TWI299803B - Liquid crystal display having a surface grating film with axially symmetric multi-aligned arrays of 2-dimensional surface relief gratings - Google Patents

Liquid crystal display having a surface grating film with axially symmetric multi-aligned arrays of 2-dimensional surface relief gratings Download PDF

Info

Publication number
TWI299803B
TWI299803B TW90113018A TW90113018A TWI299803B TW I299803 B TWI299803 B TW I299803B TW 90113018 A TW90113018 A TW 90113018A TW 90113018 A TW90113018 A TW 90113018A TW I299803 B TWI299803 B TW I299803B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal display
substrate
film
grating
Prior art date
Application number
TW90113018A
Other languages
Chinese (zh)
Inventor
Lee Sin-Doo
Juhyun Lee
Park Jae-Hong
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to TW90113018A priority Critical patent/TWI299803B/en
Application granted granted Critical
Publication of TWI299803B publication Critical patent/TWI299803B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Description

1299803 九、發明說明: 【發明所屬之技術領域】 發明領域 本發明係有關於一種液晶顯示器,特別是〜種藉由簡 5單製程使其具有寬廣且對稱之視野角度特性之液晶顯示 器。 曰曰”、、y、 C ll9r 發明背景 近年來,當大型銀幕顯示器被發展時,一扭轉向列(TN) 10液晶顯示器的狹窄視野角度的特性已造成嚴重的問題。為 解決這些問題,各種的技術被提出,並且在眾多被提出的 解決方案之中,在目前被使用最為廣泛的是光學補償方 法。此方法是在操作TN-LCD上,使用一光學補償薄膜補償 雙折射的變化,然而這方法仍然有缺點,例如由液晶的波 15長相依性折射率所導致的顏色發散及高的生產成本。 另一方法是利用具電極的操作性LCD的IPS(面内的開 關)模式’該電極係只形成在LCD基材的一侧。在ips模式 中,LC分子係垂直地(homeotropically)或是平行地 (homogeneous)配列在基材上,此係依照lc的介電異方性之 20訊號,及在操作時LC在基材平面旋轉的平均光學轴。在缺 乏通過該面内電極之施加電壓時,透過放置於兩交錯的偏 光板之間的LCD,通常係呈現一黑暗狀態。而,施加電壓 至一特定臨限值之上時,則透過LCD時會呈現一明亮狀 態。這亮度是依照施加電壓之強度而定。此方法之優點為 1299803 可獲侍一寬廣視野特性,此係因為液晶平均光學轴上的變 化疋u在平行於基材表面的平面上。然❿,因為大部分 會涉入液晶的扭轉變化,所以,IPS模式與TN_LCD模式相 比車乂有一些缺點,例如慢的回應時間,低的孔徑比,及相 5 當高之操作電壓。 除了上述所描述的方法之外,有一些技巧可提升視野 角度的特性,藉由使用一多分域(MD)配向,誘導一單位畫 素(i.e”a pixel)的數個不同分域(domain)上的光學軸的變 化這些技巧中之一例係,對稱的視野特性可在由md-TN 10模式中獲得,其係因為在區分為二或四區的單位晝素内排 列在不同方向的液晶,其扭轉方向係呈對稱分布。然而此 方法在複雜的製程上仍然有缺點產生,因為對於每一分域 而曰,使用一研磨程序是必須的,但其會導致產率較低。 仍有另方法,有 一 MD-VA(multi domain vertically 15 aligned)多分域重直配向模式,其維持原始配列方向在一單 位畫素之每一分域上是呈垂直的。此情形下,在〇FF狀態 (state)之光滲漏是相當低的,並且因此可獲得極高對比性。 然而,MD-VA模亦像MD-TN模式一樣,會遭遇由複雜製程 帶來的問題,其係因為對於每一分域都需要研磨程序或是 20 光配向程序。 在一相似式樣中,被建議a_TN(am〇rph〇us twisted nematic)非晶質扭轉向列模式,藉由在一單位晝素中形成非 本小的分域來長:咼視野角度特性,其中因為缺少研磨製程 而存在有任意配列方向。然而,此模式同樣具有缺點,即, 1299803 雖然在製程上是簡單的,但是分域尺寸的控制實際上卻不 可能且不能再生產,其係因為非常小的分域尺寸是慈意且 散亂地形成的。 最近出現的ASM(軸向對稱配列的微晶胞)模式為一可 5獲得軸向對稱視野角度特性的技藝,其係藉由利用高分子 微晶胞(microcell) ’其巾液晶具有軸向的對稱排歹4。雖然此 方法提供在無研磨程序時在大面積上之液晶的轴向對稱配 列’但是它在LCD的量產上是困難的,其個為聚合物本 身的可靠度問題,相分散的控制之困難度,以及複雜的製 10 程。 發明的概述 本發明的目標是為了解決上述之問題並且提供一種液 晶顯示器,其擁有一垂直配向多分域之基材以及寬廣和對 15稱之視野角度特性,並且在製程上簡單化,係藉由一光學 可固化樹脂製成之轴向對稱多重配向陣列之二維表 田凹凸 光栅,以控制該陣列的週期性和形成在基材表面上之每— 光栅的高度來使該陣列軸向對稱。 為了達到上述之目的,本發明之液晶顯示器的特徵在 於,此顯示器包含: 一上層基材,其於該上層基材之表面上有一上層電極 形成,於此電極上有一垂直配向薄膜形成;一下層基材, 其在下層基材的表面上有一下層電極形成與上層基材相對 應,且在下層電極上有一表面光栅薄膜疊層於其 /、,讀表 20 1299803 面光柵薄膜具有軸向對稱多重配向陣列之二維表面凹凸光 柵;並且在該上層基材與下層基材之間的間隔内封裝一具 有負介電異方性之液晶。 為達到本發明之另一目的,本發明之液晶顯示器之特 5 徵在於,此顯示器係包含··一上層基材,於該上層基材表 面上有一上層電極形成,且在該電極上有一平面配向薄膜 形成:一下層基材,在該下層基材表面有一下層電極形成 與上層基材相對應,且在下層電極上有一表面光柵薄膜疊 層於其上’該表面光柵薄膜具有軸向對稱多重配向陣列之 10二維表面凹凸光柵,並且在該上層基材舆下層基材之間的 間隔内封裝一具有負介電異方性之液晶。 為完成本發明之另一目的,本發明之液晶顯示器之特 徵在於,此顯示|§包含:一上層基材,於上層基材表面上 有上層笔極形成,且在此電極上有一垂直配向薄膜形 15成;一下層基材,其上有一表面光柵薄膜疊層於其上,該 表面光柵薄膜具有轴向對稱多重配向陣列之二維表面凹凸 光柵,且在表面光栅薄膜上有一下層電極均勻的形成,並 且在上層基材舆下層基材之間的間隔内封裝一具有負介電 異方性之液晶。 20 i佳地’本發明之表面傾斜角度’即接近基材之液晶 分子相對於基材之法線方向的傾斜度,是由0度至9度。 軸向對稱多重配向陣列之二維表面凹凸由1可固 化光學樹脂製成’該可固化光學樹脂在紫外光區有一吸收 波長帶寬以及在可見光區有高穿透性。液晶的法線折射率 1299803 與前述之樹脂相差低於3%,表面凹凸光柵有一正弦平方函 數的形式,且此表面凹凸光柵的高度是低於數百個奈米級 (nm)。表面凹凸光柵的高度可使用輻射在光學樹脂薄膜上 的紫外線能量做調整。本發明的表面光柵薄膜可包含一傳 5 導材料。多重配向陣列的平面光柵薄膜的週期性與單位畫 素之二分之一至二倍週期性相對應。 圖式簡單說明 第1圖為依照本發明之實施例之液晶顯示之具體示意 10 圖。 第2圖為顯示沿著第1圖的A-A’線,本發明之液晶顯示 器之一垂直橫截面視圖。 第3圖為依照本發明之液晶顯示器所顯示之另一具體 示意圖。 15 第4a圖為顯示沿著第3圖的A-A’線,本發明之液晶顯示 器之一垂直橫截面視圖。 第4b圖為顯示第3圖變化下的本發明之另一液晶顯示 器之一垂直截面視圖。 第5圖為一光罩構造圖,其係形成本發明中之軸向對 20 稱、二維表面凹凸光柵、多重配向陣列。 第6圖為顯示本發明中在表面光柵薄膜上形成之軸向 對稱、二維表面凹凸光柵、多重配向陣列之平面視圖。 第7圖為顯示軸向對稱二維表面凹凸光柵、多重配向陣 列之表面凹凸光栅之緯度及高度之關係圖。 1299803 第8圖為顯示軸向對稱,二維表面凹凸光栅、多重配向 陣列之表面凹凸光柵之高度和紫外線輻射能之關係圖。 弟9圖為顯示對本發明之液晶顯示器所施加之電壓和 一軸向對稱、二維表面凹凸光柵、多重配向陣列中之光穿 5透性之間的關係圖。 第1〇a圖為一橫截面視圖。顯示本發明之液晶_示器在 未施加電壓之下液晶之配向結構。 第1〇b圖為一橫截面視圖,顯示本發明之液晶顯示器在 施加電壓之下液晶之配向晶胞(aligned cells)的配向結構。 10 弟圖為一顯微照片’係顯示本發明之液晶顯示器置 放於二交錯之偏光板之間,且當此顯示器未被施加電壓時。 第lib圖為一顯微照片,係顯示本發明之液晶顯示器置 放於二交錯之偏光板之間,且當此顯示器被施加電壓時。 弟12圖為一相等對比(iso_contrast)曲線圖,顯示一根據 15 本發明之液晶顯示器之視野角度特性。 第13圖為一相等對比(iso_contrast)曲線圖,顯示一根據 本發明之液晶顯示器之視野角度特性,其係當此顯示器以 一 546nm的相位差光學補償薄膜做補償時。 C實施方式3 20 具體實施例的詳述 本發明將參酌顯示於所附圖式中之較佳實施例更加詳 述。 第1圖顯示本發明之液晶顯示器之具體實施例,而第2 圖係沿著第1圖之A-A線之橫截面視圖。 1299803 如第1圖和第2圖所示,液晶顯示器其係由一上層基材 10,一下層基材20和一液晶30所組成,上層電極12形成上 層基材10的表面且一配向膜(aligning film)14形成於上層電 極12, 一下層電極22形成於下層基材的表面而與上層基材 5相對應,且一表面光柵薄膜24疊層在下層電極上,該表面 光拇薄膜24形成有一維、轴向對稱、多重配向陣列。此薄 膜24能夠驅使液晶配向。一具有介電異方性之液晶3〇被放 置於上層基材10和下層基材2〇之間隔中。表面光柵薄膜24 可含有一傳導材料俾以減少薄膜之電阻以致使操作電壓變 10 低。 第3圖顯示依據本發明之另一具體實施例之液晶顯示 器,而第4a圖顯示沿著第3圖之A-A線之橫截面視圖。 如第3圖和第4a圖所示,於表面光柵薄膜24之頂端上, 疊層著一用於液晶之特定配向的配向膜26。表面光柵薄膜 15 24含有一傳導材料,為了減少薄膜之電阻以致於造成操作 電壓下降。為了表示第3圖之基本原理及操作原理,一垂直 配列的(VA)LCD被製造且展現於此。 作為第3圖之變化例,另—液晶顯示器之橫截面視圖顯 示於第4b圖。與第4a圖作對比,下層電極22係於表面光拇 20薄膜24及配向膜26之間形成。在這構造中,操作電壓比在 第4a圖中更為減少。 第5圖顯示本發明之光罩構造圖,其係形成本發明中之 轴向對稱、二維表面凹凸光栅、多重配向陣列,而第6圖顯 示形成於本發明表面光柵薄膜上之轴向對稱、二維表面凹 1299803 凸光拇、多重配向陣列。 多種樹脂可被使用,以獲得軸向對稱、二維表面凹凸 光柵、多重配向陣列,但於本發明實施例中,一可固化光 學樹脂(NOA 60由Norland Product Inc·製造)被塗敷俾以在 5形成有一下層電極22的下層基板20上生成一具有數百奈米 級(nm)厚度的扁平薄膜。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display, and more particularly to a liquid crystal display having a wide and symmetrical viewing angle characteristic by a simple process.曰曰", y, C ll9r BACKGROUND OF THE INVENTION In recent years, when a large-screen display has been developed, the characteristics of a narrow viewing angle of a twisted nematic (TN) 10 liquid crystal display have caused serious problems. To solve these problems, various The technology is proposed, and among the many proposed solutions, the most widely used optical compensation method is to compensate for the change in birefringence using an optical compensation film on the TN-LCD. This method still has disadvantages such as color divergence caused by the long-dependent refractive index of the liquid crystal 15 and high production cost. Another method is to use an IPS (in-plane switching) mode of an operational LCD with an electrode. The electrode system is formed only on one side of the LCD substrate. In the ips mode, the LC molecules are arranged homeotropically or homogeneously on the substrate, which is based on the dielectric anisotropy of lc. The signal, and the average optical axis of the LC rotating in the plane of the substrate during operation. In the absence of an applied voltage across the in-plane electrode, through the LCD placed between the two interleaved polarizers Usually, it shows a dark state. When the voltage is applied above a certain threshold, it will show a bright state when passing through the LCD. This brightness is determined by the intensity of the applied voltage. The advantage of this method is 1299803. A wide field of view characteristic, because the change in the average optical axis of the liquid crystal 疋u is in a plane parallel to the surface of the substrate. Then, since most of the changes will involve the torsional change of the liquid crystal, the IPS mode is in phase with the TN_LCD mode. There are some disadvantages compared to rutting, such as slow response time, low aperture ratio, and high operating voltage. In addition to the methods described above, there are some techniques to improve the viewing angle characteristics by using one. Multi-domain (MD) alignment, which induces changes in optical axes on several different domains of one unit of pixels (ie" a pixel). One of these techniques is symmetrical, and the symmetrical field of view can be obtained by md- Obtained in the TN 10 mode, because the liquid crystals arranged in different directions in the unit halogen divided into two or four regions have a twisted direction in a symmetric direction. However, this method still has disadvantages in complicated processes because it is necessary to use a grinding procedure for each sub-domain, but it results in a lower yield. There is still another method, there is a MD-VA (multi domain vertically 15 aligned) multi-domain vertical direct alignment mode, which maintains the original alignment direction perpendicular to each sub-field of one unit pixel. In this case, the light leakage in the 〇FF state is quite low, and thus extremely high contrast can be obtained. However, the MD-VA mode, like the MD-TN mode, suffers from problems caused by complex processes because it requires a grinding program or a 20-light alignment program for each sub-domain. In a similar pattern, it is suggested that a_TN(am〇rph〇us twisted nematic) amorphous torsional nematic mode is formed by forming a non-negative subdomain in a unit of alizarin: There is an arbitrary alignment direction due to the lack of a grinding process. However, this mode also has the disadvantage that, although the 1299803 is simple in the process, the control of the domain size is practically impossible and cannot be reproduced, because the very small sub-domain size is kind and scattered. Forming. The recently emerging ASM (Axis Symmetrically Arranged Microcell) mode is a technique for obtaining axially symmetric viewing angle characteristics by utilizing a polymer microcell 'the liquid crystal of the towel has an axial direction. Symmetrical draining 4. Although this method provides an axially symmetric arrangement of liquid crystals over a large area without a grinding process, it is difficult in mass production of LCDs, which is a problem of reliability of the polymer itself, and difficulty in controlling the phase dispersion. Degree, as well as a complicated system. SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to provide a liquid crystal display having a vertical alignment multi-domain substrate and a wide and a pseudo-angle of view angle characteristics, and simplified in the process by A two-dimensional surface relief grating of an axially symmetric multi-alignment array made of an optically curable resin to control the periodicity of the array and the height of each grating formed on the surface of the substrate to make the array axially symmetrical. In order to achieve the above object, a liquid crystal display according to the present invention is characterized in that: the display comprises: an upper substrate having an upper electrode formed on a surface of the upper substrate, wherein a vertical alignment film is formed on the electrode; a substrate having a lower electrode formed on the surface of the underlying substrate corresponding to the upper substrate, and a surface grating film laminated on the lower electrode, wherein the surface of the lower surface of the substrate has an axially symmetric multiple A two-dimensional surface relief grating of the alignment array; and a liquid crystal having a negative dielectric anisotropy is encapsulated in a space between the upper substrate and the lower substrate. In order to achieve another object of the present invention, a liquid crystal display according to the present invention is characterized in that the display comprises an upper substrate, an upper electrode is formed on the surface of the upper substrate, and a flat surface is formed on the electrode. The alignment film is formed by: a lower layer substrate having a lower layer electrode formed on the surface of the lower layer substrate corresponding to the upper layer substrate, and a surface grating film laminated on the lower layer electrode; the surface grating film having axial symmetry multiple A 10 two-dimensional surface relief grating of the array is aligned, and a liquid crystal having a negative dielectric anisotropy is encapsulated in the space between the underlying substrate and the underlying substrate. In order to accomplish another object of the present invention, a liquid crystal display according to the present invention is characterized in that: the display includes: an upper substrate having an upper layer pen formed on the surface of the upper substrate, and a vertical alignment film on the electrode a 15 layer; a lower substrate having a surface grating film laminated thereon, the surface grating film having a two-dimensional surface relief grating of an axially symmetric multi-alignment array, and a lower layer electrode on the surface grating film Forming, and encapsulating a liquid crystal having a negative dielectric anisotropy in the space between the underlying substrate underlying substrate. The surface tilt angle of the present invention, that is, the inclination of the liquid crystal molecules close to the substrate with respect to the normal direction of the substrate, is from 0 to 9 degrees. The two-dimensional surface relief of the axially symmetric multi-alignment array is made of a curable optical resin. The curable optical resin has an absorption wavelength band in the ultraviolet region and a high transmittance in the visible region. The normal refractive index of the liquid crystal 1299803 differs from the aforementioned resin by less than 3%, and the surface relief grating has a sinusoidal square function, and the height of the surface relief grating is less than several hundred nanometers (nm). The height of the surface relief grating can be adjusted using the ultraviolet energy of the radiation on the optical resin film. The surface grating film of the present invention may comprise a conductive material. The periodicity of the planar grating film of the multiple alignment array corresponds to one-half to two-fold periodicity of the unit pixel. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a detailed schematic view of a liquid crystal display according to an embodiment of the present invention. Fig. 2 is a vertical cross-sectional view showing the liquid crystal display of the present invention taken along line A-A' of Fig. 1. Figure 3 is another detailed schematic view of the liquid crystal display according to the present invention. 15 Fig. 4a is a vertical cross-sectional view showing the liquid crystal display of the present invention taken along line A-A' of Fig. 3. Fig. 4b is a vertical sectional view showing another liquid crystal display of the present invention in a variation of Fig. 3. Fig. 5 is a reticle construction diagram for forming an axially-oriented, two-dimensional surface relief grating, multi-alignment array in the present invention. Figure 6 is a plan view showing an axially symmetric, two-dimensional surface relief grating, multi-alignment array formed on a surface grating film in the present invention. Fig. 7 is a graph showing the relationship between the latitude and the height of the axially symmetrical two-dimensional surface relief grating and the surface relief grating of the multiple alignment array. 1299803 Figure 8 is a graph showing the relationship between the height of the axially symmetrical, two-dimensional surface relief grating, the surface relief grating of the multi-alignment array, and the ultraviolet radiation energy. Figure 9 is a graph showing the relationship between the voltage applied to the liquid crystal display of the present invention and the optical transmission in an axially symmetric, two-dimensional surface relief grating and a multi-alignment array. Figure 1a is a cross-sectional view. The alignment structure of the liquid crystal of the liquid crystal display of the present invention under the application of no voltage is shown. Fig. 1b is a cross-sectional view showing the alignment structure of the aligned cells of the liquid crystal display of the present invention under application of a voltage. 10 is a photomicrograph showing that the liquid crystal display of the present invention is placed between two interleaved polarizing plates and when no voltage is applied to the display. The lib diagram is a photomicrograph showing that the liquid crystal display of the present invention is placed between two interleaved polarizing plates and when a voltage is applied to the display. Figure 12 is an iso-contrast graph showing the viewing angle characteristics of a liquid crystal display according to the present invention. Figure 13 is an iso-contrast graph showing the viewing angle characteristics of a liquid crystal display according to the present invention when the display is compensated by a 546 nm phase difference optical compensation film. C EMBODIMENT 3 20 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to preferred embodiments shown in the drawings. Fig. 1 shows a specific embodiment of a liquid crystal display of the present invention, and Fig. 2 is a cross-sectional view taken along line A-A of Fig. 1. 1299803 As shown in FIGS. 1 and 2, the liquid crystal display is composed of an upper substrate 10, a lower substrate 20 and a liquid crystal 30, and the upper electrode 12 forms a surface of the upper substrate 10 and an alignment film ( The aligning film 14 is formed on the upper electrode 12, the lower electrode 22 is formed on the surface of the lower substrate to correspond to the upper substrate 5, and a surface grating film 24 is laminated on the lower electrode, and the surface optical film 24 is formed Dimensional, axially symmetric, multiple alignment arrays. This film 24 is capable of driving the liquid crystal alignment. A liquid crystal having a dielectric anisotropy is placed in the space between the upper substrate 10 and the lower substrate 2 . The surface grating film 24 may contain a conductive material 俾 to reduce the resistance of the film to cause the operating voltage to be reduced to zero. Fig. 3 shows a liquid crystal display according to another embodiment of the present invention, and Fig. 4a shows a cross-sectional view taken along line A-A of Fig. 3. As shown in Figs. 3 and 4a, an alignment film 26 for a specific alignment of the liquid crystal is laminated on the top end of the surface grating film 24. The surface grating film 15 24 contains a conductive material in order to reduce the resistance of the film to cause a drop in operating voltage. To illustrate the basic principles and operational principles of Figure 3, a vertically aligned (VA) LCD is fabricated and presented herein. As a variation of Fig. 3, another cross-sectional view of the liquid crystal display is shown in Fig. 4b. In contrast to Fig. 4a, the lower electrode 22 is formed between the surface optical film 20 and the alignment film 26. In this configuration, the operating voltage is more reduced than in Figure 4a. Figure 5 is a view showing the construction of the reticle of the present invention, which is an axially symmetric, two-dimensional surface relief grating, multi-alignment array in the present invention, and Figure 6 shows the axial symmetry formed on the surface grating film of the present invention. 2D surface concave 1299803 convex light thumb, multiple alignment array. A variety of resins can be used to obtain an axially symmetric, two-dimensional surface relief grating, multiple alignment array, but in the embodiment of the present invention, a curable optical resin (NOA 60 manufactured by Norland Product Inc.) is coated with A flat film having a thickness of several hundred nanometers (nm) is formed on the lower substrate 20 on which the lower layer electrode 22 is formed.

可固化光學樹脂在紫外光範圍有一可吸收波長帶寬, 並且在可見絲圍有-高穿透性質,更佳地,此樹脂的折 射率必須儘可能地與液晶3〇的折射率相同。若此二者之折 10射率差不可忽略,光學現象如繞射及干涉可能會發生,且 光穿透現象會存在於0FF狀態。在一實際製造之顯示器 中,樹脂的折射率是1.56,一扭轉液晶的一般和特別的折 射率分別是1.518和1.655時,使得樹脂的折射率和普通的折 f率差小於3%。樹脂儘可能地均勻且薄地塗於基材上,這 I5疋因為右樹脂厚度很大時,穿透樹脂薄膜的電壓下降會變 大,其會引起液晶顯示器的操作電壓變高。The curable optical resin has an absorbable wavelength band in the ultraviolet range and has a high penetration property in the visible filament. More preferably, the refractive index of the resin must be as much as possible as the refractive index of the liquid crystal. If the difference between the two is not negligible, optical phenomena such as diffraction and interference may occur, and light penetration may exist in the 0FF state. In a practically manufactured display, the refractive index of the resin is 1.56, and the general and specific refractive indices of a torsional liquid crystal are 1.518 and 1.655, respectively, so that the difference between the refractive index of the resin and the ordinary refractive index is less than 3%. The resin is applied to the substrate as uniformly and thinly as possible. Since the thickness of the right resin is large, the voltage drop across the resin film becomes large, which causes the operating voltage of the liquid crystal display to become high.

如第5圖所示,在可固化光學樹脂上,紫外光被輻射穿 透先罩。-陣列的尺寸和週期性可調整為適合畫素㈣S) 的尺寸和週期性,適合的使用尺寸為x=細 20 lOOum。As shown in Fig. 5, on the curable optical resin, ultraviolet light is transmitted through the hood. - The size and periodicity of the array can be adjusted to suit the size and periodicity of the pixel (4) S), and the suitable size for use is x = fine 20 lOOum.

八次,在光罩移除之後,㈣線被輻射在全部基本 直至先學性固化該樹脂。第6圖之軸向對稱、二維表面E =柵、多重配向陣列,係根據紫外光的輻射能形成在遵 表面上。 12 1299803 第7圖顯示軸向對稱、二維表面凹凸光柵、多重配向陣 列的表面凹凸光柵的緯度距離和高度之關係圖。清楚指 出,表面凹凸光栅有一正弦平方函數的形式,且此表面凹 凸光柵的高度低於數百個奈米級nm。 5 第8圖顯示紫外線輻射能和軸對稱、二維表面凹凸光栅 多重配向陣列的表面凹凸光柵的高度之間之關係圖。 如第8圖所示’表面凹凸光柵的高度係依照紫外線的輻 射能作調整,在具體實施例中紫外線的光源係為一種氙-汞 燈,其產生適合該吸收波長範圍的紫外線。 10 隨後,由曰本(JAPAN SYNTHETJC RUBBER CO.)公司 所製造的一垂直配向試劑JALS 204,被自旋塗覆 (spin-coated)於表面光柵薄膜24之上,然後做熱處理,形成 一垂直配向膜26。然而,除了上述JALS 204之外的配向試 劑亦可被使用。 15 在上層基材1〇和下層基材20之間,藉著使用一具有 5μπι厚度的間隔物,在此二板之間將液晶30置入且封住。 此崁入之液晶為具有-2.7的介電異方係數的ΕΝ-40(由 ChissoPetrochemical C0·製造)。 第9圖顯示當作施加電壓之函數的光穿透性。 20 相當高的操作電壓的原因係導因於通過樹脂薄膜的電 壓下降。假如樹脂含有一導電材料或是下層電極22在表面 光柵薄膜24及配向膜26之間形成的話,如第4b圖,則此臨 限電壓與操作電壓皆會減少。 第10a圖顯示當本發明之液晶顯示器未施加電場時,液 13 1299803 晶的配向晶胞的配列結構。而,第1Ga圖顯示#對本發明之 液晶顯示器施加電場時,液晶的配向晶胞的配列結構。 如第10a和10b圖所顯示,二交錯的偏光板4〇,%係分 別提供於上層基材10和下層基材20的外部表面上,若使用 5 一背光單元則可以組成一穿透式液晶顯示器。在基材1〇、 20之各自外表面與各個偏光板4〇、5〇之間,一外加的光學 補償薄膜崁入於此,但於此情況之下,補償薄膜的光學軸 與偏光板的光學軸之間的角度最佳係保持在45度。 若一反射板提供在基材10、20之一者的内部或外部表 10面上,且一偏光板在另一基板的外部表面時,一反射型液 晶亦可被產生。在另一基材和偏光板之間,一外加的光學 補償薄膜的光學轴和偏光板的光學轴之間的角度最佳係保 持在45度。 如第10a和l〇b圖所顯示,當未施以電壓時,除了在表 15面光柵區域之外,一般液晶分子係呈垂直配列。在具有光 栅的下層基材的表面附近,連接該表面光柵薄膜上所形成 之谷部與峰部的相對於下層基材之法線方向的表面傾斜 度’其差異很小幾乎趨於2或3度,以至於由光學觀點而言, 該配向晶胞幾乎與一垂直配向晶胞相同。當施加電壓時, 20 液晶分子相對於該表面光柵之每一峰部對稱地傾斜偏離該 基材之法線方向。因為根據二維陣列的週期性,這種方向 對稱性質存在於表面光柵薄膜整體,所以轴向對稱之視野 角度特性可以獲得。 第11a圖顯示本發明液晶顯示器之一顯微照片,其係當 14 1299803 未施加電壓在該置於交錯偏光板之間(一偏光器“P”及一分 析器“A”)的顯示器上時。第llb圖顯示本發明之之液晶顯示 器之一顯微照片,其當施加一電壓至該置於交錯偏光板之 間的顯示器上時。在第11a圖,P字母是上層偏光板40的光 5學轴,且A字母是下層偏光板50的光學轴。 如第11a和lib圖所示,當未施加電壓時,一全黑OFF 狀悲可獲得;而,當施加一特定臨界值之上的電壓時,具 有軸向對稱、多分域之晝素的明亮ON狀態玎達成。因此, 可得到高對比性。 10 第12圖顯示一依據本發明之液晶顯示器的視野角特性 的相等對比(iso-contrast)曲線;而第13圖顯示依據本發明之 液晶顯示器之視野角特性之相等對比(iso_contrast)曲線,係 當顯示器使用一546nm相位差光學補償薄膜做補償時。 如第12圖所顯示,必須注意的是依照本發明之液晶顯 15示器具有一比TN-LCD模式更為寬廣的視野角特性,更特別 的是,此視野角在0及45度的方向是異常地優於現有的 LCD。而且,必須強調的是,沿著偏光板的光學轴的視野 角性質比起其他方向是相對較佳。此現象源自於VA模式的 固有性質。若一具有負的相位差的光學補償薄膜使用時, 20 此情形會被消除。第13圖顯示額外地使用一具有-546nm相 位差的光學補償薄膜的結果。如第13圖所示,與第12圖相 比較,係可獲得經大幅改善的視野角特性。 在另一個本發明之具體實例中,一具有正或負介電異 方性的液晶顯示器業經構造成一具組合結構的裝置,其中 15 1299803 一液晶係水平地配列在一基材上以及一液晶係垂直地配列 在形成有軸向對稱、二維表面凹凸、多重配向陣列的另一 基材上。 如上述的具體實例中,當可固化光學樹脂構成軸對 5 稱、二維表面凹凸光柵,或是一高分子聚合材料能夠促成 液晶在其上作垂直配列,則無須額外塗覆物。 如上所述,在本發明中,一具有寬廣且對稱視野角特 性的液晶顯示器,可以利用一可形成轴向對稱二維表面凹 凸光柵、多重配向陣列的可固化光學樹脂且以簡單製程加 10 以獲得。 雖然本發明之最佳具體例已在此對照圖示做說明,仍 應了解其他修正,取代及替換可能為一般顯而易見的習知 技藝,一些修正,取代及替換在缺乏本發明之精神和範圍 亦可被製造,於是上述並不能限制本發明之範圍,其應由 15 所附加之申請專利範圍而定之。 【圖式簡單說明3 第1圖為依照本發明之實施例之液晶顯示之具體示意 圖。 第2圖為顯示沿著第1圖的A-A’線,本發明之液晶顯示 20 器之一垂直橫截面視圖。 第3圖為依照本發明之液晶顯示器所顯示之另一具體 示意圖。 第4a圖為顯示沿著第3圖的Α·Α’線,本發明之液晶顯示 器之一垂直橫截面視圖。 16 1299803 第4b圖為顯示第3圖變化下的本發明之另一液晶顯示 器之一垂直截面視圖。 第5圖為一光罩構造圖,其係形成本發明中之軸向對 稱、二維表面凹凸光柵、多重配向陣列。 5 第6圖為顯示本發明中在表面光栅薄膜上形成之軸向 對稱、二維表面凹凸光柵、多重配向陣列之平面視圖。 第7圖為顯示軸向對稱二維表面凹凸光栅、多重配向陣 列之表面凹凸光柵之緯度及高度之關係圖。 第8圖為顯示軸向對稱,二維表面凹凸光栅、多重配向 10 陣列之表面凹凸光柵之高度和紫外線輻射能之關係圖。 第9圖為顯示對本發明之液晶顯示器所施加之電壓和 一軸向對稱、二維表面凹凸光柵、多重配向陣列中之光穿 透性之間的關係圖。 第10a圖為一橫截面視圖。顯示本發明之液晶顯示器在 15 未施加電壓之下液晶之配向結構。 第10b圖為一橫截面視圖,顯示本發明之液晶顯示器在 施加電壓之下液晶之配向晶胞(aligned cells)的配向結構。 第11a圖為一顯微照片,係顯示本發明之液晶顯示器置 放於二交錯之偏光板之間,且當此顯示器未被施加電壓時。 20 第lib圖為一顯微照片,係顯示本發明之液晶顯示器置 放於二交錯之偏光板之間,且當此顯示器被施加電壓時。 第12圖為一相等對比(iso-contrast)曲線圖,顯示一根據 本發明之液晶顯示器之視野角度特性。 第13圖為一相等對比(iso-contrast)曲線圖,顯示一根據 17 1299803 本發明之液晶顯示器之視野角度特性,其係當此顯示器以 一 546nm的相位差光學補償薄膜做補償時。 【主要元件符號說明】 10…上層基板 12…上層電極 14,26...配向膜 20…下層基板 22···下層電極, 24…表面光栅薄膜 30…液晶 40…上偏光板 50···下偏光板Eight times, after the reticle is removed, the (four) line is irradiated at all times until the resin is cured first. The axially symmetric, two-dimensional surface E = gate, multi-alignment array of Fig. 6 is formed on the surface according to the radiant energy of ultraviolet light. 12 1299803 Figure 7 shows the relationship between the latitudinal distance and the height of the axially symmetrical, two-dimensional surface relief grating, and the multi-alignment array surface relief grating. It is clear that the surface relief grating has a sinusoidal square function and the height of the surface relief grating is less than several hundred nanometers nm. 5 Figure 8 shows the relationship between the UV radiant energy and the height of the surface relief grating of an axially symmetric, two-dimensional surface relief grating multi-alignment array. As shown in Fig. 8, the height of the surface relief grating is adjusted in accordance with the radiation energy of the ultraviolet light. In a specific embodiment, the ultraviolet light source is a helium-mercury lamp which produces ultraviolet light suitable for the absorption wavelength range. 10 Subsequently, a vertical alignment reagent JALS 204 manufactured by JAPAN SYNTHET JC RUBBER CO. was spin-coated on the surface grating film 24 and then heat treated to form a vertical alignment. Membrane 26. However, an alignment agent other than the above JALS 204 can also be used. 15 Between the upper substrate 1〇 and the lower substrate 20, the liquid crystal 30 is placed and sealed between the two plates by using a spacer having a thickness of 5 μm. The liquid crystal thus incorporated was ΕΝ-40 (manufactured by Chisso Petrochemical C0·) having a dielectric anisotropy of -2.7. Figure 9 shows the light penetration as a function of applied voltage. The reason for the relatively high operating voltage is due to the voltage drop across the resin film. If the resin contains a conductive material or the lower electrode 22 is formed between the surface grating film 24 and the alignment film 26, as shown in Fig. 4b, both the threshold voltage and the operating voltage are reduced. Fig. 10a shows the arrangement structure of the alignment unit cell of the liquid 13 1299803 crystal when the liquid crystal display of the present invention is not applied with an electric field. Further, the first Ga diagram shows the arrangement structure of the alignment cells of the liquid crystal when an electric field is applied to the liquid crystal display of the present invention. As shown in Figures 10a and 10b, two interleaved polarizers 4, % are provided on the outer surfaces of the upper substrate 10 and the lower substrate 20, respectively. If a backlight unit is used, a penetrating liquid crystal can be formed. monitor. An external optical compensation film is interposed between the respective outer surfaces of the substrates 1 and 20 and the respective polarizing plates 4, 5, but in this case, the optical axis of the compensation film and the polarizing plate are The angle between the optical axes is optimally maintained at 45 degrees. A reflective liquid crystal can also be produced if a reflecting plate is provided on the inner or outer surface 10 of one of the substrates 10, 20 and a polarizing plate is on the outer surface of the other substrate. Between the other substrate and the polarizing plate, the angle between the optical axis of an additional optical compensation film and the optical axis of the polarizing plate is preferably maintained at 45 degrees. As shown in Figures 10a and 10B, when no voltage is applied, in general, in addition to the surface region of the surface of the grating, the liquid crystal molecules are vertically aligned. In the vicinity of the surface of the underlying substrate having the grating, the surface inclination of the valley portion and the peak portion formed on the surface grating film to the normal direction of the underlying substrate is small, and the difference is almost 2 or 3. Thus, from an optical point of view, the alignment unit cell is almost the same as a vertical alignment unit cell. When a voltage is applied, 20 liquid crystal molecules are symmetrically obliquely offset from the normal direction of the substrate with respect to each peak of the surface grating. Since this directional symmetry property exists in the entire surface of the surface grating film according to the periodicity of the two-dimensional array, the axial symmetry of the viewing angle characteristic can be obtained. Figure 11a shows a photomicrograph of a liquid crystal display of the present invention when 14 1299803 is not applied with voltage on the display placed between staggered polarizers (a polarizer "P" and an analyzer "A") . Figure 11b shows a photomicrograph of a liquid crystal display of the present invention when a voltage is applied to the display placed between the staggered polarizing plates. In Fig. 11a, the P letter is the optical axis of the upper polarizing plate 40, and the A letter is the optical axis of the lower polarizing plate 50. As shown in the 11th and lib diagrams, when no voltage is applied, a full black OFF is obtained; and when a voltage above a certain threshold is applied, the axis is symmetrical, multi-domain is bright. The ON state is reached. Therefore, high contrast can be obtained. 10 is a diagram showing an iso-contrast curve of a viewing angle characteristic of a liquid crystal display according to the present invention; and FIG. 13 is a diagram showing an equal contrast (iso_contrast) curve of a viewing angle characteristic of a liquid crystal display according to the present invention. When the display is compensated using a 546 nm phase difference optical compensation film. As shown in Fig. 12, it must be noted that the liquid crystal display device according to the present invention has a wider viewing angle characteristic than the TN-LCD mode, and more particularly, the viewing angle is in the directions of 0 and 45 degrees. Abnormally superior to existing LCDs. Moreover, it must be emphasized that the viewing angle property along the optical axis of the polarizing plate is relatively better than the other directions. This phenomenon is derived from the inherent nature of the VA mode. If an optical compensation film with a negative phase difference is used, this situation will be eliminated. Figure 13 shows the results of additionally using an optical compensation film having a phase difference of -546 nm. As shown in Fig. 13, compared with Fig. 12, a greatly improved viewing angle characteristic can be obtained. In another embodiment of the invention, a liquid crystal display having positive or negative dielectric anisotropy is constructed as a combined structure wherein 15 1299803 a liquid crystal system is horizontally disposed on a substrate and a liquid crystal system Arranged vertically on another substrate formed with axially symmetric, two-dimensional surface relief, multiple alignment arrays. As in the above specific examples, when the curable optical resin constitutes a shaft-to-pair, two-dimensional surface relief grating, or a polymeric material capable of causing liquid crystals to be vertically aligned thereon, no additional coating is required. As described above, in the present invention, a liquid crystal display having a wide and symmetrical viewing angle characteristic can utilize a curable optical resin capable of forming an axially symmetric two-dimensional surface relief grating, a multi-alignment array and adding 10 in a simple process. obtain. While the invention has been described with reference to the preferred embodiments of the present invention, it is understood that other modifications, substitutions and substitutions may be It can be made, and the above does not limit the scope of the invention, which should be determined by the scope of the appended patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a detailed schematic view of a liquid crystal display according to an embodiment of the present invention. Fig. 2 is a vertical cross-sectional view showing the liquid crystal display device of the present invention taken along line A-A' of Fig. 1. Figure 3 is another detailed schematic view of the liquid crystal display according to the present invention. Fig. 4a is a vertical cross-sectional view showing the liquid crystal display of the present invention along the line Α·Α' of Fig. 3. 16 1299803 Figure 4b is a vertical cross-sectional view showing another liquid crystal display of the present invention in a variation of Fig. 3. Fig. 5 is a reticle construction diagram for forming an axial symmetry, a two-dimensional surface relief grating, and a multi-alignment array in the present invention. 5 Fig. 6 is a plan view showing an axially symmetric, two-dimensional surface relief grating, multi-alignment array formed on a surface grating film in the present invention. Fig. 7 is a graph showing the relationship between the latitude and the height of the axially symmetrical two-dimensional surface relief grating and the surface relief grating of the multiple alignment array. Figure 8 is a graph showing the relationship between the height of the axially symmetrical, two-dimensional surface relief grating, the surface relief grating of the multi-alignment 10 array, and the ultraviolet radiation energy. Fig. 9 is a graph showing the relationship between the voltage applied to the liquid crystal display of the present invention and the optical permeability in an axially symmetric, two-dimensional surface uneven grating and a multi-alignment array. Figure 10a is a cross-sectional view. The alignment structure of the liquid crystal of the liquid crystal display of the present invention under the condition that no voltage is applied is shown. Fig. 10b is a cross-sectional view showing the alignment structure of the aligned cells of the liquid crystal display of the present invention under application of a voltage. Figure 11a is a photomicrograph showing the liquid crystal display of the present invention placed between two interleaved polarizing plates and when no voltage is applied to the display. 20 The lib diagram is a photomicrograph showing that the liquid crystal display of the present invention is placed between two interleaved polarizing plates and when a voltage is applied to the display. Fig. 12 is an iso-contrast graph showing the viewing angle characteristics of a liquid crystal display according to the present invention. Figure 13 is an iso-contrast plot showing the viewing angle characteristics of a liquid crystal display according to the invention of 17 1299803 when the display is compensated with a 546 nm phase difference optical compensation film. [Main component symbol description] 10...Upper substrate 12...Upper electrode 14,26...Alignment film 20...Lower substrate 22···lower layer electrode, 24...surface grating film 30...liquid crystal 40...upper polarizing plate 50··· Lower polarizer

1818

Claims (1)

1299803 十、申請專利範圍: 第90113018號專射請t中請專利範圍修正| 96 05 1 · 種液晶顯不斋’其係包括: 上層基材,於該上層基材之表面上有一上層電極 5 形成,以及於此電極上有一垂直配向薄膜形成; 一下層基材,在面對該上層基材的該下層基材的表 面上有一下層電極形成,以及在該下層電極上有一表面 光柵薄膜疊層於其上,且該表面光柵薄膜具有軸向對稱 多重配向陣列之二維表面凹凸光柵,並且該表面光柵薄 10 膜包含一導電材料;以及 在该上層基材與下層基材之間的間隔内密封一具 有負介電異方性之液晶。 2·如申請專利範圍第1項之液晶顯示器,其中一垂直配向 薄膜係更進一步地疊層於該表面光柵薄膜上。 15 3·如申明專利範圍第1項之液晶顯示器,其中該表面傾斜 角度,即該靠近基材之液晶分子相對於該基材之法線方 向的傾斜度,是由〇度到9度。 屯如申請專利範圍第1項之液晶顯示器,其中該陣列係由 在紫外光範圍具有一吸收波長帶寬且在可見光範圍具 20 有一高穿透性之可固化光學樹脂所製造,其中該可固化 光學樹脂之折射率比液晶的一般折射率要低3%之量。 5·如申叫專利範圍第1項之液晶顯示器,其中該陣列之週 期性相當於晝素的二分之一到二倍之週期性。 6.如申喷專利範圍第1項之液晶顯示器,其中該陣列之表 19 1299803 面凹凸光栅之高度係使用紫外線的轉射能做調整。 7‘如利範圍第旧之液晶顯示器,其中二偏光板係 分別被提供於該上層基板和該下層基板的外部表面 上,且其中液晶顯示器更進一步地包括一背光單元 5 8·如申請專利範圍第7項之液晶顯示器,其中一外加的光 學補償膜係被般入於該基材之各自外部表面與相對應 的偏光板之間,且此補償薄膜之光學軸與該偏光板之光 學軸之間的角度為約45度。 9. 如申請專利範圍第1項之液晶顯示器,一反射板係被提供 10 於該等基材之一者之内部或外部表面上,且一偏光板係 被提供於另一基材之外部表面上。 10. 如申請專利範圍第1項之液晶顯示器,其中一外加的光 學補償膜係被嵌入於該另一基材和該偏光板之間,但於 此狀況中,該補償膜之光學轴和該偏光板之光學軸之間 15 的角度為約45度。 11. 一種液晶顯示器,其係包括: 一上層基材,於該上層基材之表面上有一上層電極 形成,於此電極上有一平面配向膜形成; 一下層基材,在面對該上層基材之下層基材的表面 20 上有一下層電極形成,以及在該下層電極上有一表面光 柵薄膜疊層於其上,且該表面光柵薄膜具有軸向對稱多 重配向陣列之二維表面凹凸光柵,並且該表面光柵薄膜 包含一導電材料;以及 於該上層基材與該下層基材之間的間隔内密封一 20 1299803 具有負介電異方性之液晶。 I2·如申請專利範圍第Η項之液晶顯示器,其中一垂直配向 膜係更進一步地被疊層於該表面光柵薄膜上。 13·如申請專利範圍第11項之液晶顯示器,其中一表面傾斜 角X即罪近基材之液晶分子相對於該基材之法線方向 的傾斜度,是由0度到9度。 申明專利範圍弟11項之液晶顯示器,其中該陣列係由 〜可固化光學樹脂所製造,該可固化光學樹脂在紫外線 範圍具有一吸收波長帶寬且在可見光範圍有一高穿透 1*生,且其中該液晶顯示器之折射率係較液晶之一般折射 率低3%之量。 申明專利範圍第11項之液晶顯示器,其中該陣列之週 1功II係相當於畫素之二分之一至二倍之週期性。 申明專利範圍第11項之液晶顯示器,其中該陣列之表 面凹凸光栅之高度係藉由使用紫外線輕射能作調整。 口申%專利範圍第11項之液晶顯示器,其中二偏光板係 :個別㈤置放於該上層基材及該下層基材之表面外 部,且其中液晶顯示器更進一步地包括一背光單元。 申明專利範圍弟17項之液晶顯示器,其中一外加的光 予補仏膜係敗於該等基材之各自外部表面與相對應之 光板之間,且其中該補償膜之光學軸與該偏光板之光 學軸之間的角度約為45度。 申明專利範圍第丨丨項之液晶顯示器,一反射面板係提 供於該等基材之_者_部斜部表面上,且—偏光板 21 1299803 係提供於另一基材之外部表面上。 20.如申請專利範圍第19項之液晶顯示器,其中一外加的光 學補償膜係嵌於該另一基材與偏光板之間,且該補償膜 之光學軸與偏光板之光學軸之間之角度為約45度。 5 21. —種液晶顯示器,其係包括: 一上層基材,於該上層基材之表面上有一上層電極 形成,且於此電極上有一垂直配向薄膜形成; 一下層基材,具有:一表面光柵薄膜疊層於該下層 基材上且該表面光柵薄膜具有軸向對稱多重配向陣列 10 之二維表面凹凸光柵;及一下層電極均勻地形成在該表 光柵薄膜上;且該表面光柵薄膜包含一導電材料;以及 在上層基材與下層基材之間的間隔内密封一具有 負介電異方性之液晶。 22.如申請專利範圍第21項之液晶顯示器,其中一垂直配向 15 膜係更進一步地疊層在該表面光柵薄膜上。 22 1299803 七、指定代表圖: (一) 本案指定代表圖為:第(1 )圖。 (二) 本代表圖之元件符號簡單說明: 10…上層基板 12.. .上層電極 14,26...配向膜 20.. .下層基板 22.. .下層電極 24.. .表面光柵薄膜 30.. .液晶 40.. .上偏光板 50…下偏光板 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:1299803 X. Patent application scope: No. 90113018, special shot, please request the patent range correction | 96 05 1 · The liquid crystal display is not good. The system includes: the upper substrate, which has an upper electrode 5 on the surface of the upper substrate. Forming, and forming a vertical alignment film on the electrode; the lower substrate has a lower electrode formed on the surface of the lower substrate facing the upper substrate, and a surface grating film laminate on the lower electrode And the surface grating film has a two-dimensional surface relief grating of an axially symmetric multi-alignment array, and the surface grating thin film 10 comprises a conductive material; and within the interval between the upper substrate and the lower substrate A liquid crystal having a negative dielectric anisotropy is sealed. 2. The liquid crystal display of claim 1, wherein a vertical alignment film is further laminated on the surface grating film. The liquid crystal display according to claim 1, wherein the inclination angle of the surface, that is, the inclination of the liquid crystal molecules close to the substrate with respect to the normal direction of the substrate is from 9 to 15 degrees. A liquid crystal display according to claim 1, wherein the array is made of a curable optical resin having an absorption wavelength bandwidth in the ultraviolet range and a high transmittance in the visible range, wherein the array is curable. The refractive index of the resin is 3% lower than the general refractive index of the liquid crystal. 5. The liquid crystal display of claim 1, wherein the periodicity of the array is equivalent to one-half to two times the periodicity of the halogen. 6. The liquid crystal display of claim 1 of the patent application scope, wherein the height of the surface of the array 19 1299803 surface relief grating is adjusted by using ultraviolet light. 7' The liquid crystal display of the oldest range, wherein two polarizing plates are respectively provided on the outer surface of the upper substrate and the lower substrate, and wherein the liquid crystal display further comprises a backlight unit. In the liquid crystal display of item 7, an additional optical compensation film is interposed between the respective outer surfaces of the substrate and the corresponding polarizing plate, and the optical axis of the compensation film and the optical axis of the polarizing plate The angle between them is about 45 degrees. 9. The liquid crystal display of claim 1, wherein a reflecting plate is provided on an inner or outer surface of one of the substrates, and a polarizing plate is provided on an outer surface of the other substrate. on. 10. The liquid crystal display of claim 1, wherein an additional optical compensation film is embedded between the other substrate and the polarizing plate, but in this case, the optical axis of the compensation film and the The angle between the optical axes of the polarizing plates 15 is about 45 degrees. 11. A liquid crystal display comprising: an upper substrate having an upper electrode formed on a surface of the upper substrate, wherein a planar alignment film is formed on the electrode; and a lower substrate facing the upper substrate a surface of the underlying substrate 20 is formed with a lower layer electrode, and a surface grating film is laminated thereon, and the surface grating film has a two-dimensional surface relief grating of an axially symmetric multi-alignment array, and The surface grating film comprises a conductive material; and a 20 1299803 liquid crystal having a negative dielectric anisotropy is sealed in a space between the upper substrate and the lower substrate. I2. The liquid crystal display of claim 2, wherein a vertical alignment film is further laminated on the surface grating film. 13. The liquid crystal display of claim 11, wherein a slope of the surface X is a slope of the liquid crystal molecules of the substrate near the normal direction of the substrate, from 0 to 9 degrees. A liquid crystal display of claim 11 wherein the array is made of a curable optical resin having an absorption wavelength bandwidth in the ultraviolet range and a high penetration 1* in the visible range, and wherein The refractive index of the liquid crystal display is 3% lower than the general refractive index of the liquid crystal. A liquid crystal display according to claim 11 wherein the array of the array is equivalent to one-half to two times the periodicity of the pixels. A liquid crystal display according to claim 11, wherein the height of the surface irregular grating of the array is adjusted by using ultraviolet light. The liquid crystal display of claim 11, wherein the two polarizing plates are: (5) placed on the outer surface of the upper substrate and the lower substrate, and wherein the liquid crystal display further comprises a backlight unit. A liquid crystal display of claim 17 wherein one additional light is applied between the respective outer surfaces of the substrates and the corresponding light plate, and wherein the optical axis of the compensation film and the polarizing plate The angle between the optical axes is approximately 45 degrees. A liquid crystal display according to the ninth aspect of the invention, a reflective panel is provided on the surface of the substrate, and a polarizing plate 21 1299803 is provided on the outer surface of the other substrate. 20. The liquid crystal display of claim 19, wherein an additional optical compensation film is embedded between the other substrate and the polarizing plate, and between the optical axis of the compensation film and the optical axis of the polarizing plate The angle is about 45 degrees. 521. A liquid crystal display comprising: an upper substrate, an upper layer electrode formed on a surface of the upper substrate, and a vertical alignment film formed on the electrode; the lower substrate having: a surface a grating film laminated on the underlying substrate and having a two-dimensional surface relief grating of an axially symmetric multi-alignment array 10; and a lower layer electrode uniformly formed on the surface of the grating film; and the surface grating film comprises a conductive material; and sealing a liquid crystal having a negative dielectric anisotropy in a space between the upper substrate and the lower substrate. 22. The liquid crystal display of claim 21, wherein a vertical alignment film is further laminated on the surface grating film. 22 1299803 VII. Designated representative map: (1) The representative representative of the case is: (1). (2) The symbol of the symbol of the representative figure is briefly described: 10...upper substrate 12: upper electrode 14, 26... alignment film 20.. lower substrate 22.. lower electrode 24: surface grating film 30 .. . Liquid crystal 40.. . Upper polarizing plate 50... Lower polarizing plate 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW90113018A 2001-06-11 2001-06-11 Liquid crystal display having a surface grating film with axially symmetric multi-aligned arrays of 2-dimensional surface relief gratings TWI299803B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90113018A TWI299803B (en) 2001-06-11 2001-06-11 Liquid crystal display having a surface grating film with axially symmetric multi-aligned arrays of 2-dimensional surface relief gratings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90113018A TWI299803B (en) 2001-06-11 2001-06-11 Liquid crystal display having a surface grating film with axially symmetric multi-aligned arrays of 2-dimensional surface relief gratings

Publications (1)

Publication Number Publication Date
TWI299803B true TWI299803B (en) 2008-08-11

Family

ID=45069794

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90113018A TWI299803B (en) 2001-06-11 2001-06-11 Liquid crystal display having a surface grating film with axially symmetric multi-aligned arrays of 2-dimensional surface relief gratings

Country Status (1)

Country Link
TW (1) TWI299803B (en)

Similar Documents

Publication Publication Date Title
TW522260B (en) Optical compensation sheet and liquid crystal display
TWI250327B (en) Reflecting board, liquid crystal device and electronic device
KR100789512B1 (en) Liquid crystal display device
JPWO2008062682A1 (en) Liquid crystal display panel and method for manufacturing liquid crystal display panel
WO2015146369A1 (en) Liquid crystal display device and production method for liquid crystal display device
JP2003207782A (en) Vertically aligned liquid crystal display device
US7352423B2 (en) Liquid crystal display using compensating film and manufacturing method thereof
WO2007135797A1 (en) Transmission liquid crystal display device
WO2007026535A1 (en) Liquid crystal display device using nematic liquid crystal
CN100428012C (en) Viewing angle compensating plate, manufacturing method thereof and display device including the same
EP1164411A1 (en) Liquid crystal display
JP3292591B2 (en) Liquid crystal display device
JP4553585B2 (en) Liquid crystal display device with multi-region effect formed by surface undulations
TWI299803B (en) Liquid crystal display having a surface grating film with axially symmetric multi-aligned arrays of 2-dimensional surface relief gratings
TWI339300B (en) Liquid crystal display device
JP3400403B2 (en) Liquid crystal display
JP4442723B2 (en) Liquid crystal display element and manufacturing method thereof
JP3639490B2 (en) Liquid crystal display
JP2004341049A (en) Method for manufacturing liquid crystal display element
JP2004109403A (en) Liquid crystal display element
JP2000039615A (en) Liquid crystal electrooptical device and its manufacture
JP3583250B2 (en) Reflective liquid crystal display
JP4399212B2 (en) Liquid crystal light modulator, manufacturing method thereof, and liquid crystal display device
JP2023029254A (en) Liquid crystal panel and liquid crystal display device
JP2000356773A (en) Liquid crystal display element and its manufacture

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent