TWI300573B - Semiconductor memory and memory system - Google Patents

Semiconductor memory and memory system Download PDF

Info

Publication number
TWI300573B
TWI300573B TW95111205A TW95111205A TWI300573B TW I300573 B TWI300573 B TW I300573B TW 95111205 A TW95111205 A TW 95111205A TW 95111205 A TW95111205 A TW 95111205A TW I300573 B TWI300573 B TW I300573B
Authority
TW
Taiwan
Prior art keywords
access
memory
semiconductor memory
unit
information
Prior art date
Application number
TW95111205A
Other languages
Chinese (zh)
Other versions
TW200737226A (en
Inventor
Hiroyuki Kobayashi
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW95111205A priority Critical patent/TWI300573B/en
Publication of TW200737226A publication Critical patent/TW200737226A/en
Application granted granted Critical
Publication of TWI300573B publication Critical patent/TWI300573B/en

Links

Landscapes

  • Dram (AREA)
  • Memory System Of A Hierarchy Structure (AREA)

Description

1300573 九、發明說明: L發明所屬技術領域3 發明領域 本發明係有關於一種可變更位址空間尺寸之半導體記 5憶體及搭載該半導體記憶體之記憶體系統。 I:先前技術3 發明背景 一般半導體記憶體之位址空間尺寸為固定,在搭載半 導體記憶體之系統之設計上,搭載於系統之半導體記憶體 10 之數考慮半導體記憶體之位址空間尺寸而決定。此時,一 旦搭載於糸統之半導體記憶體内存在無法存取之無用記憶 體領域時,系統之成本便增加,而耗費無謂之電力。為解 決此弊端,而提出可變更位址空間尺寸之半導體記憶體(例 如參考專利文獻1)。 15 【專利文獻丨】日本專利公開公報2002-245780號1300573 IX. Description of the Invention: Field of the Invention 3 Field of the Invention The present invention relates to a semiconductor memory capable of changing the address space size and a memory system in which the semiconductor memory is mounted. I. Prior Art 3 BACKGROUND OF THE INVENTION Generally, the address space size of a semiconductor memory is fixed. In the design of a system in which a semiconductor memory is mounted, the number of semiconductor memories 10 mounted in the system takes into account the address space size of the semiconductor memory. Decide. At this time, once there is an unusable memory area that cannot be accessed in the semiconductor memory of SiS, the cost of the system increases, and unnecessary power is consumed. In order to solve this drawback, a semiconductor memory capable of changing the size of the address space has been proposed (for example, refer to Patent Document 1). 15 [Patent Document 丨] Japanese Patent Laid-Open Publication No. 2002-245780

C 明内 J 發明揭示 發明欲解決之問題 當變更半導體記憶體之位址空間尺寸時,需變更暫存 2〇器等之設定值。在一般之系統中,由於位址空間之尺寸已 固定,故位址空間之尺寸無法於系統動作時切換。然而, 系統運作所需之記憶體容量有依系統之運作模式而改變之 Μ形。此時,位址空間之尺寸配合最大記憶體容量所需之 動作模式而設定。因此,在使用之冗憶體容量少之動作模 1300573 式中,存在無法存取之無用記憶體領域’而耗費無謂之電 力。 另一方面,為使耗費電力為最小限度’有配合使用之 記憶體容量少之動作模式而設定位址空間尺寸之情形。此 5 時,每當切換為使用之記憶體容量多之其他動作模式時, 需再設定位址空間之尺寸。一般而言,由於存取動作無法 在切換位址空間尺寸之期間執行,故因尺寸之再設定而使 存取效率降低。為提高存取效率,當將位址空間之尺寸設 定大時,便如上述,耗費無謂之電力。 10 本發明之目的在於在不使存取效率降低下,使耗費電 力為最小限度,而存取單元陣列。 解決問題之方法 本發明之一形態中,複數單元陣列分配有不同之位 址。存取資訊部保持顯示同時活化之前述單元陣列數之存 15取有效資訊。陣列控制部回應來自半導體記憶體外部之強 制存取要求,將未對應設定於前述存取資訊部之前述存取 有效資訊之單70陣列強制活化。藉此,可於提供存取要求 前,將未對應存取有效資訊且已鈍化之單元陣列活化。因 而,當同時活化之單元陣列之數少時,可在不中斷存取動 作下執行。又,由於不需變更存取資訊部之内容,故不需 為了改寫存取有效資訊而中斯存取動作。結果,在不使存 取效率降低下’可使耗費電力為最小限度,而可存取單元 陣列。 在本發明-形態之較佳例中,存取檢測部於連續執行 1300573 5 10 15 20 對複數之前述單元陣列之存取時,預先檢測於對應前述存 取有效資訊之單元陣列之存取之後,執行未對應前述存取 有效資訊之單元陣列之存取。陣列控制部回應前述存取檢 測部之檢測,強制將未對應前述存取有效資訊之單元陣列 之存取活化,而執行存取動作。舉例言之,半導體記憶體 包含有位址計數器,該位址計數器係於叢發存取模式中運 作,依序生成接續於從半導體記憶體外部提供之外部存取 位址後之内部存取位址。存取檢測部依前述外部存取 立址’執行檢測動作。藉連續之存取,於執行對未 ΪΓΓ單辑狀麵動料,藉事先_該資訊, 2不中斷存取下,連續執行。未允許存取之單元陣列回 了而活化。因而,在不使存取效率降低 下了使耗費電力為最小限度,而可存取單元陣列。 之存態之較佳例為當連續執行對複數單元陣列 單_鱼τ取檢測部檢測出執行未對應存取有效資歡 趙信號輪出至轉 作時二:::::::許::广陣㈣取動 控制哭之㈣# 践麵半導體記憶體之 導體:情體之:回Γ測信號,判斷執行或停止未對應半 存取有效資訊之單元陣列右未對應 器便停止存取動作。藉此,可停止作時’控制 存取有效資訊之單元陣列之存取動若未對應 動作。㈣,未對應存取有致資訊之單元陣 1300573 列回應存取檢測部之檢測而活化。因而,在不使存取效率 降低下,可使耗費電力為最小限度,而可存取單元陣列。 發明效果 在不使存取效率降低下,可使耗費電力為最小限度, 5 而可存取單元陣列。 圖式簡單說明 第1圖係顯示本發明第1實施形態之半導體記憶體之塊 圖。 第2圖係顯示第1圖所示之單元陣列之詳細内容之塊 10 圖。 第3圖顯示依第1圖所示之存取暫存器之設定内容之位 址的分配之說明圖。 第4圖顯示搭載第1圖所示之記憶體之記憶體系統之塊 圖。 15 第5圖係顯示在第1圖所示之記憶體中,於存取有效資 訊設定邏輯1時之存取動作的時間圖。 第6圖係顯示本發明第2實施形態之半導體記憶體之塊 圖。 第7圖係顯示搭載第6圖所示之記憶體之記憶體系統之 20 塊圖。 第8圖係顯示本發明第3實施形態之半導體記憶體之塊 圖。 第9圖係顯示本發明第4實施形態之半導體記憶體之塊 1300573 第10圖係顯示本發明第5實施形態之半導體記憶體之 塊圖。 第11圖係顯示本發明第6實施形態之半導體記憶體之 塊圖。 5 【實施方式】 用以實施發明之最佳形態 以下,使用圖式,說明本發明之實施形態。圖中,以 粗線表示之乜號線以複數條構成。連接粗線之區塊之一部 伤以複數電路構成。傳達信號之信號線使用與信號名稱相 10同之標號。圖中之雙重圓圈表示外部端子。 第1圖顯示本發明第1實施形態之半導體記憶體。半導 體兄憶體係與時鐘CLK同步運作,且具有動態記憶體單元 之SDRAM。圮憶體MEM具有命令輸入部1〇、模式暫存器 12、時鐘輸入部14 ]立址輸入部16、18、資料輸入輸出; I5 20、位址計數器22、存取檢測部24、陣列控制部%及記憶 體磁心28。 命令輸入部1〇接收命令端子(:]^1)所提供之命令^^^^ 後,將所接收之命令CMD輸出至陣列控制部26。在此實施 形悲中,存取命令(讀取命令、寫入命令、更新命令)、暫 20存器設定命令、強制存取命令(強制存取要求)及強制存取解 除命令作為命令CMD而提供給命令輸入部1〇。讀取命令及 寫入命令於執行記憶體單元陣列ARY之記憶體單元MC2 存取動作(讀取存取動作及寫入存取動作)時,與位址ra、 CA,同提供。更新命令於執行記憶體單元則之更新動作 ^300573 ^提供。命令輸人部滕減_存取命令後至接收強制 取解除命令之朗,將_存取要求信號FREQ活化。C Mingzhong J Reveals the problem to be solved by the invention When changing the address space size of the semiconductor memory, it is necessary to change the set value of the temporary storage device or the like. In a typical system, since the size of the address space is fixed, the size of the address space cannot be switched when the system is operating. However, the memory capacity required for the operation of the system varies depending on the mode of operation of the system. At this time, the size of the address space is set in accordance with the operation mode required for the maximum memory capacity. Therefore, in the operation mode 1300573 in which the redundant memory capacity is small, there is an unnecessary memory area that cannot be accessed, and it consumes unnecessary power. On the other hand, in order to minimize the power consumption, the address space size is set in accordance with the operation mode in which the memory capacity is small. At this time, each time you switch to another operation mode with a larger memory capacity, you need to set the size of the address space. In general, since the access operation cannot be performed during the switching of the address space size, the access efficiency is lowered due to the re-setting of the size. In order to improve the access efficiency, when the size of the address space is set large, as described above, unnecessary power is consumed. 10 The object of the present invention is to access a cell array while minimizing power consumption without reducing access efficiency. Solution to Problem In one aspect of the invention, the plurality of cell arrays are assigned different addresses. The access information unit keeps displaying the number of the aforementioned array of cells activated at the same time and takes valid information. The array control unit, in response to a forced access request from outside the semiconductor memory, forcibly activates a single array 70 that does not correspond to the access effective information set in the access information unit. Thereby, the cell array that does not correspond to the access valid information and is passivated can be activated before the access request is provided. Therefore, when the number of simultaneously activated cell arrays is small, it can be performed without interrupting the access operation. Further, since it is not necessary to change the content of the access information unit, it is not necessary to access the access information in order to rewrite the effective information. As a result, power consumption can be minimized without degrading the access efficiency, and the cell array can be accessed. In a preferred embodiment of the present invention, the access detecting unit detects in advance the access of the plurality of the cell arrays by 1300573 5 10 15 20, and detects in advance the access of the cell array corresponding to the access valid information. And performing access to the cell array that does not correspond to the foregoing access valid information. The array control unit, in response to the detection by the access detecting unit, forcibly activates access to the cell array that does not correspond to the access valid information, and performs an access operation. For example, the semiconductor memory includes an address counter that operates in a burst access mode to sequentially generate internal access bits subsequent to an external access address provided from outside the semiconductor memory. site. The access detecting unit performs the detecting operation in accordance with the external access address. By continuous access, in the execution of the unfinished series of pieces, by means of prior information, 2 without interruption of access, continuous execution. The cell array that is not allowed to access is activated and activated. Therefore, the unit array can be accessed by minimizing the power consumption without degrading the access efficiency. A preferred example of the storage state is that when the execution of the unary corresponding access to the complex unit array single-fish τ take-out detecting unit is performed, the second::::::: :广阵(四)取动控哭之(四)# Conductor of semiconductor memory: the situation: return to the signal, judge whether to execute or stop the cell array that does not correspond to the half-access valid information, the right non-correspondence device stops accessing action. Thereby, the access operation of the cell array for controlling the access of the effective information can be stopped if the operation is not performed. (4) The cell array 1300573 that does not correspond to access to the information is activated in response to the detection by the access detection unit. Therefore, the power consumption can be minimized without the access efficiency being lowered, and the cell array can be accessed. Effect of the Invention The power consumption can be minimized without reducing the access efficiency, and the cell array can be accessed. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing a semiconductor memory device according to a first embodiment of the present invention. Fig. 2 is a block diagram showing the details of the cell array shown in Fig. 1. Fig. 3 is an explanatory diagram showing the allocation of the address of the setting contents of the access register shown in Fig. 1. Fig. 4 is a block diagram showing a memory system in which the memory shown in Fig. 1 is mounted. 15 Fig. 5 is a timing chart showing the access operation when the valid information setting logic 1 is accessed in the memory shown in Fig. 1. Fig. 6 is a block diagram showing a semiconductor memory device according to a second embodiment of the present invention. Fig. 7 is a view showing 20 pieces of the memory system in which the memory shown in Fig. 6 is mounted. Fig. 8 is a block diagram showing a semiconductor memory device according to a third embodiment of the present invention. Fig. 9 is a block diagram showing a semiconductor memory device according to a fourth embodiment of the present invention. Fig. 10 is a block diagram showing a semiconductor memory device according to a fifth embodiment of the present invention. Fig. 11 is a block diagram showing a semiconductor memory device according to a sixth embodiment of the present invention. [Embodiment] BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described using the drawings. In the figure, the apostrophe line indicated by a thick line is composed of a plurality of bars. One of the blocks connecting the thick lines is composed of a plurality of circuits. The signal line that conveys the signal uses the same number as the signal name. The double circles in the figure indicate external terminals. Fig. 1 shows a semiconductor memory device according to a first embodiment of the present invention. The semiconductor brother system reproduces in synchronization with the clock CLK and has an SDRAM of a dynamic memory unit. The memory MEM has a command input unit 1 , a mode register 12 , a clock input unit 14 , an address input unit 16 , 18 , a data input and output , an I5 20 , an address counter 22 , an access detection unit 24 , and an array control Part% and memory core 28. The command input unit 1 receives the command provided by the command terminal (:]^1), and outputs the received command CMD to the array control unit 26. In this implementation, the access command (read command, write command, update command), temporary register setting command, forced access command (forced access request), and forced access release command are used as the command CMD. It is supplied to the command input unit 1〇. When the read command and the write command are executed in the memory cell MC2 access operation (read access operation and write access operation) of the memory cell array ARY, they are provided together with the addresses ra and CA. The update command is provided in the memory unit update action ^300573^. The command input unit is decremented _ access command to receive the forced release command, and the _ access request signal FREQ is activated.

10 強制存取命令及強制存取解除命令係僅於後述之存取 位址暫存HACSR_^存取有效資賴_持賴1時,提供 給記憶體MEM之命令。強㈣取命令及_存取解除料 與列位址RAILI3-職供。此時,列他謹2]32表示 為強制存取而活化之副單元陣列SAR购或為停止強制存 取而純化之副單元陣列SARY〇_3。藉命令輸入部1〇接收強 ,存取命令’可在不設置特別之端子下,而將已鈍化之副 早讀列SARY齡j活化。即,如後述,可將未對應存取有 效資訊AINF之數之副單元陣列从灯活化。 模式暫存器12具有暫存器BUSTR及存取暫存哭 ACSR。模式暫存器12在圖式之外尚具有用以決定CAS潛時 之暫存⑨等。CAS潛時表示從讀取命令之受理後至輪出讀 15 取資料為止之時鐘週期數。 貝 叢發暫存器BUSTR保持叢發長度。叢發長度表示回應工 次之讀取命令或寫入命令而輸入輸出之資料信號之數。舉 例言之,叢發長度之種類有“1”、“4,,、“8,,、“全叢發,,。八 叢發係提供讀取命令或寫入命令後至提供下個命令為止持 20續資料之輸出或輸入之模式。模式暫存器12於叢發暫存哭 BUSTR所設定之長度為“4”、“8,,及“全叢發,,時,將叢^ 號BUST活化。後述之陣列控制部26於叢發信號BUST^^ 時,以叢發存取模式運作。 存取暫存器ACSR保持顯示將第2圖所示之副單元陣歹】 1300573 SARY〇_3同時活化或逐—活化之存取有效資訊娜,將所 保持之存取有效資訊着作為存取有效信號娜而輸 出。在此例中,於存取有效資訊細F及存取有效信號娜 為低位準(邏輯〇)時,將所有之副單元陣職RYQ 3同時活 5化。當存取有效資訊a跡及存取有效信號綱❻高位準 (邏輯1)時,在-般之存取動作中,將副單元陣列sary〇_3 之其中任—者活化,而不將其他之副單元陣列sARY^活 化。存取暫存IsACSR具有設定顯示同時活化之副單元陣列 SARY0-3之數之存取有效資訊的存取資訊部之功能。 1〇 模式暫存器12依與暫存器設定命令MRS—同提供之位 址RA、CA之位兀值而設定。藉此,可在不設置特別之端子 下,設定顯示同時活化之副單元陣列SARY之數之存取有效 資訊AINF。此外,模式模暫存器12可依資料〇丁之位元值設 定,亦可依位址RA、CA及資料DT之位元值而設定。藉使 15用複數端子,設定叢發暫存器BUSTR及存取暫存器ACSR, 可使5又疋所需之週期時間為最小限度。結果,可防止讀取 存取或寫入存取記憶體單元陣列ARY之存取效率降低。 時鐘輸入部14於時鐘賦能信號CKE活化進行時,將外 部時鐘CLK作為内部時間ICLK而輸出,於時鐘賦能信號 20 CKE之鈍化進行時,停止内部時鐘ICLK之生成。内部時鐘 CLK係為使§己憶體MEM之時鐘輸入部14除外之各電路區塊 運作而提供。 位址輸入部16接收位址端子AD提供之列位址RA12-13 及攔位址CA7-8。位址輸入部16於接收低位準之存取有效信 11 1300573 號AINF之期間,將所接收之攔位址㈤姆為陣列選擇位 址SA(M而輸出,於接收高位準之存取有效信號a·之期 間,將所接收之列位址RA12_13作為陣列選擇位址从〇1而 輸出。陣列選擇位址SA0-m用於選擇第2圖所示之副單元 5 陣列SARY0-3之任一者。 位址輸入部18接收位址端子AD提供之列位址謂# 搁位址CA0-6後,將所接收之位址R输u、以〇_6輸出至位 址計數器22。列位址RA(M1係用於選擇後述之字線肌。在 此貝施形悲中,列位址RA及攔位址CA同時提供給專用之位 10址端子RA、CA。即,此記憶體mem採用位址非多工方式。 資料輸入輸出部20於讀取動作時,藉由資料匯流排DB 將從記憶體磁心28輸出之讀取資料輸出至資料端子 DT(DT0-7),於寫入動作時,將以資料端子DT接收之寫入 資料藉由資料匯流排DB輸出至記憶體磁心28。資料端子〇1 15為讀取資料及寫入資料共通之端子。 位址計數器22於為叢發暫存器BUSTR設定之長度為 ‘1’’時,將所接收之位址RAO-11、CA〇-6、SA〇-1直接輸出。 位址計數器22於為叢發暫存器BUSTR設定之長度為“4,,、 “8”或“全叢發”時,將接續所接收之位址CA〇_6、sAO-丨(外 20部存取位址)後之CA0_6、SA0-1(内部存取位址)依序生成對 應叢發長度之數後輸出。此外,位址計數器22亦可依序將 列位址RA0-11增加。 存取檢測部24僅於於存取暫存器ACSR之有效存取資 訊AINF保持邏輯1時運作。存取檢測器24於叢發存取模式 12 1300573 進行時,監視從位址計數器22輸出之存取位址CAO-6、 SA0-1,而預先檢測出接續回應存取命令而活化之副單元陣 列SARY(例如SARY0)之存取後,執行其他之副單元陣列 SARY(例如SARY1)之存取時,將檢測信號DET活化。存取 5 檢測之動作之詳細内容以後述之第5圖說明。 陣列控制部26為執行記憶體磁心28之存取動作,將回10 The forced access command and the forced access release command are commands that are supplied to the memory MEM only when the access address is temporarily stored in the HACSR_^ access valid account. Strong (four) take command and _ access release material and column address RAILI3- job. At this time, the column 2]32 indicates the sub-cell array SARA which is activated for forced access or the sub-cell array SARY〇_3 which is purified to stop the forced access. By the command input unit 1 〇 receiving strong, the access command ' can activate the passivated sub-reading column SARY age j without setting a special terminal. That is, as will be described later, the sub-cell array which does not correspond to the number of access effective information AINFs can be activated from the lamp. The mode register 12 has a register BUSTR and an access temporary crying ACSR. The mode register 12 has a temporary storage 9 for determining the CAS latency in addition to the drawing. The CAS latency indicates the number of clock cycles from the acceptance of the read command to the round-up read 15 data. The shell burst register BUSTR maintains the length of the burst. The burst length indicates the number of data signals input and output in response to a read command or a write command. For example, the type of burst length has "1", "4,," "8,," "full burst,". The eight bursts provide read commands or write commands until the next command is provided. The mode of output or input of 20 consecutive data. The mode register 12 is set to "B", "8," and "Full Crowd," when the burst is stored in the burst BUSTR. The array control unit 26, which will be described later, operates in the burst access mode when the burst signal BUST^^. The access register ACSR keeps displaying the sub-cell array shown in Fig. 2] 1300573 SARY〇_3 At the same time, the activation or activation-activated access information is used to output the valid information of the access as an effective signal for access. In this example, the access to the effective information F and the access valid signal are When the low level (logic 〇), all the sub-units RYQ 3 are simultaneously activated. When accessing the valid information a trace and accessing the effective signal outline high level (logic 1), the general access In the action, the sub-cell array sary〇_3 is activated, and the other sub-cell array sARY^ is activated. The access temporary storage IsACSR has a function of setting an access information portion for displaying the access effective information of the number of sub-unit arrays SARY0-3 activated at the same time. 1〇 The mode register 12 is provided in accordance with the register setting command MRS. The addresses RA and CA are set to a value of 兀. Therefore, the access effective information AINF indicating the number of simultaneously activated sub-unit arrays SARY can be set without setting a special terminal. Further, the mode mode register 12 can be set according to the bit value of the data, or can be set according to the bit value of the address RA, CA and the data DT. If the 15 terminal is used, the burst register BUSTR and the access register are set. ACSR can minimize the cycle time required for 5 。. As a result, the access efficiency of the read access or write access memory cell array ARY can be prevented from decreasing. The clock input unit 14 is clocked with the signal CKE. When the activation is performed, the external clock CLK is output as the internal time ICLK, and when the passivation of the clock enable signal 20 CKE is performed, the generation of the internal clock ICLK is stopped. The internal clock CLK is the clock input portion 14 of the MEM memory. Except for each circuit block The address input unit 16 receives the column address RA12-13 and the block address CA7-8 provided by the address terminal AD. The address input unit 16 receives the low level access valid letter 11 1300573 AINF The received address (5) is the array selection address SA (M and output, and the received column address RA12_13 is used as the array selection address during the period of receiving the high-level access valid signal a· 1. Output. The array selection address SA0-m is used to select any one of the sub-unit 5 arrays SARY0-3 shown in Fig. 2. The address input unit 18 receives the column address provided by the address terminal AD. After the address CA0-6, the received address R is output to the address counter 22 at 〇_6. The column address RA (M1 is used to select the word line muscle described later. In this case, the column address RA and the block address CA are simultaneously supplied to the dedicated bit address terminals RA, CA. That is, this memory The body mem is in the address non-multiplex mode. When the data input/output unit 20 reads the data, the data output from the memory core 28 is output to the data terminal DT (DT0-7) by the data bus DB. During the write operation, the write data received by the data terminal DT is output to the memory core 28 via the data bus DB DB. The data terminal 〇1 15 is a terminal common to the read data and the write data. The address counter 22 is When the length of the burst register BUSTR is '1'', the received addresses RAO-11, CA〇-6, SA〇-1 are directly output. The address counter 22 is the burst register. When the length of the BUSTR setting is "4,," "8" or "full burst", it will connect to the received address CA〇_6, sAO-丨 (outside 20 access addresses), CA0_6, SA0 -1 (internal access address) is generated by sequentially generating the number of burst lengths. In addition, the address counter 22 can also sequentially increase the column address RA0-11. The access detecting unit 24 operates only when the valid access information AINF of the access register ACSR is held at logic 1. When the access detector 24 is in the burst access mode 12 1300573, the monitoring is output from the address counter 22 After accessing the addresses CAO-6, SA0-1, and detecting the access of the sub-cell array SARY (for example, SARY0) activated in response to the access command, the execution of the other sub-cell array SARY (for example, SARY1) is performed. The detection signal DET is activated. The details of the operation of the access 5 detection will be described later in Fig. 5. The array control unit 26 performs the access operation of the memory core 28 and returns

10 1510 15

20 應存取命令CMD而存取記憶體單元陣列ARY之控制信號 CNT輸出。控制信號CNT有用以選擇字線WL之字線控制信 唬WLZ、用以將感測放大器SA活化之感測放大器控制信號 SAZ、用以選擇欄開關之欄線控制信號CLZ、用以將位元線 BL、/BL預充電之預充電控制信號pREZ等。20 The control signal CNT output of the memory cell array ARY should be accessed by accessing the command CMD. The control signal CNT is useful for selecting the word line control signal WLZ of the word line WL, the sense amplifier control signal SAZ for activating the sense amplifier SA, and the column control signal CLZ for selecting the column switch for using the bit line Line BL, /BL precharge precharge control signal pREZ, etc.

又,陣列控制部26於接收低位準之存取有效信號AINF 日守,將所有之活化信號ACT0-3活化。陣列控制部26於接收 高位準之存取有效信號八11>^時,為僅將藉陣列選擇位址 SA(M選擇之副單元陣列SARY〇_3之任一者活化,而將活化 信號ACT0-3之任-者活化。藉纟活化信號act〇-r活化, 將副單元陣列SARY0-3分別活化。即,陣列控制部%回應 存取命令,转取有效資該NF,將所有副單元陣列 SARY0-3活化’或將副單元陣列sa咖。之豆中之一活 力 化。存取㈣HACSR之餘有„訊細轉持將副單元 陣列3刪_3逐—活化之資訊時,依陣列選擇位址s綱, 制副單元陣列SARY0-3之其中之—活化,可刪減耗費電 號AINF為高位準之期 陣列控制部26於存取有效信 13 1300573 間,接收強制存取要求信號FREQ之活化時,將對應顯示與 強制存取命令一同提供之列位址RA12-13(=陣列選擇位址 SA(M)之副單元陣列SARY的活化信號ACT強制活化。即, 陣列控制部26回應強制存取要求FREQ,而將未對應設定於 5 存取暫存器ACSR之存取有效資訊AINF之副單元陣列 SARY強制活化。藉此,不需為改寫存取有效資訊AINF而 將存取動作中斷。結果,在不使存取效率降低下,可使耗 費電力為最小限度,而可存取單元陣列。 再者,陣列控制部26於叢發信號BUST活化時(叢發存 10 取模式進行時)接收檢測信號DET之活化時,為執行存取動 作,除了正進行活化之副單元陣列SARY(例如SARY0)外, 亦將其他之副單元陣列(例如SARY1)強制活化。藉此,於叢 發存取模式時,將涵蓋2個副單元陣列SARY而執行存取動 作時,可在不中斷存取動作下執行。 15 記憶體磁心28具有記憶體單元陣列ARY、列解碼器 RDEC、感測放大器SA、欄開關CSW、欄解碼器CDEC、讀 出放大器RA及寫入放大器WA。記憶體單元陣列ARY具有 動態記憶體單元MC、連接於動態記憶體單元MC之字線WL 及位元線對BL、/BL。記憶體單元MC形成於字線WL與位 20 元線對BL、/BL之交叉部份。 列解碼器RDEC回應存取命令及更新命令,而將列位址 RAD解碼,以選擇字線WL之其中任一者。欄解碼器CDEC 回應存取命令,而將欄位址CAD解碼,以選擇對應資料端 子DT之位元數之8組位元線對BL、/BL。 14 1300573 感測放大器SA將於位元線對BL、/BL讀取之資料信號 之信號量之差放大。欄開關CSW依欄位址CAD,將位元線 BL、/BL連接於資料匯流排線DB。讀出放大器RA於讀取動 作時,將藉由欄開關CSW輸出之互補之讀取資料放大。寫 5 入放大器WA於寫入動作時,將藉由資料匯流排DB提供之 互補之寫入資料放大而提供給位元線對BL、/BL。 第2圖顯示第1圖所示之記憶體單元陣列ary之詳細内 容。在圖中,顯示對應資料端子DT0之記憶體單元陣列 ARY。實際上,位元線對BL、/BL對應資料端子DT〇-7而分 10 別配線。 記憶體單元陣列ARY具有4個副單元陣列SARY0-3。副 單元陣列SARY0-3具有相同之記憶容量,而依陣列選擇位 址SA0_1選擇。即,副單元陣列SARY〇-3分配不同之位址。 陣列選擇位址SA0-1如上述當於存取暫存器八(:;511設定低位 15準之存取有效資訊AINF時,以欄位址CA7-8提供,當於存 取暫存為ACSR設定高位準之存取有效資訊AINF時,以列 位址RA12-13提供。 菖於存取暫存為ACSR設定低位準之存取有效資訊 AINF時,回應存取命令,而將所有之副單元陣列SARY〇_3 2〇同時活化。舉例言之,當陣列選擇位址SA0-1顯示“11”,存 取副單元陣列SARY3時(例如字線WL2),其他之副單元陣列 SARY 1 -2之字線WL2亦與副單元陣列sARY3之活化同步而 活化。 另一方面,當於存取暫存器ACSR設定高位準之存取有 15 1300573 效資訊AINF時,回應存取命令,而僅將對應陣列選擇位址 SA0-1之副單元陣列SARY0_3之其中任一者活化。舉例言 之,當陣列選擇位址SA0-1顯示“〇〇”,存取副單元陣列 SARY0(例如字線WL1),其他之副單元陣列·γι_3之字線 5 WL1未活化。 第3圖顯示根據第1圖所示之存取暫存器ACSR之設定 内谷之位址的分配。當於存取有效資訊AINF設定邏輯〇(低 位準)日守’將欄位址CA7-8作為陣列選擇位址SA〇丨而提供給 記憶體磁心28。此時,副單元陣列Sary〇_3依欄位址CA7-8 ίο選擇。因此,在存取動作中,將所有之副單元陣列saryo-3 活化。 當於存取有效資訊AINF設定邏輯ι(高位準)時,將列位 址R A12 _ 13作為陣列選擇位址s A 0 -1而提供給記憶體磁心 28。此時,副單元陣列SARY〇-3依列位址RA12-13選擇。因 15此’在存取動作中,將根據列位址RA12-13之副單元陣列 SARY0-3之其中任一者活化。 第4圖顯示搭載第1圖所示之記憶體mem之記憶體系 統。記憶體系統形成為於基板上層疊之系統封裝SIP(System In Package)。SIP具有用以存取記憶體MEM之記憶體控制器 20 MCNT1、快閃記憶體FLASH、用以存取快閃記憶體FLASti 之記憶體控制器MCNT2及控制系統全體之CPU。CPU與記 憶體控制器MCNT1-2藉系統匯流排SBUS連接。CPU為存取 記憶體MEM,而輸出存取命令CMD、外部位址AD及寫入 資料DT,藉由記憶體控制器MCNT1從記憶體MEM接收讀 16 1300573 取資料DT。 第5圖顯示在第1圖所示之記憶體]VIEM中,於存取有效 資訊AINF設定邏輯1時之存取動作。在此例中,接續副單 元陣列SARY0之叢發存取動作後,執行副單元陣列SARY1 5 之存取動作。 於列位址RA12-13為“0,,時選擇副單元陣列SARY〇。在 此例中,叢發暫存器BUSTR設定為“全叢,,。因此,攔位址 CA0-6每次存取時,依序以1〇進位從“〇,,增加至“63”。當搁 位址CA0-6輪完一回時,在仍保持列位址raO-11(在此例為 10 204)下,將副單元陣列SARY0鈍化,並將副單元陣列SARY1 活化。因而,在不使活化領域增大下,可依序存取複數之 副單元陣列SARY。 15 20 第1圖所示之存取檢測部24從副單元陣列SARY〇之最 後開始與第4個存取(CA〇_6=6〇)同步,將檢測信號det = 化。陣列控制部26與檢測信號猶之活化同纟,為將副單 兀陣列SARY1活化,而將活化信號八⑶活化。副單元陣列 sARYm應活化信號ACT1,在副單元陣列sar辦,執行 最後3個树動作之㈣,練供給騎㈣rdec之電源 之生成電路⑽如升壓Μ生成魏、負電壓生成電路)或提 供給感測放大USA之電源之生成電路(例如升壓電壓生成 電路、負電Μ生成電稱活化。終於料辑列sary〇 之存取動作完成後,從下個開始副單元㈣讀幻之 動作。即,為刪減歸電力,在僅將1個副單元陣列SARY 活化之動作模細账高位準)中,麵動作於副單元陣列 17 1300573 SARY0-1之切換期間不停止而不間斷執行。且,於副單元 陣列SARY1之活化後,將已完成存取動作之副單元陣列 SARY0純化(ACT0=低位準)。因而,在不使存取效率降低 下,可使耗費電力為最小限度,而可存取單元陣列。 5 以上,在第1實施形態中,於提供存取命令前,將未對 應存取有效資訊AINF之數之副單元陣列SARY強制活化。 因而,當同時活化之副單元陣列SARY之數少時,亦可不中 斷存取動作而執行。又,由於不需再設定存取有效資訊 AINF,故不需為改寫存取有效資訊AINF而中斷存取動作。 10 結果,在不使存取效率降低下,可使耗費電力為最小限度, 而可存取單元陣列。 又,藉叢發存取動作之連續存取,執行對未允許存取 之副單元陣列SARY之存取動作時,藉於事先藉存取檢測部 24檢測該資訊,可有餘裕將下個存取之副單元陣列活化。 15 因此,可不中斷存取而連續執行。特別是存取動作等在記 憶體MEM内部自動執行之連續存取時,藉預先將下個存取 之副單元陣列SARY活化,防止存取之中斷,可輕易控制用 以存取記憶體之控制器。 第6圖顯示本發明第2實施形態之半導體記憶體。與第1 20 實施形態說明之要件相同之要件附上相同之標號,並對該 等省略詳細說明。此實施形態之半導體記憶體MEM具有將 從存取檢測部24輸出之檢測信號DET輸出至記憶體MEM外 部之檢測端子DET。其他之結構與第1實施形態相同。即, 半導體記憶體MEM形成SDRAM。 1300573 第7圖顯示搭載第6圖所示之記憶體MEM之記憶體系 統。與第1實施形態不同之處為從記憶體MEM將檢測信號 DET傳送至記憶體控制器MCNT1。記憶體控制器MCNT1 具有控制部CNT1,該控制部CNT1係依顯示執行未對應存 5 取有效資訊AINF之副單元陣列SARY之存取動作的檢測信 號DET之活化,判斷停止或繼續記憶體MEM之存取。其他 之結構則與第4圖相同。 舉例言之,如上述第5圖所示,於叢發存取模式進行 時,於對允許存取之副單元陣列SARY之存取動作後,執行 10 對未允許存取之副單元陣列SARY之存取動作時,存取記憶 體MEM之記憶體控制器MCNT1無法辨識切換要活化之副 單元陣列SARY。此時,藉將檢測信號DET傳送至記憶體控 制器MCNT1,記憶體控制器MCNT1之控制部CNT1可回應 檢測信號DET,而判斷執行或停止未允許存取之副單元陣 15列SARY之存取動作。舉例言之,若未對應存取有效資訊 AINF之副單元陣列SARY之存取動作為錯誤動作時,記憶 體控制器MCNT1便停止存取動作。藉此,停止無謂之存 取。若未對應存取有效資訊AINF之副單元陣列SARY之存 取動作為正常動作時,記憶體控制器MCNT1便繼續存取動 20 作。 以上,在第2實施形態中,可獲得與上述第丨實施形態 相同之效果。再者,在此實施形態中,藉將檢測信號det 傳送至記憶體控制器MCNT1,記憶體控制器MCNT1可判斷 繼續或停止存取。結果,由於可防止因錯誤動作造成之無 19 1300573 胃之存取動作’故在不使存取效率降低下,可使耗費電力 為最小限度,而可存取單元陣列。 —第8圖顯示本發明第3實施形態之+導體記憶體。與第1 二知形恶明之要件相同之要件附上相同之標號,並對該 等省略抽㈣。此實施形態之半導體記憶體MEM具有命 令輸入電路10B及陣列控制部26β取代第1施形態之命令 輸入電路ίο及陣列控制部26。又,半導體記憶體MEM具有 接收強制存取要求FREQ之專用強制存取要*FREq。其他 之結構與第i實施形態相同。即,半導體記憶體形成 10 SDRAM。 陣列控制部26B回應以強制存取要求端子FREq接收之 強制存取要求FREQ,而將對應所有副單元陣列sary〇_3《 活化彳§唬八〇10-3強制活化。即,陣列控制部26B回應強制 存取要求FREQ,將未對應設定於存取暫存器ACSR之存取 15有效寅訊AINF之副單元陣列sARY強制活化。 在此實施形態中,由於不需將活化之副單元陣列SARY 與強制存取要求FREQ—同指定,故記憶體控制器 MCNT1(圖中未示)不根據命令之輸入規格,而可在任意之 時間提供強制存取要求FREQ。由於在不使用命令端子 20 CMD、位址端子RA0-13、CA0-8及資料端子DT〇_7,可提供 強制存取要求FREQ,故在不中斷存取動作下,可將下個要 執行存取動作之副單元陣列SARY活化。 此外,雖圖中未示,記憶體控制器]^(:]^1[1具有輸出強 制存取要求FREQ之強制存取要求端子FREq取代接收第7 1300573 圖所示之檢測信號DET之檢測端子DET。記憶體系統之其 他結構則與第7圖相同。 以上,在第3實施形態中亦可獲得與上述第丨實施形態 相同之效果。再者,在此實施形態中,不使用一般之存取 5動作使用之端子,而可將未對應存取有效資訊AINF之副單 元陣列SARY強制活化。結果,在不使存取效率降低下,可 存取副單元陣列SARY。 第9圖顯示本發明第4實施形態之半導體記憶體。與第工 只施形悲說明之要件相同之要件附上相同之標號,並對該 ίο等省略詳細說明。此實施形態之半導體記憶體MEM具有模 式暫存為12C取代第1實施形態之模式暫存器I]。又,半導 體記憶體MEM新具有保險絲電路30C。其他之結構與第1實 施形態相同。即,半導體記憶體形成sdram。 模式暫存裔12C係從第1實施形態之模式暫存器12刪去 I5存取暫存IsACSR而構成。存取有效信號八^^^從保險絲電 路30C輸出。保險絲電路3〇c具有執行存取有效資訊ainf 之保險絲。即,保險絲電路30C具有設定存取有效資訊ainf 之存取資訊部的功能。 以上,在第4實施形態中亦可獲得與上述第丨及第2實施 20形態相同之效果。再者,於保險絲電路30C執行存取有效資 訊A聊時,/亦可藉強制存取要求FREQ,存取未允許存取 之副單元陣列SARY。 第10圖顯示本發明第5實施形態之半導體記憶體。與第 1貫施形態及第4實施形態說明之要件相同之要件附上相同 21 1300573 之標號,亚對該等省略詳細說明。此實施形態之半導體記 k、體MEM具有與第4貫施形態相㈤之模式暫存器l2C取代 第1實施形態之模式暫存II12。又,半導體記憶體mem新 具有配線連接電路伽。其他之結構則與第j實施形態相 5同。即,半導體記憶體形成SDRAM。 配線連接電路32D為以對應在記憶體]^]£]^之製程使用 之光罩之圖形形狀而形成於記憶體MEMi基板上之導電 圖形CD構成的開關。配線連接電路32D依導導圖形連接端 之電壓值,記憶顯示同時活化之副單元陣列SRAYi數的存 10取有效資訊AINF。在此例中,導電圖形CD連接於電源線 VDD或設置線VSS。即,配置連接電路32D具有設定有存取 有效資訊AINF之存取資訊部的功能。 以上’在第5實施形態中,亦可獲得與上述第1及第2 實施形態相同之效果。再者,依使用之光罩,執行存取有 15效資訊ΑΙΝί^,亦可藉強制存取要求FREQ,存取未允許 存取之副單元陣列SARY。 第11圖顯示本發明第6實施形態之半導體記憶體。與第 1實施形態說明之要件相同之要件附上相同之標號,並對該 等省略詳細說明。此實施形態之半導體記憶體MEM具有4 20 個分別具有記憶體磁心28之記憶庫BK1-4。又,對應記憶庫 BK1-4分別形成4個位址控制部丨4、4個位址計數器22、4個 存取檢測部24及4個陣列控制部26。 模式暫存器12E具有分別對應4個記憶庫BK1-4之暫存 器BUSTR及存取暫存器ACSR。位址輸入部18E除了第1實 22 1300573 施形態之位址輸入部18之功能外,尚具有接收用以識別記 憶庫BK1-4之記憶庫位址BA0-1的功能。記憶庫位址BA0-1 提供給陣列控制部26,各陣列控制部26依記憶庫位址ΒΑ0-1 而活化,以存取對應之記憶庫BK1-4。 5 其他之結構除了對應記憶庫BK1-4而分別生成叢發信 號BUST1-4、存取有效信號AINF1-4、位址計數器22之位址 RAO-11、CA0-6、SA0-1、檢測信號DET1-4外,其餘與第1 實施形態相同。叢發信號BUST1-4、存取有效信號 AINF1-4、檢測信號DET1-4末尾之數字對應記憶庫BK1-4 10之末尾之數字。即,半導體記憶體形成具有4個記憶庫BK1-4 之SDRAM。在此實施形態中,第1實施形態說明之動作對 各s己憶庫BK1-4執行。 存取有效資訊AINF1-4依為命令輸入部10E所提供之 暫存器設定命令,而對各記憶體BK1-4設定,或對所有 15 BK1-4統一設定。因此,命令輸入部1〇E除了第丨實施形態 之命令輸入部10之功能外,並接收包含顯示對各記憶庫 BK1-4設定存取有效資訊AINF1_4或對所有之記憶庫bki_4 統一設定之資訊的暫存器設定命令(存取有效資訊設定命 令)。藉此,可依存取記憶體MEM之記憶體控制器(記憶體 20系統)之規袼設定存取有效資訊AINF1-4。 各陣列控制部26回應對每一記憶庫BK1-4提供之強制 存取要求RFEQ1·4,而將設定於未職對應之存取暫存器 ACSR(存取資訊部)之存取有效資訊A刪_4的副單元陣列 SARY強制活化。 23 1300573 以上,在第6實施形態中亦可獲得與上述第丨及第2實施 形怨相同之效果。再者,在具有複數記憶庫BK1-4之記憶體 MEM中,在不使存取效率降低下,可使耗費電力為最小限 度’而可存取各記憶庫BK1-4之副單元陣列SARY。 5 另,在上述實施形態中,就將記憶體系統形成為SIP之 例作了敘述。本發明不以此實施形態為限。舉例言之,將 記憶體系統形成為層疊於矽基板上之系統LSI(s〇c;Systenl On Chip)亦可,藉於印刷基板上搭載記憶體mem、快閃記 憶體FLASH及記憶體控制器MCNT! _2而形成記憶體系統亦 10 可。 在上述實施形態中,就將本發明應用於SRAM之例作 了敘述。本發明不以此為限。舉例言之,本發明亦可應用 於DRAM、虛擬SRAM、SRAM或快閃記憶體等。虛擬SRAM 為具有DRAM之記憶體,且具有與SRAM相同之輸入輸出介 15 面,以在内部自動執行記憶體單元之更新動作之記憶體。 應用本發明之半導體記憶體為時鐘非同步式亦可,為時鐘 同步式亦可。 上述之實施形態亦可應用於具有8個、16個或32個等之 2的η次方個(n:3以上之整數)之副單元陣列SARY之半導體 20 記憶體MEM。此時,用以識別副單元陣列SARY之陣列選 擇位址SA之位元數需η條。又,將第2-第5實施形態應用於 具有複數記憶庫ΒΚ之半導體記憶體MEM亦可。 以上,就本發明作了詳細說明,上述實施形態及其變 形例僅為發明之一例,本發明不以此為限。可明瞭在不超 24 1300573 出本發明之範圍可進行變形。 本發明可適用於可變更位址空間尺寸之半導體記憶 【圖式簡單說明】 5 第1圖係顯示本發明第1實施形態之半導體記憶體之塊 圖。 第2圖係顯示第1圖所示之單元陣列之詳細内容之塊 圖。 第3圖顯示依第1圖所示之存取暫存器之設定内容之位 10 址的分配之說明圖。 第4圖顯示搭載第1圖所示之記憶體之記憶體系統之塊 圖。 第5圖係顯示在第1圖所示之記憶體中,於存取有效資 訊設定邏輯1時之存取動作的時間圖。 15 第6圖係顯示本發明第2實施形態之半導體記憶體之塊 圖。 第7圖係顯示搭載第6圖所示之記憶體之記憶體系統之 * 塊圖。 第8圖係顯示本發明第3實施形態之半導體記憶體之塊 20 圖。 第9圖係顯示本發明第4實施形態之半導體記憶體之塊 圖。 第10圖係顯示本發明第5實施形態之半導體記憶體之 塊圖。 25 1300573 第11圖係顯示本發明第6實施形態之半導體記憶體之 塊圖。 【主要元件符號說明】Further, the array control unit 26 receives the low-level access valid signal AINF and activates all of the activation signals ACT0-3. When receiving the high-level access valid signal 八11>, the array control unit 26 activates only the borrowed array selection address SA (M selected sub-cell array SARY〇_3, and activates the signal ACT0). -3 is activated - the activation of the activation signal act〇-r, respectively, activates the sub-cell array SARY0-3. That is, the array control unit % responds to the access command, transfers the valid NF, and all the sub-units Array SARY0-3 activates 'or activates one of the beans of the sub-cell array sa. The access (4) HACSR is surrounded by the information of the sub-cell array 3 Selecting the address s, the sub-cell array SARY0-3 is activated, and the array control unit 26 can be deleted from the access valid signal 13 1300573 to receive the forced access request signal. When the FREQ is activated, the activation signal ACT of the sub-array array SARY corresponding to the column address address RA12-13 (=array selection address SA(M)) which is provided together with the forced access command is forcibly activated. That is, the array control unit 26 Respond to mandatory access request FREQ, but will not be set to 5 The sub-cell array SARY of the access valid information of the register ACSR is forcibly activated. Therefore, the access operation is not interrupted for rewriting the access valid information AINF. As a result, the access efficiency can be reduced without reducing the access efficiency. When the detection signal DET is activated when the burst signal BUST is activated (when the burst memory 10 is activated), the array control unit 26 performs the access operation. In addition to the active sub-cell array SARY (for example, SARY0), other sub-cell arrays (for example, SARY1) are forcibly activated. Thus, in the burst access mode, two sub-cell arrays SARY are covered. When the access operation is performed, it can be executed without interrupting the access operation. 15 The memory core 28 has a memory cell array ARY, a column decoder RDEC, a sense amplifier SA, a column switch CSW, a column decoder CDEC, and a sense amplifier. RA and write amplifier WA. The memory cell array ARY has a dynamic memory cell MC, a word line WL connected to the dynamic memory cell MC, and bit line pairs BL, /BL. The memory cell MC is formed on the word line WL. Bit 20 is the intersection of BL and /BL. The column decoder RDEC responds to the access command and the update command, and decodes the column address RAD to select any of the word lines WL. The column decoder CDEC responds The access command is used to decode the column address CAD to select 8 sets of bit line pairs BL, /BL corresponding to the number of bits of the data terminal DT. 14 1300573 The sense amplifier SA will be bit line pair BL, /BL The difference between the semaphores of the read data signals is amplified. The column switch CSW connects the bit lines BL and /BL to the data bus line DB according to the column address CAD. The sense amplifier RA amplifies the complementary read data output by the column switch CSW during the read operation. When the write-in amplifier WA is in the write operation, it is supplied to the bit line pair BL, /BL by the complementary write data supplied from the data bus DB. Fig. 2 shows the detailed contents of the memory cell array ary shown in Fig. 1. In the figure, the memory cell array ARY corresponding to the data terminal DT0 is displayed. Actually, the bit line pair BL, /BL corresponds to the data terminal DT 〇 -7 and is divided into 10 wires. The memory cell array ARY has four sub cell arrays SARY0-3. The sub-cell array SARY0-3 has the same memory capacity and is selected according to the array selection address SA0_1. That is, the sub-cell array SARY〇-3 is assigned a different address. The array selection address SA0-1 is provided by the column address CA7-8 when the access register 8 (:; 511 is set to the lower 15 access valid information AINF as described above, and when the access is temporarily stored as the ACSR. When the high-level access valid information AINF is set, it is provided by the column address RA12-13. 存取 When the access temporary memory is set to the ACSR setting low-level access valid information AINF, the access command is responded to, and all the sub-units are responded to. The array SARY〇_3 2〇 is simultaneously activated. For example, when the array selection address SA0-1 shows "11", when the sub-cell array SARY3 is accessed (for example, the word line WL2), the other sub-cell array SARY 1 -2 The word line WL2 is also activated in synchronization with the activation of the sub-cell array sARY3. On the other hand, when the access register ACSR is set to a high level access, there is a 15 1300573 effect information AINF, and the access command is responded only to Any one of the sub-cell arrays SARY0_3 corresponding to the array selection address SA0-1 is activated. For example, when the array selection address SA0-1 displays "〇〇", the sub-cell array SARY0 (for example, the word line WL1) is accessed. , other sub-cell arrays · γι_3 word line 5 WL1 is not activated. Figure 3 shows the root According to the allocation of the address valley of the access register ACSR shown in Figure 1, when the access valid information AINF is set to logic 〇 (low level), the keeper will use the column address CA7-8 as the array selection. The address SA is supplied to the memory core 28. At this time, the sub-cell array Sary〇_3 is selected according to the column address CA7-8 ίο. Therefore, in the access operation, all the sub-cell arrays saryo-3 are selected. When the access valid information AINF is set to logic ι (high level), the column address R A12 _ 13 is supplied to the memory core 28 as the array selection address s A 0 - 1. At this time, the secondary unit array SARY〇-3 is selected according to the address RA12-13. In this case, during the access operation, any one of the sub-cell arrays SARY0-3 of the column address RA12-13 is activated. The memory system of the memory mem shown in Fig. 1. The memory system is formed as a system package SIP (System In Package) stacked on a substrate. The SIP has a memory controller 20 MCNT1 for accessing the memory MEM. Flash memory FLASH, memory controller MCNT2 for accessing flash memory FLASti and control system The CPU and the memory controller MCNT1-2 are connected by the system bus SBUS. The CPU is the access memory MEM, and the output access command CMD, the external address AD and the write data DT are controlled by the memory. The device MCNT1 receives the read 16 1300573 data DT from the memory MEM. Fig. 5 shows the access operation when the access valid information AINF is set to logic 1 in the memory] VIEM shown in Fig. 1. In this example, after the burst access operation of the sub-element array SARY0 is performed, the access operation of the sub-cell array SARY1 5 is performed. When the column address RA12-13 is "0," the sub cell array SARY is selected. In this example, the burst register BUSTR is set to "full plex,". Therefore, each time the block address CA0-6 is accessed, the carry increment is incremented from "〇," to "63". When the address of the address CA0-6 is rounded, the column address is still maintained. In the case of raO-11 (in this case, 10 204), the sub-cell array SARY0 is passivated, and the sub-cell array SARY1 is activated. Thus, the sub-cell array SARY can be sequentially accessed without increasing the activation domain. 15 20 The access detecting unit 24 shown in Fig. 1 synchronizes with the fourth access (CA〇_6=6〇) from the last of the sub-cell array SARY〇, and demodulates the detection signal det. 26 is activated with the detection signal, and activates the activation signal VIII(3) in order to activate the sub-single array SARY1. The sub-cell array sARYm should activate the signal ACT1, and perform the last three tree actions in the sub-cell array sar. (4) The power generation circuit (10) that generates power supply (four) rdec power generation circuit (10), such as boost voltage generation, negative voltage generation circuit) or the power generation circuit of the power supply for sensing amplification (for example, boost voltage generation circuit, negative power generation, electric activation) Finally, after the completion of the access operation of sary〇, the subunit will be started from the next one. In the operation of reading the phantom, that is, in order to reduce the returning power, in the operation of only one sub-cell array SARY, the surface operation is not stopped during the switching period of the sub-cell array 17 1300573 SARY0-1. After the activation of the sub-cell array SARY1, the sub-cell array SARY0 that has completed the access operation is purified (ACT0=low level). Therefore, the power consumption can be reduced without reducing the access efficiency. In the first embodiment, the sub-cell array SARY that does not correspond to the number of access valid information AINF is forcibly activated before the access command is provided. When the number of sub-cell arrays SARY is small, the access operation can be performed without interrupting the access operation. Further, since the access valid information AINF is not required to be set, the access operation is not interrupted for rewriting the access valid information AINF. By not reducing the access efficiency, the power consumption can be minimized, and the cell array can be accessed. Further, by the continuous access of the burst access operation, the sub-cell array for the unallowed access is executed. When the SARY access operation is performed, the pre-borrowing access detecting unit 24 detects the information, and has the margin to activate the sub-cell array for the next access. 15 Therefore, the access can be continuously performed without interrupting the access. When the continuous access is automatically performed inside the memory MEM, the controller for accessing the memory can be easily controlled by activating the sub-cell array SARY of the next access in advance to prevent interruption of the access. The semiconductor memory of the second embodiment of the present invention is the same as the one described in the first embodiment, and the same reference numerals are given to the same components, and the detailed description thereof will be omitted. The semiconductor memory MEM of this embodiment has a detection terminal DET for outputting the detection signal DET outputted from the access detecting unit 24 to the outside of the memory MEM. The other structure is the same as that of the first embodiment. That is, the semiconductor memory MEM forms an SDRAM. 1300573 Fig. 7 shows a memory system equipped with the memory MEM shown in Fig. 6. The difference from the first embodiment is that the detection signal DET is transmitted from the memory MEM to the memory controller MCNT1. The memory controller MCNT1 includes a control unit CNT1 that determines activation of the detection signal DET for performing an access operation of the sub-cell array SARY that does not correspond to the memory information AINF, and determines to stop or continue the memory MEM. access. The other structure is the same as in Fig. 4. For example, as shown in FIG. 5 above, in the burst access mode, after the access operation to the sub-cell array SARY that allows access, 10 pairs of sub-cell arrays SARY that are not allowed to access are executed. During the access operation, the memory controller MCNT1 accessing the memory MEM cannot recognize the sub-cell array SARY to be activated for switching. At this time, by transmitting the detection signal DET to the memory controller MCNT1, the control unit CNT1 of the memory controller MCNT1 can respond to the detection signal DET, and judge whether to execute or stop the access of the sub-cell array 15 SARY which is not allowed to access. action. For example, if the access operation of the sub-cell array SARY corresponding to the access valid information AINF is an erroneous operation, the memory controller MCNT1 stops the access operation. In this way, stop unnecessary access. If the access operation of the sub-cell array SARY that does not correspond to the access valid information AINF is normal operation, the memory controller MCNT1 continues to access the operation. As described above, in the second embodiment, the same effects as those of the above-described third embodiment can be obtained. Furthermore, in this embodiment, by transmitting the detection signal det to the memory controller MCNT1, the memory controller MCNT1 can judge to continue or stop the access. As a result, since the access operation of the stomach due to the erroneous operation can be prevented, the power consumption can be minimized and the cell array can be accessed without reducing the access efficiency. Fig. 8 shows a + conductor memory according to a third embodiment of the present invention. The same elements as those of the first and second sacred elements are attached with the same reference numerals, and the same is omitted (4). The semiconductor memory MEM of this embodiment has a command input circuit 10B and an array control unit 26β in place of the command input circuit ίο and the array control unit 26 of the first embodiment. Further, the semiconductor memory MEM has a dedicated forced access *FREq for receiving a forced access request FREQ. The other structure is the same as that of the i-th embodiment. That is, the semiconductor memory forms 10 SDRAM. The array control unit 26B responds to the forced access request FREQ received by the forced access request terminal FREq, and forcibly activates all the sub-unit arrays sary〇_3 "activation 彳 唬 唬 〇 10-3. Namely, the array control unit 26B responds to the forced access request FREQ, and forcibly activates the sub-unit array sARY which is not associated with the access 15 active AINF of the access register ACSR. In this embodiment, since the activated sub-cell array SARY and the forced access request FREQ are not required to be specified, the memory controller MCNT1 (not shown) is not based on the input specification of the command, but may be any Time provides mandatory access to FREQ. Since the command terminal 20 CMD, the address terminals RA0-13, CA0-8, and the data terminal DT〇_7 are not used, the forced access request FREQ can be provided, so the next execution can be performed without interrupting the access operation. The sub-cell array SARY of the access action is activated. In addition, although not shown in the figure, the memory controller]^(:]^1[1 has the output forced access request FREQ forced access request terminal FREq instead of the detection terminal of the detection signal DET shown in the seventh 1300573 The other structure of the memory system is the same as that of Fig. 7. In the third embodiment, the same effects as those of the above-described third embodiment can be obtained. Further, in this embodiment, the general storage is not used. The sub-cell array SARY that does not correspond to the access valid information AINF can be forcibly activated by taking the terminal used for the 5 action. As a result, the sub-cell array SARY can be accessed without lowering the access efficiency. FIG. 9 shows the present invention. The semiconductor memory of the fourth embodiment is denoted by the same reference numerals as those of the first embodiment, and the detailed description is omitted. The semiconductor memory MEM of this embodiment has a mode temporary storage. 12C replaces the mode register I] of the first embodiment. Further, the semiconductor memory MEM has a fuse circuit 30C. The other configuration is the same as that of the first embodiment. That is, the semiconductor memory forms sdram. The mode temporary storage 12C is configured by deleting the I5 access temporary storage IsACSR from the mode register 12 of the first embodiment. The access valid signal is output from the fuse circuit 30C. The fuse circuit 3〇c has execution memory. The fuse of the effective information ainf is obtained. That is, the fuse circuit 30C has the function of setting the access information unit for accessing the effective information ainf. The fourth embodiment can also be obtained in the same manner as the second embodiment and the second embodiment 20 described above. Further, when the fuse circuit 30C performs access to the valid information A chat, the FREQ can also be accessed by the forced access request to access the sub-unit array SARY which is not allowed to access. FIG. 10 shows the fifth embodiment of the present invention. The semiconductor memory is the same as the first embodiment and the requirements described in the fourth embodiment, and the same reference numerals are attached to the same reference numeral 21 1300573, and the detailed description thereof will be omitted. The semiconductor recording k and the body MEM of this embodiment have The mode register 12C of the fourth embodiment mode (5) replaces the mode temporary memory II12 of the first embodiment. Further, the semiconductor memory mem has a wiring connection circuit gamma. The other structure is the same as the jth embodiment. 5. The semiconductor memory is formed into a SDRAM. The wiring connection circuit 32D is formed of a conductive pattern CD formed on the memory MEMEM substrate in a pattern shape corresponding to the mask used in the memory process. The wiring connection circuit 32D is based on the voltage value of the connection end of the conductive pattern, and the memory 10 displays the active information AINF of the memory array of the auxiliary unit array SRAYi. In this example, the conductive pattern CD is connected to the power line VDD or the setting line. VSS. That is, the configuration connection circuit 32D has a function of setting an access information unit for accessing the effective information AINF. In the fifth embodiment, the same effects as those of the first and second embodiments described above can be obtained. Furthermore, depending on the reticle used, the access is performed with a 15-way information ,, and the FREQ can be accessed by a forced access to access the sub-cell array SARY that is not allowed to access. Fig. 11 is a view showing a semiconductor memory device according to a sixth embodiment of the present invention. The same elements as those described in the first embodiment are denoted by the same reference numerals, and the detailed description thereof will be omitted. The semiconductor memory MEM of this embodiment has 4 20 memories BK1-4 each having a memory core 28. Further, the corresponding memory bank BK1-4 is formed with four address control units 丨4, four address counters 22, four access detecting units 24, and four array control units 26. The mode register 12E has a temporary register BUSTR and an access register ACSR corresponding to four memories BK1-4, respectively. The address input unit 18E has a function of receiving the memory address BA0-1 for identifying the memory bank BK1-4 in addition to the function of the address input unit 18 of the first real form. The memory address BA0-1 is supplied to the array control unit 26, and each array control unit 26 is activated in accordance with the memory address ΒΑ0-1 to access the corresponding memory bank BK1-4. 5 Other structures except the corresponding memory bank BK1-4 generate burst signal BUST1-4, access valid signal AINF1-4, address counter 22 address RAO-11, CA0-6, SA0-1, detection signal The rest of the DET1-4 is the same as that of the first embodiment. The burst signal BUST1-4, the access valid signal AINF1-4, and the number at the end of the detection signal DET1-4 correspond to the number at the end of the memory bank BK1-410. That is, the semiconductor memory forms an SDRAM having four memories BK1-4. In this embodiment, the operation described in the first embodiment is executed for each of the memory banks BK1-4. The access valid information AINF 1-4 is set for each memory BK1-4 or uniformly for all 15 BK1-4 depending on the register setting command supplied from the command input unit 10E. Therefore, the command input unit 1A receives, in addition to the function of the command input unit 10 of the second embodiment, receives information including setting the access valid information AINF1_4 for each bank BK1-4 or uniformly setting all memory banks bki_4. Register setting command (access valid information setting command). Thereby, the access valid information AINF1-4 can be set according to the specification of the memory controller (memory 20 system) of the access memory MEM. Each array control unit 26 responds to the forced access request RFEQ1·4 provided for each memory bank BK1-4, and sets the access valid information A set to the unregistered access register ACSR (access information unit). The sub-cell array SARY of _4 is forcibly activated. 23 1300573 or more, in the sixth embodiment, the same effects as those of the above-described second and second embodiments can be obtained. Further, in the memory MEM having the complex memory bank BK1-4, the sub-unit array SARY of each of the memory banks BK1-4 can be accessed by minimizing the power consumption without lowering the access efficiency. Further, in the above embodiment, an example in which the memory system is formed as a SIP has been described. The invention is not limited to this embodiment. For example, the memory system may be formed as a system LSI (Systenl On Chip) laminated on a germanium substrate, and a memory mem, a flash memory FLASH, and a memory controller may be mounted on the printed substrate. MCNT! _2 and the formation of a memory system is also available. In the above embodiment, an example in which the present invention is applied to an SRAM has been described. The invention is not limited thereto. For example, the present invention is also applicable to DRAM, virtual SRAM, SRAM or flash memory. The virtual SRAM is a memory having a DRAM and having the same input/output interface as the SRAM to automatically perform an internal memory memory update operation. The semiconductor memory to which the present invention is applied may be a clock asynchronous type or a clock synchronous type. The above-described embodiment can also be applied to the semiconductor 20 memory MEM having the sub-cell array SARY of n, 16 or 32, etc., n-th power (n: 3 or more integers). At this time, the number of bits for identifying the array selection address SA of the sub-cell array SARY requires n. Further, the second to fifth embodiments may be applied to a semiconductor memory MEM having a plurality of memory banks. The present invention has been described in detail above, and the above-described embodiments and their modifications are merely examples of the invention, and the invention is not limited thereto. It will be appreciated that modifications can be made without departing from the scope of the invention. The present invention is applicable to a semiconductor memory in which the address space size can be changed. [Brief Description of the Drawings] 5 Fig. 1 is a block diagram showing a semiconductor memory according to a first embodiment of the present invention. Fig. 2 is a block diagram showing the details of the cell array shown in Fig. 1. Fig. 3 is an explanatory diagram showing the allocation of the bit 10 address of the setting contents of the access register shown in Fig. 1. Fig. 4 is a block diagram showing a memory system in which the memory shown in Fig. 1 is mounted. Fig. 5 is a timing chart showing the access operation when the valid information setting logic 1 is accessed in the memory shown in Fig. 1. Fig. 6 is a block diagram showing a semiconductor memory device according to a second embodiment of the present invention. Fig. 7 is a block diagram showing a memory system in which the memory shown in Fig. 6 is mounted. Fig. 8 is a block diagram showing a semiconductor memory device according to a third embodiment of the present invention. Fig. 9 is a block diagram showing a semiconductor memory device according to a fourth embodiment of the present invention. Fig. 10 is a block diagram showing a semiconductor memory device according to a fifth embodiment of the present invention. 25 1300573 Fig. 11 is a block diagram showing a semiconductor memory device according to a sixth embodiment of the present invention. [Main component symbol description]

10…命令輸入部 10B...命令輸入電路 12.. .模式暫存器 12C...模式暫存器 14…時鐘輸入部 16…位址輸入部 18…位址輸入部 20·.·資料輸入輸出部 22···位址計數器 24.. .存取檢測部 26.. .陣列控制部 26B...陣列控制部 28.. .記憶體磁心 30C...保險絲電路 32D...配線連接電路 MEM···半導體記憶體 CMD···命令端子 BUSTR…叢發暫存器 ACSR...存取暫存器 SARY(0-3)···副單元陣列 AD...位址端子 RA...位址端子 CA...位址端子 WL...字線 BL...位元線 /BL...位元線 DB...資料匯流排 DT...資料端子 ARY…記憶體單元陣列 RDEC...列解碼器 SA...感測放大器 CSW…欄開關 CDEC...欄解碼器 RA...讀出放大器 WA…寫入放大器 MC....動態記憶體單元 MCNT1...記憶體控制器 FLASH...快閃記憶體 MCNT2...記憶體控制器 SBUS...系統匯流排 DET...檢測端子 FREQ...強制存取要求端子 CD...導電圖形 VDD...電源線 VSS...配置線 BK1-4. · .¾己憶庫10...Command input unit 10B...Command input circuit 12: Mode register 12C... Mode register 14... Clock input unit 16... Address input unit 18... Address input unit 20·.·Information Input/output unit 22···Address counter 24: Access detection unit 26. Array control unit 26B... Array control unit 28. Memory core 30C...Fuse circuit 32D...Wiring Connection circuit MEM···Semiconductor memory CMD···Command terminal BUSTR...Cluster register ACSR...Access register SARY(0-3)···Sub-cell array AD...Address terminal RA...address terminal CA...address terminal WL...word line BL...bit line/BL...bit line DB...data bus DT...data terminal ARY... Memory cell array RDEC...column decoder SA...sense amplifier CSW...column switch CDEC...column decoder RA...sense amplifier WA...write amplifier MC....dynamic memory unit MCNT1...memory controller FLASH...flash memory MCNT2...memory controller SBUS...system bus bar DET...detection terminal FREQ...forced access request terminal CD... Conductive pattern VDD... Power line VSS... Configuration line BK1-4. · .3⁄4 Storehouse

2626

Claims (1)

l3〇〇573 十、申請專利範圍: L -種半導體記憶體,包含有: 之位=單元陣列,係具有記憶體單元,並分配有不同 存取資訊部,係用以設定顯示 陣列數之存取有效資訊者;_活化切述單元 要求陣部,係回應來自半導體記憶體外部之存取 訊之…1蚊於前述存取資訊部之前述存取有效資 10 15 之強:化,同時,回應來自半導體記憶體外部 述存求,將未對應設定於前述存取資訊部之前 有效貝矾之單元陣列強制活化者。 2·如申請專利範圍第i項之半導體記憶體,更包含有: 存取檢測部’係於連續執行對複數前述單元陣列之 子取時’預先檢測於對應前述存取有效資訊之單元陣列 之存取之後’執行未龍前述麵有效資默單元陣 之存取者, 且前述陣顺制部_前述存取檢測部之檢測,以 強制將未對應前述存取有效資訊之單元陣列之存取活 化,而執行存取動作。 3·如申請專利範圍第2項之半導體記憶體,更包含有: 位址計數n ’係於用以連續存取前述記憶體單元之 叢發拉式進彳T時運作,依序生成接續於從半導體記憶體 外部提供之外部存取位址之後之㈣存取位址者, 且前述存取檢測部於叢發模式進行時,依前述外部 27 1300573 存取及内部存取位址,執行檢测動作。 4. 如申請專利範圍第2項之半導體記憶體,更包含有. 檢測端子’係將顯示回應前述存取檢:部3之檢測, 以將執行未對應前述存取有效資訊之單元陣列之存取 動作的檢測信號輸出至半導體記憶體外部者。 5. 如申請專利範圍第!項之料體記憶體,更包含有: 命令輸入部,係接收存取前述記憶體單元之存取命 令,並接收前述強制存取要求作為命令者, —且前述陣列控制部回應以前述命令輪入部接收之 前述強制存取要求,將未對應前述存取有效資訊之單元 陣列強制活化。 6. =申請專利範圍第丨項之半導體記憶體,更包含有接收 前述強制存取要求之強制存取要求端子, 且前述陣列控制部回應以前述強制存取要求端子 接收之前述強制存取要求,而將未對應前述存取有效資 訊之單元陣列強制活化。 、 7·如申請專利範圍第1項之半導體記憶體,更包含有: 命令輸入部,係接收存取前述記憶體單元之存取命 令,並接收前述存取有效資訊作為暫存器設定命令者, 且前述存取資訊部依前述暫存器設定命令設定。 8.如申請專利範圍第7項之半導體記憶體,其中前述存取 貧訊部依對應前述暫存器設定命令而藉由外部端子提 供之位址及資料之至少一者設定。 9·如申請專利範圍第1項之半導體記憶體,其中前述存取 28 1300573 資《TUP係執行&述存取有效資訊之保險絲電路。 1〇t申請專利範圍第1項之半導體記憶體,其中前述存取 貝Λ 口!^系以對應在半導體製程使用之光罩之圖形形 而开乂成於半導體記憶體之基板上的導電圖形構成之門 5 關, ~開 且前述開關依前述導電圖形之連接端之電 憶用以顯示同時活化之前述單元陣列數的存取= 訊。 ,為 u.如申請專利範圍第1項之半導體記憶體,更包含有: 10 複數°己^庫,係分別具有複數前述單元陣列,卫 互獨立運作者, 相 w述存取貪訊部保持相對於前述各記憶庫 單元陣列的前述存取有效資訊,且前述陣列控制部對^ 前述各記憶體庫而設置’並回應提供給前述各記憶庫: 15 則述強制存取要求,而將未對應設定於前述存取資訊部 之前述存取有效資訊之單元陣列強制活化。、… 12.如申請專利範圍第U項之半導體記憶體,更包含有: 叩·?輸入部,係接收存取前述記憶體單元之存取命 令’並接收前述存取有效資訊作為暫存器設定命令者, 2〇 且剛述暫存器設定命令包含顯示對前述各記憶庫 設定前述存取有效資訊或對所有前述記憶庫統一設定 前述存取有效資訊之資訊。 13· —種圮憶體系統,係具有半導體記憶體及用以存取該半 導體記憶體之控制器者,該半導體記憶體包含有: 29 1300573 複數單元陣列,係具有言 之位址者; 己隱體單元,並分配有不同L3〇〇573 X. Patent application scope: L-type semiconductor memory, including: bit = cell array, with memory unit, and assigned different access information parts, used to set the number of display arrays Take the effective information; _ activation description unit requires the array, in response to the access from the outside of the semiconductor memory ... 1 mosquito in the aforementioned access information department of the above-mentioned access effective 10 15 strong: In response to the external memory request from the semiconductor memory, the cell array that is not validly set before the access information unit is forced to activate. 2. The semiconductor memory of claim i, further comprising: the access detecting unit is configured to perform a pre-detection of the cell array corresponding to the access effective information when the plurality of sub-cell arrays are continuously executed. After the fetching, the accessor of the above-mentioned access control unit is activated to activate the access of the cell array that does not correspond to the access valid information. And perform an access action. 3. The semiconductor memory of claim 2, further comprising: the address count n ' is used to continuously access the memory unit of the memory unit, and sequentially generates a connection (4) accessing the address from the external access address provided outside the semiconductor memory, and when the access detecting unit is in the burst mode, performing the check according to the external 27 1300573 access and the internal access address Measuring action. 4. If the semiconductor memory of the second application of the patent scope is included, the detection terminal 'will display the detection in response to the aforementioned access check: section 3, so as to execute the cell array that does not correspond to the access effective information. The detection signal of the action is output to the outside of the semiconductor memory. 5. The material memory of the application scope of the patent item includes: a command input unit that receives an access command for accessing the memory unit and receives the mandatory access request as a commander, and the foregoing The array control unit forcibly activates the cell array that does not correspond to the access valid information in response to the mandatory access request received by the command rounding unit. 6. The semiconductor memory of claim 3, further comprising a mandatory access request terminal for receiving the mandatory access request, and wherein the array control unit responds to the mandatory access request received by the mandatory access request terminal. And the cell array that does not correspond to the aforementioned access valid information is forcibly activated. 7. The semiconductor memory of claim 1, further comprising: a command input unit that receives an access command for accessing the memory unit and receives the access valid information as a register setting commander. And the access information unit is set according to the temporary register setting command. 8. The semiconductor memory of claim 7, wherein the access poor portion is set by at least one of an address and a data provided by an external terminal in response to the register setting command. 9. The semiconductor memory of claim 1 of the patent scope, wherein the aforementioned access to the "TUP" is a fuse circuit for performing and accessing effective information. The semiconductor memory of claim 1 of the patent application, wherein the access port is a conductive pattern formed on a substrate of a semiconductor memory corresponding to a pattern of a photomask used in a semiconductor process. The gate 5 is closed, and the switch is connected to the electrical memory of the connection end of the conductive pattern to display the number of accesses of the array of cells simultaneously activated. For example, the semiconductor memory of claim 1 of the patent scope includes: 10 plural number of cells, each having a plurality of the foregoing arrays of cells, and the independent interoperators, Relative to the foregoing access valid information of each of the memory cell arrays, and the array control unit sets 'and the respective memory banks' and provides responses to the foregoing memory banks: 15 the mandatory access request is The cell array corresponding to the access effective information set in the access information unit is forcibly activated. , ... 12. The semiconductor memory of the U of the patent application scope, including: 叩·? The input unit receives the access command to access the memory unit and receives the access valid information as a register setting command, and the buffer setting command includes displaying the foregoing for each memory bank. Access valid information or uniformly set the aforementioned information for accessing valid information for all of the aforementioned memory banks. 13·—a memory system having a semiconductor memory and a controller for accessing the semiconductor memory, the semiconductor memory comprising: 29 1300573 a complex cell array, having the address of the address; Hidden unit, and assigned differently 存取資訊部,係用以設定顯 陣列數之存取有效資訊者; 示同時活化之前述單元The access information department is used to set the access valid information of the number of display arrays; 存取_部,聽補執彳增舰前料元陣列之 之=時’贱檢翁制前財料效資蚊單元陣列 子取之後執仃未對應前述存取有效資訊之單元陣列 10 15Access _ part, listen to the 彳 彳 彳 舰 料 = = = = = = 贱 贱 贱 贱 翁 翁 翁 翁 翁 翁 翁 翁 翁 翁 翁 翁 翁 翁 翁 子 子 子 10 10 10 10 10 10 10 15 15 2〇 、陣列控制部’係回應來自半導體記憶體外部之存取 要求’而將對應狀於前述存取:魏部之前述存取有效 f訊之單元陣列活化,同時,回應來自半導體記憶體外 ^之強制存取要求,將未職設定於前述存取資訊 前述存取有效資訊之單元__活化者;及、… 子係將顯示回應前述存取檢测部之檢測, 而執行未對應前述存取有效#訊之單元卩㈣之存取動 作的檢測㈣輸丨至半導體記憶體外部者 又,前述控制器包含有: 控制部,係回應前述檢測信號,判斷執行或停止未 對應則述半導體記憶體之前述存取有效資訊之單元陣 列的存取動作者。2, the array control unit 'responds to the access request from the outside of the semiconductor memory' and activates the cell array corresponding to the access: the aforementioned access effective information of the Wei part, and at the same time, the response comes from the semiconductor memory ^ The mandatory access request is to set the unemployed unit to the above-mentioned access information to access the valid information unit __activator; and, ... the sub-system will display the response to the detection of the access detection unit, and the execution does not correspond to the foregoing The detection of the access operation of the effective unit (4) (4) is performed to the outside of the semiconductor memory. The controller includes: a control unit that responds to the detection signal and determines whether to execute or stop the semiconductor memory that is not corresponding. The access actor of the cell array that accesses the effective information. 3030
TW95111205A 2006-03-30 2006-03-30 Semiconductor memory and memory system TWI300573B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95111205A TWI300573B (en) 2006-03-30 2006-03-30 Semiconductor memory and memory system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95111205A TWI300573B (en) 2006-03-30 2006-03-30 Semiconductor memory and memory system

Publications (2)

Publication Number Publication Date
TW200737226A TW200737226A (en) 2007-10-01
TWI300573B true TWI300573B (en) 2008-09-01

Family

ID=45070001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95111205A TWI300573B (en) 2006-03-30 2006-03-30 Semiconductor memory and memory system

Country Status (1)

Country Link
TW (1) TWI300573B (en)

Also Published As

Publication number Publication date
TW200737226A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
KR100391730B1 (en) Semiconductor memory device in which use of cache can be selected, a method of acessing a semiconductor memory deivce, and a data processing system
US8730759B2 (en) Devices and system providing reduced quantity of interconnections
US7778099B2 (en) Semiconductor memory, memory system, and memory access control method
JP4524194B2 (en) Simultaneous refresh mode with distributed row address counter in embedded DRAM
US6981100B2 (en) Synchronous DRAM with selectable internal prefetch size
JP2743268B2 (en) DRAM with self-test function
US7251171B2 (en) Semiconductor memory and system apparatus
KR20210074172A (en) Inline buffer for in-memory post package repair (ppr)
TWI271736B (en) Refresh mechanism in dynamic memories
JPH08315567A (en) Semiconductor memory
JPH06333391A (en) Synchronous semiconductor memory
JP2001283587A (en) Dynamic random access memory device of enhanced-bus turnaround integrated circuit
JP2003059264A (en) Semiconductor memory device
TWI378449B (en) Semiconductor memory and operating method of same
US6438667B1 (en) Semiconductor memory and memory system
KR100757925B1 (en) Apparatus for data output of semiconductor memory and control method of the same
JP2004342244A (en) Semiconductor memory system and electronic device
JP2003068071A (en) Semiconductor memory
JP2003187600A (en) Semiconductor integrated circuit device
JP4187084B2 (en) Semiconductor memory
KR100953607B1 (en) Semiconductor memory and memory system
US6339560B1 (en) Semiconductor memory based on address transitions
JP2011090754A (en) Semiconductor device
TWI300573B (en) Semiconductor memory and memory system
WO1997035316A1 (en) Data processor with built-in dram

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees