TWI300017B - Nano-scaled mould having micro-holes - Google Patents

Nano-scaled mould having micro-holes Download PDF

Info

Publication number
TWI300017B
TWI300017B TW95135261A TW95135261A TWI300017B TW I300017 B TWI300017 B TW I300017B TW 95135261 A TW95135261 A TW 95135261A TW 95135261 A TW95135261 A TW 95135261A TW I300017 B TWI300017 B TW I300017B
Authority
TW
Taiwan
Prior art keywords
nano
substrate
scale
hole
micro
Prior art date
Application number
TW95135261A
Other languages
Chinese (zh)
Other versions
TW200815121A (en
Inventor
Ding Wang
Peng-Cheng Song
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95135261A priority Critical patent/TWI300017B/en
Publication of TW200815121A publication Critical patent/TW200815121A/en
Application granted granted Critical
Publication of TWI300017B publication Critical patent/TWI300017B/en

Links

Landscapes

  • Micromachines (AREA)

Description

1300017 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種微孔模具,尤其涉及一種奈米級微孔 模具。 【先前技術】 隨著量子物理與量子化學的完善以及世界奈米技術的 研究與進步,構造物質的基本模組可達到單個原子的水 平,原子可以按照一定的路徑組裝成奈米級的材料,這種 類型的製造稱爲奈米製造。目前模具製造向大型與超精微 加工兩方面發展:在大型加工方面,例如製造汽車、飛機 用大型整體壁板的扁擠壓模具,已經形成比較成熟的製造 工藝;而在超精微加工方面,奈米産品需求成幾何級上升, 如何應用先進的奈米製造技術於模具製造,使得超精微加 工形成産業化並與全球模具先進技術同步係模具行業的發 展趨勢。 x 理論上,奈米技術可廣泛應用於加工方面。目前已經 提出基於奈求組裝的奈米加工方式,以實現奈米産品自動 化、產業化。這種加工方式設想按照産品的形狀進行分子 排列’從而實現無核生產方式。然而,該方法實際上並不 可行,因爲目前對分子的湖採㈣主要係掃描隧道顯微 鏡(Scanning Tunnelling Micr〇SCOPy,STM)或原子力顯微 鏡(Atomic F〇rce Mi_〇3Py,AFM),其操作精細,成本 太高,難以實現大規模製造奈米産品。 有繁於此,提供-種適用於大規模製造奈米產品的奈 1300017 米級微孔模具實為必要。 【發明内容】 以下,將以若干實施例說明一種適用於大規模製 造奈米産品的奈米級微孔模具。 一種奈米級微孔模具,其包括一基體及分佈於基 體中的多個奈米級通孔,該基體包括相對的第一表面 及第二表面,該通孔從基體的第一表面向第二表面延 伸並貫穿整個基體,該多個通孔彼此平行且垂直於基 底的兩個表面。 該基體爲一薄膜。 該通孔的半徑爲10〜100奈米。 該多個通孔之間的間距爲20〜200奈米。 該奈米級微孔模具的厚度爲0.1〜1毫米。 該基體材料爲聚四氟乙烯、矽橡膠、聚酯、聚氯 乙烯、聚乙烯醇、聚乙烯、聚丙烯、環氧樹脂、聚碳 酸酯、聚曱醛或聚縮醛。 相較於先前技術,所述的奈米級微孔模具具有以 下優點:其一,通孔的尺寸較小,長徑比很大,且奈 米級微孔模具的厚度最大可以到毫米量級,擴大了應 用範圍;其二,由於該通孔具有高定向性,提高了模 具的有序性和可控制性。 【實施方式】 下面將結合附圖對本發明作進一步的詳細說明。 請參閱圖1,本發明實施例製造的奈米級微孔模具 7 1300017 10,包括一基體18,該基體18爲一薄膜,其進一步 包括一第一表面182及與第一表面182相對的第二表 , 面184。該基體18内分佈有複數相互平行排布的奈米 . 級的通孔186。該複數通孔186基本垂直於基體18的 第一表面182及第二表面184,且沿第一表面182向 第二表面184延伸貫穿整個基體18。本實施例中,該 通孔186的孔洞半徑爲10〜100奈米,通孔186之間 的間距爲20〜200奈米,該奈米級微孔模具10的厚度 爲0. 1〜1毫米。 請參閱圖2,本發明實施例奈米級微孔模具10的 製造方法主要包括以下幾個步驟: (一)提供複數奈米碳管14。 本實施例中複數奈米碳管14可選擇爲多壁或單壁 奈米碳管陣列,其可採用化學氣相沈積法、電漿輔助 化學氣相沈積法或電漿輔助熱絲化學氣相沈積法制 得,因而,複數奈米碳管14通常形成於襯底12上, 且該襯底12可輕易揭掉,而不影響奈米碳管的陣列 性。 本實施例奈米碳管陣列生長方法包括:首先在一 矽襯底12表面塗覆一約5奈米厚度的金屬鐵催化劑 層;在300°C溫度下在空氣中進行熱處理;然後在 70(TC溫度下,在矽襯底12上化學氣相沈積生長奈米 碳管陣列,該陣列中奈米碳管14的直徑範圍爲1〜100 奈米。 8 1300017 (二) 在所述奈米碳管14至少一末端形成一保護 層16 〇 首先在一承載基底162上均勻塗抹一層壓敏膠 164 ;然後將壓敏膠164壓在遠離矽襯底12的複數奈 米碳管14末端,即形成一端覆蓋有保護層16(包括承 載基底162與壓敏膠164)的奈米碳管14,此時,矽 襯底12本身可作爲奈米碳管14的另一保護層。另, 本實施例中也可在奈米碳管14兩端均形成保護層 16,具體地,可進一步將矽襯底12揭掉之後,再重 復上述步驟,使矽襯底12揭掉後露出的奈米碳管14 的末端也覆蓋保護層16,該保護層16同樣包括壓敏 膠164與承載基底162,從而形成兩末端分別覆蓋保 護層16的奈米碳管14。本實施例中,上述承載基底 162可採用聚酯片,壓敏膠164可採用由撫順輕工業 所生産的YM881型壓敏膠。另,本實施例中保護層16 厚度優選爲0. 05毫米。 (三) 在所述形成有保護層16的複數奈米碳管14 間注入基體18溶液或熔融液,並使其固化。 將經過步驟(二)處理的奈米碳管14浸入基體18 溶液或熔融液中,或將基體溶液或基體熔融液注入兩 端形成有保護層16的奈米碳管14中,然後將其在真 空下固化或凝固24小時,獲得注有基體18的奈米碳 管14。其中,基體18選擇爲能耐強酸腐蝕的高分子 化合物,具體可選自聚四氟乙烯、矽橡膠、聚酯、聚 1300017 氯乙烯、聚乙烯醇、聚乙烯、聚丙烯、環氧樹脂、聚 碳酸酯、聚曱醛、聚縮醛等高分子材料。本實施例中 優選爲聚四氟乙烯。 另,本實施例步驟(三)可進一步包括一預先抽 真空的步驟,可通過預先將該形成有保護層16的複 數奈米碳管14做抽真空處理約30分鐘,以排出複數 奈米碳管14間的空氣,有利於基體18溶液或熔融液 注入。 (四) 除去保護層16。 保護層16中的承載基底162可直接揭去,壓敏膠 164可以溶解去除,如採用二曱苯、乙酸乙脂或石油 醚溶解。另,本實施例中以生長奈米碳管14的矽襯 底12作爲的保護層可直接揭去。此時,露出基體18 的第一表面182與與其相對的第二表面184,而且原 來被保護層16所覆蓋的奈米碳管14的兩末端也露 出,並分別伸出基體18的兩表面182、184。因而, 除去保護層16後所形成的係兩末端露出基體18表面 的奈米碳管14與基體18的複合結構。 (五) 腐蝕去掉上述複合結構中的奈米碳管14。 本實施例採用強酸性或強氧化性的溶劑腐蝕去除 上述複合結構中的奈米碳管14。優選地,本實施例採 用質量百分比濃度比爲3:1的濃硫酸與濃硝酸的混合 溶液,在環境溫度60攝氏度時回流於上述奈米碳管 14與基體18的複合結構約30分鐘至2小時,利用強 1300017 酸溶劑的腐蝕作用去除複合結構中的奈米碳管14。腐 婦奈米碳管以後,具有而寸強酸腐餘的基體18留下 • 來形成一奈米級微孔模具10 ’該微孔模具1Q中微孔 • 的直徑範圍爲1〜100奈米。 本技術領域技術人員應明白’本實施例奈米級微 ·_ 孔模具10的製造方法可通過控制奈米碳管催化劑的 • 排列,得到不同排列規則的通孔,達到精確控制通孔 位置的目的’提兩了奈米級微孔模具1 〇的有序性和 ’ 可控制性。 請參閱圖3,爲本實施例製造的奈米級微孔模具 10的應用示意圖。本實施例的奈米級微孔模具1〇可 用於製造其他材料的奈米級陣列。 首先,在上述奈米級微孔模具10中填充一待形成 奈米級陣列的材料,本實施例以金爲例。 其次,去除上述奈米級微孔模具10,即形成該材 I 料的奈米級的陣列20。 本實施例中,該奈米級微孔模具1〇爲高分子材 料,可通過化學腐蝕、高溫烺燒等方法去除該奈米級 微孔模具10,形成奈米級的金陣列20。 另’本實施例奈米級微孔模具1〇還可應用於壓印 技術’在材料表面形成奈米級的表面凸起結構。 相較於先前技術,本實施例奈米級微孔模具10具 有以下優點·其一,通孔18 6的尺寸較小,如果使用 單壁奈米碳管,可以控制通孔186的半徑在20奈求 11 1300017 以下;其二,通孔186的長徑比很大,且奈米級微孔 模具10的厚度可㈣輯奈米碳管_的厚度至少 f幾十微米以上,最多可㈣毫米量級,擴大了應用 _ n—M 了奈米碳管陣絲作爲母板, t碳管的高定向性得到了保留,並且通過控制奈米 2官催化義刺’可以得到不同排列㈣的孔洞, 和可控祕。置的目的,“了模具的有序性 綜上所述,本發明確已符合發明專利之要件 =提出專财請。惟,以上所述者僅為本發 ==能以此限制核之申請專利範圍二 /…本案技藝之人士援依本發明之精神所作“ 【圖式簡單则 於以下㈣專利範圍内。 圖。圖1係本發明實施例奈米級微孔模具的結構示意 圖2 的流程示:t發明實施例奈米級微孔模具的製造 方法1300017 IX. Description of the Invention: [Technical Field] The present invention relates to a microporous mold, and more particularly to a nano-scale micro-hole mold. [Prior Art] With the improvement of quantum physics and quantum chemistry and the research and advancement of nanotechnology in the world, the basic modules of structural materials can reach the level of individual atoms, and atoms can be assembled into nanoscale materials according to certain paths. This type of manufacturing is called nanofabrication. At present, mold manufacturing is developing in both large and ultra-fine processing: in large-scale processing, for example, flat extrusion dies for manufacturing large-sized integral siding for automobiles and aircraft, a relatively mature manufacturing process has been formed; and in terms of ultra-fine processing, The demand for rice products has risen geometrically. How to apply advanced nano-manufacturing technology to mold manufacturing, making ultra-fine processing industrialized and synchronizing with the global advanced technology of molds is the development trend of the mold industry. x In theory, nanotechnology can be widely used in processing. At present, a nano-processing method based on the assembly is proposed to realize the automation and industrialization of nano products. This type of processing envisages molecular arrangement according to the shape of the product to achieve a nuclear-free production method. However, this method is not practical in practice, because the current molecular mining of the lake (four) is mainly scanning tunneling microscope (Scanning Tunnelling Micr〇SCOPy, STM) or atomic force microscope (Atomic F〇rce Mi_〇3Py, AFM), its operation Fine, costly, it is difficult to achieve large-scale production of nano products. In view of this, it is necessary to provide a 1300017-meter microporous mold suitable for large-scale production of nano products. SUMMARY OF THE INVENTION Hereinafter, a nano-scale micropore mold suitable for mass production of nano products will be described in several embodiments. A nano-scale micro-hole mold comprising a substrate and a plurality of nano-level vias distributed in the substrate, the substrate comprising opposing first and second surfaces, the through-holes from the first surface of the substrate The two surfaces extend through the entire substrate, the plurality of through holes being parallel to each other and perpendicular to both surfaces of the substrate. The substrate is a film. The through hole has a radius of 10 to 100 nm. The spacing between the plurality of through holes is 20 to 200 nm. The nano-scale microporous mold has a thickness of 0.1 to 1 mm. The base material is polytetrafluoroethylene, ruthenium rubber, polyester, polyvinyl chloride, polyvinyl alcohol, polyethylene, polypropylene, epoxy resin, polycarbonate, polyacetal or polyacetal. Compared with the prior art, the nano-scale micro-hole mold has the following advantages: first, the size of the through-hole is small, the aspect ratio is large, and the thickness of the nano-scale micro-hole mold can be up to the order of millimeters. The application range is expanded; secondly, due to the high orientation of the through hole, the order and controllability of the mold are improved. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1, a nano-scale micro-hole mold 7 1300017 10 manufactured in accordance with an embodiment of the present invention includes a substrate 18, which is a film, further comprising a first surface 182 and a first surface 182 opposite to the first surface 182. Two tables, face 184. The base 18 is provided with a plurality of through-holes 186 arranged in parallel with each other. The plurality of through holes 186 are substantially perpendicular to the first surface 182 and the second surface 184 of the base 18 and extend along the first surface 182 toward the second surface 184 throughout the base 18. 1〜1毫米。 The thickness of the nano-hole micro-mold 10 is 0. 1~1 mm, the thickness of the nano-hole micro-mold 10 is 0. 1~1 mm . Referring to FIG. 2, the manufacturing method of the nano-scale micro-hole mold 10 of the embodiment of the present invention mainly comprises the following steps: (1) providing a plurality of carbon nanotubes 14. In this embodiment, the plurality of carbon nanotubes 14 may be selected as a multi-wall or single-walled carbon nanotube array, which may be a chemical vapor deposition method, a plasma-assisted chemical vapor deposition method or a plasma-assisted hot filament chemical vapor phase. The deposition method is performed, and thus, the plurality of carbon nanotubes 14 are usually formed on the substrate 12, and the substrate 12 can be easily removed without affecting the array of the carbon nanotubes. The carbon nanotube array growth method of the present embodiment comprises: first coating a surface of a ruthenium substrate 12 with a metal iron catalyst layer of about 5 nm thickness; heat treatment at 300 ° C in air; then at 70 ( At a temperature of TC, a carbon nanotube array is grown by chemical vapor deposition on the tantalum substrate 12. The diameter of the carbon nanotube 14 in the array ranges from 1 to 100 nm. 8 1300017 (b) in the nanocarbon A protective layer 16 is formed on at least one end of the tube 14. First, a layer of pressure sensitive adhesive 164 is uniformly applied to a carrier substrate 162; then the pressure sensitive adhesive 164 is pressed against the end of the plurality of carbon nanotubes 14 away from the substrate 12 to form The carbon nanotube 14 is covered at one end with a protective layer 16 (including the carrier substrate 162 and the pressure sensitive adhesive 164). At this time, the ruthenium substrate 12 itself can serve as another protective layer of the carbon nanotube 14. Further, this embodiment A protective layer 16 may be formed on both ends of the carbon nanotube 14 . Specifically, after the ruthenium substrate 12 is further removed, the above steps may be repeated to expose the ruthenium substrate 12 to the exposed carbon nanotubes. The end of 14 is also covered with a protective layer 16, which also includes pressure sensitive adhesive 164 and bearing The substrate 162 is formed to form the carbon nanotubes 14 respectively covering the protective layer 16 at both ends. In the embodiment, the carrier substrate 162 may be a polyester sheet, and the pressure sensitive adhesive 164 may be a pressure sensitive type YM881 produced by Fushun Light Industry. In the present embodiment, the thickness of the protective layer 16 is preferably 0.05 mm. (3) Injecting and solidifying the substrate 18 solution or melt between the plurality of carbon nanotubes 14 formed with the protective layer 16 The carbon nanotube 14 treated in the step (2) is immersed in the substrate 18 solution or the melt, or the matrix solution or the matrix melt is injected into the carbon nanotube 14 having the protective layer 16 formed at both ends, and then After curing or solidifying under vacuum for 24 hours, a carbon nanotube 14 impregnated with a substrate 18 is obtained, wherein the substrate 18 is selected to be a polymer compound resistant to strong acid corrosion, and specifically selected from the group consisting of polytetrafluoroethylene, ruthenium rubber, polyester, Poly 1300017 A polymer material such as vinyl chloride, polyvinyl alcohol, polyethylene, polypropylene, epoxy resin, polycarbonate, polyacetal or polyacetal. In the present embodiment, polytetrafluoroethylene is preferred. Example step (3) Further comprising a pre-vacuum step, the vacuum of the plurality of carbon nanotubes 14 formed with the protective layer 16 is pre-treated for about 30 minutes to discharge the air between the plurality of carbon nanotubes 14 to facilitate the substrate 18 The solution or the melt is injected. (4) The protective layer 16 is removed. The carrier substrate 162 in the protective layer 16 can be directly removed, and the pressure sensitive adhesive 164 can be dissolved and removed, such as with diphenylbenzene, ethyl acetate or petroleum ether. In this embodiment, the protective layer of the germanium substrate 12 as the growth carbon nanotube 14 can be directly removed. At this time, the first surface 182 of the substrate 18 is exposed and the second surface 184 opposite thereto is protected. Both ends of the carbon nanotube 14 covered by the layer 16 are also exposed and project from the two surfaces 182, 184 of the substrate 18, respectively. Therefore, the composite structure of the carbon nanotube 14 and the substrate 18 on the surface of the substrate 18 exposed at both ends of the protective layer 16 is removed. (5) Corrosion removes the carbon nanotubes 14 in the above composite structure. In this embodiment, the carbon nanotubes 14 in the above composite structure are removed by solvent etching with strong acidity or strong oxidizing property. Preferably, in this embodiment, a mixed solution of concentrated sulfuric acid and concentrated nitric acid having a mass percentage ratio of 3:1 is used, and the composite structure of the above carbon nanotube 14 and the substrate 18 is refluxed at an ambient temperature of 60 ° C for about 30 minutes to 2 In hours, the carbon nanotubes 14 in the composite structure were removed by the corrosive action of a strong 1300017 acid solvent. After the vulcanization of the carbon nanotubes, the substrate 18 having a strong acid residue is left to form a nanometer-scale microporous mold 10'. The micropores in the microporous mold 1Q have a diameter ranging from 1 to 100 nm. Those skilled in the art should understand that the manufacturing method of the nano-scale micro-hole mold 10 of the present embodiment can obtain the through-holes of different arrangement rules by controlling the arrangement of the carbon nanotube catalysts to achieve precise control of the position of the through-holes. The purpose 'to mention the order and 'controllability of the nano-scale micro-hole mold 1 〇. Please refer to FIG. 3, which is a schematic diagram of the application of the nano-scale micro-hole mold 10 manufactured in the present embodiment. The nano-scale micro-hole mold 1 of this embodiment can be used to fabricate nanoscale arrays of other materials. First, the above-mentioned nano-scale micropore mold 10 is filled with a material to be formed into a nano-scale array. This embodiment is exemplified by gold. Next, the above-described nano-scale micro-hole mold 10 is removed, i.e., a nano-sized array 20 of the material is formed. In this embodiment, the nano-scale micro-hole mold 1 is a polymer material, and the nano-scale micro-hole mold 10 can be removed by chemical etching, high-temperature simmering, or the like to form a nano-scale gold array 20. In the present embodiment, the nano-scale micro-hole mold 1 can also be applied to an imprint technique to form a nano-scale surface convex structure on the surface of the material. Compared with the prior art, the nano-scale micro-hole mold 10 of the present embodiment has the following advantages. First, the size of the through-hole 18 6 is small. If a single-walled carbon nanotube is used, the radius of the through-hole 186 can be controlled to be 20 It is required to be 11 1300017 or less; secondly, the aspect ratio of the through hole 186 is large, and the thickness of the nanometer microporous mold 10 can be (4) the thickness of the carbon nanotubes is at least f several tens of micrometers or more, and at most (four) millimeters. The order of magnitude has expanded the application of _ n-M nanocarbon tube filaments as the mother board, the high directionality of the t carbon tube has been preserved, and the holes of different arrangement (4) can be obtained by controlling the nano 2 catalytic spurs. , and controllable secrets. The purpose of the set, "the order of the mold, in summary, the invention has indeed met the requirements of the invention patent = the proposed special wealth. However, the above mentioned is only the hair == can limit the application of this Patent Scope 2/... The person skilled in the art is assisted in accordance with the spirit of the present invention. [The simple drawing is within the scope of the following (4) patents. Figure. 1 is a schematic view showing the structure of a nano-scale micro-hole mold according to an embodiment of the present invention. FIG. 2 is a flow chart showing the manufacturing method of the nano-scale micro-hole mold of the invention example.

示意 【主要元件符號說明】 奈米級微孔模具 1〇 奈米碳管 14 承載基底 1β2 襯底 保護層 壓敏膠 1216164 1300017 基體 18 第一表面 182 第二表面 184 通孔 186 陣列 20 13Explanation [Main component symbol description] Nano-scale micro-hole mold 1〇 Nano carbon tube 14 Carrier substrate 1β2 Substrate Protective layer Pressure sensitive adhesive 1216164 1300017 Substrate 18 First surface 182 Second surface 184 Through hole 186 Array 20 13

Claims (1)

1300017 十、申請專利範圍 1. 一種奈米級微孔模具,其改進在於,包括一基體 - 及分佈於基體中的多個奈米級通孔,該基體包括相 . 對的第一表面及第二表面,該通孔從基體的第一表 面向第二表面延伸並貫穿整個基體,該多個通孔彼 此平行且垂直於基底的兩個表面。 2. 如申請專利範圍第1項所述的奈米級微孔模具, 其中,該基體爲一薄膜。 > 3.如申請專利範圍第1項所述的奈米級微孔模具, 其中,該通孔的半徑爲10〜100奈米。 4. 如申請專利範圍第1項所述的奈米級微孔模具, 其中,該多個通孔之間的間距爲20〜200奈米。 5. 如申請專利範圍第1項所述的奈米級微孔模具, 其中,該奈米級微孔模具的厚度爲0. 1〜1毫米。 6. 如申請專利範圍第1項所述的奈米級微孔模具, > 其中,該基體材料爲聚四氟乙烯、矽橡膠、聚酯、 聚氯乙烯、聚乙烯醇、聚乙烯、聚丙烯、環氧樹脂、 聚碳酸酯、聚曱醛或聚縮醛。 141300017 X. Patent Application 1. A nano-scale micro-hole mold, the improvement comprising: a substrate - and a plurality of nano-level through holes distributed in the substrate, the substrate comprising a first surface and a first surface And a second surface extending from the first surface of the substrate toward the second surface and extending through the entire substrate, the plurality of through holes being parallel to each other and perpendicular to both surfaces of the substrate. 2. The nano-scale microporous mold according to claim 1, wherein the substrate is a film. < 3. The nano-scale micro-hole mold according to claim 1, wherein the through-hole has a radius of 10 to 100 nm. 4. The nano-scale micro-hole mold according to claim 1, wherein a spacing between the plurality of through holes is 20 to 200 nm. 5〜1毫米。 The thickness of the nano-scale micro-hole mold is 0. 1~1 mm. 6. The nano-scale micro-hole mold according to claim 1, wherein the base material is polytetrafluoroethylene, ruthenium rubber, polyester, polyvinyl chloride, polyvinyl alcohol, polyethylene, poly Propylene, epoxy resin, polycarbonate, polyacetal or polyacetal. 14
TW95135261A 2006-09-22 2006-09-22 Nano-scaled mould having micro-holes TWI300017B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95135261A TWI300017B (en) 2006-09-22 2006-09-22 Nano-scaled mould having micro-holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95135261A TWI300017B (en) 2006-09-22 2006-09-22 Nano-scaled mould having micro-holes

Publications (2)

Publication Number Publication Date
TW200815121A TW200815121A (en) 2008-04-01
TWI300017B true TWI300017B (en) 2008-08-21

Family

ID=44768728

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95135261A TWI300017B (en) 2006-09-22 2006-09-22 Nano-scaled mould having micro-holes

Country Status (1)

Country Link
TW (1) TWI300017B (en)

Also Published As

Publication number Publication date
TW200815121A (en) 2008-04-01

Similar Documents

Publication Publication Date Title
Guo et al. Stacking of 2D materials
JP5032454B2 (en) Method for producing carbon nanotube composite material
JP6006296B2 (en) Nano or microstructures composed of hierarchical carbon
Tawfick et al. Engineering of micro‐and nanostructured surfaces with anisotropic geometries and properties
Chen et al. Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications
Dai et al. Aligned nanotubes
JP5254819B2 (en) Carbon nanotube composite material and manufacturing method thereof
Singh et al. Significance of nano-materials, designs consideration and fabrication techniques on performances of strain sensors-A review
Xiao et al. Ultrafast formation of free-standing 2D carbon nanotube thin films through capillary force driving compression on an air/water interface
US20100255303A1 (en) Multifunctional composites based on coated nanostructures
Chen et al. Controllable fabrication of large-area wrinkled graphene on a solution surface
KR20110055586A (en) High aspect ratio template for lithography, method of making the same template and use of the template for perforating a substrate at nanoscale
Sitti High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly
Gao et al. Recent progress in the transfer of graphene films and nanostructures
KR100977541B1 (en) Porous Carbon Nanotube Film and the Fabrication Method Thereof
KR101434463B1 (en) The fabrication method of thin film pattern using soft lithography and the thin film pattern thereby
TWI300017B (en) Nano-scaled mould having micro-holes
Kim et al. Fabrication of a nanoscale 2D PEDOT pattern via the combination of colloidal lithography and vapor phase polymerization for application in transparent, highly sensitive bending sensors
KR101356010B1 (en) Method for manufacturing nanostructure using 2-dimensional transfer layer, nanostructure manufactured by the same and application device comprising the same
TWI317346B (en) Method for making nano-scaled mould having micro-holes
CN101148245B (en) Nanometer level microporous mould
CN101148246B (en) Method for manufacturing nanometer level microporous mould
Ren et al. Technologies to achieve carbon nanotube alignment
Luan et al. Solvent-assisted polymer-bonding lithography
Hart Engineering Hierarchical Nanostructures by Elastocapillary Self‐Assembly