有移動時亦然。第—種作法在測試程序之中有其 ^ 恤移_必她Μ,且在_像 法則在手細t或其他機11視覺制之前即會施行。第二種作 法可以倾=及自轉翻處。在此種纽之下,演譯 請持讀彳貞靡的對焦,而操作者或控㈣統則可各 18 (S ) 1303392 台,變動硬體,等等。 圖10顯不可適於為一給定影像自動選定一最佳FMF之一實施例 之自。動對焦演譯法丨_。首先,反應於來自模組則的指令,動作控 制為330將Z載台335移動到一個啟始的位置(步驟1〇〇5),並捕捉目 標物件的-個影像(步驟1G1())。動作控制器33q接著便反覆推進z載 台撕(步驟1015),並捕捉影像(步驟_,直至Z載台335到達其中 A盖了假e又的最佳對焦位置的一個預定掃描範圍的終端時為止(判定 乂驟102。}如此所捕捉的每一個影像便可經由框抓取器奶而被前 送至模組335以供進行分析。 ™F ’諸如式3中所描述者,被應用在步,驟1010之重覆執名 ^果所收集到的影像上(步驟1〇25),其結果即如圖8a中所描繪之受 態的-個焦距量測值曲線圖醜。影像分析模組355分析曲線廣 1030(步驟聰)關麵是否可提供_個適合㈣基礎以名 被取像的物件上進行自動對焦。在一實施例之中,步驟聰記錄了 峰值之數目’單—或多個峰值的尖銳度,曲線圖_的寬度,以及 雜訊的程度。依據判定步驟觸,若曲線圖1〇3〇無法符合某些隸 標準(例如,如圖5A —樣,其中有兩個峰值),便會選用另- FMF而 應用於取像程序,而步驟舰5及_則被重覆執行。不同的mF 被試用(步驟购)直到判定步驟_判定某一曲線圖結果已可符合 自動對焦的最低鮮時為止。其他的實施刪對取像料施用數個 FMF並選丨最符合目標影像鮮的該個曲線圖。 在選出—錄佳之焦距制㈣、義之後,在步驟_之中與 組355便會將對應於最大焦距量測值的z載台位置辨識作為 位置麵。(在雜訊較高的影像之中,較麵作法可能是找 360t Γ找出其巾d非搜尋最大焦距制值)。動作控制模組 〇接党來自於模組355的·位置的_個指示,並且,作為其反應, 19 1303392 才曰示動作控制為330將Z載台335移動到對焦位置1仍〇(步驟1仍5), 留下影像偵測器305對焦在物件315上。 為了利於說明,圖10之中係將影像之獲取及影像之分析加以分 離。實際的系統則可以利用平行地執行影像分析及影像捕捉程序而得 以節省時間。某些實施例中維持了影像型態的—個清單及其相關聯之 FMF ;在此情況下,圖1〇之流程,就一種已知型態的影像而言,可 在步驟1025中選定-個較佳的FMF,接著並直接跳至步驟1〇45。Ca=0n, CA's Pr〇beMagic). As depicted in Fig. 6A, such a wave device, which is an early nuclear state, has an unfavorable "flat" zone. The chopper in Equation 6 is therefore not the best choice for image 4〇〇. By the way, the nonlinear difference filter produces a continuous contour by using each of the intensity variations between itself and its three upper left regions. The value of a pixel filtered by 16 (7) 1303392 becomes the absolute value of the maximum variation in the upper left area. , ./-1 As shown in Figure 7A, this filter produces an unfavorable flat area 7GG with area 6 of Figure 6A, which is therefore not the best choice for imaging. , the nonlinear gradient filter, the wave material will be repaired along the (four) straight axis where the intensity changes. - The new value of the pixel becomes the maximum absolute value between the change of the upper region and the two left regions: (8) The chopper applied to the image_ as depicted in Fig. Single mode and no flat areas in Figures 6Α and 7Α. The filter of Equation 8 is better for the image 4 〇〇 ^ application than for Equations 6 and 7. Figure 9 shows a tf image 400 derived from the filter of Equation 8 and similar to the graph of Figure 8α - FMF graph. However, the graphs of Figures 9Α and 8Α are still different, that is, the graph of Fig. 9Α (4) (remember the graph of Fig. 8Α (4)). Comparing the graphs in Figures 8Α and 9Α, the former has better reproducibility, ie, the sharper maximum value, while the latter has a broader outline. Depending on the autofocus method used, the reproducibility is more important than the width. As detailed below, the benefits of scanning autofocus methods for reproducibility tend to be more than the benefits of width, while gradient-based interpretations tend to achieve greater benefits than reproducibility. Sexual benefit ^. Part of the benefit of the FMF architecture in Equation 3 is that it is adaptable to the suitability of a given system. Other commonly used filters include nonlinear PlyWitt (N〇niine read e she), non-linear (four) gamma (10) nllnear Sigma) 'and nonlinear Solang (secret wheel s. (4), etc. as described in the present invention Among the choppers discussed, the nonlinear Loboz and the nonlinear gradient 17 1303392 are relatively simple to calculate. The Roberts is more symmetrical than the gradient, and it is often a better choice. However, since the nonlinear Loebz has a "flat" area at the off-focus position, the nonlinear gradient filter is therefore preferred for the image 400. The discussion of Figures 5A through 9A illustrates The flexibility and adaptability of the disclosed FMF architecture allows the autofocus method disclosed in the present invention to be adapted to a variety of images and systems. In addition, the same autofocus software can be parameterized and Applicable to a variety of image acquisition types (eg, infrared and video), magnification, image type (as shown in Figures 4A and 4B), and many other important properties in machine inspection systems. The description describes in detail the method of obtaining an acceptable focal length measurement; the following will describe in detail how to use the focal length measurement to achieve and maintain optimal focus. Using the FMF architecture proposed by Equation 3, the present invention reveals this. Two techniques. Although the two techniques are better, 'but the foot is not limited to this. The first technique' scans the best focus position & is nearby, scanning the camera and taking pictures. The transition between objects includes the check of the button. In the scan _, the value of _ = is compared with the maximum focal length measurement, or the value is 1 or 2 techniques, based on the gradient, the lake, Adaptive motion control to find and turn the peak focal length measurement value., Come and give = kind of practice ί 'the focus position is carefully measured for the fixed object 疋' and in the two brothers, the object In fact, the focus is maintained, even when there is a movement in the object. The first method has its own movement in the test program, and it must be in the hand, and in the _ law is in the hand t or other machine 11 It will be implemented before the visual system. The second method can be Pour = and turn around. In this case, the interpretation should be read, and the operator or control (4) can be 18 (S) 1303392, change hardware, etc. 10 is not suitable for automatically selecting one of the best FMF for a given image. The dynamic focus translation method 丨 _. First, in response to the instruction from the module, the action control is 330 to the Z stage. 335 moves to a starting position (step 1〇〇5), and captures an image of the target object (step 1G1()). The motion controller 33q then repeatedly pushes the z-table tear (step 1015) and captures The image (step _ until the Z stage 335 reaches the terminal of a predetermined scanning range in which the A is the best focus position of the false e again (decision step 102). } Each captured image can be forwarded to the module 335 for analysis by the frame grabber milk. The TMF 'such as described in Equation 3 is applied to the image collected by the step 1010 and the name is collected (step 1〇25), and the result is the state as depicted in Figure 8a. - A focal length measurement curve ugly. The image analysis module 355 analyzes whether the curve is wide 1030 (step Cong). The face can be provided with a suitable (four) basis for autofocusing on the object to be imaged. In one embodiment, the step Cong records the number of peaks - the sharpness of a single or multiple peaks, the width of the graph _, and the degree of noise. According to the decision step, if the graph 1〇3〇 cannot meet certain sub-standards (for example, as shown in Fig. 5A, there are two peaks), the other-FMF will be used for the image acquisition program, and the step ship 5 and _ are repeated. Different mFs are tried (step purchase) until the decision step _ determines that a certain graph result can meet the minimum time of autofocus. In other implementations, several FMFs are applied to the image taking material and the curve that best matches the target image is selected. After selecting the recording focal length system (fourth) and meaning, in step _ and group 355, the position of the z stage corresponding to the maximum focal length measurement value is recognized as the position surface. (In the higher noise image, the face-to-face approach may be to find 360t to find out the towel d is not the maximum focal length value.) The motion control module picks up the party's indication from the position of the module 355, and, as a reaction, 19 1303392 shows that the motion control is 330 to move the Z stage 335 to the focus position 1 (step 1 Still 5), leaving the image detector 305 focused on the object 315. For the sake of explanation, in Fig. 10, the acquisition of images and the analysis of images are separated. The actual system saves time by performing image analysis and image capture procedures in parallel. In some embodiments, the list of image types and their associated FMFs are maintained; in this case, the flow of Figure 1 can be selected in step 1025 for a known type of image - A preferred FMF, then jump directly to step 1〇45.
圖10之流輯主要困難是在於動作及影像獲取兩者職調。不過其 計算是直接了當的。其所擷取之_的大小乃是合理地較小(〜2〇〇 _ 300),且其鮮賴尋FMF龍的最錄(即,最讀距制旬乃是 有效的作法。此方法亦排除了函數最佳化程序中對單模態,凸出性 (convexity),以及初始猜測值的需求。 圖11顯示4程圖蘭’其係依據採用以梯度為基礎、具適應 性、且真時自動對焦之-實施例。其戶斤需求之硬體組件係如同前面相 關於圖3之說明所描述者。軟體組件(模组扮及36〇)分析焦距量測 值的局部行為’並判定獲取及維持對朗f要的各載台之姑及方 k程圖1100包含一個啟始程序(方塊The main difficulty in the flow of Figure 10 is the action and image acquisition. However, its calculation is straightforward. The size of the _ which is taken is reasonably small (~2〇〇_300), and it is the most important to find the FMF dragon (that is, the most read-in system is effective. This method also Eliminates the need for single mode, convexity, and initial guess values in the function optimization program. Figure 11 shows that the 4-way Turan's system is based on gradient-based, adaptive, and true The method of autofocusing is the same as that described above with respect to the description of Fig. 3. The software component (module and 36〇) analyzes the local behavior of the focal length measurement' and determines Acquiring and maintaining the abundance of each of the stages of the langf.
-…,及 113〇),j 跟隨的是-侧練(方塊114G,⑽,謂,㈣及U8G)。系统 會,例如,反應於-仙者指令或祕重置而停止循環迴路的輪 在啟始之前,控制系統32G接受-個Z載台啟始位置,由此位置? 開始捕《彡像,-個減難_整魅,⑽速度絲像步⑽ 移動Z載台335,以及將取像步驟分離開來的一個時間增量τ 1105)。此初始位置可為利用圖的演譯法麵所選出的位置1〇7 程序由步驟im處啟始,此時z載台335將影像侧器3多 一個啟始位置(例如,位於假定的最佳雌位置上方)。控制系統: 1303392 控制Z載台335的移動,將影像侧器3〇5移動到—個啟始位置(步 驟1_ ’並且獲取第—個影像(步驟糊。影像分析模組奶接著 便利用f«像絲-FMF岭料_健爾驗(倾測卜在 步驟1130之後或其期間,動作控制器33〇造成z載台奶以資料_ 中所指定_始速度,開始朝向最佳對焦的方向移動(步驟1⑽)。此 動作會持續-個時間增量Δί,其後框抓取器325便捕捉下一個影像(步 驟 1150)。 >在步驟簡之令,影像分析模組355利用對最近所捕捉之影像 %用FMF而再度叶异—個焦距量測值。模組355接著由二或更多個 最新焦距量啦(步驟⑽),目麵度,以及時間增量蚊中計算出 -個焦距制郷度^絲距量難梯魏f是卿梯度的一個合 =的估計。影像分析模組355接著依據梯度而計算—個新的對焦面調 整速度及/或時間增量(步驟118〇)。 下面說明依據步驟1180計算新速度及時間增量的數種方法 控 =譯法。參相3,演譯法個理想的假設 ° 335的速度)。在此情況下,Z載台335的動力學係如下式: dz (9) dt 其中v為步驟1180中所要計算的诘库m 的^γT —連度(圖U),且可能依焦距量測值F 的gradF(v) =狀(以)/&而定: (10) ί v-v(gradF(z?r)) 另-_化的假設是π靜止的,亦即,其並不顯性地依時間t 而^在此情況下,該載台應向增加FMF的方向而移動,亦即,v 的付號應與梯度的舰相同,且在料情況之巾v的數值乃是正比於 1303392 梯度: v = /?gradF(z) ⑴) 其中/Η系為等比例性(proportionality)的一個係數。根據本發明之 數個實施例,此健過簡化的模型可以提供發展數種真時自動對焦演 譯法的基礎。此些演譯法執行的有效性,部份有賴於近來在以電腦為 基礎的動作控制器上的進展(例如,脑麵㈤職他,,-..., and 113〇), j follows - side training (blocks 114G, (10), said, (four) and U8G). The system will, for example, react to the wheel that stops the loop in response to the - fairy command or secret reset. Before starting, the control system 32G accepts the start position of the Z-stage, thereby the position? Begin to capture the "image", a reduction _ enchantment, (10) speed wire step (10) move Z stage 335, and a time increment τ 1105 separating the image capture step. This initial position can be the position selected using the translation plane of the graph. The program is initiated by step im, at which point the z stage 335 will have one more starting position for the image side device 3 (for example, located at the assumed maximum Above the good female position). Control system: 1303392 Controls the movement of Z stage 335, moves image side device 3〇5 to a starting position (step 1_ 'and obtains the first image (step paste. Image analysis module milk then facilitates f«) Like the silk-FMF ridge test, after the step 1130 or during the period, the action controller 33 causes the z-stage milk to start moving toward the best focus in the direction indicated by the data _. (Step 1 (10)) This action will continue for a time increment Δί, after which the frame grabber 325 captures the next image (step 1150). > In the simple steps, the image analysis module 355 utilizes the nearest The captured image % is again measured by FMF using a FMF. The module 355 is then calculated by two or more new focal lengths (step (10)), the eye level, and the time increment mosquitoes. The focal length system is a measure of the sum of the gradients. The image analysis module 355 then calculates a new focus plane adjustment speed and/or time increment based on the gradient (step 118〇). The following describes the calculation of several new speeds and time increments according to step 1180. Method control = translation method. Participation 3, interpretation of an ideal hypothesis ° 335 speed). In this case, the dynamics of the Z stage 335 is as follows: dz (9) dt where v is the step 1180 The ^γT-connection degree of the library m to be calculated (figure U), and may be determined by the gradF (v) = shape of the focal length measurement F (by) /&;; (10) ί vv(gradF(z ?r)) The assumption of another - _ is π stationary, that is, it does not significantly depend on time t and ^ in this case, the stage should move in the direction of increasing FMF, that is, v The payout should be the same as the gradient ship, and the value of the v in the material case is proportional to the gradient of 1303392: v = /?gradF(z) (1)) where /Η is a coefficient of proportionality According to several embodiments of the present invention, this robust simplified model can provide the basis for the development of several real-time autofocus interpretations. The effectiveness of such translations depends in part on the recent use of computers. Progress on the basic motion controller (for example, the brain (five), he,
Aerotech等)。此等控制器可以提供極佳的祠服迴路,並可以非常合理 的精確度賴程式預先規朗鱗,諸如本發明之前述簡化狀麵_ 所指定者。只要影像_器總能保持在對焦的—個範圍之内,亦即, 在焦距量測值的全面峰值(非靜止)的一個吸引區域之内,則隹距量測 值咖)的時間變動(因改變影像所導致者)在某種程度上亦可予以忽 略。 在此地所揭不之控制演譯法之中,速度係被選定為片段定 值咖ece: constant)。控制系统32〇可在任何時刻改變速度V。如此, 一個g疋速度的區間即如下式·· _ 外)=色% m、 办 dt v ν ^ /、’係為獲取影像並接著計算第ζ·個焦距量測值^的時間。 此地二揭不之特幻轉法是屬重覆性者,因此只說明流程1圖Η) 115〇),叶曾^在母一次重覆之中,系統300獲取一個影像(步驟 i ^异i焦距量測值(步驟1160)及焦距量測值梯度(步棘 亚更新速度v,及/或時間增量△,(步驟謂)。在第ζ·次重 始之時,來自於 、上一夂重极的速度Vi及焦距量測值^會被記下。 U里首先〃紹依據本發明某些實施例的控制演譯法,其說明所需用到Aerotech, etc.). These controllers can provide an excellent service loop and can be scaled with very reasonable precision, such as those specified in the aforementioned simplified surface of the present invention. As long as the image _ can always remain within the range of focus, that is, within a single attraction area of the full-scale peak (non-stationary) of the focal length measurement, the time variation of the 量 distance measurement value ( It can also be ignored to some extent because of the change in image. In the controlled interpretation method that is not disclosed here, the speed is selected as the fragment value ece: constant). Control system 32 can change speed V at any time. Thus, the interval of a g疋 velocity is as follows: _ outside _ outer color = color % m, and dt v ν ^ /, ' is the time for acquiring the image and then calculating the second focal length measurement value ^. This method is a repetitive person, so it only describes the process 1 map) 115〇), Ye Zeng ^ in the mother's repeated, the system 300 obtains an image (step i ^ different i The focal length measurement value (step 1160) and the focal length measurement value gradient (step-slip update speed v, and/or time increment Δ, (step). At the time of the second and second restart, from the previous The velocity Vi and the focal length measurement value of the helium pole will be recorded. In U, the control interpretation according to some embodiments of the present invention is first described, and the description needs to be used.
22 1303392 的一些符號。本發明定義一函數·· range Ιά^Λ->ά (13) 以及下列之量·· ζ,Δζ> _載台在步進馬達計數[c]中 · 私為-載台在轉數[r]中之相對位置;、、、相對位置, 仏|〇卜阶/,]帅],其中服/r]係為載台 t, At, tt, 屯-以秒[s]計之時間及時間間^巨;梢數目; ν,ν〆' -以每分鐘之轉數[r/叫或处以計皙 vcps -以每秒中之計數[c/s]計算之速度·才k又’ w編她刪換為每 S法忒意FMF單位_之焦距量測值㈣算之擷取及 gradF _以每一計數之FMF單位[u/c]計量 量^=以二 計量ίί實鐘之槪(匪)來 圖12A至12D係分別祕加於相同影像上的四個以梯度為基礎 之自動對焦演譯法’其焦距量測值FM及速度v相對於以秒為單位之 時間之曲線圖。各演譯法皆採用與前面依圖8A相關所討論者相同的 FMF。各圖中的上方曲線圖顯示的是當動作控制器33〇將影像偵測器 305帶入對焦位置時的焦距量測值,其中之初始偵測器位置係對應於 柃間尺度上的零位置。隨著圖u之流程的進展,焦距量測值亦隨著 影像偵測為迫近最佳對焦位置而增加。圖12A至12D中之圖形顯現 的疋下面所將詳細說明的各控制演譯法之間的相對性能。 自動對焦演譯法#1 (基礎梯度,圖12A) 23 1303392 給定(輸入) 度計算之距離(由對焦位置開始在此距離内的移動應 不^這成景>像品質的可注意到的改 …22 1303392 Some symbols. The present invention defines a function ·· range Ιά^Λ->ά(13) and the following quantities·· ζ, Δζ> _ stage in the stepper motor count [c] · privately - the stage is at the number of revolutions [ Relative position in r];,, relative position, 仏|〇卜级/,] handsome], where service /r] is the stage t, At, tt, 屯 - time in seconds [s] and Time between ^ huge; number of tips; ν, ν〆' - in revolutions per minute [r / call or 皙 vcps - the speed in the count per second [c / s] Edit her to replace the FMF unit _ the focal length measurement value of each S method (four) calculate the 撷 及 及 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (匪) Figure 12A to 12D are four gradient-based autofocus interpretations of the same image, the focal length measurement value FM and the velocity v versus the time in seconds. . Each of the translations uses the same FMF as discussed above in connection with Figure 8A. The upper graph in each figure shows the focal length measurement when the motion controller 33 brings the image detector 305 into the in-focus position, where the initial detector position corresponds to the zero position on the inter-scale. . As the flow of Figure u progresses, the focal length measurement increases as the image is detected as approaching the best focus position. The graphical representations of Figures 12A through 12D show the relative performance between the various control translations as will be described in more detail below. Autofocus Interpretation #1 (Basic Gradient, Fig. 12A) 23 1303392 Given (input) degree calculated distance (the movement within this distance from the focus position should not be this) > like quality can be noticed Change...
Axv0[RPM] -初始速度。 幻 a\ r c μ rs 速度計算之係數。 由[c/s]至[r/m]之轉換因數 零重覆(啟始): 2. 1· $速度V。開始(或變化)動作。 獲取影像並計算焦距量測值 第/次重覆: 1. 計算私 μΑχ 並等待秒。 2·獲取影像並計算焦距量測值巧。 十^Γ, 並將載台速度變動為此數值。 4. 進至/+1重覆。Ζ 此係一種直接了當式的梯度演譯法。 為以目前速度〜覆蓋距離&所需 ^的,係 譯法的-個潛在的缺點為,當^ 此演 法接受的長時間而被=的 自動對焦演譯法#2(限定^,圖12B) 給定(輸入): 壯在此轉__應 vJRPM]-初始速度。 丈》 rc μ r s cm 速度計算之係數。 由[C/S]至[r/m]之轉換因數 24 1303392 △,max [s]及[s] - Δί之限定數值。 零重覆(啟始): 1·以速度V。開始(或變化)動作。 2·獲取影像並計算焦距量測值/7。。 第/次重覆: 次 ( Αχ λ 1. 計算=range|^min,j^,△,職並等待軋秒。 2· 獲取影像並計算焦距量測值g。 3· 計异 ' =叫並將載台速度變動為此數值。 4. 進至/+1重覆。 這裡’ 被限定在[&min,&maJ範圍内,且差值巧-丨被除以 (V!以計算梯度,其中心是為以每秒計數來計算之速度。此演 厚十的一個潛在的缺點為’其速度值並未有限定,因此極小的速度可 月bi致萄含雜訊的梯度計异(若V/&max«〇),而非常大的速度則可能將 載台移得太遠(若v^min »1)。除了此些區域以外(亦即,當既非太 小亦非太大時),此演譯法皆可展現其最佳之效能。 ’ 自動對焦演譯法#3(限定|v」,圖12C) 給定(輸入): 心W -梯度計算之距離(由對焦位置開始在此距離内的移動 會造成影像品質的可注意到的改變)。 …Axv0[RPM] - Initial speed. Magic a\ r c μ rs The coefficient of speed calculation. Conversion factor from [c/s] to [r/m] Zero repeat (start): 2. 1· $speed V. Start (or change) the action. Get the image and calculate the focus measurement. / Repetition: 1. Calculate the private μΑχ and wait for seconds. 2. Acquire the image and calculate the focus measurement value. Ten ^ Γ, and the stage speed is changed to this value. 4. Go to /+1 repeat. Ζ This is a straightforward gradient interpretation. For the current speed ~ coverage distance & required ^, the potential drawback of the translation method is that when this method is accepted for a long time, the autofocus interpretation method #2 (qualified ^, figure 12B) Given (input): Strong in this turn __ should vJRPM] - initial speed. 》 rc μ r s cm The coefficient of speed calculation. Conversion factor from [C/S] to [r/m] 24 1303392 △, max [s] and [s] - Δί limit values. Zero repeat (start): 1· at speed V. Start (or change) the action. 2. Obtain the image and calculate the focal length measurement value / 7. . The first/time repeat: times ( Αχ λ 1. Calculate = range|^min, j^, △, and wait for the second. 2) Obtain the image and calculate the focal length measurement g. 3· Counting differently Change the stage speed to this value. 4. Go to /+1 Repeat. Here 'is limited to [&min,&maJ, and the difference is -丨 is divided by (V! to calculate the gradient) The center is the speed calculated in counts per second. One potential disadvantage of this thickness ten is that 'the speed value is not limited, so the minimum speed can be used to calculate the gradient of the noise. If V/& max«〇, and very large speeds, the stage may be moved too far (if v^min »1). Except for these areas (ie, when it is neither too small nor too Great time), this translation can show its best performance. 'Autofocus interpretation #3 (limited | v), Figure 12C) Given (input): Heart W - Gradient calculated distance (by focus) The movement of the position within this distance will cause noticeable changes in image quality). ...
v〇[RPM]-初始速度。 a——-速度計算之係數。 mu_ r s A - *[c/s]S[r/m]之轉換因數。 U 1X1 計數0 零重覆(啟始): 1.以速度V。開始(或變化)動作。 2·獲取影像並計算焦距量測值F。。 第/次重覆·· 25 (S.) l3〇3392 1. 計算△[·=#並等待△[·秒。 K-il 2. 獲取影像並計算焦距量測值f。 3·將載台速度改變為依下列步驟算所得之數值^ : a· 計算 〇V〇[RPM] - initial speed. a——-The coefficient of speed calculation. Mu_ r s A - *[c/s]S[r/m] conversion factor. U 1X1 Count 0 Zero Repeat (Start): 1. At speed V. Start (or change) the action. 2. Acquire the image and calculate the focal length measurement value F. . No./Repeat·· 25 (S.) l3〇3392 1. Calculate △[·=# and wait for △[·seconds. K-il 2. Obtain the image and calculate the focal length measurement f. 3. Change the stage speed to the value calculated according to the following steps ^ : a· Calculation 〇
AxsgnvM b.計算hhrange^Ln狀|,|v|mJ 〇 C· 計算 ' =卜,.卜§11之。 d_ 進至/+1重覆。 此演譯法的主要特點係為其在速度的絕對值上之限制,但其同時 亦維持正號。在此情況下,△“在芒,香的限制之内。、4 X 丨丨min 實驗顯示此演譯法在,·的翻範圍㈣表現合理良好的一 為。不過,-個潛在的問題是,在植值的整個範圍内°並財可以= ^良好工作的參數存在。此演譯法因鱗可能對特定分_影像最為 有用。不W像的焦距量啦需要林同_參數,例如 4B中所顯示者。 圓 ^ ^個演譯法係依據梯度的符號’而非梯度本身,因此並不依賴 焦距ϊ測值的範圍。 ' 自動對焦演譯法#4(常定|v」= r,圖12d) 給定: 心[c]-梯度計算之距離(由對舞位晉閱 不會造成影像品質的改變)。、、、置開始在此距離内的移動應 F [RPM]-速度之絕對值。 ab^_lβ速度計算之係數。 Θ ‘由[(^]至[1*/1^]之轉換因數。 零重覆(啟始)·· 1.計算A。 v 26 (S ) 1303392 2·以速度+Γ開始(或變化)動作。 3_獲取影像並計算焦距量測值F。。 第次重覆: 1 ·專待Δί秒。 2·獲取影像並計算焦距量測值6。 3. 科1喊㈤並將載台速度改變為此數值(若 4·進至/+1重覆。 此演譯法的-個潛在的優點是為其對FMF數值之範圍内的不依 、,生,及其在梯度迫近―個最小值(完全未對焦之_的吸引區域之 =之處的良好行為。其代價是為在—個對焦範_ _同速度⑺, 旦一中的相對較大梯度則可容許較高的速度。 圖13顯示前述演譯法在物件於χγ平面移動的期間維持對焦的 ^效性。系統300(圖3)為物件315的一個區域捕捉一個影像13〇〇。 ^载台350接著便以五㈣咖的速度而移動,此為某些型態的檢查 所㊉見的速度。在移動之前,自動對焦被關閉而物件仍則相對於載 ^ 350的表面而傾斜,而在物件315水平移動時使得影像細器奶 失焦。錢300在義之後接著便概外的影像测。此測試 接者便被重覆,此時自鱗㈣細啟。其結果之影像及影像 1305之_對比便可舰本發·—揭示方法的有雌。 圖14顯示應用於圖13中之自動對焦之膽,當XY載台35〇將 物件3b於座標其間移動時之動態反應。靠近目的地的較低焦距量測 值(<2〇)係為載台突然停止,而非演譯法的不穩定性,所造成的結果。 應用缺险人缺陷偵纽 f ^顯示一測試系、统_,其包括有習知之板請5及依據本發 月貝施例之才欢查系統。板⑽5係與圖工及2中之板刚類 ’八中並以相同或相似編號的元件標示相同或相似的元件。板15〇5AxsgnvM b. Calculate hhrange^Ln-like |, |v|mJ 〇 C· Compute '=Bu,. §11. D_ Go to /+1 repeat. The main feature of this interpretation is its limit on the absolute value of speed, but it also maintains a positive sign. In this case, △ "within the limits of awning, fragrant. 4 X 丨丨min experiment shows that this translation is in a reasonable range of performance. (B). However, a potential problem is In the whole range of the plant value, the value of the good can be = ^ the parameters of good work exist. This translation method may be most useful for specific sub-images. The amount of focal length of the image is not the same as the _ parameter, such as 4B The one shown in the circle. ^ ^ The interpretation method is based on the gradient symbol ' instead of the gradient itself, so it does not depend on the range of the focal length measurement value. ' Autofocus interpretation method #4 (常定|v" = r , Figure 12d) Given: Heart [c] - Gradient calculation distance (no change in image quality caused by the reading of the dance position). , , , and set the movement within this distance should be F [RPM] - the absolute value of the speed. The coefficient of ab^_lβ velocity calculation. Θ 'Conversion factor from [(^] to [1*/1^]. Zero repeat (start)·· 1. Calculate A. v 26 (S ) 1303392 2. Start with speed + ( (or change) Action 3_Get the image and calculate the focal length measurement value F. The first repetition: 1 · Special treatment Δί seconds. 2·Acquire the image and calculate the focal length measurement value 6. 3. Branch 1 shout (five) and the stage speed Change this value (if 4·into/+1 repeats. A potential advantage of this translation is that it does not depend on the range of FMF values, and it is imminent in the gradient - a minimum (Good behavior at the point where the attraction area of the _ is not in focus. The cost is that a higher speed can be tolerated for a relatively large gradient in the same focus range _ _ the same speed (7). The aforementioned interpretation is shown to maintain focus during movement of the object in the χγ plane. System 300 (Fig. 3) captures an image 13〇〇 for an area of object 315. ^ Stage 350 is followed by five (four) coffee Moving at a speed, this is the speed at which some types of inspections are seen. Before moving, the autofocus is turned off and the object is still tilted relative to the surface of the load 350. When the object 315 moves horizontally, the image is milked out of focus. After the money 300 is followed by the original image measurement, the tester is repeated, and the scale (4) is opened. The result image and image 1305 _ contrast can be the ship's hair - revealing the method of having a female. Figure 14 shows the dynamic focus applied to the AF in Figure 13, when the XY stage 35 〇 moving the object 3b between the coordinates of the dynamic reaction. Close The lower focal length measurement of the destination (<2〇) is the result of the sudden stop of the stage, rather than the instability of the interpretation. The application of the defect detector f ^ shows a test system , _ _, which includes the well-known board please 5 and according to the application of this month, the system is inspected. The board (10) 5 series and the drawings and 2 of the board just like 'eight in the same or similar numbered components Mark the same or similar components. Board 15〇5
27 S 1303392 包括有圖1中所未顯現的一短路棒1512,但其仍屬一般所習知者。檢 · 查系統1510包括有一 IR偵測器1515(例如,一汉攝影機”其被定.♦ 位於板1505之上方以便經由框抓取器1525而對電腦152〇提供影像 資料。一激勵源,即信號產生器1530,則對板15〇5提供電氣測試信 號’或「測試向量」(“test vector,,)。測試向量將板15〇5的構造特徵加· 熱,以便產生出有用於缺陷辨識的熱特徵。 · 電腦1520控制信號產生器153〇以對板15〇5施加測試向量。此 些測試向量可以增強缺陷與其環繞特徵之間的熱對比,因而容許瓜 偵測器1515獲取較為增進的熱圖影像以供缺陷的偵測及分析。電腦 1520更會‘令^^貞測$ 1515何時應獲取影像資料,接收並處理來自_ 於框抓取器1525的捕捉測試影像資料,並且提供一做用者介面(未 顯示)。 IR偵測裔1515應擁有極佳的溫度靈敏度。在一實施例之中,偵 測器1515係為採用一個256 χ 32〇元件的祕(録化銦,27 S 1303392 includes a shorting bar 1512 not shown in Figure 1, but it is still conventional. The inspection system 1510 includes an IR detector 1515 (e.g., a Han camera) that is positioned above the board 1505 to provide image data to the computer 152 via the frame grabber 1525. An excitation source, The signal generator 1530 provides an electrical test signal 'or a test vector' to the board 15〇5. The test vector adds heat to the structural features of the board 15〇5 to generate a defect for identification. The thermal characteristics of the computer 1520 control signal generator 153 施加 apply a test vector to the board 15 〇 5. These test vectors can enhance the thermal contrast between the defect and its surrounding features, thus allowing the melon detector 1515 to obtain more enhanced The heat map image is used for the detection and analysis of the defect. The computer 1520 will further determine when the image data should be acquired, receive and process the captured test image data from the frame grabber 1525, and provide a User interface (not shown) IR detector 1515 should have excellent temperature sensitivity. In one embodiment, detector 1515 is a 256 χ 32 〇 component (recorded indium,
Antmomde)偵測器的一部IR對焦面陣列熱影像攝影機(ir ―祕咖Antmomde) an IR focus plane array thermal image camera (ir - secret coffee)
Array Thermal lmaging Camera)。此攝影_最低溫度錄度係低於 ο·度c。某些實施例中則包含了多部的IR偵測器,例如,缺陷偵 測用的相對較低放大率的攝影機,及缺陷侧及分析用的較高放_ 大率的IR攝影機。額外的攝影機亦可用來增加檢查面積,因而增加 檢查頻寬。 化號產生器1530對短路棒105提供一個源極測試向量&,對短 路棒120提供-個閘極測試向量&,並對短路棒⑸2提供一個共 通測試向量Vtc。再度參考圖2,某些型態缺陷(例如,開路230,233 與235)的測試需要電晶體2〇〇被開啟以便在對應之源極及共通線⑴ 與212之間產生一個信號通路。信_生器153〇如此便可⑽由短路 杯120)將DC測试向s vTC供應予閘極線125,如此可開啟電晶體 28 1303392 200,同時並對源極與共通線供應測試向量^及^。 遍Γ為電容21G會轉錢電流,若短路226不存在,即便電晶體 :^施以順向偏壓,-個未有缺陷的像素⑽仍不會有直流電流通 U中。源極與共通線測試向量~及&因此即被選取以產生可以 、過電谷210的-個AC信號。Ac信號的頻率與板⑽所提供的負 載相匹配’贿對板15〇5的辨傳_獻,而這可以加速加熱, 因而亦同時加速了測試的進行。將功率傳輸放至最大亦容許以較低的 供應麵進行職,如此即較不會損傷靈敏的元件。同樣重要的是, 如同下面所將詳細制的’触速的加細及蚊縣敝時控的組 口可以提供增進的熱對比。在一實施例之中,源極測試向量~由零 至30伏以大約70KHz的頻率紐,而共通線測試向量&則在接地 電位上。 本發明某些實施例係於源極線115與共通線212,源極線⑴ 與閘極線125,以及閘極線125與共通線212之間提供AC或DC測 試向量。其他之實施例則採用AC信號來開啟電晶體。AC及DC 測試向量關時供應’如同前述,比之只畴_ —種養之波形(例 如’僅為DC ’ AC,或脈衝DC測試向量)的作法,可以達成更為複雜 的測試。 圖16顯示依據本發明一實施例可提供增進之可測試性之一板 1600之局部。板1600 一般包含有一個陣列的像素16〇5,其各被連接 至一源極線1610, 一閘極線1615,以及一共通線162〇。四組短路棒(源 極棒1625,閘極棒1635與共通棒163〇)容許檢查系統,諸如圖15中 所顯示者,得以對像素16〇5的次集進行測試。另一種作法,四組同 一型悲的棒(例如,四條源極棒或四條閘極棒)可被用來向選定的列或 行進行充能。在對某些特徵進行充能的同時亦對其相鄰特徵進行去 忐,可以增進影像的對比。在其他的實施例之中則只提供成組的一或 29 1303392 二種型態的短路棒。例如,其可能只有—條棒1635與_條共通: 棒1630,在此情況下,像素_可分四組的列而被激勵。此外:、一: 或更多組的短路棒亦可包括多於或少於四條的短路棒。 圖17顯示依據本發明另-實施例之一 LCD板17〇〇之局部。板 1700 -般包含有-個陣列的像素17〇5,其各被連接至一源極線· 1710 ’ -閘極線1715 ’以及-共通線172〇。源極棒1725,閘極棒173〇 與共通棒1735被分段以令-檢查系統得以―:欠—個地對測試區域(例 如’區域1740)供應電源。若依另_種作法,更少型態的棒需要被分 段。例如,若源極及閘極棒被分段,則共通棒便不需要分段便能對區 域1740供應電源。區域174〇可以具有與用來捕捉影像的R偵測器鲁 相同的視野。一値給定區域内的像素17〇5之數目通常是遠多於此簡 單例子中所描繪者。 圖18A係為一曲線圖1800,其顯示一說明性質之樣本缺陷及其 環繞區域之熱反應。此樣本缺陷被假設是為具有約二萬五千歐姆阻值 R ’缺陷及相關聯電極整合約l〇]2m3的體積V,以及約1〇-5m2的曝露 表面積A的一個短路。電極的比熱(spedflc heat)Cp假定約為 2.44xl〇6J/m3K,且週圍空氣的對流熱傳導係數hair約為1〇w/m2K。就 約為6微瓦(milliwatt)的施加功率而言,在缺陷之處的平衡溫度為初始 溫度以上的約6.5度C。下面的熱傳導模型即顯現了樣本缺陷反應於馨 所施加之功率的熱反應: VCp = PaPPlied ^ " T^ir ) (1 4) 其中: V為缺陷及相關聯電極之整合體積;Array Thermal lmaging Camera). This photography _ minimum temperature recording is below ο·degree c. In some embodiments, a plurality of IR detectors are included, such as relatively low magnification cameras for defect detection, and high-amplitude IR cameras for defect side and analysis. Additional cameras can also be used to increase the inspection area, thus increasing the inspection bandwidth. The chemical generator 1530 supplies a source test vector & to the shorting bar 105, a gate test vector & to the short bar 120, and a common test vector Vtc to the shorting bar (5) 2. Referring again to Figure 2, testing of certain types of defects (e.g., open circuits 230, 233, and 235) requires transistor 2 to be turned on to create a signal path between the corresponding source and common lines (1) and 212. The signal 153 can be used to (10) supply the DC test to the s vTC to the gate line 125 by the shorting cup 120), so that the transistor 28 1303392 200 can be turned on, and the test vector is supplied to the source and common lines. And ^. Passing through the capacitor 21G will transfer the current. If the short circuit 226 does not exist, even if the transistor is biased in the forward direction, the undefective pixel (10) will not have a direct current through the U. The source and common line test vectors ~ and & are thus selected to produce an AC signal that can pass over the valley 210. The frequency of the Ac signal matches the load provided by the board (10). The bribe is on the 15th, and this accelerates the heating and thus speeds up the test. Placing the power transmission to the maximum also allows for a lower supply surface, so that less sensitive components are not damaged. It is also important that the details of the 'speed of contact' and the Mosquito time control set as detailed below provide an enhanced thermal contrast. In one embodiment, the source test vector ~ is from zero to 30 volts at a frequency of about 70 kHz, and the common line test vector & is at ground potential. Some embodiments of the present invention provide an AC or DC test vector between source line 115 and common line 212, source line (1) and gate line 125, and gate line 125 and common line 212. Other embodiments use an AC signal to turn on the transistor. The AC and DC test vectors are supplied at the same time as the above, and more complex tests can be achieved than the only waveforms (for example, 'only DC' AC, or pulsed DC test vectors). Figure 16 shows a portion of a board 1600 that provides enhanced testability in accordance with an embodiment of the present invention. The board 1600 typically includes an array of pixels 16A5 each connected to a source line 1610, a gate line 1615, and a common line 162A. Four sets of shorting bars (source bars 1625, gate bars 1635 and common bars 163 〇) allow an inspection system, such as that shown in Figure 15, to test a subset of pixels 16〇5. Alternatively, four sets of the same type of sad rod (e.g., four source rods or four gate rods) can be used to charge the selected column or row. When some features are recharged, the adjacent features are also removed, which can improve the contrast of the images. In other embodiments, only one set of one or 29 1303392 two types of shorting bars are provided. For example, it may only be that the bar 1635 is common to the _ bar: the bar 1630, in which case the pixels _ can be excited by being divided into four groups of columns. In addition: one: or more sets of shorting bars may also include more or less than four shorting bars. Figure 17 shows a portion of an LCD panel 17 in accordance with another embodiment of the present invention. The board 1700 typically includes an array of pixels 17A5, each connected to a source line 1710'-gate line 1715' and a common line 172'. The source rod 1725, the gate rod 173A and the common rod 1735 are segmented to enable the inspection system to supply power to the test area (e.g., 'area 1740'). If you follow a different approach, fewer types of sticks need to be segmented. For example, if the source and gate bars are segmented, the common bar can supply power to the zone 1740 without the need for segmentation. The area 174A may have the same field of view as the R detector used to capture the image. The number of pixels 17〇5 in a given area is typically much larger than that depicted in this simple example. Figure 18A is a graph 1800 showing a sample defect of a descriptive nature and its thermal response around the region. This sample defect is assumed to be a short circuit having a volume V of about 25,000 ohms of resistance R' defect and associated electrode integration of about 1 〇2 m3, and an exposed surface area A of about 1 〇-5 m2. The spedflc heat Cp of the electrode is assumed to be about 2.44 x 1 〇 6 J/m 3 K, and the convective heat transfer coefficient hair of the surrounding air is about 1 〇 w/m 2 K. For an applied power of about 6 microwatts, the equilibrium temperature at the defect is about 6.5 degrees C above the initial temperature. The following heat transfer model shows the thermal reaction of the sample defect in response to the power applied by Xin: VCp = PaPPlied ^ " T^ir ) (1 4) where: V is the integrated volume of the defect and associated electrode;
Cp為缺陷及相關聯電極之平均比熱; T⑴為缺陷隨以秒计之時間之溫度,依克氏計數; 30 1303392 ⑴為隨以秒計時所施加之電源激勵; hair為週圍空氣的對流熱傳導係數; A為缺陷及相關聯電極整合曝露表面積;以及 Tair為週圍空氣之溫度或初始溫度(例如,約3〇〇κ)。 式(Η)實際上表示供應至缺陷區域的功率,在—個給定的時刻, 係等於缺顏酬魏之神與發散進人週遭環境之功率的和。初始 之時,當缺陷區域與週遭環境間的溫度差為最小時,式中之第一加項 即主導了整辦式。隨著缺陷區域溫度的上升,第二加項便逐漸、 其影響。 " 圖1805將樣本缺陷區域181〇及其週圍區域1815作為一個方塊 的集合而舰,其每-個方塊皆代表由—影像像素所記錄下來的影像 強度。為了說明容易起見,圖18〇5將缺陷區域181〇作為一個單一像 素來顯現。圖1800則假設約有六微瓦被施加在源極及閘極之間,其 時間足夠缺陷區域1810〜其為源極及閘極線之間的一個短路〜由 約為300K的初始熱平衡溫度Τι上升至約為3〇6·5Κ的最終平衡溫度 TEF。在此特定條件之下,就一個典型的主動板而言,橫越整個溫度 窗口的時間約需要〇·1—0.2秒。 弟條反應曲線1820顯現了缺陷區域181〇的熱反應。圖18〇〇 的垂直軸代表反應曲線1820其初始溫度乃與最終平衡溫度tef之間 的溫度開展之溫度百分比。水平軸則表示時間,以熱時間常數1來表 示。熱時間常數τ係為缺陷區域181〇的溫度由一給定溫度至最終平 衡溫度TEF上升其整個範圍的63.221%所需要的時間。為了實際上之 目的,缺陷溫度定為四或五個時間常數τ之後的最終平衡溫度。 環繞著缺陷區域1810的區域1815的熱反應會不同於缺陷區域181〇 的熱反應。若缺陷為短路,·來自區域181〇的熱會擴散進入區域1815, 31 1303392 致使區域1815的溫度隨著缺陷i8i〇而上升。不過,區域1815的溫·· 度上升會落後於缺陷區域181〇,並且會升至比缺陷181〇為低些的最· 終熱平衡溫度。依據某些實施例所施加的測試向量可在區域181〇與 咖之間提供溫度對比的增加,以容許汉影像祕得以更為容易地 侍出缺陷特徵。IR檢查系統接著便應用獨特的影像獲取時間控制程、 序’以便遠在缺陷區域⑻〇到達最終平衡溫度ΤΕρ之前捕捉測試影、 像貝料。(若缺陷區域1810為一開路,則區域181〇的溫度便會落後 於環繞區域1815者,但仍會逐漸到達一個最終平衡溫度。) 圖18B之曲線圖1830顯示可於缺陷及其環繞區域之間增強熱對 比之测減向置及影像獲取時間控制。圖脱❹包括一個熱反應曲線鲁 184〇 ’其顯現缺陷181G反應於測試向量而反覆加熱及冷卻的情形。 圖MB更包括一對波形1“八(^及ΕχατΕ,其與圖183〇共用一個共 同的日宁間刻度。波形iMAGE的高側部份代表區域181〇與1815的ir 〜像進行捕捉期間的時間窗口。在每一個參考窗口 的期間,有 一或多個參考影像被捕捉,而一或多個測試影像則於每一個測試窗口 咖的期間被捕捉。波形ΕχατΕ的高側部份1855代表測試向量被 知加至缺陷181〇以將熱對比導入缺卩自181〇與其環繞區域⑻5的時 間期間。 ^ 為了要捕捉測試影像,一個檢查系統(例如圖15中的檢查系統 510)於日寸間1855的期間内將測試向量施用於受測元件上。檢查系統 接著便遠在目標特徵到達最終熱平衡溫度瓜之前捕捉缺陷區域的一 或多個IR影像。 有日守可能需要將最高溫度(亦及,反應曲線184〇的峰值)維持在初 ^里度1^至隶終平衡溫度TEf間差異的95%以下。在某些情況之下, 皿度甚至可能會危及DUt的功能性。溢度的最佳上限因此便隨 著不同的DUT ’測試程序等而變動,但在許多情況之中最好應低於 32 !3〇3392 86.5%。實驗資料所建議的是當最高溫度不超過初始溫度至最終平 · 衡溫度TEF之間差異的63.5%時(亦即,在過完一個時間常數以前), ; 即可以獲得極佳的結果。加熱/取像的步驟被重覆數次,其結果則被平 均或整合,以便減低雜訊的影響。反應曲線1840的極大與極小峰值 應充份分開,以便選定的偵測器能夠解出溫度差。 ' 缺陷1810可以被加熱至較南的溫度’例如,持續三或四個時間 . 苇數’在此情況下’影像仍能退在缺陷181〇達到最終平衡溫度TEp 之前被取像。由於加熱需要時間,選擇相對較低的最大溫度仍能使測 試加速進行。此外,被選定來將影像對比放至最大的測試電壓,若施 加日守間太長’仍可能會將區域⑻〇及⑻5的溫度升高至足以損壞靈_ 敏讀的程度。在此情況下,測試向量的施加時間便制足以達成熱 對比的需求程度但仍不會將區域麵及⑻5的溫度升告到某些最高、 溫度以上。 π他用的刿試向量部份依 «n 兩具有 皿解析度的液晶顯示器(LCD)之主動板的一實施例之中, ^⑽波侧_部份代表當未有施_向量的約施s的時間 ❿ 二其—部份1855則代表AC源極與共通測試向量以約7〇KHz 的頻率由零振紅3()伏_編s的時間綱。 一對應區域的影像強度。^如,度值則又代表的 取器1525騎—蝴、L錢⑽之中’框抓 強度數值。 〜像而向電腦⑽發送-個陣列的像素 某些習知之檢查系統將_ 的影響。經辦均後的f序列的影像加以平均,以便減低雜訊 便辨識其麵,而此叙厂象接著便與—個參考影像互相比對,以 Ρ表不缺陷的存在。本發明前述之方法及系 33 (S ) 1303392 統可被用來產生增強的測試及參考影像。 本發明-實施例制—種影像讎以替代習知的平理 將於式is巾加以定義的此種影像轉換,被施用於 像及-個序列的參考影像兩者之上。其結果之經轉換過 影像Ιτ及IR接著便進行崎,雜_其差異。 ^考Cp is the average specific heat of the defect and associated electrode; T(1) is the temperature of the defect in seconds, according to the Kjelda count; 30 1303392 (1) is the power supply excitation applied in seconds; hair is the convective heat transfer coefficient of the surrounding air A is the integrated surface area of the defect and associated electrode; and Tair is the temperature or initial temperature of the surrounding air (eg, about 3 〇〇 κ). The formula (Η) actually means that the power supplied to the defective area is equal to the sum of the power of the god of the absence and the power of the environment that is diverging into the environment at a given moment. Initially, when the temperature difference between the defect area and the surrounding environment is the smallest, the first addition in the equation dominates the whole. As the temperature of the defect area increases, the second additive gradually becomes affected. " Figure 1805 shows the sample defect area 181A and its surrounding area 1815 as a set of squares, each of which represents the intensity of the image recorded by the image pixels. For the sake of convenience, Fig. 18A shows the defect area 181A as a single pixel. Figure 1800 assumes that about six microwatts is applied between the source and the gate for a time sufficient for the defect region 1810 to be a short between the source and the gate line - an initial thermal equilibrium temperature of about 300K. It rises to a final equilibrium temperature TEF of about 3〇6·5Κ. Under this particular condition, for a typical active board, the time to traverse the entire temperature window takes approximately —1 - 0.2 seconds. The strip reaction curve 1820 reveals the thermal reaction of the defect region 181〇. The vertical axis of Fig. 18A represents the temperature percentage at which the initial temperature of the reaction curve 1820 is between the temperature and the final equilibrium temperature tef. The horizontal axis represents time and is expressed as a thermal time constant of one. The thermal time constant τ is the time required for the temperature of the defect region 181 由 to rise from a given temperature to the final equilibrium temperature TEF by 63.221% of its entire range. For practical purposes, the defect temperature is set to the final equilibrium temperature after four or five time constants τ. The thermal reaction of the region 1815 surrounding the defect region 1810 will be different from the thermal reaction of the defect region 181〇. If the defect is a short circuit, heat from region 181 扩散 will diffuse into region 1815, 31 1303392 causing the temperature of region 1815 to rise with defect i8i. However, the temperature rise of the region 1815 lags behind the defect area 181 〇 and rises to a lower final heat balance temperature than the defect 181 。. The test vectors applied in accordance with certain embodiments may provide an increase in temperature contrast between the regions 181 and the coffee maker to allow the Chinese image to more easily serve the defective features. The IR inspection system then applies a unique image acquisition time control sequence to capture test shadows, like bedding, far before the defect area (8) reaches the final equilibrium temperature ΤΕρ. (If the defect area 1810 is an open circuit, the temperature of the area 181 落后 will lag behind the surrounding area 1815, but will gradually reach a final equilibrium temperature.) The graph 1830 of Figure 18B shows the defect and its surrounding area. The measurement and subtraction orientation and image acquisition time control between the enhanced heat contrast. The graph dislocation includes a thermal reaction curve Lu 184 ’ which shows that the defect 181G reacts to the test vector and is repeatedly heated and cooled. Figure MB further includes a pair of waveforms 1 "eight (^ and ΕχατΕ, which share a common day-and-nine scale with Figure 183. The high-side portion of the waveform iMAGE represents the region 181〇 and 1815 of the ir~ image during capture Time window. During each reference window, one or more reference images are captured, and one or more test images are captured during each test window. The high side portion 1855 of the waveform ΕχατΕ represents the test vector. It is known to add to the defect 181〇 to introduce the thermal contrast into the time period from the 181〇 to its surrounding area (8) 5. ^ In order to capture the test image, an inspection system (such as the inspection system 510 in Figure 15) is 1855 The test vector is applied to the device under test during the period. The inspection system then captures one or more IR images of the defect area well before the target feature reaches the final thermal equilibrium temperature. The day-to-day defensive may require the highest temperature (also, The peak value of the reaction curve 184〇 is maintained below 95% of the difference between the initial 1 degree and the end-of-end equilibrium temperature TEf. In some cases, the dish may even jeopardize the work of the DUt. The best upper limit of the overflow is therefore varied with different DUT 'test procedures, etc., but in many cases it should be better than 32 !3 〇 3392 86.5%. The experimental data suggests the highest temperature. Not exceeding 63.5% of the difference between the initial temperature and the final flat temperature TEF (that is, before a time constant is completed); that is, excellent results can be obtained. The heating/image taking steps are repeated. The results are averaged or integrated to reduce the effects of noise. The maximum and minimum peaks of response curve 1840 should be sufficiently separated so that the selected detector can resolve the temperature difference. ' Defect 1810 can be heated to The temperature in the south 'for example, lasts three or four times. The number of turns 'in this case' can still be taken back before the defect 181 〇 reaches the final equilibrium temperature TEp. Since heating takes time, choose a relatively low maximum The temperature still accelerates the test. In addition, it is selected to bring the image contrast to the maximum test voltage. If the application time is too long, the temperature of the areas (8) and (8) 5 may still be raised enough to damage. _ The degree of sensitivity reading. In this case, the application time of the test vector is sufficient to achieve the degree of thermal contrast but still does not raise the temperature of the area and the temperature of (8) 5 above some maximum temperature. In an embodiment in which the test vector portion is in accordance with the active plate of a liquid crystal display (LCD) having a resolution of the dish, the ^(10) wave side _ portion represents the time when the s vector is not applied. Secondly, part 1855 represents the time series of the AC source and the common test vector at a frequency of about 7 〇KHz from zero to 3 () volts _ s. The image intensity of a corresponding region. ^, the value is Also representative of the 1525 riding - butterfly, L money (10) 'frame grab strength value. ~ Like to send to the computer (10) - an array of pixels Some of the conventional inspection systems will have the effect of _. The images of the f-sequences are averaged to reduce the noise, and the image is then compared with a reference image to show the existence of non-defects. The foregoing method and system 33 (S) 1303392 of the present invention can be used to generate enhanced test and reference images. The present invention - an embodiment of the image 雠 in place of the conventional symmetry, will be applied to both the image and the sequence of reference images. The result is converted to image Ιτ and IR and then the difference is made. ^ test
Γ f r H-l > 1 1 L F n i ^ j j J (15) 1 D 1代表一種影像轉換,其將框抓取器15乃所提供的十六位 7L數目,其各代表一個像素之強度,轉換為其浮點倒數①之準 倒數(9皿8^^!^186 1:0〇),下面); 2· Γ為序列的第I個影像; 3· η為序列中影像的數目; 4· F代表影像濾波,例如低通濾波,以便減低雜訊並消除阳貞 測裔、1515中有缺陷之像素所提供的資料; 5. L為對影像之應用一個搜尋表以將強度值之範圍轉換成一馨 種不同的尺度,例如,-個不同的範圍或由線性轉至二次 (quadratic);與 D為由浮點數值至十六位元數值的一種影像轉換(投鑄)。 在對一個序列的影像(測試或參考)執行式15的影像轉換時,每一 影像序列巾的每-像素強度皆被轉換為—個浮點數目。其結果所得的 影像陣列接著即以像素為基礎進行平均,以將影像整合成為一個單一 影像陣列。接著,其結果的影像陣列便進行濾波,以便降低雜訊之影 (S ) 34 1303392 響並去除與取像裝置中的有缺陷像素相關的資料。與有缺陷像素相關 的每一資料’其以一個極端的強度數值加以分辨者,即以來自代表鄰 近區域的資料的一個新的内插強度數值加以取代。 整合’濾、波後之影像陣列的強度數值被應用於可將強度數值範圍 轉換成一個不同尺度,例如,一個不同範圍或線性至二次的搜尋表 上。最後,其結果之轉換後影像陣列中的數值便由浮點數值變換回數 位數值,以便產生轉換影像工。 式15中的影像轉換被應用在一系列的測試影像及一系列的參考 影像上,以便分別產生整合的測試及參考影像1及Ir。測試及參考 影像It及IR接著便應用廣為習知的影像處理技術而進行比對,以產 生-個合成的影像。合成影像標示出測試及參考影像之間的溫度差; 未為預期的溫暖或涼冷區域即暗示缺陷的存在。 通常,短_電路會產生鱗較高的魏,因此便會㈣相對較 熱。開路的電路則減低電流,保持相對較冷,因此更難於應用瓜敎 圖像術進行取像。由本發明_實_所提供的增進之熱對比,因此 便可容許以$敏的IR _蝴_彡像,此些影像可標示出先前利Γ fr Hl > 1 1 LF ni ^ jj J (15) 1 D 1 represents an image conversion which converts the intensity of each pixel by the number of 16-bit 7L provided by the frame grabber 15 The reciprocal of the floating point reciprocal 1 (9 dishes 8^^!^186 1:0〇), below); 2· Γ is the first image of the sequence; 3· η is the number of images in the sequence; 4·F Represents image filtering, such as low-pass filtering, to reduce noise and eliminate data provided by impaired pixels in the 1515; 5. L is a search table for the image to convert the range of intensity values into one. Different sizes of fragrant seeds, for example, a different range or from linear to quadratic; and D is an image conversion (casting) from floating point values to sixteen bit values. When performing image conversion on a sequence of images (test or reference), the per-pixel intensity of each image sequence is converted to a floating point number. The resulting image array is then averaged on a pixel basis to integrate the images into a single image array. The resulting image array is then filtered to reduce the shadow of the noise (S) 34 1303392 and remove the data associated with the defective pixels in the imaging device. Each piece of data associated with a defective pixel is distinguished by an extreme intensity value, i.e., by a new interpolation intensity value from the data representing the neighborhood. The intensity values of the integrated filtered and post-image arrays are applied to convert the range of intensity values into a different scale, for example, a different range or linear to quadratic search table. Finally, the resulting values in the image array are converted from floating point values back to digital values to produce a converted image. The image conversion in Equation 15 is applied to a series of test images and a series of reference images to produce integrated test and reference images 1 and Ir, respectively. Test and Reference The images It and IR are then compared using well-known image processing techniques to produce a composite image. The composite image indicates the temperature difference between the test and reference images; the absence of the expected warm or cool area implies the presence of defects. Usually, the short_circuit will produce a higher-scale Wei, so it will be (4) relatively hot. The open circuit reduces the current and remains relatively cold, making it more difficult to image with the image. The enhanced thermal contrast provided by the present invention allows for a sensitive IR _ _ _ image, which can indicate the previous benefit
用習知IR熱圖像術所難以或不可能檢視的諸多型態的缺陷。此類缺 陷包括 'Defects of many types that are difficult or impossible to examine using conventional IR thermography. Such defects include '
什隹s叻适成的一個相對較冷的缺陷人工 ,其中顯示前述各實施例如 一條線1885代表因一開路 徵象。 缺陷定位演譯法 ‘的電流,並因此造成線路溫 此些線仍會出現在合成影像 兩線之間的短路會增加流經該些線路的電流 度的升高。如此,雖然其本身並無缺陷,此此 35 1303392 f出此錄的蝴像之部份被稱為是短路「缺陷人 /皿度。此些特徵便會出現在合成影傻What is a relatively cold defect artificial, which shows that the aforementioned implementations such as a line 1885 represent an open sign. Defect Location Interpretation ‘The current, and therefore the line temperature. These lines still appear in the composite image. Short circuits between the two lines increase the current flow through the lines. Thus, although there is no defect in itself, the part of the butterfly that is recorded in this 35 1303392 f is called a short circuit "defective person / dish degree. These features will appear in the synthetic shadow silly
Jin^ im - ,成為開路的一個「缺陷人 =」。圖敗即顯示與—開路相關聯的_個線形型態的缺陷人 測試細此便包括空間上與缺_關聯的缺陷資料與 工間上財取像物件之無缺陷區相_的缺陷人錢象資料。不幸Jin^ im - , became a "defective person =" of the road. The figure shows that the defect test of the _ line type associated with the open circuit includes the defect data associated with the space _ and the defect-free area of the work object. Like information. unfortunately
上的困難Η 20 ’其雖非依據測量所得之資料,卻可以正確地展現一 合成影像2GGG,其中顯示點狀鶴缺陷細5,線形麵缺陷厕, 以及轉角型態缺陷2015如何出現於合成影像中。缺陷人工徵象會遮 蔽缺陷的位置。本侧—實施侧和纽此-_,射以由缺陷 人工徵象之中分辨出缺陷,以達成缺陷之伽彳,定位及分析。 將缺由其相_之缺陷人工徵象中分辨出來的影像處理乃 是’局部地,有賴於如何將缺陷人工徵象資料加以分類。其處理,例 如,就點狀型態,線形型態以及轉角型態的缺陷㈣,是有所不同的。 縣胃料可齡在影像分析的綱嶋缺赌料,致使 =於精舰_進行定位。依據本發_實施_像處理演 澤法,可以分析缺陷龍及缺陷人錢象資料以對付此-問題。(在 影像的耗_,-個相__料之組合,為了簡潔之故可被稱為是 -個缺陷」;同樣地,缺陷人工徵象資料亦可稱為「缺陷人工徵象」。 不論是「缺陷」或「缺陷人讀象」,其皆是指—個被取像物件之物 理性特徵,域表物理概的影像:雜,其將會域圍中被清除掉 圖19為一合成影像_,其帽示三個代表性之缺陷,即-點狀型 態缺陷聰,-線形型態缺陷1907,以及一轉角型態缺陷·。此 些缺陷假設是具有相同的大小,但由於其各自之缺陷人工徵象⑼5, 1920及1925之故而有著不同的缺陷影像。不幸地,真正的合成汉影 像並不如崎舰分繼__人工縣,雜缺崎較位工作 (S ) 36 1303392 本發明之實施例因此即包括可以依型態而搜尋整理缺陷人工徵象的, 影像處理技術。依型態而將人工徵象加以分類的影像處理技術包含了 : 圖形辨認(pattern recognition)與形態學的分析(m〇rph〇1〇gical analysis)。A1 Bovik (2000)所編輯的「影像及視訊處理手冊」(“他論献 of Image and Video Processing”),以及 Ε· Dougherty 與 j Ast〇la (1999) · 所編輯的(「影像處理之非線性濾波器」“ N〇nlinear Filters fOT Image . Processing”)’為習於本技藝者描述了影像處理與數學形態學的理論, 其亦適用於本發明某些實施例··該兩書在此列為參考。 圖21為一流程圖,其中顯示依據本發明一實施例之一缺陷定位 /秀厚法2100。凟澤法2100接受一個合成影像21〇5,其亦可選擇性地 · 利用一個快速傅立葉轉換(FFT)低通濾波器加以濾波(步驟21〇7),其 中,缺陷貧料係被缺陷人工徵象資料所包繞。後續的處理會自動地在 缺陷人工徵象之中將缺陷資料定位出來,以便產生缺陷座標的一個清 單。在一實施例之中,合成影像21〇5係為前述型態的一 IR合成影像; 不過,命多其他型態的影像亦會將被所要定位的缺陷之人工徵象所環 繞的该些缺陷顯現出來。依據本發明的演譯法可被用來將此類目標加 以疋位。例如’由視頻光學所獲取的影像與/或核子型態實驗所顯現的 目標及目標人工徵象。 鲁 月il面所提及之Bovik參考資料中描述了灰階及二元形態學之間的 連結’其可以被應用於本發明某些實施例之中以將缺陷由其相關聯的 人工徵象中分辨出來。此一連結所依據的乃是 一影像J(x), X e D係可以 由S品限值的組合之中被重建出來的一個觀察。此種重建可以下列數學 式來表示: ® V (^) = {x E D : l{x) > v\ — 00 < v < 00 (16) 其中Θν(/)係為具有臨限彳錄準v的―灰階合成影像7之臨限值,而. 37 1303392The difficulty Η 20 ' Although it is not based on the measured data, it can correctly display a synthetic image 2GGG, which shows the point-like crane defect 5, the linear surface defect toilet, and the corner shape defect 2015 appear in the synthetic image in. Defective artifacts obscure the location of the defect. This side—implementation side and New Zealand-_, shoots out defects from the artificial signs of defects to achieve the gamma, positioning and analysis of defects. The image processing that is distinguished from the artificial image of defects by its phase is 'locally', depending on how the artificial image of the defect is classified. The processing, for example, differs in the dot pattern, the line type, and the corner type defect (4). The age of the stomach material in the county is lack of gambling in the image analysis, resulting in the positioning of the fine ship _. According to the present invention, the image processing method can analyze the defective dragon and the defective person's money image to deal with this problem. (In the combination of image consumption _, - phase __ material, for the sake of brevity, it can be called a defect); similarly, the defect artificial sign data can also be called "defective artificial sign". "Defect" or "defective person reading", which refers to the physical characteristics of an imaged object, the physical image of the domain table: miscellaneous, which will be cleared in the domain circumference. Figure 19 is a composite image_ The cap shows three representative defects, namely - dot-type defect Cong, - linear type defect 1907, and a corner type defect. These defects are assumed to have the same size, but due to their respective Defective artificial signs (9) 5, 1920 and 1925 have different defect images. Unfortunately, the real synthetic Chinese images are not as follows: _ artificial county, miscellaneous work (S) 36 1303392 implementation of the present invention Examples include image processing techniques that can be used to search for artifacts of defects by type. Image processing techniques that classify artifacts by type include: pattern recognition and morphological analysis (m〇 Rph〇1〇 Gical analysis). The "Image and Video Processing" edited by A1 Bovik (2000) and edited by Ε·Dougherty and j Ast〇la (1999) (" "Non-linear Filters fOT Image. Processing")' describes the theory of image processing and mathematical morphology, which is also applicable to certain embodiments of the present invention. The two books are hereby incorporated by reference. Figure 21 is a flow chart showing a defect positioning/showing method 2100 according to an embodiment of the present invention. The Takizawa method 2100 accepts a synthetic image 21〇5, which is also optional. Grounding is filtered using a fast Fourier transform (FFT) low-pass filter (steps 21〇7), where the defect-poor material is surrounded by the defect artifacts. Subsequent processing is automatically performed in the defect artifacts. The defect data is located to generate a list of defect coordinates. In one embodiment, the composite image 21〇5 is an IR synthesis image of the aforementioned type; however, the image of the other types is also The defects surrounded by the artifacts of the defect to be located will be revealed. The interpretation according to the invention can be used to clamp such targets, such as 'images acquired by video optics and/or Objectives and target artificial signs revealed by the nucleon type experiment. The link between gray scale and binary morphology is described in the Bovik reference material mentioned in Lu Yueil's face, which can be applied to some embodiments of the present invention. Among them is to distinguish defects from their associated artificial signs. This link is based on an image J(x), which can be reconstructed from a combination of S-value limits. This reconstruction can be expressed in the following mathematical formula: ® V (^) = {x ED : l{x) > v\ — 00 < v < 00 (16) where Θν(/) is a threshold Recording the threshold of the grayscale synthetic image 7 of v, and 37 1303392
Dcif則為影像的數域 /(x)=supveR{x€0v(/)} (17) 演譯法2100採用一種類似型式的影像重建來定義臨限值位準並 , 將之最佳化’據以獲得增進之缺陷定位效果。 種^/1车;慮波 /貝澤法(MFA,morphological filtering algorithm) 2110,將一個數目的臨限值位準中的每一個應用在經濾波後的合成影 像上。MFA 2120為每一個臨限值位準而重覆執行,其在圖中係以將 MFA 2110包繞在一個for_1〇〇p 212〇A及212〇B中來顯示,以產生一鲁 組/個以^品限值加以限定的合成影像2i25[l.j]。在每一個影像2125 之中,經;慮波後合成影像的所有其像素值皆大於或等於所應用的臨限 值位準者,全皆以一邏輯位準(例如邏輯壹)來表示,而所有其像素值 皆小於臨限值位準2115者,則全皆以第二個邏輯位準(例如邏輯零) 來表示。在一實施例之中,臨限值位準2115係以由濾波器21〇7所產 生,來自於一濾波後合成影像的像素強度值的標準差為表示單位。梯 級頻佈圖的分析(histogram analysis)被用來計算均值"及標準差σ,真 正的臨限值位準鱗於〃+ σ·:Γ,其忖為以σ為單㈣輸人臨限值位 準。下面利用圖22詳細說明MFA 2110。 ® 下一個for-loop (2130Α與2130Β)以第二個MFA 2135來處理每一 個影像2125,而其係為型態特定者。例如,就線形型態的人工徵象 而言,MFA 2135會將其他型態(例如轉角及點狀型態)的缺陷人工徵 象去除掉,只留下線形者。For-loop 2130產生出一組/個影像,其各 具有y·個線形型態的人工徵象。圖中,頂侧的影像214〇[1]包括有兩個 線形型態的缺陷:影像2125[1]的點狀及轉角型態的缺陷被去除掉了。 其餘的影像2140[2.·ζ·]可能具有更多或更少的人工徵象。下面利用图 23詳細說明MFA2135。 · 38 1303392 在一個喪終序列的操作之中,一個缺陷定位演譯法〇1八2145可 分析影像2140中的缺陷人工徵象,以便由缺陷人工徵象之中精確地 將缺陷座標215G分辨出來。下面利_ 24詳細說明特定用於線形型 態缺陷上的一個版本的DLA 2145。 圖22顯示圖21中MFA 2110之-實施例,其係被重複地施加於 合成影像2105上以便產生-個序列的z•個濾波影像2125。首先,臨 限值位準2115中之-被應用在經FFT滤波後之合成影像簡上(步 驟2·)。-個形態學閉合步驟2205(擴張之後贿)施加於步驟漏 的成果之上以將賴人卫縣加鮮祕,錢續的—鑛波處理則 將雜訊或有缺陷的侧器之像素所引起的小影像效應去除掉(步驟 2210)。MFA 2110如此便可以產生,·個影像助叫]中之一。如圖 中所顯示的,MFA2H0為臨限值位準2115中的每一個而被重覆執行。 圖23為-流糊,其中顯示圖21中型態特定·α迎之一實施例, 其可適用於線形型態缺陷人工徵象。職迎接受來自於腦2ιι〇 的處波後影像2125,並採用可將線形型態人工徵象以外的任何人工徵 象去轉的型態特定驗操作。步驟231〇係根據一人工徵象在影像 上的位置㈣錢何性質而提供鶴特定的形態學猶。例如,位處 =其型絲被預期會出現於其中之區域内的一個人工徵象便可以被 絲^其餘的人讀象中的任何細,此時便可利用數種習知補洞 技巧中的任何一種來加以填補(步驟2315)。 、主=著,_從人工徵象_及_資财導得的鶴特定的限制 2;2二二t驟232G便可對來自於步驟2315的影像進行濾波。限制 主^、’、可_人工徵象參數及範圍的-個型態特定清單。例如,在 中的線形型態人工徵象可因其圓圈型的因素(「線J非為 •真緣it ’線形型態人工徵象必須接近垂直或水平),以及复 ^乂接(例如’線形型態的人工徵象,與轉角型態缺陷不同,並未 39 1303392 有兩個相鄰邊界的交接)而得以被濾除掉。其結果之經濾波後的—_ · 影像2140中便只會包含所要型態的人工徵象。在一實施 !、 '5 ^ « 像2140具有兩個像素值:背景(0)及人工徵象(1)。以相接觸像素的區 域形式出現的人工徵象全皆被設定為1;以像素形式出現的環繞區^ 則没定為0。MFA 2100中每一方塊的執行細節對於習於影像處理二. 藝者係屬習知。如圖21所顯示,MFA 2135為每一個臨限值位準2ι 15 而被重覆執行。 MFA 2135中所應用的整套形態學操作在該實例中乃是特定針對 線形型態之缺陷,但若有必要則此些操作亦可加以修改以符合,例 如,點狀及轉角型態的缺陷。若只須對付點狀型態的人工徵象,則 _ MFA 2135便可織_於將翻影像邊制人讀象,大於特定最 大面積的人工徵象等等,其可能係相關於線形及其他型態之人工徵象 之去除。若只須處理轉角型態的人工徵象,則MFA2135便可調整適 用於將未代表具蚊最小面_交赫直_人卫縣等去除=, .MFA 2135可予修改來利用習知的影像處理技術以便選擇此類及其他 型態的人工徵象。 、 圖24顯示目21之缺陷定位演譯法(DLA) 2145之一實施例其 可利用型態特定影像之陣列214〇而為受測一物件上的缺陷產生出實籲 際座標的—個清單。DLA 2145雖鱗定針職形鶴陷人工徵 象仁亦可適應於其他型態缺陷之用途,如同習於本技藝者所可以 解的。 在弟-個步驟之t,線形缺陷濾波!! LDF _法鳩產生出一 加車歹j的z個LDF架構2405[1··ι],其每一個影像214〇各有一個ldf 木構除了型怨特定的影像214〇之外,⑽演譯法綱亦接收原始 城峰的合成影像卿,祕產生影像测的初始臨限值之數值, 可扎不用於獲取接續影像之臨限值之異的_臨限值步驟數值,以 40 (S ) 1303392 及臨限值位準之數目/(由於2140係為受臨限值限制之影像,故臨限· 值位準之數目ζ·係與影像2140之數目相同)等作為輸入241〇。 : 圖25顯不依據本發明一實施例之LDF陣列24〇5 (圖2句之連結清單陣 列。此例中應用四個臨限值位準及相關處理來產生24〇5[1]至24〇5⑷ 四個LDF帛構,雖然真實情況中的陣列的之數目可能會多些或少些。, 此些陣列具適應性而可應用於線形型態之人卫徵象,但亦可經修改而· 應用於其他型態上。每—個LDF架構羽各皆包括有下列的特性。 1· -臨限值場25GG,其可儲存細於合成影像以產生各二元 2140[/]上的臨限值位準。 2· —數場2505,其可儲存被辨識缺陷之數目w,在圖%的實籲 例中為二。 3· —影像場2510,其可儲存各二元影像2i4〇[/]。 4·缺陷架構2520[1·/|之-陣列2515,其中〕·為各影像214〇|7] 中缺陷人工徵象之數目。各缺陷架構252〇儲存各線形型態 缺陷人工徵象之頂端,或「峰值」,像素之χΑγ座標(缺 陷被假定位於靠近線形型態缺陷人工徵象頂端之處)。各缺 陷架構更包括有-像素值場2525,其可儲存對應於合成影 像2105中之峰值像素的X及γ座標。 φ 5.、線形架構2535[1·/|之-陣列253〇,各相關於對應濾波後 影像21侧中之-缺陷人工徵象。各線形架構2535包括有 一面積場(area field) 2540,其可儲存缺陷人工徵象之面積 (以像素計”一矩形場扣^紐咏如⑹巧必’其可儲存涵蓋 缺陷人工徵象之-矩形的左,頂,右及底座標;一歸屬場 (belongs-to fleld) 2550,其可儲存可將一線形型態人工徵象 與一影像之特徵關聯起來的一個線索引,該影像係以較低 的臨限值位準(未有此種線存在時為“)取得;以及一包含場 41 1303392 (contains fidd) 2555 ’其可儲存可將濾波後影像中之_線形; 型態缺陷與以較高臨限值位準取得的另一遽波後影像中:: 一或更多相關線關聯起來的一個陣列的線索引。 回到圖24,一 LDF架構2卿.·,·]被分析(步驟2410)以得出第)-f LDF梯度峰值侧面圖(proflle)2415[w],其每一影像中之每—個型 態特定缺陷人玉徵象各-。下面有關於圖26,27a_27d以及28的討 論將說明♦值侧面圖241〇之處理。 、 圖26顯示職與圖21之步驟簡類似之一說明性質之據波人 成影像2600。影像2_包括有一對垂直線形型態缺陷人工徵象二# 及A2以及-點狀型態人工徵象A3。缺陷人工徵象的邊緣被糊化以顯 現缺陷及缺陷人工徵象資料之間缺乏一個清晰的影像邊界的情況。不 過,這裡係假設與線形型態缺陷人工徵象相關之缺陷係靠近人工徵象 之頂端’或「峰值」’且與點狀型態缺陷侧之缺陷則集中於相關之 人工徵象内。 圖27A-27D顯示與圖η之影像叫眼相似之二元,型態特定 影像27〇5,2710,與2715。根據MFA 211〇,各影像代表施用不同臨 限值數值之合成影像2600 ;點狀型態人工徵t A3於後續施用型態特 定MFA2135後即由每-二元影像中被去除掉。各影像皆與前面相關 於圖25所描述的其他影像及人工徵象特定資訊_起而被儲存於— LDF架構2405(圖25)之場2410之中。 影像27〇〇(圖27八)包括有一對線形人工徵象LA1及⑴。一個相 關之標示_2720將人工徵象LA1及LA2觸為分別相關於圖% 中之人工徵象A1 A A2。隨著臨限值位準增加,線形型態的人工徵象 亦變得較小且較薄,並且可能會消失或分裂為軸不連續的線。例 如,在® 27A中被顯現為單一條線的缺陷人工徵象la2,在圖加Dcif is the number field of the image /(x)=supveR{x€0v(/)} (17) The translation 2100 uses a similar type of image reconstruction to define the threshold level and optimize it' According to the improved defect positioning effect. A ^/1 car; MFA (morphological filtering algorithm) 2110, applies each of a number of threshold levels to the filtered composite image. The MFA 2120 is repeatedly executed for each threshold level, which is shown in the figure by wrapping the MFA 2110 in a for_1〇〇p 212〇A and 212〇B to generate a group/section. A synthetic image 2i25[lj] defined by the limit value. In each image 2125, all of the pixel values of the synthesized image after the wave is greater than or equal to the applied threshold level are all represented by a logic level (eg, logical 壹), and All those whose pixel values are less than the threshold level 2115 are all represented by the second logic level (for example, logic zero). In one embodiment, the threshold level 2115 is generated by the filter 21〇7, and the standard deviation of the pixel intensity values from a filtered composite image is the unit of representation. The histogram analysis is used to calculate the mean " and the standard deviation σ, the true threshold level is in 〃+ σ·:Γ, and the 忖 is σ is the single (four) input threshold Value level. The MFA 2110 will be described in detail below using FIG. ® The next for-loop (2130Α and 2130Β) processes each image 2125 with a second MFA 2135, which is type-specific. For example, in the case of linear artifacts, MFA 2135 removes artifacts from other types (such as corners and dot patterns), leaving only the linear shape. The For-loop 2130 produces a set of images, each having an artificial sign of a linear form of y. In the figure, the top side image 214 〇 [1] includes two line-shaped defects: the dot-like and corner-type defects of the image 2125 [1] are removed. The remaining images 2140 [2.·ζ·] may have more or fewer artificial signs. The MFA 2135 will be described in detail below using FIG. · 38 1303392 In a dying sequence of operations, a defect location interpretation 〇18 2145 can analyze the defect artifacts in image 2140 to accurately distinguish defect coordinates 215G from defect artifacts. The following is a detailed description of a version of the DLA 2145 that is specifically used for linear shape defects. Figure 22 shows an embodiment of the MFA 2110 of Figure 21 that is repeatedly applied to the composite image 2105 to produce a sequence of z• filtered images 2125. First, the threshold level 2115 is applied to the FFT filtered composite image (step 2·). - A morphological closure step 2205 (bribe after expansion) is applied to the results of the step leakage to add the secret to the Laiwuwei County, and the money-continuation-mineral treatment will be the noise or the defective side of the pixel. The resulting small image effect is removed (step 2210). MFA 2110 can thus produce one of the images. As shown in the figure, MFA2H0 is repeatedly executed for each of the threshold levels 2115. Fig. 23 is a flow paste in which an embodiment of the type specific alpha morph in Fig. 21 is shown, which is applicable to a linear type defect artificial sign. The job welcomes the post-wave image 2125 from the brain 2ιι〇, and uses a type-specific test that can rotate any artificial sign other than the linear type of artificial sign. Step 231 provides a specific morphology of the crane based on the position of the artificial sign on the image (4). For example, an artificial sign in the area where the filament is expected to appear in it can be read by any of the rest of the person, and in this case, several techniques can be utilized. Any one to fill it (step 2315). , the main =, _ from the artificial signs _ and _ wealth derived crane specific restrictions 2; 2 22 232G can filter the image from step 2315. A specific list of the types of the main ^, ', and _ artificial signs and ranges. For example, the linear type of artificial sign in the middle can be due to its circle type factor ("Line J is not true edge" linear type artificial sign must be close to vertical or horizontal), and complex (such as 'linear type The artificial sign of the state, unlike the corner type defect, is not filtered by the intersection of two adjacent boundaries of 39 1303392. The filtered image of the result is only included in the image 2140. Artificial signs of type. In one implementation!, '5 ^ « like 2140 has two pixel values: background (0) and artificial signs (1). The artificial signs appearing in the form of areas touching the pixels are all set to 1; the surrounding area ^ in the form of pixels is not fixed to 0. The execution details of each block in the MFA 2100 are familiar to the image processing. The artist is a well-known. As shown in Figure 21, MFA 2135 is for each The threshold value is repeated and executed. The entire set of morphological operations used in MFA 2135 is specifically specific to the linear shape in this example, but these operations can be modified if necessary. Conforms to, for example, the lack of point and corner patterns If only the artificial signs of the dot pattern are to be dealt with, then _ MFA 2135 can be woven to image the image, and the artificial image is larger than the specific maximum area, etc., which may be related to the line shape and other types. Removal of artificial signs of the state. If only the artificial signs of the corner type have to be processed, the MFA2135 can be adjusted to remove the smallest surface of the mosquitoes that are not represented by the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Conventional image processing techniques are utilized to select such artificial and other types of artificial artifacts. Figure 24 shows an example of a defect-specific positioning interpretation (DLA) 2145 of FIG. 21 that utilizes an array of type-specific images.产生 产生 产生 产生 受 DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL DL In the second step, the linear defect filter!! LDF _ method produces a z-LDF architecture 2405[1··ι] with a car j, each image 214 There is an ldf wood structure in addition to the specific image 214〇 (10) The interpretation program also receives the synthetic image of the original city peak, and the value of the initial threshold value of the image measurement can be used to obtain the value of the threshold value of the threshold value of the continuous image. (S) 1303392 and the number of threshold values / (Because the 2140 is an image limited by the threshold, the number of thresholds and values is the same as the number of images 2140), etc. as input 〇 Figure 25 shows an LDF array 24〇5 according to an embodiment of the invention (the linked list array of Figure 2 is applied. In this example, four threshold levels and associated processing are applied to generate 24〇5[1] to 24〇5(4) Four LDF structures, although the number of arrays in the real world may be more or less. These arrays are adaptable and can be applied to the linear shape of the human body, but can also be modified to apply to other types. Each of the LDF architecture feathers includes the following features. 1· - Threshold field 25GG, which can store finer than synthetic images to produce threshold levels on each binary 2140[/]. 2 - A number of fields 2505, which can store the number of identified defects w, which is two in the actual example of the figure %. 3· — Image field 2510, which can store each binary image 2i4〇[/]. 4. Defect architecture 2520 [1·/|-array 2515, where] is the number of defective artifacts in each image 214〇|7]. Each defect structure 252 〇 stores the top of each linear shape defect artificial sign, or "peak", the χΑ γ coordinate of the pixel (the defect is assumed to be located near the top of the artificial sign of the linear defect). Each defect architecture further includes a pixel-valued field 2525 that stores X and γ coordinates corresponding to the peak pixels in the composite image 2105. φ 5. The linear structure 2535 [1·/|-array 253〇, each associated with the defective artificial artifact in the corresponding filtered image 21 side. Each linear structure 2535 includes an area field 2540 that can store the area of the defect artificial sign (in pixels) a rectangular field button, such as (6) Qiao, which can store the artificial image of the defect - rectangular Left, top, right, and base marks; a belongss-to-feld 2550 that stores a line index that can associate a linear type of artificial sign with a feature of an image, the image being lower The threshold value ("" is not obtained when there is such a line; and a field 41 1303392 (contains fidd) 2555 'which can store the _ line shape in the filtered image; the type defect is higher In another post-wave image obtained from the threshold level:: The line index of an array associated with one or more related lines. Back to Figure 24, an LDF architecture 2 is analyzed. 2410) to obtain the first-f LDF gradient peak proflle 2415 [w], each of which is characterized by a specific defect in each image. The following discussion of Figures 26, 27a-27d and 28 will illustrate the processing of the value side view 241. Figure 26 shows a similarity to the step of Figure 21, which illustrates the nature of the image 2600. The image 2_ includes a pair of vertical linear defects, artificial signs 2 and A2, and a point-like artificial sign A3. The edges of the defective artificial signs are pasted to reveal a lack of a clear image boundary between the defects and the artifacts. However, it is assumed here that the defect associated with the artificial sign of the linear type defect is close to the top 'or 'peak' of the artificial sign and the defect of the side of the point type is concentrated in the associated artificial sign. Figures 27A-27D show binary, pattern-specific images 27〇5, 2710, and 2715 similar to the image of Figure η. According to MFA 211, each image represents a synthetic image 2600 with different threshold values; the dot pattern artificial sign t A3 is removed from each binary image after subsequent application of the specific MFA 2135. Each image is stored in field 2410 of LDF architecture 2405 (Fig. 25) in conjunction with other image and artifact identification information previously described in relation to Fig. 25. The image 27〇〇 (Fig. 27) includes a pair of linear artificial signs LA1 and (1). A related indication_2720 touches the artificial signs LA1 and LA2 as associated with the artificial signs A1 A A2 in Figure %, respectively. As the threshold level increases, the artificial signs of the linear pattern become smaller and thinner, and may disappear or split into lines that are not continuous. For example, in ® 27A it appears as a single line of defect artifacts la2, in Tujia
42 1303392 中即變為一對線形人工徵象LB2及LB3。一個標示2725將人工徵象· LB1辨識為屬於影像2700之人工徵象LA1,而人工徵象LB2及LB3 : 則屬於影像2700之人工徵象LA2。此人工徵象之「所有權」被記錄 於與影像2705相關聯之LDF陣列的「歸屬」場255〇之中;同樣地, 與影像2700相關聯之LDF陣列的「包含」場2555則記錄人工徵象* LA1「包含」了人工徵象LB1,而人工徵象LA2則包含了人工徵象-LB2及LB3。圖27C及27D分別包括缺陷人工徵象與對應標示273〇 及2735的不同組合,其顯現了不同影像中人工徵象之間的「屬於」 關係。 圖28顯示一樹狀列示2800,其係為圖27B-D之標示2725,2730, · 與2735中之資訊的一個整理。樹狀列示28〇〇顯現了缺陷人工徵象 A1及A2與利用接續較大的臨限值位準所取得的二元影像中的線形 型態人工徵象之間的關係。例如,影像2715的人工徵象LD2係屬於 影像2710的人工徵象LC3 ,後者則屬於影像2705的人工徵象LB3, 其又屬於影像2700的人工徵象LA2。同樣的,影像2715的人工徵象 LD1係屬於影像2710的人工徵象LC1,後者則屬於影像2705的人工 徵象LB1,其又屬於影像2700的人工徵象LA1。 暫時回到圖24,LDF梯度峰值側面圖步驟241〇利用圖27a_27d · 中的資料來產生y_個峰侧面圖2415[W],其每-個缺陷各有一個側 面圖。圖29係為說明性質之峰值侧面圖29〇〇,其顯示全皆與一共通 缺陷人工徵象相關聯的四個缺陷人工徵象29〇5,291〇,2915及292〇 之間的關係。側面圖2900顯現了臨限值位準與每_個沿著y影像轴 線的缺陷人工徵象中之峰值像素之定置位置間之關係。像素強度沿著 一整條像素切塊,其與一灰階影像的橫越線形型態缺陷人工徵象平行 的曲線2925,顯示像素強度如何隨著遭遇到缺陷人工徵象而大致性增 加的情形。人工徵象29〇5,测,拠及测代表曲線2925細 43 1303392 號各顯示不同臨限值位準 個臨限值辦上所取得的树。粗體「+ 上缺陷人工徵象的峰值(頂)像素之y位置 回到圖24 ’定位步驟2420由LDF陣列中抽取出圖29中觸亍 型式的資料,以便產生—個數目的二維陣列,其第_維為顧《臨限 值位準之數目),第二_為陶㈣低辦施力顧值限制之影 像中的人工徵象之數目,其為LDF架構24〇5⑴之陣列測之大小)。 此二陣列係如下列(其正式定義係依下面以擬真碼給定): 1· y[j,i]為LDF帛構細羽之缺陷構造252〇ΰ]之y座標,其可指示42 1303392 becomes a pair of linear artificial signs LB2 and LB3. A marker 2725 identifies the artificial sign LB1 as the artificial sign LA1 belonging to the image 2700, and the artificial signs LB2 and LB3: belongs to the artificial sign LA2 of the image 2700. The "ownership" of this artificial sign is recorded in the "home" field 255 of the LDF array associated with image 2705; likewise, the "inclusion" field 2555 of the LDF array associated with image 2700 records the artificial sign* LA1 "includes" the artificial sign LB1, while the artificial sign LA2 contains the artificial signs - LB2 and LB3. Figures 27C and 27D respectively include different combinations of defective artificial signs and corresponding indicia 273〇 and 2735, which reveal the "belonging" relationship between artificial signs in different images. Figure 28 shows a tree listing 2800 which is a collation of the information in Figures 27B-D, 2725, 2730, and 2735. The tree-like representation of 28〇〇 shows the relationship between the artificial signs of defects A1 and A2 and the linear type artificial signs in the binary image obtained by using the larger threshold level. For example, the artificial image LD2 of the image 2715 belongs to the artificial sign LC3 of the image 2710, and the latter belongs to the artificial sign LB3 of the image 2705, which in turn belongs to the artificial sign LA2 of the image 2700. Similarly, the artificial image LD1 of the image 2715 belongs to the artificial sign LC1 of the image 2710, and the latter belongs to the artificial sign LB1 of the image 2705, which in turn belongs to the artificial sign LA1 of the image 2700. Returning briefly to Figure 24, the LDF gradient peak side view step 241 uses the data in Figures 27a-27d to generate y_peak side views 2415 [W], each of which has a side view. Figure 29 is a peak side view of the nature of the nature of Figure 29, showing the relationship between the four defect artificial signs 29〇5,291〇, 2915 and 292〇 all associated with a common defect artifact. Side view 2900 shows the relationship between the threshold level and the position of the peak pixels in each of the defect artifacts along the y image axis. The pixel intensity is diced along a whole pixel, which is a curve 2925 parallel to the artificial image of the gradation of the linear shape defect of a gray scale image, showing how the pixel intensity generally increases as a result of encountering the artifact of the defect. The artificial sign 29〇5, measured, 拠 and measured representative curve 2925 fine 43 1303392 each shows the different threshold value level of the threshold obtained. The y position of the peak (top) pixel of the upper "+ defect artificial sign" returns to Figure 24. The positioning step 2420 extracts the data of the touch pattern of Figure 29 from the LDF array to produce a number of two-dimensional arrays. The number of artificial signs in the image of the LDF architecture 24〇5(1) is the size of the image of the LDF architecture. The two arrays are as follows (the official definition is given by the pseudo-code below): 1· y[j,i] is the y coordinate of the defect structure 252〇ΰ] of the LDF structure, which can indicate
相關於以位準i施加臨限值限制之影像2510的第j個人工徵象 的缺陷; 2· LineD,i]係為臨限值位¥之下包含缺陷j的線之索引(擬真碼 解釋索引應如何選定);與 3· dy[j5i]為來自於LDF架構24〇5[1+1]與24〇5[1]之缺陷252〇出之乂 值之間的差異。 步驟2715為每一個人工徵象j•執行下列的初始化及迴路程序: 初始化: (各個j=1,…,Dimj):The defect related to the j-th personal sign of the image 2510 with the threshold limit imposed by the level i; 2· LineD, i] is the index of the line containing the defect j below the margin bit (the interpretation of the pseudo-code) How the index should be selected); and 3· dy[j5i] is the difference between the 乂 values from the defects 252 of the LDF architecture 24〇5[1+1] and 24〇5[1]. Step 2715 performs the following initialization and loop procedures for each artificial sign: • Initialization: (each j=1,...,Dimj):
Line[j5l]=j; y [j,1 ]=LDF—Array [ 1 ] .Defects [j] .y 於臨限值位準#1(初始臨限值)時,所有經濾波後之線皆假設包含有缺 陷,因此Line[j,l]即為線之索引,而則為與此線相關聯之缺陷的 假定y位置。 重覆 i: i=l,…,DIMi_l (每一 j) 44 1303392 /* i-threshold index; j-index of the line 2535 from LDF structure 2405 [1] corresponding to the lowest threshold level. */ 1· kop尸argmin“ LDF Array[i+1]·Line[j5l]=j; y [j,1 ]=LDF—Array [ 1 ] .Defects [j] .y At the threshold value #1 (initial threshold), all filtered lines are It is assumed that there is a defect, so Line[j,l] is the index of the line and is the assumed y position of the defect associated with this line. Repeat i: i=l,...,DIMi_l (each j) 44 1303392 /* i-threshold index; j-index of the line 2535 from LDF structure 2405 [1] corresponding to the lowest threshold level. */ 1· Kp corpse argmin " LDF Array[i+1]·
Defects[ LDF_Array[i]Xines[Line[j?i]].Contains[k]].y? } 2· Line[j,i+1]=LDF—Array[i].Lines[Line[j,i]]·Defects[ LDF_Array[i]Xines[Line[j?i]].Contains[k]].y? } 2· Line[j,i+1]=LDF—Array[i].Lines[Line[j,i ]]·
Contains [kopt] 3 · y D 4+1 ]=LDF_Array [i+1 J.Defects [Line[j 5i+1 ]].y 4· dyD^yD.i+iJ-yD^] 在上面的步驟1及2中,對臨限值位準/的選定line[i,j]而言,下 一個臨限值位準(i+Ι)的線係屬於Hneiy]。在屬於line[M]的臨限值位 準(i+Ι)的線之中,具最低y值的線即被選定作為最可能包含有缺陷的 線(每-影像的y軸由頂至底,因此最低7值即代表最高點)。在以最 低y值選定了線Line[j5i]之後,與此線相關聯之缺陷的y值便由對應 線架構之中被取出。前面所列擬真碼的步驟4中所定義的值咧,1]即 依下述方式而被應用以定義LDF梯度。 如圖28所示,當線缺陷已利用人工徵象的樹狀列示加以顯示, 且LOT梯度峰值側面圖已計算求得之後,與缺陷相關聯之線的尾端 (依據前面假設為上端卿被定義為LDF梯度的極大值。每—臨限值位 準索引z之LDF梯度係依下式定義 (18) (18)1303392 LDFGradh = ^Th 其中y.為缺陷索引’/為臨限值位準索引,而^則為臨限值位準間的 間隔。DTh係為常數,因此便有下式: max, LDFGrad[ i j] = _ DTh (⑼ - 此外’由與只應用到ldf梯度極大值之位置,尋找LDF梯度極 大值的工作便等效於在由LDF _峰侧面圖麟法屬所計算得 之,列如的列中搜尋極小值的分部。在許多情況之中,由於影像位φ 置疋以像素之婁i:目來里測的’故dy的極小值為零,且在此一顆粒性 位準之下,缺陷的y位置便可能與鄰近的臨限值位準相同。 有時dy的極小值會植恤置。LDF微為極大值(極小值如時, 位置的多重性會造成對於其陣列处[」的列中之極小值分部的第一及 最後索引之計算的需要。MaxLDFGrad型態的資料結構包含有下列的 元件: 1· 係為極大值LDF梯度的臨限值位準; 2· Ih.Ind·為臨限催位準的索引; 3. XJne Ind·為相關於此臨限值位準下之缺陷之線索弓; 4· 為陣列边^[]之列的極小值;與 5· X及y為缺陷位置之座標。 步驟2420採用對LDF梯度峰值侧面圖2415的分析來進行相關 於LDF陣列之線架構中所指定之線形型態缺陷人工徵象的缺陷之定 位。步驟2420依據相關聯於陣列也之列中的極小值分部之第_及最 後索引的Hi並與L^imaxLDFGrad架構(輸入資料2425)而執行計算: 46 1303392 -或二個架構被用來導㈣應相關之缺陷位置。此位置可定義為來自 LDF架構24_之缺陷架構252〇_(xy),其中】及【係由艇或 _職LDFGrad轉兩者其中之一之中所取得。在職情況中,缺 位置係在此兩者之中間。其結果之缺陷位置清單綱即可精確地 在影像的線形型態缺陷人工徵象之中進行定位。 取終步驟2435採用參考定位標示座標244〇來將影像座標⑽ f換成為實際的缺陷座標2150(圖2丨)。為此目的,受檢測之物件被假 定係利用通常為兩點的參考定位標示而與各_器相對正。 DLA 2145所使㈣整轉作在此實彳种雜定針對_型態的缺 陷’但若有需要則此些操作亦可很容易地進行修改,以適用於,例如, 點狀與轉角型態的缺陷。缺陷定位演譯法21〇〇(圖21)因此即可在其對 應之人工徵象中進行各種型態缺陷的定位。 雖然本發明已_狀的實補進行綱,但該些實補的各種 變化於習於本技藝者顯屬明顯易知。本發明所揭示之演譯法由於既不 依賴於影像之鶴(視頻,紅外線,頻譜型,掃描型,料)又不依賴 於影像偵測H,故其係為-體顧者。由於此通職之故,相同的作 法亦可應用於以電腦為基礎的檢查祕之中以供許多不同型式的攝 影機及侧n ’以及供各歡A域之翻。本發賴提議之自動對 焦系統可以利用現有影像系統的取像硬體,其並不需要任何額外的組 件;採用本發明之制倾可以分析影像並產生適#的指令,以使影 像對焦。此外,如同上述,利用平移載台亦可不需達成自動對焦,反 而可以控制可調整的物件。其熱取像、人工徵象偵測以及自動對焦方 法及系統亦可應用於許多形態的電氣電路上,包括積體電路,印稱 路板,微機電系統(MEMS),半導體晶圓,以及某些生醫樣本等。此 外,雖然本發明所描述的IR檢查系統係採用了電性激勵與可產生熱 缺陷人工徵象的細影像術之整合’但本發明其他形式的檢查系統則Contains [kopt] 3 · y D 4+1 ]=LDF_Array [i+1 J.Defects [Line[j 5i+1 ]].y 4· dyD^yD.i+iJ-yD^] Step 1 above And 2, for the selected line[i,j] of the threshold level/, the line of the next threshold level (i+Ι) belongs to Hneiy]. Among the lines belonging to the threshold level (i+Ι) of line[M], the line with the lowest y value is selected as the line most likely to contain defects (the y-axis of each image is from top to bottom) Therefore, the lowest 7 value represents the highest point). After the line Line[j5i] is selected with the lowest y value, the y value of the defect associated with this line is taken out of the corresponding line architecture. The value 咧, 1] defined in step 4 of the immersive code listed above is applied in the following manner to define the LDF gradient. As shown in Figure 28, when the line defect has been displayed using a tree-like list of artificial signs, and the peak side view of the LOT gradient has been calculated, the end of the line associated with the defect (according to the previous assumption that the upper end is Defined as the maximum value of the LDF gradient. The LDF gradient for each - threshold value index z is defined by (18) (18) 1303392 LDFGradh = ^Th where y. is the defect index '/ is the threshold level The index, and ^ is the interval between the threshold levels. DTh is a constant, so there is the following formula: max, LDFGrad[ ij] = _ DTh ((9) - additionally 'by and only applied to the ldf gradient maxima Position, the search for the maximum value of the LDF gradient is equivalent to the search for the minimum value of the column in the column as calculated by the LDF_peak side graph. In many cases, due to the image bit φ The pixel's 娄i: measured in the direction of 'the dy's minimum value is zero, and below this granular level, the defect's y position may be the same as the adjacent threshold level. When the minimum value of dy will be set, the LDF is slightly maximal (minimum value, such as time, the multiplicity of position will cause The need for the calculation of the first and last indices of the minima fraction in the column of [] at the array. The data structure of the MaxLDFGrad type contains the following components: 1· is the threshold of the maximum value LDF gradient 2· Ih.Ind· is the index of the threshold level; 3. XJne Ind· is the clue of the defect related to this threshold level; 4· is the minimum of the array edge ^[] Value; and 5. X and y are coordinates of the defect location. Step 2420 uses the analysis of the LDF gradient peak side view 2415 to locate the defect associated with the linear defect artificial artifact specified in the line architecture of the LDF array. Step 2420 performs the calculation based on the Hi and L^imaxLDFGrad architectures (input data 2425) associated with the _ and the last indices of the minima fractions in the array of arrays: 46 1303392 - or two architectures are used to guide (4) The position of the defect to be related. This position can be defined as the defect structure 252〇_(xy) from the LDF architecture 24_, where [] is obtained from one of the two or the LDFGrad. In the case, the missing position is in the middle of the two. The location list can be accurately positioned among the linear artifacts of the image. The final step 2435 uses the reference positioning marker 244〇 to replace the image coordinates (10) f with the actual defect coordinates 2150 (Fig. 2丨). For this purpose, the object being tested is assumed to be positive with each _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 'But if necessary, these operations can be easily modified to apply, for example, to defects in point and corner patterns. The defect location interpretation method 21 (Fig. 21) can therefore locate various types of defects in its corresponding artificial signs. Although the present invention has been implemented as a practical complement, it is apparent that the various changes in the actual complement are apparent to those skilled in the art. The interpretation method disclosed by the present invention is a body-watcher because it does not rely on the image crane (video, infrared, spectrum type, scanning type, material) and does not rely on image detection H. As a result of this generalization, the same approach can be applied to computer-based inspection secrets for many different types of cameras and side n's and for the A-domain. The proposed autofocus system can utilize the imaging hardware of the existing imaging system, which does not require any additional components; with the tilting of the present invention, the image can be analyzed and an appropriate command can be generated to focus the image. In addition, as described above, the panning stage can also be used without the need to achieve autofocus, but can control the adjustable objects. Thermal image capture, artificial image detection, and autofocus methods and systems can also be applied to many forms of electrical circuits, including integrated circuits, printed circuit boards, microelectromechanical systems (MEMS), semiconductor wafers, and certain Health doctor samples, etc. In addition, although the IR inspection system described in the present invention employs an integration of electrical excitation with fine imaging that produces artifacts of thermal defects, other forms of inspection systems of the present invention
47 1303392 採用其他方式之激勵及/或取像作法,以產生其他型態的缺陷人工徵 象。例如,某些影像系統需求使用白光的影像,整合頻譜,或磁場。 本發明針對將缺陷由缺陷人工徵象中隔絕出來所描述之實施例,並不 限疋於其中所描述型式的IR檢查系統。因此,後列申請專利範圍中 之精神及範疇即不應受限於該些實施例上。 【圖式簡單說明】 圖1(習知技術)顯示可應用於—LCD面板上的一主動板觸之局部。 圖2(習知技術)顯示-習知像素11〇之局部的細節,其在此被用來顯 現數値可能的缺陷。 圖3顯示依據本發明一實施例之一檢查系統3〇〇。 圖4A及4B係為一對樣本影像·及4〇5,其係用以說明某些實施例 所依據之方法。 圖5A及5B齡縣施純f彡像及4()5 ±—雜姆拉斯跡 其焦距量雜作為Z位置之函數之鱗圖。 6A㈣#'的_加於f彡像撕及奶上—絲性騎兹卿, 其焦距量罐作為Z位置之函數之曲線圖。 圖7A及7B係分職施加於影像彻及侧上—非雜差異卿, 其焦距量測值作為Z位置之函數之曲線圖。 ^ 8A錢係分縣施加於影像彻及奶上—非線性梯度刚ρ, 其焦距量敵作為2位置之函數之曲線圖。 _及㈣分別為其參數與祕及8时所顧之藝有所不同 =非線性梯度FMF,物_值作為&㈣函數之圖。47 1303392 Other methods of excitation and/or imaging are used to generate other types of defect artifacts. For example, some imaging systems require the use of white light images, integrated spectrum, or magnetic fields. The present invention is directed to embodiments described in which defects are isolated from defective artificial signs and is not limited to the IR inspection system of the type described therein. Therefore, the spirit and scope of the appended claims should not be limited to the embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 (Prior Art) shows that it can be applied to a part of an active panel touch on an LCD panel. Figure 2 (Prior Art) shows details of a portion of a conventional pixel 11 that is used herein to reveal possible defects. Figure 3 shows an inspection system 3 in accordance with an embodiment of the present invention. Figures 4A and 4B are a pair of sample images and 4〇5, which are used to illustrate the method by which certain embodiments are based. Fig. 5A and 5B are the scale diagrams of the Z-spot and the 4()5±-mumrace traces. 6A (four) #'s _ added to f 彡 like tearing and milk on - silky riding Qi Qing, its focal length measuring tank as a function of the Z position curve. Figures 7A and 7B are graphs of the difference in the focal length measurement as a function of Z position, which is applied to the image and the side. ^ 8A money is applied to the image and the milk - the nonlinear gradient is just ρ, and its focal length is a function of the 2 position. _ and (4) are different from their parameters and secrets at the time of 8 o'clock = non-linear gradient FMF, material_value as a map of & (four) function.
為—給崎自最佳飯—實施例之自 動對焦演譯法1000。 W 48 < S ) 1303392 圖11顯示一流程圖1100,其係依據採肖以梯度為基礎,具適應性,; 真時自動對焦之一實施例。 · 圖12A至12D係分別為施加於相同影像上的四個以梯度為基礎之自 動對焦演譯法’其焦距量測值FM及速度V相對於以秒為單位之時間 之曲線圖。 , 圖13顯現了前述演譯法在物件於XY平面移動的期間維持對焦的有' 效性。 圖14顯示應用於圖13之自動對焦之FMF之動態反應。 圖15顯示一測試系統1500,其包括有習知之板15〇5及依據本發明一 實施例之一檢查系統1510 〇 Φ 圖16顯示依據本發明一實施例可增進可測試性之一板16〇〇之局部。 圖17顯示依據本發明另一實施例之一 LCD板1700之局部。 圖18A係為一曲線圖1800,其顯示一說明性質之樣本缺陷及其環繞 區域之熱反應。 圖18B之曲線圖1830顯示可於缺陷及其環繞區域冬間增強熱對比之 測試向量及影像獲取時間控制。 圖18C為一實驗所得影像1880,其中顯示前述各實施例如何可以產 生足夠的熱對比以標示出開路。 參 圖19為一合成影像1900 ’其中顯示三個代表性之缺陷,即一點狀型 態缺陷1905,一線形型態缺陷1907,以及一轉角型態缺陷19ι〇。 圖20為一預設之合成影像2000,其顯示一點狀型態缺陷2005,一線 形型態缺陷2010以及一轉角型態缺陷2015如何可以出現在合成影像 之中。 圖21為一流程圖,其中顯示依據本發明一實施例之一缺陷定位演譯 法 2100。 圖22顯示圖·21中MFA 2110之一實施例,其係被重複地.施加於合成 (S ) 49 1303392 影像2105上以便產生一個序列的z•個濾波影像2125。 圖23為一流程圖,其中顯示圖21型態特sMFA2135之一實施例, 其可適用於線形型態缺陷人工徵象。 圖24顯示圖21之缺陷定位演譯法(DLA) 2145之一實施例。 圖25顯不依據本發明一實施例iLDF陣列構造24〇5 (圖2句之連結清 單陣列。 圖26顯不預期與圖21之系統21〇7類似之一說明性質之濾波合成影 像 2600 。For the self-optimized rice--the automatic focus interpretation method 1000. W 48 < S ) 1303392 Figure 11 shows a flow chart 1100 which is based on gradients and is adaptive, one embodiment of true time autofocus. Figures 12A through 12D are graphs of four gradient-based autofocus interpretations, 'focal distance measurements FM and velocity V, relative to time in seconds, respectively, applied to the same image. Figure 13 shows the effect of the aforementioned interpretation on maintaining the focus during the movement of the object in the XY plane. Figure 14 shows the dynamic response of the FMF applied to the autofocus of Figure 13. Figure 15 shows a test system 1500 comprising a conventional board 15〇5 and an inspection system 1510 according to an embodiment of the invention. Figure 16 shows a board 16 which enhances testability in accordance with an embodiment of the present invention. Part of the cockroach. Figure 17 shows a portion of an LCD panel 1700 in accordance with another embodiment of the present invention. Figure 18A is a graph 1800 showing a thermal reaction of a sample defect and its surrounding area. The graph 1830 of Fig. 18B shows the test vector and image acquisition time control for enhanced thermal contrast between the defect and its surrounding area during the winter. Figure 18C is an experimentally obtained image 1880 showing how the foregoing embodiments can produce sufficient thermal contrast to indicate an open circuit. Figure 19 shows a composite image 1900' showing three representative defects, a one-point type defect 1905, a one-line type defect 1907, and a corner type defect 19 〇. Figure 20 is a pre-defined composite image 2000 showing how a one-point pattern defect 2005, a one-line shape defect 2010, and a corner pattern defect 2015 can appear in a composite image. Figure 21 is a flow chart showing a defect location interpretation 2100 in accordance with one embodiment of the present invention. Figure 22 shows an embodiment of MFA 2110 in Figure 21, which is applied repeatedly to a composite (S) 49 1303392 image 2105 to produce a sequence of z• filtered images 2125. Figure 23 is a flow chart showing an embodiment of the type sMFA 2135 of Figure 21 which is applicable to linear type artificial signs of defects. Figure 24 shows an embodiment of the Defect Location Translation (DLA) 2145 of Figure 21. Figure 25 shows an iLDF array construction 24〇5 in accordance with an embodiment of the present invention (Fig. 26 is similarly contemplated to be a filtered composite image 2600 of a nature similar to the system 21〇7 of Fig. 21).
圖27A-27D顯示與圖21之影像2l40[l"i]相似之二元,型態特定影像 2705,2710,與 2715。 圖28顯示一樹狀列示2800,其係為圖27丑-〇之標示2725,2730,與 2735中之資訊的一個整理。 圖29係為說明性質之峰值侧面圖29〇〇,其顯現全皆與一共通缺陷人 象相關聯的四個缺陷人工徵象2905,291〇,2915及292〇之間的 【主要元件符號說明】 110像素 125閘極線(控制線) 212共通線Figures 27A-27D show binary, type-specific images 2705, 2710, and 2715 similar to the image 2l40 [l"i] of Figure 21. Figure 28 shows a tree listing 2800, which is a collation of the information in Figure 27, ugly-〇, 2725, 2730, and 2735. Figure 29 is a perspective view of the nature of the peak side view of Figure 29, which shows the four major defect artifacts associated with a common defect image 2905, 291 〇, 2915 and 292 【 [main symbol description] 110 pixel 125 gate line (control line) 212 common line
1〇〇主動板 115源極線 200電晶體 215、216、220、 105第一短路棒 120第二短路棒 210電容 225、226 短路 227、228、229、230、232、233、235 開路 305 影像偵測器 315物件 330動作控制器 360動作控制模組 1〇〇〇自動對焦演譯法 1040、1043、1045、1〇55 步驟 300檢查系統 310視頻攝影機 320糸統 325框抓取器 335、340 Ζ載台 355影像分析模組 400、405樣本影像600、700平坦區域 1005 、 1010 、 1015 、 1020 、 1025 、 1035 、 1030曲線圖 1050位置 1100流程圖 1105資料 50 (S ) 1303392 1110 、 1120 、 1130 、1140 、 1150 、 1160 、 1170 、1180方塊 1300、1305、1310 影像 1500測試系統 1505 板 1510檢查系統 1512短路棒 1515偵測器 1520電腦 1525框抓取器 1530信號產生器 1600 板 1605像素 1610源極線 1615閘極線 1620共通線 1625源極棒 1630共通棒 1635閘極棒 1700 板 1705像素 1710源極線 1715閘極線 1720共通線 1725源極棒 1730閘極棒 1735共通棒 1740區域 1800曲線圖 1805 圖 1810、1815 區域 1820反應曲線 1830曲線圖 1840反應曲線 1845、1850 窗口 1855高側部份 1880影像 1885 線 1900合成影像 1905點狀型態缺陷 1907線形型態缺陷1910轉角型態缺陷 1915、1920、1925缺陷人工徵象 2000合成影像 2005點狀型態缺陷2010線形型態缺陷 2015轉角型態缺陷 2100演譯法 2105合成影像 2107步驟 2110演譯法 2120A、2120B、2130A、 2130B for-loop 2115臨限值位準 2125影像 2135濾波演譯法 2140影像 2145缺陷定位演譯法 2150缺陷座標 2200、2205、2210 、2305 2310、2315、2320、 > 2410、2420、2435 步, 2325限制 2400演譯法 2405架構 2408輸入 2415梯度峰值侧面圖 2425資料 2430缺陷位置清單2440座標 2500臨限值場 2505數場 2510影像場 2515、2530 陣列 2520缺陷架構 2525像素值場 2535線形架構 2540面積場 2545矩形場 2550歸屬場 2555包含場 2600、2700、2705、.2710、2715 影像1〇〇 active board 115 source line 200 transistors 215, 216, 220, 105 first shorting bar 120 second shorting bar 210 capacitance 225, 226 short circuit 227, 228, 229, 230, 232, 233, 235 open circuit 305 image Detector 315 object 330 motion controller 360 motion control module 1 〇〇〇 auto-focus interpretation 1040, 1043, 1045, 1 〇 55 step 300 inspection system 310 video camera 320 325 box grabber 335, 340 Ζ 355 image analysis module 400, 405 sample image 600, 700 flat area 1005, 1010, 1015, 1020, 1025, 1035, 1030 curve 1050 position 1100 flow chart 1105 data 50 (S) 1303392 1110, 1120, 1130 1,140, 1150, 1160, 1170, 1180, 1300, 1305, 1310 Image 1500 Test System 1505 Board 1510 Inspection System 1512 Shorting Bar 1515 Detector 1520 Computer 1525 Frame Grabber 1530 Signal Generator 1600 Board 1605 Pixels 1610 Source Line 1615 gate line 1620 common line 1625 source rod 1630 common rod 1635 gate rod 1700 board 1705 pixels 1710 source line 1715 gate line 1720 common line 1725 source rod 1730 gate rod 173 5 common rod 1740 area 1800 curve 1805 Figure 1810, 1815 area 1820 reaction curve 1830 curve 1840 reaction curve 1845, 1850 window 1855 high side part 1880 image 1885 line 1900 synthetic image 1905 point shape defect 1907 line shape defect 1910 corner type defect 1915, 1920, 1925 defect artificial sign 2000 synthetic image 2005 point shape defect 2010 linear shape defect 2015 corner type defect 2100 interpretation 2105 synthetic image 2107 step 2110 interpretation method 2120A, 2120B, 2130A 2130B for-loop 2115 threshold value 2125 image 2135 filter interpretation 2140 image 2145 defect location interpretation 2150 defect coordinates 2200, 2205, 2210, 2305 2310, 2315, 2320, > 2410, 2420, 2435 2325 limit 2400 interpretation 2405 architecture 2408 input 2415 gradient peak side view 2425 data 2430 defect location list 2440 coordinates 2500 threshold field 2505 number field 2510 image field 2515, 2530 array 2520 defect architecture 2525 pixel value field 2535 linear architecture 2540 Area field 2545 rectangular field 2550 home field 2555 contains fields 2600, 2700, 2705, .2710, 2715 images
51 1303392 2720、2725、2735標示 2730缺陷人工徵象 2800樹狀列示 2900峰值侧面圖 2905、2910、2915、2920缺陷人工徵象 2925曲線51 1303392 2720, 2725, 2735 mark 2730 defect artificial signs 2800 tree list 2900 peak side view 2905, 2910, 2915, 2920 defect artificial signs 2925 curve
< S ) 52< S ) 52
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93137954A TWI303392B (en) | 2004-12-08 | 2004-12-08 | A method and system for automatically focusing an image detector for defect detection and analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93137954A TWI303392B (en) | 2004-12-08 | 2004-12-08 | A method and system for automatically focusing an image detector for defect detection and analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200620145A TW200620145A (en) | 2006-06-16 |
TWI303392B true TWI303392B (en) | 2008-11-21 |
Family
ID=45070707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93137954A TWI303392B (en) | 2004-12-08 | 2004-12-08 | A method and system for automatically focusing an image detector for defect detection and analysis |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI303392B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI386643B (en) * | 2009-04-17 | 2013-02-21 | Chipmos Technologies Inc | Apparatus for marking defect dies on wafer |
TWI479455B (en) * | 2011-05-24 | 2015-04-01 | Altek Corp | Method for generating all-in-focus image |
TWI630377B (en) * | 2017-04-18 | 2018-07-21 | 亞迪電子股份有限公司 | Thermal detection device |
TWI678614B (en) * | 2018-06-14 | 2019-12-01 | 宏碁股份有限公司 | Test system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110659193B (en) * | 2018-06-28 | 2022-12-13 | 宏碁股份有限公司 | Test system |
-
2004
- 2004-12-08 TW TW93137954A patent/TWI303392B/en active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI386643B (en) * | 2009-04-17 | 2013-02-21 | Chipmos Technologies Inc | Apparatus for marking defect dies on wafer |
TWI479455B (en) * | 2011-05-24 | 2015-04-01 | Altek Corp | Method for generating all-in-focus image |
TWI630377B (en) * | 2017-04-18 | 2018-07-21 | 亞迪電子股份有限公司 | Thermal detection device |
TWI678614B (en) * | 2018-06-14 | 2019-12-01 | 宏碁股份有限公司 | Test system |
Also Published As
Publication number | Publication date |
---|---|
TW200620145A (en) | 2006-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5964932B2 (en) | Ocular surface interference spectroscopy (OSI) apparatus, system and method for imaging, processing and / or displaying ocular tear film and / or measuring ocular tear film layer thickness | |
CN106651827B (en) | A kind of ocular fundus image registration method based on SIFT feature | |
TWI485650B (en) | Method and arrangement for multi-camera calibration | |
US7149343B2 (en) | Methods for analyzing defect artifacts to precisely locate corresponding defects | |
CN103356162B (en) | Image processing equipment and image processing method | |
CN110431404A (en) | Surface defect inspection method and surface defect inspection apparatus | |
CN104732900B (en) | Picture element flaw detection method and device | |
US7551769B2 (en) | Data structures and algorithms for precise defect location by analyzing artifacts | |
JP6099635B2 (en) | Contour-based defect detection using inspection equipment | |
JP6422895B2 (en) | System and method for processing biopsy samples | |
TW201220039A (en) | Inspection recipe generation and inspection based on an inspection recipe | |
CN110232387A (en) | A kind of heterologous image matching method based on KAZE-HOG algorithm | |
CN105282461B (en) | Processing unit and acquisition device, the processing method and adquisitiones of image | |
Hsu | Automatic compensation for defects of laser reflective patterns in optics-based auto-focusing microscopes | |
CN106846338A (en) | Retina OCT image based on mixed model regards nipple Structural Techniques | |
TWI303392B (en) | A method and system for automatically focusing an image detector for defect detection and analysis | |
CN106773158A (en) | A kind of movable type seeks liquid crystal display pixel qualities analytical equipment and a method certainly | |
Lee et al. | Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm | |
Lu et al. | Adaboost-based detection and segmentation of bioresorbable vascular scaffolds struts in IVOCT images | |
CN108665471B (en) | Method and system for acquiring human back curve based on camera | |
Xu | Study on accurate measurement technology for microscopic image | |
TWI611162B (en) | Methods and apparatus for measurement of relative critical dimensions | |
CN107529962A (en) | Image processing apparatus, image processing method and image processing program | |
TW201834097A (en) | Target location in semiconductor manufacturing | |
CN107403133A (en) | Determine equipment and determination method |