TWI298104B - Miniature surface plasmon resonance waveguide device with sinusoidal curvature compensation - Google Patents

Miniature surface plasmon resonance waveguide device with sinusoidal curvature compensation Download PDF

Info

Publication number
TWI298104B
TWI298104B TW93122283A TW93122283A TWI298104B TW I298104 B TWI298104 B TW I298104B TW 93122283 A TW93122283 A TW 93122283A TW 93122283 A TW93122283 A TW 93122283A TW I298104 B TWI298104 B TW I298104B
Authority
TW
Taiwan
Prior art keywords
optical waveguide
light
sinusoidal
plasma resonant
compensation
Prior art date
Application number
TW93122283A
Other languages
Chinese (zh)
Other versions
TW200604608A (en
Inventor
Chii Wann Lin
Cheng Lung Lee
Way Seen Wang
Chih Kung Lee
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW93122283A priority Critical patent/TWI298104B/en
Publication of TW200604608A publication Critical patent/TW200604608A/en
Application granted granted Critical
Publication of TWI298104B publication Critical patent/TWI298104B/en

Links

Description

1298104 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種光波導表面電漿共振感測元件,且 特別是具有正弦波彎曲補償功能之微型化光波導表面電聚 共振感測元件,可應用於蛋白質分子之生醫_、、則。 【先前技術】 Λ 生物晶片在許多國家的學術界、政府及私人機構正值 蓬勃發展。在去氧核糖核酸(DNA)晶片士 y曰曰5方面,如DNA結 合分析、序列測定與定量分析、毛細管雷、、 △ ^ 冰分離檢測、核 酸擴增、並行基因表達分析等技術已趨忐^ ^ t / ^ 崎成熱。相伴之還衍 生出一系列其它分析方法,如細胞分離 t A 雕細胞免疫分析及 與組合化學結合為新藥研究的初篩提供高通量篩選。在材 料上除了用矽作晶片加工外,已有開始里師^ .^ ^ + ^ ^ Ί始知用塑料成膜技術 和弹性體來加工製作生物晶片。 生物感測器(biosensor)最獨特的是結合生物元件做 =應構造的-㈣’並連減能H來㈣制生物反應 的功能;又因為配合微機電製程,故稱之為生醫晶片。在 相^的晶片發展技術中,檢測的方法一般以光學方式具有 敏度’其中螢光方法雖獲得大量的應用,:旦:面 龟水子共振(surface plasmon resonance,SPR)因具有不1298104 IX. Description of the Invention: [Technical Field] The present invention relates to an optical waveguide surface resonance sensing element, and in particular to a miniaturized optical waveguide surface electro-convergence sensing element having a sinusoidal bending compensation function It can be applied to the biomedical _, and then. [Prior Art] Λ Biochips are booming in academia, government, and private organizations in many countries. In the field of DNA (DNA) wafers, such as DNA binding analysis, sequencing and quantitative analysis, capillary thunder, △ ^ ice separation detection, nucleic acid amplification, parallel gene expression analysis and other technologies have become more and more ^ ^ t / ^ Saki is hot. Along with this, a series of other analytical methods, such as cell separation, t A cell immunoassay, and combinatorial chemistry, provide high-throughput screening for screening of new drug research. In addition to the use of tantalum for wafer processing, materials have begun to be used to process biofilms using plastic film forming techniques and elastomers. ^^^^^^^ The most unique biosensor is the combination of biological components = should be constructed - (four) 'and even reduce energy H to (four) the biological reaction function; and because of the MEMS process, it is called biomedical wafer. In the wafer development technology, the detection method generally has optical sensitivity. The fluorescent method has a large number of applications, and the surface plasmon resonance (SPR) has

^ =示與即時量測的特性,成為重要的研究工具。表面電 漿共振生物感測器是利用SPR之光學原理做為換能器的二 ^物感測器。當環境中介質因組成、濃度或成份改變時 ^致折射係數的變化,會藉由穿透的光動能反應到SPR 1298104 共振角的變化上。表面電漿共振出現在金屬與非導電介質 (dielectric material)之交界面處,須藉由偶合器和偏極化 電磁波(TM-wave)激發,在垂直介面間的電場穿透深度 和橫向傳播長度皆呈指數衰減。當晶片各感應區經過不同 的活化處理、固定上不同的抗原(體)後,就可以與其相 對的抗體(原)結合。理論上只有能成功鍵結之分析物才 會影響反射光強度變化,而且超過表面電漿波範圍的物質 不會影響測量結果,故此方法的鑑別度很高。 由文獻中可知,目前在SPR光波導感測器的製造技 術,主要為直線形的光波導SPR感測器。直線形的光波導 感測器製造方式,首先以光學鏡片毛胚(BK7)為基材, 再利用半導體製程中的光蝕刻法及鍍膜方法,在基材上做 出具波導圖樣之金屬膜,最後利用高溫離子交換法將離子 佈植入基材中,使基材的折射率發生改變,製造出光波導。 為了使波導能產生SPR現象,在波導上,必需再使用半導 體製程製造一金屬層及用來調整感測範圍的介電層,做為 SPR感測區域。另一種方式為光纖式,主要的方式是將光 纖脫去其彼覆層後,再加以鍍金屬,當成SPR感測器。 另外,SPR光波導感測器的主要量測的技術有二種, 一種是利用強度變化來量測,另一種是利用波長變化的量 測。強度變化量測方法為比較常見的方式,也是在光波導 式SPR感測器中,最早出現的量測方式,此乃因為波導的 損失大,所以光源的部分需要強度較強的雷射,而雷射的 波長通常只為單一波長,故只能採用強度的量測方式。在 1298104 波長變化的量測為比較近期的量測,此乃因為光纖技術的 進步,使光損耗降低,所以光源的強度可以不需要很高就 可以進行量測。波長變化量測比強度變化量測好的地方, 在於不需侷限於某一共振波長,所以分析物的折射率範圍 可以很大,不會受到雷射光波長窄的限制。在光波導的彎 曲的技術上,目前已知在彎曲時,會造成光的損失,所以 其彎曲之曲率半徑必需要大於最小的曲率半徑,最小的曲 率半徑則由其折射率差來決定,二者之間的關係,具必需 由實際的實驗得知。 習知技術之表面電漿共振子感測元件多以載玻片為基 材,其使用大多為平面設計,需配合相關儀器進行量測較 不方便可攜式之現地應用。而波導方式之設計大多以直進 直出之方式完成,未能提供較小尺寸的最佳設計,亦未能 提供較容易之系統介面。 