TWI298494B - Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays - Google Patents

Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays Download PDF

Info

Publication number
TWI298494B
TWI298494B TW95100249A TW95100249A TWI298494B TW I298494 B TWI298494 B TW I298494B TW 95100249 A TW95100249 A TW 95100249A TW 95100249 A TW95100249 A TW 95100249A TW I298494 B TWI298494 B TW I298494B
Authority
TW
Taiwan
Prior art keywords
layer
memory
intermediate layer
dielectric structure
memory unit
Prior art date
Application number
TW95100249A
Other languages
Chinese (zh)
Other versions
TW200636728A (en
Inventor
Tzu Yu Wang
Hang Ting Lue
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW200636728A publication Critical patent/TW200636728A/en
Application granted granted Critical
Publication of TWI298494B publication Critical patent/TWI298494B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

1298494 九、發明說明: 【發明所屬之技術領域】 本申請案係根據且在35U.S.C.§119(e)條款下主張: 2005年1月3日申請之美國專利臨時申請案第60/64〇,229 號;2005年1月27曰申請之美國專利臨時申請案第 60/647,012號;2005年6月10日申請之美國專利臨時申請 案第60/689,231號;及2005年6月10日申請之美國專利 臨時申請案第60/689,314號之優先權,上述各專利之全部 内容在此以引用方式全數併入。 【先前技術】 非揮發性記憶體(NVM)指即使當自含有NVM單元之 元件移走電力供應時亦能持續儲存資訊之半導體記憶體。 NVM包括遮罩唯讀記憶體(Mask ROM)、可程式化唯讀記 憶體(PROM)、可抹除可程式化唯讀記憶體(EpR〇M)、電可 抹除可程式化唯讀記憶體(EEPROM)、及快閃記憶體。非揮 發性記憶體係廣泛地使用於半導體產業且係經發展以防止 已=式化資料損失之-類記憶體。通t非揮發性記憶體可 件之終端使用者需求加以程式化、讀取及/或抹除, 且该已程式化的資料可儲存達—段長時間。 單元設計。_ 化物石夕π件,其可使用薄_氧=’化物-氮化物-氧 穿隨抹除㈣。_此等設 =’吨供電洞直接 料保持通常係較差,部分係因為即使:::除:率’但資 M之在C憶兀件之保持狀 681939-27U4 1298494 態期間可能存在之低電場強度下亦會發生直接穿隨。 另-NVM設計係NR0M(氮化唯讀記憶體),其使用較 厚的隧道氧化層以在保持狀態期間防止電荷損失。然而, 車=厚之隨道氧化層可能影響通道抹除速率。結果,能帶間 二随熱電洞(BTBTHH)抹除方法可用來注入電洞⑽以補 ㈣子、然而,BTBTHH抹除方法可能產生—些可靠性問 題。例如,彻BTBTHH抹除枝之NROM元件的特徵 可旎在多次P/E(程式化/抹除)循環後退化。 因此,在此項技術中存在對以改進的資料保持效能及 增加f作速率來操作多次(程式化/抹除/讀取)之非揮發性 吕己fe早元设计及陣列的需要。 【發明内容】 本發明關於非揮發性記憶元件,且更明確言之係關於 包括-隧道介電結構的非揮發性記憶元件,其促進自收敛 抹除操作’同時亦在㈣狀態㈣維持記憶元件之 存層中的電荷保持。 本發明的一具體實施例包括記憶單元,其包含:一半 導體基體,其具有設置於該基體之—表面下且由—通道區 分離的-源極區及—汲極區;1道介電結構,其係設置 於該通道區上,該隧道介電結構包含具有—小電洞穿隨阻 障南度之至少—層;—電荷儲存層,其係設置於該隨道介 電結構上;-絕緣層,其係設置於該電荷儲存層上,·及一 閘極電極,其係設置於該絕緣層上。 本發明另一具體實施例包含記憶單元,其包含:一半 681939-27U4 7 1298494 導體基體,其具有置於該基體之一表面下且由一通道區分 離的一源極區及一汲極區;一多層隧道介電詰構’其係設 置於該通道區上,該多層隧道介電結構包含具有一小電洞 穿隧阻障高度之至少一層;一電荷儲存層,其係設置於該 多層隧道介電結構上;一絕緣層,其係設置於該電荷儲存 層上;及一閘極電極’其係設置於該絕緣層上。1298494 IX. INSTRUCTIONS: [Technical Field of the Invention] This application is based on and claims under 35 USC § 119(e): US Patent Provisional Application No. 60/64, filed on Jan. 3, 2005 No. 229; U.S. Patent Provisional Application No. 60/647,012, filed on Jan. 27, 2005; U.S. Patent Provisional Application No. 60/689,231, filed on June 10, 2005; and application on June 10, 2005 The priority of the U.S. Patent Application Serial No. 60/689,314, the entire disclosure of each of which is incorporated herein by reference. [Prior Art] Non-volatile memory (NVM) refers to a semiconductor memory that continuously stores information even when components are removed from an NVM unit. NVM includes masked read-only memory (Mask ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EpR〇M), and electrically erasable programmable read-only memory Body (EEPROM), and flash memory. Non-volatile memory systems are widely used in the semiconductor industry and are developed to prevent the loss of data-like memory. The end user requirements of the non-volatile memory are stylized, read and/or erased, and the programmed data can be stored for a long period of time. Unit design. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _This setting = 'T power supply hole direct material maintenance is usually poor, partly because even ::: except: rate 'but the M is in the C memory element retention 681939-27U4 1298494 state may exist during the low electric field Direct wear will also occur under strength. Another-NVM design is NR0M (nitride-only memory) which uses a thicker tunnel oxide layer to prevent charge loss during the hold state. However, the car = thick oxide layer may affect the channel erasing rate. As a result, the band-to-band thermal hole (BTBTHH) erasing method can be used to inject the hole (10) to compensate for the (4) sub-, however, the BTBTHH erasing method may cause some reliability problems. For example, the characteristics of the NBT component of the BTBTHH erased branch can be degraded after multiple P/E (stylization/erasing) cycles. Therefore, there is a need in the art for a non-volatile, non-volatile design and array that operates multiple times (stylized/erased/read) with improved data retention performance and increased f-rate. SUMMARY OF THE INVENTION The present invention relates to non-volatile memory elements, and more particularly to non-volatile memory elements including a tunnel dielectric structure that facilitate self-convergence erase operations while also maintaining memory elements in (four) states (four) The charge in the reservoir is maintained. A specific embodiment of the present invention includes a memory unit including: a semiconductor substrate having a source region and a drain region disposed under the surface of the substrate and separated by a channel region; and a dielectric structure And the system is disposed on the channel region, the tunnel dielectric structure comprises at least a layer having a small hole penetrating south of the barrier; a charge storage layer disposed on the channel dielectric structure; The layer is disposed on the charge storage layer, and a gate electrode is disposed on the insulating layer. Another embodiment of the present invention includes a memory unit comprising: a half 681939-27U4 7 1298494 conductor substrate having a source region and a drain region disposed under one surface of the substrate and separated by a channel region; a multilayer tunnel dielectric structure is disposed on the channel region, the multilayer tunnel dielectric structure including at least one layer having a small hole tunneling barrier height; a charge storage layer disposed in the multilayer tunnel a dielectric structure; an insulating layer disposed on the charge storage layer; and a gate electrode disposed on the insulating layer.

在一些較佳具體實施例中,設置有一小電洞穿隨阻障 高度的層可含有諸如氮化矽(Si3N4)或氧化铪(Hf02)的材 料。在本發明一些較佳具體實施例中,該等記憶單元包括 一具有多層之隧道介電結構,例如氧化矽、氮化矽及氧化 石夕(ΟΝΟ)的一堆疊介電質三層結構。此等隧道介電結構提 供一 SONONOS(石夕氧化物-氮化物-氧化物一化物_氧化物· 矽)或超晶格SONONOS設計。 在本發明一些較佳具體實施例中,該隧道介電壯構1 包含至少二介電層,各層具有至高達約4奈米之严=。j 外,在本發明-些較佳具體實施例中,該閘極電^含-功函數值大於Ν+多晶石夕之材料。 在-些較佳具體實施射,該隧道介電結構可包括-層包含具有-小電洞穿隧阻障高度之材料, 以濃度梯度出現在該層中,以致該材料的濃;以 一深點處係最大值。 屠内< 、f 一==2非揮發性記憶元件,其包含依據在此所 述一或夕们,、體只鉍例之複數個記憶單元 在此所用,「複數個」指二個或二個 σ 以上依據本發明的記 681939-27U4 8 1298494 進雷::属現明顯改進之操作性質,包括^ 進電何保持及更大的操作窗。。、括增加抹除速 本《明亦包括操作揮 依據本發明的摔作 :/生名^早兀及陣列的方法。In some preferred embodiments, the layer provided with a small hole penetration barrier height may contain a material such as tantalum nitride (Si3N4) or hafnium oxide (Hf02). In some preferred embodiments of the invention, the memory cells comprise a stacked dielectric dielectric structure having a plurality of layers of tunnel dielectric structures, such as hafnium oxide, tantalum nitride, and iridium oxide. These tunnel dielectric structures provide a SONONOS (Shihs oxide-nitride-oxide-oxide/oxide) or super-lattice SONONOS design. In some preferred embodiments of the invention, the tunnel dielectric 1 comprises at least two dielectric layers, each layer having a severity of up to about 4 nm. In addition, in the preferred embodiments of the present invention, the gate electrode has a work function value greater than that of the Ν+ polycrystalline stone. In some preferred embodiments, the tunnel dielectric structure may include a layer comprising a material having a small hole tunneling barrier height, which is present in the layer with a concentration gradient such that the material is concentrated; The department is the maximum. In the case of a pet, a f ===2 non-volatile memory element, which comprises a plurality of memory cells according to the ones described herein, and the plurality of memory cells are used herein. "plural" means two or Two σ or more 681939-27U4 8 1298494 according to the present invention: It is a significantly improved operational property, including the operation of the power supply and the larger operation window. . Including the addition of the speed of the book, "Ming also includes the operation of the fall according to the invention: / name ^ early 兀 and array method.

億 率、改 元件之vt分布緊奏而法Λ括f由應用自收斂方法以使記憶 程式化該^丨=4設元件;藉由通㈣注入 元件至少至;及藉由施加—在該等記憶 壓,以讀㈣位準和程式化狀態位準間之電 奉传和蚀1 ‘魯兀件至少其一。如在此所用,名詞「緊 ’窄」。;而-一陣列之許多記憶單元中的臨限電歷分布變 而舌,臨限電壓分布「緊湊」係其中若干 =限電壓彼此在_狹窄範圍内,以致該陣列的操作比習知 。又汁改進。例如,在一些較佳具體實施例中,如在包含依 據本电「月之或多個具體實施例中的記憶單元之Να肋陣 列中 緊凑」之g品限電壓分布指示各種記憶單元的臨限電 壓彼此係在〇·5ν範圍内。在其他使用依據本發明之記憶單The vt distribution of the billion rate and the modified component is closely followed by the application of the self-convergence method to program the memory to the element; the component is injected through at least (four); and by applying - in Memory pressure, to read (four) level and stylized state level between the electric evangelism and eclipse 1 'lupe pieces at least one. As used herein, the term "tight" is narrow. And the distribution of the threshold electrical history in many memory cells of an array becomes a tongue, and the threshold voltage distribution is "compact" in which a number of voltages are within a narrow range of each other, so that the operation of the array is better than conventional. Juice improvement. For example, in some preferred embodiments, as indicated by the g-threshold voltage distribution including the compactness of the Να rib array according to the present invention or the memory cells in the plurality of embodiments, The voltage limits are within the range of 〇·5ν. Other use of the memory list according to the present invention

兀的陣列架構中,該「緊湊」臨限電壓分布可具有從上限 到下限約1.0V的範圍。 依據本發明之一操作方法的具體實施例包括操作依據 本發明之一陣列,其係藉由施加自收斂重設/抹除電壓至欲 重設/抹除之各記憶單元中的基體及閘極電極;程式化該複 數個記憶單元至少其及藉由施加一在該等記憶元件中 至少其一之抹除狀態位準和程式化狀態位準間的電壓,以 讀取該複數個記憶單元中至少其一。 本發明亦包括形成一記憶單元之方法,其包含:提供 681939-27U4 9 1298494 、、/^導體基體’其具有形成於該基體之-表面下且由-通 逼區分離的一源極區及一汲極區;形成一隧道介電結構在 ^通道區上,其中形成該隧道介電結構包含形成至少二介 電層’其中該至少二介電層其一層具有一比該至少二介電 層另層還小之電洞穿隧阻障高度;在該隧道介電結構上 形成一電荷儲存層;在該電荷儲存層上形成一絕緣層;及 在該絕緣層均成—閘極電極。In a chirped array architecture, the "compact" threshold voltage distribution can have a range from about an upper limit to a lower limit of about 1.0V. A specific embodiment of a method of operation in accordance with the present invention includes operating an array in accordance with the present invention by applying a self-converging reset/erase voltage to a substrate and gate in each memory cell to be reset/erased And arranging the plurality of memory cells at least and by applying a voltage between at least one of the erased state level and the stylized state level in the memory elements to read the plurality of memory cells At least one of them. The present invention also includes a method of forming a memory cell, comprising: providing 681939-27U4 9 1298494, a conductor substrate having a source region formed under the surface of the substrate and separated by a pass region and a drain region; forming a tunnel dielectric structure over the via region, wherein forming the tunnel dielectric structure includes forming at least two dielectric layers 'where the at least two dielectric layers have a layer having a ratio of the at least two dielectric layers The other layer has a small hole tunneling barrier height; a charge storage layer is formed on the tunnel dielectric structure; an insulating layer is formed on the charge storage layer; and the gate layer is formed in the insulating layer.

士在此所用’片語「小電洞穿隧阻障高度」一般指係 J於或等於一氧化矽之近似電洞穿隧阻障高度之值。尤其 二小電洞穿隧轉高度最好係小於或等於約4.5eV。更佳的 糸rL電〆同牙隨阻障高度係小於或等於約L9eV。 【實施方式】 解於參照本發明及其較佳具體實施例,其實例 元件符!……的 斤有圖式中將以相同或類 、检圖二h…相同或類似的部件。應注意的係非圖形 :;揭化之形式並且不按照精確之比例。關於 部、底部、左、右Γ ;達:上的’方向性名詞(諸如 及前)係針對賴制。併同 以下、位於下方、 七A wu附圖之以下說明所使用之此 應被視為以任何未在隨附申請專利範圍中 施:=:等= 制。應理解在此所揭之過程步; 個積體電路之完整流程。本發明可與此項技:二 681939-27U4 1298494 之各種積體電路製造技術一起實現或發展。 依據本發明的記憶單元可克服在SONOS及NR0M元 件中之-些可靠性問題。例如,依據本發明之記憶單元結 •構可允許快速FN通道抹除方法,同時保持良好電荷保持 -特徵。根據本發明記憶單元的各種具體實施例亦可減輕對 “ 61^丁1111抹除方法之依賴,從而避免在多次P/E循環後 件之退化。 . =一範例為可在一其中隧道介電結構係一多層結構之 具體實施例中’使用一超薄隧道介電質或一超薄氧化層結 合小電洞穿隧阻障高度層。此可提供更好的應力免除。在 多次P/E循環以後,根據本發明之非揮發性記憶單元亦 示少量退化。 根據本發明的記憶單元可使用η通道或p通道設計, 如圖la及lb中顯示。圖la描述本發明一具體實施例之η 通道記憶單元100之斷面圖。該記憶單元包括一含有至少 二η型摻雜區102和1〇4ip型基體1〇1,其中各摻雜區 102和104之功能可根據所施加之電壓而為源極或汲極。 如圖la顯示,為參考目的,摻雜區1〇2可作為源極,而摻 雜區104可作為汲極。基體1〇1在二n型捧雜區間進一步, 〇括通道區1〇6。在通道區1〇6上方(在基體⑻表面 隧道介電結構12〇。在一些較佳具體實施例中,随道 ”電,構120可包含三層薄〇Ν〇結構,其中一小電洞穿隧 阻障高度氮化層124係夹置在一下方薄氧化層m及上方 溥氧化層126間。記憶單元1〇〇進一步包括一在隨道介電 681939-27U4 11 1298494 、、、α構120上之電荷陷獲(或電荷儲存)層i3〇(較佳係氮化 物)> 且、、、邑緣層140(較佳係包含阻隔氧化物)設置在電荷 陷獲層H。一閘極15〇係設置在絕緣層14〇上。 圖lb描述依據本發明一具體實施例的p通道記憶單元 之斷面圖。該記憶單元包括-含有至少二P型摻雜區 =2和204的n型基體2〇1,其中各換雜區观和施之功 能可為源極或没極。基體加 丞篮201在二ρ型摻雜區間進一步包 栝一通道區206。ρ通道印橹留- 層薄_結構地==三 丨电、、、口構22〇(其中一小電洞穿隧阻 氮化層224係夾置在—下方薄氧化層222及上方薄 :芦;4〇22:之間” 一電荷陷獲(或電荷儲存)層23〇、-絕 緣層240及一閘極25〇。 單元:t括例如f圖1&及lb中所述’依據本發明的記憶 ‘:夕層薄臈随道介電結構,其包括-第-氧 化矽層01、一弟一氮化矽層N1及一 電荷儲存層,例如—第二氮切層N2;及—例如曰第三氧化 石夕層03之絕緣層,1伟在 之其辦卜赤,+ 丰導體基體(例如石夕基體) 重設操翻間自基财_電荷儲存層。較佳㈣牛H 發明發性記憶單元中賴道介電 3::"獲效率’且更佳的係在記憶體操作期間完全;捕 諸如氮化石夕層、Hf〇2和处〇3之 隨道介電結構中之小電洞穿隨阻障高度層用: 681939-27U4 12 1298494 較佳具體實_巾,諸如氮切之有效電荷儲存材料可用 作記憶元件中之電荷儲存層。防止電荷損失之阻隔氧化物 :用作絕緣層’例如第三氧切層〇3。根據本發明的記憶 單兀在絕緣層上亦包括-閘極或間極電極,例如多晶石夕間 極。隧道介電結構、電·存層、絕緣層及閘極可形成在 基體上至少-通道區之-部分上,其係由—源極區及一沒 極區界定且係設置在其間。The term "small hole tunneling barrier height" as used herein generally refers to the value of the approximate hole tunneling barrier height of J or equal to cerium oxide. In particular, the tunneling height of the two small holes is preferably less than or equal to about 4.5 eV. A better 糸rL electric tongs with a tooth height is less than or equal to about L9eV. [Embodiment] For the purpose of referring to the present invention and its preferred embodiments, the singular elements of the singularity of the singularity of the singularity of the same or similar parts will be the same or similar. Attention should be paid to the non-graphics:; the form of the uncovering and not in exact proportions. Regarding the ministry, the bottom, the left, and the right, the directional term (such as before and after) is directed against the system. And the following descriptions of the following, below, and the following description of the drawings shall be deemed to be in any application not covered by the patent: =: equal = system. It should be understood that the process steps disclosed herein are the complete process of the integrated circuit. The present invention can be implemented or developed in conjunction with various integrated circuit fabrication techniques of the technique: 681939-27 U4 1298494. The memory unit in accordance with the present invention overcomes some of the reliability issues in SONOS and NR0M components. For example, a memory cell junction in accordance with the present invention can allow for a fast FN channel erase method while maintaining a good charge retention feature. Various embodiments of the memory unit according to the present invention can also alleviate the dependence on the "61^丁1111 erasing method, thereby avoiding degradation of the component after multiple P/E cycles. In an embodiment where the electrical structure is a multilayer structure, an ultra-thin tunnel dielectric or an ultra-thin oxide layer is combined with a small hole tunneling barrier layer. This provides better stress relief. After the /E cycle, the non-volatile memory cell according to the present invention also exhibits a small amount of degradation. The memory cell according to the present invention can be designed using an n-channel or p-channel, as shown in Figures la and lb. Figure la depicts an embodiment of the present invention. A cross-sectional view of the n-channel memory cell 100. The memory cell includes a substrate having at least two n-type doping regions 102 and a 1 〇4 ip-type substrate, wherein the functions of the doping regions 102 and 104 can be applied according to The voltage is the source or the drain. As shown in Figure la, for reference purposes, the doped region 1〇2 can serve as the source and the doped region 104 can serve as the drain. The substrate 1〇1 is in the n-type Further in the interval, include the channel area 1〇6. In the channel area 1〇6 Square (on the surface of the substrate (8) tunnel dielectric structure 12 〇. In some preferred embodiments, the channel 120 may comprise a three-layer thin 〇Ν〇 structure, wherein a small hole tunneling barrier is highly nitrided The layer 124 is sandwiched between a lower thin oxide layer m and an upper germanium oxide layer 126. The memory unit 1 further includes a charge trapping on the intervening dielectric 681939-27U4 11 1298494, and the alpha structure 120 ( Or a charge storage layer i3〇 (preferably a nitride)>, and a germanium edge layer 140 (preferably comprising a barrier oxide) is disposed on the charge trapping layer H. A gate 15 is provided in the insulating layer Figure lb depicts a cross-sectional view of a p-channel memory cell in accordance with an embodiment of the present invention. The memory cell includes an n-type substrate 2〇1 containing at least two P-type doped regions = 2 and 204, The function of the change zone and the function of the change zone may be source or immersion. The base twist basket 201 further encloses a channel zone 206 in the two p-type doping section. ρ channel seal retention - layer thin _ structural ground = = three 丨, 、, 口 〇 22〇 (one of the small holes through the tunneling nitride layer 224 is sandwiched between - the thin oxide layer 222 And above the thin: reed; 4〇22: between a charge trapping (or charge storage) layer 23, - insulating layer 240 and a gate 25 〇. Unit: t including, for example, f Figure 1 & lb and The memory according to the present invention: a thin-layer dielectric structure comprising a -d-cerium oxide layer 01, a tantalum-nitriding layer N1 and a charge storage layer, for example, a second nitrogen layer N2; and - for example, the insulating layer of the third oxidized stone layer 03, 1 wei zhi zhi xiao, + feng conductor matrix (such as Shi Xi matrix) resetting the operation from the base _ charge storage layer. Jia (4) Niu H Invented the memory unit 3::"Efficiency' and better is complete during memory operation; captures such as nitrite layer, Hf〇2 and 〇3 A small hole in the electrical structure is used for the barrier level: 681939-27U4 12 1298494 Preferably, an effective charge storage material such as a nitrogen cut can be used as the charge storage layer in the memory element. Barrier oxide for preventing charge loss: used as an insulating layer 'for example, a third oxygen layer 〇3. The memory unit according to the present invention also includes a gate or an interpole electrode on the insulating layer, such as a polycrystalline intertidal pole. The tunnel dielectric structure, the electric storage layer, the insulating layer and the gate may be formed on at least a portion of the substrate, which is defined by the source region and the non-polar region and disposed therebetween.

根據本發明各種具體實施例之記憶單元包含一隧道介 電結構’其在諸如約_10到約_2〇v之負間極電壓⑽下可 提供約10毫秒之快速FN抹除速率。另一方面,仍可維持 電荷保持’並且在一些範例中,可能比許多習知s〇N〇s 兀件更佳。根據本發明的記憶單元亦可避免使用能帶間熱 電洞抹除操作’其-般制^NRQM元件+。避免此能二 間熱電洞抹除操作可大幅地免除熱電洞引人損害, 此避免係符合需求的。 參考圖2,用於依據本發明—具體實施例的隨 結構之臨限電壓的實驗測量值,顯示—超薄⑴胸災择 構可具有-可忽略的陷獲效率,如在連續程式化 : 不變臨限電壓位準所證。在針對圖2測試的 〇觀層厚度㈣為3。、3()及35埃(A)。如圖2顯干, 在使用程式化之各種方法(即_FN程式化、+fn程 CHE(織電子)程式化)於若干程式化:欠數的過程= 限電壓vt維持穩定在近似I·9伏特。 r ^ 01/N1/02膜可作為一調變隧道介社。因此,此一超薄 〜構。在包括CHE、 681939-27U4 13 1298494 +FN及-FN之各種電荷注入方法下的結果皆顯示可忽視的 電荷陷獲。製程或元件結構可加以設計以使介面性陷阱減 到最少,以致01/N1或N1/02介面係有作用。 圖3顯示依據本發明一具體實施例具有SONONOS設 計的記憶單元的抹除特徵。圖3所述之具艨實施例中的記 憶單元包含一厚度分別為15埃、20埃及18埃之ΟΝΟ隧 道介電結構的n-MOSFET設計。此具體實施例之記憶單元 包含一厚度約70埃之氮化矽電荷儲存層、/厚度約90埃 之絕緣氧化石夕層、及一包含任何合適導電讨料之閘極,例 如η型摻雜多晶矽。參考圖3,可達到快速FN抹除(如在 10毫秒内),且亦可獲得一極佳的自收斂抹除性質。 圖4顯示根據參考圖3所述之本發明記憶單元的具體 實施例之SONONOS元件的電荷保持特徵。如圖示,該等 保持特徵可比習知SONOS元件更佳,且就電流值而言,可 能高好多個等級。 圖5a及5b係顯示使用含有至少一層之隧道介電結構 的可能效應之能帶圖,其中該至少一層具有一小電洞穿随 阻P早局度。在一圮憶體資料保持期間可能存在之低電場下 的隧道介電結構(此範例中的01/N1/〇2三層)之能帶圖,係 在顯示圖5a中。可除去如由點狀箭頭表示在低電場下之直 接穿隨,,而在保持狀態期間提供良好的電荷保持。另一 方面,在高電場下能帶之偏移(如目5b巾顯示)可減少ni 及02的阻障效應’使得通過⑴之直接穿隨可能發生。具 有至少-小電洞穿隨阻障高度層之隧道介電結構可允許有 681939-27U4 (S: 14 1298494 效fn抹除操作。 圖5c及5d顯示在一範例中之另一組能帶圖。對於一 範例中之較佳能帶偏移條件,N1的厚度可能大於01。價 能帶之能帶圖係在相同之電場E01=14MV/cm處緣出。根 據WKB近似之穿隧可能性係與陰影區域相關連。在此範 例中’對於厚度N1=01,能帶偏移不完全遮播〇2的阻障。 另一方面’對於Nl>01,能帶偏移可較易於遮擋〇1。因此, 對於厚度中Ν1>〇1,在〇1中相同電場下,電洞穿随電流 可能較大。 一具有經測量及模擬電洞穿隧電流的實驗(如圖6顯示) 進:步描述根據本發明一些具體實施例通過隧道介電結構 之電洞牙隧。例如,通過〇l/Nl/〇2介電質的電洞穿隧電 流可落在一超薄氧化物及一厚氧化物間。在一範例中,在 高電場下,電洞穿隧電流可近似超薄氧化物。然而,在低 電場下,直接穿隧可受抑制。如圖6顯示,即使在僅1MV/cm 的低電場強度下,電洞穿隧電流亦可透過一薄氧化層偵測 到。電洞穿隧電流在例如U — 之相對較地高電場 強度下可透過一厚氧化物忽略。然而,當高電場強度出現 時,通過一 ΟΝΟ隧道介電結構的電洞穿隧電流會到達一薄 氧化層。在圖6中,由於在低電場電洞穿隧通過一薄氧化 物造成之大電流洩漏可在圖中的區域Α看見。在圖6中, 在高電場強度處通過一 01/N1/02隧道介電結構的電洞穿 隧電流可在圖中區域B看見。在圖6中,在低電場處通過 一 01/N1/02隨道介電結構和厚氧化物而實質上不存在的 681939-27U4 1298494 穿隧電流可在圖中區域c看見。 可將依據本發明的記憶單元設計應用於各種記憶體類 ' 型,包括但不限於,N〇R及/或NAND型快閃記憶體。 . 如上述,隧道介電層可包括二層或更多層以上,包括 •可提供小電洞穿隧阻障高度之一層。在一範例中,提供小 、電洞穿随阻障高度之該層可含有氮化石夕。該層可爽置在二 層氧化石夕層之間,若將氮化石夕用作中間層時可從而形成〆 0/N/Q隨道”電質。在本發明一些較佳具體實施例中,随 道介電結構中的各層至高達約4奈米厚。在:些較佳具體 K訑例中,隧道介電結構中的各層厚度可約1太米至3奈 米。在-範例性元件中,一三層結構可具有一^、1〇埃至 30埃之底部層(例如氧化石夕層)、一約1〇埃至%埃之中間 f (例如氮化石夕層)、及一約1〇埃至3〇埃之頂層(例如另-氧化矽層)C在一特定範例中,可使用一 三層結構, 其具有-15埃的底部氧化石夕層、一 2〇埃的中間說化石夕層、 .及一 18埃的頂部氧化矽層。 一在一範例中,一薄0/N/0三層結構顯示可忽略的電荷 Μ‘如茶考目5a、5b及6所述之理論能帶圖及穿随電流 分析,可能建議—隨道介電結構(例如-各層厚度為3奈米 或更少之01/N1/02結構),可在保持期間抑制低電場下的 電洞直接牙隧。同時,在高電場仍可允許有效電洞穿隧。 此可此係因能帶偏移可有效地遮擋N1及〇2穿隧阻障。因 此,此建議的元件可提供快速電洞穿隧抹除,同時其免除 習知SONOS元件之保持問題。實驗分析顯示依據本發明各 681939-27U4 16 1298494 種具體實施例之記憶單元的極佳耐久及保持性質。 在一些較佳具體實施例中,隧道介電結構包括至少一 〜 中間層及在中間層相對側上相鄰的二層,其中中間層及二 - 相鄰層各包含一第一材料和一第二材料,其中該第二材料 . 之價能帶位準大於第一材料之價能帶位準,且第二材料之 傳導能帶位準小於第一材料的傳導能帶位準;且其中第二 材料之濃度係高於二相鄰層間之中間層,且第一材料的濃 度在二相鄰層中係高於中間層。較佳的係,在依據本發明 ® 之此具體實施例的一隧道介電結構中,第一材料包括氧及/ 或含氧化合物,且第二材料包括氮及/或含氮化合物。例 如,第一材料可包括氧化物(例如氧化矽),且第二材料可 包括氮化物,例如Si3N4或Six〇yNz。 依據本發明此方面之隧道介電質可由三或更多層構 成,所有此等層可含有類似元素(例如Si、N及0),只要 具有最小電洞隧道阻障高度之材料的濃度在中間層内係高 於二相鄰層即可。 * 在依據本發明先前具體實施例的隧道介電結構中,該 第二材料可依梯度濃度出現在中間層中,使得在中間層中 第二材料之濃度從一相鄰層/中間層介面增加到在中間層 内一深點處之最大濃度,且從該最大濃度深點降低到一在 該另一相鄰層/中間層介面處之較低濃度。濃度中的增及減 較佳係漸進式的。 在本發明又其他具體實施例中,隧道介電結構包括至 少一中間層及在中間層相對側上的二相鄰層,其中二相鄰 681939-27U4 17 ⑧ 1298494A memory cell in accordance with various embodiments of the present invention includes a tunnel dielectric structure that provides a fast FN erase rate of about 10 milliseconds at a negative inter-electrode voltage (10) such as from about _10 to about _2 〇v. On the other hand, charge retention can still be maintained and, in some instances, may be better than many conventional s〇N〇s components. The memory unit according to the present invention can also avoid the use of the inter-band thermal hole erasing operation 'the NRQM element +. Avoiding this two-hole hot hole erasing operation can greatly eliminate the damage caused by the hot hole, which is avoided. Referring to Figure 2, an experimental measurement for the threshold voltage of a structure in accordance with the present invention - an embodiment - shows that - ultrathin (1) chest disorder selection can have - negligible trapping efficiency, as in continuous stylization: It is proved by the constant threshold voltage level. The layer thickness (4) tested for Figure 2 was 3. , 3 () and 35 angstroms (A). As shown in Figure 2, in the use of stylized methods (ie _FN stylized, +fn CHE (woven) stylized) in a number of stylized: the process of the number of = the limit voltage vt remains stable at approximately I · 9 volts. The r ^ 01/N1/02 film can be used as a modulation tunnel. Therefore, this ultra-thin ~ structure. The results under various charge injection methods including CHE, 681939-27U4 13 1298494 + FN and -FN show negligible charge trapping. The process or component structure can be designed to minimize interface traps so that the 01/N1 or N1/02 interface is functional. Figure 3 shows an erase feature of a memory cell having a SONONOS design in accordance with an embodiment of the present invention. The memory cell of the embodiment shown in Figure 3 comprises an n-MOSFET design of a tunnel dielectric structure having a thickness of 15 angstroms and 20 angstroms and 18 angstroms, respectively. The memory cell of this embodiment comprises a tantalum nitride charge storage layer having a thickness of about 70 angstroms, an insulating oxidized oxide layer having a thickness of about 90 angstroms, and a gate comprising any suitable conductive material, such as n-type doping. Polycrystalline germanium. Referring to Figure 3, a fast FN erase can be achieved (e.g., within 10 milliseconds) and an excellent self-convergent erase property can be obtained. Figure 4 shows the charge retention characteristics of a SONONOS component in accordance with a specific embodiment of the memory cell of the present invention described with reference to Figure 3. As shown, these retention features are better than conventional SONOS components and may be of multiple levels in terms of current values. Figures 5a and 5b show an energy band diagram showing the possible effects of using a tunnel dielectric structure containing at least one layer, wherein the at least one layer has a small hole penetration resistance P early. The energy band diagram of the tunnel dielectric structure (01/N1/〇2 three layers in this example), which may exist during a low electric field during the retention of the memory data, is shown in Figure 5a. It can be removed as indicated by a dotted arrow at a low electric field, while providing good charge retention during the hold state. On the other hand, the shift of the energy band under a high electric field (as shown by the head of the 5b towel) can reduce the barrier effect of ni and 02 so that direct wear through (1) may occur. A tunnel dielectric structure having at least a small hole through barrier height layer may allow 681939-27U4 (S: 14 1298494 effect fn erase operation. Figures 5c and 5d show another set of energy band diagrams in one example. For a preferred energy band offset condition in an example, the thickness of N1 may be greater than 01. The energy band diagram of the valence band is at the same electric field E01=14 MV/cm. The tunneling probability according to the WKB approximation is The shaded area is related. In this example, for the thickness N1 = 01, the band offset does not completely block the barrier of 〇 2. On the other hand, for Nl > 01, the band offset can be more easily blocked. Therefore, for the thickness Ν1>〇1, the hole penetration current may be larger under the same electric field in 〇1. An experiment with measured and simulated hole tunneling current (as shown in Figure 6) Some embodiments of the invention pass through a cavity tunnel of a tunnel dielectric structure. For example, a tunneling current through a dielectric of 〇l/Nl/〇2 dielectric can fall between an ultrathin oxide and a thick oxide. In one example, under high electric fields, the tunneling current can approximate an ultra-thin oxide. However, under low electric field, direct tunneling can be suppressed. As shown in Fig. 6, even at a low electric field strength of only 1 MV/cm, the tunnel tunneling current can be detected through a thin oxide layer. At a relatively high electric field strength such as U, a thick oxide can be ignored. However, when a high electric field strength occurs, the tunneling current through a tunnel dielectric structure reaches a thin oxide layer. In 6, the large current leakage caused by tunneling through a low-field hole through a thin oxide can be seen in the region 图 in the figure. In Figure 6, a 01/N1/02 tunnel dielectric structure is passed at high electric field strength. The hole tunneling current can be seen in the area B in the figure. In Figure 6, the 681939-27U4 1298494 tunneling is essentially non-existent at a low electric field through a 01/N1/02 channel dielectric structure and thick oxide. The current can be seen in region c of the figure. The memory cell design in accordance with the present invention can be applied to a variety of memory types including, but not limited to, N〇R and/or NAND type flash memory. As described above, the tunnel The dielectric layer may include two or more layers to Including: one layer that provides a small hole tunneling barrier height. In one example, a layer that provides a small, hole-to-barrier height may contain nitrite. This layer may be placed in a layer of oxidized stone layer. Between the two, if the nitrite is used as the intermediate layer, the 〆0/N/Q channel can be formed. In some preferred embodiments of the present invention, the layers in the channel dielectric structure are up to about 4 nm thick. In some preferred specific examples, the thickness of each layer in the tunnel dielectric structure may be about 1 to 3 nm. In the exemplary component, a three-layer structure may have a ^, a bottom layer of 1 angstrom to 30 angstroms (e.g., a layer of oxidized stone), an intermediate f of about 1 angstrom to a angstrom (e.g., a nitride layer), and a top layer of about 1 angstrom to 3 angstrom (e.g. Further - yttrium oxide layer) C In a specific example, a three-layer structure having a bottom oxidized stone layer of -15 angstroms, a middle fossil layer of 2 angstroms, and a top of 18 angstroms may be used. Oxide layer. In one example, a thin 0/N/0 three-layer structure shows a negligible charge Μ' such as the theoretical energy band diagram and the wear current analysis described in Tea Examinations 5a, 5b, and 6. It may be suggested that The dielectric structure (for example, a 01/N1/02 structure with a thickness of 3 nm or less) can suppress direct tunneling of the hole under low electric field during the holding period. At the same time, effective hole tunneling is still allowed at high electric fields. This can effectively block the N1 and 〇2 tunneling barriers due to the band offset. Therefore, the proposed component provides fast hole tunneling erase while eliminating the problem of conventional SONOS components. Experimental analysis shows the excellent durability and retention properties of the memory cells of the various embodiments of 681939-27U4 16 1298494 in accordance with the present invention. In some preferred embodiments, the tunnel dielectric structure includes at least one intermediate layer and two adjacent layers on opposite sides of the intermediate layer, wherein the intermediate layer and the two adjacent layers each comprise a first material and a first The second material, wherein the second material has a valence level greater than a valence band level of the first material, and the conduction band level of the second material is less than a conduction band level of the first material; The concentration of the two materials is higher than the intermediate layer between the two adjacent layers, and the concentration of the first material is higher in the two adjacent layers than the intermediate layer. Preferably, in a tunnel dielectric structure according to this embodiment of the invention, the first material comprises oxygen and/or oxygenates, and the second material comprises nitrogen and/or nitrogen containing compounds. For example, the first material can include an oxide (e.g., hafnium oxide) and the second material can include a nitride, such as Si3N4 or Six〇yNz. The tunnel dielectric according to this aspect of the invention may be composed of three or more layers, all of which may contain similar elements (e.g., Si, N, and 0) as long as the concentration of the material having the minimum hole tunnel barrier height is in the middle The inner layer of the layer is higher than the two adjacent layers. * In a tunnel dielectric structure according to a prior embodiment of the present invention, the second material may be present in the intermediate layer in a gradient concentration such that the concentration of the second material in the intermediate layer increases from an adjacent layer/intermediate layer interface The maximum concentration at a deep point in the intermediate layer, and from the deep point of the maximum concentration to a lower concentration at the interface of the other adjacent layer/intermediate layer. The increase and decrease in concentration is preferred to be progressive. In still other embodiments of the present invention, the tunnel dielectric structure includes at least one intermediate layer and two adjacent layers on opposite sides of the intermediate layer, wherein two adjacent 681939-27U4 17 8 1298494

,道介電結射,第—材料包括氧及/或含氧化合 層包含一第一材料且中間層包含一 料之價能帶位準大於第一材料 物,且第二材料包含氮及/或含氮化合物。例如,第一材ς 可包括一氧化物(例如氧化矽),且第二材料可包括一氮化 物(例如 Si3N4 或 SixOyNz)。 例如’在其中隧道介電層包含一三層〇N〇結構之本發 明的具體實施例中,該底部氧化層及頂部氧化層可包含二 氧化石夕’且中間氮化層可由例如氮氧化矽及氮化矽構成, 其中氮化矽的濃度(即,二者中具有較小電洞穿隧阻障高度 的材料)在此層内非固定,而係在具有夾置氧化層之二介面 間的該層内某些深點處達到最大值。 在其中具有最小電洞穿随阻障高度之材料達到其最大 濃度的中間層内之精確點並非關鍵,只要其依梯度出現且 在中間層内某些點處之隧道介電層中達到其最大濃度。 具有最小電洞穿隧阻障高度之材料的梯度濃度可有利 於改進非揮發性記憶元件之各種性質,尤其係具有 SONONOS或SONONOS狀結構者。例如,可縮小保持狀 681939-27U4 18 !298494 fe電荷損失、可改進在高電場下之電Μ 4 程度下可避免在隧道介電質中之電荷陷獲。 随道介電層的能帶圖可依據本發明之此方面有利地修 改,使得中間層的價能帶位準及傳導能帶位準不具有較 值,而係橫跨該層之厚度隨著具有最小電洞穿随阻 的材料濃度變化。參考圖5e,依據本發明之此方面的⑽0 二層随道介電㈣修正係透過—能帶圖顯示。 :她外部層(層】及層3)係由二氧化上) i中齓化矽之浪度會變化,使得價能 位準分别在其中氮化 =科月f 及最小值。圖5,亍^層的深度達到最大 由表示因纽料,其係 :虛線描述。如圖…示準 替代性氮化矽濃度最▲ a中一 傳導能帶π ^ 取低價能帶位準及最高 寻V此罗位準與虱化矽濃度最大值一致。 ,本發㈣等具體實_之 依許多方式製備。例如,可使用任㈣θ m、、“冓可 方法形成-m &縣城目之f知氧化作用 氣弟一虱化矽或氮氧化矽層,該方法句扭& :於熱氧化作用、自由基(ISSG)氧化 作用,以及化學汽相沈積過程。一二電水乳化/乳化 :間層接著可例如經由化學汽相沈積的 错由在第—廢了f部开彡士 、 、 戈另遠擇係 化作用形成二第三里乳化物或氮氧化物的電漿氮 ™ . 〜“上氧化層)可接著例如藉由氧 用或化學汽相沈積形成。 積田虱化作 681939-27U4 19 1298494 -電荷儲存層接著可形成械道介電結構上。在一範 :户爲可在隨道介電結構上形成約5奈米至1G奈米的電荷 访:曰。在—特定範例中,可使用約7奈米或更厚的氮化 g。在電荷儲存層上的絕緣層可為約5奈米至12奈米。 ^艟械:使用約9奈米或更厚的氧化梦層。且可藉由熱處 :氧化矽層的至少一部分以形成氧化矽層。在此描述 比j形成適合材料的複數層之任何已知或待開發的方法,a dielectric dip, the first material comprising an oxygen and/or an oxygen containing layer comprising a first material and the intermediate layer comprising a material having a valence band level greater than the first material and the second material comprising nitrogen and/or Or a nitrogenous compound. For example, the first material ς may comprise an oxide (e.g., yttrium oxide) and the second material may comprise a nitride (e.g., Si3N4 or SixOyNz). For example, in a particular embodiment of the invention in which the tunnel dielectric layer comprises a three-layer 〇N〇 structure, the bottom oxide layer and the top oxide layer may comprise dioxide and the intermediate nitride layer may be, for example, bismuth oxynitride. And a tantalum nitride composition, wherein the concentration of tantalum nitride (ie, a material having a smaller hole tunneling barrier height therebetween) is not fixed in the layer, but is between the two interfaces having the sandwiched oxide layer. The maximum is reached at some deep points in the layer. The precise point in the intermediate layer in which the material having the minimum hole penetration height is at its maximum concentration is not critical as long as it occurs in a gradient and reaches its maximum concentration in the tunnel dielectric layer at some point in the intermediate layer. . The gradient concentration of the material having the minimum hole tunneling barrier height can be beneficial to improve various properties of the non-volatile memory component, especially those having a SONONOS or SONONOS-like structure. For example, it can reduce the charge loss of 681939-27U4 18 !298494 fe, which can improve the charge trapping in the tunnel dielectric under the high electric field. The energy band diagram of the intervening dielectric layer can be advantageously modified in accordance with this aspect of the invention such that the valence band level and the conduction band level of the intermediate layer do not have a value, but the thickness across the layer follows A change in the concentration of the material with a minimum hole penetration resistance. Referring to Fig. 5e, a (10) 0 layer-by-channel dielectric (4) correction system according to this aspect of the invention is shown in a transmission-energy band diagram. : The outer layer (layer) and layer 3) are changed by the oxidation of the ) ) i i i i 会 会 会 会 会 会 会 会 会 会 浪 浪 浪 浪 浪 浪 浪 浪 浪 浪 浪 浪 浪 浪 浪 浪 浪 浪 浪Figure 5, the depth of the layer reaches the maximum. It is represented by the inductive material, which is described by the dotted line. As shown in the figure, the concentration of the alternative tantalum nitride is the most ▲ a. The conduction energy band π ^ takes the low-cost energy level and the highest value. The V-level is consistent with the maximum concentration of the bismuth telluride. , the hair (4) and other specific methods are prepared in many ways. For example, any (four) θ m, "冓 can be formed into a -m & county town of the oxidative effect of the gas 虱 虱 矽 矽 or arsenic oxynitride layer, the method sentence twist &: in thermal oxidation, freedom Base (ISSG) oxidation, as well as chemical vapor deposition process. One or two electro-hydraulic emulsification / emulsification: the interlayer can then be, for example, via chemical vapor deposition, in the first - waste part of the open gentleman, Ge Yuanyuan The plasmonics TM to form the second third emulsion or oxynitride. The "upper oxide layer" can then be formed, for example, by oxygen or chemical vapor deposition. Ikeda 虱 作 681939-27U4 19 1298494 - The charge storage layer can then be formed into a mechanical dielectric structure. In a model: households can form a charge of about 5 nm to 1 G nm on the accompanying dielectric structure. In a particular example, nitriding g of about 7 nm or more can be used. The insulating layer on the charge storage layer can be from about 5 nm to 12 nm. ^ 艟: Use an oxidized dream layer of about 9 nm or more. And by heat: at least a portion of the ruthenium oxide layer to form a ruthenium oxide layer. Any known or to-be-developed method of forming a plurality of layers of suitable materials than j is described herein,

H用來沈積或形成隨道介電層、電荷儲存層及域絕緣 ㈢。適合方法包括例如熱成長方法及化學汽相沈積方法。 々在一範例中,熱轉換過程可提供高密度或濃度之介面 陷胖’其可提升記憶元件的陷獲效率。例如,氮化物的熱 轉換可在約1000°C處進行,同時閘極流量比係H2 : 〇2=1〇〇〇 : 4〇〇〇sccm。 立此外’因為氮化矽大體上具有極低(大約19eV)之電 阻P羊,故在高電場下其對電洞穿隧可變得無障礙。同時 :隧道介電質(例如ΟΝΟ結構)的總厚度,可防止電子在 ,,下直接穿隨。在—範例中,此不對稱行為可提供使 記憶兀件不僅提供快速電洞穿隧抹除,而且在保持期間 少或免除電荷洩漏。 可糟由0.12微米NR0讓Bit技術製造一範例性元 件:表1顯示在—範例中之元件結構及參數。所揭且有一 ::專一:〇之隧道介電質可改變電洞穿隧電流。在一範例 太二1父厚(7奈米)N2層可作為一電荷陷獲層,並且一 〇3(9 示未)層可作為阻隔層。N2及03二者皆可使用nr〇m/nb ^ 681939-27U4 20 1298494 技術製造 表1 _ ^部氧化物(01) _中間氮化物(N1) 1間氧化物(02) 1獲氮化物(N2) j且隔氧化物(03) N+多晶矽 il 20 18^ 70 90 通道長度:〇.22^£ __通道寬度:0.16微来 閘極可包含功函 在本發明一些較佳具體實施例中,二⑺1巴含功函 ^大於N+多晶歡㈣。在本發明—錄佳具體實施例 主,此高功函數閘極材料可包含例如鉑、銥、鎢、及其他 金屬。較佳的係,此等具體實施例中之閘極材料 屬,其較佳具趙實施例中, 匕3回功函數金屬,例如鉑或銥。此外,較佳 氮::函_包含但不限於p+多晶矽,及諸如氮化鈦及 "、S之金屬氮化物。在本發明之尤其較佳具體實施例 甲’閘極材料包含鉑。 狄依據本發明一較佳具體實施例具有高功函數閘極材料 之範例性元件,亦可由0.12微米NROM/NBit技術製成。 表2顯示在一範例中之元件結構及參數。所揭具有—超薄 0/N/0之隧道介電質可改變電洞穿隧電流。在—範例中\ 681939-27U4 21 1298494 一較厚(7奈米)的N2層可作為一電荷陷獲層,並且一 〇3(9 不米)層可作為阻隔層。N2及〇3二者皆可使用NR〇M/NBit 技術製造。H is used to deposit or form an intervening dielectric layer, a charge storage layer, and a domain insulation (3). Suitable methods include, for example, thermal growth methods and chemical vapor deposition methods. In an example, the thermal conversion process can provide a high density or concentration interface that can increase the trapping efficiency of the memory element. For example, the thermal conversion of the nitride can be carried out at about 1000 ° C while the gate flow ratio is H 2 : 〇 2 = 1 〇〇〇 : 4 〇〇〇 sccm. In addition, since tantalum nitride has a very low (about 19 eV) resistance P sheep, its tunneling to the hole can be made unobstructed under a high electric field. At the same time: the total thickness of the tunnel dielectric (such as the ΟΝΟ structure) can prevent electrons from being directly worn under. In the example, this asymmetrical behavior provides that the memory element not only provides fast hole tunneling erase, but also minimizes or eliminates charge leakage during hold. A 0.12 micron NR0 allows Bit technology to create an exemplary component: Table 1 shows the component structure and parameters in the example. It is revealed that there is a ::specific: the tunnel dielectric can change the tunnel tunneling current. In an example, the two-one parent thick (7 nm) N2 layer can serve as a charge trapping layer, and a layer of 〇3 (9 shows no) can serve as a barrier layer. Both N2 and 03 can be fabricated using nr〇m/nb ^ 681939-27U4 20 1298494 Technology Table 1 _ ^ Part Oxide (01) _ Intermediate Nitride (N1) 1 Oxide (02) 1 Nitride ( N2) j and oxide (03) N+ polymorph il 20 18^ 70 90 channel length: 〇.22^£ __ channel width: 0.16 micro-gate can include work function in some preferred embodiments of the invention , two (7) 1 bar with a work function ^ greater than N + polycrystalline Huan (four). DETAILED DESCRIPTION OF THE INVENTION In the present invention, the high work function gate material may comprise, for example, platinum, rhodium, tungsten, and other metals. Preferably, the gate material of these embodiments is preferred, and in the embodiment of the invention, 匕3 is a work function metal such as platinum or rhodium. Further, preferred nitrogen:: _ includes but is not limited to p + polysilicon, and metal nitrides such as titanium nitride and ", S. In a particularly preferred embodiment of the invention, the 'gate material comprises platinum. An exemplary component having a high work function gate material in accordance with a preferred embodiment of the present invention may also be fabricated by a 0.12 micron NROM/NBit technique. Table 2 shows the component structure and parameters in an example. The tunnel dielectric with ultra-thin 0/N/0 can change the tunnel tunneling current. In the example - \ 681939-27U4 21 1298494 a thicker (7 nm) N2 layer can be used as a charge trapping layer, and a layer of 3 (9 m) can be used as a barrier layer. Both N2 and 〇3 can be manufactured using NR〇M/NBit technology.

表2Table 2

底部氧化物 中間氮化物 15 20 中間氧化物 18 70 化物(N2) 阻隔氧化物 閘極:鉑 通道長度:0.22微米 ——_ 通道寬度:0.16微米__Bottom oxide Intermediate nitride 15 20 Intermediate oxide 18 70 Compound (N2) Barrier oxide Gate: Platinum Channel length: 0.22 μm —— _ Channel width: 0.16 μm __

抑一依據本發明具體實施例具有高功函數閘極材料之記憶 單元,、、、員現比其他具體實施例改進甚多的抹除性質。高功函 數=極材料抑制閘極電子注人陷獲層中。在本發明一些具 體只施例中’《中記憶單元包含- Ν+多晶石夕閘才亟,在抹除 =門電/同牙隧到電荷陷獲層且同時閘極電子注入。此自收 政抹除效應導致在抹除狀態巾更高_限電壓位準,其在 一 ND應用中可能不符合需求。可將依據本發明具有高功 α數閘極材料具體實施例之記憶單元用於各種類型的記憶 體,,包括例如NOR及NAND型記憶體。然而,依據 本發明具有高功函數閘極材料具體實施例的記憶單元,係 尤其適用於NAND應用,其中在抹除/重設狀態中提升臨限 681939-27U4 22 1298494 電不符合需求。依據本發明具有高功函數間極材料 ”體只施例的$憶單元,可經由電洞穿隨方法及較佳係經 • 由-FN抹除操作來抹除。 * - 一具有—ON〇穿隧介電質及一 N+多晶矽閘極之範例 •性兀件,可藉由習知SONOS或NROM方法程式化,且由 、,道FN電洞穿隧抹除。圖乃顯示在一範例中具有一 ON。 穿隧介電質之範例性s〇N〇N〇s元件的抹除特徵。參考圖 .7a:-較高的閘極電壓導致更快速之抹除速率。其亦具有 更高的飽和Vt’因為閘極注入亦係更強並且產生之動態平 衡點(其決定Vt)更高。圖式右手側顯示#臨限電壓根據抹 除問極電壓達到約3到約5伏特之最小值。藉由微分圖% 中的曲線可由一暫態分析方法抽取電洞穿隧電流。來自圖 7a中測量值的抽取電洞電流係顯示在如以上討論之圖6 中為了比較’亦使用WKB近似繪出模擬之電洞穿隧電 流。實驗結果與預測合理地一致。在高電場下,穿隨電流 .通過01/N1/02堆疊到達超薄〇卜同時其係在低電場下關 依據本發明具有高功函數閑極材料之記憶單元的一些 具體實施例(其中高功函數閘極抑制閑極電子注入)中,取 決於抹除時間,在抹除或重設狀態中該元件的臨限電壓可 能低許多’且甚至為負。依據本發明—旦體實施例之記憶 元件(其中閘極係由鉬構成賴道介電層包括15/20/18埃 之0N0結構)的臨限電壓值係顯示在圖%巾。如圖凡中 顯示,-FN抹除操作期間在類似間極電壓(_i8v)處,該元件 681939-27U4 23 1298494 的臨限電壓可設定在_3γ以下 電容相對於閘極電壓值。 圖7c中顯示該元件之對應The memory unit having a high work function gate material according to an embodiment of the present invention, and the eraser property which is much improved by the member than the other specific embodiments. The high work function = pole material suppresses the gate electron trapping layer. In some specific embodiments of the present invention, the "memory cell contains - Ν + polycrystalline stone 闸 亟 亟 在 在 在 抹 = 门 门 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = This self-removal erase effect results in a higher _ limit voltage level in the erased state towel, which may not meet the demand in an ND application. A memory unit having a high power alpha gate material embodiment in accordance with the present invention can be used for various types of memory, including, for example, NOR and NAND type memories. However, a memory cell having a high work function gate material embodiment in accordance with the present invention is particularly suitable for use in NAND applications where the threshold is raised in the erase/reset state. 681939-27U4 22 1298494 does not meet the requirements. According to the present invention, the memory cell having the high work function inter-electrode material can be erased by the hole-punching method and the preferred system by the -FN erasing operation. * - One has - ON An example of a tunneling dielectric and an N+ polysilicon gate can be programmed by the conventional SONOS or NROM method and erased by the tunneling of the FN hole. The figure shows an example in one example. ON. Erasing characteristics of exemplary s〇N〇N〇s components of tunneling dielectric. Refer to Fig. 7a: - Higher gate voltage results in faster erase rate. It also has higher saturation. Vt' is also stronger because of the gate injection and the resulting dynamic equilibrium point (which determines Vt) is higher. The right-hand side of the figure shows that the threshold voltage reaches a minimum value of about 3 to about 5 volts depending on the eraser voltage. The hole tunneling current can be extracted by a transient analysis method by the curve in the differential graph %. The extracted hole current system from the measured value in Fig. 7a is shown in Fig. 6 as discussed above for comparison 'also using WKB approximation Simulated hole tunneling current. The experimental results are reasonably consistent with the prediction. Under field, wear with current. Through the 01/N1/02 stack to reach the ultra-thin, while it is under the low electric field, some specific embodiments of the memory unit with high work function idler material according to the present invention (where the high work function is In the gate suppression idle electron injection), depending on the erase time, the threshold voltage of the component may be much lower and even negative in the erase or reset state. According to the invention, the memory component of the embodiment The threshold voltage value (in which the gate is composed of molybdenum dielectric layer including 15/20/18 angstrom 0N0 structure) is shown in Figure %. As shown in the figure, the -FN erasing operation is similar in the interpole. At the voltage (_i8v), the threshold voltage of the component 681939-27U4 23 1298494 can be set below _3γ with respect to the gate voltage value. Figure 7c shows the corresponding component

此外,依據本發明具有高功函數間極材料具體實施例 的記憶讀之保舰質紅一。具有㈣極之記憶元件 的保持性質係顯不在圖7d中,其中電容係圖示為在抹除及 程式化後,且接著在各操作後3G分鐘後及各操作後二小時 與閘極電壓成函數。已觀察到最小偏差。 依據本發明各種具體實施例之記憶單元可用至少二分 離方案操作。例如’具妓向讀_式1)的CHE程式化 可用來執行-2位S/單元操作。此外,亦可將低功率颁 程式化(模式2)用作- 2位元/單元操作。二模式皆可使用 相同電洞穿1¾抹除方法。模式丨較佳係可用作n〇r型快閃 記憶體之虛·地__,式2較㈣可詩nand 型之快閃記憶體。 圖8之範例顯示在模式丨操作下,依據本發明一具體 實施例的虛擬接地陣列架構N〇R型快閃記憶體的極佳耐 久性質。具有隧道介電結構之此等記憶元件的抹除退化不 會發生,因為電洞穿隧抹除(Vg=_15V)係一均勻通道抹除方 法。圖9中亦顯示對應的iv曲線,其顯示在多次p/E循環 後該元件的少許退化。在一範例中,此可能因超薄氧化層/ 氮化層擁有良好之應力免除性質。此外,該記憶元件不會 有熱電洞引入之損害。圖10顯示依據本發明一具體實施例 之NAND型快閃記憶體在模式2下操作中的耐久性質。為 了更快速的收傲抹除時間,可使用更大的偏壓(Vg=_i6V)。 681939-27U4 % 24 1298494 在此範例中亦可獲得極佳耐久性。 圖4顯示依據本發明一具體實施例之範例性 SONONOS元件的電荷保持,其中在ι〇〇小時後僅觀察到 60mV之電荷損失。此改進方案的電流值等級比習知 SONOS兀件高。VG加速保持測試亦顯示可在低電場抑制 直接穿隧。圖11顯示針對10Kp/E循環元件的VG加速保 持測試之範例。電荷損失於1〇〇〇秒應力後在-VG應力下係 小,其I曰示可抑制在小電場處之電洞直接穿隧。 因此,在上述範例中所指的s〇N〇N〇s設計可提供具 有極佳耐久性質之快速電洞穿隧抹除。如以上所指,可^ NOR與NAND二類型氮化物儲存快閃記憶體中實施該設 计。此外,依據本發明一具體實施例之記憶體陣列可包括 多個具有類似或不同組態之記憶元件。 在根據本發明之陣列的各種具體實施例中,可使用根 據本發明之記憶單元以取代在—虛擬接⑽列架構中之習 知NROM或SONOS元件。可藉由使用FN電洞穿随而非 熱電洞注人解決或減輕可#性_和抹除退化。在不用以 下描述的特定結構_本發明之㈣下,町將描述 本七明之⑽體陣列的各種操作方法,用於範例性助尺卢 擬接地陣列架構。 更 CHE《CHISEL(通道激始次要電子)程式化及反向 可用於2位元/單元記憶體陣列。並且抹除方法可為— ^、iL FN電/同牙隧抹除。在一範例中,該陣列 虛擬接地陣列或JTOX陣列。參考圖12a_2〇,可將f 681939-27U4 25 1298494 oimi/〇2三層結構用作隨道介電質,各層厚度約 更少以提供電洞直接穿隨。參考圖12心,犯可心= 厚以提供—高陷獲效率。-絕緣層(Q3)可為由座氡化二成 之軋化㈣’例如轉換之頂部氧化物(氧切),以在〇3 及N2間之介面處提供密度大的陷牌。〇3可為 更厚以防止電荷自此氧切層損失。 ^Further, in accordance with the present invention, a memory read with a high work function interpole material embodiment of the memory read the ship quality red one. The retention properties of the (fourth) memory element are not shown in Figure 7d, where the capacitance is shown after erasing and stylization, and then after 3G minutes after each operation and two hours after each operation with the gate voltage function. The minimum deviation has been observed. A memory unit in accordance with various embodiments of the present invention can operate with at least two separation schemes. For example, CHE stylization with a read-to-read 1 can be used to perform a -2 bit S/cell operation. In addition, low power programming (mode 2) can be used as a -2 bit/cell operation. Both modes can be used with the same hole through the 13⁄4 erase method. The mode 丨 is preferably used as the imaginary __ of the n〇r type flash memory, and the flash memory of the genre 2 is more than the (4) sin nand type. The example of Fig. 8 shows the excellent endurance properties of the virtual ground array architecture N〇R type flash memory in accordance with an embodiment of the present invention under mode operation. Erasing degradation of such memory elements with tunnel dielectric structures does not occur because hole tunneling erase (Vg = _15V) is a uniform channel erase method. A corresponding iv curve is also shown in Figure 9, which shows a slight degradation of the element after multiple p/E cycles. In one example, this may have good stress relief properties due to the ultra-thin oxide/nitride layer. In addition, the memory element does not suffer from the introduction of thermoelectric holes. Figure 10 is a diagram showing the durability of a NAND type flash memory in mode 2 operation in accordance with an embodiment of the present invention. For faster erasure, a larger bias voltage (Vg = _i6V) can be used. 681939-27U4 % 24 1298494 Excellent durability is also obtained in this example. 4 shows the charge retention of an exemplary SONONOS device in accordance with an embodiment of the present invention in which only a charge loss of 60 mV was observed after 10 hours. This improved solution has a higher current rating than conventional SONOS components. The VG acceleration hold test also shows that direct tunneling can be suppressed at low electric fields. Figure 11 shows an example of a VG acceleration hold test for a 10Kp/E cycle component. The charge loss is small under the -VG stress after 1 〇〇〇 stress, and its I 曰 can suppress the direct tunneling of the hole at the small electric field. Therefore, the s〇N〇N〇s design referred to in the above examples provides a fast hole tunneling erase with excellent durability. As indicated above, this design can be implemented in NOR and NAND type II nitride storage flash memory. Moreover, a memory array in accordance with an embodiment of the present invention can include a plurality of memory elements having similar or different configurations. In various embodiments of the array in accordance with the present invention, memory cells in accordance with the present invention may be used in place of conventional NROM or SONOS components in a virtual (10) column architecture. It can be solved or mitigated by using FN hole wear rather than hot hole injection. Without the specific structure described below, (4) of the present invention, the town will describe various methods of operation of the (10) body array of the present invention for the exemplary facilitated grounding array architecture. More CHE "CHISEL (channel abrupt secondary electron) stylization and reverse can be used for 2-bit/cell memory arrays. And the erasing method can be - ^, iL FN electric / same tunnel erasing. In one example, the array is a virtual ground array or a JTOX array. Referring to Fig. 12a_2, a three-layer structure of f 681939-27U4 25 1298494 oimi/〇2 can be used as a channel dielectric, and the thickness of each layer is about less to provide direct hole penetration. Referring to Figure 12, the heart can be sinful = thick to provide - high trapping efficiency. The insulating layer (Q3) may be rolled (4), for example, converted to a top oxide (oxygen cut), to provide a dense trap at the interface between 〇3 and N2. 〇3 can be thicker to prevent charge loss from this oxygen cut layer. ^

圖12a及12b顯示—併入以上討論之記憶單 接地陣列架構範例,諸如具有—三層〇Ν〇随道介電質:記 憶單元。尤其係,_ 12a顯示記韻陣狀—部分的等效 電路’並且圖12b顯補記憶體陣狀—部分的範例性布 局0 此外,圖13顯示併入該陣列中之若干記憶單元的斷面 示意圖。在一範例中,埋入式擴散(BD)區域可為用於記憶 單元之源極或汲極區的N+摻雜接面。基體可為p型基體。 為了避免BDOX區域(BD上的氧化物)在_;pN抹除期間的玎 能崩潰,在一範例中可使用一厚BDOX(>50奈米)。 圖14a及14b顯示一用於併入具有上述隧道介電質設 計之2位元/單元記憶單元的範例性虛擬接地陣列之可能電 子重置(RESET)方案。在執行進一步P/E循環前,所有元件 可首先經歷一電子「RESET」。一 RESET過程可碹保.相 同陣列中之記憶單元的vt —致性且將元件vt提升至收斂 抹除狀態。例如,施加¥8=-15乂達i秒(如圖l4a中顯示), 可有將某些電荷注入氮化石夕之電荷陷獲層以達到動態平衡 條件的效果。使用RESET,儘管記憶單元因例如在其製程 681939-27U4 26 1298494 中電漿充電效應造成之不均勻充電,亦可使其vt收斂。用 於產生自收斂偏壓條件之替代方式係提供閘極及基體電壓 «% —者之偏壓。例如參考圖14b’可施加Vg:=:_8v和ρ井:=+7V。 圖15a及15b顯示用於併入具有上述隧道介電質設計 • 之2位元/單元記憶單元的範例性虛擬接地陣列之程式化方 ^ 案。通道熱電子(CHE)程式化可用於程式化該元件。對於圖‘ l5a中顯示的Bit-Ι程式化,電子係局部地注入BLN(位元· 鲁 線N)上之接面邊緣。對於圖ISb中顯示的Bit-2程式化, 電子係儲存在BLN-I上。用於WL(字元線)的典型程式化電 壓係約6V至12VqBL(位元線)的典型程式化電壓係約3 至7V,且可使p井保持接地。 圖16a及16b顯示用於併入具有上述隧道介電質設計 之2位元/單元記憶單元的範例性虛擬接地陣列之讀取方 案^在一範例中,反向讀出係用來讀取此元件以執行2位 元/單元操作。參考圖16a,對於讀取Bit-1,BLN-I係用一 • 適合之讀取電壓(例如L6V)施加。參考圖16b,對於讀取 Bit-2 ’ BLN係用一適合之讀取電壓(例如16V)施加。在一 範例中,讀取電壓可在約i至2V的範圍中。字元線及p 井可保持接地。然而,亦可執行其他已修改的讀取方案, "者如提升Vs反向讀出方法。例如,一提升Vs反向讀出 方法可將Vd/Vs吐8/0.2V用於讀取胁2,且Vd/Vs42/1_8 用於讀取Bit-1。 圖14a及14b亦顯示用於併入具有上述隧道介電質設 计之2位元/單元圮憶單元的範例性虛擬接地陣列之扇區抹 681939-27U4 27 1298494 除方案。在一範例中,可同時施加扇區抹除與通道電洞穿 隨抹除以抹除記憶單元。在記憶單元中具有SONqnos結 構之ΟΝΟ隧道介電質可提供快速抹除,其可在約1〇至5〇 毫秒中和自收斂通道抹除速率中發生。在一範例中,扇區 抹除操作條件可類似RESET過程。例如,參考圖14a,在 WL處同時地施加¥(}=約_15¥及留下所有BL為浮動可達 到扇區抹除。且P井可保持接地。Figures 12a and 12b show an example of a memory single-ground array architecture incorporating the above discussion, such as having a three-layer 〇Ν〇-channel dielectric: memory cell. In particular, _ 12a shows the equivalent circuit of the rhyme-like portion and FIG. 12b shows the exemplary layout of the memory array-part. In addition, FIG. 13 shows the section of several memory cells incorporated in the array. schematic diagram. In one example, the buried diffusion (BD) region can be an N+ doped junction for the source or drain region of the memory cell. The matrix can be a p-type matrix. In order to avoid collapse of the BDOX region (oxide on BD) during _;pN erasure, a thick BDOX (> 50 nm) can be used in one example. Figures 14a and 14b show a possible electronic reset (RESET) scheme for incorporating an exemplary virtual ground array with a 2-bit/cell memory cell of the tunnel dielectric design described above. All components may first experience an electronic "RESET" before performing further P/E cycles. A RESET process ensures that the vt of the memory cells in the same array is consistent and the component vt is raised to the converged erase state. For example, applying ¥8 = -15 i for i seconds (as shown in Figure 14a), there may be an effect of injecting some charge into the nitride trapping layer to achieve dynamic equilibrium conditions. With RESET, although the memory cell is unevenly charged due to, for example, the plasma charging effect in its process 681939-27U4 26 1298494, its vt can be converged. An alternative method for generating self-converging bias conditions is to provide a bias voltage for the gate and substrate voltage «%. For example, referring to Fig. 14b', Vg:=:_8v and ρ well:=+7V can be applied. Figures 15a and 15b show a stylized scheme for incorporating an exemplary virtual ground array with a 2-bit/cell memory cell of the tunnel dielectric design described above. Channel hot electron (CHE) stylization can be used to program the component. For the Bit-Ι stylization shown in the figure ‘l5a, the electron system locally injects the junction edge on the BLN (bit·rude N). For the Bit-2 stylization shown in Figure ISb, the electronics are stored on the BLN-I. A typical stylized voltage for WL (word line) is typically about 3 to 7V for a typical stylized voltage of about 6V to 12VqBL (bit line) and keeps the p well grounded. 16a and 16b show a read scheme for an exemplary virtual ground array for incorporating a 2-bit/cell memory cell having the tunnel dielectric design described above. In one example, a reverse readout system is used to read this. The component performs a 2-bit/cell operation. Referring to Figure 16a, for reading Bit-1, the BLN-I is applied with a suitable read voltage (e.g., L6V). Referring to Figure 16b, the read bit-2' BLN is applied with a suitable read voltage (e.g., 16V). In one example, the read voltage can be in the range of about i to 2V. The word line and p well can be kept grounded. However, other modified read schemes can also be implemented, such as the Vs reverse readout method. For example, a boost Vs reverse readout method can use Vd/Vs spit 8/0.2V for read threat 2 and Vd/Vs42/1_8 for read Bit-1. Figures 14a and 14b also show a sector wipe 681939-27U4 27 1298494 scheme for incorporating an exemplary virtual ground array with a 2-bit/cell memory cell having the above described tunnel dielectric design. In one example, a sector erase and channel hole wear erase can be applied simultaneously to erase the memory cell. The tunnel dielectric having a SONqnos structure in the memory cell provides a fast erase which can occur in about 1 〇 to 5 毫秒 milliseconds and in the self-converging channel erase rate. In one example, the sector erase operation condition can be similar to the RESET process. For example, referring to Figure 14a, ¥(}=about _15¥ is applied simultaneously at WL and all BLs are left floating to reach the sector erase. And the P well can remain grounded.

或者是,參考圖14b ’施加約_8V至WL·且約+7V至p 井亦可達到扇區抹除。在-些範例中,完全扇區抹除操作 可在刚毫秒或更少時間内實現,而不會有任何過抹除或 難以抹除之單元。上賴元件設計可有利於—提供極佳自 收斂性質的通道抹除。 圖i7顯示在使用一 SON〇N〇s元件之範例中的抹除特 敘。一 S0N0刪元件之範例可使〇1/m/〇2/N細的厂曰 為約咖謂叫具有一矿多晶石夕問極並: ,換頂縣化物為〇3。已顯示用於各種閘極電壓之抹除 t率。、較兩之閘極電壓導致更快速的抹除速率。 壓下;二=極高二:::=電 晶石夕閘極或其他金屬閘極作為閘極材料 二: 間減少閘極注入電子。 木1矛^月 ^顯示將SQNQ腫元件用於虛擬接地㈣架構之 、貝。在某些範例中之耐久性質極好。用於Bit_i 0 式化條件係3齡8.卵、0>1微秒,用於 681939-27U4 28 1298494Alternatively, a sector erase can be achieved by applying about _8V to WL· and about +7V to p well with reference to Figure 14b'. In some examples, a full sector erase operation can be implemented in just milliseconds or less without any cells that are erased or difficult to erase. The design of the upper component can be beneficial—providing channel erasure with excellent self-convergence properties. Figure i7 shows the eraser specification in the example using a SON〇N〇s component. An example of a S0N0 deletion component can make 〇1/m/〇2/N fine factory 约 约 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有The erased t rate for various gate voltages has been shown. More than two gate voltages result in a faster erase rate. Pressed; two = extremely high two::: = electric crystal spade gate or other metal gate as a gate material 2: reduce the gate to inject electrons. Wood 1 spear ^ month ^ shows that the SQNQ swollen component is used for the virtual ground (four) architecture. In some cases the durability is excellent. For the Bit_i 0 type condition, 3rd instar 8. Egg, 0gt; 1 microsecond, for 681939-27U4 28 1298494

Vg/Vs=8.5/4.6V、0·1 微秒。FN 抹除可使用 Vg=_i5v 達約 50毫秒以同時抹除二位元。因為FN抹除係自收斂均句通 道抹除,難以抹除或過抹除之單元通常不會出現。在一此 範例中,上揭元件顯示絕佳耐久性質,即使不使用程式化/ 抹除驗證或步進演算法。 圖19a及19b顯示在一範例中於P/E循環期間之 特徵。已顯示對數標度(圖19a)及線性標度(圖19b)二者中 的對應Ι-V曲線。在一範例中,一 SONONOS元件在多次 P/E循環後具有少許退化,使得該次限定值擺動(s s )及跨 導(gm)二者在多次循環後幾乎相同。此SONONOS元件比 NROM元件具有更優異之财久性質。其一原因可為未使用 熱電洞注入。此外,上揭的一超薄氧化物可具有比一厚隧 道氧化物更佳之應力免除性質。 圖20顯示在一範例中之CHISEL程式化方案。程式化 該元件的一替代方法係使用CHISEL程式化方案,其使用 負基體偏壓增強撞擊離子化作用來增加熱載體效率。程式 化電流由於體效應亦可減少。此圖中顯示典型條件,其中 基體係用負電壓(-2V)施加,並且將接面電壓減少到約 3,5V。對於習知NR〇M元件及技術,CHISEL程式化不可 應用’因為甘^ p- 熱電洞抹除對於^近通道中心區可能注入較多電子。並且 電子係無致率。走習知NROM元件中靠近通道中心區之 圖21a及 設計。JT〇x卢示—範例中之JT0X虛擬接地陣列的 |棱接地陣列提供在記憶體陣列中使用 681939-27U4 29 1298494 謂〇刪記憶單元之替代性實施。在—範例中,jt〇x結 構及虛擬㈣㈣間其—差別係™X結構中的元件係由 STI一方法離典型布局範例係顯示在圖2la中。圖21b 顯示-對應的等效電路’其係與—虛擬接地陣列相同。 如上揭,依據本發明之記憶單元結構係適於NOR與 爾型㈣記丨讀二者。以下將描述記憶鮮列設計及 J呆作方^的額外範例。在不用以下描述的㈣結構限制Vg/Vs = 8.5/4.6 V, 0·1 microseconds. FN erase can use Vg=_i5v for about 50 milliseconds to erase the two bits at the same time. Because the FN erase is self-converging and the channel is erased, cells that are difficult to erase or erase are usually not present. In this example, the exposed component shows excellent durability, even without the use of stylization/erasing verification or stepping algorithms. Figures 19a and 19b show the characteristics during a P/E cycle in an example. The corresponding Ι-V curves in both the logarithmic scale (Fig. 19a) and the linear scale (Fig. 19b) have been shown. In one example, a SONONOS component has a slight degradation after multiple P/E cycles such that both the threshold swing (s s ) and the transconductance (gm) are nearly identical after multiple cycles. This SONONOS component has superior financial properties over NROM components. One reason for this is that unused thermowell injection is used. In addition, an ultrathin oxide disclosed above may have better stress relief properties than a thick tunnel oxide. Figure 20 shows the CHISEL stylization scheme in one example. An alternative to stylizing this component is to use the CHISEL stylization scheme, which uses a negative matrix bias to enhance impact ionization to increase heat carrier efficiency. The programmed current can also be reduced due to body effects. Typical conditions are shown in this figure, where the base system is applied with a negative voltage (-2V) and the junction voltage is reduced to approximately 3,5V. For the conventional NR〇M components and technology, CHISEL stylization is not applicable. Because the gamma-p-thermal cavity eraser may inject more electrons into the central region of the near channel. And the electronics department has no rate. Figure 21a and the design of the NROM component near the center of the channel. JT〇x Luxu—The JT0X virtual grounding array in the example is a prismatic grounded array that provides an alternative implementation of the 681939-27U4 29 1298494 memory in the memory array. In the example, the components in the jt〇x structure and the virtual (4) (iv)-differential TMX structure are shown in Figure 2la by the STI-method from the typical layout example. Figure 21b shows the corresponding equivalent circuit 'which is the same as the virtual ground array. As disclosed above, the memory cell structure in accordance with the present invention is suitable for both NOR and type (4) reading. An additional example of the memory fresh line design and the J staying mode will be described below. Without the structural restrictions described in (4) below

本4月之範τΤ卩下將描述依據本發明之記憶體陣列的 各種操作方法,用於範例性NAND架構。 如上述,可將具有〇Ν〇隧道介電質的η通道 S_NOS記憶元件用於一記憶元件。圖瓜及m顯示 NAND陣列架構之範例。圖仏及现自二不同方向顯示 -範例性記籠陣列設狀斷面圖。在 Γ列的操作料可包括侧程式化、自㈣纽/抹岐 項取H此外’在—些範财可包括電路操作方法以避 免程式化干擾。 除了單塊閘極結構設計外,亦可使用一分裂閘極 (spht_gate)㈣’諸如位在靠近源極/沒極區之二電晶體問 極間使用SONONOS元件之NAND陣列。在一些範例中, 分裂閘極設計可調整科尺寸縮減f|jF=3G奈米或更少。此 外’可設計該等元件以獲得良好可靠性,以減少或除去浮 動閘極間耦合效應,或二者皆達到。如上揭,一 s〇n〇n〇s 記憶元件可提供極佳自收斂抹除,其可協助扇區抹除操作 及Vt分布控制。再者,緊湊的抹除狀態分布可有利於多位 681939-27U4 30 1298494 準應用(MLC)。 藉由將某些設計用作記憶體陣列結構,有效通道長度 (L e ff)可被擴大,以減少或者消除短通道效應。可設計一些 範例以不使用擴散接面,從而避免在記憶元件製程期間提 供淺接面或使用袋狀植入的挑戰。 圖1顯示具有SONONOS設計之記憶元件的範例。此 外,表1註釋上述用作不同層的材料及其厚度之範例。在 一些範例中,可用P+多晶矽閘極來提供較低飽和重設/抹除 電壓vt,其可藉由減少閘極注入達到。 圖22a及22b顯示一記憶體陣列的範例,諸如具有依 據表1所述具體實施例之記憶單元的S0N0N0S-NAND陣 列,其具有擴散接面。在一範例中,分離的元件可藉由各 種隔離技術彼此隔離,例如藉由使用淺溝渠隔離(STI)或絕 緣物上矽(SOI)之隔離技術。參考圖22a,一記憶體陣列可 包括多條位元線(例如BL1及BL2),及多條字元線(諸如 WL1、WLN-1、及WLN)。此外,該陣列可包括源極線電 晶體(或源極線選擇電晶體或SLT)及位元線電晶體(或位元 線選擇電晶體或BLT)。如舉例,該陣列中之記憶單元可使 用SONONOS設計’並且SLT及BLT可包括η型金氧半導 體場效應電晶體(NMOSFET)。 圖22b顯示一記憶體陣列(如NAND陣列)的範例性布 局。參考圖22b ’ Lg係記憶單元的通道長度,並且係記 憶元件之各分離線間的空間。此外,W係記憶單元的通道 兔度’並且W s係分離位元線或源極/沒極區間之隔離區寬 681939-27U4 31 1298494 度,其在一範例可為STI寬度。 再次參考圖办及22b,記憶元件可串聯連接且形成 元ND^列。例如,一串記憶元件可包括16或32個記憶 70件,提供16或32的串數目。可使用BLT及SLT作為選 ^ SLT的閘極介電質可為不包括—氮化石夕陷獲層的氧化石夕 m 。、此、、且態在些範例中(雖然在所有情況中不一定需要) 免在記憶體陣列操作期間BLT和SLT的可能Vt偏移。 遠擇係BLT及SLT可將複數層〇N〇N〇層的結合用 其閘極介電層。 在-些範财,施加於體及町的閘極電壓可能小 ;〇V’其可能造成較少的間極干擾。若及似的問 虽介電層可能被充電或陷獲電荷時,額外的·ν§抹除可施 於町或SLT之閘極,以使其間極介電層放電。 考圖22&,各BLT可與—位元線(BL)輕合。在一 令,…BL可為具有與STI相同或近似相同間距的金屬 WT =地、* SLT係連接至一源極線(SL)。源極線係與 且連接至料讀取感測之感測放大11。源極線可 、、、(例如鎢)’或多晶赠,或-擴散Ν+摻雜線。 圖23a顯示一範例性記憶體陣 =,=長干度方:的斷面圖。通常,咖近 寸可隨著用於製造的技術而變化。例二二 用5。奈米節點。…員示範例性記憶;= 681939-27U4 (¾ 32 1298494 SONONOS-NAND記憶體陣列)沿通道寬度方向的斷面 圖。參考圖23b,通道寬度方向的間距近似等於或稍大於 通道長度方向中的間距。因此,一圮憶單元的尺寸係近似 4F2/單元。 ° 在製造記憶體陣列(諸如上揭陣列)的範射,該等過Various methods of operation of the memory array in accordance with the present invention will be described in the context of the exemplary NAND architecture. As described above, an n-channel S_NOS memory element having a germanium tunnel dielectric can be used for a memory element. Tugua and m show examples of NAND array architectures. Figure 仏 and now appear in two different directions - an example of a cage array. The operating materials in the queue may include side stylized, self-reported (four), and erased items. In addition, some methods may include circuit operation methods to avoid stylized interference. In addition to the monolithic gate structure design, a split gate (spht_gate) (four) can be used, such as a NAND array using SONONOS components between two transistor interposers located near the source/bold regions. In some examples, the split gate design can be adjusted to reduce the size of f|jF = 3G nanometers or less. In addition, these components can be designed to achieve good reliability to reduce or eliminate the floating gate coupling effect, or both. As noted above, a s〇n〇n〇s memory element provides excellent self-convergence erase, which assists in sector erase operations and Vt distribution control. Furthermore, the compact erased state distribution can be advantageous for multiple 681939-27U4 30 1298494 quasi-applications (MLC). By using certain designs as memory array structures, the effective channel length (L e ff ) can be expanded to reduce or eliminate short channel effects. Some examples can be devised to avoid the use of a diffusing junction to avoid the challenge of providing shallow junctions or using pocket implants during memory component processing. Figure 1 shows an example of a memory element with a SONONOS design. Further, Table 1 notes the above examples of materials used as different layers and their thicknesses. In some examples, a P+ polysilicon gate can be used to provide a lower saturation reset/erase voltage vt, which can be achieved by reducing gate injection. Figures 22a and 22b show an example of a memory array, such as a SONOSO-S NAND array having memory cells in accordance with the specific embodiment of Table 1, having a diffusion junction. In one example, separate components can be isolated from one another by various isolation techniques, such as by using shallow trench isolation (STI) or isolation on insulator (SOI) isolation techniques. Referring to Figure 22a, a memory array can include a plurality of bit lines (e.g., BL1 and BL2), and a plurality of word lines (such as WL1, WLN-1, and WLN). In addition, the array can include a source line transistor (or source line select transistor or SLT) and a bit line transistor (or bit line select transistor or BLT). As an example, the memory cells in the array can be designed with SONONOS' and the SLT and BLT can include n-type MOS field effect transistors (NMOSFETs). Figure 22b shows an exemplary layout of a memory array, such as a NAND array. Referring to Figure 22b, the channel length of the Lg-series memory cell is the space between the separation lines of the memory element. In addition, the W-series memory cell has a channel degree and the W s is separated from the bit line or the source/nano-pole interval is 681939-27U4 31 1298494 degrees, which in one example can be STI width. Referring again to the diagram and 22b, the memory elements can be connected in series and form a meta-ND column. For example, a string of memory elements can include 16 or 32 memories 70 pieces, providing a string number of 16 or 32. The BLT and SLT can be used as the gate dielectric of the SLT, which can be an oxide oxide m m that does not include the nitriding layer. This, and the states are in some examples (although not necessarily required in all cases) to avoid possible Vt shifts of BLT and SLT during memory array operation. The remote selection system BLT and SLT can use a combination of a plurality of layers of 〇N〇N〇 layers for their gate dielectric layers. In some models, the gate voltage applied to the body and the town may be small; 〇V' may cause less inter-polar interference. If and if the dielectric layer may be charged or trapped, an additional ν § erase can be applied to the gate of the town or SLT to discharge the dielectric layer between them. Referring to Figure 22 &, each BLT can be lightly coupled to the - bit line (BL). In a command, ... BL may be a metal having the same or approximately the same pitch as the STI WT = ground, * SLT is connected to a source line (SL). The source line is connected to and coupled to the sense amplification 11 of the material read sensing. The source line can be,, (e.g., tungsten) or polycrystalline, or - diffused + doped. Figure 23a shows a cross-sectional view of an exemplary memory array =, = long dry square. In general, coffee close-ups can vary with the technology used for manufacturing. Example 2: Use 5. Nano node. ... demonstrative memory; = 681939-27U4 (3⁄4 32 1298494 SONONOS-NAND memory array) section view along the width of the channel. Referring to Fig. 23b, the pitch in the channel width direction is approximately equal to or slightly larger than the pitch in the channel length direction. Therefore, the size of a unit is approximately 4F2/unit. ° In the manufacture of memory arrays (such as the array), this has been

程可,㈣僅❹二主麵罩或微影_過程,諸如其一 用於多晶辦元線)且另1於STI(位元線)。反之,函D ,浮動閘私件之製造可能需要至少二多㈣處理及另- ^晶石夕圖間處理。因此,所揭元件的結構及製程可比該 等NAND型浮動閘極記憶體更簡單。 在其中STI係用於隔離分離記憶元件之範例中,州 區的溝渠深度可大於P井中之空泛寬度,尤其係當所用的 接面偏壓被提升得更高時。例如,接面偏壓可高達Η,用 於程式化帛止的位讀(料化㈣未選擇的位元線)。在 -範例中,STI區之深度可在綱至働奈米的範圍中。 在記憶體陣列製成後,可在記憶體陣列的其他操作前 先執行重設操作以使vt分布緊湊。圖24a顯示此操作之範 例。在一範例中,在其他操作開始前,首先可施加VG=約 參=圖23a,在-範例中,字元線(wl)間之空間㈣ 1形成有淺接面(如N+摻雜區的淺接面),其可作為記憶元 件之源極纽極區。如圖23a巾_,讀行額外植入及/ 或擴散過程(例如斜角的袋狀植人),以提供鄰近一或多個 淺接面區之接面的-或多個「袋狀」區或袋狀延伸。在一 些範例中,此組態可提供較佳的元件特徵。 681939-27U4 33 1298494 •7V且P井=+8V以重設陣列(VG和P井之電壓降可分到閑 極電壓進入各WL和ρ井中)。在RESET期間,BL可浮動, 或提升到與P井相同的電壓。如圖24b中顯示,重設操作 可提供極佳自收斂性質。在一範例中,即使一開始將 SONONOS元件充電至各種Vt,此重設操作可使其r緊凑」 至重設/抹除狀態。在一範例中,重設時間係約1〇〇毫秒。 在該範例中,記憶體陣列可使用具有 ONONO=15/20/18/70/90 埃之 η 通道 SONONOS 元件,其具 有Lg/W=0.22/0.16微米之N+多晶矽閘極。 一般而言,傳統浮動閘極元件係無法提供自收斂抹 除。反之,SONONOS元件可用收斂重設/抹除方法操作。 在一些範例中,因為初始Vt分布通常由於特定製程問題(諸 如過程不一致性或電漿充電效應)而在相當廣的範圍中,此 操作可能變得十分重要。範例性自收斂「重設」可協助使 記憶元件的初始Vt分布範圍緊湊或變窄。 在程式化操作之範例中,已選定的WL可用高電壓施 加(例如約+16V至+20V之電壓),以引發通道+FN注入。 其他PASS閘極(其他未選定WL)可加以開啟以在一 nand 串中引电反轉層。+FN程式化在一些範例中可為低功率方 法。在一範例中,平行程式化方法諸如以4K位元組單元 平行頁面程式化,可使程式化通量爆增至多於1〇MB/see, 同時總電流消耗可控制在lmA内。在一些範例中,為避免 在其他BL中之程式化干擾,一高電壓(如約之電壓)可 施加於其他BL,以致反轉層電位提升更高以抑制在未選定 681939-27U4 34 1298494 BL(例如圖25中單元B)中的電壓降。 在讀取操作的範例中,已選定WL可提升至在一抹除 狀怨位準(EV)及一程式化狀態位準(pv)間之電壓。其他wl 了作為 PASS閘極」,以致其閘極電壓可提升至高於pv 之電壓。在一些範例中,抹除操作可與上述重設操作類似, 其可允許自收斂至相同或類似重設Vt。 圖25顯示操作記憶體陣列之範例。程式化可包括通道Cheng can, (iv) only two main masks or lithography processes, such as one for polycrystalline lines and the other for STI (bit lines). Conversely, the creation of the letter D, the floating gate private parts may require at least two (four) processing and another - ^ spar stone processing. Therefore, the structure and process of the disclosed device can be simpler than the NAND type floating gate memory. In the example where the STI is used to isolate the discrete memory elements, the trench depth in the state can be greater than the empty width in the P well, especially when the junction bias used is raised higher. For example, the junction bias can be as high as Η for stylized bit read (materialized (four) unselected bit lines). In the example, the depth of the STI region can range from the scope to the nanometer. After the memory array is fabricated, the reset operation can be performed prior to other operations of the memory array to make the vt distribution compact. Figure 24a shows an example of this operation. In an example, before the start of other operations, VG=about ==Fig. 23a may be applied first. In the example, the space between the word lines (wl) (4) 1 is formed with a shallow junction (such as an N+ doped region). Shallow junction), which can be used as the source of the memory element. As shown in Figure 23a, an additional implantation and/or diffusion process (such as a beveled pocket implant) is performed to provide a "pocket" adjacent to the junction of one or more shallow junction areas. Zone or pocket extension. In some examples, this configuration provides better component characteristics. 681939-27U4 33 1298494 • 7V and P-well = +8V to reset the array (the voltage drop of the VG and P wells can be divided into the idle voltage into the WL and ρ wells). During RESET, the BL can float or rise to the same voltage as the P well. As shown in Figure 24b, the reset operation provides excellent self-convergence properties. In one example, even if the SONONOS component is initially charged to various Vt, this reset operation can make it r compact to the reset/erase state. In one example, the reset time is about 1 millisecond. In this example, the memory array can use an η-channel SONONOS device with ONONO = 15/20/18/70/90 angstroms with an N+ polysilicon gate with Lg/W = 0.22/0.16 microns. In general, conventional floating gate components are not capable of providing self-convergence erase. Conversely, the SONONOS component can be operated with a convergence reset/erase method. In some instances, this operation may become important because the initial Vt distribution is typically in a fairly wide range due to specific process issues such as process inconsistencies or plasma charging effects. An exemplary self-convergence "reset" can help to make the initial Vt distribution of the memory element compact or narrow. In the example of stylized operation, the selected WL can be applied with a high voltage (e.g., a voltage of about +16V to +20V) to induce channel + FN injection. Other PASS gates (other unselected WLs) can be turned on to galvanically invert the layer in a nand string. +FN stylization can be a low power method in some examples. In one example, a parallel stylization method such as stylizing a parallel page of 4K byte units can cause the programmatic flux to burst to more than 1 〇 MB/see while the total current consumption can be controlled within lmA. In some examples, to avoid stylized interference in other BLs, a high voltage (such as a voltage) can be applied to other BLs, so that the inversion layer potential is boosted higher to suppress the unselected 681939-27U4 34 1298494 BL The voltage drop in (e.g., cell B in Figure 25). In the example of a read operation, the selected WL can be boosted to a voltage between an erased level (EV) and a stylized status level (pv). The other wl acts as a PASS gate so that its gate voltage can be raised to a voltage higher than pv. In some examples, the erase operation can be similar to the reset operation described above, which can allow self-convergence to the same or similar reset Vt. Figure 25 shows an example of operating an array of memory. Stylized can include channels

+FN電子注入進入s〇N〇N〇s氮化物陷獲層。一些範例可 包括施加V萨約+18V至已選定WLN_;l,且施加VG==約 + 1〇V至其他WL以及BLT4LT可關閉以避免在單元B中 之通道熱電子注入。在此範例中,因為在NAND串中的所 有電晶體被開啟,此反轉層穿過該等串。此外,因為Bu ,接地,BL1中之反轉層具有零電位。另一方面,其他 提升至高電位(如約+7V之電壓),以致其他6[的反轉屑 電位較高。 9 ^ 尤其係對於單元A(其係選定程式化的單元),電壓 約+18V,故造成+FN注入。並且vt可提升到pv ^於: 元B,電壓降係+ llv,造成少許多的+ρΝ注入,因為、= 注入係對Vg敏感。至於單元c,僅施加+ 1〇v,造成汐 或可忽略的+FN注人。在_些範例中,程式化操作不^ 已說明之技術。換句話說,可應用其他適當程式化抑^枯 術。 』议 圖24a、26及27進一步顯示陣列操作的一些範例, 顯示一些範例的耐久及保持性質。如舉例,在一些操作= 681939-27U4 35 1298494 環後的元件退化可保持極小。圖24a顯示範例性抹除操 作,其可與重設操作類似。在一範例中,抹除係由扇區或 區塊執行。如上揭,該等記憶元件可具有良好自收斂抹除 性質。在一些範例中,抹除飽和Vt可取決於Vg。例如, 較高的Vg可造成較高的飽和Vt。如圖26中所示,收斂時 間可約10到100毫秒。 圖27顯示讀取操作的範例。在一範例中,讀取可藉由 施加在一抹除狀態Vt(EV)及一程式化狀態Vt(PV)間之閘 極電壓而執行。例如,閘極電壓可為約5 V。另一方面,其 他WL及BLT和SLT係用一更高的閘極電壓(如約+9V)施 加,以開啟所有其他記憶單元。在一範例中,若單元A的 Vt比5V高,讀取電流可能極小(<0.1uA)。若單元A的Vt 比5V低,讀取電流可能較高(>0.1uA)。結果,可識別記憶 體狀態(即已儲存的資訊)。 在一些範例中,用於其他WL的通過閘極電壓應高於 高Vt狀態或程式化狀態Vt,但不要太高以免觸發閘極干 擾。在一範例中,PASS電壓係在約7至10V的範圍内。 BL處的施加電壓可為約IV。儘管較大讀取電壓可引發更 多電流,但讀取干擾在一些範例可能變得更明顯。在一些 範例中,感測放大器可放在源極線(源極感測)上或一位元 線上(没極感測)。 NAND串的一些範例可具有每串8、16或32個記憶元 件。一較大的NAND串可節省更多額外負擔且增加陣列效 率。然而,在一些範例中,讀取電流可能較小且干擾可能 681939-27U4 36 1298494 遥因此,應基於各種設計、製造及操作因子選 擇NAND串的適當數目。 口杏圖28顯示某些範例性元件的循環耐久性。參考圖28, =實^具有+FN程式化及·™抹除的P/E循環,並且結果 :示^好的耐久特徵。在此範例中,抹除條件係Vg=約-16V 達毫心。在一些範例中,僅需要單次抹除並且並不必要 狀態的驗證。記憶體Vt窗口良好而無退化。+FN electrons are injected into the s〇N〇N〇s nitride trapping layer. Some examples may include applying V Say+18V to selected WLN_;l, and applying VG==about +1〇V to other WLs and BLT4LT may be turned off to avoid channel hot electron injection in unit B. In this example, because all of the transistors in the NAND string are turned on, the inversion layer passes through the strings. In addition, because of Bu, ground, the inversion layer in BL1 has a zero potential. On the other hand, the other rises to a high potential (such as a voltage of about +7V), so that the other 6 [reversal chip potentials are higher. 9 ^ Especially for cell A (which is the selected stylized cell), the voltage is about +18V, resulting in +FN injection. And vt can be raised to pv ^ at: element B, voltage drop + llv, resulting in much less +ρΝ injection, because, = injection system is sensitive to Vg. As for unit c, only + 1〇v is applied, resulting in 汐 or negligible +FN injection. In some of these examples, stylized operations are not described. In other words, other appropriate stylization techniques can be applied. Figures 24a, 26 and 27 further show some examples of array operation, showing the durability and retention properties of some examples. As an example, component degradation after some operations = 681939-27U4 35 1298494 ring can be kept to a minimum. Figure 24a shows an exemplary erase operation that can be similar to the reset operation. In one example, the erase is performed by a sector or block. As noted above, the memory elements can have good self-convergent erase properties. In some examples, erasing saturation Vt may depend on Vg. For example, a higher Vg can result in a higher saturation Vt. As shown in Fig. 26, the convergence time can be about 10 to 100 milliseconds. Figure 27 shows an example of a read operation. In one example, the reading can be performed by applying a gate voltage between a erased state Vt (EV) and a stylized state Vt (PV). For example, the gate voltage can be about 5 volts. On the other hand, other WL and BLT and SLT systems are applied with a higher gate voltage (e.g., about +9V) to turn on all other memory cells. In an example, if the Vt of cell A is higher than 5V, the read current may be extremely small (<0.1uA). If the Vt of cell A is lower than 5V, the read current may be higher (>0.1uA). As a result, the state of the memory (i.e., the stored information) can be identified. In some examples, the pass gate voltage for other WLs should be higher than the high Vt state or the stylized state Vt, but not too high to trigger gate interference. In one example, the PASS voltage is in the range of about 7 to 10V. The applied voltage at BL can be about IV. Although larger read voltages can induce more current, read disturb may become more apparent in some examples. In some examples, the sense amplifier can be placed on the source line (source sense) or on a bit line (not sensed). Some examples of NAND strings can have 8, 16, or 32 memory elements per string. A larger NAND string saves additional overhead and increases array efficiency. However, in some examples, the read current may be small and the interference may be 681939-27U4 36 1298494. Therefore, the appropriate number of NAND strings should be selected based on various design, fabrication, and operational factors. Apricot Figure 28 shows the cycle durability of certain exemplary components. Referring to Fig. 28, = real ^ has a +FN stylized and TM erased P/E cycle, and the result: shows a good endurance feature. In this example, the erase condition is Vg = about -16V up to the millicenter. In some examples, only a single erase is required and verification of the state is not necessary. The memory Vt window is good without degradation.

圖及29b顯示使用不同標度的範例性記憶元件的 iv特徵。尤其係圖29a中顯示元件的小擺動退化,並且圖 2外顯示元件的小跨導退化。圖30顯示一範例性S〇n〇n〇S 元件的保持特徵。參考圖30,藉由對於在1〇κ循環後且在 室溫離開200小時後之元件具有少於100mV之電荷損失而 k供良好保持。圖30亦顯示在高溫處之可接受電荷損失。 在一些範例中,分裂閘極設計(例如分裂閘極 SONONOS_NAND設計)可用來達成記憶體陣列的更進一 步按比例縮小。圖31顯示使用此設計之範例。參考圖31, 可細小各字元線間、或共享相同位元線的二相鄰記憶元件 間之空間(Ls)。在一範例中,Ls可縮小到約30奈米或更少。 如範例中,使用分裂閘極設計之記憶元件沿相同位元線可 能僅共享一源極區或一;:及極區。換句話說,對於一些記憶 元件而言,分裂閘極SONONOS-NAND陣列可不使用擴散 區或接面(例如N+掺雜區)。在一範例中,該設計亦可減少 或免除淺接面及鄰近「袋狀」的需要,其在一些範例中可 月巨涉及更複雜的製程。此外,在一些範例中,該設計較少 681939-27U4 37 (S) 1298494 受短通道效應的影響,因為已增加通道長度,諸如在一範 例中增加到Lg=2F-Ls。 圖32顯示一使用分裂閘極設計之記憶體陣列的範例 性製程。該示意圖僅係示範性範例,並且該記憶體陣列可 以各種不同方法設計及製造。參考圖32,在形成用於提供 記憶元件之多層材料後,可使用一氧化矽結構作為形成於 該等層上之硬遮罩將該等層圖案化。例如,可藉由微影及 蝕刻過程以界定該等氧化矽區。在一範例中,用於界定初 始氧化矽區之圖案可具有約F的寬度且氧化矽區間之空間 約F,產生約2F之間距。在圖案化初始氧化矽區後,氧化 矽間隔件可接著形成,以圍繞已圖案化區而擴大各氧化矽 區且窄化其間距。 再次參考圖32,在形成氧化矽區後,其等被用作硬遮 罩以界定或圖案化其底層以提供一或多個記憶元件,如同 多個NAND串。此外,絕緣材料(例如氧化矽)可用來填充 相鄰記憶元件間之空間,例如圖32顯示的空間Ls。 在一範例中,沿相同位元線之相鄰記憶元件間的空間 Ls可在約15奈米到約30奈米的範圍中。如上述,在此範 例中,有效通道長度可擴大到2F-Ls。在一範例中,若F 係約30奈米且Ls係約15奈米,則Leff係約45奈米。對 於該等範例性記憶元件的操作,閘極電壓可減少到15V以 下。此外,字元線間之多晶矽間電壓降可經設計成不大於 7V,以避免在Ls空間中之間隔件崩潰。在一範例中,此 可藉由在相鄰字元線間具有少於5MV/cm之電場而達到。 681939-27U4 38 1298494 用於習知NAND浮動閘極元件之擴散接面的Leff係其 閘極長度的大約一半。相反地,在一範例中,若F係約 奈米並且Leff係約30奈米,Leff係所建議設計(分裂閘極 NAND)的大約8〇奈米。更長的Leff可藉由減少或免除短 通道效應的影響而提供更佳的元件特徵。 如上述,分裂閘極的NAND設計可進一步縮小相同位 元線之相郴5己憶單元間之空間(Ls)。反之,傳統型Figures and 29b show iv features of exemplary memory elements using different scales. In particular, the small wobble degradation of the display element in Figure 29a, and the small transconductance of the external display element of Figure 2 is degraded. Figure 30 shows the retention characteristics of an exemplary S〇n〇n〇S element. Referring to Figure 30, k is well maintained by having a charge loss of less than 100 mV for an element after a 1 〇 κ cycle and after leaving at room temperature for 200 hours. Figure 30 also shows the acceptable charge loss at high temperatures. In some examples, a split gate design (e.g., a split gate SONONOS_NAND design) can be used to achieve further scaling down of the memory array. Figure 31 shows an example of using this design. Referring to Fig. 31, the space (Ls) between two adjacent memory elements or between two adjacent memory elements sharing the same bit line can be thinned. In one example, Ls can be reduced to about 30 nanometers or less. As an example, a memory element using a split gate design may share only one source region or one; and a polar region along the same bit line. In other words, for some memory elements, the split gate SONONOS-NAND array may not use a diffusion region or junction (e.g., an N+ doped region). In one example, the design can also reduce or eliminate the need for shallow joints and adjacent "pockets", which in some cases can involve more complex processes. Moreover, in some examples, the design is less 681939-27U4 37 (S) 1298494 due to the short channel effect because the channel length has been increased, such as increasing to Lg = 2F-Ls in an example. Figure 32 shows an exemplary process for a memory array using a split gate design. This schematic is merely an exemplary example, and the memory array can be designed and fabricated in a variety of different ways. Referring to Fig. 32, after forming a multilayer material for providing a memory element, the layers may be patterned using a niobium oxide structure as a hard mask formed on the layers. For example, the yttrium oxide regions can be defined by lithography and etching processes. In one example, the pattern used to define the initial yttrium oxide region may have a width of about F and a space of about F of the yttrium oxide region, resulting in a distance of about 2F. After patterning the initial yttrium oxide region, a hafnium oxide spacer can then be formed to expand the respective hafnium oxide regions around the patterned regions and narrow the spacing thereof. Referring again to Figure 32, after forming the hafnium oxide region, it is used as a hard mask to define or pattern its underlying layer to provide one or more memory elements, such as a plurality of NAND strings. In addition, an insulating material such as hafnium oxide can be used to fill the space between adjacent memory elements, such as the space Ls shown in FIG. In one example, the space Ls between adjacent memory elements along the same bit line can range from about 15 nanometers to about 30 nanometers. As described above, in this example, the effective channel length can be expanded to 2F-Ls. In one example, if F is about 30 nm and Ls is about 15 nm, then Leff is about 45 nm. For the operation of these exemplary memory elements, the gate voltage can be reduced to less than 15V. In addition, the polysilicon voltage drop between the word lines can be designed to be no greater than 7V to avoid spacer collapse in the Ls space. In an example, this can be achieved by having an electric field of less than 5 MV/cm between adjacent word lines. 681939-27U4 38 1298494 Leff for the diffusion junction of a conventional NAND floating gate element is about half of its gate length. Conversely, in one example, if F is about nanometer and Leff is about 30 nanometers, Leff is about 8 nanometers of the proposed design (split gate NAND). Longer Leffs provide better component characteristics by reducing or eliminating the effects of short channel effects. As described above, the NAND design of the split gate can further reduce the space (Ls) between the adjacent cells of the same bit line. Conversely, the traditional type

二動閘極的元件可能不提供小間距,因為浮動閘極間輕合 ,應可能失去記憶體窗口。當相鄰浮動閘極_輕合電溶 高時’浮動閘極關合係相鄰記憶單^間之干擾(浮動閑極 =的空間小,以致相鄰浮動閘極間的耦合電容極高,使謂 讀取干擾發生)。如上揭,該設計可消除製造—些擴散接面 之而要’ JE且若開啟所有字元線則反連 此,該設計可_記憶元件㈣程。 舉例i上述包括結構化設計、陣列設計及記憶元科 :心些㈣,可提供符合需求之陣列尺寸、優良可靠 於按能或其任何的結合。所述之—些範例亦可應用 小非揮發性快閃記憶體的尺寸,例如ν娜快 於資料應用之快閃記憶體。某些範例可提供 i ^ 收斂通道電洞輯抹除的S QN ΟΝ Ο S元件。 供記憶元件的良好耐久且減少難以抹除或 同樣地,可提供良好元件特徵,諸如在Ρ/Ε 站从 電何保持。可提供記憶體陣列 内之兀件-致性而不會具有不穩定的位元或單元。再者, 681939-27U4 39 1298494 =耗例可經由分裂閉極NAND設計提供良好 ,有記憶元件操作期間提供更好的感測裕件 ㈣實施例之前揭内容,係;例亍 精確形式或欲限制本發明為所揭露: 施例進行變化,而不致解可對上述各項具體實 應瞭解本發明並不限於本揭性概念。因此, 飾。後載各"求項所定義之本發明精神及範圍内的修 【圖式簡單說明】 當併同各隨附圖式而閔瞢卩士 Β 前揭摘要以及卜令>, 覧守,即可更佳瞭解本發明之 圖式襄圖緣=屬::::且:r發明之說明目的,各 並不限於所_排置方式、=置然應瞭解本發明 在各圖式中: 、 纪棒i - * lb刀別係依據本發明一具體實施例的N通道 本發明一具體實施例的p通道記憶單元 之斷面不意圖; 久錄=係依據本發明之—具體實施例的隧道介電結構在 各種^化方法下之臨限電壓(電荷陷獲容量)的圖示; …之—具體實施例的 SONONOS 記憶 早7G之L限電壓在抹除期間隨時間改變的圖示; -圖4係依據本發明—具體實施例的 SONONOS記憶單 元之臨限電壓在保持期間隨時間改變的圖示; 681939-27U4 1298494 電結依據本發明各種具體實施例的。N〇_ 對於同随道介電結構之電洞穿隨電流相 類型1 mu發明-具體實施例的記憶單元在各種 示;化後的抹除期間隨時間改變之臨限電壓的圖 憶單::未:::Ρί,一具體實施例具有-峨亟的記 ”,間改變之臨限電壓的圖示; 壓的=及7d係有_b中之記憶單元的電容相對於電 和心元在-環 程式㈣域單元在一組 限電壓之圖示;、° ^ /抹除循%過程中的臨 圖11係依據本發明一具體實施 速保持測試下之臨限電壓隨時間改變的圖t早70在%加 圖12a及12b分別係依據本發明一且 早το之虛擬接地陣列的等效電路圖及布局^ w4 圖13係圖12b中所示依據本發明一具體實施例的記憶 681939-27U4 41 ί298494 兀之虛擬接地陣列沿線12B-12B取得的斷面示意圖; 單元圖14a及14b係包含依據本發明一具體實施例的記憶 作::記憶:陣列的等效電路圖,且描述依據本發明之操 一具體實施例之適合的重設/抹除電壓; 草元圖及15b係包含依據本發明一具體實施例的記憶 化之體陣列的等效電路圖,其描述依據本發明程式 春 單元,16a及l6b係包含依據本發明—具體實施例的記憶 記憶體陣列的等效電路圖,其描述依據本發 位兀之方法; 祙除係依據本發明—具體實施例的記憶單元在各種 ” ’、牛下隨時間變化的臨限電壓圖示; 圖18係依據本發明一具體實施例的記憶單元在許多 工化/抹除循環過程中的臨限電壓之圖示; _圖19a及19b係依據本發明一具體實施例的記憶單 兀,在各種閘極電壓下於汲極處之電流分别依對數標度及 線性標度的圖示; 圖20係包括依據本發明一具體實施例的記憶單元之 陣列的等效電路圖,其描述依據本發明程式化一位元 法; 圖21a及21b係依據本發明一具體實施例之虛擬接地 陣列的布局圖和等效電路圖; 圖22a及22b分別係依據本發明一具體實施例的記憶 單元之NAND陣列的等效電路圖及布局圖; 681939-27U4 42 1298494 时圖23a及23b A別係依據本發明一具體實施例的記憶 早兀之NAND陣列沿圖22b中所示線22A_22a及22b_22b 取得的斷面圖; 圖24a係依據本發明一具體實施例的NAND陣列之等 效電路圖,其描述依據本發明之操作方法; 圖滿係依據本發明-具體實施例在重設操作期間針The components of the two-way gate may not provide a small pitch, because the floating gates are lightly connected and the memory window may be lost. When the adjacent floating gate _ light and high electric solution is high, the floating gate is connected to the adjacent memory unit (the floating idle pole = the space is small, so that the coupling capacitance between adjacent floating gates is extremely high, Make the read interference happen). As noted above, the design eliminates the need to fabricate some of the diffusion junctions and to "JE" and if all of the word lines are turned on, the design can be _memory component (four). For example, the above includes structural design, array design, and memory element: (4), which can provide an array size that meets the requirements, excellent reliability, and energy or any combination thereof. Some of the examples described may also apply to the size of small non-volatile flash memory, such as ν Na faster than flash memory for data applications. Some examples provide S QN ΟΝ Ο S components for i ^ convergence channel hole erase. Good durability and reduced memory elements are difficult to erase or, as such, provide good component characteristics, such as how to maintain from the Ρ/Ε station. The components within the memory array can be provided without causing unstable bits or cells. Furthermore, 681939-27U4 39 1298494 = consumption can be provided well by split-closed NAND design, providing better sensing margins during memory component operation. (4) Pre-existing examples, examples; The present invention is disclosed. Variations of the embodiments are not to be construed as the details of the invention. The invention is not limited to the inventive concept. Therefore, decorated. The following is a description of the spirit and scope of the invention defined in the "Description", and the simplification of the schema in the scope of the invention. A better understanding of the drawings of the present invention is as follows: ::: and: r The purpose of the description of the invention is not limited to the arrangement, and the invention should be understood in the drawings: Rod i - * lb cutter is an N-channel according to an embodiment of the present invention. The cross-section of the p-channel memory unit according to an embodiment of the present invention is not intended; the long-term recording is based on the tunnel of the present invention. Graphical representation of the threshold voltage (charge trapping capacity) of the electrical structure under various methods; - the illustration of the SOONOS memory of the prior embodiment of the 7G L-limit voltage changing over time during erasing; 4 is a graphical representation of the threshold voltage of a SONONOS memory cell in accordance with the present invention as a function of time during a hold; 681939-27U4 1298494 electrical junctions in accordance with various embodiments of the present invention. N〇_ for the same-channel dielectric structure of the hole-through current phase type 1 mu invention - the memory unit of the specific embodiment is shown in various indications; the threshold voltage of the threshold voltage changes over time: No::: Ρί, a specific embodiment has a 峨亟-", a graphical representation of the threshold voltage between changes; the voltage = and 7d are the capacitance of the memory cell in _b relative to the electrical and the core - ring diagram (four) domain unit in a set of voltage limit diagrams; ° ^ / erasing cycle in the process of Figure 11 is a diagram of the threshold voltage change with time according to a specific implementation of the present invention The early 70 in % plus FIGS. 12a and 12b are respectively equivalent circuit diagrams and layouts of the virtual ground array according to the present invention, and FIG. 13 is a memory 681939-27U4 according to an embodiment of the present invention shown in FIG. 12b. 41 ί298494 A schematic cross-sectional view taken along line 12B-12B of a virtual ground array; unit FIGS. 14a and 14b are diagrams showing an equivalent circuit diagram of a memory: memory: array according to an embodiment of the invention, and A suitable reset/wipe of a specific embodiment Voltage; Turquoise diagram and 15b are equivalent circuit diagrams comprising a memory array according to an embodiment of the invention, which describes a program according to the present invention, 16a and 16b contain memory according to the invention - a specific embodiment An equivalent circuit diagram of a memory array, which is described in accordance with the method of the present invention; FIG. 18 is a diagram of a threshold voltage of a memory unit according to the present invention in various "belows"; A diagram of a threshold voltage of a memory cell in accordance with an embodiment of the present invention during a number of chemical/erase cycles; _ Figures 19a and 19b are memory cells in accordance with an embodiment of the present invention, in various gates Figure 2 is an equivalent circuit diagram of an array of memory cells in accordance with an embodiment of the present invention, the description of which is programmed according to the present invention. Figure 21a and Figure 21b are a layout diagram and an equivalent circuit diagram of a virtual ground array according to an embodiment of the present invention; Figures 22a and 22b are respectively based on the present invention. Equivalent circuit diagram and layout diagram of the NAND array of the memory unit of the embodiment; 681939-27U4 42 1298494 and FIGS. 23a and 23b are a memory NAND array according to an embodiment of the present invention along the line shown in FIG. 22b 22A_22a and 22b_22b are taken as a cross-sectional view; FIG. 24a is an equivalent circuit diagram of a NAND array according to an embodiment of the present invention, which describes an operation method according to the present invention; Period needle

對二具有不同初始臨限電壓的記憶單元隨時間改變之臨限 電壓的圖示; 圖25係依據本發明一具體實施例的操作方法之等效 電路圖; …圖26係依據本發明-具體實施例的記憶單元之臨限 電壓在各種抹除條件下隨時間改變的圖示; *圖27係描述依據本發明一具體實施例的操作方法之 等效電路圖; 圖28係依據本發明-具體實施例的記憶單元在一组 ,式化及抹除條件下於衫程式化/抹除循環過程中的臨 限電壓之圖示; _圖29a及29b係在依據本發明一具 :分:;r罐下於汲極處之電流在三不同循環= 別依照對數標度及線性標度的圖示; 係依據本制-具體實_的記憶單元之臨限 ^不同溫度和循環條件τ於保持期間隨時間變化的 圃不, 圖3!係依據本發明-具體實施例的NAND陣列字元 681939-27U4 43 1298494 線之斷面示意圖;及 圖32係依據本發明一具體實施例的NAND陣列字元 線形成技術之斷面示意圖。 鬱 【主要元件符號說明】 100 η通道記憶單元 101 Ρ型基體 102 Ν型摻雜區 104 η型摻雜區 106 通道區 120 隧道介電結構 122 下方薄氧化層 124 小電洞穿隧阻障高度氮化層 126 上方薄氧化層 130 電荷陷獲/電荷儲存層 140 絕緣層 150 閘極 200 Ρ通道記憶單元 201 η型基體 202 ρ型摻雜區 204 Ρ型摻雜區 206 通道區 220 隧道介電結構 222 下方薄氧化層 224 小電洞穿隧阻障高度氮化層 681939-27U4 1298494 226 上方薄氧化層 230 電荷陷獲/電荷儲存層 240 絕緣層 250 閘極FIG. 25 is an equivalent circuit diagram of a method of operation in accordance with an embodiment of the present invention; FIG. 26 is an embodiment of the present invention. FIG. 27 is an equivalent circuit diagram depicting a method of operation in accordance with an embodiment of the present invention; FIG. 28 is an illustration of an equivalent circuit diagram of a method of operation in accordance with an embodiment of the present invention; FIG. An illustration of the threshold voltage of a memory unit in a set, characterization, and erasing condition during a stylization/erasing cycle; _ Figures 29a and 29b are in accordance with the present invention: The current at the bottom of the tank is in three different cycles = not according to the logarithmic scale and the linear scale; according to the system - the specific real memory of the memory unit ^ different temperature and cycle conditions τ during the retention period FIG. 3 is a cross-sectional view of a line of NAND array characters 681939-27U4 43 1298494 in accordance with the present invention - and FIG. 32 is a NAND array character in accordance with an embodiment of the present invention. Line forming technology Schematic diagram of the section. 【 [Main component symbol description] 100 η channel memory unit 101 Ρ type substrate 102 Ν type doped region 104 η type doped region 106 channel region 120 tunnel dielectric structure 122 underlying thin oxide layer 124 small hole tunneling barrier high nitrogen Thin oxide layer 130 over layer 126 charge trapping/charge storage layer 140 insulating layer 150 gate 200 germanium channel memory cell 201 n-type substrate 202 p-doped region 204 germanium doped region 206 channel region 220 tunnel dielectric structure 222 Thin oxide layer 224 Small hole tunneling barrier High nitride layer 681939-27U4 1298494 226 Upper thin oxide layer 230 Charge trapping/charge storage layer 240 Insulation layer 250 Gate

681939-27U4 45681939-27U4 45

Claims (1)

f1298494 十、申請專利範圍: — 1. 一種記憶單元,其包含: 一半導體基體,其具有設置於該基體之一表面下且 由一通道區分離的一源極區及一汲極區; 一隧道介電結構,其係設置於該通道區上,該隧道 _ 介電結構包含至少一中間層及在該中間層之相對側上 ’ 的二相鄰層,其中該中間層及二相鄰層各包含一第一材 料和一第二材料,其中該第二材料之價能帶位準大於該 φ 第一材料之價能帶位準,且該第二材料之傳導能帶位準 小於該第一材料的傳導能帶位準;且其中該第二材料之 濃度在該中間層中係較高於在該二相鄰層中,且該第一 材料的濃度在該二相鄰層中係高於在該中間層中,使該 二相鄰層之電洞穿隧阻障高度係高於該中間層; 一電荷儲存層,其係設置於該隧道介電結構上; 一絕緣層,其係設置於該電荷儲存層上;及 一閘極電極,其係設置於該絕緣層上。 # 2. 如請求項1之記憶單元,其中該第二材料係依一梯度 濃度出現在該中間層中,使得該第二材料在該中間層 中之濃度從一相鄰層/中間層介面增加到在該中間層 内一深點處之最大濃度,且從該最大濃度深點降低到 在該另一相鄰層/中間層介面處之較低濃度。 3. 如請求項1之記憶單元,其中該第一材料包含氧或一 含氧化合物。 4. 如請求項1之記憶單元,其中該第二材料包含氮或一 681939-27U4 46 1298494 含氣化合物。 5. 如請求項1之記憶單元,其中該第一材料包含氧化矽。 6. 如請求項1之記憶單元,其中該第二材料包含氮化矽 或氮氧化矽。 7. 如請求項1之記憶單元,其中該第一材料包含氧化 矽,且其中該第二材料包含氮化矽或氮氧化矽。 * 8. 如請求項1之記憶單元,其中該電荷儲存層包含從由 氮化矽、Al2〇3及Hf02組成之族中選出的至少一材料。 φ 9. 如請求項1之記憶單元,其中該絕緣層包含氧化矽。 10.如請求項1之記憶單元,其中該隧道介電結構具有一 可忽略的陷獲效率。 11· 一種記憶體陣列,其包含複數個如請求項1之記憶單 元。 12. —種記憶單元,其包含: 一半導體基體,其具有設置於該基體之一表面下且 由一通道區分離的一源極區及一没極區; • 一隧道介電結構,其係設置於該通道區上,該隧道 介電結構包含至少一中間層及在該中間層之相對側上 的二相鄰層,其中該二相鄰層包含一第一材料且該中間 層包含一第二材料,其中該第二材料之價能帶位準大於 該第一材料之價能帶位準,且該第二材料之傳導能帶位 準小於該第一材料的傳導能帶位準;且其中該第二材料 係依一梯度濃度出現在該中間層中,使得該第二材料在 該中間層中之濃度係從一相鄰層/中間層介面增加到在 681939-27U4 47F1298494 X. Patent Application Range: — 1. A memory unit comprising: a semiconductor substrate having a source region and a drain region disposed under a surface of the substrate and separated by a channel region; a dielectric structure disposed on the channel region, the tunnel-dielectric structure comprising at least one intermediate layer and two adjacent layers on opposite sides of the intermediate layer, wherein the intermediate layer and two adjacent layers are respectively The first material and the second material are included, wherein the second material has a valence band level greater than the φ first material valence band level, and the second material has a conduction band level less than the first a conduction energy band level of the material; and wherein the concentration of the second material is higher in the intermediate layer than in the two adjacent layers, and the concentration of the first material is higher in the two adjacent layers In the intermediate layer, the tunneling barrier height of the two adjacent layers is higher than the intermediate layer; a charge storage layer is disposed on the tunnel dielectric structure; and an insulating layer is disposed on the On the charge storage layer; and a gate electrode, Disposed on the insulating layer. # 2. The memory unit of claim 1, wherein the second material is present in the intermediate layer according to a gradient concentration such that the concentration of the second material in the intermediate layer increases from an adjacent layer/intermediate layer interface The maximum concentration at a deep point in the intermediate layer, and from the maximum concentration depth point to a lower concentration at the other adjacent layer/intermediate layer interface. 3. The memory unit of claim 1, wherein the first material comprises oxygen or an oxygenate. 4. The memory unit of claim 1, wherein the second material comprises nitrogen or a 681939-27U4 46 1298494 gas-containing compound. 5. The memory unit of claim 1, wherein the first material comprises cerium oxide. 6. The memory unit of claim 1, wherein the second material comprises tantalum nitride or hafnium oxynitride. 7. The memory unit of claim 1, wherein the first material comprises ruthenium oxide, and wherein the second material comprises tantalum nitride or ruthenium oxynitride. * 8. The memory unit of claim 1, wherein the charge storage layer comprises at least one material selected from the group consisting of tantalum nitride, Al2〇3, and Hf02. φ 9. The memory unit of claim 1, wherein the insulating layer comprises yttrium oxide. 10. The memory unit of claim 1, wherein the tunnel dielectric structure has a negligible trapping efficiency. 11. A memory array comprising a plurality of memory cells, such as claim 1. 12. A memory unit comprising: a semiconductor substrate having a source region and a non-polar region disposed under a surface of the substrate and separated by a channel region; • a tunnel dielectric structure Provided on the channel region, the tunnel dielectric structure includes at least one intermediate layer and two adjacent layers on opposite sides of the intermediate layer, wherein the two adjacent layers comprise a first material and the intermediate layer comprises a first The second material, wherein the second material has a valence band level greater than a valence band level of the first material, and the second material has a conduction band level that is less than a conduction band level of the first material; Wherein the second material is present in the intermediate layer according to a gradient concentration such that the concentration of the second material in the intermediate layer increases from an adjacent layer/intermediate layer interface to 681939-27 U4 47 1298494 該中間層内一深點處之最大濃度,且從該最大濃度深點 降低到在該另一相鄰層/中間層介面處之較低濃度,使該 二相鄰層之電洞穿隧阻障高度係高於该中間層; 一電荷儲存層,其係設置於該隧道介電結構上; 一絕緣層,其係設置於該電荷儲存層上;及 一閘極電極,其係設置於該絕緣層上。1298494 The maximum concentration at a deep point in the intermediate layer, and decreasing from the deep point of the maximum concentration to a lower concentration at the interface of the other adjacent layer/intermediate layer, so that the holes of the two adjacent layers penetrate the tunnel a barrier height is higher than the intermediate layer; a charge storage layer disposed on the tunnel dielectric structure; an insulating layer disposed on the charge storage layer; and a gate electrode disposed on the On the insulation layer. • 明來項12之記憶單元,其中該隧道介電結構 等層的至少二層具有至多達約4奈米的厚度。 =明求項12之記憶單元,其中該隧道介電結構包含一 15 切層一在該第—氧化㈣上之第-氮化石夕 二心 在該第一氮化矽層上之第二氧化矽層。 氮“含從由 16 如請求項2〇 成之族中選出的至少一材料。 項12之記憶單元,其中該絕後 17·如請求们2之記憶單元^ 可忽略的陷獲效率。“中趣道介電結構具有- -:種記憶體陣列’其包含複數個如請求項Η之記憶單 .了,項18之記憶體陣列,其中該 至少二記橋留-v么μ丄 數個記憶早元中 L早7C係猎由一淺溝渠隔離 隔離中至小 離及—絕緣物上石夕 芝夕其一彼此分離。 20.如請求項18之記憶體陣 少二條字彳& s , ttt Y飞屺憶體陣列包含至 ^ , 兀線、至少二條位元線及至小 21·如請求項〗 夕〜條源極線。 ’ 18之記憶體陣列,其中該咋k /、己憶體陣列包含至 681939-27U4 48 1298494 kl?…丄14 則j ·、'•….................... · .V.. ... I,,..·..· j 少一位元線選擇電晶體,其係耦合至一對應位元線。 22. 如請求項18之記憶體陣列,其中該記憶體陣列包含至 少一源極線選擇電晶體,其係耦合至一對應源極線。 23. 如請求項18之記憶體陣列,其中該基體包含至少一對 用於該記憶單元之淺接面。 24. —種形成一記憶單元之方法,其包含: * 提供一半導體基體,其具有設置於該基體之一表面 下且由一通道區分離的一源極區及一没極區; § 在該通道區上形成一隧道介電結構,其中形成該隧 道介電結構包括形成至少二介電層,其中該至少二介電 層其一層之電洞穿隧阻障高度係高於該至少二介電層 之另一層; 在該随道介電結構上形成一電荷儲存層; 在該電荷儲存層上形成一絕緣層;及 在該絕緣層上形成一閘極電極。 25. 如請求項24之方法,其中形成該隧道介電結構包含形 • 成一第一氧化砍層、一第一氮化砍層及一第二氧化碎 層。 26. 如請求項25之方法,其中該第一氧化矽層、該第一氮 化矽層及該第二氧化矽層各具有約1至約3奈米的厚 度。 27. 如請求項24之方法,其中形成該隧道介電結構包含形 成一氧化層及該氧化層之一頂表面的氮化作用。 28. 如請求項24之方法,其中形成該隧道介電結構包含沉 681939-27U4 49 1298494 積氧化矽及氮化矽,使得氮化矽出現在該至少二介電 層其一層中的濃度係高於出現在該至少二介電層之另 一層中。• The memory unit of item 12, wherein at least two of the layers of the tunnel dielectric structure have a thickness of up to about 4 nanometers. = The memory unit of claim 12, wherein the tunnel dielectric structure comprises a 15 slice layer, a second yttrium oxide on the first lanthanum layer on the first zirconia layer on the first oxidized (four) Floor. Nitrogen "contains at least one material selected from the group consisting of 16 as claimed in claim 2. The memory unit of item 12, wherein the memory 17 is as negligible as the memory unit of requester 2." The channel dielectric structure has - -: a memory array 'which contains a plurality of memory sheets such as a request item. The memory array of item 18, wherein the at least two bridges leave -v? Yuanzhong L early 7C hunting is separated from a shallow ditch to isolate the middle to small separation - the insulation on the Shi Xizhi Xi Yiyi separated from each other. 20. The memory array of claim 18 has two words 彳 & s , ttt Y 屺 屺 体 array contains to ^ , 兀 line, at least two bit lines and to small 21 · as requested item eve ~ strip source line. '18 memory array, where the 咋k /, the memory array contains to 681939-27U4 48 1298494 kl?...丄14 then j ·, '•................. ...... · .V.. ... I,,..·..· j One less element selects the transistor, which is coupled to a corresponding bit line. 22. The memory array of claim 18, wherein the memory array comprises at least one source line select transistor coupled to a corresponding source line. 23. The memory array of claim 18, wherein the substrate comprises at least one pair of shallow junctions for the memory unit. 24. A method of forming a memory cell, comprising: * providing a semiconductor substrate having a source region and a non-polar region disposed under a surface of the substrate and separated by a channel region; Forming a tunnel dielectric structure on the channel region, wherein forming the tunnel dielectric structure includes forming at least two dielectric layers, wherein the at least two dielectric layers have a hole tunneling barrier height higher than the at least two dielectric layers Another layer; forming a charge storage layer on the associated dielectric structure; forming an insulating layer on the charge storage layer; and forming a gate electrode on the insulating layer. 25. The method of claim 24, wherein forming the tunnel dielectric structure comprises forming a first oxidized chopped layer, a first nitrided chopped layer, and a second oxidized chopped layer. 26. The method of claim 25, wherein the first ruthenium oxide layer, the first ruthenium ruthenium layer, and the second ruthenium oxide layer each have a thickness of from about 1 to about 3 nanometers. 27. The method of claim 24, wherein forming the tunnel dielectric structure comprises nitriding forming an oxide layer and a top surface of the oxide layer. 28. The method of claim 24, wherein forming the tunnel dielectric structure comprises sinking 681939-27U4 49 1298494 yttrium oxide and tantalum nitride such that tantalum nitride is present in the at least two dielectric layers in a layer having a high concentration Appearing in another layer of the at least two dielectric layers. 681939-27U4 50681939-27U4 50
TW95100249A 2005-01-03 2006-01-03 Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays TWI298494B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64022905P 2005-01-03 2005-01-03
US68931405P 2005-06-10 2005-06-10

Publications (2)

Publication Number Publication Date
TW200636728A TW200636728A (en) 2006-10-16
TWI298494B true TWI298494B (en) 2008-07-01

Family

ID=45069409

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95100249A TWI298494B (en) 2005-01-03 2006-01-03 Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays

Country Status (1)

Country Link
TW (1) TWI298494B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781825B2 (en) 2007-10-18 2010-08-24 Macronix International Co., Ltd. Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
TW200636728A (en) 2006-10-16

Similar Documents

Publication Publication Date Title
TWI297154B (en) Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays
TWI306669B (en) Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays
TWI274348B (en) Storage element, storage apparatus, and method for programming storage element
JP5376414B2 (en) Memory array operation method
TWI247309B (en) Program/erase method for p-channel charge trapping memory device
TWI338302B (en) Method of read, programming and erasing a p-channel be-sonos nand flash memory
US7688626B2 (en) Depletion mode bandgap engineered memory
US7642585B2 (en) Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays
US20060281260A1 (en) Methods of operating p-channel non-volatile memory devices
JP4907173B2 (en) Nonvolatile memory cell, memory array having the same, and cell and array operating method
TW200926184A (en) Operation methods for memory cell and array thereof immune to punchthrough leakage
JP2012004304A (en) Nonvolatile semiconductor memory device
EP2137735B1 (en) A memory cell, a memory array and a method of programming a memory cell
TWI244165B (en) Single bit nonvolatile memory cell and methods for programming and erasing thereof
TWI298494B (en) Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays
JP5068053B2 (en) Nonvolatile semiconductor memory device and operation method thereof
TWI400790B (en) Silicon on insulator and thin film transistor bandgap engineered split gate memory
TWI309875B (en) Non-voltaile memory cells, memory arrays including the same and methods of operating cells and arrays
JP2011139081A (en) Nonvolatile memory cell, memory array having the same, and method of operating the cell and the array