TWI299612B - Method and apparatus for controlling a tx power amplifier - Google Patents

Method and apparatus for controlling a tx power amplifier Download PDF

Info

Publication number
TWI299612B
TWI299612B TW94124919A TW94124919A TWI299612B TW I299612 B TWI299612 B TW I299612B TW 94124919 A TW94124919 A TW 94124919A TW 94124919 A TW94124919 A TW 94124919A TW I299612 B TWI299612 B TW I299612B
Authority
TW
Taiwan
Prior art keywords
power
curve
time slot
original
value
Prior art date
Application number
TW94124919A
Other languages
Chinese (zh)
Other versions
TW200640123A (en
Inventor
Chung Shine Huang
Ping Chun Lin
Original Assignee
Mediatek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/124,476 external-priority patent/US7489908B2/en
Priority claimed from US11/147,152 external-priority patent/US7489909B2/en
Application filed by Mediatek Inc filed Critical Mediatek Inc
Publication of TW200640123A publication Critical patent/TW200640123A/en
Application granted granted Critical
Publication of TWI299612B publication Critical patent/TWI299612B/en

Links

Classifications

    • Y02B60/50

Landscapes

  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Amplifiers (AREA)

Description

1299612 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種傳送功率放大器之控制方法及裝置,且 特別是有關於一種應用於無線通訊系統之傳送功率放大器之护^ 制方法及裝置。 【先前技術】 無線通訊系統係透過大氣層將資料傳送到遠端,並藉由傳送 功率放大器(TX Power Amplifier,TXPA)加強訊號之功率,以 避免訊號在抵達遠端目的地前就衰減為無法辨識之雜訊。一般而 言,在傳送有效訊號之前,TXPA之功率需提升至要發送之功率 強度,此提升功率的過程稱之為斜升(RampUp);而在傳送完有 效訊號之後,TXPA之功率需降回最低準位,此下降功率的過程 稱之為斜降(Ramp Down )。 習知的分時多重存取(Time Division Multiple Aeeess, TDMA)系統係以一個時槽(81加)作為傳送或接收資料的單位。 任意兩個手機不可在同一時槽(亦即同時間、同頻段)發送資料, 否則會造成干擾。因此,為了避免在兩相鄰時槽之交接處造成手 機相互干擾’-般會在每個時槽之最後或最前的時段設定保護區 (Guard)且於保護區内不傳送資料。此外,由於τ〇μα系統 連續傳送多個時槽的資料,且各個時槽的傳送功率未必相同、、 此,當T D M A系統連續傳送多個時槽的資料時,需要在兩兩 時槽間的㈣區進行功率轉換’此轉換功率的過程稱為 、 (Inter_Ramn )。 曲 無=連續_S1*S2所傳送之功率強度係增加 不變比習知TDMA系統在斜升區、斜降區及間斜區的功率變= 私’白係知用線性相連的設計作為傳送功率放大器之功率控制 TW1461PA-A1 1299612 線。請參照第1A至1 c圖,絡千翌左τΓ4Λ/Γ Λ么 夫、θ不%知TDMA純之傳送功率放 在接、,傳送兩個時槽資料時之功率強度時相。在第^圖 :兩連續時槽S1及S2傳送之功率強度增加,間斜控制曲線 遞增之直線’其功率強度介於兩連續時槽的傳送功率 曰。在第1B@中’於兩連續時槽S1及S2傳送之功率強产降 =:Γ曲線1Rb為線性遞減之直線,其功率強度介於兩連 二時槽的傳送功率之間。在第lc圖中,於兩連續時槽81及82 傳达之功率強度不變,間斜控制曲線IRe為水平直線。至於斜升 控制曲線RUa、RUb及RUc皆係線性遞增,斜降控制曲線RDa、 RDb及RDc皆係線性遞減。 習知的TDMA系統係使用大容量的記憶體以儲存各種功率 強度之斜升控制曲線及斜降控·線,並採用線性運算的方式來 產生TXPA之間斜控制曲線。對於斜升區和斜降區,係在記憶體 内針對每-種功率強度存入各個對應的斜升控制曲線及斜降控 制曲線。這種作法的優點在^不需運算而能快速產生控制曲線, 缺點疋需要浪費大容量的記憶體來儲存各個對應之斜升控制曲 線及斜降控制曲線。對於間斜區,乃基於兩連續時槽的功率強度 有夕種排列組合,無法將更A量的間斜控制曲線存人記憶體,同 時考量到運算上的複雜度,故採用單純的線性運算方式來產生間 斜控制曲線。 然而,一般TX PA所消耗的電功率對於整個系統的耗電量 伯有極大的比例’尤丨是傳送的功率愈大、♦毛電量也就愈大。然 而’名知TDMA系統所採用之單純線性相連的設計,即使在系統 不傳送資料的情況下,仍須消耗相當多的電量。 TW1461PA-A1 6 1299612 【發明内容】 有4α於此’本發明的目的就是在提供一種傳送功率放大器之 二制方法及波置,不但可降低在保護區傳送功率之強度以節省耗 電更肖b以較、的5己憶體使用篁及運算時間快速地產生τχ ρΑ之 功率控制曲線,使其符合時域及頻譜上的規範。 根據本發明的目的,提出—種功率控制方法,應用於一傳送 力率放大器傳送功率放大器係用來控制一所欲傳送之訊號之功 率,而功率控制方法係用來產生一功率控制曲線於一功率變化 區,以控制該訊號之功率變化。功率變化區中包含至少一傳送功 率值K,功率控制方法包括下列步驟:根據傳送功率值κ,產生 一原始曲線,原始曲線水平等分為一原始左區段FL·及一原始右 區#又FR,根據傳送功率值κ,決定功率變化區之一最低功率值 Η ;根據傳送功率值κ以及最低功率冑Η,蚊—左區段比例值 S^L以及一右區段比例值SR;根據最低功率值η、原始曲線左區 段FL以及左區段比例值SL,計算出一控制曲線左區段fl,,根 據最低功率值H、原始曲線區段FR以及右區段比例值SR,計算 出控制曲線右區段FR’,以及根據控制曲線左區段FL,以及控 制曲線右區段FR’,產生功率控制曲線於功率變化區中,以控制 訊號之功率變化。 根據本發明的目的,另提出一種傳送功率放大器之控制方 法,其中傳送功率放大器在連續之第一時槽及第二時槽傳送資 料第時槽及第二時槽分別具有第一傳送功率值K1及第二傳 送功率值K2,該控制方法包括下列步驟··產生具有下凹形狀之 間斜控制曲線,用以控制傳送功率放大器之間斜區功率強度,間 斜區功率強度係從第一傳送功率值K1轉換至第二傳送功率值 K2 ’產生斜升控制曲線,用以控制傳送功率放大器之斜升區功率 TW1461PA-A1 ^ 1299612 強度’斜輕功率錢魏最低功率值q升至第—傳送功率值 κι,以及產生斜降控制曲線,用以控制傳送功率放大器之斜降區 功率強度,斜降區功率強度係從第二傳送功率值κ 功率值Η。 w王取低 根據本發明的目的,更提出一種功率控制裝置,安裝於一無 •線通訊裝置,用來產生-功率控制曲線於—功率變化區,以控制 一訊號之功率變化。功率變化區中包含至少一傳送功率值κ二功 率控制裝置包括:傳送功率放大器及記憶體,而記憶體包括原始 曲線左區段對照表、原始曲線右區段對照表、最低功率值對照 籲 表、左區段比例值對照表及右區段比例值對照表。傳送功率放大 器係依據功率控制曲線輸出一控制訊號,以控制所欲傳送之訊號 之功率。原始曲線左區段對照表係用來儲存數個原始曲線左區化 段,且每一原始曲線左區段係對應於一傳送功率值。原始曲線右 區段對照表係用來儲存數個原始曲線右區段,且每一原始曲線右 區段係對應於一傳送功率值。最低功率值對照表係儲存數個最低 功率值,且每一最低功率值係對應於一傳送功率值。左區段比例 值對照表係儲存數個左區段比例值,且每一左區段比例值係對應 φ 於一傳送功率值以及一最低功率值。右區段比例值對照表係儲存 數個右區段比例值,且每一右區段比例值係對應於一傳送功率值 以及一最低功率值。功率控制曲線由下列步驟產生:根據傳送功 率值Κ ’分別利用原始曲線左區段對照表以及原始曲線右區段對 照表,來找出所對應之原始曲線左區段以及原始曲線右區段,以 產生一原始曲線;根據傳送功率值Κ,利用最低功率值對照表, 來找出功率變化區之一最低功率值Η;根據傳送功率值Κ以及最 低功率值Η,分別利用左區段比例值對照表以及右區段比例值對 照表,決定一左區段比例值SL以及一右區段比例值SR ;根據最 TW1461PA-A1 8 1299612 低功率值Η以及左區段比例值SL,計算出一控制曲線左區段 FL ,根據最低功率值H以及右區段比例值sr,計算出一控制曲 ,右區段FR,;以及根據控制曲線左區段FL,以及控制曲線右區 #又FR,產生功率控制曲線於功率變化區中,以控制訊號之功率 變化。 為讓本發明之上述目的、特徵、和優點能更明顯易懂,下文 特舉一較佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 本發明係應用於一傳送功率放大器,傳送功率放大器係用來 控制一所欲傳送之訊號之功率,本發明之主要特徵在於在功率變 化區中產生一非線性功率控制曲線,以控制該訊號之功率變化, 藉以降低功率之消耗。功率變化區具有至少一傳送功率值κ且可 劃分為斜升區、斜降區及間斜區。本發明之功率控制曲線之產 生,主要係先根據傳送功率值κ,產生原始曲線及決定最低功率 值H。原始曲線係被水平分割為一原始曲線左區段FL以及一原 始曲線右區段FR。再根據傳送功率值κ以及最低功率值H,決 定左區段比例值SL以及右區段比例值sr。接著,根據最低功率 值H、原始曲線左區段FL以及左區段比例值SL計算出一控制曲 線左區段FL’,且根據該最低功率值η、原始曲線右區段FR以及 右區段比例值SR,計算出一控制曲線右區段FR,。最後根據控制 曲線左區段FL’以及控制曲線右區段Fr,,產生功率控制曲線, 以控制該訊號之功率變化。 功率控制曲線可分為斜升控制曲線、斜降控制曲線及間斜控 制曲線。對應於斜升區之功率控制曲線為斜升區控制曲線,對應 於斜降區之功率控制曲線為斜降區控制曲線,而對應於間斜區之 TW1461PA-A1 9 1299612 功率控制曲線為間斜區控制曲線。在第5A圖中,原始斜升左區 段FL1之左端點係為原始斜升曲線之最低點,而原始斜升右區段 FR1之右端點係為原始斜升曲線之最高點。同時,原始斜升左區 段FL 1係與原始斜升右區段FR1連續相接。在第6 A圖中,原始 ’ 斜降左區段FL2之左端點係原始斜降曲線之最高點,而原始斜降 • 右區段FR2之右端點係該原始斜降曲線之最低點。同時,原始斜 降左區段FL2係與原始斜降右區段FR2連續相接。在第4A圖中, 原始間斜左區段FLO包含一左端點以及一右端點,分別為原始間 斜左區段FLO之最高點以及最低點,而原始間斜右區段包含 春一左端點以及一右端點,分別為原始間斜右區段FR0之最低點以 及最高點。 本發明之主要精神在於利用保護區不需傳送資料的特性,將 兩兩連續時槽間的保護區(亦即間斜區)之控制曲線設計為下凹 曲線’以降低在保護區傳送功率之強度而達到省電目的。下凹曲 線的寬度可依照使用者之需要來設定,且較佳地小於時槽期間之 四分之一。 此外,同樣值付注意的是,下凹曲線係依據原始功率曲線(原 • 始曲線)所產生。原始功率曲線可以是預先儲存在記憶體中之一 多項式函數或是一餘弦函數。記憶體可具有一對照表,用來儲存 且/或記錄所有關於原始功率曲線之控制資料。在實施例中,原始 功率曲線可表示為[l+C〇S(27r *n/N)]/2,其中n&N係用來產生 原始功能曲線之控制資料。然而,本發明並不限於此,任何其他 之下凹曲線、線性或非線性曲線亦可作為本發明之原始功能 線。 儘官則後時槽的功率有多種排列組合,且任何連續 以上之時槽資料的情形皆可使用本發明,下述實施例僅將系統在 TW146IPA-A1 10 1299612 固定頻段下接續傳送兩個時槽資料之情形加以詳述。 請參照第2圖,綠示依照本發明—較佳實施例 率 大=TX Po爾 Amplifier,τχ PA )在接續傳 :功率強度時序圖。如第2圖所示,相鄰之第一時槽S1: 時槽:2係將最後的時段設定分別為第一保護區ρι及第二保護區 卩2二系統僅在第一資料區⑴及第二資料區⑺傳送資料,而在 護區P1及第二保護區P2不傳送資料。斜升區之斜升控制 曲線RU,說明在傳送第一資料區〇1的有效訊號之前,τχρΑ之 =需從〇提升至第-傳送功率強度K1。斜降區之斜降控制曲 線⑽,說明在傳送完第二資料區D2的有效訊號之後,τχρΑ之 功率需從第二傳送功率強度Κ2降回最低準位卜至於間斜區之 =斜控制曲線IR,說明在第—時槽81與第二時槽82兩連續時 』的保護區P1需進行功率轉換1斜控制曲線设係以非線性 連接的方式將TXPA之功率從第—傳送功率強度κι轉換至第二 傳达功率強度K2’以形成下凹曲線,據以降低在保護㈣傳送 功率之強度。 、在第2圖中,由具有下凹形狀之間斜控制曲線瓜及線性遞 增之原始間斜控制曲線IR,所圍成之區域A,係本實施例之間斜 控制曲線IR相較於習知之間斜控制曲線IR,所節省之耗電量。此 外無哪第-傳送功率強度K1大於、等於或小於第二傳送功率 強度K2 ’本發明所採用下凹曲線之設計,皆能有效利用保護區 不為傳送資料的特性來節省耗電。 …在實施例中,本發明之在多時槽無線通訊系統之裝置之輸出 功率控制方法包括下列步驟:提供在第—時槽之第_時間點之一 第一功率值SL ;提供在相鄰於第一時槽之第二時槽之第二時 累占一 丄古 .、、 弟一功率值SR ;依據介於第一時間點與第二時間點間之 TW1461PA-A1 1299612 至少一原始功率曲線產生一輸出功率曲線,其中輸出功率曲線之 至少一輸出功率值Q係實質上小於第一功率值SL及第二功率值 SR ;以及依據輸出功率曲線調整輸出功率。 • 此外,原始功率曲線包括一第一功率曲線FL(t)及一第二功 率曲線FR(t) ’且5玄輸出功率曲線包括一第一部份⑴及一第二 邛刀FR (t)。輸出功率曲線係依據下列方程式所產生:FL,(t) = η + FL(t)*SL’,及 FR,(t) = H + FR(t)*SR,,其中,SL,= SL-H,SR,= SR-H,且H係一預設值。H可以是輸出功率曲線之最低功率值, 《可以等於功率值Q。較佳地,功率值(^大約為Q、或至少為6心 Φ 且低於第-功率值及第二功率值(例如:第一功率值及第二功率 值之較小者)。 再者,多時槽無線通訊系統可為了〇]^八通訊系統,例如: GSM、GPRS、且/或EDGE㈣。本發明多日夺槽無線通訊系統之 裝置可以為行動電話之傳送功率放大器。 睛參照第3圖,繪示依照本發明一較佳實施例的傳送功率放 大器之控制方法流程圖。首先,當傳送功率放大器在連續之第一 時槽及第二時槽傳送資料,且第一時槽及第二時槽分別具有第一 • 傳送功率值K1及第二傳送功率值K2,傳送功率放大器^控制方 法係於步驟302提供一原始曲線。原始曲線係針對時間軸水平等 分為原始左區段FL及原始右區段FR。接著,於步驟3〇4決定功 率控制曲線之最低功率值Η。在步驟306中,依據第一傳送功率 值Κ卜第二傳送功率值Κ2及最低功率值Η,計算出功率控制曲 線相對於原始曲線之左功率比例值SL及右功率比例值sr。步驟 3〇8係分別將原始左區段FL依照左功率比例值SL縮放為sl*fl 及將原始右區段FR依照右功率比例值SR縮放為SR*FR。然後, 於步驟310計算出功率控制曲線之左控制區段fl,=h+sl*fl及 TW1461PA-A1 12 1299612 右控制區段FR,=H+SR*FR,而於步驟312產生功率控制曲線。 依據上述步驟,可逐一產生功率控制曲線之間斜區控制曲 線、斜升區控制曲線及斜降區控制曲線。尤其,本發明較佳實施 . 例之傳送功率放大器之控制方法,係產生具有下凹形狀之間斜控 制曲線,用以控制傳送功率放大器之間斜區功率強度,使間斜區 功率強度從第一傳送功率值K1轉換至第二傳送功率值K2;更產 生斜升控制曲線,用以控制傳送功率放大器之斜升區功率強度, 使斜升區功率強度從最低功率值H提升至第一傳送功率值κι ; 以及產生斜降控制曲線,用以控制該傳送功率放大器之斜降區功 率強度,使斜降區功率強度從第二傳送功率值K2降回至最低功 率值Η。 凊參照第4Α及4Β圖,繪示依照本發明一較佳實施例之原 始間斜曲線及間斜控制曲線之示意圖。功率控制曲線之間斜區控 制曲線具有下凹形狀。產生間斜控制曲線之方法如下··首先,提 供原始間斜曲線,水平等分為原始間斜左區段FL〇及原始間斜右 區段FRO。如第4A圖所示,原始間斜左區段FL〇與原始間斜右 區段FRO之曲線外形未必需要對稱,僅需符合時域及頻譜上的規 • 範範圍,不致造成相鄰兩頻道的資料干擾即可。原始間斜左區段 FLO係從單位功率值非線性遞減至〇功率,而原始間斜右區段fr〇 係從0功率非線性遞增至單位功率值。接著,決定功率控制曲線 之最低功率值Η。依據第一傳送功率值K1、第二傳送功率值K2 及最低功率值Η,計算出間斜控制曲線相對於原始間斜曲線之左 間斜功率比例值SL0=K1-H及右間斜功率比例值SR〇=K2_H。再 分別將原始間斜左區段FL1依照左間斜功率比例值sl〇縮放為 SL0*FL0及將原始間斜右區段fro依照右間斜功率比例值 縮放為SR0*FR0。然後,計算左間斜控制區段 TW1461PA-A1 13 1299612 FL0’=(SL0/2N)*(FL0*2N)及右間斜控制區段 FR0’=H+(SR0/2N)*(FR0*2N)。最後,如第4B圖所示,即可產生 具有下凹形狀之間斜控制曲線,並藉由電壓、電流或功率之控制 , 輸入以有效控制傳送功率放大器於間斜區之功率強度。依照本發 明較佳實施例的傳送功率放大器之控制方法所產生之間斜控制 • 曲線,不會有間斜控制曲線與前一個時槽或後一個時槽的功率控 制上不連續的問題,也不會有左間斜控制區段與右間斜控制區段 的功率控制上不連續的問題。 在各種實施例中,前一及後一時槽可包括不同之調變類型 馨 (例如:第一時槽包括一第一調變類型而第二時槽包括一不同於 第一調變類型之第二調變類型)。當介於第一及第二時槽(例如 在保護區)之輸出功率低於一臨界值,從第一調變類型切至第二 調變類型之瞬變電流會發生。例如,第一時槽可使用GMSK調變 而第二時槽可使用8PSK調變,且臨界值可介於H及兩時槽中較 低之輸出功率值。在一實施例中,關鍵值大約為Η + (ρ*Δ),△ 為Η與兩時槽中較低之輸出功率值之差,且ρ為一個約為〇·25 至〇·5之值。 籲 請參照第5Α及5Β圖,繪示依照本發明一較佳實施例之原 始斜升曲線及斜升控制曲線之示意圖。產生斜升控制曲線之方法 如下··首先’提供原始斜升曲線,水平等分為原始斜升左區段FL1 及原始斜升右區段FR1。如第5A圖所示,原始斜升左區段FL1 及原始斜升右區段FR1之曲線外形未必需要對稱,僅需符合時域 及頻譜上的規範範圍,不致造成相鄰兩頻道的資料干擾即可。原 始斜升左區段FL1係從〇功率非線性遞增,原始斜升右區段FR1 係非線性遞增至單位功率值,且原始斜升左區段FL1與原始斜升 右區段FR1連續相接。接著,依據第一傳送功率值K1及最低功 TW1461PA-A1 14 1299612 率值Η,計算出斜升控制曲線相對於原始斜升曲線之左斜升功率 比例值SL1及右斜升功率比例值SR1。在此斜升區中,左斜升功 率比例值SL L及右斜升功率比例值SR1相等,亦即 SL1=SR1=K1-H。再分別將原始斜升左區段FL1依照左斜升功率 比例值SL1縮放為SL1*FL1及將原始斜升右區段FR1縮放為 SRI *FR1。然後,計算左斜升控制區段 FL1,=H+(SL 1/2n:)'FX 1 及右斜升控制區段FR1’=H+(SR1/2n)*(FR1*2n)。最後,如第5Β 圖所示,即可 產生非線性之斜升控制曲線,並藉由電壓、電 流或功率之控制輸入以有效控制傳送功率放大器於斜升區之功 率強度。依照本發明較佳實施例的傳送功率放大器之控制方法所 產生之斜升控制曲線,不會有斜升控制曲線與後一個時槽的功率 控制上不連續的問題,也不會有左斜升控制區段與右斜升控制區 段的功率控制上不連續的問題。 清參照第6Α及6Β圖’繪不依照本發明一較佳實施例之原 始斜降曲線及斜降控制曲線之不意圖。產生斜降控制曲線之方法 如下·首先,提供原始斜降曲線,水平等分為原始斜降左區段FL2 及原始斜降右區段FR2。如第6Α圖所示,原始斜降左區段 及原始斜降右區段FR2之曲線外形未必需要對稱,僅需符合時域 及頻譜上的規範範圍,不致造成相鄰兩頻道的資料干擾即可。原 始斜降左區段FL係從單位功率值非線性遞減,原始斜降右區段 FR係非線性遞減至〇功率,且原始斜降左區段fl係與原始斜降 右區段FR連續相接。接著,依據第二傳送功率值Κ2及最低功 率值Η,計算出左斜降功率比例值SL2及右斜降功率比例值 SR2。在此斜降區中,左斜降功率比例值sl2及右斜降功率比例 值SR2相等’亦即SR2SL2=SR2=K2_H。再分別將原始斜降左區 段FL2依照左斜降功率比例值SL2縮放為SL2*FL2及將原始斜 TW1461PA-A1 15 1299612 降右區段FR2依照右斜降功率比例值SR2縮放為SR2*FR2。然 後,計算左斜降控制區段FL2’=H+(SL2/2N)*(FL2*2N)及右斜降控 制區段FR2’=H+(SR2/2N)*(FR2*2N)。最後,如第6B圖所示,即 可產生非線性之斜降控制曲線,並藉由電壓、電流或功率之控制 輸入以有效控制傳送功率放大器於間斜區之功率強度。依照本發 明較佳實施例的傳送功率放大器之控制方法所產生之斜降控制 曲線,不會有斜降控制曲線與前一個時槽的功率控制上不連續的 問題,也不會有左斜降控制區段與右斜降控制區段的功率控制上 不連續的問題。 請參照第7圖,繪示依照本發明一較佳實施例之記憶體之方 塊圖。記憶體720包括原始曲線左區段對照表721、原始曲線右 區段對照表722、左區段比例值對照表723、右區段比例值對照 表724及最低功率值對照表725。原始曲線左區段對照表721係 用來儲存數個原始曲線左區段,且每一原始曲線左區段係對應於 一個傳送功率值。原始曲線右區段對照表722係用來儲存數個原 始曲線右區段,且每一原始曲線右區段係對應於一個傳送功率 值。最低功率值對照表725係用來儲存數個最低功率值,且每一 最低功率值係對應於一傳送功率值。左區段比例值對照表723係 用來儲存數個左區段比例值,且每一左區段比例值係對應於一傳 送功率值以及一最低功率值。右區段比例值對照表724係用來儲 存數個右區段比例值,其中每一右區段比例值係對應於一傳送功 率值以及一最低功率值。 有關實際運算上的作法,係分別將各個計算參數,最低功率 值Η、左功率比例值SL、右功率比例值SR、原始左區段FL及 原始右區段FR,在不同功率下之對應值,建立成數組儲存表格, 而將FL對照表721、FR對照表722、SL對照表732、SR對照表 TW1461PA-A1 16 1299612 724及Η對照表725儲存於記憶體720内。當使用不同的輸出功 率強度,系統可以藉由查表的方式,快速找到所對應的設定值。 在記憶體使用上,相較於習知TDMA系統需將各種功率強度控制 曲線存入記憶體内的作法,本發明採用將原始曲線比例縮放的方 式所需之記憶體使用量明顯減少。在運算速度上,為了避免原始 左區段FL及原始右區段FR需採用之Μ莫擬浮點數(float point) 的乘法讓整數型(fixed point)嵌入式系統耗費數十個運算指令, 儲存表格上有關原始左區段FL及原始右區段FR之内容係記錄原 始左區段FL及原始右區段FR分別乘以2的N次方後的值(亦 即FL—TABLE=FL*2N及FR一TABLE=FR*2N)。當計算左控制區段 FL’及右控制區段FR’時,可單純以移位方式處理(亦即 FL,=H+SL*(FL_TABLE)右移 Nbit)及 FR,=H+SR*(FR_TABLE) 右移Nbit),以節省運算量。藉此,運算上即可採用二進位移位 方式來達成浮點數乘法的目的,而克服浮點數繁雜的乘法計算。 相較於習知TDMA系統需將控制曲線每一點作線性運算的作 法,本發明將整個原始曲線作整數相乘位移的計算更可快速算出 控制曲線。此外,系統亦可辅以積體電路作成輔助計算單體 (co-processor )來進行整數相乘位移的運算,更能節省控制曲線 的運算量及運算時間。 本發明上述實施例所揭露之傳送功率放大器之控制方法,可 控制TXPA在轉換功率強度時作非線性連接,以達到省電目的; 更進一步提出特殊的運算技巧,不但能以較少的記憶體使用量及 運算時間,簡易且快速地產生TXPA之功率控制曲線,亦可使功 功率變化區之控制曲線保有特定外形,使其符合時域及頻譜上的 規範。 請參照第8圖,繪示依照本發明一較佳實施例之多時槽無線 TW1461PA-A1 17 1299612 通訊系統之示意圖。多時槽無線通訊系統包括-基地台81及一 ㈣,元83。行動單元83係以數個時槽與基地台81進行通訊 盯動單7G 83包括-傳送功率放大器831、一功率控制裝置謂 及-控制器839。傳送功率放大器831係用以放大一輸出訊號, 例如一 out訊號。功率控制裝置8〇〇包括一供應裝置如、一古己 憶體835、一曲線產生器㈣、以及一控制器謂。供應裝置砂 係用以提供在第-時槽之第一時間點之第一功率值%及在第二 :槽之第一時間點之第二功率值SR ’且第二時槽係相鄰於第一 ,槽D己隐體835 (如第7圖所示)係用以儲存及/或提供至少一 原始功率曲、線。曲線產生器837係耦接於供應裝置㈣及記憶體 r生’一m據/曲 相點與第二㈣㈣之原始功率曲線 實皙上!於笛-以 少一輸出功率值Q係 貫質上小於第-功率值儿及第二功率值sr =生器837及傳送功率放大器831,用以依據輸出 線調整傳达功率放大器831之輸出功率。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method and apparatus for controlling a transmission power amplifier, and more particularly to a method and apparatus for protecting a transmission power amplifier for use in a wireless communication system. . [Prior Art] The wireless communication system transmits data to the remote end through the atmosphere, and the power of the signal is enhanced by a TX Power Amplifier (TXPA) to prevent the signal from being attenuated until it reaches the remote destination. The noise. In general, before transmitting a valid signal, the power of the TXPA needs to be increased to the power level to be transmitted. This process of boosting power is called rampup (RampUp); after the valid signal is transmitted, the power of the TXPA needs to be reduced. The lowest level, this process of reducing power is called ramp down. The conventional Time Division Multiple Aeeess (TDMA) system uses a time slot (81 plus) as a unit for transmitting or receiving data. Any two mobile phones cannot send data in the same time slot (that is, at the same time, in the same frequency band), otherwise it will cause interference. Therefore, in order to avoid mutual interference between the two adjacent time slots, the Guard will be set at the last or first time of each time slot and no data will be transmitted in the protected area. In addition, since the τ〇μα system continuously transmits data of a plurality of time slots, and the transmission power of each time slot is not necessarily the same, when the TDMA system continuously transmits data of a plurality of time slots, it is required to be between the two slots. (4) Power conversion for the area 'The process of converting power is called (Inter_Ramn).曲无=Continuous _S1*S2 The power intensity transmitted by the _S1*S2 is increased. The power of the conventional TDMA system in the ramp-up zone, the ramp-down zone and the inter-slope zone is changed. Power amplifier power control TW1461PA-A1 1299612 line. Please refer to the figures 1A to 1c. The 翌 翌 Γ Γ Λ Λ 、 θ θ θ θ θ θ θ θ θ θ θ θ T T T T T T T T T T T T T T T T T T T T T T T T T T T T In the second figure, the power intensity transmitted by the slots S1 and S2 is increased, and the line of the oblique control curve is increased, and the power intensity is between the transmission powers of the two consecutive time slots. In 1B@中, the power transmitted by the slots S1 and S2 in two consecutive time slots is strong. =: The curve 1Rb is a linearly decreasing straight line whose power intensity is between the transmission power of the two consecutive slots. In the lc diagram, the power intensity transmitted by the slots 81 and 82 is constant during the two consecutive time slots, and the inter-tilt control curve IRe is a horizontal straight line. As for the ramp control curves RUa, RUb and RUc are linearly increasing, the ramp down control curves RDa, RDb and RDc are linearly decreasing. The conventional TDMA system uses a large-capacity memory to store ramp-up control curves and ramp-down control lines of various power intensities, and uses a linear operation to generate a skew control curve between TXPAs. For the ramp-up zone and the ramp-down zone, each corresponding ramp-up control curve and ramp-down control curve are stored in the memory for each power intensity. The advantage of this method is that the control curve can be quickly generated without calculation, and the disadvantage is that a large-capacity memory needs to be wasted to store each corresponding ramp-up control curve and ramp-down control curve. For the oblique zone, based on the power intensity of the two consecutive time slots, there is a combination of the same kind of time, and it is impossible to store the more oblique control curve of the A amount in the memory, and at the same time consider the computational complexity, so the simple linear operation is adopted. The way to generate the skew control curve. However, the power consumed by a typical TX PA has a large proportion of the power consumption of the entire system. In particular, the greater the power delivered, the greater the power of the ♦. However, the purely linear design of the well-known TDMA system consumes a considerable amount of power even when the system does not transmit data. TW1461PA-A1 6 1299612 SUMMARY OF THE INVENTION [4] The purpose of the present invention is to provide a method and a wave arrangement for transmitting a power amplifier, which can reduce the power transmission power in the protection area to save power consumption. The power control curve of τχ ρΑ is quickly generated by using the 篁 and the operation time to make it conform to the time domain and spectrum specifications. In accordance with the purpose of the present invention, a power control method is proposed for use in a transmit power rate amplifier. The power amplifier is used to control the power of a signal to be transmitted, and the power control method is used to generate a power control curve. A power change zone to control the power variation of the signal. The power variation region includes at least one transmission power value K. The power control method includes the following steps: generating an original curve according to the transmission power value κ, and the original curve level is equally divided into an original left segment FL· and an original right region # FR, according to the transmission power value κ, determines a minimum power value Η of the power change zone; according to the transmission power value κ and the lowest power 胄Η, the mosquito-left segment ratio value S^L and a right segment ratio value SR; The lowest power value η, the original curve left section FL and the left section scale value SL, calculate a control curve left section fl, and calculate according to the lowest power value H, the original curve section FR and the right section scale value SR. The control curve right section FR', and according to the control curve left section FL, and the control curve right section FR', generate a power control curve in the power change zone to control the power variation of the signal. According to another aspect of the present invention, a control method of a transmission power amplifier is further provided, wherein the transmission power amplifier has a first transmission power value K1 in a continuous first time slot and a second time slot transmission data time slot and a second time slot, respectively. And a second transmission power value K2, the control method comprising the steps of: generating a skew control curve between the concave shapes for controlling the power intensity of the oblique region between the transmission power amplifiers, and the power quality between the oblique regions is transmitted from the first The power value K1 is converted to the second transmission power value K2' to generate a ramp-up control curve for controlling the ramp power of the transmission power amplifier TW1461PA-A1 ^ 1299612 strength 'slant light power money Wei minimum power value q rises to the first transmission The power value κι and the ramp-down control curve are used to control the ramp-down power intensity of the transmit power amplifier, and the ramp-down power intensity is from the second transmit power value κ power value Η. According to the object of the present invention, a power control device is further provided for mounting in a wireless communication device for generating a power control curve in a power change region for controlling a power variation of a signal. The power change zone includes at least one transmit power value κ. The power control device includes: a transmit power amplifier and a memory, and the memory includes a raw curve left segment comparison table, a raw curve right segment comparison table, and a lowest power value comparison table. , the left section scale value comparison table and the right section scale value comparison table. The transmit power amplifier outputs a control signal based on the power control curve to control the power of the signal to be transmitted. The original curve left segment comparison table is used to store several original curve left region segments, and each original curve left segment corresponds to a transmission power value. The original curve right segment comparison table is used to store several original curve right segments, and each original curve right segment corresponds to a transmission power value. The lowest power value comparison table stores a plurality of lowest power values, and each of the lowest power values corresponds to a transmission power value. The left segment scale value comparison table stores a plurality of left segment scale values, and each left segment scale value corresponds to φ at a transmit power value and a lowest power value. The right segment scale value comparison table stores a plurality of right segment scale values, and each right segment scale value corresponds to a transmit power value and a lowest power value. The power control curve is generated by the following steps: according to the transmission power value Κ 'Using the original curve left segment comparison table and the original curve right segment comparison table respectively, to find the corresponding original curve left segment and the original curve right segment, To generate an original curve; according to the transmission power value Κ, use the lowest power value comparison table to find the lowest power value 之一 of one of the power change regions; according to the transmission power value Κ and the lowest power value Η, respectively, use the left segment ratio value The comparison table and the right segment scale value comparison table determine a left segment scale value SL and a right segment scale value SR; according to the most TW1461PA-A1 8 1299612 low power value Η and the left segment scale value SL, one is calculated. Control curve left section FL, according to the lowest power value H and the right section scale value sr, calculate a control song, right section FR, and according to the control curve left section FL, and the control curve right zone # FR, A power control curve is generated in the power change region to control the power variation of the signal. The above described objects, features, and advantages of the present invention will become more apparent and understood. The power amplifier is used to control the power of a signal to be transmitted. The main feature of the present invention is to generate a nonlinear power control curve in the power variation region to control the power variation of the signal, thereby reducing the power. Consumption. The power change zone has at least one transmit power value κ and can be divided into a ramp-up zone, a ramp-down zone, and an inter-slope zone. The power control curve of the present invention is mainly generated based on the transmission power value κ to generate an original curve and determine a minimum power value H. The original curve is horizontally divided into a left curve FL of the original curve and a right segment FR of the original curve. Further, based on the transmission power value κ and the lowest power value H, the left sector scale value SL and the right sector scale value sr are determined. Then, a control curve left segment FL' is calculated according to the lowest power value H, the original curve left segment FL and the left segment scale value SL, and according to the lowest power value η, the original curve right segment FR and the right segment The proportional value SR calculates a right curve FR of a control curve. Finally, according to the control curve left section FL' and the control curve right section Fr, a power control curve is generated to control the power variation of the signal. The power control curve can be divided into a ramp-up control curve, a ramp-down control curve, and an inter-slant control curve. The power control curve corresponding to the ramp-up zone is the ramp-up zone control curve, the power control curve corresponding to the ramp-down zone is the ramp-down zone control curve, and the TW1461PA-A1 9 1299612 power control curve corresponding to the skew zone is the inter-slope Zone control curve. In Fig. 5A, the left end point of the original ramp-up left section FL1 is the lowest point of the original ramp-up curve, and the right end point of the original ramp-up right section FR1 is the highest point of the original ramp-up curve. At the same time, the original ramp-up left section FL 1 is continuously connected to the original ramp-up right section FR1. In Figure 6A, the left end of the original 'slope drop left section FL2 is the highest point of the original ramp down curve, while the original ramp down • The right end of the right section FR2 is the lowest point of the original ramp down curve. At the same time, the original ramp-down left section FL2 is continuously connected to the original ramp-down right section FR2. In Fig. 4A, the original oblique left section FLO includes a left end point and a right end point, respectively being the highest point and the lowest point of the original inter-slant left section FLO, and the original inter-slant right section containing the spring-left end point And a right end point, which is the lowest point and the highest point of the original right oblique section FR0. The main spirit of the present invention is to use the characteristic that the protection zone does not need to transmit data, and design the control curve of the protection zone (ie, the oblique zone) between the two consecutive time slots as a concave curve to reduce the transmission power in the protection zone. Strength to achieve power saving purposes. The width of the concave curve can be set according to the needs of the user, and is preferably less than a quarter of the period of the time slot. In addition, it is also worth noting that the concave curve is generated from the original power curve (original curve). The raw power curve can be a polynomial function or a cosine function pre-stored in the memory. The memory can have a look-up table for storing and/or recording all control data regarding the raw power curve. In an embodiment, the original power curve can be expressed as [l + C 〇 S (27r * n / N)] / 2, where n & N is used to generate control data for the original functional curve. However, the present invention is not limited thereto, and any other concave curve, linear or nonlinear curve may also be used as the original function line of the present invention. The present invention can be used in a variety of arrangements, and any continuous time slot data can be used in the present invention. The following embodiment only transmits the system two times in the fixed frequency band of TW146IPA-A1 10 1299612. The case of the tank data is detailed. Referring to Figure 2, the green display is in accordance with the present invention - the preferred embodiment has a large rate = TX Po Amplifier, τ χ PA ) in the continuation: power intensity timing diagram. As shown in Fig. 2, the adjacent first time slot S1: time slot: 2 sets the last time period as the first protection zone ρι and the second protection zone 卩 2, respectively, only in the first data zone (1) and The second data area (7) transmits the data, and the data is not transmitted in the protected area P1 and the second protected area P2. The ramp-up control curve RU of the ramp-up area indicates that τχρΑ = needs to be raised from 〇 to the first-transmitted power level K1 before transmitting the valid signal of the first data area 〇1. The ramp-down control curve (10) of the oblique drop zone indicates that after the effective signal of the second data zone D2 is transmitted, the power of τχρΑ needs to be reduced from the second transmit power intensity Κ2 to the lowest level to the oblique slope control curve. IR, indicating that when the first-time slot 81 and the second time slot 82 are continuous, the protection zone P1 needs to perform power conversion. The oblique control curve sets the power of the TXPA from the first transmission power intensity λι in a non-linear connection manner. Switching to the second communication power intensity K2' to form a concave curve, thereby reducing the intensity of the transmission power in the protection (4). In Fig. 2, the area A surrounded by the oblique control curve IR with a concave shape between the concave shape and the linear increment is the diagonal control curve IR between the embodiments. Knowing the oblique control curve IR, the power consumption saved. Further, no first transmission power intensity K1 is greater than, equal to, or less than the second transmission power intensity K2'. The design of the concave curve used in the present invention can effectively utilize the characteristics of the protection zone not to transmit data to save power. In an embodiment, the output power control method of the apparatus for a multi-time slot wireless communication system of the present invention comprises the steps of: providing a first power value SL at a first time point of the first time slot; providing adjacent At the second time of the second time slot of the first time slot, the power value SR is occupied; at least one original power is determined according to TW1461PA-A1 1299612 between the first time point and the second time point. The curve produces an output power curve, wherein at least one output power value Q of the output power curve is substantially smaller than the first power value SL and the second power value SR; and the output power is adjusted in accordance with the output power curve. In addition, the original power curve includes a first power curve FL(t) and a second power curve FR(t)' and the 5th output power curve includes a first portion (1) and a second file FR (t) . The output power curve is generated according to the following equation: FL, (t) = η + FL(t) * SL', and FR, (t) = H + FR(t) * SR, where SL, = SL- H, SR, = SR-H, and H is a preset value. H can be the lowest power value of the output power curve, "can be equal to the power value Q. Preferably, the power value (^ is approximately Q, or at least 6 Φ and is lower than the first power value and the second power value (eg, the smaller of the first power value and the second power value). The multi-time slot wireless communication system can be used for the communication system, for example: GSM, GPRS, and/or EDGE (4). The device of the multi-day slot wireless communication system of the present invention can be a power amplifier for mobile phones. 3 is a flow chart showing a control method of a transmission power amplifier according to a preferred embodiment of the present invention. First, when a transmission power amplifier transmits data in a continuous first time slot and a second time slot, and the first time slot and The second time slot has a first transmit power value K1 and a second transmit power value K2, respectively, and the transmit power amplifier control method provides an original curve in step 302. The original curve is equally divided into the original left segment for the time axis level. FL and the original right sector FR. Next, the lowest power value Η of the power control curve is determined in step 〇 4. In step 306, the second transmission power value Κ2 and the lowest power value Κ are determined according to the first transmission power value. Calculation The power control curve is proportional to the left power ratio value SL and the right power ratio value sr of the original curve. Step 3〇8 respectively scales the original left segment FL according to the left power ratio value SL to sl*fl and the original right segment FR According to the right power ratio value SR, it is scaled to SR*FR. Then, in step 310, the left control section fl of the power control curve is calculated, =h+sl*fl and TW1461PA-A1 12 1299612 right control section FR,=H+ SR*FR, and a power control curve is generated in step 312. According to the above steps, the ramp control curve, the ramp region control curve and the ramp down region control curve between the power control curves can be generated one by one. In particular, the present invention is preferably implemented. The control method of the transmission power amplifier is to generate a skew control curve with a concave shape for controlling the power intensity of the oblique region between the transmission power amplifiers, so that the power intensity of the oblique slope region is converted from the first transmission power value K1 to the first a transmission power value K2; a ramp control curve is generated to control the power intensity of the ramp power of the transmission power amplifier, so that the power intensity of the ramp region is raised from the lowest power value H to the first transmission power value κι; A ramp-down control curve is generated for controlling the power level of the ramping region of the transmitting power amplifier, so that the power intensity of the ramping region is reduced from the second transmitting power value K2 to the lowest power value Η. 凊 Referring to Figures 4 and 4, drawing A schematic diagram of an original skew curve and a skew control curve according to a preferred embodiment of the present invention. The oblique zone control curve between the power control curves has a concave shape. The method for generating the skew control curve is as follows: The oblique curve is horizontally divided into the original oblique left segment FL〇 and the original oblique oblique segment FRO. As shown in Fig. 4A, the curve between the original oblique left segment FL〇 and the original oblique oblique segment FRO The shape does not necessarily need to be symmetrical, and only needs to conform to the scope of the time domain and the spectrum, so as not to cause interference between adjacent channels. The original oblique left section FLO is nonlinearly decremented from the unit power value to the 〇 power, while the original slant right section fr 非线性 is nonlinearly increased from 0 power to the unit power value. Next, the lowest power value Η of the power control curve is determined. According to the first transmission power value K1, the second transmission power value K2 and the lowest power value Η, the left oblique power ratio SL0=K1-H and the right oblique power ratio of the skew control curve with respect to the original oblique curve are calculated. The value SR〇=K2_H. Then, the original oblique left segment FL1 is scaled to SL0*FL0 according to the left oblique power proportional value sl〇, and the original oblique right segment fro is scaled to SR0*FR0 according to the right oblique power ratio value. Then, calculate the left skew control section TW1461PA-A1 13 1299612 FL0'=(SL0/2N)*(FL0*2N) and the right skew control section FR0'=H+(SR0/2N)*(FR0*2N) . Finally, as shown in Fig. 4B, a skew control curve with a concave shape can be generated and controlled by voltage, current or power to effectively control the power intensity of the transmission power amplifier in the inter-slope region. The oblique control curve generated by the control method of the transmission power amplifier according to the preferred embodiment of the present invention does not have the problem that the skew control curve is discontinuous with the power control of the previous time slot or the latter time slot, There is no problem of discontinuity in power control between the left skew control section and the right skew control section. In various embodiments, the first and subsequent slots may include different modulation types (eg, the first time slot includes a first modulation type and the second time slot includes a different one than the first modulation type) Two modulation types). When the output power between the first and second time slots (e.g., in the protection zone) is below a threshold, a transient current that is switched from the first modulation type to the second modulation type occurs. For example, the first time slot can use GMSK modulation and the second time slot can use 8PSK modulation, and the threshold can be between H and the lower output power value of the two time slots. In one embodiment, the key value is approximately Η + (ρ*Δ), Δ is the difference between the lower output power values of Η and the two time slots, and ρ is a value of approximately 〇·25 to 〇·5 . Referring to Figures 5 and 5, a schematic diagram of an initial ramp-up curve and a ramp-up control curve in accordance with a preferred embodiment of the present invention is shown. The method of generating the ramp-up control curve is as follows: First, the original ramp-up curve is provided, and the horizontal equal-division is divided into the original ramp-up left section FL1 and the original ramp-up right section FR1. As shown in Fig. 5A, the curve shape of the original ramp-up left section FL1 and the original ramp-up right section FR1 does not necessarily need to be symmetrical, and only needs to conform to the specification range of the time domain and the spectrum, so as not to cause data interference of adjacent two channels. Just fine. The original ramp-up left section FL1 is nonlinearly increasing from the 〇 power, and the original ramp-up right section FR1 is nonlinearly increased to the unit power value, and the original ramp-up left section FL1 is continuously connected to the original ramp-up right section FR1. . Then, based on the first transmission power value K1 and the lowest power TW1461PA-A1 14 1299612 rate value Η, the left ramp power ratio value SL1 and the right ramp power ratio value SR1 of the ramp control curve with respect to the original ramp curve are calculated. In this ramp-up region, the left ramp power ratio value SL L and the right ramp power scale value SR1 are equal, that is, SL1 = SR1 = K1 - H. Then, the original ramp-up left section FL1 is scaled to SL1*FL1 according to the left ramp-up power ratio value SL1 and the original ramp-up right section FR1 is scaled to SRI*FR1. Then, the left ramp control section FL1, = H + (SL 1/2n:) 'FX 1 and the right ramp control section FR1' = H + (SR1/2n) * (FR1 * 2n) are calculated. Finally, as shown in Figure 5, a nonlinear ramp-up control curve can be generated and controlled by voltage, current, or power to effectively control the power level of the transmit power amplifier in the ramp region. The ramp-up control curve generated by the control method of the transmission power amplifier according to the preferred embodiment of the present invention does not have the problem of discontinuity in the power control of the ramp-up control curve and the latter slot, nor does it have a left-inclined rise. The problem of discontinuity in power control between the control section and the right ramp-up control section. Referring to Figures 6 and 6, the original ramp-down curve and the ramp-down control curve are not intended to be in accordance with a preferred embodiment of the present invention. The method of generating the ramp-down control curve is as follows: First, the original ramp-down curve is provided, and the horizontal equalization is divided into the original ramp-down left section FL2 and the original ramp-down right section FR2. As shown in Fig. 6, the curve shape of the original obliquely descending left section and the original obliquely falling right section FR2 does not necessarily need to be symmetrical, and only needs to conform to the specification range of the time domain and the spectrum, so as not to cause data interference of adjacent channels. can. The original ramp-down left section FL is nonlinearly decremented from the unit power value, and the original ramp-down right section FR is nonlinearly decremented to the 〇 power, and the original ramp-down left section fl is continuous with the original ramp-down right section FR. Pick up. Next, based on the second transmission power value Κ2 and the lowest power value Η, the left ramp down power ratio value SL2 and the right ramp down power ratio value SR2 are calculated. In this ramp down region, the left ramp down power ratio value sl2 and the right ramp down power scale value SR2 are equal', that is, SR2SL2 = SR2 = K2_H. Then, the original ramp-down left section FL2 is scaled to SL2*FL2 according to the left ramp-down power ratio value SL2, and the original ramp TW1461PA-A1 15 1299612-down right section FR2 is scaled to SR2*FR2 according to the right ramp-down power ratio value SR2. . Then, the left ramp down control section FL2' = H + (SL2 / 2N) * (FL2 * 2N) and the right ramp down control section FR2' = H + (SR2 / 2N) * (FR2 * 2N) are calculated. Finally, as shown in Fig. 6B, a nonlinear ramp-down control curve can be generated and controlled by voltage, current or power to effectively control the power level of the transmit power amplifier in the inter-slope region. The ramp-down control curve generated by the control method of the transmission power amplifier according to the preferred embodiment of the present invention does not have the problem of discontinuity in the power control of the ramp-down control curve and the previous time slot, and there is no left ramp down. The problem of discontinuity in power control between the control section and the right ramp down control section. Referring to Figure 7, a block diagram of a memory in accordance with a preferred embodiment of the present invention is shown. The memory 720 includes an original curve left section comparison table 721, an original curve right section comparison table 722, a left section scale value comparison table 723, a right section scale value comparison table 724, and a lowest power value comparison table 725. The original curve left segment comparison table 721 is used to store a number of original curve left segments, and each original curve left segment corresponds to a transmission power value. The original curve right segment comparison table 722 is used to store a number of original curve right segments, and each original curve right segment corresponds to a transmission power value. The lowest power value comparison table 725 is used to store a number of lowest power values, and each of the lowest power values corresponds to a transmitted power value. The left segment scale value comparison table 723 is used to store a plurality of left segment scale values, and each left segment scale value corresponds to a transmission power value and a lowest power value. The right segment scale value comparison table 724 is used to store a number of right segment scale values, wherein each right segment scale value corresponds to a transfer power value and a lowest power value. Regarding the actual operation, the corresponding values of the respective calculation parameters, the lowest power value Η, the left power ratio value SL, the right power ratio value SR, the original left segment FL, and the original right segment FR at different powers are respectively obtained. The array storage table is created, and the FL comparison table 721, the FR comparison table 722, the SL comparison table 732, the SR comparison table TW1461PA-A1 16 1299612 724, and the Η comparison table 725 are stored in the memory 720. When using different output power intensities, the system can quickly find the corresponding set value by looking up the table. In the use of memory, the conventional TDMA system requires various power intensity control curves to be stored in the memory. The present invention significantly reduces the amount of memory used to scale the original curve. In terms of operation speed, in order to avoid the original left segment FL and the original right segment FR, the multiplication of the float point is required to make the fixed point embedded system consume dozens of operation instructions. The content on the storage table regarding the original left segment FL and the original right segment FR records the value of the original left segment FL and the original right segment FR multiplied by 2 to the Nth power (ie, FL_TABLE=FL*). 2N and FR-TABLE=FR*2N). When calculating the left control section FL' and the right control section FR', it can be handled simply by shifting (ie, FL, =H+SL*(FL_TABLE) shifting Nbit right) and FR,=H+SR*( FR_TABLE) Move Nbit to the right to save computation. In this way, the binary bit shift mode can be used to achieve the purpose of floating point multiplication, and the complicated multiplication calculation of floating point numbers is overcome. Compared with the conventional TDMA system, each point of the control curve needs to be linearly operated. The present invention can calculate the control curve by calculating the integer multiplication displacement of the entire original curve. In addition, the system can also be used as an auxiliary calculation unit (co-processor) to perform integer multiplication and displacement calculations, which can save the calculation amount and calculation time of the control curve. The control method of the transmission power amplifier disclosed in the above embodiments of the present invention can control the TXPA to make a non-linear connection when converting the power intensity to achieve the purpose of power saving; further propose a special operation technique, which can not only use less memory. The usage and operation time can easily and quickly generate the power control curve of TXPA, and the control curve of the power power change zone can also maintain a specific shape, so that it conforms to the time domain and spectrum specifications. Please refer to FIG. 8 , which is a schematic diagram of a multi-time slot wireless TW1461PA-A1 17 1299612 communication system according to a preferred embodiment of the present invention. The multi-time slot wireless communication system includes a base station 81 and a (four), element 83. The mobile unit 83 communicates with the base station 81 in a plurality of time slots. The tracking unit 7G 83 includes a transmission power amplifier 831, a power control device, and a controller 839. The transmit power amplifier 831 is for amplifying an output signal, such as an out signal. The power control device 8A includes a supply device such as an ancient memory 835, a curve generator (4), and a controller. The supply device sand system is configured to provide a first power value % at a first time point of the first-time slot and a second power value SR ' at a first time point of the second: slot and the second time slot is adjacent to First, the slot D has a hidden body 835 (as shown in FIG. 7) for storing and/or providing at least one original power curve and line. The curve generator 837 is coupled to the supply device (4) and the raw power curve of the memory unit and the second (fourth) (fourth). In the flute - the output power value Q is less than the first power value and the second power value sr = the live processor 837 and the transmission power amplifier 831 for adjusting the output power of the power amplifier 831 according to the output line adjustment. .

為了在不#裒貝料的情況下改善資料傳輸率,EDGE 讯系統提供使用者-種能適用不同調變類型(例如:8psK=通 類型或GMSK調變類型)之選擇方牵。 ”°紇 白/ t κ 、 案基本上’如果頻道品質優 ^例如,夠符合或超過特㈣界值或頻道品質 、 系統能採用8PSK來調變資料,使得每-單位時間(例如.每 時槽)内能傳送更多資料。然而,如果頻道 二 用8PSK來調變資料,則EDGE系統 、 型、 來進行資料傳輸,以使資料不易受損。#级_類型方案 _因此’兩相鄰時槽可由不同調變方案進行調變。 不,時槽1係由8PSK方案進行調變, 圖所 i隹;^田織π古4* 1 寻糟2係由GMSK方樂 订魏。時槽1之功率值為A而時槽2之功率值為B。傳統上 TW1461PA-A1 1299612 在間斜區900並沒有傳輸任何資料,然而其功率值會從a增加至 B以作為在時槽2傳送之準備。In order to improve the data transmission rate without the use of oysters, the EDGE system provides users with a choice of different modulation types (for example: 8psK=pass type or GMSK modulation type).纥 纥 white / t κ, the case basically 'If the channel quality is excellent ^ For example, enough to meet or exceed the special (four) threshold or channel quality, the system can use 8PSK to modulate the data, so that every - unit time (for example, every hour) In the slot), more data can be transmitted. However, if the channel 2 uses 8PSK to modulate the data, the EDGE system, type, and data transmission are performed to make the data not easily damaged. #级_型方案_ The time slot can be modulated by different modulation schemes. No, the time slot 1 is modulated by the 8PSK scheme, the figure is i隹; ^Tian weaving π ancient 4* 1 the bad looking 2 is set by GMSK Fangle. The power value of 1 is A and the power value of slot 2 is B. Traditionally, TW1461PA-A1 1299612 does not transmit any data in the oblique zone 900, but its power value is increased from a to B to be transmitted in time slot 2. Preparation.

第10圖繪不習知之混合調變無線通訊系統於相鄰之8pSK 及GMSK調變時槽之-輸出功率曲線之示意圖。虛線1〇12_1〇14 (在時槽1使用8PSK調變)、虛線ι〇22(在間斜區9〇〇使用GMSK •調變)、及虛線1032_1〇34 (在時槽2使用GMSK調變)構成了 混合調變無線通訊系統之計時防護,且其參數係由 GSM/GPRS/EDGE規格來定義。依據GSM/GpRS/EDGE規格所定 義之計時防護,每-輸出功率值將會小於_預設最大功率值或超 ’出一預設最小功率值(例如:線段1〇12、1〇14、1〇22、1〇32及 1034)。換s之,輸出功率值(由實線1〇42、1〇4斗及繪出) 不月b超過汁時防遵(由虛線1〇12、1〇14、1〇22、及繪 出)。 請參照第9圖,繪示習知之混合調變(例如:EDGE)無線 通訊系統之示意圖。習知用以控制在間斜區9〇〇之功率值係以線 性逐點的方式將功率值增加至B。如第9圖所示,f知上係在間 斜區刪直接連接功率值八及功率值8以形成一線性功率線段。 ,然而’ &用如第11A-11B目所示之習知方法,將會於間斜區刪 中產生瞬變電流。 第ΠΑ-11Β圖繪示高功率瞬變電流對於習知之混合調變無 線通訊純在間斜區之輸出功率之料,分示在不同頻率下 及不同時間下所發生之瞬變電流11〇〇。如第uA圖所示,在間 斜,叩〇中,瞬變指示1100a_b係超過計時防護m〇a_b(虛線)。 偏若瞬變指示1HH)a_b超過計時防護⑽a_b,可能被其他行動通 訊裝置(例如··行動電話)使用之相鄰頻道將會奸擾的情形發 生。此外,如第11B圖所示,在間斜區_有一頻率為〇·4ΜΗζ TW1461PA-A1 19 1299612 之瞬變電流高峰1100從傳送頻道產生。第11B圖係繪示以頻率 函數表示之功率曲線圖。吾人因此可決定在間斜線(例如在間斜 區900)會發生高瞬變電流1100之部分。如第11B圖所示,瞬變 • 電流高峰之功率值已大於-20dBm而超出一般容限度。 為了解決上述瞬變電流可能產生的問題,本發明提供一種在 • 間斜區形成下凹曲線之方法及裝置,以使間斜區之瞬間電流功率 皆不超過一預設最大值(例如··計時/功率防護之最大值)。舉例 來說,在一具體實施例中,本發明係有關於降低通訊協定中之間 斜區之瞬間電流之方法,包括下列步驟: _ 1 ·基於下凹之功率曲線決定在間斜區之輸出功率值(例 如:針對所有時間點),使得在間斜區之某些功率值低於在緊接 於間斜區前之第-時槽及/或在緊接於間斜區後之第二時槽之訊 號之功率值。功率曲線並非如第9圖之習知間斜曲線的直線,雖 然亦可能包括一或多個實質上為線性區段之部分。 2·配置或產生下凹曲線,使得最低點(例如··最低功率值) 實質上發生在_電流會發生之處且低於—臨界值(例如一預設 功率值)。-般來說,下凹曲線之最低點係發生在間斜區之中央。 • 3·使用至少一原始曲線產生下凹曲線。在一具體實施例 中,下凹曲線包括原始曲線凡⑴及fr⑴。 第12圖繪示依照本發明一較佳實施例之高功率瞬變電流對 於混合調變無線通訊系統在間斜區之輸出功率之影響,繪示以時 間函數表示之輸出功率曲線圖。緊接於間斜區_之前,輸出功 率曲線1240在時槽1具有一約為-6 dBm之第一功率值(使用 8PSK調變)。緊接於間斜區_之後,輸出功率曲線测在時 槽2具有約為〇 dBm之第二功率值(使用調變)。缺而, 在間斜區_,輸出功率曲線124〇通常係呈下凹,且具有第二(或 TW1461PA-A1 20 1299612 左)增加區段1222、第二(或右)增加區段1224、以及約為_3〇 dBm之最小功率值。在某些具體實施例,在功率曲線1240之間 斜區900之最低點1223之臨界值可設定為_6dBm、_i〇dBm或是 20 dBm,或甚至更低於緊接於間斜區122〇前或後之第一及第二 功率值兩者之較低者。假設臨界值是如第12圖所示之_2()犯瓜, 最低點(最小功率值1225)顯然地小於此臨界值。 、身第13 A—1圖分別繪示依照本發明一較佳實施例之輸出功 率·輸出頻率函數以及在特定輸出頻率下之輸出功率-時間函數, 進而顯示由本發明所產生的結果。第13A圖顯示以頻率為函數之 第一輸出功率曲線,而第13B圖顯示在給定頻率下(此處係設定 瞬變電流為δ = 0.4 MHz)以時間為函數之第二輸出功率曲線。 在第一輸出功率曲線上,瞬變電流136〇a氺之功率值分別位在 +/-〇·4ΜΗζ且顯然地低於由防護lu〇a_bm定義之功率值。因 此,如第13A-13B所示,在間斜區9〇〇之輸出功率曲線具有一較 低的高峰(其功率值低於一2〇 dBm),此係相較於第UB圖所示之 習知系統之高峰(其功率值高於一 20 dBm)。藉此,可降低或避免 任何干擾發生在相鄰頻道所導致之較高功率之瞬變電流。 第14圖繪示應用本發明之行動單元之方塊圖。如第14圖所 示,除了上述之功率控制裝置800、控制器839、及功率放大器 831之外,行動單元83更具有一無線控制模組85及一瞬變期間 估計器87。無線控制模組85、功率控制裝置8〇0、瞬變期間估計 器87、或控制器839可以全部或分開實施於一微處理器或者於一 實體層之一或多個裝置(例如··積體電路)。值得注意的是,控 制器839可(1)依據輸出功率曲線調整功率放大器之輸出功率,亦 可(2)控制在相鄰時槽間之功率值/調變類型之切換(例如·從第 一時槽之第一調變類型切換至第二時槽之第二調變類型)。為了 TW1461PA-A1 21 1299612 控制調變類型之切換,控制器839可以更包括一般目的輸出 (GPO)裝置或三線指令單元。 】 在TDMA通訊系統,無線控制模組85從基地台81接收訊 號且輸出一控制訊號(例如··在第14圖之CONTROL)至功率抄 制裝置800。控制訊號包括在隨後資料框之每一時槽之某此戋全 部特徵資料。特徵資料可以包括在資料框之每一時槽之功率值、 每個時槽(從中可指出、決定或設置相鄰時槽間之間斜區)之位 置、以及/或資料框之每一時槽之調變類型。 舉例來說,控制訊號通知功率裝置8〇〇原本在第12圖之時 槽1所需功率值應該是A (約為-6 dBm)且時槽2所需功率值應 該是B(約為0dBm)。功率控制裝置8〇〇於是配置或產生介於時 槽1及時槽2之間斜區900之輸出功率曲線。並且,輸出功率曲 線之至少一輸出功率值係實質上小於功率值A及B。在輸出功率 曲線產生後,瞬變期間估計器87更估計且/或決定輸出功率曲線 内(且在間斜區900)之瞬變期間,當中所有輸出功率係小於一 預設臨界值。在某些具體實施例,瞬變期間包括在輸出功率曲線 之最低點所發生之期間或時間。因此,在輸出功率曲線之瞬變斯 間,控制器839將功率放大器831之控制輸出功率值且從功率值 A切換至功率值B(且/或能夠從第一調變類型切換至第二調變類 型)。 因此,除了控制時槽間之功率值轉換,在EDGE通訊系統, 行動單元83亦可用來控制時槽間之調變類型轉換。例如,控制 訊號可以通知功率控制裝置8〇〇在第12圖之時槽丨所需調變類 型是8PSK且時槽2所需調變類型是GMSK。功率控制裝置8〇〇 於是配置或產生介於時槽i及時槽2之間斜區9〇〇之輸出功率曲 線。在輸出功率曲線產生後,瞬變期間估計器87更估計且/或決 TW1461PA-A1 22 1299612 定輸出功率曲線内(且在間斜區900)之瞬變期間,當中所有輸 出功率係小於一預設臨界值。在某些具體實施例,瞬變期間包括 在輸出功率曲線之最低點所發生之期間或時間。因此,在輸出功 率曲線之瞬變期間,控制器839能將功率放大器83丨從8pSK調 變類型(時槽1)切換至GMSK調變類型(時槽2)。 因此,藉由在瞬變期間切換功率值/調變類型,該功率值/調 變類型切換產生之瞬變電流將在瞬變期間發生,而能夠由本發明 之上述降低功率之方法及裝置來控制。如第13圖所示,瞬變電 流的發生係指輸出功率值突然增加及減少以形成一高峰,而具有 相當之高功率值。在本發明中,由㈣變期間内之輸出功率值可 以為最低功率值或低於-臨界值,因此,不管任何突料增加, 由瞬變電流產生之高峰之功率值皆可控制且將不會超過計時防 護。 綜上所述,雖然本發明已以—較佳實施例揭露如上,然其並 非用以限定本發明’任何熟習此技藝者,在不脫離本發明之精 和範圍内,當可作各種之更動與潤飾,因此本發明之保護範^ 視後附之申請專利範圍所界定者為準。 TW1461PA-A1 23 1299612 【圖式簡單說明】 第1A至1C圖(習知技藝)繪示習知TDMA系統之傳送功 率放大器在接續傳送兩個時槽資料時之功率強度時序圖。 第2圖繪不依照本發明一較佳實施例的傳送功率放大器 (TX P〇wer Amplifier,τχ pa)在接續傳送兩個時槽資料時之 率強度時序圖。 第3圖繪示依照本發明一較佳實施例的傳送功率放大器之 控制方法流程圖。 "Figure 10 is a schematic diagram showing the output-power curve of a conventional mixed-modulation wireless communication system in an adjacent 8pSK and GMSK modulation time slot. Dotted line 1〇12_1〇14 (using 8PSK modulation in time slot 1), dotted line ι〇22 (using GMSK in the oblique zone 9〇〇 • modulation), and dashed line 1032_1〇34 (using GMSK modulation in time slot 2) It constitutes the timing protection of the hybrid modulation wireless communication system, and its parameters are defined by the GSM/GPRS/EDGE specifications. According to the timing protection defined by the GSM/GpRS/EDGE specification, the per-output power value will be less than the _preset maximum power value or exceed a preset minimum power value (for example: line segment 1〇12, 1〇14, 1 〇22,1〇32 and 1034). For s, the output power value (from the solid line 1 〇 42, 1 〇 4 bucket and draw) Do not b) when the juice exceeds the juice (by the dotted line 1〇12, 1〇14, 1〇22, and drawn) . Referring to Figure 9, a schematic diagram of a conventional hybrid modulation (e.g., EDGE) wireless communication system is shown. It is conventional to control the power value in the interleaved zone 9 to increase the power value to B in a linear point by point manner. As shown in Fig. 9, the upper unit is connected to the power value eight and the power value 8 in the interleaved area to form a linear power line segment. However, &&; using conventional methods as shown in Figs. 11A-11B, a transient current will be generated in the inter-slope region. Figure Β-11 shows the high-power transient current for the known mixed-modulation wireless communication pure output power in the oblique zone, showing the transient current generated at different frequencies and at different times 11〇〇 . As shown in Fig. uA, in the skew, 叩〇, the transient indication 1100a_b exceeds the timing guard m〇a_b (dashed line). The partial transient indication 1HH)a_b exceeds the timing guard (10)a_b, which may be provoked by adjacent channels used by other mobile communication devices (eg, mobile phones). In addition, as shown in FIG. 11B, a transient current peak 1100 having a frequency of 〇·4ΜΗζ TW1461PA-A1 19 1299612 is generated from the transmission channel in the oblique region _. Figure 11B is a graph showing the power curve expressed in terms of a frequency function. We can therefore determine the portion of the high transient current 1100 that will occur in the diagonal line (e.g., in the interslope zone 900). As shown in Figure 11B, the transient/current peak power value is greater than -20dBm beyond the normal tolerance. In order to solve the above problems that may occur in the transient current, the present invention provides a method and apparatus for forming a concave curve in an oblique region so that the instantaneous current power of the oblique region does not exceed a predetermined maximum value (for example, The maximum timing/power protection). For example, in one embodiment, the present invention is directed to a method of reducing the instantaneous current between ramps in a communication protocol, including the following steps: _ 1 - determining the output in the inter-slope region based on the concave power curve The power value (for example, for all time points) such that some power values in the inter-slope region are lower than the first-time slot immediately before the inter-slope region and/or second immediately after the inter-slant region The power value of the signal of the time slot. The power curve is not a straight line of the conventional oblique curve as shown in Figure 9, although it may also include one or more portions that are substantially linear segments. 2. Configure or generate a concave curve such that the lowest point (e.g., the lowest power value) occurs substantially at the point where the _ current will occur and below the threshold value (e.g., a predetermined power value). In general, the lowest point of the concave curve occurs in the center of the oblique zone. • 3. Use at least one original curve to create a concave curve. In a specific embodiment, the concave curve includes the original curves (1) and fr(1). FIG. 12 is a graph showing the effect of high power transient current on the output power of the hybrid modulation wireless communication system in the oblique region according to a preferred embodiment of the present invention, and plotting the output power expressed as a function of time. Immediately before the skew zone _, the output power curve 1240 has a first power value of about -6 dBm in time slot 1 (using 8PSK modulation). Immediately after the skew zone _, the output power curve is measured at time slot 2 with a second power value of approximately 〇 dBm (using modulation). In the inter-slope region _, the output power curve 124〇 is generally concave, and has a second (or TW1461PA-A1 20 1299612 left) increase segment 1222, a second (or right) increase segment 1224, and A minimum power value of approximately _3 〇 dBm. In some embodiments, the threshold of the lowest point 1223 of the ramp 900 between the power curve 1240 can be set to _6 dBm, _i 〇 dBm, or 20 dBm, or even lower than the interslope region 122 〇 The lower of the first and second power values before or after. Assuming that the threshold is _2() as shown in Figure 12, the lowest point (minimum power value 1225) is clearly less than this threshold. Figure 13A-1 shows the output power and output frequency functions and the output power-time function at a particular output frequency, respectively, in accordance with a preferred embodiment of the present invention, thereby showing the results produced by the present invention. Figure 13A shows the first output power curve as a function of frequency, while Figure 13B shows the second output power curve as a function of time at a given frequency (here the transient current is δ = 0.4 MHz). On the first output power curve, the power value of the transient current 136 〇 a 位 is located at +/- 〇 · 4 分别 and is clearly lower than the power value defined by the guard lu 〇 a — bm. Therefore, as shown in Figures 13A-13B, the output power curve in the inter-slope region 9〇〇 has a lower peak (its power value is less than 2〇dBm), which is compared to the UB diagram. The peak of the conventional system (its power value is higher than a 20 dBm). Thereby, any higher-frequency transient currents caused by interference occurring in adjacent channels can be reduced or avoided. Figure 14 is a block diagram showing the action unit to which the present invention is applied. As shown in Fig. 14, in addition to the above-described power control device 800, controller 839, and power amplifier 831, the mobile unit 83 further has a wireless control module 85 and a transient period estimator 87. The wireless control module 85, the power control device 800, the transient period estimator 87, or the controller 839 may be implemented in whole or in a microprocessor or in one or more physical layers (eg, Body circuit). It should be noted that the controller 839 can (1) adjust the output power of the power amplifier according to the output power curve, and can also (2) control the switching of the power value/modulation type between adjacent time slots (for example, from the first The first modulation type of the time slot is switched to the second modulation type of the second time slot). For the switching of the TW1461PA-A1 21 1299612 control modulation type, the controller 839 may further include a general purpose output (GPO) device or a three-wire command unit. In the TDMA communication system, the wireless control module 85 receives the signal from the base station 81 and outputs a control signal (e.g., CONTROL in Fig. 14) to the power copying device 800. The control signal includes all of the characteristics of the slot at each time slot of the subsequent data frame. The feature data may include the power value of the slot at each time of the data frame, the position of each time slot (from which the position can be indicated, determined or set between adjacent slots), and/or each time slot of the data frame. Modulation type. For example, the control signal informs the power device 8 that the required power value of the slot 1 should be A (about -6 dBm) and the required power value of the time slot 2 should be B (about 0 dBm). ). The power control unit 8 then configures or produces an output power curve between the time slot 1 and the time slot 2 between the slots 2. Also, at least one of the output power values of the output power curve is substantially less than the power values A and B. After the output power curve is generated, the transient period estimator 87 more estimates and/or determines during the transients within the output power curve (and during the inter-slope region 900) that all of the output power is less than a predetermined threshold. In some embodiments, the transient period includes the period or time at which the lowest point of the output power curve occurs. Thus, during transients of the output power curve, controller 839 switches the control output power value of power amplifier 831 and switches from power value A to power value B (and/or can switch from the first modulation type to the second modulation) Variable type). Therefore, in addition to controlling the power value conversion between slots, in the EDGE communication system, the mobile unit 83 can also be used to control the modulation type conversion between time slots. For example, the control signal can inform the power control device 8 that the desired modulation type of the slot is 8PSK at time 12 and the desired modulation type for time slot 2 is GMSK. The power control unit 8 then configures or produces an output power curve between the time slot i and the time slot 9 between the slots 2. After the output power curve is generated, the transient period estimator 87 estimates and/or determines that during the transient of the TW1461PA-A1 22 1299612 constant output power curve (and in the inter-slope region 900), all of the output power systems are less than one pre- Set the threshold. In some embodiments, the transient period includes the period or time at which the lowest point of the output power curve occurs. Therefore, during the transient of the output power curve, the controller 839 can switch the power amplifier 83 from the 8pSK modulation type (time slot 1) to the GMSK modulation type (time slot 2). Therefore, by switching the power value/modulation type during the transient, the transient current generated by the power value/modulation type switching will occur during the transient, and can be controlled by the above-described method and apparatus for reducing power of the present invention. . As shown in Fig. 13, the occurrence of transient current refers to a sudden increase and decrease in the output power value to form a peak with a relatively high power value. In the present invention, the output power value during the (four) variation period may be the lowest power value or lower than the -threshold value, so the peak power value generated by the transient current can be controlled and will not be controlled regardless of any sudden increase in the material. Will exceed the timing protection. In the above, the present invention has been disclosed in the above-described preferred embodiments, and it is not intended to limit the invention to those skilled in the art, and various modifications may be made without departing from the scope of the invention. And the refinement of the invention is therefore defined by the scope of the appended claims. TW1461PA-A1 23 1299612 [Simplified Schematic] Figures 1A to 1C (Similar Art) show the power intensity timing diagram of the transmission power amplifier of the conventional TDMA system when successively transmitting two time slot data. Fig. 2 is a timing chart showing the rate of intensity of a transmission power amplifier (TX P〇wer Amplifier, τχ pa) which is not transmitted in accordance with a preferred embodiment of the present invention. FIG. 3 is a flow chart showing a control method of a transmission power amplifier according to a preferred embodiment of the present invention. "

立第4Α圖繪示依照本發明一較佳實施例之原始間斜曲線之示 意圖。 立第4Β圖緣示依照本發明一較佳實施例之間斜控制曲線之示 意圖。 第5Α圖繪示依照本發明一較佳實施例之原始斜升曲線之 意圖。 第5Β圖繪示依照本發明_較佳實施例之斜升控制曲線之示 意圖。 第6Α圖緣示依照本發明一較佳實施例之原始斜Figure 4 is a diagram showing the original oblique curve in accordance with a preferred embodiment of the present invention. The fourth drawing shows the intention of the oblique control curve in accordance with a preferred embodiment of the present invention. Figure 5 is a diagram showing the original ramp-up curve in accordance with a preferred embodiment of the present invention. Figure 5 is a schematic illustration of a ramp-up control curve in accordance with the preferred embodiment of the present invention. Figure 6 shows the original oblique according to a preferred embodiment of the present invention.

意圖。 第6Β囷、’、g示依照本發明一較佳實施例之斜降控制曲線之示 意圖。 、 第7圖綠示依照本發明一較佳實施例之記憶體之方塊圖。 第8圖繪示依照本發明一較佳實施例之多時槽無線通訊系 統之示意圖。 第9圖(習知技藝)繪示習知之一混合調變(例如:即㈤ 無線通§凡系統之示素圖。 第10圖(習知技藝)繪示習知之混合調變無線通訊系統於 TW1461PA-A1 24 1299612 相鄰之8PSK及GMSK調變時槽之一輸出功率曲線之示意圖。 第11A-11B圖(習知技藝)繪示高功率瞬變電流對於習知 之混合調變無線通訊系統在間斜區之輸出功率之影響。 第12圖繪示依照本發明一較佳實施例之高功率瞬變電流對 於混合調變無線通訊系統在間斜區之輸出功率之影響。 • 第13A-13B圖分別繪示依照本發明一較佳實施例之輸出功 率-輸出頻率函數以及在特定輸出頻率下之輸出功率-時間函數。 第14圖繪示應用本發明之行動單元之方塊圖。 • 【主要元件符號說明】 D1 :第一資料區 D2 :第二資料區 51 :第一時槽 52 :第二時槽 RU、RUa、RUb、RUc :斜升控制曲線 RD、RDa、RDb、RDc :斜降控制曲線 IR、IR’、IRa、IRb、IRc :間斜控制曲、線 ^ PI、P2 :保護區 FL :原始左區段 FR :原始右區段 FL’ :左控制區段 FR’ :右控制區段 FLO :原始間斜左區段 FRO :原始間斜右區段 FLO’ :左間斜控制區段 FRO’ :右間斜控制區段 TW1461PA-A1 25 1299612 FLl :原始斜升左區段 FR1 :原始斜升右區段 FL1’ :左斜升控制區段 FR1’ :右斜升控制區段 ‘ FL2 :原始斜降左區段 • FR2 :原始斜降右區段 FL2’ :左斜降控制區段 FR2’ :右斜降控制區段 81 :基地台 # 83 :行動單元 85 :射頻控制模組 87 :瞬變期間估計器 700 :無線通訊裝置 710 ··傳送功率放大器 720 :記憶體 721 : FL對照表 722 : FR對照表 φ 723 : SL對照表 724 : SR對照表 725 :最低功率值對照表 800 :功率控制裝置 831 :功率放大器 833 :供應裝置 837 :曲線產生器 839 :控制器 26 TW1461PA-A1intention. The sixth, ', and g show the schematic of the ramp-down control curve in accordance with a preferred embodiment of the present invention. Figure 7 is a block diagram of a memory in accordance with a preferred embodiment of the present invention. FIG. 8 is a schematic diagram of a multi-time slot wireless communication system in accordance with a preferred embodiment of the present invention. Figure 9 (known art) shows one of the conventional hybrid modulations (for example, (5) wireless pass-through system diagrams. Figure 10 (known art) shows a conventional hybrid modulation wireless communication system TW1461PA-A1 24 1299612 Schematic diagram of the output power curve of one of the adjacent 8PSK and GMSK modulation time slots. Figure 11A-11B (technical technique) shows high power transient current for the conventional hybrid modulation wireless communication system The effect of the output power of the inter-slope region. Figure 12 illustrates the effect of high-power transient current on the output power of the mixed-modulation wireless communication system in the inter-slope region in accordance with a preferred embodiment of the present invention. The figure shows the output power-output frequency function and the output power-time function at a specific output frequency according to a preferred embodiment of the present invention. Figure 14 is a block diagram showing the action unit to which the present invention is applied. Element symbol description] D1: first data area D2: second data area 51: first time slot 52: second time slot RU, RUa, RUb, RUc: ramp control curve RD, RDa, RDb, RDc: ramp down Control curve IR, IR', IRa IRb, IRc: skew control curve, line ^ PI, P2: protected area FL: original left section FR: original right section FL': left control section FR': right control section FLO: original oblique left area Segment FRO: original interval oblique right segment FLO': left oblique control segment FRO': right oblique control segment TW1461PA-A1 25 1299612 FLl: original obliquely raised left segment FR1: original obliquely raised right segment FL1' : Left ramp control section FR1': Right ramp control section 'FL2: Original ramp down left section• FR2: Original ramp down right section FL2': Left ramp down control section FR2': Right ramp down control Section 81: Base station #83: Action unit 85: Radio frequency control module 87: Transient period estimator 700: Wireless communication device 710 · Transmission power amplifier 720: Memory 721: FL comparison table 722: FR comparison table φ 723: SL comparison table 724: SR comparison table 725: lowest power value comparison table 800: power control device 831: power amplifier 833: supply device 837: curve generator 839: controller 26 TW1461PA-A1

Claims (1)

1299612十、申清專利範園: ί· 一種多時槽無線通訊裝置之間斜區之輸出 法,包括: 3 日修(Λ)正本丨 功率控制方 提供緊接於該間斜區前之一第一時槽在—第一時間之一 一功率值; θ 弟 -提供緊接於該間斜區後之一第二時槽在—第二時間之一第 2率值,其中該第二時槽係相鄰於該第—時槽且該第二時槽使 不同於該第一時槽之調變類型;以及 於該間斜區配置或產生一輸出功率曲線,其中該輸出功率曲 、、之至少一輸出功率值係實質上小於每一該第_功率值及每一 該第二功率值。 2·如申請專利範圍第丨項所述之控制方法,其中該方法更 包括. 依據至少一原始功率曲線配置或產生該輸出功率曲線。 3.如申請專利範圍第2項所述之控制方法,其中該至少一 原始功率曲線包括一第一原始功率曲線及一第二原始功率曲夕 ^該輸出功率曲線包括_第—部份及第二部分,且該方法更包 括· 從該第一原始功率曲線產生該輸出功率曲線之該 份;以及 " 仗忒第一原始功率曲線產生該輸出功率曲線之該第二部份。 4·如申請專利範圍第3項所述之控制方法,其中產生該輪 /出功=曲線之該第一部份之步驟包括對該第一原始功率曲線ϋ執别 订第一數學運算,且產生該輸出功率曲線之該第二部分之步驟 包括對該第二原始功率曲線執行一第二數學運算。 · 5·如申請專利範圍第4項所述之控制方法,其中該第一數 TW1461PA-A1 27 1299612 97. 1. 23 , 牟月曰修(?\)正本 2運斤包括對该至少_第_原始功率曲線及該第—功率值加上 一預設功率值,且該第二數 曲線及該第二功率值加上該預設:力=對如-弟二原始功率 6.如申請專鋪㈣5項所述之㈣方法其巾產生該輸 =Γ、!Γ第—部份之步驟更包括對該第-原始功率曲線 進行乘法運算,且產生該輸出功率曲線之該第二 乘對二原始功率曲線及該第二功率值進行 =❹’其中該第-功率值及/或該第二功率值可加上該預設功 ^如中請專利範圍第5項所述之控制方法其中該預設功 率值係低於一臨界值。 8. 如巾請專利範圍第7項所述之控制方法,其中該臨界值 乂低於㈣—功率值及該第二功率值之較小者6 dBm。 9. 如申請專利範圍第2項所述之控制方法其中該方法更 包括: 儲存控制貝料於一記憶體,其中該原始功率曲線係產生自該 控制資料。 如申明專利範圍第2項所述之控制方法,其中該原始功 率曲線包括一多項式函數。 U·如申印專利範圍第9項所述之控制方法,其中該原始功 率曲線包括一函數: [l+C〇S(2;r *n/N)]/2’其中n & n係至少部分之該控制資料。 12·如申4專利範圍第丨項所述之控制方法,其中該輸出功 率曲線包括一下凹曲線。 13·如申請專利範圍第〖項所述之控制方法,其中該第一時 才曰包括8PSK調變類型及一 GMSK調變類型兩者之一,且該第 TW1461PA-A1 28 1299612 ---------.-ί 年月日修c\)正本i 二時槽包括該8PSK調變類型及該GMSK調變類型兩者 14. 一種多時槽無線通訊系統之 之另。 置,包括: 之輸出功率控制裝 一供應裝置,用以⑴提供緊接於該間斜區前之—士 在-弟-時間之-第-功率值,以及⑼提供緊接於 ^ 之-第二時槽在一第二時間之一第二功率值,其_= 相鄰於該第一時槽且該第二時槽使用一不同於該;=係 變類型;以及 可價之调 -控制器,用以於該間斜區依據一輸出功率曲線調整該輸出 功率中该輸出功率曲線之至少—輸出功率值係實質上小於每 一 5亥第一功率值及每一該第二功率值。 壯I5.如申請專利範圍第14項所述之控制裝置,其中該控制 裝置更包括: 一記憶體,用以提供至少一原始功率曲線;以及 曲線產生态,用以依據該至少一原始功率曲線配置或產生 δ亥輸出功率曲線。 16·如申凊專利範圍第丨5項所述之控制裝置,其中該記憶 Φ體更儲存該原始功率曲線之控制資料。 17·如申請專利範圍第15項所述之控制裝置,其中該原始 功率曲線包括一多項式函數。 σ 18.如申請專利範圍第16項所述之控制裝置,其中該控制 裝置更包括一產生裝置,用以依據下述函數產生該原始功率曲 線: [l+C〇S(2;r *η/Ν)]/2,其中η及Ν係至少部分之該控制資料。 19·如申請專利範圍第14項所述之控制裝置,其中該輸出 功率曲線包括一下凹曲線。 TW1461PA-A1 29 1299612 i · 2 3 , 牛月R修(八】正奉| 20·種符合EDGE之通訊系統,包括申請專利範圍第15 項所述之控制裝置。 21·如申請專利範圍帛14輯述之控制裝置,其中該系統 匕括符口 EDGE之通A系統,該第一時槽包括一 8psK調變類 型及- GMSK調變類型兩者之—,且該第二時槽包括該8獻調 變類型及該GMSK調變類型兩者之另一。 22.如中請專利範圍第14項所述之控制裝置,其中該控制 裝置更包括一傳送功率放大器。 種行動包^,包括申凊專利範圍第1 4項所述之控制 %如申請專利範圍第23項所述之行動電話,其中該控制 裝置係為該行動電話中部分之積體電路(IntegmedCi⑽it,IC)。 25· —種多時槽無線通訊系統,包括: 一基地台;以及 .-行動單元’以複數個時槽與該基地台通訊,該行動單元包 一傳送功率放大器; • —供應裝置’用以⑴提供緊接於-間斜區之前之—第 一時槽在一第一時間之_篦一 Λ漆 、 ·. 卜 力率值,以及⑴)提供緊接於該間 斜區後之一第二時槽在一第-聋Η ^ 弟一日守間之一弟二功率值,其中該第一 時槽係相鄰於該第一時槽1 g g _ 一 才子曰且4弟一時槽使用一不同於該第一時 槽之調變類型; t 口己L、to,用以提供至少一原始功率曲線; 一曲線產生器’麵接於該供應裝置及該記憶 :該間斜區根據該原始功率曲線產生-輸出功率曲線,其中:二 出功率曲線之至少-輸出功率值係實質上小於每—該第_^輸 TW1461PA-A1 30 1299612 If '9771 •月Μ 9修(.\)正本 值及每一該第二功率值;以及 率 一控制态,轉接於該曲線產生器及該傳送功率放大 器,用以依據該輸出功率曲線調整該傳送功率放大器之該輸出力 26·如申請專利範圍第25項所述之通訊系統,其 係一符合EDGE之通訊系統。 ’、、、 27·如申請專利範圍第26項所述之通訊系統,其中該第— 時槽包括—8PSK調變類型及—GMSK調變類型兩者之—二且; 第二時槽包括該8PSK調變類型及該GMSK調變類型兩者之另以 28. -禋切換弟一時槽與第二時槽間之時槽間斜 置:其中士㈣-時槽具有—第—功率值,且鄰接於該第—時槽之 。亥第一時槽具有一第二功率值,該控制裝置包括: 一功率控制裝置,用以於該間斜區配置或產生—輸出功率曲 中該輸出功率曲線之至少_輸出功率㈣實f上小於每一 忒弟一功率值及每一該第二功率值;以及1299612 X. Shenqing Patent Fanyuan: ί· An output method for the oblique zone between multi-time slot wireless communication devices, including: 3 day repair (Λ) original power control side provides one of the immediately adjacent to the oblique zone The first time slot is at - one of the first time power values; θ 弟 - providing one of the second time slots immediately after the oblique zone is - a second rate value of the second time, wherein the second time The slot is adjacent to the first time slot and the second time slot is different from the modulation type of the first time slot; and an output power curve is configured or generated in the oblique region, wherein the output power is The at least one output power value is substantially less than each of the _th power value and each of the second power value. 2. The control method of claim 2, wherein the method further comprises: configuring or generating the output power curve according to at least one original power curve. 3. The control method according to claim 2, wherein the at least one original power curve comprises a first original power curve and a second original power curve. The output power curve comprises a _th part and a The second part, and the method further comprises: generating the portion of the output power curve from the first raw power curve; and " the first raw power curve generating the second portion of the output power curve. 4. The control method of claim 3, wherein the step of generating the first portion of the wheel/output = curve comprises performing a first mathematical operation on the first original power curve, and The step of generating the second portion of the output power curve includes performing a second mathematical operation on the second raw power curve. · 5. The control method as described in claim 4, wherein the first number TW1461PA-A1 27 1299612 97. 1. 23, 牟月曰修 (?\) Original 2 斤 includes the at least _ _ original power curve and the first power value plus a preset power value, and the second number curve and the second power value plus the preset: force = pair such as - brother two original power 6. (4) The method of (4) (4), wherein the step of generating the input = Γ, !, the first part further comprises multiplying the first-original power curve, and generating the second multiplied pair of the output power curve The original power curve and the second power value are performed as ❹', wherein the first power value and/or the second power value may be added to the preset power, and the control method described in item 5 of the patent scope is The preset power value is below a threshold. 8. The method of claim 7, wherein the threshold value 乂 is lower than (4) - the power value and the second of the second power value is 6 dBm. 9. The control method of claim 2, wherein the method further comprises: storing the control material in a memory, wherein the raw power curve is generated from the control data. The control method of claim 2, wherein the original power curve comprises a polynomial function. U. The control method of claim 9, wherein the original power curve comprises a function: [l+C〇S(2;r*n/N)]/2' wherein n & n At least part of the control data. 12. The control method of claim 4, wherein the output power curve comprises a concave curve. 13. The control method according to the scope of the patent application, wherein the first time includes one of an 8PSK modulation type and a GMSK modulation type, and the TW1461PA-A1 28 1299612 ---- -----.-ί年月修修c\) Original i The second time slot includes both the 8PSK modulation type and the GMSK modulation type. 14. A multi-time slot wireless communication system. And comprising: the output power control device for supplying (1) the -the-power-time-first power value immediately before the oblique zone, and (9) providing the next The second time slot is a second power value at a second time, the _= is adjacent to the first time slot and the second time slot is used differently than the == system type; and the price control is controlled The at least one output power value of the output power is adjusted according to an output power curve in the oblique region - the output power value is substantially less than each of the 5 watts first power value and each of the second power values. The control device of claim 14, wherein the control device further comprises: a memory for providing at least one original power curve; and a curve generating state for determining the at least one original power curve Configure or generate a delta output power curve. The control device of claim 5, wherein the memory Φ body further stores control data of the original power curve. 17. The control device of claim 15 wherein the raw power curve comprises a polynomial function. The control device of claim 16, wherein the control device further comprises a generating device for generating the original power curve according to the following function: [l+C〇S(2;r*η) /Ν)]/2, where η and Ν are at least part of the control data. 19. The control device of claim 14, wherein the output power curve comprises a concave curve. TW1461PA-A1 29 1299612 i · 2 3 , Niuyue R repair (eight) is Feng | 20 EDGE-compliant communication system, including the control device described in claim 15 of the patent scope. 21 · If the patent application scope 帛 14 The control device of the series, wherein the system includes a EDGE A system, the first time slot includes an 8 psK modulation type and a - GMSK modulation type, and the second time slot includes the 8 The control device of the invention of claim 14, wherein the control device further comprises a transmission power amplifier. The control device described in Item 14 of the patent scope is the mobile phone described in claim 23, wherein the control device is a partial integrated circuit (IntegmedCi(10)it, IC) in the mobile phone. A multi-time slot wireless communication system comprising: a base station; and a mobile unit that communicates with the base station in a plurality of time slots, the mobile unit includes a transmit power amplifier; • the supply device is configured to (1) provide immediate In-between area The first - the first time slot is in a first time 篦 Λ Λ 、 、 、 、 、 、, and (1)) provides a second time slot immediately after the oblique zone ^ Brother one day guard, one of the two power values, wherein the first time slot is adjacent to the first time slot 1 gg _ a genius and the fourth brother uses a different time slot than the first time slot Variable type; t port L, to, for providing at least one original power curve; a curve generator' is connected to the supply device and the memory: the oblique region generates an output power curve according to the original power curve, wherein : at least two output power values - the output power value is substantially less than each - the first _^ TW1461PA-A1 30 1299612 If '9771 • month Μ 9 repair (.\) the original value and each of the second power value; And a rate-control state, coupled to the curve generator and the transmission power amplifier, for adjusting the output power of the transmission power amplifier according to the output power curve. 26. The communication system according to claim 25, It is an EDGE-compliant communication system. The communication system of claim 26, wherein the first time slot comprises - 8PSK modulation type and - GMSK modulation type - and the second time slot includes the The 8PSK modulation type and the GMSK modulation type are both 28.-禋 switching between the time slot and the second time slot: the inner (four)-time slot has a -first power value, and Adjacent to the first-time slot. The first time slot has a second power value, and the control device comprises: a power control device configured to configure or generate at least the output power curve of the output power curve in the oblique region (output power) (four) Less than each of the brothers and one power value and each of the second power values; 一瞬變期間估計器,減於該功率控制裝置用以估計在該 輸出功率曲線之可發生切換之該時槽間斜之—瞬變期間。 ,:1 α城㈣瞬變期騎計ϋ,用以命令一功 率放大心_變_從該第—功率值切換至該第二功率值。 =如申請專利範圍第28項所述之控㈣置其中 =變類型、該第二時槽具有-第二調變類型,且 包括一控制器,轉接於該瞬變期間估計器,用以命 調變类Γ 瞬變期間從該第-調變類型切換至該第二 TW1461PA-A1 31 节月日修(:\)正本丨 1299612 31·如申請專利 曲線在該瞬變期間之該功率值係低於-臨界值。緖出功率 32.如申請專利範圍第28項所述之 曲線之最低點係發生在該瞬變期間。"〃 4輸出功率 33· —種切換第一時槽與第二時槽間 法:其:該第-時槽具"-功率:且 °亥第一%槽具有一第二功率值,該方法包括:、Λ 卞3之 配置或產生-間斜區之輸出功率曲線,其中該 ,至少:輸出功率值係實質上小於每一該第一功率線 弟二功率值;以及 變期間 估計在該輸出功率曲線之可發生切換之該時槽間斜 之一瞬 .34.如中請專利範圍第33項所述之方法,其中該方法更包 括- #一命令—功率放大器於該瞬變期間從該第一功率值切換至該 弟 '一"功率值。 35—如申請專利範圍第33項所述之方法,其中該第一時槽 具有一第一調變類型、該第二時槽具有一第二調變類型,且該; 法更包括: ° 命令一功率放大器於該瞬變期間從該第一調變類型切 該第二調變類型。 、主 36」如申請專利範圍第33項所述之方法,其中該輪出功率 曲線在該瞬變期間之該功率值係低於一臨界值。 37. 如申請專利範圍第33項所述之方法,其中該輪出功率 曲線之最低點係發生在該瞬變期間。 ' 38. 如申請專利範圍第34項所述之方法,其中該輪出功率 TW1461PA-A1 32 1299612A transient period estimator is subtracted from the power control means for estimating the inter-slot skew-transient period at which the output power curve can be switched. , : 1 α city (four) transient period ride, used to command a power to amplify the heart _ change _ from the first - power value to the second power value. = as described in claim 28 of the patent application scope (4) where the = variable type, the second time slot has a - second modulation type, and includes a controller, which is switched to the transient period estimator for Switch from the first-modulation type to the second TW1461PA-A1 during the transient. 31 Day-to-day repair (:\) original 丨1299612 31·If the patent curve is the power value during the transient It is below the -critical value. Excitation power 32. The lowest point of the curve as described in item 28 of the scope of the patent application occurs during this transient. "〃4 output power 33·--switching between the first time slot and the second time slot method: it: the first-time slot has a "-power: and the first first slot has a second power value, The method includes: 配置 之 3 configuration or an output-to-inclined output power curve, wherein, at least: the output power value is substantially less than each of the first power line two power values; and the variable period is estimated at The method of claim 33, wherein the method further comprises - #一命令 - the power amplifier is from the transient during the transient. The first power value is switched to the 'one' power value. 35. The method of claim 33, wherein the first time slot has a first modulation type, the second time slot has a second modulation type, and the method further comprises: A power amplifier cuts the second modulation type from the first modulation type during the transient. The method of claim 33, wherein the power value of the turn-off power curve during the transient is below a threshold. 37. The method of claim 33, wherein the lowest point of the turn-off power curve occurs during the transient. 38. The method of claim 34, wherein the wheel power TW1461PA-A1 32 1299612 机!· 2 3 ,] 年月日修(Λ)正本j 曲線之最低點係發生在該瞬變期間 33 TW1461PA-A1machine! · 2 3 ,] The minimum point of the j-curve of the original year (Λ) occurred during the transient period 33 TW1461PA-A1
TW94124919A 2005-05-06 2005-07-22 Method and apparatus for controlling a tx power amplifier TWI299612B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/124,476 US7489908B2 (en) 2004-06-18 2005-05-06 Method and apparatus for controlling a TX power amplifier
US11/147,152 US7489909B2 (en) 2004-06-18 2005-06-06 Method and apparatus for controlling a TX power amplifier

Publications (2)

Publication Number Publication Date
TW200640123A TW200640123A (en) 2006-11-16
TWI299612B true TWI299612B (en) 2008-08-01

Family

ID=45069737

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94124919A TWI299612B (en) 2005-05-06 2005-07-22 Method and apparatus for controlling a tx power amplifier

Country Status (1)

Country Link
TW (1) TWI299612B (en)

Also Published As

Publication number Publication date
TW200640123A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
US9094004B2 (en) Transmitter system with digital phase rotator used for applying digital phase rotation to constellation data and related signal transmission method thereof
US7792505B2 (en) Power amplifier efficiency using error estimate and data rate
US20110058601A1 (en) Apparatus and method for envelope tracking power amplifier in wireless communication system
US20060178121A1 (en) Method and a device for adjusting power amplifier properties
KR20140116493A (en) Crest factor reduction applied to shaping table to increase power amplifier efficiency of envelope tracking amplifier
JP2004007405A (en) Efficient power amplifier
JP2005117315A (en) Transmitter, transmission output control method and radio communication equipment
US20080171523A1 (en) Power Amplifier Bias Control
TW201114172A (en) Multi-bit class-D power amplifier system
CN103684285A (en) High efficiency and high linearity adaptive power amplifier for signals with high PAPR
JP2008078847A (en) Doherty amplifier
JP5212316B2 (en) Wireless communication apparatus and wireless communication method
JP2005286995A (en) Transmitter apparatus and wireless communication apparatus
JP2009260658A (en) Power amplifier
JP2007081800A (en) Doherty amplifier
TWI299612B (en) Method and apparatus for controlling a tx power amplifier
JPWO2007036978A1 (en) Wireless transmission device having peak suppression function
CN111865236B (en) Signal processing method, device and system
US7489909B2 (en) Method and apparatus for controlling a TX power amplifier
JP6086631B2 (en) Power source device for plasma generation and control method thereof
JP2013192135A (en) Doherty amplifier
TWI244257B (en) Control method and apparatus of transmission power amplifier
JP2014175824A (en) Doherty amplifier
CN101431353B (en) Control method and apparatus for delivering power amplifier
CN1719746A (en) Controlling method and apparatus for transfer power amplifier