TWI299726B - Composite alumina monocrystallite powders for low-temperature sintering - Google Patents

Composite alumina monocrystallite powders for low-temperature sintering Download PDF

Info

Publication number
TWI299726B
TWI299726B TW94100289A TW94100289A TWI299726B TW I299726 B TWI299726 B TW I299726B TW 94100289 A TW94100289 A TW 94100289A TW 94100289 A TW94100289 A TW 94100289A TW I299726 B TWI299726 B TW I299726B
Authority
TW
Taiwan
Prior art keywords
powder
single crystal
low
temperature sintering
composite
Prior art date
Application number
TW94100289A
Other languages
Chinese (zh)
Other versions
TW200624403A (en
Inventor
Fusu Yen
Peiching Yu
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW94100289A priority Critical patent/TWI299726B/en
Publication of TW200624403A publication Critical patent/TW200624403A/en
Application granted granted Critical
Publication of TWI299726B publication Critical patent/TWI299726B/en

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

1299726 九、發明說明 【發明所屬之技術領域】 本發明係有關於一種複合氧化鋁粉末,特別是有關於低 溫燒結用之複合氧化鋁單晶型粉末。 【先前技術】 氧化銘(Al2〇3)是常用的陶瓷材料之一,目前的應用越 來越廣。目前產業界生產緻密氧化鋁相關產品,例如财磨元 件、絕緣零件、坩鍋等時,多在高於160(rc以上燒結 (Sintering )。若產品為透光氧化鋁陶瓷時,其燒結溫度更高 達1700°C以上。因此,生產緻密氧化鋁相關產品為一種高 耗能製程。 大體而言,降低氧化鋁微細粉末之粒徑可望能降低燒結 溫度,而達到低溫燒結的目的。目前習知經由拜爾法(Bayer Process)製得人工氧化鋁微粒,一般係由原料礦鋁土礦 (Bauxite),也就是礦物學上的硬水鋁石[Diasp〇re ; aio(oh)]、三水銘石[Gibbsite ; a1(〇h)3;]及軟水鋁石 (Boehmite ; AlOOH)三者的混合物,經溶解析出三水鋁石結 晶加以鍛燒(Calcination)而得到α _氧化鋁粗粉。然後,再經 粉碎、篩分而得各粒徑品級的商用氧化鋁粉。由於上述製程 在粉碎、研磨過程中,因需加入磨媒,同時研磨既耗能,在 粉碎、研磨成效上亦有其成效的極限,不易獲得次微米或奈 米級粉末,且又有雜質與耗能等問題。其次,所得之粉體粒 徑亦無法於低溫燒結,因此,有諸多習知技術提出降低氧化 1299726 銘粉末晶徑及燒結溫度的方法。 麥辛(G.L· Messing)與熊谷(M· Kumagai)於 1994 年在美 國陶竟協會學報(American Ceramics Society Bulletin)第 73 卷第10期第88頁至第91頁所發表之「以α _相氧化鋁為種 晶之軟水鋁石(Boehmite)膠體的低溫燒結(Low-Temperature Sintering Of α-Alumina-Seeded Boehmite Gel)」一文中,提 出以α -相氧化銘微粒作為晶種加入軟水銘石中,於1mo匸 至1300 C經持溫1〇〇分鐘後,可得密度大於95理論密度百 分比(% Theoretical Density ;〇/〇 τ· D_)、晶徑小於 i 微米(# m)的α -相氧化鋁陶瓷體。同時更預測如果有晶徑2〇奈米 (nm)的α -相氧化鋁微粒,其陶瓷體可於995或丨〇31 c 燒結獲得,此時其活化能分別為418 kJ/m〇1或543 kJ/m〇i。 不過,由於目前仍不易獲得晶徑至2〇奈米之α _相氧化鋁粉 末,因此實際上並無應用於工業化生產。 我國專利公告號第567169號係揭露一種“_氧化鋁微 細粉末及其製造方法,其包含步驟:將一種作為“ _氧化鋁 先貝(Precursor)之鋁化合物和作為種晶之至少一種選自鈦 化合物、鐵化合物、鉻化合物…氧化銘、氮化銘、碳化 鋁和硼化鋁族群中者相混合之步驟,及於6〇〇艽至⑺⑻艽於 濃度1體積百分比至2G體積百分比的氣化氫(HC1)氣體存在 下鍛燒該混合物之步驟,其中種晶為主要粒徑低於1〇〇奈米 的粉末。所得之氧化銘 < 主要粒徑範圍係介於1〇奈米至100 奈米#面體形且形狀均勻,其中α _相氧化鋁之含量超過 90重量百分比。 1299726 我國專利公告號第5 7 9 3 7 2號係揭露一種製造多晶性氧 化銘燒結坯體的方法’其包含下列步驟:將氧化鋁粉末經超 音波,在不使用研磨介質的情況下,進行機械攪拌,或在不 使用研磨介質的情況下進行超音波照射及機械攪拌,產生分 散於溶劑的泥漿;使該泥漿乾燥及成型,以製作生坯;在常 壓大氣下’以1400°C到1800°C的溫度範圍燒結該生坯,·其 中該純度為99.99重量百分比或更大的氧化鋁晶粒,包括幾 乎沒有裂紋表面的多角形粒子,並且包括多角形的^氧化鋁 粒子;D/Η比例為0·5或更大到3·〇或更小,其中〇表示平 行於α氧化鋁粒子六角形密閉晶袼(Hexag〇nal cl〇sest Packing)之六角形晶格平面的最大粒子直徑,而H表示垂直 於α氧化鋁粒子六角形密閉晶格之六角形晶格平面的最大 粒子直徑;數目平均粒子大小為〇1微米或更大到1〇微米 或更小;D90/D10比例為7或更小,其中D9〇及m〇分別 是累積粒子大小分佈裡從最小粒子端開始,累積1〇%直徑 及累積90%直徑時的粒子大小。 “练s之,上述習知技術包括氧化鋁粉之製作及以氧化鋁 粉末燒結氧化銘陶£冑。前者係w ^相氧化銘《其他金屬 曰物作為種,加入軟水紹石、氫氧化銘或過渡氧化銘 後,在酸性氣體存在下於6〇〇。(:至1〇〇〇〇c鍛燒得心相氧化 鋁粉末。後者或說明迄無工業化之製程,於1200 c至 1300 C經持溫1〇〇分鐘燒結氧化鋁陶體;抑或以另一種方 式’ι將氧化鋁粉末照射超音波及/或機械攪拌,以產生泥漿 並製作生培’然後再以到1800°C的高溫度範圍燒結 1299726 此生坯。前者方法較複雜,且重點在於低溫燒結以α_相氧化 鋁為種晶之軟水鋁石(Boehmite)膠體,並未提及是否可於低 溫燒結之氧化鋁粉末;後者係以將以氧化鋁粒子產生分散於 溶劑的泥漿之步驟產生生坯以及於14〇〇t:到18〇〇t:的溫度 庫巳圍燒結此生坯為訴求,實非關粉末配方,且仍須於較高溫 度下進行燒結。 【發明内容】 本發明的目的之一就是揭露一種低溫燒結用之複合氧 化銘單晶型粉末’其係利用混合適當比例之晶徑介於奈 米至50奈米之間的θ_相氧化鋁單晶型粉末與晶徑介於幼 奈米至100奈米之間的α_相氧化鋁單晶型粉末,可於約 120(TC燒結緻密。由於本發明之低溫燒結用之複合氧化銘翠 晶型粉末係經由兩種不同晶徑之單晶型粉末混合而成,除粉 末粒體具有較低的燒結活化能外,其中晶# 30奈米至5〇 奈米的Θ-相氧化紹單晶型粉末可適度提高燒結前生述的密 度,因此可以較一般…相氧化鋁粉末易於燒結。不僅可減少 建造燒結使用之高溫爐的費用,同時能以低溫燒結, 2能’降低生產成本。另一優勢則是更易於得到晶、 均勻之陶瓷體。 ,發明上述之目的,提出一種低溫燒結用之複合氧 、早晶型粉末,至少包含5重量百分比至45重量百分比 之Θ-相氧化IS單晶型粉末以及55重量百分比至%重量百 分比之Μ目氧仙單晶型粉末,其中此低溫燒結用之複合氣 1299726 匕銘早晶型粉末的θ相氧化銘單晶型粉末及oc·相氧化銘單 晶型粉末之晶徑分別介於3〇奈米至50奈米以及5()奈米至 100奈米之間,且可於約120(TC燒結緻密。 时依’、、、本發明—較佳實施例,上述低溫燒結用《複合氧化 單Μ里叙末更至少包含添加物,且此添加物可例如其他礦 物、人工合成陶瓷粉末、金屬粉末、金屬氧化物粉末:金屬 鼠化物粉末、金屬碳化物粉末、金屬钱物粉末、高分子材 料粉末或其上述之任意組合。 ,應用上述低溫燒結用之複合氧化鋁單晶型粉末時,由於 係:用混合適當比例之晶徑介於3〇奈米至50奈米之間的θ_ 相氧化鋁單晶型粉末與晶徑介於5〇奈米至ι〇〇奈米之間的 相氧化IS單晶型粉末,此複合氧化銘單晶型粉末因具有兩 :粒度分佈而提高生坯堆疊密度’可於約12〇rc燒結緻 :’因此不僅降低能耗,且所得之陶竟體的晶粒十分細小均 【實施方式】 用曰本發明之低溫燒結用之複合氧化鋁單晶型粉末,其係利 ^合適當比例之晶徑介於3〇奈米至5G奈米之間的0_相 相&鋁單晶型粉末與晶徑介於5 〇奈米至i 〇 〇奈米之間的以_ 說=化鋁單晶型粉末,可於約12〇〇t燒結緻密。以下詳細 °明本發明之低溫燒結用之複合氧化鋁單晶型粉末。 量=低溫燒結用之複合氧化鋁單晶型粉末至少包含5重 里百分比至45重量百分比之Θ-相氧化鋁單晶型粉末以及55 1299726 重量百分比至95重量百分比之α_相氧化鋁單晶型粉末,其 :f述低溫燒結用之複合氧化鋁單晶型粉末之θ_相氧化鋁 早晶型粉末及α-相氧化鋁單晶型粉末的晶徑分別 介於30奈BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite alumina powder, and more particularly to a composite alumina single crystal powder for low temperature sintering. [Prior Art] Oxidation (Al2〇3) is one of the commonly used ceramic materials, and its current application is becoming more and more extensive. At present, the industry produces dense alumina-related products, such as cutting elements, insulating parts, crucibles, etc., which are more than 160 (Sintering). If the product is a transparent alumina ceramic, the sintering temperature is even higher. Up to 1700 ° C. Therefore, the production of dense alumina-related products is a high-energy process. In general, reducing the particle size of alumina fine powder is expected to reduce the sintering temperature, and achieve the purpose of low-temperature sintering. Artificial alumina particles are produced by Bayer Process, generally from Bauxite, which is mineralogical diaspore [Diasp〇re; aio(oh)], Sanshui A mixture of stone [Gibbsite; a1(〇h)3;] and boehmite (AlOOH) is dissolved and precipitated from gibbsite crystals for calcination to obtain α-alumina coarse powder. After crushing and sieving, commercial alumina powders of various particle size grades are obtained. Because the above process is involved in the grinding and grinding process, the grinding media is required, and the grinding consumes energy, and the grinding and grinding effects are also The limit of its effectiveness It is difficult to obtain sub-micron or nano-sized powders, and there are problems such as impurities and energy consumption. Secondly, the obtained powder particle size cannot be sintered at low temperature. Therefore, many conventional techniques have proposed to reduce the crystal diameter of 1299726 Method of sintering temperature. GL·Messing and M. Kumagai, published in the American Ceramics Society Bulletin, Vol. 73, No. 10, pp. 88-91. "Low-Temperature Sintering Of α-Alumina-Seeded Boehmite Gel", in which α-phase oxidized Ming particles are used as seed crystals Adding to the soft water stone, after holding for 1 〇〇 minutes from 1mo匸 to 1300 C, the density is greater than 95% theoretical density (% Theoretical Density; 〇/〇τ·D_), and the crystal diameter is less than i micron (# m Α-phase alumina ceramic body. It is also predicted that if there are α-phase alumina particles with a crystal diameter of 2 nanometers (nm), the ceramic body can be obtained by sintering at 995 or 丨〇31 c, at which time it is activated. Can be 418 kJ/m〇1 or 5 respectively 43 kJ/m〇i. However, since it is still not easy to obtain α-phase alumina powder with a crystal diameter of 2 〇 nanometer, it is not actually used for industrial production. China Patent Publication No. 567169 discloses a kind of “ _Aluminum oxide fine powder and a method for producing the same, comprising the steps of: oxidizing an aluminum compound as "precursor" and at least one selected from the group consisting of titanium compounds, iron compounds, chromium compounds, a step of mixing a mixture of nitriding, aluminum carbide, and aluminum boride, and calcining the mixture in the presence of a gasification hydrogen (HC1) gas at a concentration of 1 volume percent to 2 g volume percent from 6 Torr to (7) (8) The step wherein the seed crystal is a powder having a primary particle diameter of less than 1 nanometer. The obtained oxidation mark < main particle size range is from 1 〇 nanometer to 100 nanometer #面面形 and uniform shape, wherein the content of α _ phase alumina exceeds 90% by weight. 1299726 Chinese Patent Publication No. 5 7 9 3 7 2 discloses a method for producing a polycrystalline oxidized sintered green body, which comprises the following steps: ultrasonically filtering an alumina powder without using a grinding medium, Perform mechanical agitation, or perform ultrasonic irradiation and mechanical agitation without using a grinding medium to produce a slurry dispersed in a solvent; dry and shape the slurry to produce a green body; at a normal pressure atmosphere of '1400 ° C The green body is sintered to a temperature range of 1800 ° C, wherein the purity is 99.99 weight percent or more of alumina crystal grains, including polygonal particles having almost no crack surface, and includes polygonal alumina particles; /Η ratio is 0·5 or more to 3·〇 or less, where 〇 represents the largest particle parallel to the hexagonal lattice plane of the alpha alumina particle Hexag〇nal cl〇sest Packing Diameter, and H represents the maximum particle diameter perpendicular to the hexagonal lattice plane of the alpha alumina particle hexagonal closed lattice; the number average particle size is 〇 1 μm or more to 1 μm or less D90 / D10 ratio of 7 or less, and wherein D9〇 m〇 cumulative particle size distribution, respectively from the smallest particle side in the cumulative particle size at 1〇% diameter and a cumulative 90% diameter. "Let's practice, the above-mentioned conventional technology includes the production of alumina powder and the sintering of alumina powder by the alumina powder. The former is w ^ phase oxidation Ming "other metal sputum as a species, adding soft water Shao Shi, KOH Ming Or after the transitional oxidation, in the presence of acid gas at 6 〇〇. (: to 1 〇〇〇〇c calcined to obtain the phase of the alumina powder. The latter or the process of no industrialization, from 1200 c to 1300 C Sintering the alumina ceramics at a temperature of 1 minute; or in another way 'illuminating the alumina powder with ultrasonic waves and/or mechanical agitation to produce a slurry and making a bioculture' and then at a high temperature of 1800 ° C The range is sintered 1299726. The former method is more complicated, and the focus is on the low-temperature sintering of the Boehmite colloid with α-phase alumina as the seed crystal. There is no mention of whether the alumina powder can be sintered at low temperature; In order to produce the green body by the step of producing the slurry dispersed in the solvent by the alumina particles and sintering the green body at a temperature of 14 〇〇t: to 18 〇〇t:, it is a non-off powder formula, and still has to be At higher temperatures SUMMARY OF THE INVENTION One object of the present invention is to disclose a composite oxidized single crystal type powder for low-temperature sintering, which utilizes a mixture of appropriate proportions of crystal diameters ranging from nanometers to 50 nanometers. The phase alumina single crystal powder and the α_phase alumina single crystal powder having a crystal diameter ranging from nna to 100 nm can be densely sintered at about 120 (TC). The composite for low temperature sintering of the present invention The oxidized Mingcui crystal powder is formed by mixing two single crystal powders of different crystal diameters, except that the powder granules have a lower sintering activation energy, wherein the #-phase of the crystal #30 nm to 5 〇 nanometer The oxidized single crystal powder can moderately increase the density before sintering, so it can be easily sintered compared with the general phase alumina powder. It can not only reduce the cost of the high temperature furnace used for sintering, but also can be sintered at low temperature. Production cost. Another advantage is that it is easier to obtain a crystalline, uniform ceramic body. For the above purpose, a composite oxygen, early crystalline powder for low temperature sintering is proposed, which comprises at least 5 to 45 weight percent. Θ-phase oxidized IS single crystal powder and 55 wt% to % by weight of oxime oxygen single crystal powder, wherein the low temperature sintering composite gas 1299726 匕 早 early crystal powder θ phase oxidation Ming single crystal type The crystal diameter of the powder and the oc-phase oxidized single crystal powder are respectively between 3 Å to 50 nm and 5 () nm to 100 nm, and can be about 120 (TC sintered compact). ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Powder: metal rat powder, metal carbide powder, metal powder, polymer powder or any combination thereof. When the composite alumina single crystal powder for low-temperature sintering described above is used, it is a mixture of a θ_ phase alumina single crystal powder having a crystal diameter of between 3 nm and 50 nm and a crystal diameter. A phase-oxidized IS single crystal powder between 5 nanometers and ι 〇〇 nanometer, the composite oxidized single crystal powder has a green bulk density of about 12 〇rc due to two: particle size distribution. Sintering: 'Therefore, not only the energy consumption is reduced, but also the crystal grains of the obtained ceramic body are very fine. [Embodiment] The composite alumina single crystal powder for low-temperature sintering of the present invention is used as a suitable ratio. The 0_phase phase & aluminum single crystal powder with a crystal diameter between 3 〇 nanometer and 5G nanometer and the crystal diameter between 5 〇 nanometer and i 〇〇 nanometer The aluminum single crystal type powder can be sintered and densified at about 12 〇〇t. The composite alumina single crystal powder for low-temperature sintering of the present invention will be described in detail below. Amount of composite alumina single crystal powder for low temperature sintering containing at least 5 to 45 percent by weight of the yttrium-phase alumina single crystal powder and 55 1299726 to 95 weight percent of the alpha phase alumina single crystal a powder, wherein: the crystal diameter of the θ_phase alumina early crystal powder and the α-phase alumina single crystal powder of the composite alumina single crystal powder for low-temperature sintering are respectively 30 nm

米至50奈米之間以及5〇奈米至1〇〇奈米之間。再者,上述 =恤k、’Ό用之複合氧化鋁單晶型粉末可於約! 2⑽。c燒結緻 在。另外’需要說明的是’本發明複合氧油單晶型粉末在 上述所言之條件下,所稱之晶徑即為粒徑。 根據本發明一較佳實施例,所使用之晶徑介於%奈米 =50奈米之間的θ•相氧化銘單晶型粉末以及晶捏介於 奈米至100奈米之間的α_相氧化銘單晶型粉末係利用過渡 相氧化紹之混合粉體’例如Μ目氧化紹粉體以及軟水紹石 之犯口叙體’經由至少一次之相轉變反應而得到。由於不需 經過粉碎即可直接製得所需晶徑大小之粉末,因此避免習知 製程因粉碎而造成的雜質及耗能等問題。Between rice and 50 nanometers and between 5 nanometers and 1 nanometer. Furthermore, the composite alumina single crystal powder of the above-mentioned = shirt k, 'Ό can be used for about! 2 (10). c sintering caused by. Further, it is to be noted that the composite oxygen oil single crystal powder of the present invention has a crystal diameter as a particle diameter under the above-described conditions. According to a preferred embodiment of the present invention, the θ• phase oxidized single crystal powder having a crystal diameter between % nanometers and 50 nanometers is used, and the crystal is kneaded between nanometers and 100 nanometers. _ Phase Oxidation Single Crystal Powder is obtained by using a transition phase oxidation of a mixed powder 'for example, an oxidized Shaoxing powder and a soft water shovel' through a phase transition reaction. Since the powder of the desired crystal size can be directly obtained without pulverization, the problems of impurities and energy consumption caused by the pulverization of the conventional process are avoided.

根據本發明-較佳實施例,此低溫燒結用之複合氧化銘 單晶型粉末,在應用於陶£配方原料時,更可視製程需求而 添加分散劑。再者,在本發明另一較佳實施例中,亦可於此 低溫燒結用之複合氧化紹單晶型粉末中選擇性加入添加 物’而添加物一般例如其他礦物、人工合成陶究粉末 粉末、金屬氧化物粉末、金屬氮化物粉末、金屬碳化物粉末、 金屬硼化物粉末、高分子材料粉末或其上述之任意組人 中上述適合的礦物可例如黏土、長— 口八 负石或石央。此外,在本 明又一較佳實施例中,此低溫燒㈣之複合氧化料晶 末之原料型態更可視製程需求,而製成漿料、塑性料或: 10 Ϊ299726 =’其中漿料以及塑性料之含水率可例如介於iq體積百分 卞 1 ”、而上述列舉之分散 μ、添加物或原料型態並非用以_本發明,此技術領域中 任何具有通常知識者,在不脫離本發 一 精神和範圍内,當 了另仃添加其他各種適用之分散劑、 態之原料。 卿次裟成其他型 同社1’ : t本發明之特徵在於藉由混合兩種不同晶徑且不 3〇rf r5t 11# ^ ^ ^ ^ ^ ^ ^ )^ 間的㈠氧化料晶型粉末以及晶徑 =為^…介於5G奈米纟⑽奈米之間的α_相氧化紹單晶 广以於低溫燒結緻密。在0_相氧化銘 =過程中,由於兩相之間難結合反應,因此利用= 氧化料晶型粉末進行燒結時,晶粒較小之 ^呂:晶型粉末有助於提高㈣密度,同時在燒結時也可利 =的θ_相減料晶型粉末轉相氧油單 長。其次’因θ_相氧化銘單晶型粉末的相變 ’Γ二L晶徑達到相變晶徑(約20奈米)與否,就θ-相 早晶型粉末之晶粒介於30奈米至5〇奈米而言,溫 過8Gn:即可發生相變。因此整體複合單晶型粉末 每成的生&可在M目氧油單晶型粉末之相變發生後,盘… ==銘單晶型粉末同時產生燒結。再者,θ•相氧化銘經 相氧化紹單晶型粉末的晶徑也約略不變,與原 早曰曰里私末中之α_相氧化銘單晶型粉末可造成較密堆 1299726 積’加上θ_相氧化鋁單晶型粉末的晶徑較小,目此,本發 明低溫燒結用之複合氧化鋁單晶型粉末可於約1200 t:4 即燒結緻密。 ' 2下列舉較佳實施例以更詳盡闞述本發明之低溫燒結 用之複合氧化銘單晶型粉末的期,然其並㈣以限定本發 明,因此本發明之保護範圍當視後附之中請專利範圍所界^According to the preferred embodiment of the present invention, the composite oxidized single crystal powder for low-temperature sintering can be added to a disintegrating agent when it is applied to a ceramic raw material. Furthermore, in another preferred embodiment of the present invention, the additive may be selectively added to the composite oxide single crystal powder for low-temperature sintering, and the additive is generally, for example, other minerals, synthetic ceramic powder powder. The metal oxide powder, the metal nitride powder, the metal carbide powder, the metal boride powder, the polymer material powder or any of the above-mentioned suitable minerals may be, for example, clay, long-mouth sapphire or stone . In addition, in another preferred embodiment of the present invention, the raw material type of the low-temperature sintering (four) composite oxidized material crystal grain is more visible to the process requirements, and is made into a slurry, a plastic material or: 10 Ϊ 299726 = 'where the slurry and The moisture content of the plastic material can be, for example, between iq volume percent 卞 1 ”, and the above-mentioned dispersion μ, additive or raw material type is not used in the present invention, and any one of ordinary skill in the art can not In the spirit and scope of the present invention, when various other suitable dispersing agents and materials are added, the other types of materials are used. The invention is characterized by mixing two different crystal diameters and not 3〇rf r5t 11# ^ ^ ^ ^ ^ ^ ^ ^ ^ Between (a) oxidized material crystal powder and crystal diameter = ^ ... between 5G nano 纟 (10) nanometer α_ phase oxidation For low-temperature sintering and compaction, in the process of 0_phase oxidation=, due to the difficult combination reaction between the two phases, when the sintering is performed with the oxidized oxide crystal powder, the crystal grains are smaller: the crystal powder helps In order to increase the density of (4), and at the same time, it is also possible to reduce the θ_phase reduction crystal powder during sintering. The phase-shifting oxygen oil has a single length. Secondly, because of the phase change of the θ_phase-oxidized single crystal powder, the L-L crystal diameter reaches the phase-change crystal diameter (about 20 nm) or not, and the θ-phase early crystalline powder The crystal grain is between 30 nm and 5 nm, and the temperature is over 8 Gn: the phase change can occur. Therefore, the raw composite of the whole composite single crystal powder can be used in the M-type oxygen oil single crystal powder. After the phase change occurs, the disk... == Ming single crystal powder simultaneously produces sintering. Furthermore, the crystal diameter of the θ• phase oxidation Ming phase single crystal powder is also approximately unchanged, and the original early 曰曰The α_phase oxidized single crystal powder in the middle can cause the densely packed 1299726 product 'plus the θ_ phase alumina single crystal powder to have a smaller crystal diameter. Therefore, the composite alumina single crystal for low temperature sintering of the present invention The type powder may be sintered and densified at about 1200 t:4. The preferred embodiment is exemplified to describe in more detail the period of the composite oxidized single crystal type powder for low temperature sintering of the present invention, and (4) to limit the present invention. Therefore, the scope of protection of the present invention is in the scope of the patent.

者為準。 實施你丨Subject to it. Implement you丨

首先,取晶徑介於30奈米至50奈米之間之θ_相氧化 2單晶型粉末以及晶徑介於50奈米至1〇〇奈米之間之心相 氧化鋁單晶型粉末,分別以2〇重量百分比以及8〇重量百分 比均勻混合後,經粒徑分佈分析之結果如第1圖之所二 下來,將上述複合氧化鋁單晶型粉末經注漿法獲得之生坯, 利用熱膨脹儀(Dilatometer ; DIL)經線收縮分析之結果如第 ^圖之所示。然後,將上述複合氧化鋁單晶型粉末於約Η⑻ c經持溫不同時間後所得之相對密度之結果如第3圖之所 不。由第3圖得知,在經持溫超過8小時後,所得之陶瓷體 密度可大於95 % T. D.。 之後,將95%T· D.之陶瓷體經掃描式電子顯微鏡的分 析,其結果如第4Α圖至第4Β圖之所示。由第4Α圖至第 4Β圖得知,所得之陶瓷體其晶粒十分細小均勻且緻密。 值得一提的是,本發明低溫燒結用之複合氧化鋁單晶型 粕末克服習知製程因粉碎而造成的雜質及耗能等問題,可直 12 1299726 接以所需晶徑大小之粉末,於低溫燒結成晶粒細小之陶究 體,不僅提高其機械性質,更擴大氧化鋁陶瓷之工業應用範 圍’尤其是電子陶瓷之厚膜基板、封裝材料等。 由上述本發明較佳實施例可知,應用本發明之低溫燒结 用之複合氧化銘單晶型粉末,其優點在於利用混合適當比例 之晶徑介於30奈米至50奈米之間的θ_相氧化鋁單晶型粉 末與晶徑介於50奈米至100奈米之間的心相氧化鋁單晶型 粉末,可於約謂匕燒結緻密。由於本發明之複合氧化銘 単晶型粉末係經由兩種不同晶徑之單晶型粉末混合而成,除 具有較低的燒結活化能外,其中晶徑介於3〇奈米至5〇奈米 之間的Θ-相氧化铭單晶型|末可適度冑高燒結前生述的密 度,因此可以較一般α_相氧化鋁粉末易於燒結。不僅可減少 建造燒結使用之高溫爐的費用,同時能以低溫燒結,大幅節 省耗能,降低生產成本,另-優勢是更易於得到晶粒細小均 勻之陶瓷體。 2然本發明已以數個較佳實施例揭露如上,然其並非用 以限定本發明,惟此技術領域中任何具有通常知識者,在不 脫離本發明之精神和範圍内,#可作各種之更動與潤飾,因 此本發明之保護冑If牙見後附之申_專利冑圍所界定者為 【圖式簡單說明】 、第/圖係繪示根據本發明一較佳實施例之低溫燒結用 之複α氧化鋁單晶型粉末的粒徑分佈分析圖; 13 1299726 第2圖係繪示根據本發明一較佳實施例之低溫燒結用 之複合氧化鋁單晶型粉末的線收縮分析圖; 第3圖係繪示根據本發明一較佳實施例之低溫燒纟士 之複合氧化鋁單晶型粉末經12〇(rc捭、、四 ^ L得μ不冋時間與相對 度的關係圖;以及 #在 第4Α圖至第4Β圖係繪示根據太 很像本發明一較佳實施例之First, a θ_phase oxidation 2 single crystal powder having a crystal diameter of between 30 nm and 50 nm and a cardiac alumina single crystal having a crystal diameter of 50 nm to 1 nm. The powder is uniformly mixed at a weight percentage of 2 以及 and a weight percentage of 8 分别, respectively, and the result of the particle size distribution analysis is as shown in FIG. 1 , and the green body obtained by the above-mentioned composite alumina single crystal powder is grouted. The results of the warp shrinkage analysis using a thermal dilatometer (DIL) are shown in Fig. Then, the result of the relative density obtained by holding the above composite alumina single crystal powder at about Η(8) c for a different period of time is as shown in Fig. 3. It can be seen from Fig. 3 that the obtained ceramic body density can be greater than 95% T. D. after holding for more than 8 hours. Thereafter, the ceramic body of 95% T·D. was analyzed by a scanning electron microscope, and the results are shown in Fig. 4 to Fig. 4 . It is known from the fourth to fourth figures that the obtained ceramic body has fine crystal grains which are fine and uniform. It is worth mentioning that the composite alumina single crystal type in the low-temperature sintering of the present invention overcomes the problems of impurities and energy consumption caused by the pulverization in the conventional process, and can be connected to the powder of the desired crystal size by 12 1299726. Sintering at low temperatures into fine ceramics not only improves its mechanical properties, but also expands the industrial application range of alumina ceramics, especially thick film substrates and packaging materials for electronic ceramics. It is apparent from the above preferred embodiment of the present invention that the composite oxidized single crystal type powder for low-temperature sintering of the present invention has the advantage of utilizing a mixture of a suitable ratio of crystal diameters ranging from 30 nm to 50 nm. The _ phase alumina single crystal powder and the heart phase alumina single crystal powder having a crystal diameter of between 50 nm and 100 nm can be densely sintered in about 匕. Since the composite oxidized crystal of the present invention is formed by mixing two single crystal powders of different crystal diameters, in addition to having a low sintering activation energy, the crystal diameter ranges from 3 nanometers to 5 nanometers. The Θ-phase oxidation between meters is a single crystal type. The end can be moderately high and the density is high before sintering, so it can be easily sintered compared with the general α-phase alumina powder. It not only reduces the cost of building a high-temperature furnace for sintering, but also enables low-temperature sintering, which saves energy and reduces production costs. Another advantage is that it is easier to obtain a ceramic body with fine and uniform grains. The present invention has been disclosed in the above several preferred embodiments. However, it is not intended to limit the invention, and any one of ordinary skill in the art can make various kinds without departing from the spirit and scope of the invention. The modification and retouching of the present invention are defined by the following claims. The figure is a simplified description of the drawings, and the figure shows the low-temperature sintering according to a preferred embodiment of the present invention. Particle size distribution analysis diagram of complex alpha alumina single crystal powder used; 13 1299726 Fig. 2 is a line contraction analysis diagram of composite alumina single crystal powder for low temperature sintering according to a preferred embodiment of the present invention FIG. 3 is a diagram showing the relationship between the time and the relative degree of the composite alumina powder of the low-temperature burnt gentleman according to a preferred embodiment of the present invention after 12 〇 (rc捭, 4·L). And # in the fourth to fourth drawings are based on a very preferred embodiment of the present invention.

95%T. D_之陶瓷體的掃描式電子顯微照片。Scanning electron micrograph of a ceramic body of 95% T. D_.

Claims (1)

1299726 __圓 1. 一種低溫燒結用之複合氧化鋁單晶型粉末,至少包 含: 5重量百分比至45重量百分比之Θ-相氧化鋁單晶型粉 末;以及 55重量百分比至95重量百分比之α-相氧化鋁單晶型粉 末; 其中該Θ-相氧化鋁單晶型粉末之晶徑(即粒徑)係介於 30奈米至50奈米之間,而該α-相氧化鋁單晶型粉末之晶徑 (即粒徑)介於50奈米至100奈米之間,且該低溫燒結用之 複合氧化鋁單晶型粉末係於約1200°C燒結緻密。 2. 如申請專利範圍第1項所述之低溫燒結用之複合氧 化鋁單晶型粉末,其中該低溫燒結用之複合氧化鋁單晶型粉 末更至少包含一分散劑。 3. 如申請專利範圍第1項所述之低溫燒結用之複合氧 化鋁單晶型粉末,其中該低溫燒結用之複合氧化鋁單晶型粉 末更至少包含一添加物,且該添加物係選自於由一礦物、一 人工合成陶竟粉末、一金屬粉末、一金屬氧化物粉末、一金 屬氮化物粉末、一金屬碳化物粉末、一金屬棚化物粉末、一 高分子材料粉末及其上述之任意組合所組成之一族群。 15 1299726 t如申請專利範圍第3項所述之低溫燒結用之複合氧 化鋁單晶型粉末,其中該礦物係選自 ^ ^ y 心曰趴田黏土、長石以及石 夬所組成之一族群。 5·如U利知圍第丨項所述之低溫燒結用之複合氧 呂單晶型粉末,其中該低溫燒結用之複合氧化料晶型粉 末之一原料型態係選自於由漿料、塑性料以及粉料所組成之 一族群。 6·如申明專利範圍第5項所述之低溫燒結用之複合氧 化銘單晶型粉末,其中該漿料之含水率係介於Μ體積百分 比至70體積百分比之間。 7·如中請專利制第5項所述之低溫燒結用之複合氧 ^早晶型粉末,其中該塑性料之含水率係介於H)體積百 刀比至7 0體積百分比之間。 項所述之低溫燒結用之複合氧 之含水率係介於0.1體積百分 8·如申請專利範圍第5 化紹單晶型粉末,其中該粉料 比至10體積百分比之間。1299726 __圆 1. A composite alumina single crystal powder for low-temperature sintering, comprising at least: 5 to 45 wt% of a bismuth-phase alumina single crystal powder; and 55 to 95 wt% of α a phase alumina single crystal type powder; wherein the crystal diameter (ie, particle diameter) of the Θ-phase alumina single crystal type powder is between 30 nm and 50 nm, and the α-phase alumina single crystal The crystal diameter (i.e., particle diameter) of the type powder is between 50 nm and 100 nm, and the composite alumina single crystal powder for low-temperature sintering is sintered compact at about 1200 °C. 2. The composite aluminum oxide single crystal powder for low-temperature sintering according to the first aspect of the invention, wherein the composite alumina single crystal powder for low-temperature sintering further comprises at least one dispersant. 3. The composite alumina single crystal powder for low-temperature sintering according to claim 1, wherein the composite alumina single crystal powder for low-temperature sintering further comprises at least one additive, and the additive is selected From a mineral, a synthetic ceramic powder, a metal powder, a metal oxide powder, a metal nitride powder, a metal carbide powder, a metal shed powder, a polymer material powder and the above A group consisting of any combination. 15 1299726 The composite aluminum oxide single crystal powder for low temperature sintering according to claim 3, wherein the mineral is selected from the group consisting of ^ ^ y heart field clay, feldspar and sarcophagus. 5. The composite oxygen-crystal single-crystal powder for low-temperature sintering as described in U.S.A., wherein the raw material type of the composite oxide powder for low-temperature sintering is selected from the group consisting of slurry and plastic material. And a group of powders. 6. The composite oxide single crystal type powder for low temperature sintering according to claim 5, wherein the slurry has a water content of from Μ volume percent to 70 volume percent. 7. The composite oxygen-oxygen early-type powder for low-temperature sintering according to the fifth aspect of the patent system, wherein the water content of the plastic material is between H) and a volume ratio of 70% to 70% by volume. The moisture content of the composite oxygen for low-temperature sintering described in the section is 0.1% by volume. 8. The single crystal powder of the fifth embodiment is applied, wherein the powder is between 10 volume percent.
TW94100289A 2005-01-05 2005-01-05 Composite alumina monocrystallite powders for low-temperature sintering TWI299726B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94100289A TWI299726B (en) 2005-01-05 2005-01-05 Composite alumina monocrystallite powders for low-temperature sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94100289A TWI299726B (en) 2005-01-05 2005-01-05 Composite alumina monocrystallite powders for low-temperature sintering

Publications (2)

Publication Number Publication Date
TW200624403A TW200624403A (en) 2006-07-16
TWI299726B true TWI299726B (en) 2008-08-11

Family

ID=45069769

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94100289A TWI299726B (en) 2005-01-05 2005-01-05 Composite alumina monocrystallite powders for low-temperature sintering

Country Status (1)

Country Link
TW (1) TWI299726B (en)

Also Published As

Publication number Publication date
TW200624403A (en) 2006-07-16

Similar Documents

Publication Publication Date Title
Vasylkiv et al. Low‐temperature processing and mechanical properties of zirconia and zirconia–alumina nanoceramics
Sahraoui et al. The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder
Wen et al. Synthesis of yttria nanopowders for transparent yttria ceramics
RU2436751C2 (en) Composition for producing refractory materials
WO2009102815A2 (en) Alpha alumina (corundum) whiskers and fibrous-porous ceramics and method of preparing thereof
Du et al. Thermal decomposition of grinding activated bayerite
TW201107268A (en) Method for producing aluminum titanate ceramic body
Zaman et al. Carbon nanotube/boehmite-derived alumina ceramics obtained by hydrothermal synthesis and spark plasma sintering (SPS)
Wahsh et al. Fabrication and technological properties of nanoporous spinel/forsterite/zirconia ceramic composites
Kong et al. Effect of transition metal oxides on mullite whisker formation from mechanochemically activated powders
Parya et al. Co-precipitated ZnAl2O4 spinel precursor as potential sintering aid for pure alumina system
Fu et al. Influence of hydrothermal temperature on structure and microstructure of boehmite
Phillips et al. Relations among particle size, shape, and surface area of Mg (OH) 2 and its calcination product
Li et al. Shape‐controlled synthesis of yttria nanocrystals under hydrothermal conditions
US11479463B2 (en) Method of forming a βSiAlON by spark plasma sintering
CN109811415B (en) Method for preparing mullite whiskers from kaolin at low temperature
TWI299726B (en) Composite alumina monocrystallite powders for low-temperature sintering
JP5827564B2 (en) New mixed hydrous kaolin clay products
CN115520885B (en) Method for preparing multi-stage structure boehmite and alumina for ceramics from aluminum hydroxide coarse powder
CN115353372A (en) Sagger for sintering lithium battery positive electrode material and preparation method thereof
Lashkari et al. Microwave sintering of Al2 (1− x) MgxTi (1+ x) O5 ceramics obtained from mixture of nano-sized oxide powders
Odaka et al. Densification of Ca-doped alumina nanopowders prepared by a new sol–gel route with seeding
Ghosh et al. Influence of gel-derived nanocrystalline spinel in a high alumina castable: Part 1
Chen et al. Controlling hydration of hydratable alumina via co‐grinding with Mg–Al hydrotalcite
Shukur et al. Preparation of cordierite ceramic from Iraqi raw materials

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees