TWI302150B - Process for the preparation of alkyllithium compounds - Google Patents

Process for the preparation of alkyllithium compounds Download PDF

Info

Publication number
TWI302150B
TWI302150B TW90120114A TW90120114A TWI302150B TW I302150 B TWI302150 B TW I302150B TW 90120114 A TW90120114 A TW 90120114A TW 90120114 A TW90120114 A TW 90120114A TW I302150 B TWI302150 B TW I302150B
Authority
TW
Taiwan
Prior art keywords
lithium
carbon atoms
solvent
reaction
alkyl
Prior art date
Application number
TW90120114A
Other languages
Chinese (zh)
Inventor
Thomas Currin R Jr
Felix Nakousi Carlos
Original Assignee
Chemetall Foote Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemetall Foote Corp filed Critical Chemetall Foote Corp
Priority to TW90120114A priority Critical patent/TWI302150B/en
Application granted granted Critical
Publication of TWI302150B publication Critical patent/TWI302150B/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

1302150 A7 B7 五、發明説明(! 發明範疇 本發明提出一種藉由鈉-鋰合金與烷基鹵以5〇至125°C溫 度反應製備含2至1 6個碳原子院基链化合物之高溫方法。 發明背景 製備麵化合物烴衍生物之方法頃由多人發表,例如κ · E . 埃伯里(Eberly)美國專利第2,947,?93號,該專利頒布於^60年 8月2日,其揭示一種製備伸烷基二鋰化合物之方法。 埃伯里在美國專利第3,122,592號揭示一種製備烷基鋰化合 物之方法,其包括使含3至8個碳原子的單鹵烷與由鋰和〇3 至1.0%鈉或鉀組成的細碎合金顆粒反應,該反應在〇至6 〇 °C進行。埃伯里揭示以〇·36%鈉(包合於鋰中)對應含量使經 碳鍵合的鋰產率增加到87.89%最大值。該方法缺點為,反 應k ,需多達數小時加入單!|烷,隨後需額外時間使反應 芫全,且可能需要數小時持續時間分離物和副產物。 製造含6或更多碳原子的燒基鍾(如,辛基鐘)之方法由c . 果(Cuo)和助手(coworker)· J Am Chem s〇c,i985, 1〇7, 6〇3〇揭示, 其利用回流己烷介質和4小時後加熱回流得到約7 〇 %產 率〇 美國專利第3,452,112號[頒予卡門斯基(Kamienski)等人]類 似揭示一種製備鋰-烴化合物有機溶劑溶液之方法,其包 括將預形成的烷基鋰化合物加入細碎鋰於非反應性液態介 質之分散液,隨後將與鋰反應產生所需產物的不飽和烴或 函代烴加入該混合物。卡門斯基進一步揭示,該反應在· 50至5 °C溫度進行,所用鋰金屬基本為純或市售物質,並 1302150 A7 ___B7 五、發明説明(2 ) 利用少量以魏金屬計約0.25至約1重量%鈉金屬。然而該專 利揭示,加入反應劑及反應完成所花時間可能要花費幾個 小時。 由於烯烴導致出現深黃色烷基鋰產物,所烷基鋰產物沒 有或有最低含量晞烴非常重要,高濃純度烷基鋰溶液非常 理想。氯離子雜質含量亦很重要,因為3〇〇 ppm及以上的高 氯值一般產生混濁基鐘產物。雖然燒基魏化合物於烴溶 劑之濃縮、澄清溶液非常理想,却很難得到。一種原因 為辰縮纟元基經化合物〉谷液非常黏,以致於一般用於反應 的過量未反應經難以由過濾或其它習知顆粒分離方法除 去。先前技藝方法產生含300 ppm以上溶解無機鹵化物之烷 基链化合物’除其它外’該自化物包括氯化鋰,且不能由 過濾除去。當含所生成產物之溶液由蒸館或其它移除溶劑 方法濃縮時’副產物(如卣化鋰)在產物溶液中生成細結 晶。這會導致產物中有濁霧狀外觀,在工業製程中一般很 不理想。另外,卣化副產物簇沉澱出溶液,生成甚至更不 合需要的產物。因此,經濟上非常需要有一種以9 〇 %或更 佳高產率產生统基41化合物之方法。 以上討論的美國專利第3,452,112號以低於8 5 %產率產生烷 基鋰產物溶液。不飽和烴-鋰加成化合物產率較高,但為 有色溶液。 美國專利第5,332,533號揭示一種藉由一級烷基鹵與鋰金屬 反應製造烷基經之方法,反應以3 5和125°C間之溫度在惰 性氣氣於液怨fe溶劑中進行。然而,該方法亦需要延長給 ---—— _^_ 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) "一"" ---- 130215ο1302150 A7 B7 V. INSTRUCTIONS (! Scope of the Invention The present invention provides a high temperature method for preparing a compound having 2 to 16 carbon atoms in a hospital chain by reacting a sodium-lithium alloy with an alkyl halide at a temperature of 5 to 125 ° C. BACKGROUND OF THE INVENTION Methods for preparing surface compound hydrocarbon derivatives are disclosed by a number of people, such as κ E. Eberly, U.S. Patent No. 2,947, No. 93, which was issued on August 2, the A method of preparing an alkylene dilithium compound is disclosed. A method for preparing an alkyllithium compound comprising a monohaloalkane having 3 to 8 carbon atoms and a lithium-containing compound is disclosed in U.S. Patent No. 3,122,592. It reacts with finely divided alloy particles consisting of 3 to 1.0% sodium or potassium, and the reaction is carried out at 〇 to 6 ° C. Ebury reveals the corresponding content of 〇·36% sodium (inclusion in lithium) to make carbon bonds. The combined lithium yield is increased to a maximum of 87.89%. The disadvantage of this method is that the reaction k takes up to several hours to add a single!|alkane, followed by additional time to complete the reaction and may require several hours of duration of separation and By-product. Manufacture of a burning clock with 6 or more carbon atoms ( , 辛基钟) The method is disclosed by C. Cou and coworker J Am Chem s〇c, i985, 1〇7, 6〇3〇, which uses refluxing hexane medium and heating after 4 hours. Reflux yields about 7 〇% yield. U.S. Patent No. 3,452,112 [Kamienski et al.] similarly discloses a process for preparing a lithium-hydrocarbon compound organic solvent solution comprising pre-formed alkyl groups. The lithium compound is added to the dispersion of finely divided lithium in a non-reactive liquid medium, and then an unsaturated hydrocarbon or a halohydrocarbon which reacts with lithium to produce the desired product is added to the mixture. Kamensky further reveals that the reaction is at 50 to 5 °. The C temperature is carried out, the lithium metal used is substantially pure or commercially available, and 1302150 A7 ___B7 5. Invention Description (2) A small amount of sodium metal is about 0.25 to about 1% by weight based on the Wei metal. However, the patent discloses that the reactant is added. It may take several hours to complete the reaction. Due to the olefin-induced dark yellow alkyl lithium product, it is very important that the alkyl lithium product has no or lowest amount of hydrazine, and the high-concentration alkyl lithium solution is ideal. The content of chloride ion impurities is also important because high chlorine values of 3 〇〇 ppm and above generally produce turbidity-based clock products. Although the concentration of sulphur-based compounds in hydrocarbon solvents and clarification solutions are ideal, it is difficult to obtain. The ruthenium-based compound is very viscous so that the excess unreacted for the reaction is difficult to remove by filtration or other conventional particle separation methods. Previously, the process produces an alkyl halide containing more than 300 ppm of dissolved inorganic halide. The base chain compound 'inter alia' includes lithium chloride and cannot be removed by filtration. When a solution containing the resulting product is concentrated by a steaming or other solvent removal method, by-products such as lithium telluride form fine crystals in the product solution. This results in a hazy appearance in the product which is generally undesirable in industrial processes. In addition, the deuterated by-product clusters precipitate a solution which produces an even less desirable product. Therefore, it is highly desirable to have a method for producing a compound of the compound 41 in a high yield of 9 〇 % or more. U.S. Patent No. 3,452,112, discussed above, produces an alkyl lithium product solution in less than 85 percent yield. The unsaturated hydrocarbon-lithium addition compound has a higher yield but is a colored solution. U.S. Patent No. 5,332,533 discloses the preparation of an alkyl group by reacting a primary alkyl halide with a lithium metal. The reaction is carried out in an inert gas in a solvent at a temperature between 35 and 125 °C. However, this method also needs to be extended to --- _^_ This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) "一"" ---- 130215ο

發明説明 料時間,繼而需要額外時間使反應完成。此外,反應產物 一般為具有黃色之溶液。因此,仍需要以高產率、高純度 和車X L時間製備生成此等產物的澄清、無色燒基叙化合物 岭液之方法。本發明即克服先前技藝缺點,提供一種滿足 此需要之方法。 發明概要 本發明提出一種以約9 0 %高產率和高純度製造统基麵化 合物·^改良方法,其藉由使含3至丨6個碳原子的烷基鹵與 小於300微米大小的金屬顆粒在以約5 〇 和i25°C間之溫度 回泥的液態烴溶劑中於回流條件進行反應,隨後回收該烷 基鋰化合物,該溶劑係選自含5至丨2個碳原子的飽和液態 脂族烴、含5至12個碳原子的飽和液態脂環族烴及含6至 1 2個灰原子的液怨芳族煙及其混合物,其中改良之處由使 用包含大於約1重量%鈉的鋰-鈉合金金屬顆粒進行反應組 發明詳細說明 本發明提出一種以約9 0 %高產率和高純度製造烷基鋰化 合物之改良方法,其藉由使含3至丨6個碳原子的烷基鹵與 小於300微米大小的金屬顆粒在以5 〇 和125°C間之溫度回 泥的液感fe溶劑中於回流條件進行反應,隨後回收該燒基 麵化合物,該溶劑係選自含5至1 2個碳原子的飽和液烴脂 族烴、含5至1 2個碳原子的飽和液態脂環族烴和含6至j 2 個碳原子的液態芳族烴及其混合物,其中改良之處由使用 包含大於約1重量%鈉的鋰-鈉合金金屬顆粒進行反應組 6 本紙張尺度適财H S家標準(CNS) A4規格(210X297公董) 一' - 1302150 A7 ______B7 五、發明説明(4 ) 成。 固怨鋼金屬和固態鐘金屬係在足以形成鈉鋰合金分散液 《條件下分散於液態烴介質。該分散液在配有攪拌器的壓 力反應恭中製備。鈉和鐘以足以產生所需鈉:鋰比之量加 入反應為’隨後加入足量液態烴介質和分散劑。然後將反 應器加熱,在鍾金屬熔點於攪拌下使金屬合金化。隨後使 鈉:II合金分散液冷却至約1〇〇aC。 鋼-叙合金一般由丨-5 0重量%鈉和9 9 - 5 0重量%鋰組成。 納-鋰合金較佳由約3 〇重量%鈉和約7 〇重量%鋰組成。鈉· 叙a至了作為为散液自波斯〉丁產品公司購得(p〇stin pr〇ducts, Inc·)[北卡羅萊納州,費斯(Faith,N〇rth 。 將鈉-鋰合金加入反應器。鈉·鋰合金係以高於化學計量 咼達7重量%之量過量使用,以保證所有烷基氣反應。加 入烷基自和至少一種液態烴溶劑,使其中生成烷基鋰的反-應在等於或大於液態烴溶劑沸點溫度回流進行。一般反應 在高於液態烴溶劑沸點至高約i 〇它溫度進行。較佳液態烴 溶劑為己烷,且較佳在約7丨_81它進行反應。 不洛性物質由過濾除去,如未反應鋰金屬、未反應鈉金 屬、氯化鋰和氯化鈉。含此等不溶物質的濾餅用反應溶液 劑清洗,以除去任何殘餘烷基鋰產物。烷基鋰產物和所清 洗溶劑收集於產物罐中。 未反應鋰金屬、未反應納金屬、氯化鋰和氯化鈉係作為 鐘金屬和鈉金屬回收。剩餘溶劑由過濾回收。 用於本發明方法的適合烷基鹵含2至1 6個碳原子,鹵離 — -7- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公爱) ~ '一'"- 1302150 A7 B7 五、發明説明(5 ) 子可為溴、氯或琪,較佳為氯’因為其廉價且更可以廣、、乏 得到。 本發明方法所適用液態烴包括輕礦物油、含5至丨2個碳 原子的液態飽和脂族烴及脂環族烴(如異戊烷、正戊境、 正己燒、正庚燒、2 -乙基己垸、異辛垸、正辛貌、癸燒、 十二燒及類似烴)或含5至1 2個碳原子的飽和環族烴(如環 成烷或甲基環己烷)和類似物及其混合物。亦可使用含6至 1 2個碳原子的芳族烴,如苯、甲苯、正丙基苯、異丙基 私、二甲苯、1,2,3,4 四氫萘及類似物。由於回流條件與 最佳反應溫度有關,所以烴混合物很有用。然而,單.液 態烴可能比混合烴更合乎需要。 適合分散劑包括脂肪酸、醇和酯。特別適用的分散劑包 括月桂,、肉豆蔻酸、棕櫚酸、亞油酸、亞麻酸、油酸、 硬脂酸及其衍生物和混合物。 該反應可在約50-125°C溫度進行,最佳結果在等於或至高 大於溶劑或溶劑混合物沸點約1 (TC得到。可在低於溶劑_ 點溫度進行反應,但與回流條件反應相比獲得的結果不 良。 通常由將鈉··鋰合金分散液引入反應器進行反應。如需 要,可隨後由所需反應溶液代替分散液烴介質液體。將反 應器加熱,並進行攪拌。將烷基函和溶劑加入經攪摔的分 散液。將反應器加熱至回流溫度,將反應器加熱到等於或 至高大於溶劑或溶劑混合物沸點約1 〇 °c之溫度,以某一速 率加入烷基#和溶劑,使加入在約1小時内完成。一曰加 ___ . _ - 8 - 本紙張尺度適财國S冢標準(CNS) A4規格(210X297公釐) ' '—'— 1302150 A7 B7 五、發明説明(6 ) 完,即額外保持攪拌約1 0分鐘。一旦反應完成,即冷却反 應介質或使之冷却至周圍條件。 實驗利用不同鋼-1里合金百分比組合物和市售燒基氯及 溶劑進行。將鈉-鋰合金分散液加入反應器中的經選擇溶 劑,該反應器配有回流冷凝器、攪拌器、用於加入烷基氯 的加料裝置以及加熱反應器和反應物料之裝置。將鈉-鋰-溶劑混合物攪拌,並加熱至所選擇反應溫度(通常為沸點 或高於所選擇溶劑沸點1 0 °c ),開始烷基氯給料。隨後由 烷基氯加入速率控制溫度。流分研究方法變量(如反應溫 度、函化物給速率、鈉-鋰合金過量)及此等變量對產物和 純度之影響。 現在由以下實例說明本發明。此等實例不應用於限制本 發明範圍。各實例結合以上一般和詳細描述更有助於理解 本發明。 實例 製備丁基鋰: 進行數個試驗製備丁基鋰。利用四種不同鈉:鋰合金。所 用鈉-鋰合金係作為分散液自波斯汀產品公司獲得。各合 金下: 66% Li/34% Na 50%Li/50%Na 85%Li/15%Na 99%Li/l%Na 用己烷作溶劑使各合金與丁基氯反應。同樣在三個單獨 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) -9 - 1302150 A7 __ B7 五、發明説明(7 ) 试驗中用環己烷、庚烷和曱苯作溶劑使6 6 % L i / 3 4 % N a 合金與丁基氯(BuCl)反應。 各試驗反應時間為7 0分鐘。 在評估和四種不同L i/Na濃度下以所製備鈉-鋰合金溶劑 分散液進行丁基鋰反應。 丁基鐘回流反應使用5〇〇毫升具回流冷凝器的攪拌式玻璃 燒瓶’用68克正丁基氣和60毫升己烷與14.5克分散於己烷 的66% Li/3 4°/〇 Na合金反應。對於其它U/Na濃度,此 等量根據鋰金屬比例調節,並用所需溶劑代替己烷。 在氬手套箱中用適合分散液/溶液填充反應燒瓶。將反應 燒瓶轉到通風櫥,裝配反應裝置。該反應裝置需具有攪拌 器、氬、BuCl/溶劑加料漏、回流冷凝器以及冷凝器冷却流 體供路和回路。將溶劑和丁基氯加入玻璃漏斗。啟動反應 燒瓶攪拌器。緩緩將丁基氯和溶劑加入所攪拌分散液中。 將裝置加熱,直到取得回流條件,丁基氯加完。加入丁基 鋁需要約1小時,且反應瞬間引發。將反應混合物再攪拌 1 0分鐘,然後使之冷却至溫度。 反應後,將所得反應產物用溶劑清洗及過濾。過遽使用 500毫升多孔玻璃濾器及2〇〇毫升溶劑。將反應燒瓶内容物 在壓力下轉入過濾裝置。濾器用氮氣加壓。反應“泥渣,, 用等份溶劑清洗3次。收集丁基鋰產物和溶劑用於分析, “泥渣”收集回收。分析丁基鋰溶液的有效丁基鋰和殘餘 鋰。在反應產物過濾中不需要過濾助劑幫助。 -10- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1302150 A7 B7 五、發明説明(8 ) 結果 批號 Na/Li 比 反應溫度(°C ) 丁基鋰重量,克 產率% 澄清度/顏色 1 34/66 68 4,212 90.1 清 2 34/66 68 4,212 90.1 清 3 34/66 68 4,237 90.6 清 4 34/66 68 4,212 90.1 清 5 34/66 68 4,419 94.5 清 6 15/85 68 4,405 94.2 清 7 15/85 68 4,243 90.7 清 8 15/85 68 4,307 92.1 清 9 15/85 68 4,316 92.3 清 10 15/85 68 4,293 91.8 清 11 1/99 68 4,256 91.0 微濁 12 1/99 68 4,209 90.0 微濁 13 1/99 68 4,214 90.1 微濁 14 1/99 68 4,198 90.0 微濁 15 1/99 68 4,268 91.4 微濁 16 50/50 68 4,149 88.8 清 17 50/50 68 4,208 90.0 清 18 50/50 68 4,227 90.4 清 19 50/50 68 4,168 89.2 清 20 50/50 68 4,190 90.0 清 21 34/66 81 4,194 89.7 清 22 34/66 99 4,174 89.3 清 23 34/66 111 4,077 87.2 清 __-11 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1302150 A7 B7 五、發明説明(9 ) 各試驗所用反應溶劑如下: 第1至2 0批:己烷 第2 1批:環己烷 第2 2批:庚烷 第2 3批:甲苯 結果說明,由鈉:II合金與丁基氯在回流條件進行反應 得到高產率高純度產物。在鈉對鋰之比大於1 : 9 9且小於 5 0 ·. 5 0時得到澄清、無色產物。各反應反應時間約為7 0分 鐘。 -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)DESCRIPTION OF THE INVENTION The feed time, which in turn requires additional time to complete the reaction. Further, the reaction product is generally a solution having a yellow color. Thus, there is still a need for a process for the preparation of clear, colorless sulphur compounds of these products in high yield, high purity and X L time. The present invention overcomes the shortcomings of the prior art and provides a method of meeting this need. SUMMARY OF THE INVENTION The present invention provides an improved process for the manufacture of a ruthenium compound with a high yield of about 90% and a high purity by using an alkyl halide having 3 to 6 carbon atoms and a metal particle having a size of less than 300 microns. The reaction is carried out under reflux conditions in a liquid hydrocarbon solvent which is returned to the mud at a temperature between about 5 Torr and i25 ° C, and then the alkyl lithium compound is recovered, the solvent being selected from saturated liquid fats having 5 to 2 carbon atoms. a hydrocarbon, a saturated liquid alicyclic hydrocarbon having 5 to 12 carbon atoms, and a liquid scented aromatic tobacco having 6 to 12 ash atoms, and mixtures thereof, wherein the improvement consists of using more than about 1% by weight of sodium. Lithium-sodium alloy metal particles are subjected to a reaction group. DETAILED DESCRIPTION OF THE INVENTION The present invention provides an improved process for producing an alkyllithium compound in a high yield and high purity of about 90% by using an alkyl group having 3 to 6 carbon atoms. The halogen and the metal particles having a size of less than 300 micrometers are reacted under reflux conditions in a liquid-sensing fe solvent which is returned to the mud at a temperature between 5 Torr and 125 ° C, and then the base compound is recovered, and the solvent is selected from the group consisting of 5 to 5 1 2 carbon atom saturated liquid hydrocarbon aliphatic hydrocarbon a saturated liquid alicyclic hydrocarbon having 5 to 12 carbon atoms and a liquid aromatic hydrocarbon having 6 to j 2 carbon atoms, and mixtures thereof, wherein the improvement is made by using lithium containing more than about 1% by weight of sodium - Sodium alloy metal particles for reaction group 6 This paper scale is suitable for HS family standard (CNS) A4 specification (210X297 DON) A '1302150 A7 ______B7 V. Invention description (4) Cheng. The solid steel and solid clock metal are dispersed in a liquid hydrocarbon medium under conditions sufficient to form a sodium lithium alloy dispersion. The dispersion was prepared in a pressure reaction equipped with a stirrer. Sodium and clock are added to the reaction in an amount sufficient to produce the desired sodium:lithium ratio as a subsequent addition of a sufficient amount of liquid hydrocarbon medium and dispersant. The reactor is then heated and the metal alloyed at the melting point of the clock metal under agitation. The sodium:II alloy dispersion is then cooled to about 1 〇〇 aC. The steel-synthesis alloy generally consists of 丨-5 0% by weight of sodium and 99-500% by weight of lithium. The nano-lithium alloy preferably consists of about 3 〇% by weight of sodium and about 7% by weight of lithium. Sodium · A is purchased as a dispersion from Persian ding products company (p〇stin pr〇ducts, Inc.) [Faith, N.R., Nasr. Adding to the reactor. The sodium lithium alloy is used in excess of 7% by weight above the stoichiometric amount to ensure the reaction of all alkyl groups. Adding alkyl groups and at least one liquid hydrocarbon solvent to form alkyl lithium therein. The reverse - should be carried out at a temperature equal to or greater than the boiling temperature of the liquid hydrocarbon solvent. The reaction is generally carried out at a temperature above the boiling point of the liquid hydrocarbon solvent to a temperature of about i. Preferably, the liquid hydrocarbon solvent is hexane, and preferably about 7 丨 _81. It reacts. The incomplete substances are removed by filtration, such as unreacted lithium metal, unreacted sodium metal, lithium chloride and sodium chloride. The filter cake containing these insoluble materials is washed with a reaction solution to remove any residual alkane. The lithium alkyl product, the alkyl lithium product and the washed solvent are collected in a product tank. Unreacted lithium metal, unreacted nano metal, lithium chloride and sodium chloride are recovered as bell metal and sodium metal. The remaining solvent is recovered by filtration. Used in the method of the invention Suitable for alkyl halides containing 2 to 16 carbon atoms, halogenated — -7- This paper scale applies to China National Standard (CNS) A4 specification (210 X 297 public) ~ '一'"- 1302150 A7 B7 V. DESCRIPTION OF THE INVENTION (5) The sub-organism may be bromine, chlorine or ki, preferably chloro' because it is inexpensive and more widely available, and is available. The liquid hydrocarbons used in the process of the invention include light mineral oils, containing 5 to 2 carbons. A liquid saturated aliphatic hydrocarbon of an atom and an alicyclic hydrocarbon (such as isopentane, n-pentane, n-hexan, n-heptane, 2-ethylhexyl, isooctyl, n-morphine, terrible, twelfth burning) And similar hydrocarbons or saturated cyclic hydrocarbons having 5 to 12 carbon atoms (such as cycloalkyl or methylcyclohexane) and the like, and mixtures thereof. It is also possible to use aromatics having 6 to 12 carbon atoms. Hydrocarbons such as benzene, toluene, n-propylbenzene, isopropyl private, xylene, 1,2,3,4 tetrahydronaphthalene and the like. Hydrocarbon mixtures are useful because the reflux conditions are related to the optimum reaction temperature. However, single liquid hydrocarbons may be more desirable than mixed hydrocarbons. Suitable dispersants include fatty acids, alcohols and esters. Particularly suitable dispersants include laurels. , myristic acid, palmitic acid, linoleic acid, linolenic acid, oleic acid, stearic acid, and derivatives and mixtures thereof. The reaction can be carried out at a temperature of about 50-125 ° C, and the best result is equal to or higher than The solvent or solvent mixture has a boiling point of about 1 (TC is obtained. The reaction can be carried out at a temperature lower than the solvent-point temperature, but the result obtained is poor compared to the reaction under reflux conditions. The reaction is usually carried out by introducing a sodium·· lithium alloy dispersion into the reactor. If desired, the dispersion hydrocarbon medium liquid can then be replaced by the desired reaction solution. The reactor is heated and stirred. The alkyl function and solvent are added to the stirred dispersion. The reactor is heated to reflux temperature and the reaction is carried out. The apparatus is heated to a temperature equal to or higher than the boiling point of the solvent or solvent mixture of about 1 〇 ° C, and the alkyl # and the solvent are added at a rate such that the addition is completed in about 1 hour.一曰加___ . _ - 8 - This paper size is suitable for the country S冢 standard (CNS) A4 specification (210X297 mm) ' '-'- 1302150 A7 B7 V. Invention description (6) End, that is, additional mixing About 10 minutes. Once the reaction is complete, the reaction medium is cooled or allowed to cool to ambient conditions. The experiment was carried out using different steel-1% alloy percentage compositions and commercially available alkyl chloride and solvent. The sodium-lithium alloy dispersion is charged to a selected solvent in a reactor equipped with a reflux condenser, a stirrer, a charging unit for adding alkyl chloride, and a means for heating the reactor and the reaction material. The sodium-lithium-solvent mixture is stirred and heated to the selected reaction temperature (usually boiling point or above 10 °C above the boiling point of the selected solvent) to initiate the alkyl chloride feed. The temperature is then controlled by the alkyl chloride addition rate. The flow-research method variables (such as reaction temperature, feed rate, sodium-lithium alloy excess) and the effects of these variables on product and purity. The invention will now be illustrated by the following examples. These examples are not intended to limit the scope of the invention. The examples are more helpful in understanding the invention in connection with the above general and detailed description. EXAMPLES Preparation of Butyllithium: Several experiments were conducted to prepare butyllithium. Use four different sodium: lithium alloys. The sodium-lithium alloy used was obtained as a dispersion from Bostin Products. Under each alloy: 66% Li/34% Na 50% Li/50% Na 85% Li/15% Na 99% Li/l% Na Each alloy was reacted with butyl chloride using hexane as a solvent. Also applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) on three separate paper scales -9 - 1302150 A7 __ B7 V. INSTRUCTIONS (7) Cyclohexane, heptane and hydrazine in the test Benzene was used as a solvent to react a 6 6 % L i / 3 4 % N a alloy with butyl chloride (BuCl). The test reaction time was 70 minutes. The butyllithium reaction was carried out in the prepared sodium-lithium alloy solvent dispersion under evaluation and four different Li/Na concentrations. The butyl clock reflux reaction was carried out using 5 μl of a stirred glass flask with a reflux condenser' with 68 g of n-butyl and 60 ml of hexane and 14.5 g of 66% Li/3 4°/〇Na dispersed in hexane. Alloy reaction. For other U/Na concentrations, this amount is adjusted according to the lithium metal ratio and the desired solvent is substituted for hexane. The reaction flask was filled with a suitable dispersion/solution in an argon glove box. Transfer the reaction flask to a fume hood and assemble the reaction unit. The reactor is required to have a stirrer, argon, BuCl/solvent feed leak, reflux condenser, and condenser cooling fluid supply and circuit. The solvent and butyl chloride were added to the glass funnel. Start the reaction flask stirrer. The butyl chloride and solvent are slowly added to the stirred dispersion. The apparatus was heated until reflux conditions were obtained and the butyl chloride was added. It takes about 1 hour to add butyl aluminum, and the reaction is initiated instantaneously. The reaction mixture was stirred for a further 10 minutes and then allowed to cool to temperature. After the reaction, the obtained reaction product was washed with a solvent and filtered. Afterwards, a 500 ml porous glass filter and 2 ml of solvent were used. The contents of the reaction flask were transferred to a filtration apparatus under pressure. The filter was pressurized with nitrogen. The reaction "sludge, washed 3 times with an aliquot of solvent. Collect the butyl lithium product and solvent for analysis, "sludge" collection and recovery. Analyze the effective butyl lithium and residual lithium of the butyl lithium solution. Filter the reaction product. No filter aid is needed. -10- This paper scale applies to China National Standard (CNS) A4 specification (210 X 297 mm) 1302150 A7 B7 V. Invention description (8) Result batch number Na/Li Specific reaction temperature (° C) butyl lithium weight, gram yield % clarity / color 1 34/66 68 4,212 90.1 clear 2 34/66 68 4,212 90.1 clear 3 34/66 68 4,237 90.6 clear 4 34/66 68 4,212 90.1 clear 5 34/ 66 68 4,419 94.5 Clear 6 15/85 68 4,405 94.2 Clear 7 15/85 68 4,243 90.7 Clear 8 15/85 68 4,307 92.1 Clear 9 15/85 68 4,316 92.3 Clear 10 15/85 68 4,293 91.8 Clear 11 1/99 68 4,256 91.0 Microturbidity 12 1/99 68 4,209 90.0 Microturbidity 13 1/99 68 4,214 90.1 Microturbidity 14 1/99 68 4,198 90.0 Microturbidity 15 1/99 68 4,268 91.4 Microturbidity 16 50/50 68 4,149 88.8 Clear 17 50 /50 68 4,208 90.0 Clear 18 50/50 68 4,227 90.4 Clear 19 50/50 68 4,168 89.2 Clear 20 50/50 68 4,190 90.0 21 34/66 81 4,194 89.7 Clear 22 34/66 99 4,174 89.3 Clear 23 34/66 111 4,077 87.2 Clear __-11 This paper scale applies to Chinese National Standard (CNS) A4 size (210 X 297 mm) 1302150 A7 B7 V. INSTRUCTIONS (9) The reaction solvents used in each test are as follows: Batches 1 to 20: Hexane Batch 21: Cyclohexane Batch 2: Heptane Batch 23: Toluene Results, by sodium: The II alloy and butyl chloride are reacted under reflux conditions to obtain a high yield and high purity product. A clear, colorless product is obtained when the ratio of sodium to lithium is greater than 1:99 and less than 50.5. 70 minutes. -12- This paper scale applies to China National Standard (CNS) A4 specification (210 X 297 mm)

Claims (1)

1302威0〇1則4號專利申請案 A8 中文申請專利範圍替換本(95年元月)監 _____D8 六、申請專利範圍 1· 一種以至少約9 0 %高產率和高純度製造烷基鋰化合物之方法, 其係藉由使含3至1 6個碳原子的烷基鹵與小於約3〇〇微米大小金 屬顆粒在以5 0 °C和125°C間之溫度回流的液態烴溶劑中於回流 條件進行反應’該溶劑係選自含5至丨2個碳原子的飽和液態脂 叙、含5至1 2個碳原子的飽和液態脂環族烴和含6至1 2個碳 原子的液態芳烴及其混合物,隨後回收該烷基鋰化合物,其特 徵在於該反應係由使用含至少約丨5重量%鈉的鋰-鈉合金金屬 顆粒進行。 2·根據申請專利範圍第1項之方法,其中該鋰-鈉合金包括介於工$ 至5 0重量%間的鈉和8 5 - 5 0重量%鋰。 3·根據申請專利範圍第}項之方法,其中該鋰-鈉合金包括約“重 量%鋼和約6 6重量% 4里。 4·根據申清專利範圍第1項之方法,其中該燒基鹵為含3至1 6個 碳原子的燒基氯。 5·根據申請專利範圍第}項之方法,其中該烷基鹵為丁基氯。 6.根據申請專利範圍第丨項之方法,其中該溶劑為己烷,且反應 溫度係介於6 8 - 8 0 °C之間。 7·根據申叩專利範圍第1項之方法.,其中該溶劑為庚烷,且反應 溫度係介於9 9 · 1 l〇°C之間。 8.根據申請專利範圍第丨項之方法,其中該溶劑為環己烷,且反 應溫度係介於80-90 °C之間。 9·根據申請專利範圍第丨項之方法,其中該溶劑為甲苯,且反應 溫度係介於ll〇-12〇°C之間。 1〇·根據申請專利範圍第!項之方法,其中該反應時間為約7〇分 I紙張尺度g中國时標準(CNS);格(21〇 χ挪公g~_- 1302150 ^ A8 B8 C8 D8 六、申請專利範園 鐘0 11.根據中請專利範圍第6項之方法,其中㈣基商為含3至16個 碳原子的燒基氯。 12. 根據中請專利範圍第w之方法,其中㈣基_為丁基氣。 13. 根據中請專利第7項之方法,其中㈣基^含3至16個 碳原子的燒基氯。1302 Wei 0〇1 4 Patent Application A8 Chinese Patent Application Replacement (95-Year) Supervisor _____D8 VI. Patent Application 1· A method for manufacturing alkyl lithium with high yield and high purity of at least about 90% a method of compounding a liquid hydrocarbon having a metal halide having 3 to 16 carbon atoms and a metal particle having a size of less than about 3 Å in a liquid hydrocarbon at a temperature between 50 ° C and 125 ° C. The reaction is carried out under reflux conditions. The solvent is selected from the group consisting of saturated liquid lipids containing 5 to 2 carbon atoms, saturated liquid alicyclic hydrocarbons having 5 to 12 carbon atoms, and 6 to 12 carbon atoms. The liquid aromatic hydrocarbons and mixtures thereof, followed by recovery of the alkyl lithium compound, characterized in that the reaction is carried out using lithium-sodium alloy metal particles containing at least about 5% by weight of sodium. 2. The method of claim 1, wherein the lithium-sodium alloy comprises between $50 and 50% by weight of sodium and 85-500% by weight of lithium. 3. The method according to claim 5, wherein the lithium-sodium alloy comprises about "% by weight of steel and about 6% by weight of 4". 4. The method according to claim 1, wherein the base is The halogen is a pyridyl chloride having 3 to 16 carbon atoms. 5. The method according to claim 5, wherein the alkyl halide is butyl chloride. 6. The method according to the scope of the patent application, wherein The solvent is hexane, and the reaction temperature is between 6 8 and 80 ° C. 7. The method according to claim 1, wherein the solvent is heptane and the reaction temperature is between 9 Between 1 · 1 l 〇 ° C. 8. The method according to the scope of the patent application, wherein the solvent is cyclohexane, and the reaction temperature is between 80 and 90 ° C. 9. According to the patent application scope The method of the third aspect, wherein the solvent is toluene, and the reaction temperature is between ll 〇 12 〇 ° C. 1 〇 according to the method of the scope of the application of the patent item, wherein the reaction time is about 7 〇 I paper scale g China time standard (CNS); grid (21 〇χ ng g~_- 1302150 ^ A8 B8 C8 D8 six, apply for patent garden Clock 0 11. According to the method of the sixth paragraph of the patent scope, wherein (4) the base is a burnt chlorine containing 3 to 16 carbon atoms. 12. According to the method of the patent scope of the patent, the (four) base is Base gas 13. According to the method of claim 7, wherein (4) is a base chlorine containing 3 to 16 carbon atoms. H.根據中請專利第13項之方法,其中減基自為丁基氯。 15.根據申請專利範圍第8項之方法,其中該烷基南為含3至16個 碳原子的燒基氯。 其中該烷基_為丁基氯。 其中該烷基鹵為含3至1 6個 裝 16.根據申請專利範圍第1 5項之方法 17·根據申請專利範圍第9項之方法 碳原子的烷基氯。 18.根據申請專利範圍第17項之方法,其中該烷基_為丁基氯。 19·根據申清專利範圍第1 〇項之方法,其中該烷基鹵為含3至丨6個 碳原子的烷基氯。 20.根據申請專利範圍第1 9項之方法,其中該烷基鹵為丁基氯。 -2-本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)H. The method of claim 13, wherein the base is butyl chloride. 15. The method of claim 8, wherein the alkyl south is a burnt chloride having from 3 to 16 carbon atoms. Wherein the alkyl group is butyl chloride. Wherein the alkyl halide is contained in an amount of from 3 to 16 units. 16. The method according to claim 15 of the patent application. 18. The method of claim 17, wherein the alkyl group is butyl chloride. 19. The method of claim 1, wherein the alkyl halide is an alkyl chloride having from 3 to 6 carbon atoms. 20. The method of claim 19, wherein the alkyl halide is butyl chloride. -2-This paper scale applies to China National Standard (CNS) A4 specification (210 X 297 mm)
TW90120114A 2001-08-16 2001-08-16 Process for the preparation of alkyllithium compounds TWI302150B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90120114A TWI302150B (en) 2001-08-16 2001-08-16 Process for the preparation of alkyllithium compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90120114A TWI302150B (en) 2001-08-16 2001-08-16 Process for the preparation of alkyllithium compounds

Publications (1)

Publication Number Publication Date
TWI302150B true TWI302150B (en) 2008-10-21

Family

ID=45070412

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90120114A TWI302150B (en) 2001-08-16 2001-08-16 Process for the preparation of alkyllithium compounds

Country Status (1)

Country Link
TW (1) TWI302150B (en)

Similar Documents

Publication Publication Date Title
CA1099455A (en) Hydrocarbon soluble straight-chain di-(lower alkyl) magnesium compositions
US5045244A (en) Preparation of metal halide-amine complexes
JP2733045B2 (en) Preparation of toluene-free solutions of ether-free and halogenide-free aluminum hydride.
DE3905857A1 (en) ALKALIMETALL DIORGANOAMIDE COMPOSITIONS AND METHOD FOR THE PRODUCTION THEREOF
US5523447A (en) Organolithium process
DE69131264T2 (en) Process for the preparation of silazycloalkanes
EP0707588B1 (en) Improved alkyllithium process
TWI302150B (en) Process for the preparation of alkyllithium compounds
EP0040141A1 (en) Organomagnesium solutions of low viscosity and process for their obtention
JP4987212B2 (en) Method for producing alkyl lithium compound
WO1992009609A1 (en) High purity alkyllithium compounds and process of preparation
JPS62129287A (en) Hydrocarbon-soluble organometallic complex of magnesium and alkali metal and manufacture
US2983741A (en) Cyclopentadienyl titanium halides
US2969382A (en) Process for the manufacture of cyclopentadienyl group iii-a metal compounds
EP0752998B1 (en) Thionation process using elemental phosphorus and sulfur
US3155736A (en) Method of making organolithium compounds
JP4416322B2 (en) Production of alkali metal alcoholates
JPH04221389A (en) Production of dialkyl zinc
JPH07242682A (en) Production of dihalogenoalkylphosphane
EP0926150A2 (en) Production of alkali metal cyclopentadienylide and production of dihalobis(eta-substituted-cyclopentadienyl) zirconium from alkali metal cyclopentadienylide
DE3943841C2 (en) New alkali metal di:organo-amide compsn. lewis base and prepn.
NO811842L (en) DISSOLUTION OF ALKYL SODIUM COMPOUNDS AND PROCEDURES FOR PRODUCING THEREOF
US2964379A (en) Preparation of alkali metal phosphides
EP0033233A1 (en) A process for preparing alpha-lithio derivatives and a process for preparing carboxylic acids using them
JP2864985B2 (en) Method for producing tri (secondary alkyl) silane compound

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees