TWI303273B - Metal matrix carbon composite material with high thermal conductivity and method for producing the same - Google Patents

Metal matrix carbon composite material with high thermal conductivity and method for producing the same Download PDF

Info

Publication number
TWI303273B
TWI303273B TW94107047A TW94107047A TWI303273B TW I303273 B TWI303273 B TW I303273B TW 94107047 A TW94107047 A TW 94107047A TW 94107047 A TW94107047 A TW 94107047A TW I303273 B TWI303273 B TW I303273B
Authority
TW
Taiwan
Prior art keywords
metal
thermal conductivity
carbon
high thermal
containing metal
Prior art date
Application number
TW94107047A
Other languages
Chinese (zh)
Other versions
TW200632087A (en
Inventor
Chun Shan Wang
Yajen Huang
Chintien Kuo
Yichen Wu
Original Assignee
Yonyu Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yonyu Plastics Co Ltd filed Critical Yonyu Plastics Co Ltd
Priority to TW94107047A priority Critical patent/TWI303273B/en
Publication of TW200632087A publication Critical patent/TW200632087A/en
Application granted granted Critical
Publication of TWI303273B publication Critical patent/TWI303273B/en

Links

Description

1303273 九、發明說明 【發明所屬之技術領域】 :發明係有關於一種高導熱性含碳金屬基複合材料及 士方法,特別是有關於應用於散熱元件之高導熱性含碳 金屬基複合材料及其製造方法。 【先前技術】 「熱」-直是電子元件工作時必須處理的問題,散熱問 題已成為科技發展上關鍵技術的瓶頸。目前電子元件的散熱 途徑,均經由内料裝的材質以將熱傳至表層,丨利用較大 的均熱片卩熱傳導时式將熱傳至發熱源的外部,並加裝韓 片或風扇來達到強制對流的效果。1303273 IX. Description of the invention [Technical field to which the invention pertains]: The invention relates to a high thermal conductivity carbon-containing metal matrix composite material and a method thereof, in particular to a high thermal conductivity carbon-containing metal matrix composite material applied to a heat dissipating component and Its manufacturing method. [Prior Art] "Hot" - is a problem that must be dealt with when electronic components work. The problem of heat dissipation has become a bottleneck for key technologies in the development of science and technology. At present, the heat dissipation path of the electronic components is transmitted to the surface layer through the material of the inner material, and the heat is transmitted to the outside of the heat source by using a larger heat spreader, and a Korean film or a fan is added. The effect of forced convection is achieved.

近幾年來,散熱元件的材料儼然成為熱門的話題。隨著 電子產品朝向輕薄化、小型化、高功能化及高頻化的趨勢發 展,電子元件之單位體積的發熱量相對提高,因此需要有更 高導熱係數的散熱材料。目前較廣為利用的是鋁擠型散熱材 料,例如以6063型之鋁擠型散熱材料,製造各種散熱元件。 由於鋁擠型散熱材料之熱傳導係數不高’僅介於16〇瓦/公 尺卡式溫度(W/mK)至180 W/mK之間,早已無法滿足新: 代電子元件散熱之需求%縱然針對此鋁擠型散熱材料已發展 出各種改良製程’諸如接合型(Bonding Fins)製程、折彎型 (Folding Fins)製程、改良式壓鑄(Modified Die Casting)、鍛 造(Forging)製程及刨床式(Skiving)製程等,然而仍未能解決 散熱的瓶頸問題。 1303273 由於電子電路中所產生的高溫會影響到電子元件的工 作效率,因此必須發展散熱模組以維持電子元件的溫度低於 臨界安全溫度,來避免元件因為過熱而造成性能上的衰退和 ; 不穩定。然而,由於散熱元件的熱傳導係數有限,因而導致 散熱瓶頸的發生。而銅的熱傳導係數較鋁為高,約38〇 W/mK ’目前已發展出以銅為主之散熱材料。 _ 為了要改善散熱元件的熱傳導效率,美國專利公告號第 ❿6,264,882號揭露一種高導熱性複合材料之製造方法,用以 製造高密度積體電路之散熱片(Heat Sink)或均熱片(Heat Spreader),且由此製程而得之複合材料的導熱係數介於鑽 石與銅之間。此製程基本上包括在鑽石粉末上濺鍍金屬層, 接著壓成多孔體,然後以熔滲(Infiltrati〇n)的方式將銅合金 渗入多孔體中,以形成具有高導熱性的鑽石-鋼複合材料。 我國專利公告號第573,025號揭露一種改變熱膨脹係 φ 數之含碳銅基複合材料及其應用,其係以銅粉、碳粉及高分 •子聚合物,分別依70%〜95。/。、0·01%〜10%、5%〜3〇%之 比例均勻混合,或鋼粉及含碳成分之高分子聚合物,分別依 • 7G%〜95%、5%〜鄕之比例均勻混合,並經多次高溫熱處 : 理作業,使高分子聚合物熔融蒸發,即構成一含碳銅基複合 、 材料,且此複合材料之熱膨脹係數可隨混合原料的比例、加 熱溫度的不同而有所改變,如此可因應不同熱膨脹係數之材 料需求。 我國專利公告號第561,207號揭露一種具高導熱性之 碳纖維,主要係以聚丙烯腈(P〇lyaCryl〇nitlile ; pAN)基碳纖 7 1303273 維被覆(Coating)—瀝青、瀝青衍生物或高分子聚合物後,再 經碳化與石墨化處理所構成,所得之碳纖維其導熱係數介於 ' 20 W/mK 至 500 W/mK 之間。 簡言之’習知技術藉由添加鑽石粉或碳粉,來提高複合 ^料之導熱性。但鑽石粉以及碳粉皆為顆粒狀,若僅添加少 量鑽石粉或碳粉在複合材料中不易形成連續性,難以對複合 鲁材料的導熱能力有所貢獻;若添加大量鑽石粉或碳粉則會影 ♦響複合材料的物性。另’ PAN基碳纖維雖較有連續性,但 石墨化處理後所得之碳纖維其導熱係數只介於2〇 w/mK至 500 W/mK之間’對複合材料的導熱能力貢獻有限。此外, 習知技術在碳材與金屬基材複合時,常面臨介面不佳的問 題。 因此,亟需發展一種高導熱性含碳金屬基複合材料之製 造方法,以期利用兼具高導熱係數與良好連續性的碳材,改 _善碳材在金屬基材中的介面問題,並提升含碳金屬複合材料 籲之導熱係數,進而改善利用此含碳金屬基複合材料製造之散 熱元件的散熱效率。 : 【發明内容】 • 因此,本發明的目的之一就是揭露一種高導熱性含碳金 屬基複合材料及其製造方法,其係以兼具高導熱係數與良好 連、$ f生的石墨化氣相成長碳纖維(Vap〇r Growll Carbon Fiber)作為添加之碳材,並在此石墨化氣相成長碳纖維之表 面形成碳化金屬薄層,藉以改善碳材與金屬基材之介面,提 1303273 高碳材與金屬基材的複合品質及複合比例,因而大幅提升此 含碳金屬基複合材料之導熱係數,進而使利用此含礙金屬基 • 複合材料製成之散熱元件具有優異的散熱效率。 , 根據本發明上述之目的,提出一種高導熱性含碳金屬基 複合材料。此高導熱性含碳金屬基複合材料至少包含介於1 、 重量百分比至40重量百分比之間的具有碳化金屬薄層之石 . 墨化氣相成長碳纖維,以及介於60重量百分比至99.重量百 _分比之間的金屬基材,其中高導熱性含碳金屬基複合材料之 導熱係數介於金屬基材的導熱係數與石墨化氣相成長碳纖 維的導熱係數之間,而石墨化氣相成長碳纖維之導熱係數係 介於 1000W/mK 至 1980W/mK 之間。 依照本發明之一較佳實施例,上述具有碳化金屬薄層之 石墨化氣相成長碳纖維中之碳含量一般係介於7〇重量百分 比至99重量百分比之間。 依照本發明一較佳實施例,上述碳化金屬層之金屬與金 Φ屬基材實質上為相同或不同之材質。 依照本發明一較佳實施例,上述碳化金屬層之金屬一般 可包括但不限於鎢(W)、鈦(Ti)、鉻(Cr)、鉬(Mo)、锆(Zr)、 釩(V)或其任意組合。 依照本發明一較佺實施例,上述金屬基材之材質一般可 包括但不限於銅、鋁、銀、金或其任意組合。 根據本發明上述之目的,再提出一種高導熱性含碳金屬 基複合材料之製造方法。首先,提供具有碳化金屬薄層之石 墨化氣相成長碳纖維,其中此石墨化氣相成長碳纖維之導熱 !3〇3273 1000W/mK至198〇w/mK之間。接著,進行複 m ^步驟’使金屬I材與具有碳化金屬薄層之石墨化氣 m維製成高導熱性含碳金屬基複合材料,其中此高 熱性含碳金屬基複合材料之導熱絲介於金屬基材之導 …、係數與石墨化氣相成長碳纖維之導熱係數之間。 依照本發明一較佳實施例,上述在提供具有碳化金屬薄 9之石墨化氣相成長碳纖維之步驟前,更至少包含下列步 "、先开y成氣相成長碳纖維,其係在介於6 0 0至1 3 0 0 f之間,溫度並於還原性氣體之存在下,藉由觸媒使碳源材 =形成氣相成長碳纖維。接下來,進行石墨化步驟,其係在 介於2400t至3000。(:之間的溫度並於鈍氣之存在下,使氣 相成長碳纖維形成石墨化氣相成長碳纖維。然後,利用燒結 法形成碳化金屬薄層於前述石墨化氣相成長碳纖維之表面。 依照本發明一較佳實施例,上述觸媒一般為鐵、鈷、鎳 等過渡金屬或其金屬有機化合物。 依照本發明一較佳實施例,上述碳源材料一般為氣態或 液悲碳氫化合物。進一步而言,上述之碳源材料可例如一氧 化碳 '苯、甲苯、二甲苯、液化石油氣、乙炔或其任意組合。 依照本發明一較佳實施例,上述碳化金屬薄層係將前述 石墨化氣相成長碳纖維加入金屬化合物溶液後,經去除溶 劑、升溫裂解及燒結而成,其中此金屬化合物之金屬一般可 例如鎢(W)、鈦(Ti)、鉻(Cr)、鉬(Mo)、錘(Zr)、釩(V)或上 述之任意組合。進一步而言,上述之金屬化合物可例如偏鶴 酸銨(Ammonium Paratungstate)、磷鎢酸(Tungstoph〇sphoric 1303273In recent years, the material of the heat dissipating component has become a hot topic. With the trend toward thinner, smaller, higher-functionalized, and higher-frequency electronic products, the heat generation per unit volume of electronic components has increased relatively, so a heat-dissipating material having a higher thermal conductivity is required. At present, aluminum extrusion type heat dissipating materials are widely used, for example, a type 6063 aluminum extruded heat dissipating material is used to manufacture various heat dissipating components. Since the heat transfer coefficient of the aluminum extruded heat-dissipating material is not high, it is only between 16 watts/meter of card temperature (W/mK) to 180 W/mK, which has long been unable to meet the new demand: Various improved processes have been developed for this aluminum extruded heat dissipating material, such as Bonding Fins process, Folding Fins process, Modified Die Casting, Forging process and planer type ( Skiving), etc., but still failed to solve the bottleneck problem of heat dissipation. 1303273 Since the high temperature generated in electronic circuits affects the working efficiency of electronic components, it is necessary to develop a thermal module to maintain the temperature of the electronic components below the critical safe temperature to avoid performance degradation due to overheating of the components; stable. However, due to the limited heat transfer coefficient of the heat dissipating component, a heat dissipation bottleneck occurs. Copper has a higher heat transfer coefficient than aluminum, and has a copper-based heat sink material of about 38 〇 W/mK ‘. In order to improve the heat transfer efficiency of the heat dissipating component, U.S. Patent No. 6,264,882 discloses a method of manufacturing a highly thermally conductive composite material for manufacturing a heat sink or a heat spreader of a high density integrated circuit ( Heat Spreader), and the composite material obtained from this process has a thermal conductivity between diamond and copper. The process basically comprises sputtering a metal layer on the diamond powder, then pressing into a porous body, and then infiltrating the copper alloy into the porous body in an infiltrated manner to form a diamond-steel composite having high thermal conductivity. material. China Patent Publication No. 573,025 discloses a carbon-containing copper-based composite material having a thermal expansion coefficient of φ and its application, which is based on copper powder, carbon powder and high-score polymer, respectively, depending on 70% to 95%. /. , 0. 01% ~ 10%, 5% ~ 3〇% ratio of evenly mixed, or steel powder and high molecular weight polymer containing carbon, respectively, according to the ratio of 7 G% ~ 95%, 5% ~ 鄕 mixed And through a number of high-temperature heat: work, the polymer polymer melts and evaporates, which constitutes a carbon-containing copper-based composite, material, and the thermal expansion coefficient of the composite material can vary with the ratio of the mixed raw materials and the heating temperature. And there are changes, so it can respond to the material requirements of different thermal expansion coefficients. China Patent Publication No. 561,207 discloses a carbon fiber having high thermal conductivity, mainly coated with polyacrylonitrile (P〇lyaCryl〇nitlile; pAN)-based carbon fiber 7 1303273 (Coating)-asphalt, asphalt derivative or high. After the molecular polymer is formed by carbonization and graphitization, the carbon fiber obtained has a thermal conductivity of between '20 W/mK and 500 W/mK. In short, the prior art improves the thermal conductivity of the composite by adding diamond powder or carbon powder. However, both the diamond powder and the carbon powder are in the form of granules. If only a small amount of diamond powder or carbon powder is added, it is difficult to form continuity in the composite material, and it is difficult to contribute to the thermal conductivity of the composite Lu material; if a large amount of diamond powder or carbon powder is added The shadow will ♦ the physical properties of the composite material. In addition, although the PAN-based carbon fiber is more continuous, the carbon fiber obtained by the graphitization treatment has a thermal conductivity of only between 2 〇 w/mK and 500 W/mK, which has a limited contribution to the thermal conductivity of the composite. In addition, conventional techniques often face problems of poor interface when carbon materials are combined with metal substrates. Therefore, there is an urgent need to develop a manufacturing method of a high thermal conductivity carbon-containing metal matrix composite material, in order to utilize a carbon material having a high thermal conductivity and good continuity, and to improve the interface problem of the carbon material in the metal substrate and improve The carbon-containing metal composite material appeals to the thermal conductivity, thereby improving the heat dissipation efficiency of the heat dissipating component fabricated using the carbon-containing metal matrix composite material. [Explanation] Therefore, one of the objects of the present invention is to disclose a high thermal conductivity carbon-containing metal matrix composite material and a method for producing the same, which are characterized by having a high thermal conductivity and a good connection, and a graphene gas Vap〇r Growll Carbon Fiber is used as an added carbon material, and a thin layer of carbonized metal is formed on the surface of the graphitized vapor-grown carbon fiber to improve the interface between the carbon material and the metal substrate, and to raise 1303273 high carbon material. The composite quality and the compounding ratio with the metal substrate greatly increase the thermal conductivity of the carbon-containing metal-based composite material, thereby making the heat dissipating component made of the metal-based composite material excellent in heat dissipation efficiency. According to the above object of the present invention, a high thermal conductivity carbon-containing metal matrix composite material is proposed. The high thermal conductivity carbon-containing metal matrix composite comprises at least between 1, and between 40% by weight of a thin layer of carbonized metal. Inked vapor grown carbon fiber, and from 60% by weight to 99.% by weight a metal substrate between a hundred and a ratio, wherein the thermal conductivity of the high thermal conductivity carbon-containing metal matrix composite is between the thermal conductivity of the metal substrate and the thermal conductivity of the graphitized vapor-grown carbon fiber, and the graphitized gas phase The thermal conductivity of the growing carbon fiber is between 1000 W/mK and 1980 W/mK. In accordance with a preferred embodiment of the present invention, the carbon content of the graphitized vapor-growth carbon fibers having a thin layer of a metal carbide is generally between 7 and 99 weight percent. According to a preferred embodiment of the present invention, the metal of the metallized metal layer and the metal Φ substrate are substantially the same or different materials. According to a preferred embodiment of the present invention, the metal of the metallization layer may generally include, but is not limited to, tungsten (W), titanium (Ti), chromium (Cr), molybdenum (Mo), zirconium (Zr), vanadium (V). Or any combination thereof. According to a comparative embodiment of the present invention, the material of the metal substrate may generally include, but is not limited to, copper, aluminum, silver, gold or any combination thereof. According to the above object of the present invention, a method of producing a highly thermally conductive carbon-containing metal matrix composite material is further proposed. First, a graphite vapor-grown carbon fiber having a thin layer of a metal carbide is provided, wherein the heat of the graphitized vapor-grown carbon fiber is between 3, 3,273, 1000 W/mK and 198 〇w/mK. Then, performing a complex m ^ step of making the metal I material and the graphitized gas having a thin layer of carbonized metal into a high thermal conductivity carbon-containing metal matrix composite material, wherein the high thermal carbon-containing metal matrix composite material is thermally conductive Between the conductivity of the metal substrate, the coefficient and the thermal conductivity of the graphitized vapor-grown carbon fiber. According to a preferred embodiment of the present invention, before the step of providing the graphitized vapor-growth carbon fiber having the thin metal carbide thinner 9, the method further comprises the following steps: first opening the gas into the vapor-grown carbon fiber. Between 6 0 0 and 1 3 0 0 f, the temperature is in the presence of a reducing gas, and the carbon source material is formed by the catalyst to form a vapor-grown carbon fiber. Next, a graphitization step is carried out which is between 2400 t and 3,000. (: between the temperature and in the presence of a blunt gas, the vapor-grown carbon fiber is formed into a graphitized vapor-grown carbon fiber. Then, a thin layer of a metal carbide is formed on the surface of the graphitized vapor-grown carbon fiber by a sintering method. In a preferred embodiment of the invention, the catalyst is generally a transition metal such as iron, cobalt or nickel or a metal organic compound thereof. According to a preferred embodiment of the invention, the carbon source material is generally a gaseous or liquid sad hydrocarbon. The carbon source material may be, for example, carbon monoxide 'benzene, toluene, xylene, liquefied petroleum gas, acetylene or any combination thereof. According to a preferred embodiment of the present invention, the above thin layer of carbonized metal is the aforementioned graphitized gas phase. After the carbon fiber is added to the metal compound solution, the solvent is removed, the temperature is cracked and sintered, and the metal of the metal compound is generally, for example, tungsten (W), titanium (Ti), chromium (Cr), molybdenum (Mo), and hammer ( Zr), vanadium (V) or any combination of the above. Further, the above metal compound may be, for example, Ammonium Paratungstate or phosphotungstic acid (Tun Gstoph〇sphoric 1303273

Acid)、鶴酸(Tungstic Acid)、氣化鶴(Tungsten Chloride)、 異丙氧基欽(Titanium Isopropoxide)、二茂鉻 • (Chromocene)、鉻酸銨(Ammonium Chromate)、氯化鉻 、 (Chromium Chloride)、乙醢丙酸I 鉻(Chromium Acetylacetonate)、醋酸亞鉻(Chromium Acetate)、九水硝酸 • 鉻(Chromium Nitrate Nonahydrate)、對翻酸錢(Ammonium • Paramolybdate)、氯化錯(Zirconium Chloride)、乙醯丙 _ 錯 ® (Zirconium Acetylacetonate)、第三丁 氧基錯(Zirconium t>Butoxide)、乙醯丙酮飢(Vanadyl Acetylacetonate)或其任意 組合。 依照本發明一較佳實施例,上述複合及成型步驟一般可 利用熔煉法、壓鑄(Squeeze Casting)法、熔融壓鑄法、金屬 粉末沖壓成型(Compact Pressing)法或金屬粉末射出成型 (Metal Injection Molding ; MIM)法,使表面具有碳化金屬薄 層之石墨化氣相成長碳纖維與金屬基材形成高導熱性含碳 _ 金屬基複合材料。 依照本發明一較佳實施例,上述金屬基材以及具有碳化 屬專層之石墨化氣相成長碳纖維在進行複合及成型步驟 時’更可添加有機黏結劑以助其複合及成型,其中有機黏結 劑之合量為金屬基材與具有碳化金屬薄層之石墨化氣相成 長石反纖維之總重的〇 ·丨重量百分比至丨〇重量百分比。 應用上述高導熱性含碳金屬基複合材料及其製造方 法,藉由石墨化氣相成長碳纖維之高導熱係數,及碳纖維與 金屬基材之介面改善,提高碳材與金屬基材的複合品質及複Acid), Tungstic Acid, Tungsten Chloride, Titanium Isopropoxide, Chromocene, Ammonium Chromate, Chromium Chloride, (Chromium) Chloride), Chromium Acetylacetonate, Chromium Acetate, Chromium Nitrate Nonahydrate, Ammonium • Paramolybdate, Zirconium Chloride Zirconium Acetylacetonate, Zirconium t> Butoxide, Vanadyl Acetylacetonate or any combination thereof. According to a preferred embodiment of the present invention, the compounding and molding steps can be generally performed by a melting method, a squeeze casting method, a melt die casting method, a metal powder stamping (Compact Pressing) method or a metal powder injection molding (Metal Injection Molding; The MIM) method forms a highly thermally conductive carbon-containing metal-based composite material with a graphitized vapor-grown carbon fiber having a thin layer of a metal carbide on the surface and a metal substrate. According to a preferred embodiment of the present invention, the metal substrate and the graphitized vapor-grown carbon fiber having a carbonized sublayer are added to the compounding and molding step to further add an organic binder to assist in compounding and molding, wherein the organic bonding The combined amount of the agent is the weight percentage of ruthenium/ruthenium to the weight percentage of the total weight of the metal substrate and the graphitized fumed stone anti-fiber having a thin layer of carbonized metal. Applying the above high thermal conductivity carbon-containing metal matrix composite material and a manufacturing method thereof, improving the composite quality of the carbon material and the metal substrate by improving the high thermal conductivity of the graphitized vapor-grown carbon fiber and the interface between the carbon fiber and the metal substrate complex

間的溫度並於還原性氣體之存在下,在例如石英、氧化鋁或 富I呂紅柱=(Mun⑽等製成之反應裝置中,藉由觸媒使碳源 材料形成氣相成長碳纖維。上诚路社 < W彳日之還原性氣體一般為氫 氣。觸媒一般為過渡金屬或其金屬古 人八I屬有機化合物,而以鐵、鈷、 鎳或其金屬有機化合物為較佳。至於 ^ „ 主於石厌源材料一般為氣態或 液L之石反虱化口物’而以一氧化碳、笨、甲 化石油氣、乙快或上述之任意組合為較佳。 笨 1303273 合比例’因而大幅提升此含碳金屬基複合材料之導熱係數, 進而使利用此含碳金屬基複合材料製成之散熱元件具有優 異的散熱效率。 【實施方式】 本發明之高導熱性含碳金屬基複合材料及其製造方 法,係先製作出高導熱性石墨化氣相成長碳纖維,並以燒結 法於其表面形&碳化金4薄層,藉以改善碳纖維與金屬基持 之介面,提高碳材與金屬基材的複合品質及複合比例,進而 使表面形成碳化金屬薄層之石墨化氣相成長碳纖維與金屬 基材複合,而㈣W熱性含碳金屬基複合材料,使利用此 含碳金屬基複合材料製成之散熱元件具有優異的散熱欵 率。以下配合第i圖至第3圖,詳細說明本發明之高導熱性 含碳金屬基複合材料及其製造方法。 請參照第!圖,其係繪示根據本發明—較佳實施例之高 導熱性含碳金屬基複合材料的製程流程圖。首先如步驟ι〇ι 所示,形成氣相成長碳纖維,其係在介於6〇〇t至丨3〇〇ι之 甲苯、液 12 1303273 接著,將上述氣相成長碳纖維置於例如石墨化爐中,在 介於24〇0。(:至300(TC之間的溫度並於鈍氣(例如氬氣)之存 在下進行石墨化步驟,而如步驟103所示,使氣相成長碳纖 維形成石墨化氣相成長碳纖維。石墨化步驟可採用習知製程 使用之製程參數進行,在此不另贅述。經上述石墨化步驟處 理後’氣相成長碳纖維的導熱係數可提昇至1〇〇〇 W/mK至 1980 W/mK之間。所得之石墨化氣相成長碳纖維為細長、 中空、如石墨捲曲而成的結構,而其單一石墨化氣相成長碳 纖維之直徑介於0.01//111至10/zm之間、長度介於= 10 cm之間,長徑比(Aspect Rati〇)介於1〇〇至ι〇,〇〇〇之間。 倘若石墨化氣相成長碳纖維之長徑比過低,則不易形成連續 通路,如石墨化氣相成長碳纖維之長徑比過高,反而容易糾 2 =成分散性不佳,因此本發明石墨化氣相成長碳纖維以直 仫川於0.1//m至之間 '長度介於5〇"瓜至2瓜茁之 間、長徑比介於500至2,000之間為較佳。 一般而言,由於習知碳材與金屬基材複合時,常面臨介 面:佳的問題。因此,本發明在石墨化步驟後,如步驟 所不,於石墨化氣相成長碳纖維之表面形成碳化金屬薄層, 乂改善奴材與金屬基材之間介面不佳的問題。進一步言之, 形成呶化金屬薄層時,係先將上述所得之石墨化氣相成長碳 ,維加入金屬化合物溶液後,在均勻攪拌下蒸去金屬化合物 =液中之溶劑,而於石墨化氣相成長碳纖維之表面均勻附著 至屬化η物薄層,然後再利用燒結法將碳纖維表面附著的金 屬化合物薄層轉變為與碳纖維鍵結的碳化金屬薄層。此處所 13 1303273 述之溶劑為此技術領域中任何具有通常知識者所熟知,可例 如水或有機溶劑,因此不另贅述。上述金屬化合物之金屬為 易形成碳化物之金屬’一般可包括但不限於鎢(W)、鈦(Ti)、 ; 鉻(Cr)、_(Mo)、鍅(Zr)、釩(V)或其任意組合。更進一步而 言,上述之金屬化合物可例如偏鎢酸銨(Ammonium Paratungstate)、磷鎢酸(Tungstophosphoric Acid)、鎢酸 φ (Tungstlc Acid)、氯化鎢(Tungsten Chloride)、異丙氧基鈦 馨(Titanium IS0pr0p0Xide)、二茂鉻(Chr〇m〇cene)、鉻酸銨 (Ammonium Chromate)、氣化鉻(ChromiumChl〇ride)、乙醯 丙嗣絡(Chromium Acetylacetonate)、醋酸亞鉻(chromium Acetate)、九水硝酸鉻(Chromium Nitrate Nonahydrate)、對 鉬酸銨(Ammonium Param〇iybdate)、氯化鍅(zirc〇niumThe temperature between the two is in the presence of a reducing gas, and the carbon source material is formed into a vapor-grown carbon fiber by a catalyst in a reaction apparatus made of, for example, quartz, alumina or I. (Mun (10). The reducing gas of the society is generally hydrogen. The catalyst is generally a transition metal or a metal of the ancient genus, and it is preferred to use iron, cobalt, nickel or a metal organic compound thereof. The material of the stone source is generally gaseous or liquid stone, and it is preferably carbon monoxide, stupid, petroleum gas, B-speed or any combination of the above. Stupid 1303273 proportionally The thermal conductivity of the carbon-metal composite material further improves the heat dissipation efficiency of the heat-dissipating component made of the carbon-containing metal-based composite material. [Embodiment] The high thermal conductivity carbon-containing metal matrix composite material of the present invention and a method for producing the same Firstly, a high thermal conductivity graphitized vapor-grown carbon fiber is produced, and a thin layer of carbonized gold is formed on the surface by a sintering method, thereby improving the interface between the carbon fiber and the metal substrate. The composite quality and compounding ratio of the high carbon material and the metal substrate, and further, the graphitized vapor-grown carbon fiber having a thin layer of carbonized metal formed on the surface is composited with the metal substrate, and (4) the W thermal carbon-containing metal matrix composite material enables the use of the carbonaceous material The heat dissipating component made of the metal matrix composite material has excellent heat dissipation rate. The high thermal conductivity carbon-containing metal matrix composite material of the present invention and the manufacturing method thereof will be described in detail below with reference to the first to third figures. , which is a flow chart showing the process of the high thermal conductivity carbon-containing metal matrix composite material according to the preferred embodiment of the present invention. First, as shown in the step ι〇ι, a vapor-grown carbon fiber is formed, which is between 6〇. 〇t to 〇〇3〇〇ιtoluene, liquid 12 1303273 Next, the above vapor-grown carbon fiber is placed in, for example, a graphitization furnace at a temperature of between 24 〇 0. (: to 300 (TC) and blunt The graphitization step is carried out in the presence of a gas such as argon, and the vapor-grown carbon fibers are formed into graphitized vapor-grown carbon fibers as shown in step 103. The graphitization step can be carried out using process parameters used in conventional processes. Therefore, the thermal conductivity of the vapor-grown carbon fiber can be increased to between 1 〇〇〇W/mK and 1980 W/mK after the above-described graphitization step. The obtained graphitized vapor-grown carbon fiber is slender. , hollow, graphite-curled structure, and its single graphitized vapor-grown carbon fiber diameter between 0.01//111 to 10/zm, length between = 10 cm, aspect ratio (Aspect Rati 〇) Between 1〇〇 and ι〇, 〇〇〇. If the aspect ratio of graphitized vapor-grown carbon fiber is too low, it is difficult to form a continuous path, such as the aspect ratio of graphitized vapor-grown carbon fiber is too high. However, it is easy to correct 2 = poor dispersion, so the graphitized vapor-grown carbon fiber of the present invention is between 0.1/m and the length of the mixture is between 5 〇 " melon to 2 茁 、, long A diameter ratio of between 500 and 2,000 is preferred. In general, when conventional carbon materials are combined with metal substrates, they often face the problem of good interface. Therefore, in the present invention, after the graphitization step, as in the step, a thin layer of a metal carbide is formed on the surface of the graphitized vapor-grown carbon fiber, which improves the problem of poor interface between the slave material and the metal substrate. Further, when forming a thin layer of deuterated metal, the graphitized vapor-phase-growth carbon obtained above is added to the metal compound solution, and the solvent in the metal compound=liquid is distilled off under uniform stirring, and is graphitized. The surface of the vapor-grown carbon fiber is uniformly attached to the thin layer of the genus genus, and then the thin layer of the metal compound adhered to the surface of the carbon fiber is converted into a thin layer of the carbonized metal bonded to the carbon fiber by a sintering method. The solvent described in 13 1303273 is well known to those of ordinary skill in the art and may be, for example, water or an organic solvent, and thus will not be further described. The metal of the above metal compound is a metal which is easy to form a carbide. Generally, it may include, but is not limited to, tungsten (W), titanium (Ti), chromium (Cr), _ (Mo), ytterbium (Zr), vanadium (V) or Any combination thereof. Further, the above metal compound may be, for example, Ammonium Paratungstate, Tungstophosphoric Acid, Tungstlc Acid, Tungsten Chloride, Isopropyltitanate. (Titanium IS0pr0p0Xide), Chr〇m〇cene, Ammonium Chromate, Chromium Chl〇ride, Chromium Acetylacetonate, Chrome Acetate , Chromium Nitrate Nonahydrate, Ammonium Param〇iybdate, Zirc〇nium

Chloride)、乙醯丙酮錯(zirconium Acetylacetonate)、第三丁 氧基酷(Zirconium t_Butoxide)、乙醯丙酮釩(vanadyl • Acetylacetonate)或其任意組合。然而,本發明之金屬化合 •物不限於此處所舉,此技術領域中任何具有通常知識者當可 了解,其他易形成碳化物之金屬化合物亦可運用於本發明 中〇 -進行燒結步驟時,係於如上述所舉之鈍氣或還原性氣體 • 之存在下,於例如熱處理爐内升溫,使金屬化合物薄層裂解 以去除金屬以外之成分,而於高溫下將留下的金屬成分與石 墨化氣相成長碳纖維進行燒結,轉變成堅固之碳化金屬薄 層。燒結溫度及時間端視所使用之金屬而定,舉例而言,當 金屬成分為鉻金屬時,可於1500 °c下燒結3小時。 14 1303273 -表面具有碳化金屬薄層之石墨化氣相成長碳纖維中之 碳含量若低於70重量百分比,則過多之碳化金屬薄層會影 響導熱係數;反之,其碳含量若高於99重量百分比,則過 ··.〉、之厌化金屬薄層將無法顯著改善碳材在金屬基材中介面 不佳的問題。因此,本發明所得之表面具有碳化金屬薄層之 石墨化氣相成長碳纖維,其碳含量一般以介於重量百分 修比至99重虿百分比之間為宜,而以介於8〇重量百分比至 馨90重量百分比之間為較佳。在後續製程中,本發明之表面 有妷化金屬薄層之石墨化氣相成長碳纖維可顯著改善碳 材在金屬基材中的介面問題。 *然後,進行複合及成型步驟107,其係將上述表面具有 厌化金屬薄層之石墨化氣相成長碳纖維,經由不同方式與金 屬基:稷合並置入預設之模具成型’以製成高導熱性含碳金 屬基複合材料。在本發明的一個例子中,可利用熔煉法、壓 Φ 鑄(Squeeze Castlng)法或熔融壓鑄法,製造高導熱性含碳金 拳屬基複合材料之散熱元件。首先,將金屬基材置於溶練爐中 • 加熱溶融’於鈍氣之存在下與具有碳化金屬薄層之石墨化氣 相成長碳纖維均勻複合成複合材料,其中金屬基材之含量係 :f於60重量百分比至99重量百分比之間,而具有碳化金屬 薄層之石墨化氣相成長碳纖維之含量則介於1重量百分比 至40重量百分比之間。金屬基材之材質一般以具有高孰傳 導係數之金屬為較佳’可例如銅、鋁、銀、金或其任意組合。 另,就金屬基材與碳化金屬薄層之金屬而言,二者材質實質 上可相同或不同’本發明並不在此限。上述複合材料可直接 15 1303273 由熔煉爐取出並壓入模具中鑄成所需形狀之複合材料散熱 元件。另一種方式,將上述複合材料先作成鑄錠(Ingot),再 •熔融置入模具中鑄成所需形狀之複合材料散熱元件。 . 在本發明另一個例子中,可利用金屬粉末沖壓成型法或 金屬粉末射出成型(Metal Injection Molding ; MIM)法,製造 高導熱性含碳金屬基複合材料之散熱元件,視所需產品形狀 丨之複雜度而定。首先,將金屬基材粉末與具有碳化金屬薄層 鲁之石墨化氣相成長碳纖維均勻混合成混合物,其中金屬基材 粉末之含量係介於60重量百分比至99重量百分比之間,而 具有$反化金屬薄層之石墨化氣相成長碳纖維之含量則介於 1重量百分比至40重量百分比之間。另外,可選擇性添加 上述混合物總重之〇 · 1重量百分比至1 〇重量百分比之有機 黏結劑以助於複合及成型。適用之有機黏結劑一般可包括但 不限於硬脂酸(Stearic Acid)、硬脂酸辞、硬脂酸鋰、微結晶 蠟(MiCrocrystamne Wax)、石蠟(paraffin Wax)、石蠟油 象(Paraffin Oil)、橡膠、塑膠或其任意組合。將上述成分混合 均勻後,將混合物置入模具中,直接沖壓成型為所需形狀之 複合材料散熱兀件胚體。另一種方式,可將上述成分混合均 勻後,經加熱混練後製成複合材料之射出餵料(Feedst〇ck), 利用射出成型機射入模具中製成所需形狀之複合材料散熱 元件胚體。 在利用金屬#末沖成型法或金屬❺纟射出成型法製 成所需形狀之複合材料散熱元件胚體後,尚需進行脫壤 (De-Wax)脫脂(De_Binding)步驟,例如加熱至6〇〇。〇約ι小 16 1303273 時,藉以去除胚體中所含的有機黏結劑。之後,進行燒結 (Sintering)步驟,其係將已脫蠟脫脂之胚體置入例如燒結爐 中以例如1000°C進行例如約}小時之氣氛燒結,使金屬顆 粒間形成頸部結合,而收縮緻密化成多孔體。隨後,再進行 熔滲(Infiltrating)步驟,其係利用相同或不同於上述之金屬 基材熔融填滿多孔體之孔隙,藉以形成高導熱性含碳金屬基 複合材料散熱元件,其中此高導熱性含碳金屬基複合材料散 熱元件之導熱係數介於金屬基材之導熱係數與石墨化氣相 成長碳纖維之導熱係數之間。 易吕之’本發明含碳金屬基複合材料係先製造高導熱之 石墨化氣相成長碳纖維,再以燒結法於其表面形成碳化金屬 薄層,藉以改善碳纖維與金屬基材之介面,提高碳材與金屬 基材的複合品質及複合比例,然後與金屬基材複合得到高導 熱係數之含碳金屬基複合材料,使利用此含碳金屬基複合材 料製成之散熱元件具有優異的散熱效率。在本發明的一個例 子中,金屬基材之材質為銅時,所得之含碳金屬基複合材料 的導熱係數可介於400 W/mK至1〇00 w/mK之間。 山下文特列舉數個實施例,用以說明本發明之高導熱性含 石厌金屬基複合材料及其製造方法,然下述之實施例非用以限 定本發明之範圍,本發明之範圍當視後附之申請專利範圍所 界定者為準。 實施例一 請參閱帛2圖,其係繪示根據本發明實施例一之氣相成 長碳纖維的反應裝置之結構示意圖。此氣相成長碳纖維的反 17 1303273 應裝置200為流動床式反應管裝置,進一步言之,可例如直 立式氧化銘反應管。此反應裝置2 〇 〇中一般至少包含反應管 20 1以及反應管20 1外圍之加熱器2〇3。在反應管20 1之一 ;端設有原料導入管205以及載氣入口 207,而反應管201之 另一端則為收集槽209,且收集槽209之一側設有排氣口 “ 211。反應管2G1之材質—般為氧化銘、石英或富銘紅柱石 _ (Mullite)。在此實施例中,反應管201係以例如純度99·8% ♦之氧化銘製成,其外徑例如762cm,内徑例如69^瓜,而 長度例如150cm。在進行氣相成長碳纖維之製程時,首先, 將反應管201内的空氣以氮氣置換後,利用加熱器2〇3使反 應管2〇1升溫並維持在約n〇(rc。接著,關掉氮氣,改以 流速10升/分(L/min)之氫氣通入反應管2〇1内,在管内形 成還原性氣氛。然後,將含4重量百分比之二茂鐵(Ferr〇eene) 的二甲苯溶液以8毫升/分(mL/min)之流速連續送入反應管 ,内,以於高溫下經由二茂鐵觸媒催化裂解形成氣相:長 _碳纖維,而所得之氣相成長碳纖維則落入收集槽2〇9内。 請參閱第3圖,其係顯示本發明實施例一之氣相成長碳 纖維經放大10,000倍的掃描式電子顯微鏡照片。由第3圖 之結果顯示,所得之氣相成長碳纖維之直徑係介於〇 〇i#m 至0.3/zm之間,而長度介於60/zin至1 mm之間。 之後,將上述所得之氣相成長碳纖維置入石墨化爐中, 在爐内為氬氣氣氛下,以1(TC/分之升溫速率加熱至28〇〇 。(:,並持溫1小時,藉此使氣相成長碳纖維石墨化。所得之 石墨化氣相成長碳纖維之導熱係數為1 850w/mK。 18 1303273 隨後,將此石墨化氣相成長碳纖維加入醋酸亞鉻水溶 液,其中醋酸亞鉻水溶液之鉻含量為11重量百分比,且石 墨化氣相成長碳纖維與醋酸亞鉻水溶液之重量比為1 : 1。 將含有石墨化氣相成長碳纖維之醋酸亞鉻水溶液置入旋轉 式蒸發器中,在120°c下旋轉加熱2小時以蒸乾水分,使石Chloride), zirconium Acetylacetonate, Zirconium t_Butoxide, vanadyl Acetylacetonate or any combination thereof. However, the metal compound of the present invention is not limited to those mentioned herein, and any one of ordinary skill in the art can understand that other metal compounds which are easy to form carbides can also be used in the present invention. In the presence of an inert gas or a reducing gas as described above, the temperature is raised in, for example, a heat treatment furnace to crack a thin layer of the metal compound to remove components other than the metal, and the metal component and the graphite remain at a high temperature. The vaporized carbon fiber is sintered and converted into a thin layer of a solid carbonized metal. The sintering temperature and time are determined depending on the metal to be used. For example, when the metal component is chromium metal, it can be sintered at 1500 ° C for 3 hours. 14 1303273 - If the carbon content in the graphitized vapor-grown carbon fiber with a thin layer of carbonized metal is less than 70% by weight, the excessive thin layer of carbonized metal will affect the thermal conductivity; otherwise, if the carbon content is higher than 99% by weight However, the thin layer of the metal layer will not significantly improve the problem that the carbon material is poor in the metal substrate. Therefore, the graphitized vapor-growth carbon fiber having a thin layer of carbonized metal obtained on the surface of the present invention generally has a carbon content of between about 100% by weight and a percentage by weight of 99% by weight. It is preferred to be between 90% by weight of the scent. In the subsequent process, the graphitized vapor-grown carbon fiber having a thin layer of deuterated metal on the surface of the present invention can significantly improve the interface problem of the carbon material in the metal substrate. * Then, a compounding and molding step 107 is performed in which the graphitized vapor-growth carbon fiber having the surface of the metallized layer is formed by differently forming a preformed mold with a metal base: Thermally conductive carbon-containing metal matrix composite. In an example of the present invention, a heat dissipating member of a highly thermally conductive carbon-containing gold-based composite material can be produced by a smelting method, a Φ squeezing method or a melt-casting method. First, the metal substrate is placed in a refining furnace. • Heated and melted in a presence of an inert gas and uniformly mixed with a graphitized vapor-grown carbon fiber having a thin layer of a metal carbide to form a composite material, wherein the content of the metal substrate is: f The content is between 60% by weight and 99% by weight, and the content of the graphitized vapor-growth carbon fiber having a thin layer of metal carbide is between 1% by weight and 40% by weight. The material of the metal substrate is generally preferably a metal having a high 孰 conductivity, and may be, for example, copper, aluminum, silver, gold or any combination thereof. Further, in the case of the metal substrate and the metal of the thin layer of the metal carbide, the materials of the two may be substantially the same or different, and the present invention is not limited thereto. The composite material described above can be directly removed from the melting furnace by 15 1303273 and pressed into a mold to form a composite heat dissipating component of a desired shape. Alternatively, the composite material may be first formed into an ingot, and then melted into a mold to form a composite heat dissipating member of a desired shape. In another example of the present invention, a metal powder stamping method or a Metal Injection Molding (MIM) method can be used to manufacture a heat dissipating component of a high thermal conductivity carbon-containing metal matrix composite material, depending on the desired product shape. Depending on the complexity. First, the metal substrate powder and the graphitized vapor-grown carbon fiber having a thin layer of carbonized metal are uniformly mixed into a mixture, wherein the content of the metal substrate powder is between 60% by weight and 99% by weight, and has a The content of the graphitized vapor-growth carbon fiber of the thin metal layer is between 1% by weight and 40% by weight. Alternatively, an organic binder of from 1% by weight to 1% by weight based on the total weight of the above mixture may be added to aid in compounding and molding. Suitable organic binders may generally include, but are not limited to, stearic acid, stearic acid, lithium stearate, MiCrocrystamne Wax, paraffin Wax, paraffin oil. , rubber, plastic or any combination thereof. After the above ingredients are uniformly mixed, the mixture is placed in a mold and directly formed into a composite heat-dissipating element body of a desired shape. Alternatively, the above components may be uniformly mixed, and then heated and kneaded to form a composite feedstock (Feedst〇ck), which is injected into a mold by an injection molding machine to form a composite heat dissipating component body body of a desired shape. . After the composite body heat-dissipating element body of the desired shape is formed by metal #end molding or metal ❺纟 injection molding, a De-Wax de-Binding step, such as heating to 6 尚, is required. Hey. 〇约ι小16 1303273, in order to remove the organic binder contained in the embryo body. Thereafter, a Sintering step is performed in which the dewaxed and degreased embryo body is placed in, for example, a sintering furnace, for example, at 1000 ° C for sintering, for example, about 1 hour, to form a neck joint between the metal particles, and shrink. Densification into a porous body. Subsequently, an infiltrating step is performed, which utilizes the same or different metal substrate to melt and fill the pores of the porous body, thereby forming a high thermal conductivity carbon-containing metal-based composite heat dissipating component, wherein the high thermal conductivity The thermal conductivity of the carbon-containing metal matrix composite heat dissipating component is between the thermal conductivity of the metal substrate and the thermal conductivity of the graphitized vapor-grown carbon fiber. Yi Luzhi' The carbon-containing metal matrix composite of the present invention first produces a highly thermally conductive graphitized vapor-grown carbon fiber, and then forms a thin layer of carbonized metal on the surface thereof by a sintering method, thereby improving the interface between the carbon fiber and the metal substrate, and improving the carbon. The composite quality and composite ratio of the material and the metal substrate are then combined with the metal substrate to obtain a carbon-containing metal matrix composite material having a high thermal conductivity, so that the heat dissipating component made of the carbon-containing metal matrix composite material has excellent heat dissipation efficiency. In one embodiment of the present invention, when the material of the metal substrate is copper, the resulting carbon-containing metal matrix composite may have a thermal conductivity of between 400 W/mK and 1 00 w/mK. In the following, several examples are given to illustrate the high thermal conductivity stone-containing metal-based composite material of the present invention and a method for producing the same, but the following examples are not intended to limit the scope of the present invention, and the scope of the present invention is This is subject to the definition of the scope of the patent application. Embodiment 1 Please refer to Fig. 2, which is a schematic view showing the structure of a reaction apparatus for vapor-phase-forming carbon fibers according to Embodiment 1 of the present invention. The reverse phase 130 1303273 of the vapor-grown carbon fiber is a fluidized bed type reaction tube device, and further, for example, an upright oxidation reaction tube. The reaction apparatus 2 一般 一般 generally includes at least a reaction tube 20 1 and a heater 2 〇 3 on the periphery of the reaction tube 20 1 . At one end of the reaction tube 20 1 ; a raw material introduction tube 205 and a carrier gas inlet 207 are provided, and the other end of the reaction tube 201 is a collection tank 209, and one side of the collection tank 209 is provided with an exhaust port "211. The material of the tube 2G1 is generally oxidized, quartz or mullite _ (Mullite). In this embodiment, the reaction tube 201 is made of, for example, a purity of 99.8% ♦, and its outer diameter is, for example, 762 cm. The inner diameter is, for example, 69 melon, and the length is, for example, 150 cm. In the process of vapor-grown carbon fiber, first, after the air in the reaction tube 201 is replaced with nitrogen, the reaction tube 2〇1 is heated by the heater 2〇3. And maintained at about n 〇 (rc. Then, the nitrogen gas is turned off, and the hydrogen gas having a flow rate of 10 liters/min (L/min) is introduced into the reaction tube 2〇1 to form a reducing atmosphere in the tube. Then, it will contain 4 The weight percentage of ferrocene (Ferr〇eene) in xylene solution is continuously fed into the reaction tube at a flow rate of 8 ml/min (mL/min) to form a gas phase by catalytic cracking of the ferrocene catalyst at a high temperature. : long _ carbon fiber, and the resulting vapor-grown carbon fiber falls into the collection tank 2〇9. Please refer to Figure 3. It is a scanning electron micrograph showing a 10,000-fold magnification of the vapor-grown carbon fiber of the first embodiment of the present invention. The results of the third graph show that the diameter of the obtained vapor-grown carbon fiber is between 〇〇i#m and 0.3. Between /zm, and the length is between 60/zin and 1 mm. After that, the vapor-grown carbon fiber obtained above is placed in a graphitization furnace, and the furnace is in an argon atmosphere at 1 (TC/min). The heating rate was heated to 28 〇〇. (:, and held for 1 hour, thereby vaporizing the vapor-grown carbon fiber. The obtained graphitized vapor-grown carbon fiber has a thermal conductivity of 1 850 w/mK. 18 1303273 Subsequently, The graphitized vapor-grown carbon fiber is added to an aqueous chromic acid solution, wherein the chromium carbonate aqueous solution has a chromium content of 11% by weight, and the weight ratio of the graphitized vapor-grown carbon fiber to the ferrous chromium acetate solution is 1:1. The vapor-grown carbon fiber oxychromic acid aqueous solution is placed in a rotary evaporator and heated at 120 ° C for 2 hours to evaporate the water to make the stone

墨化氣相成長碳纖維之表面留下醋酸亞絡薄層。接著,將表 面具有醋酸亞鉻薄層之石墨化氣相成長碳纖維置入高溫熱 處理爐内,於氫氣氣氛下在1500°C燒結3小時,藉此獲得 表面具有堅固碳化鉻薄層的石墨化氣相成長碳纖維,其中此 表面具有堅固碳化鉻薄層的石墨化氣相成長碳纖維之碳含 量為90重量百分比。 實施例二 首先,取實施例一所得之表面具有碳化鉻薄層的石墨化 氣相成長碳纖維10公克、平均粒徑2〇/zm之銅粉9〇公克 以及硬脂酸0.5公克,利用例如混合機均勻混合。接著,利 ^例如/冲壓成型機,將上述其中15公克之混合粉末以Μ㈧ :斤坪方公分的壓力㈣成型,而得到平板狀含碳銅基複 =材料之胚體°然後,於體積比9/1之氮氣/氫氣氣氛下, 將胚體進行脫脂至G.5小時。之後,將脫脂後之胚 = 下進行H、時之氣氛燒結,以獲得多孔體,並 於冷部後取出。 將燒結後之含碳銅基複合材料多孔體置人職之模具 中在含碳鋼基複合材料多孔體 粉。鋏尨 4· 叫分哪上缚溥一層銀 、 上下模片對含碳鋼基複合材料多孔體施壓之情 19 1303273 況下’於熱處理爐中,在體積比9/1之氮氣/氫氣氣氛下, 以例如98(TC進行溶渗步驟至〇.5小時,使銀粉熔融渗入多 孔體之孔隙中,以形成含碳金屬基複合材料散熱元件。所得 之含碳金屬基複合材料散熱元件以例如Netzsch [FA 447The surface of the vaporized vapor-grown carbon fiber leaves a thin layer of acetic acid. Next, the graphitized vapor-grown carbon fiber having a thin layer of chromite acetate was placed in a high-temperature heat treatment furnace, and sintered at 1500 ° C for 3 hours under a hydrogen atmosphere, thereby obtaining a graphitized gas having a thin layer of solid chromium carbide on the surface. The phase-grown carbon fiber, wherein the graphitized vapor-growth carbon fiber having a thin layer of solid chromium carbide on the surface has a carbon content of 90% by weight. Example 2 First, 10 g of graphitized vapor-growth carbon fiber having a thin layer of chromium carbide obtained on the surface obtained in Example 1, a copper powder having an average particle diameter of 2 〇/zm of 9 gram, and 0.5 gram of stearic acid were used, for example, by mixing. The machine is evenly mixed. Then, for example, a press molding machine, the above-mentioned 15 gram of the mixed powder is formed by the pressure (four) of Μ (eight): 千 坪 square centimeters, to obtain a flat carbon-containing copper-based composite material body body, then, in a volume ratio The embryo body was degreased to G. 5 hours under a nitrogen/hydrogen atmosphere of 9/1. Thereafter, the degreased embryo = under the H atmosphere is sintered to obtain a porous body, which is taken out after the cold portion. The sintered carbon-containing copper-based composite porous body is placed in a mold of a carbon-containing steel-based composite porous body powder.铗尨4· 叫 上 上 上 上 上 上 上 上 上 上 上 上 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 130 19 19 Next, the carbon powder is melt-infiltrated into the pores of the porous body by, for example, 98 (TC is subjected to an infiltration step to 55 hours) to form a carbon-containing metal-based composite heat dissipating member. The obtained carbon-containing metal-based composite heat dissipating member is, for example, Netzsch [FA 447

Nan〇Flash雷射測定儀測定,得其導熱係數為6〇2 w/mK, 介於銅、銀之導熱係數與石墨化氣相成長碳纖維之導熱係數 之間。 實施你丨三 ^首先,取實施例一所得之表面具有碳化鉻薄層的石墨化 氣相成長碳纖維300公克,與鋁錠7〇〇公克一起置入真空熔 練爐中,在攪動下加熱熔融。接下來,做成棒型鑄錠(1叫〇〇, 其中此鑄錠之導熱係數為556 W/mK。隨後,此鑄錠可依散 熱几件之形狀再熔融壓鑄成型,而形成所需形狀之含碳金屬 基複合材料散熱元件。 生較例— 取表面未具有碳化金屬薄層的石墨化氣相成長碳纖維 10 a克、平均粒徑2〇/z m之銅粉9〇公克以及硬脂酸〇·5公 克利用例如混合機均勻混合後,以與實施例二相同之方 $ ’將上述其中1 5公克之混合粉末沖壓成型。然而,所製 侍之含碳鋼基複合材料之胚體成形不良且易脫層。另一種方 式改取表面未具有碳化金屬薄層的石墨化氣相成長碳纖維 Α克、平均粒徑20 # m之銅粉95公克以及硬脂酸〇·5公 克利用例如混合機均勻混合後,以與實施例二相同之方 去將上述其中1 5公克之混合粉末沖壓成型。以此製得之 1303273 含碳銅基複合材料之散熱元件的導熱係數僅為38〇W/mK。 由上述本發明較佳實施例可知,應用本發明之高導熱性The Nan〇Flash laser measuring instrument has a thermal conductivity of 6〇2 w/mK, which is between the thermal conductivity of copper and silver and the thermal conductivity of graphitized vapor-grown carbon fiber. First of all, first, take 300 g of graphitized vapor-grown carbon fiber with a thin layer of chromium carbide obtained on the surface of Example 1, and put it into a vacuum melting furnace together with 7 g of aluminum ingot, and heat and melt under agitation. . Next, a rod-shaped ingot is formed (1 is called 〇〇, wherein the ingot has a thermal conductivity of 556 W/mK. Subsequently, the ingot can be remelted and die-formed according to the shape of several heat sinks to form a desired shape. Carbon-containing metal-based composite heat-dissipating component. Comparative example - 10 g of graphitized vapor-grown carbon fiber with no thin layer of carbonized metal, 9 g of copper powder with an average particle size of 2 〇/zm, and stearic acid 〇·5 gram is uniformly mixed by, for example, a mixer, and the above-mentioned 15 g of the mixed powder is press-formed in the same manner as in the second embodiment. However, the preform of the carbon-containing steel-based composite material prepared is formed. Poor and easy to delamination. Another way is to change the graphitized vapor-growth carbon fiber gram with a thin layer of carbonized metal on the surface, 95 gram of copper powder with an average particle size of 20 # m, and 公·5 gram of stearic acid using, for example, mixing. After the machine was uniformly mixed, the above-mentioned 15 g of the mixed powder was press-formed in the same manner as in Example 2. The heat transfer coefficient of the 1303273 carbon-containing copper-based composite material obtained was only 38 〇W/ mK. From the above hair It understood the preferred embodiment, the high thermal conductivity of the present invention is applied

含石反金屬基複合材料及其製造方法,其優點在於所添加之石 墨化氣相成長碳纖維具有高導熱性,且其表面具有碳化金屬 薄層’可藉此提高碳材在金屬基材中的複合品質及複合比 例’因而大幅提升此含碳金屬基複合材料之導熱係數,進而 使利用此含碳金屬基複合材料製造之散熱元件具有優異的 散熱效率。 雖然本發明已以較佳實施例揭露如上,然其並非用以限 疋本發明,惟此技術領域中任何具有通常知識者,在不脫離 本發明之精神和範圍内,當可作各種之更動與潤飾,因此本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 山第1圖係繪示根據本發明一較佳實施例之高導熱性含 響碳金屬基複合材料的製程流程圖; 第圖係、、、曰示根據本發明實施例一之氣相成長碳纖維 的反應裝置之結構示意圖;以及 第3圖係顯示本發明實施例一之氣相成長碳纖維經放 …舞倍的掃描式電子顯微鏡照片。 【主要元件符號說明】 101 :形成氣相成長碳纖維之步驟 103 :石墨化步驟 21 1303273 1 05 :形成碳化金屬層於石墨化氣相成長碳纖維之表面 的步驟 - 107 :複合及成型步驟 201 :反應管 205 :原料導入管 209 ··收集槽 ^ 200 :反應裝置 ’ 203 :加熱器 “ 2 0 7 :載氣入口 2 11 :排氣口 •eThe stone-containing anti-metal matrix composite material and the manufacturing method thereof have the advantages that the added graphitized vapor-grown carbon fiber has high thermal conductivity and has a thin layer of carbonized metal on the surface thereof, thereby improving the carbon material in the metal substrate. The composite quality and the composite ratio' thus greatly increase the thermal conductivity of the carbon-containing metal matrix composite material, thereby further improving the heat dissipation efficiency of the heat dissipation component manufactured using the carbon-containing metal matrix composite material. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make various changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing the process of a high thermal conductivity sound-containing carbon-metal composite material according to a preferred embodiment of the present invention; A schematic diagram of the structure of a reaction apparatus for vapor-grown carbon fibers; and FIG. 3 is a scanning electron micrograph showing the vapor-grown carbon fibers of the first embodiment of the present invention. [Description of main component symbols] 101: Step 103 of forming vapor-grown carbon fibers: Graphitization step 21 1303273 105: Step of forming a metal carbide layer on the surface of the graphitized vapor-grown carbon fiber - 107: Compounding and molding step 201: Reaction Tube 205: raw material introduction pipe 209 ··collection tank ^ 200 : reaction device '203 : heater " 2 0 7 : carrier gas inlet 2 11 : exhaust port ·e

22twenty two

Claims (1)

1303273 ,-—η ^±3 十、申請專利範爵 1. 一種高導熱性含碳金屬基複合材料’至少包含· 具有一碳化金屬薄層之一石墨化氣相成長$反纖維 (Vapor Grown Carbon Fiber),其中具有該碳化金屬薄層之該 石墨化氣相成長碳纖維之含量係介於1重量百分比至40重 量百分比之間,且該石墨化氣相成長碳纖維之導熱係數係介 ϋ於1000W/mK至1980W/mK之間,該石墨化氣相成長碳纖 維之直徑係介於0·1 // m至1 // m之間、長度介於50 // m至 2 mm之間、且長徑比介於5〇〇至2,〇〇〇之間;以及 金屬基材’其中該金屬基材之含量係介於6〇重量百 分比至99重量百分比之間; 其中該高導熱性含碳金屬基複合材料之導熱係數介於 u亥金屬基材的導熱係數與該石墨化氣相成長碳纖維的導執 係數之間。 w 、碧人Lr請專利範圍帛1項所述之高導熱性含碳金屬基 纖維中之碳含量係介於7G 墨化^成長碳 間。 ”於70重里百分比至99重量百分比之 3 ·如申请專利範圍第 複合材料,其中具有該碳化金導熱性含碳金屬基 纖維中之碳含量係介於8Q ^ 〃石墨化乳相成長碳 为比至90重量百分比之 23 1303273 間。 複合請專利範圍帛1項所述之高導熱性切金屬基 不同或拍同之中二碳化金屬層之金屬與該金屬基材實質上為 、人5.如申請專利範圍第丨項所述之高導熱性含碳金屬基 複合材料’其中該碳化金屬層之—金屬係選自於由鎢、鈦土、 鉻鉬、鍅、釩以及上述之任意組合所組成之一族群。 6·如申請專利範圍第1項所述之高導熱性含碳金屬基 複合材料,其中該金展基材之材質係選自於由銅、鋁、銀、 金以及上述之任意組合所組成之一族群。1303273,-—η ^±3 X. Patent application: 1. A high thermal conductivity carbon-containing metal matrix composite 'at least · one thin layer of carbonized metal, graphitized vapor phase growth, anti-fiber (Vapor Grown Carbon) Fiber), wherein the content of the graphitized vapor-growth carbon fiber having the thin layer of the metal carbide is between 1% by weight and 40% by weight, and the thermal conductivity of the graphitized vapor-grown carbon fiber is based on 1000W/ Between mK and 1980 W/mK, the diameter of the graphitized vapor-grown carbon fiber is between 0·1 // m and 1 // m, and the length is between 50 // m and 2 mm, and the long diameter a ratio of between 5 Å and 2 Å; and a metal substrate of which the content of the metal substrate is between 6 Å and 99% by weight; wherein the high thermal conductivity carbon-containing metal group The thermal conductivity of the composite material is between the thermal conductivity of the uhai metal substrate and the guiding coefficient of the graphitized vapor grown carbon fiber. w, Bi Ren Lr Please apply the carbon content of the high thermal conductivity carbon-containing metal-based fiber described in the patent scope 帛1 between 7G inkized and grown carbon. "70% by weight to 99% by weight of the composite material", as in the patent application of the composite material, wherein the carbon content of the carbonized gold thermally conductive carbon-containing metal-based fiber is between 8Q ^ 〃 graphitized milk phase growth carbon ratio Up to 90% by weight of 23 1303273. The compound of the high thermal conductivity cutting metal base described in the above-mentioned patent scope 帛1 is different or the metal of the second carbonized metal layer is substantially the same as the metal substrate. The high thermal conductivity carbon-containing metal matrix composite material according to the invention of claim 2, wherein the metallization layer is selected from the group consisting of tungsten, titanium, chromium molybdenum, niobium, vanadium and any combination thereof. The high thermal conductivity carbon-containing metal matrix composite material according to claim 1, wherein the material of the gold alloy substrate is selected from the group consisting of copper, aluminum, silver, gold, and any combination thereof. Form a group of people. 7· —種高導熱性含碳金屬基複合材料之製造方法,至 少包含: 提供具有一碳化金屬薄層之一石墨化氣相成長碳纖 維,其中該石墨化氣相成長碳纖維之導熱係數係介於 1000W/mK至1980W/mK之間,該石墨化氣相成長碳纖維之 直徑係介於0.1 // m至1 // m之間、長度介於50// m至2 mm 之間、且長徑比介於500至2,〇〇〇之間;以及 進行一複合及成型步驟,其係將一金屬基材以及具有該 碳化金屬薄層之該石墨化氣相成長碳纖維之一混合物以不 同方式複合並置入一模具中成型,以使該混合物製成該高導 24 1303273 熱性含碳金屬基複合材料,其中該金屬基材之含量係介於 60重量百分比至99重量百分比之間,而具有該碳化金屬薄 層之該石墨化氣相成長碳纖維之含量係介於1重量百分比 至40重量百分比之間,且該高導熱性含碳金屬基複合材料 之導熱係數介於該金屬基材的導熱係數與該石墨化氣相成 長碳纖維的導熱係數之間。 如申《月專利範圍第7項戶斤述之高導熱性含碳金屬基 禝合材料之製造方法,其中在提供具有該碳化金屬薄層之該 石墨化氣相成長碳纖維之步驟前,更至少包含: 形成一氣相成長碳纖維,其係在介於6〇〇〇c至13〇(^c之 間的Λ度並於一還原性氣體之存在下,藉由一觸媒使一碳源 材料形成該氣相成長碳纖維; 進巧一石墨化步驟’其係在介於24〇〇c>c至3〇〇(rc之間 的度^並於一鈍氣之存在下,使該氣相成長碳纖維形成該石 着藝墨化氣相成長碳纖維;以及 利用一燒結法形成該碳化金屬薄層於該石墨化氣相成 長碳纖維之表面。 •如巾印專利㈣帛8項所述之高導熱性含礙金屬基 複a材料之製造方法,其中該還原性氣體為氮氣。 、复人如巾%專利補第8項所述之高導熱性含碳金屬基 之製造方法’其中該觸媒係選自於由過渡金屬及上 25 1303273 述之金屬有機化合物所組成之一族群。 11·如申請專利範圍第8項所述之高導熱性含碳金屬基 .複合材料之製造方法,其中該觸媒係選自於由鐵、鈷、鎳及 上述之金屬有機化合物所組成之一族群。 12·如申請專利範圍第8項所述之高導熱性含碳金屬基 複口材料之製造方法,其中該碳源材料為—氣態破氫化合物 或一液態碳氫化合物。 13·如申請專利範圍第8項所述之高導熱性含碳金屬基 複合材料之製造方法,其中該碳源材料係選自於由一氧化 石反、笨、曱笨、二甲笨、液化石油氣、乙炔以及上述之任意 組合所組成之一族群。 如申#專利範圍苐8項所述之高導熱性含碳金屬臭 複合材料之製造方法,其中該純氣係選自於由氛氣、氣氣、 氬氣以及氪氣所組成之一族群。 15.如申請專利範圍第8項所述之高導熱性含碳金 複合材料之製造方法,其中形成該碳化金屬層之步' 土 包含·· 又1少 形成一金屬化合物薄層於該石墨化氣相成長唆纖維 表面,其係將該石墨化氣相成長碳纖維加入一金屬化合物= 26 1303273 液後,在均勻攪拌下去除該金屬化合物溶液之一溶劑;以及 進行一燒結步驟,其係於談鈍氣或該還原性氣體之存在 . 下,使該金屬化合物薄層轉變成該碳化金屬薄層。 16·如申請專利範圍第1 5項所述之高導熱性含碳金屬 基複合材料之製造方法,其中該金屬化合物之金屬係選自於 由鎢(W)、鈦(Ti)、鉻(Cr)、鉬(Mo)、錘(Z〇、釩(V)以及上 #述之任意組合所組成之一族群。 17·如申請專利範圍第16項所述之高導熱性含碳金屬 基複合材料之製造方法,其中該金屬化合物係選自於由偏鎢 酸銨(Ammonium Paratungstate)、填鶴酸(Tungstophosphoric Acid)、鶴酸(Tungstic Acid)、氣化鶴(Tungsten Chloride)、 異丙氧基鈦(Titanium Isopropoxide)、二茂鉻 (Chromocene)、鉻酸銨(Ammonium Chromate)、氣化鉻 (Chromium Chloride)、 乙醯丙 _ 鉻(Chromium Acetylacetonate)、醋酸亞鉻(Chromium Acetate)、九水石肖酸 鉻(Chromium Nitrate Nonahydrate)、對 la 酸銨(Ammonium Paramolybdate)、氯化錯(Zirconium Chloride)、乙醯丙酮錯 (Zirconium Acetylacetonate)、第三丁 氧基誥(Zirconium t-But ox ide)、乙醯丙酮鈒(Vanadyl Acetyl ace to nate)以及上述 之任意組合所組成之一族群。 1 8·如申請專利範圍第15項所述之高導熱性含碳金屬 27 1303273 基複合材料之製造方法,其中該金屬化合物溶液之該溶劑為 水或一有機溶劑。 1 9·如申請專利範圍第7項所述之高導熱性含碳金屬基 複合材料之製造方法,其中具有該碳化金屬薄層之該石墨化 氣相成長碳纖維中之碳含量係介於7〇重量百分比至99重量 百分比之間。 20·如申請專利範圍第7項所述之高導熱性含碳金屬基 複合材料之製造方法,其中具有該碳化金屬薄層之該石墨化 氣相成長碳纖維中之碳含量係介於8〇重量百分比至9〇重量 百分比之間。 卜21·如申請專利範圍第7項所述之高導熱性含碳金屬基 複口材料之製造方法,其中該碳化金屬層之金屬為不同或相 馨ϋ同之材質。 由鶴、鈇、鉻、錮 族群。 、卜22·如申請專利範圍第7項所述之高導熱性含碳金屬基 稷合材料之製造方法中該碳化金屬層之一金屬係選自於 錯、飢以及上述之任意組合所組成之一 所述之高導熱性含碳金屬基 金屬基材之材質係選自於由 23·如申請專利範圍第了項 複合材料之製造方法,其中該 28 1303273 銅 '鋁、銀、金以及上述之任意組合所組成之_族群。 , 24·如申請專利範圍第7項所述之高導熱性含碳金屬基 複合材料之製造方法,其中該複合及成型步驟係利用一熔煉 法、一壓鑄(Squeeze Casting)法或一熔融壓鑄法,以形成該 高導熱性含碳金屬基複合材料。 • 25,如中請專利範圍第7項所述之高導熱性含碳金屬基 複合材料之製造方法,其中該複合及成型步驟係利用一金屬 粉末沖壓成型(Compact Pressing)法或一金屬粉末射出成型 (Metal Injection Molding; MIM)法,以形成該高導熱性含碳 金屬基複合材料。 26.如申請專利範圍第25項所述之高導熱性含碳金屬 基複合材料之I 方法’其中該混合物更至少包含一有機黏 馨藝結劑,且該有機黏結劑之一含量為該金屬基材與具有該碳化 金屬薄層之该石墨化氣相成長碳纖維之總重的〇 · 1重量百 分比至10重量百分比。 27·如申請專利範圍第26項所述之高導熱性含碳金屬 基複合材料之製造方法,其中該有機黏結劑係選自於由硬脂 酸(Stearic Acid)、硬脂酸鋅、硬脂酸鋰、微結晶壤 (Microcrystalline Wax)、石蠟(Paraffin Wax)、石蠟油 (ParafTin Oil)、橡膠、塑膠以及上述之任意組合所組成之一 29 1303273 族群。 高導熱性含碳金屬 以該模具成型後, 28·如申請專利範圍第26項所述之 基複合材料之製造方法,纟中在該混合物 更至少包含: 使該混合物形成一胚體; 進仃脫蠟(De-Wax)脫脂(De_Binding)步驟,藉以去除 〜胚體中之該有機黏結劑;以及 進行-燒結(Sintering)㈣,以使已脫壤脫脂之該胚體 ,成該南導熱性含碳金屬基複合材料。 、29· 一種高導熱性含碳金屬基複合材料散熱元件之製 造方法,至少包含:7. A method for producing a high thermal conductivity carbon-containing metal matrix composite, comprising: providing a graphitized vapor-grown carbon fiber having a thin layer of a carbonized metal, wherein a thermal conductivity of the graphitized vapor-grown carbon fiber is Between 1000 W/mK and 1980 W/mK, the graphitized vapor-grown carbon fiber has a diameter between 0.1 // m and 1 // m, a length between 50//m and 2 mm, and a long diameter a ratio between 500 and 2, 〇〇〇; and a compounding and forming step of compounding a metal substrate and a mixture of the graphitized vapor-grown carbon fibers having the thin layer of carbonized metal in different ways And molding into a mold to make the mixture into the high-conductivity 24 1303273 thermal carbon-containing metal-based composite material, wherein the content of the metal substrate is between 60% by weight and 99% by weight, and The content of the graphitized vapor-growth carbon fiber of the thin metal carbide layer is between 1% by weight and 40% by weight, and the thermal conductivity of the high thermal conductivity carbon-containing metal matrix composite is between the guiding of the metal substrate Coefficient of thermal conductivity of gas phase between the long carbon fibers graphitized. For example, the manufacturing method of the high thermal conductivity carbon-containing metal-based composite material described in the seventh paragraph of the patent scope, wherein before the step of providing the graphitized vapor-growth carbon fiber having the thin layer of the carbonized metal, at least The method comprises: forming a vapor-grown carbon fiber, which is formed between a range of 6〇〇〇c to 13〇(^c and in the presence of a reducing gas, forming a carbon source material by a catalyst The vapor-grown carbon fiber; the step of graphitization is carried out in a range of between 24 〇〇c > c and 3 〇〇 (rc) and in the presence of a blunt gas, the vapor-grown carbon fiber Forming the stone art ink vapor-grown carbon fiber; and forming a thin layer of the carbonized metal on the surface of the graphitized vapor-grown carbon fiber by a sintering method. • The high thermal conductivity content as described in the patent (4) The method for manufacturing a metal-based complex a material, wherein the reducing gas is nitrogen gas, and the method for producing a high thermal conductivity carbon-containing metal base according to the eighth aspect of the invention, wherein the catalyst is selected from the group consisting of Metals described by transition metals and above 25 1303273 11. The method of manufacturing a high thermal conductivity carbon-containing metal-based composite material according to claim 8, wherein the catalyst is selected from the group consisting of iron, cobalt, nickel, and the like. A method for producing a high thermal conductivity carbon-containing metal-based composite material according to claim 8 wherein the carbon source material is a gaseous hydrogen absorbing compound or a liquid The method for producing a high thermal conductivity carbon-containing metal-based composite material according to claim 8, wherein the carbon source material is selected from the group consisting of anti-odd, stupid, stupid, and A method for producing a high thermal conductivity carbon-containing metal odor composite material according to the invention, wherein the pure gas is selected from the group consisting of acetylene, liquefied petroleum gas, acetylene, and any combination thereof. And a method for producing a high thermal conductivity carbon-containing gold composite material according to claim 8, wherein the carbonized metal layer is formed 'Soil contains··1 less forms a thin layer of a metal compound on the surface of the graphitized vapor-grown ruthenium fiber, which is added to a metal compound = 26 1303273 liquid and then removed under uniform stirring. a solvent of one of the metal compound solutions; and performing a sintering step of converting the thin layer of the metal compound into the thin layer of the metal carbide by the presence of a blunt gas or the reducing gas. The method for producing a high thermal conductivity carbon-containing metal matrix composite according to Item 15, wherein the metal of the metal compound is selected from the group consisting of tungsten (W), titanium (Ti), chromium (Cr), and molybdenum (Mo). And a method of manufacturing a high thermal conductivity carbon-containing metal matrix composite material according to claim 16 of the patent application scope, wherein the method of manufacturing the high-heat conductivity carbon-containing metal matrix composite material according to claim 16 The metal compound is selected from the group consisting of Ammonium Paratungstate, Tungstophosphoric Acid, Tungstic Acid, Tungsten Chloride, Titanium Isopropoxide. Chromocene, Ammonium Chromate, Chromium Chloride, Chromium Acetylacetonate, Chromium Acetate, Chromium Nitrate Nonahydrate ), Ammonium Paramolybdate, Zirconium Chloride, Zirconium Acetylacetonate, Zirconium t-But ox ide, Vanadyl Acetyl Ace to nate) and any combination of the above. The method for producing a high thermal conductivity carbon-containing metal 27 1303273 composite material according to claim 15, wherein the solvent of the metal compound solution is water or an organic solvent. The manufacturing method of the high thermal conductivity carbon-containing metal matrix composite material according to claim 7, wherein the carbonized content of the graphitized vapor-grown carbon fiber having the thin layer of the metal carbide is 7〇 Weight percentage to between 99 weight percent. 20. The method for producing a high thermal conductivity carbon-containing metal matrix composite according to claim 7, wherein the carbon content of the graphitized vapor-grown carbon fiber having the thin layer of the metal carbide is 8 〇 Percentage to 9 〇 weight percent. The method for producing a high thermal conductivity carbon-containing metal-based composite material according to claim 7, wherein the metal of the carbonized metal layer is different or similar. It is made up of cranes, dragonflies, chrome, and scorpions. The method for manufacturing a high thermal conductivity carbon-containing metal-based composite material according to claim 7, wherein the metal of the metallized metal layer is selected from the group consisting of erroneous, hunger, and any combination thereof. The material of the high thermal conductivity carbon-containing metal-based metal substrate is selected from the manufacturing method of the composite material according to the patent application scope, wherein the 28 1303273 copper 'aluminum, silver, gold and the above The _ group consisting of any combination. [24] The method for producing a high thermal conductivity carbon-containing metal matrix composite according to claim 7, wherein the compounding and molding step is performed by a melting method, a squeeze casting method or a melt casting method. To form the high thermal conductivity carbon-containing metal matrix composite. The method for producing a high thermal conductivity carbon-containing metal matrix composite according to claim 7, wherein the compounding and molding step is performed by a metal powder compacting method or a metal powder injection method. A Metal Injection Molding (MIM) method to form the high thermal conductivity carbon-containing metal matrix composite. 26. The method of claim 1, wherein the mixture further comprises at least one organic viscous gel-forming agent, and one of the organic binders is the metal. 1% by weight to 10% by weight of the total weight of the substrate and the graphitized vapor-growth carbon fiber having the thin layer of the metal carbide. The method for producing a high thermal conductivity carbon-containing metal matrix composite according to claim 26, wherein the organic binder is selected from the group consisting of stearic acid, zinc stearate, and stearic acid. Lithium acid, microcrystalline Wax, Paraffin Wax, ParafTin Oil, rubber, plastic, and any combination of the above 29 1303273 group. The method of manufacturing a base composite according to claim 26, wherein the mixture further comprises: forming the mixture into an embryo body; De-Wax de-Binding step to remove the organic binder in the ~body; and Sintering (4) to degrease the body of the body to form the south thermal conductivity Carbon-containing metal matrix composite. 29) A method for manufacturing a heat dissipating component of a high thermal conductivity carbon-containing metal matrix composite material, comprising at least: 形成氣相成長碳纖維,其係在介於6〇〇t至i3〇〇c>c之 門的’皿度並於一還原性氣體之存在下,藉由一觸媒使一碳源 ^料形成該乳相成長碳纖維,該石墨化氣相成長碳纖維之直 /係"於0.1 /z m至1 # m之間、長度.介於瓜至2 mm 之間、且長徑比介於5〇〇至2,〇〇〇之間; 進行石墨化步驟,其係在介於24〇〇°C至3000。(:之間 的μ度並於鈍氣之存在下,使該氣相成長碳纖維形成該石 墨化氣相成長碳纖維,· 山利用一燒結法形成一碳化金屬薄層於該石墨化氣相成 /人纖、、隹之表面’其中該石墨化氣相成長石炭纖、維之導熱係數 係介於lOOOW/mK至198〇w/mK之間,·以及 30 1303273 進行一複合及成型步驟,其係將一第一金屬基材以及具 有該碳化金屬薄層之該石墨化氣相成長碳纖維之一混合物 以不同方式複合並置入一模具中成型,以使該混合物製成該 回導熱性含碳金屬基複合材料散熱元件,其中該高導熱性含 石反金屬基散熱元件之導熱係數介於該金屬基材之導熱係數 與該石墨化氣相成長碳纖維之導熱係數之間。 3〇·如申請專利範圍第29項所述之高導熱性含碳金屬 基複合材料散熱元件之製造方法,其中該還原性氣體為氫 氣0 31·如申请專利範圍第29項所述之高導熱性含碳金屬 基稷合材料散熱元件之製造方法,其中該觸媒係選自於由過 渡金屬及上述之金屬有機化合物所組成之一族群。 32.如申請專利範圍第29項所述之高導熱性含碳金屬 基複合材料散熱元件之製造方法,其中該觸媒係選自於由 鐵、鈷、鎳及上述之金屬有機化合物所組成之一族群。、 33·如申請專利範圍第29項所述之高導熱性含碳金屬 基複合材料散熱元件之製造方法,其中該碳源材料為一氣態 碳氫化合物或一液態碳氫化合物。 34.如申請專利範圍第33項所述之高導熱性含碳金屬 31 1303273 基複合材料散熱元件之製造方法,其中該碳源材料係選自於 由一氧化碳、苯、曱苯、二曱笨、液化石油氣、乙炔以及上 述之任意組合所組成之一族群。 35·如申請專利範圍第29項所述之高導熱性含碳金屬 基複合材料散熱元件之製造方法,其中該鈍氣係選自於由氦 氣、氖氣、氬氣以及氪氣所組成之一族群。 6 ·如申研專利範圍第2 9項所述之高導熱性含碳金屬 基複合材料散熱元件之製造方法,其中形成該碳化金屬層之 步驟更至少包含: 形成一金屬化合物薄層於該石墨化氣相成長碳纖維之 表面,其係將該石墨化氣相成長碳纖維加入一金屬化合物溶 液後,在均句攪拌下去除該金屬化合物溶液中之一溶劑;以 及 進行一燒結步驟,其係於該鈍氣或該還原性氣體之存在 下,使該金屬化合物薄層轉變成該碳化金屬薄層。 37·如申請專利範圍第36項所述之高導熱性含碳金屬 基複合材料散熱元件之製造方法,其中該金屬化合物之金屬 係k自於由鎢(W)、鈦(Ti)、鉻(Cr)、鉬(Mo)、錯(ζΓ)、飢(V) 以及上述之任意組合所組成之一族群。 38·如申請專利範圍第36項所述之高導熱性含碳金屬 32 1303273 —材料散熱元件之製造方法,其中該金屬化合物係選自 T由偏鎢酸銨、磷鎢酸、鎢酸、氣化鎢、異丙氧基鈦、二茂 - 釔:黾銨、氣化鉻、乙醯丙酮鉻、醋酸亞鉻、九水硝酸鉻、 • 對]吹銨、氯化锆、乙醯丙酮锆、第三丁氧基锆、乙醯丙酮 • 釩以及上述之任意組合所組成之一族群。 * _9·如申凊專利範圍第36項所述之高導熱性含碳金屬 _基^合材料散熱元件之製造方法,其中該金屬化合物溶液之 該洛劑為水或一有機溶劑。 4〇·如申請專利範圍第 基複合材料散熱元件之製造 之該石墨化氣相成長碳纖維 比至99重量百分比之間。 29項所述之高導熱性含碳金屬 方法其中具有該碳化金屬薄層 中之碳含量係介於70重量百分Forming a vapor-grown carbon fiber which is formed in a range of from 6 〇〇t to i3〇〇c>c and in the presence of a reducing gas, a carbon source is formed by a catalyst The milk phase grows carbon fiber, and the straightness/system of the graphitized vapor-grown carbon fiber is between 0.1 /zm and 1 #m, the length is between melon and 2 mm, and the aspect ratio is between 5〇〇. Between 2 and 〇〇〇; performing a graphitization step, which is between 24 ° C and 3000. (: between μ degrees and in the presence of a blunt gas, the vapor-grown carbon fiber is formed into the graphitized vapor-grown carbon fiber, and a thin layer of a carbonized metal is formed by the sintering method in the graphitized gas phase/ The surface of human fiber and crucible, in which the graphitized vapor-grown carbon fiber, the thermal conductivity of the dimension is between lOOOW/mK and 198〇w/mK, and 30 1303273 for a compounding and forming step, Mixing a first metal substrate and one of the graphitized vapor-grown carbon fibers having the thin layer of carbonized metal in a different manner and placing it into a mold to form the mixture into the thermally conductive carbon-containing metal The composite heat dissipating component, wherein the thermal conductivity of the high thermal conductivity stone-containing anti-metal-based heat dissipating component is between the thermal conductivity of the metal substrate and the thermal conductivity of the graphitized vapor-grown carbon fiber. The method for producing a high thermal conductivity carbon-containing metal matrix composite heat dissipating component according to claim 29, wherein the reducing gas is hydrogen gas. 31. The high thermal conductivity as described in claim 29 A method for producing a heat-dissipating member of a carbon-containing metal-based composite material, wherein the catalyst is selected from the group consisting of a transition metal and the above-mentioned metal organic compound. 32. High thermal conductivity as described in claim 29 The method for producing a heat-dissipating component of a carbon-containing metal-based composite material, wherein the catalyst is selected from the group consisting of iron, cobalt, nickel, and the above-mentioned metal organic compound. 33. As claimed in claim 29 The method for manufacturing a heat-conducting element of a high thermal conductivity carbon-containing metal-based composite material, wherein the carbon source material is a gaseous hydrocarbon or a liquid hydrocarbon. 34. The high thermal conductivity as described in claim 33 A method for producing a carbonaceous metal 31 1303273 composite heat dissipating component, wherein the carbon source material is selected from the group consisting of carbon monoxide, benzene, toluene, hydrazine, liquefied petroleum gas, acetylene, and any combination thereof. 35. The method for manufacturing a high thermal conductivity carbon-containing metal-based composite heat dissipating component according to claim 29, wherein the obtuse gas is selected from the group consisting of a group of gases, helium, argon, and helium. 6 · A method for manufacturing a heat-conducting component of a high thermal conductivity carbon-containing metal-based composite material according to claim 29, wherein the carbonized metal is formed The step of layer further comprises: forming a thin layer of a metal compound on the surface of the graphitized vapor-grown carbon fiber, adding the graphitized vapor-growth carbon fiber to a metal compound solution, and removing the metal compound under uniform stirring a solvent in the solution; and performing a sintering step of converting the thin layer of the metal compound into the thin layer of the metal carbide in the presence of the inert gas or the reducing gas. 37. The method for manufacturing a high thermal conductivity carbon-containing metal-based composite heat dissipating component, wherein the metal compound of the metal compound is derived from tungsten (W), titanium (Ti), chromium (Cr), molybdenum (Mo), and (ζΓ), hunger (V), and any combination of the above. 38. The method of manufacturing a high thermal conductivity carbon-containing metal 32 1303273 according to claim 36, wherein the metal compound is selected from the group consisting of T ammonium metatungstate, phosphotungstic acid, tungstic acid, and gas. Tungsten, titanium isopropoxide, ferrocene - bismuth: bismuth ammonium, vaporized chromium, acetonitrile acetonate, ruthenium acetate, chrome nonachrome, • pair] ammonium, zirconium chloride, zirconium acetonide, A group consisting of zirconium tert-butoxide, acetamidineacetone, vanadium, and any combination of the foregoing. * _9. The method for producing a high thermal conductivity carbon-containing metal-based heat dissipating component according to claim 36, wherein the metal compound solution is water or an organic solvent. 4. The graphitized vapor-grown carbon fiber is manufactured to a ratio of 99% by weight of the composite heat-dissipating component of the patent application. The high thermal conductivity carbonaceous metal method of claim 29, wherein the carbon content in the thin layer of the metal carbide is 70% by weight 41 ·如申請專利範圍第29頊所 美满人ϋ αι # ^ 、斤述之鬲導熱性含碳金屬 基稷合材料散熱元件之製造方法, 之爷石黑仏严,二、e ,、中具有該碳化金屬薄層 之3石墨化氣相成長碳纖維中之碳 比至⑽重量百分比之間。…係介於重量百分 缉寻刊乾圍第29項所述之 基複合材料散熱元件之製造方法,其中2導熱性含碳金^ 與該第-金屬基材實質上為不同或相金屬層之金邊 33 1303273 人*申清專利範圍帛29項所述之高導熱性含碳金屬 二:::料散熱元件之製造方法’其中該碳化金屬層之—金 自於由鶴、鈦、絡、銦、錯、鈒以及上述之任意給合 所組成之一族群。 44· *申請專利範圍帛29項所述之高導熱性含礙金屬 =复合材料散熱元件之製造方法,其中該第一金屬基材之材 貝,選自於由m細及上述之任意組合所 一族群。 人、 45. 如巾請專利額第29項所述之高導熱性含破金屬 二::材料散熱元件之製造方法,其中該成型步驟係利用— ^凰=一壓鑄法或一熔融壓鑄法,以形成該高導熱性含 兔屬基複合材料散熱元件。 46. 如巾請專利範圍第29項所述之高導熱性含碳 二=散熱元件之製造方法,其中該複合及成型步驟係 成n私末沖壓成型法或—金屬粉末射出成型法,以形 成該-導熱性含碳金屬基複合材料散熱元件。 基複4合7材專:範圍第46項所述之高導熱性含碳金屬 -有機Γ 製造方法,其中該混合物更至少包含 有機黏結劑,且該有應私k ^ 有該碳化金屬薄層之該石?劑之一含量,該金屬基材與具 ° 墨化氣相成長碳纖維之總重的〇. 1 34 1303273 重量百分比至1 〇重量百分比。 48·如申請專利範圍第47項所述之高導熱性含碳金屬 基複合材料散熱元件之製造方法,其中該有機黏結劑係選自 於由硬脂酸、硬脂酸鋅、硬脂酸鋰、微結晶蠟、石蠟、石增 油、橡膠、塑膠以及上述之組合所組成之一族群。 十49·如申請專利範圍第47項所述之高導熱性含碳金屬 基複5材料散熱元件之製造方法,其中在該混合物以該模具 成型後,更至少包含: 使該混合物形成一胚體; 進仃—脫蠟脫脂步驟,藉以去除胚體中之該有機黏結 進行一燒結步驟’以將已脫蠟脫脂之該胚體轉變成一《 孔體;以及 進行-料(Infiltrating)步驟,其係利用—第二金屬』 多孔體之孔隙,藉以形成該高導熱性含碳金屬基增 a材枓散熱元件。 •如申請專利範 其if人^ 只呵迅之高導熱性含碳d 暴禝a材料散熱元件之製造方 第一4 広八甲忒苐二金屬基材| 乐金屬基材實質上為不同或相同之材質。 5 1 ·如申請專利範圍第49 項所述之高導熱性含碳^ 35 1303273 基複合材料散熱元件之製造方法,其中該第二金屬基材之材 質係選自於由銅、鋁、銀、金以及上述之任意組合所組成之 一族群。 3641 ·If you apply for the patent scope of the 29th 美 ϋ ι ι αι # ^ , 述 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲 鬲The ratio of carbon in the graphitized vapor-growth carbon fiber of the thin layer of the metal carbide is between (10) weight percent. The method of manufacturing a heat dissipating component of a composite material according to item 29 of the present invention, wherein the thermally conductive carbonaceous material is substantially different from the first metal substrate or a phase metal layer. Phnom Penh 33 1303273 person * Shen Qing patent scope 帛 29 items of high thermal conductivity carbon-containing metal 2::: manufacturing method of material heat-dissipating component 'where the carbonized metal layer - gold from the crane, titanium, network, Indium, erroneous, strontium, and any of the above combinations constitute a group. 44· *Application of the patent scope 帛29, the high thermal conductivity impeding metal = composite heat dissipating component manufacturing method, wherein the first metal substrate material is selected from the group consisting of m fine and any combination thereof a group of people. Person, 45. For the towel, please refer to the high thermal conductivity of the patented item No. 29: the manufacturing method of the material heat dissipating component, wherein the molding step is performed by using - φ = a die casting method or a melt casting method, To form the high thermal conductivity rabbit-containing composite heat dissipating component. 46. The method for manufacturing a high thermal conductivity carbon-containing two-heat-dissipating component according to claim 29, wherein the compounding and molding step is formed by n private stamping or metal powder injection molding to form The thermally conductive carbon-containing metal matrix composite heat dissipating component. The method of manufacturing a high thermal conductivity carbon-containing metal-organic crucible according to the item 46, wherein the mixture further comprises at least an organic binder, and the layer has a thin layer of the carbonized metal. The stone? The content of one of the metals, the metal substrate and the total weight of the gas-vapor-grown carbon fibers of ε. 1 34 1303273 by weight to 1 〇 by weight. 48. The method for producing a high thermal conductivity carbon-containing metal matrix composite heat dissipating component according to claim 47, wherein the organic binder is selected from the group consisting of stearic acid, zinc stearate, and lithium stearate. , a group of microcrystalline wax, paraffin wax, stone oil, rubber, plastic and a combination of the above. The method for manufacturing a high thermal conductivity carbon-containing metal-based composite 5 material heat dissipating component according to claim 47, wherein after the mixture is molded by the mold, the method further comprises: forming the mixture into an embryo body And a dewaxing and degreasing step, wherein the organic bond in the embryo body is removed for a sintering step to convert the dewaxed and degreased body into a "pore body"; and an infiltrating step By using the pores of the -second metal porous body, the high thermal conductivity carbon-containing metal-based a-material heat-dissipating element is formed. • If you apply for a patent, it's if you only have a high thermal conductivity, carbon d, a sputum, a material, a heat-dissipating component, the first 4 広 忒苐 忒苐 忒苐 金属 金属 金属 金属 金属 金属 金属 金属 金属 乐 乐 基材The same material. 5 1 . The method for manufacturing a high thermal conductivity carbon-containing 35 1303273 composite heat dissipating component according to claim 49, wherein the material of the second metal substrate is selected from the group consisting of copper, aluminum, silver, A group of gold and any combination of the above. 36
TW94107047A 2005-03-08 2005-03-08 Metal matrix carbon composite material with high thermal conductivity and method for producing the same TWI303273B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94107047A TWI303273B (en) 2005-03-08 2005-03-08 Metal matrix carbon composite material with high thermal conductivity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94107047A TWI303273B (en) 2005-03-08 2005-03-08 Metal matrix carbon composite material with high thermal conductivity and method for producing the same

Publications (2)

Publication Number Publication Date
TW200632087A TW200632087A (en) 2006-09-16
TWI303273B true TWI303273B (en) 2008-11-21

Family

ID=45070675

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94107047A TWI303273B (en) 2005-03-08 2005-03-08 Metal matrix carbon composite material with high thermal conductivity and method for producing the same

Country Status (1)

Country Link
TW (1) TWI303273B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI381895B (en) * 2008-12-30 2013-01-11 Univ Far East The method of adhering the electromagnetic wave absorbing material to the surface of the aluminum alloy
TWI381896B (en) * 2008-12-30 2013-01-11 Univ Far East And the electromagnetic wave absorbing material is embedded in the aluminum alloy after the process
CN113338027A (en) * 2021-05-12 2021-09-03 北京化工大学 Surface treatment method of carbon fiber

Also Published As

Publication number Publication date
TW200632087A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
Huang et al. Carbon materials reinforced aluminum composites: a review
Shi et al. Low-temperature pseudomorphic transformation of ordered hierarchical macro-mesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction
CN101801845B (en) Metal covering carbon material and use the carbon-metal composite material of this material
CN109338137B (en) Method for producing chromium nitride-containing spray powders
JP5154448B2 (en) Graphite material and manufacturing method thereof
JP4304921B2 (en) High thermal conductivity heat dissipation material and method for manufacturing the same
Silvain et al. A review of processing of Cu/C base plate composites for interfacial control and improved properties
CN106399880B (en) A kind of preparation method of coating alumina whisker carbon nanotube enhanced aluminium-based composite material
CN1944698A (en) Super high heat conduction, low heat expansion coefficient composite material and its preparing method
US20050209088A1 (en) Silicon carbide thermostable porous structural material and process for producing the same
Casalegno et al. Surface modification of carbon/carbon composites to improve their wettability by copper
WO2010010993A1 (en) Method of manufacturing powder injection-molded body
CN103924119A (en) Ultrahigh heat conduction graphite flake/copper composite material and preparation method thereof
Chunfeng et al. Chemical stability of carbon nanotubes in the 2024Al matrix
TW201024399A (en) Metal based composites material containing carbon and manufacturing method thereof
CN107099692A (en) A kind of fibre-reinforced aerogel-metallic composite and preparation method thereof
TWI303273B (en) Metal matrix carbon composite material with high thermal conductivity and method for producing the same
Yang et al. Reactive synthesis for porous Ti3AlC2 ceramics through TiH2, Al and graphite powders
KR20050110039A (en) Composition for making metal matrix composites
JP2011236070A (en) Filter for warming fluid and method for manufacturing the same
JP2010064954A (en) Sic/al-based composite material and method for producing the same
JP5363418B2 (en) Method for producing high thermal conductive composite material
US7399521B2 (en) Carbon-containing metal matrix composite material having high thermal conductivity and method for producing the same
JP2006045596A (en) Composite body with high thermal conductivity and low thermal expansion, and its manufacturing method
CN108611511B (en) A kind of three-dimensional intercommunication CNTs/Cu composite material and preparation method