【發明内容】 有鑑於此,本發明的目的就是提供一種具正弦彎曲補 償之微型化表面電漿共振光波導元件,擬以弦波補償之最 佳彎曲設計減低光波能量於波導中之耗損,並可使輸出與 輸入位於同一侧,再配合表面金屬薄膜之鍍著以產生表面 電漿共振之特性波長吸收。 本發明提出一種具正弦彎曲補償之微型化表面電漿 共振光波導元件,至少包含:一基部、一光波導結構、一 感測膜層與一彼覆層,其中光波導結構具有弦波彎曲補償 1298104 之功能,設置於該基部上方,且具有一光輸入部與光輸出 部;感測膜則設置於該光波導結構上方之特定區域’此區 域為一感測區域;而披覆層則設置於上述元件上方,且於 感測區域處具有一開口。 本發明更包含一光源產生器與一光譜器,該光源產生 器可提供進入光輸入部之光訊號:而光譜器可接收自光輸 出部導出之光訊號。藉由具有弦波彎曲補償之功能之光波 導結構’光自光波導結構之光輸入部導入,以具有弦波幫 曲補償之光路徑行走,經過感測區域後,自光波導結構之 光輸出部導出。 本發明之光波導結構係為具有兩個弦波彎曲補償形狀 之γ類似型結構,搭配設置於γ類似型結構之一端之鏡面 元件,可使光自光波導結構之光輸入部導入後,以具有弦 波彎曲補償之光路徑行走,經過感測區域後,透過鏡面元 件之作用,再從自光波導結構之光輸出部導出。 本發明之另一光波導結構係為具有三個弦波彎曲補償 形狀之結構。當光自光波導結構之光輸入部導入,以具有 弦波彎曲補償之光路徑行走,經過感測區域後,自光波導 結構之光輸出部導出。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉較佳實施例,並配合所附圖式詳細說明 如下: 【實施方式】 1298104 [表面電漿量測原理] 一· 表面電漿理論 金屬是導體,内部充滿自由電子(〜1〇-28/πΓ3),當這 些電子受到適當外加變化電場作用會產生集體振動 (surface plasmon oscillations),並沿表面(金屬與某 種介電質之介面)以波的形式傳播,此即為表面電漿波 (surface plasma wave,SPW,同 SEW)。此現象最早由 20 世紀初R· W· Wood研究金屬表面之繞射現象所發現。 上述外加變化電場必須包含p—偏極化光(也就是, 波,電場振動方向平行於入射平面),而且以大於臨界角的 角度射入稜鏡(偶合器),此時有全反射現象,但並非所有 的月匕里皆被反射,因為在垂直介面的方向有漸逝場存在 (evanescent field),強度成指數衰減。此漸逝場能引發 一些表面電雙極,當光波的入射角等於表面電漿波的共振 角時,這些表面電雙極將隨入射光的電場變化而共振,以 面電荷密度變化的方式在介面上傳遞,因此電場分布在介 面上最強。這就是表面電漿子共振(SPR)現象。同時還會 發現反射光強度犬然降低的情形,此即衰逝全反射 (attenuation total ref lection,ATR)〇 SEW也是漸逝波(evanescent wave),電場極大值在 界面上,隨離開界面的距離呈指數遞減分布。表面電裝波 的電場呈不對稱分布,在金屬層中的電場衰減程度快,而 在介電質層中的電場衰減程度慢,此特性使表面電漿波對 1298104 鄰近金屬層之介電質層的光學特性變化相當敏感。另外, 表面電漿波可能以光輻射的形式消散(與金屬厚度、表面 粗糙度有關),也可能變成材料中的熱而被吸收(與金屬介 電常數值的虛數項有關)。 二.表面電敷波共振之偶合條件 配合麥克斯韋方程式(Maxwell’s equation)以及邊界 條件,欲使外加電場能激發SPR,也就是入射光的橫向波 向里能與SPR波向量左印產生偶合關係,則光線的入射角 度與介面間介電常數需滿足偶合條件(matching condition,如下面所列公式):^ = characteristics of display and instant measurement have become important research tools. The surface-plasma resonance biosensor is a sensor that uses the optical principle of SPR as a transducer. When the medium changes in composition, concentration or composition in the environment, the change in refractive index will be reflected by the kinetic energy of the penetrating light to the change of the resonance angle of SPR 1298104. Surface plasma resonance occurs at the interface between the metal and the dielectric material, and must be excited by a coupler and a polarized electromagnetic wave (TM-wave) to penetrate the depth and lateral propagation length between the vertical interfaces. Both are exponentially decaying. When the sensing regions of the wafer are subjected to different activation treatments and different antigens are immobilized, they can be bound to their opposite antibodies (original). In theory, only analytes that can be successfully bonded will affect the intensity of the reflected light, and substances that exceed the surface plasma wave range will not affect the measurement results, so the method has a high degree of discrimination. It is known from the literature that the current manufacturing technology of SPR optical waveguide sensors is mainly a linear optical waveguide SPR sensor. The linear optical waveguide sensor is manufactured by first using an optical lens blank (BK7) as a substrate, and then using a photolithography method and a coating method in a semiconductor process to form a metal film having a waveguide pattern on a substrate, and finally The ion waveguide is implanted into the substrate by a high-temperature ion exchange method to change the refractive index of the substrate to produce an optical waveguide. In order to enable the waveguide to generate the SPR phenomenon, it is necessary to use a semi-conducting process to fabricate a metal layer and a dielectric layer for adjusting the sensing range on the waveguide as the SPR sensing region. The other way is fiber-optic. The main way is to remove the fiber from the other layer and then metallize it into an SPR sensor. In addition, there are two main techniques for measuring SPR optical waveguide sensors, one is to measure the intensity variation, and the other is to use the wavelength variation measurement. The intensity variation measurement method is a relatively common method, and it is also the earliest measurement method in the optical waveguide type SPR sensor. This is because the loss of the waveguide is large, so the part of the light source needs a strong intensity laser, and The wavelength of the laser is usually only a single wavelength, so only the intensity measurement method can be used. In 1298104, the measurement of the wavelength change is a relatively recent measurement. This is because the advancement of the optical fiber technology reduces the optical loss, so the intensity of the light source can be measured without being high. The change in the wavelength change measurement intensity is not limited to a certain resonance wavelength, so the refractive index range of the analyte can be large and is not limited by the narrow wavelength of the laser light. In the technique of bending the optical waveguide, it is known that when bending, the loss of light is caused, so the radius of curvature of the bending must be greater than the minimum radius of curvature, and the minimum radius of curvature is determined by the refractive index difference. The relationship between the two must be known by actual experiments. The surface-plasma resonator sensing elements of the prior art are mostly based on slides, and their use is mostly a flat design, and it is inconvenient to carry out the field-use application with the relevant instruments. The design of the waveguide mode is mostly done in a straight-forward manner, failing to provide the best design for a smaller size, and failing to provide an easier system interface. SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a miniaturized surface-plasma resonant optical waveguide component with sinusoidal bending compensation, which is intended to reduce the loss of optical energy in the waveguide by the optimal bending design of the sine wave compensation, and The output can be placed on the same side as the input, and then coated with a surface metal film to produce a characteristic wavelength absorption of surface plasma resonance. The invention provides a miniaturized surface plasma resonant optical waveguide component with sinusoidal bending compensation, comprising at least a base, an optical waveguide structure, a sensing film layer and a coating layer, wherein the optical waveguide structure has sine wave bending compensation The function of 1298104 is disposed above the base and has a light input portion and a light output portion; the sensing film is disposed in a specific region above the optical waveguide structure; the region is a sensing region; and the cladding layer is disposed Above the above elements, and having an opening at the sensing area. The invention further includes a light source generator and a spectrometer that provides an optical signal that enters the optical input: the spectrometer receives the optical signal that is derived from the optical output. The optical waveguide structure with the function of sine wave bending compensation is introduced from the light input portion of the optical waveguide structure, and travels with a light path with sine wave compensation, and after passing through the sensing region, the light output from the optical waveguide structure Export. The optical waveguide structure of the present invention is a γ-like structure having two sine wave bending compensation shapes, and is matched with a mirror element disposed at one end of the γ-like structure, so that light can be introduced from the light input portion of the optical waveguide structure to The light path with the sinusoidal bending compensation travels, passes through the sensing region, and is then transmitted from the light output portion of the self-lightguide structure through the action of the mirror element. Another optical waveguide structure of the present invention is a structure having three sine wave bending compensation shapes. When light is introduced from the light input portion of the optical waveguide structure, it travels with a light path having sine wave bending compensation, passes through the sensing region, and is derived from the light output portion of the optical waveguide structure. The above and other objects, features and advantages of the present invention will become more apparent and understood. 1. Surface Electrochemical The metal is a conductor filled with free electrons (~1〇-28/πΓ3). When these electrons are subjected to an appropriate applied electric field, they will generate surface plasmon oscillations along the surface (metal and A certain dielectric interface) propagates in the form of waves, which is the surface plasma wave (SPW, same as SEW). This phenomenon was first discovered by the diffraction phenomenon of metal surfaces studied by R. W. Wood in the early 20th century. The above-mentioned applied varying electric field must contain p-polarized light (that is, the wave, the direction of the electric field vibration is parallel to the plane of incidence), and is injected into the 稜鏡 (coupling) at an angle greater than the critical angle, and there is a total reflection phenomenon. But not all of the moons are reflected because there is an evanescent field in the direction of the vertical interface, and the intensity decays exponentially. This evanescent field can induce some surface electric bipolar. When the incident angle of the light wave is equal to the resonance angle of the surface plasma wave, the surface electric bipolar will resonate with the electric field of the incident light, and the surface charge density changes. The interface is transmitted, so the electric field distribution is the strongest at the interface. This is the surface plasmon resonance (SPR) phenomenon. At the same time, the intensity of the reflected light is reduced, and the attenuation total ref lection (ATR) 〇 SEW is also an evanescent wave. The maximum value of the electric field is at the interface, and the distance from the interface. It is exponentially decreasing. The electric field of the surface electric wave is asymmetrically distributed, the electric field attenuation in the metal layer is fast, and the electric field attenuation in the dielectric layer is slow. This characteristic makes the surface plasma wave to the dielectric of the adjacent metal layer of 1298104. The optical properties of the layer vary considerably. In addition, surface plasma waves may dissipate in the form of optical radiation (related to metal thickness, surface roughness) or may be absorbed as heat in the material (related to the imaginary term of the dielectric constant value of the metal). 2. The coupling condition of surface electric wave resonance combined with Maxwell's equation and boundary conditions, the external electric field can be used to excite SPR, that is, the transverse wave inward direction of the incident light can be coupled with the left edge of the SPR wave vector. The dielectric constant between the angle of incidence and the interface must satisfy the matching condition (as listed below):

Coupling condition matching ks 卜⑽ (其中·· c是光速,ω是光的角頻率,ερ、ειη、匕分別代表稜 鏡、金屬膜、檢測介面之介電常數值,0是光的入射角度) 意即在匕=^條件下,可激發SPW的產生。而匕由入射= 長及入射角求出,最後就可以得到待測物的介電系數的變 化0 上式的偶合條件,於光波導偶合情況下,無法得到在 内部傳播的光的入射角,但是盔可以由波導的色散關 來得到。 ”八 此現象热法直接由光打在金屬膜表面產生,必須在夢 由適當之光偶合器激發,以加強沿著界面傳播的波向量大 1298104 小。耦合入射光的方式通常有稜鏡、光栅及光波導三種。 其中較常用的是稜鏡耦合方式,因為元件製作簡單、架設 安裝容易。光波導的偶合也被大量的研究,因為其可積體 化,可使樣品微量化,感測器微小化等優點。 三.表面電漿波共振之性質與公式整理 由電磁理論整理SEW的特性: (1) 存在於金屬/介電質介面:司= < + /<,6 6 (2) 介面特性·· <«,<<〇,|<|>6 (3) 強度分布:縱向指數衰減exp(-|kzi||z|),橫向指數衰減 exp[-2Im(kx)x] (4) 縱向傳播深度:縱向z= l/|kzi卜也就是在medium (介 電常數 & )中 ζ2 = λ/2π* ^{ε[Λ·ε2)ΐε22),在 metal 中 ζ!= λ/2π* ^](ε[ + ε2)/ε[2)Coupling condition matching ks 卜 (10) (where c is the speed of light, ω is the angular frequency of light, ερ, ειη, 匕 represent the dielectric constant of 稜鏡, metal film, and detection interface, and 0 is the incident angle of light) That is, under the condition of 匕=^, the generation of SPW can be excited. The 匕 is determined by the incident = length and the incident angle, and finally the change of the dielectric constant of the object to be tested is obtained. The coupling condition of the above formula is obtained, and in the case of the optical waveguide coupling, the incident angle of the light propagating inside is not obtained. But the helmet can be obtained by the dispersion of the waveguide. "This phenomenon is directly generated by light on the surface of the metal film. It must be excited by a suitable optical coupler to enhance the wave vector propagating along the interface by 1298104. The way of coupling incident light is usually flawed. There are three kinds of gratings and optical waveguides. Among them, the 稜鏡 coupling method is more common, because the components are simple to fabricate and easy to set up and install. The coupling of optical waveguides has also been studied a lot, because it can be integrated to make samples trace and sense. Advantages of miniaturization, etc. III. Properties and Formulation of Surface Plasma Wave Resonance The characteristics of SEW are organized by electromagnetic theory: (1) Exist in metal/dielectric interface: Division = < + /<,6 6 ( 2) Interface characteristics ·· <«,<<〇,|<|>6 (3) Intensity distribution: longitudinal exponential decay exp(-|kzi||z|), lateral exponential decay exp[-2Im (kx)x] (4) Longitudinal propagation depth: longitudinal z= l/|kzi b is also in medium (dielectric constant & ) ζ2 = λ/2π* ^{ε[Λ·ε2)ΐε22), in Metal ζ!= λ/2π* ^](ε[ + ε2)/ε[2)

^ 丫3V (5) 橫向傳播長度:Lx= l/|2Im(kx)|= gr (6) 需要用光偶合器(光柵激發,稜鏡激發,或光波導激 發) [光波導之傳光原理] 對於光波導的原理分析,大致上有兩種方法:一種是 幾何光學方法;另一種是波動光學方法。當光波波長λ遠 小於光波導的橫向尺寸時,可以近似地認為λ—0,因此可 忽略光的波動性的繞射現象,獲得發散角為零的光錐-光射 線。因此,這種方法又稱為光射線方法。光射線可以表示 12 1298104 光的傳播方向和速度,但不能考慮光的相位和偏振。主要 特點包括1)光線的入射角,只要能使光線在光波導内形成 全反射,即可保證光在光波導中傳輸,而且其入射角可以 在一定範圍内連續地變化。2)光波被完全限制在蕊區内, 蕊區以外的光場完全地被忽略,這與;1—0的前提是一致 的。嚴格地說,光在光波導中的傳輸應該採用電磁場的方 法(即波動光學方法)求解。根據光波導中的場方程和邊界 條件,求解出光波導中存在的電磁場形式。這種方法能提 供比較嚴密的解,但求解程序比較複雜,而且作多種近似, 因此不如幾何方法那樣簡單。 λ •均勻光波導中的光折射分析:所謂均勻光波導是指光 波導的蕊心及包層折射率的分佈是均勻的,是一個不隨半 徑的改變而變化的常數。如纖蕊的折射率nl,包層的=射 率為n2。為了保護光波導中的光能在光波導内形成全 射,須 nl>n2。 1 在光波$中傳導的兩種光射線,依入射面之定義可八 為子午光線和旋進光線:光傳導的平面為子午面。子午= 上和轴線相交的光線稱為子午光(線)。只要光線滿足全^ 射條件,就會在子午面内纖蕊與包層的交界面處來回1 射。光線被約束在纖蕊内曲折前進,並且每次反射都會與 軸線相交。旋進光是指入射光線不與軸線相交的光線γ ^ 種光線在光波導内的反射永遠不與軸線相交,而是以螺= 狀折線前進,其執跡在光波導截面上的投影形成—個(不^ 13 1298104 定封閉)多邊形。 3)均勻光波導的主要特性參數 L相對折射率差:光波導纖蕊的折射率nl和包層的折射率 n2間的差值,決定了臨界角的大小。差值愈大,根據公式 c "1 ’則Ba界角愈小’愈容易實現完全内反射。但 这個差值不能太大。差值愈大,臨界角愈小,級導中能 傳播的模態就愈多’愈容易引起模態波散。所以折射率差 別並不是愈大愈好。為了表示它們的相差程式,通常引入 2 _ 2 相對折射率差△這樣一個物理量,即。通 常’單模光波導的相對折射率差的△与讀3,而多模光波 導的相對折射率差的值A 。 II·數值孔徑(ΝΑ):數值孔捏(ΝΑ),是衡量一光波導當從光 從其端面入射時,它能接受光能大小的一個重要參數。換 句話說,數值孔徑是反映光波導捕捉光線能力大小的一種 重要參數。光波導内的光波導分為子午光和旋進光。通常 用子午光線定義數值孔徑。從空氣中射向光波導端面的光 並不是所有的光線都能在光波導中滿足全反射條件而傳 播,只有位於入射光線與光波導軸線夾角為的圓錐體 之内的光線,才能在光波導内滿足全反射條件而形成傳導 模態。位於這個錐纖之外的光波導雖然也能進入光波導, 但由於不滿足全反射條件,只能折射到光波導包層而形成 輻射模態。臨界角0c為角的正弦值sin0a,稱為光波 1298104 導的數值孔徑。 = 。一個國際通訊標準機構 (International Telecommunication Union,ITU)的主要 組織國際電報電話諮詢委員會(International Telegraph and^ 丫3V (5) Transverse propagation length: Lx= l/|2Im(kx)|= gr (6) Optical coupler (grating excitation, chirp excitation, or optical waveguide excitation) is required [The principle of optical waveguide transmission] For the principle analysis of optical waveguides, there are roughly two methods: one is geometric optical method; the other is wave optical method. When the wavelength λ of the light wave is much smaller than the lateral dimension of the optical waveguide, λ - 0 can be approximated, so that the diffraction phenomenon of the volatility of the light can be neglected, and the light cone-light ray having a divergence angle of zero can be obtained. Therefore, this method is also called the light ray method. Light rays can represent the direction and speed of light propagation of 12 1298104, but cannot account for the phase and polarization of light. The main features include 1) the angle of incidence of the light, as long as the light can be totally reflected in the optical waveguide, the light can be transmitted in the optical waveguide, and the incident angle can be continuously changed within a certain range. 2) The light wave is completely confined in the core region, and the light field outside the core region is completely ignored, which is consistent with the premise of 0-1. Strictly speaking, the transmission of light in an optical waveguide should be solved using an electromagnetic field method (ie, a wave optics method). According to the field equation and the boundary condition in the optical waveguide, the electromagnetic field form existing in the optical waveguide is solved. This method can provide a more rigorous solution, but the solver is more complicated and makes multiple approximations, so it is not as simple as the geometry method. λ • Light refraction analysis in a uniform optical waveguide: The so-called uniform optical waveguide means that the distribution of the core and the cladding refractive index of the optical waveguide is uniform and is a constant that does not change with the change of the radius. For example, the refractive index nl of the core, the = radiance of the cladding is n2. In order to protect the light energy in the optical waveguide from forming an integral in the optical waveguide, nl > n2 is required. 1 The two kinds of light rays transmitted in the light wave $ can be defined as the meridional light and the swirling light according to the definition of the incident surface: the plane of the light conduction is the meridional plane. Meridian = The light that intersects the axis and the axis is called the meridian light (line). As long as the light satisfies the full-radiation condition, it will shoot back and forth at the interface between the core and the cladding in the meridional plane. The light is constrained to meander in the core and each reflection intersects the axis. The precession light refers to the ray of the incident light that does not intersect the axis. The reflection of the ray in the optical waveguide never intersects the axis, but advances with a spiral-shaped fold line, and the projection of the trace on the cross-section of the optical waveguide is formed— (not ^ 13 1298104 fixed closed) polygon. 3) Main characteristic parameters of the uniform optical waveguide L Relative refractive index difference: The difference between the refractive index nl of the optical waveguide core and the refractive index n2 of the cladding determines the critical angle. The larger the difference, the smaller the Ba boundary is according to the formula c "1 ', and the easier it is to achieve complete internal reflection. But this difference can't be too big. The larger the difference, the smaller the critical angle, and the more modes that can propagate in the level guide. The more likely it is to cause modal dispersion. Therefore, the difference in refractive index is not as large as possible. In order to express their phase difference equations, a physical quantity of 2 _ 2 relative refractive index difference Δ is usually introduced, that is, . The value Δ of the relative refractive index difference between the relative refractive index difference of the single-mode optical waveguide and the reading 3, and the relative refractive index difference of the multimode optical waveguide. II. Numerical aperture (ΝΑ): The numerical aperture pinch (ΝΑ) is an important parameter for measuring the size of an optical waveguide when it is incident from light from its end face. In other words, the numerical aperture is an important parameter that reflects the ability of the optical waveguide to capture light. The optical waveguide in the optical waveguide is divided into meridional light and spiral light. The numerical aperture is usually defined by the meridional ray. Light from the air that is directed toward the end face of the optical waveguide does not propagate all of the light in the optical waveguide to satisfy the total reflection condition. Only the light inside the cone at the angle between the incident light and the axis of the optical waveguide can be in the optical waveguide. The conduction mode is formed by satisfying the total reflection condition. The optical waveguide located outside the bevel fiber can enter the optical waveguide, but because it does not satisfy the total reflection condition, it can only be refracted to the optical waveguide cladding to form a radiation mode. The critical angle 0c is the sine of the angle sin0a, which is called the numerical aperture of the light wave 1298104. = . International Telegraph and Telephone Advisory Committee, the main organization of the International Telecommunication Union (ITU) (International Telegraph and

Telephone Consultative Committee,CCITT)是規定 ΝΑ 的取 值範圍為:NAKU5〜0·24,其允許誤差為〇·〇2。 ΠΙ·波導的折射率分佈:光波導剖面(橫截面)的折射率分佈 是表不光波導光學特性的另一個重要參數。通常用剖面指 數=來描述。Κ導的數值隸、波散都與紐導的折射 率为佈有關。為了減小光波導的波散,提高光波導的頻寬, 而要口理地,又计光波導的折射率分佈。光波導截面上的折 射率:佈與;^向座標r有關,用η⑴來表示。對於階躍型 光波導,其折射率表達式為·· n{r) = < Ηχ r 幺 α L”2 ’對於梯度型光波導 n{r)= <«ι[1-2Δ(^)α]2 a L n2 r<a r>a °^稱為光波導的剖面指數。當a = ⑺時,光波導的折射率八& 咕莫。火〇 刀佈即為階躍型,這就是階躍型光 波V。§ α =2時,光油道 ^ V的折射率分佈為拋物線型,這樣 的先波導稱為拋物線型 ^ ^ 九,皮蛉或平方律型光波導。通常多 杈光波導的α取值範 中7 漸變形光波導。 2左右,這就是梯度型光波導或 錢導最重要的參數為模態, 1298104 因為模態決定了光在波導中傳遞時,其色散關係式的參 數」在固定一個模態下,可以找出此模態的色散關係式, =散關係式的意義為與光波長的之間的關係。不同的模態 ^有不同的色散關係式,且不同的模態會有不同的能量分 布。例如一階躍型波導,其折射率分布為 刀 % ------------ __ Πι ' ----------- η2 為均勻先波導,根據波動光學方程式,可以解出其基模 的色散關係式 ” 土果 rd< tan rd — \2 J(心《22XW-(冰]㈤[(心彳)(从2—㈣2]\ {rdf ^ V \ L [(^2 ~«22XM)2 -irdfY2 / \ zi UJ 2~' ------ 0¾2 -(XV)2-㈣)2]% 其中r = ^k02ni2-kj ^心%分別為不同層的折射率值一為波導的厚度 在基模態下,<與0的關係即可由上式得知, 色散關係式。 ”冉為 [波導彎曲損失] 光波在波導中轉彎時,會有能署& j 射綠本風十主失’如果我們從 ▲先予來看’這是因為波導與波導外之介面折射率差沒 f很大’在轉彎時,本來在直線傳播時產生全反射的入射 角,會變得比較小,根據Snell,s law,當角度變小時, 16 1298104 反射率會變小,所以反射的光線就會變小,也就是說會有 光能量因為折射的關係而跑到波導外面,造成損失。 波導彎曲的損失通常是由曲率半徑來評估,從射線光 學來看,當曲率半徑越小時,其曲率越大,每一小段距離, 所轉的角度大,等效看起來,其入射角變小,所以反射率 變低,當然其損失變大。所以如果要降低波導的彎曲損失, 則其彎曲之曲率半徑越大越好,大的曲率半徑,相對其曲 率越小,也就是彎的比較慢。 請參閱第11圖,係為曲率半徑與損失之說明圖;由圖 得知,R1<R2,當dl=d2時,0 2> 0 1,這很明白的表示, 當曲率半徑越大時,其入射角越大,反射率就越高,也就 是損失越小。 由上述可知,當曲率半徑越大時,其損失越小。在簡 化系統介面的前提下,必需要使輸出與輸入位於同一側, 也因此,使得晶片必需要有一定的寬度,以容納輸出入光 路的偶合鏡片。假設輸出入介面的寬度最小需要2公分, 若使用半圓來轉,則晶片的大小一定是2公分*1公分,其 曲率半徑為1公分。但若使用弦波轉彎,其寬度為兩公分, 但是其長度不用到1公分,可以由其最小曲率半徑來計 算,使得晶片的面積得到縮小,雖然其曲率半徑並沒有像 圓那麼大,但只要損失在可接受的範圍内,訊號仍可以被 準確的判讀。晶片的效能與大小皆能夠倶得最佳化。 假設光波導具有之sinusoidal bend之方程式為 17 1298104 x = Asin(-^-y)或 y — Λsin( ^ x)或 x = dcos(^~y)或 〇7Γ J; = dc〇S(yX),振幅(A)及波長(B),需依照其波導層與披 覆層△ η之範圍決定其係數之大小,以減低因彎曲所致之 損失,二者之間的關係必需由實驗得知。當△ η值已知時, 其曲率半徑之最小值就可以由文獻中查得,我們就可以利 用此最小曲率半徑,來計算出所需之振幅(Α)及波長(Β), 達到具有簡單系統介面之晶片面積最小化的目的,並且其 訊號損失在可接受之範圍内。 [光波導與SPR偶合] 如前述要達到偶合的目的,必需要有夂=&的條件, 而波導的可以由色散關係得知,而SPR的色散關係亦可由 得知,所以只要將二曲線同時畫於同一 Χώ) + ε8{ώ) 個圖上,當二條曲線相交時之點,利用圖解法,就可以推 論出SPR產生的之頻率,再由頻率推出其光波長。理論上, 在頻譜上此波長會產生很強的損失,因為此波長上的能量 會變成SPW而散失。 [光波導表面電漿共振感測器之量測方法] 一.強度變化量測法 其測量架構如第9圖所示之光強度變化檢測架構圖, 乃採用雷射為光源2,經過第一光學元件3打入光波導4 18 1298104 中,再經過第二光學元件6、第三光學元件7,«後到達光 譜儀8°因光源2之波長幾乎為單頻光,再加上光波導4 能傳播的波模有限個,故可知光在光波導4中之波向量, 也就是可以由波導的色散關係來求得其人射光的波向量。 而表面電漿波的波向制是由待測物5與金屬膜的介電係 $決定,所以當光波的波向量與表面錢波的波向量相同 日守’在輸出端的光強度就會衰減,而且輸出端的光強度衰 減會跟待測物的介電係數高财關,利用此—特性,可以 用來感測位於金屬上的待測物。 而光強度變化與待測物折射率之關係請參閱第12圖。 一 ·共振波長量測法 其測置架構如第10圖所示之光波長變化檢測架構 圖乃採用白光為光源2,經過第一光學元件3打入光波 ;4中,再經過第二光學元件6、第三光學元件7,最後到 達光譜儀8。當白光打入光波導4中,因光源2之頻譜為 連績,也就是說每一種頻率的光都有,假如波導以同一個 杈來傳播光,每一波長的波向量就可以用波導之色散關係 來決定。而表面電漿波的波向量則是由待測物5與金屬膜 的介電係數決定,所以當某一波長之光波的波向量與表面 電聚波的波向量相同時,在輸出端,此波長的光強度就會 衰減报多’而且輸出端的光強度衰減之波長,會跟待測物 的介電係數高低有關,也就是當待測物不同時,衰減的波 長會不同’利用此一特性,只要量測那一個波長產生強烈 19 1298104 的衰減,就可以用來推得位於金屬上的待測物的介電常數。 而共振波長與折射率之關係請參閱第13圖。 [第一實施例] 如第1圖所示,係為本發明具兩正弦彎曲補償之微型 化表面電漿共振光波導元件之簡易上視圖。位於基部10上 之光波導結構20係為具有兩個弦波彎曲補償22形狀之Y 類似型結構24。 第2圖係為具兩正弦彎曲補償之微型化表面電漿共振 光波導元件之側剖圖。該具正弦彎曲補償之微型化表面電 漿共振光波導元件100,包含:一基部10 ; —光波導結構 20,具有弦波彎曲補償之功能且設置於該基部10上方;一 感測膜層30設置於該光波導結構20上方之特定區域,成 為一感測區域40 ; —披覆層50,設置於上述元件上方,且 於感測區域40處具有一開口 52。其中,光波導結構20具 有一光輸入部26與光輸出部28 ; —鏡面元件70設置於Y 類似型結構24之一端。 藉由上述結構,光源產生器60自光波導結構20之光 輸入部26導入,以具有弦波彎曲補償22之光路徑行走, 經過感測區域40後,藉由鏡面元件70之作用,最後自光 波導結構20之光輸出部28導出至光譜器80。 [第二實施例] 如第3圖所示,係為本發明之另一較佳實施例之簡易上 視圖。位於基部10上之光波導結構20係為具有三個弦波 20 1298104 彎曲補償22形狀。 第4圖係為此實施例之於A-A’處之側剖圖。該具正弦 彎曲補償之微型化表面電漿共振光波導元件100,包含: 一基部10 ; —光波導結構20,具有弦波彎曲補償之功能且 設置於該基部10上方;一感測膜層30設置於該光波導結 構20上方之特定區域,成為一感測區域40 ; —披覆層50, 設置於上述元件上方,且於感測區域40處具有一開口。其 中,光波導結構20具有一光輸入部26與光輸出部2。 此實施例中感測膜層30係為金(Au)膜與銀(Ag)膜之 組成,且金(Au)膜係沉積於銀(Ag)膜上方。此乃由於銀膜 的活性較高(容易受環境影響而氧化),因此在實際應用時 必須在晶片表面先鍍銀膜、再鍍金膜(順序是: Au/Ag/glass)。同時鐘Ag和Au兩種金屬的好處是:(l)SPR 曲線的位移量跟純粹只鍍Au差不多(比純粹只鍍Ag的位 移量大),(2 )所得信號得雜訊比(SNR)比純粹只鐘Au來 得高(介於只鍍Ag和只鍍Au之間),(3)表面鍍Au膜可以 保護内部的Ag層,避免直接暴露容易氧化。因此可以多層 膜之設計對金屬膜表面特性進行改質,同時也可以提高偵 測結果的靈敏度。 上述二種實施例中,構成基部10之材質包含矽、二氧 化砍或南分子材料,構成光波導結構2 0之材質係包含光阻 材料、二氧化矽、含摻雜物質之二氧化矽、或高分子材料, 其中尤以適合導波長400奈米(nm)〜1100奈米(nm)之材 21 1298104 料為佳。而鏡面元件係包含金屬材質;感測膜層係包含金 屬材料,例如是金膜或是銀膜等。構成披覆層之材質係包 含光阻材料、二氧化矽、含摻雜物質之二氧化矽、或高分 子材料。 第5圖至第8圖係為利用本發明所量測之實驗數據圖。 其中,第5圖係表示不同濃度的甘油,所產生之不同波長 之SPR。第6圖係表示濃度對於波長變化曲線。第7圖係 表示折射率對於波長變化曲線。實線表理論模擬,虛線表 實驗結果。可以發現實驗結果比理論值之共振波長來得 高。第8圖係表示折射率對於靈敏度變化曲線。實線表理 論模擬,虛線表實驗結果。可以發現實驗結果比模擬之靈 敏度來得高。 綜合上述所知,本發明係利用表面電漿共振波之特 性,設計研發一種不需要標示分子即可進行高靈敏度、快 速平行檢測且低成本之波導式表面電漿波感測元件。為配 合光學機構微小化、精準化的設計趨勢,我們採用之入射 光在可見光至近紅外光範圍,利用曲率補償之最佳設計, 能夠在最小曲率半徑的限制下,控制光波能量於波導中之 耗損在可接受之範圍内,並且減少晶片大小並配合表面金 屬薄膜之鍍著以產生表面電漿共振之特性波長吸收,藉由 增加感測面積與光偶合長度之比值的方式,以減少樣本數 量,並兼具高敏感度之實用創新目的。基於上述改良優點, 本系統將更適用於微小化之生醫感測應用,具有新穎性與 22 1298104 進步性。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖係為本發明具兩正弦彎曲補償之微型化表面電漿共 振光波導元件之簡易上視圖。 第2圖係為本發明具兩正弦彎曲補償之微型化表面電漿共 振光波導元件之侧剖圖。 第3圖係為本發明之另一實施例之簡易上視圖。 第4圖係為第3圖於A-A’處之侧剖圖。 第5圖係表示不同濃度的甘油所產生之不同波長之SPR。 第6圖係表示濃度對於波長變化曲線。 第7圖係表示折射率對於波長變化曲線。 第8圖係表示折射率對於靈敏度變化曲線。 第9圖係為光強度變化檢測架構圖。 第10圖係為光波長變化檢測架構圖。 第11圖係為曲率半徑與損失之說明圖。 第12圖係為光強度變化與待測物折射率之關係圖。 第13圖係為共振波長與折射率之關係圖。 【主要元件符號說明】 2···光源 23 1298104 3 · · •第一光學元件 4 · · •光波導 5 · · •待測物 6 · · •第二光學元件 7 · · •第三光學元件 8 · · •光譜儀 10 · •基部 20 · •光波導結構 22 · •弦波彎曲補償 24 · • Y類似型結構 26 · •光輸入部 28 · •光輸出部 30 · •感測膜層 40 · •感測區域 50 · •彼覆層 52 · •開口 60 · •光源產生器 70 · •鏡面元件 80 · •光譜器 100 ··表面電漿共振感測元件 24The Telephone Consultative Committee (CCITT) specifies that the range of values for ΝΑ is: NAKU5~0·24, and the allowable error is 〇·〇2.折射率·waveguide refractive index distribution: The refractive index profile of the optical waveguide profile (cross section) is another important parameter for the optical properties of the optical waveguide. It is usually described by the section index =. The numerical values of the enthalpy and the dispersion are related to the refractive index of the guide. In order to reduce the dispersion of the optical waveguide, the bandwidth of the optical waveguide is increased, and the refractive index distribution of the optical waveguide is also measured. The refractive index on the cross section of the optical waveguide: the cloth is related to the coordinate r, and is represented by η(1). For a step type optical waveguide, the refractive index expression is ·· n{r) = < Ηχ r 幺α L"2 'for a gradient type optical waveguide n{r)= <«ι[1-2Δ(^ α]2 a L n2 r<a r>a °^ is called the profile index of the optical waveguide. When a = (7), the refractive index of the optical waveguide is eight & 〇 Mo. The knives are stepped. This is the step type light wave V. When α = 2, the refractive index distribution of the illuminating channel ^ V is parabolic, such a first waveguide is called a parabolic type ^ ^ 九, a skin or a square-law type optical waveguide. The α-value of the X-ray waveguide is a 7-graded optical waveguide. 2 or so, this is the most important parameter of the gradient optical waveguide or the money guide is the modal, 1298104 because the modality determines the dispersion of light when it is transmitted in the waveguide. The relational parameter can find the dispersion relation of the modality when the modality is fixed, and the meaning of the scatter relation is the relationship with the wavelength of the light. Different modes have different dispersion relations, and different modes have different energy distributions. For example, a step-type waveguide whose refractive index distribution is a knife % ------------ __ Πι ' ----------- η2 is a uniform first waveguide, according to the wave equation , can solve the dispersion relation of its fundamental mode" soil fruit rd < tan rd - \2 J (heart "22XW- (ice) (five) [(heart 彳) (from 2 - (four) 2] \ {rdf ^ V \ L [ (^2 ~«22XM)2 -irdfY2 / \ zi UJ 2~' ------ 03⁄42 -(XV)2-(4))2]% where r = ^k02ni2-kj ^heart% are different layers The refractive index value is the thickness of the waveguide in the fundamental mode, and the relationship between < and 0 can be known from the above formula, and the dispersion relation is. 冉 is [waveguide bending loss] When the light wave turns in the waveguide, there is a & j shoots the green wind, the wind loses the main story, 'If we look at it from ▲ first, this is because the refractive index difference between the waveguide and the outside of the waveguide is not very large. 'When turning, it is totally reflected when it travels in a straight line. The incident angle will become smaller. According to Snell, s law, when the angle becomes smaller, the reflectance of 16 1298104 will become smaller, so the reflected light will become smaller, that is, the light energy will run due to the refraction. To the outside of the waveguide, causing loss The loss of waveguide bending is usually evaluated by the radius of curvature. From the perspective of ray optics, the smaller the radius of curvature, the larger the curvature, the smaller the distance of each small segment, the larger the angle of rotation, the equivalent appearance, the smaller the incident angle. Therefore, the reflectance becomes low, and of course the loss becomes large. Therefore, if the bending loss of the waveguide is to be reduced, the larger the radius of curvature of the bend is, the larger the radius of curvature is, the smaller the curvature is, that is, the bend is slower. Please refer to Fig. 11, which is an explanatory diagram of radius of curvature and loss; it is known from the figure that R1<R2, when dl=d2, 0 2> 0 1, it is very clear that when the radius of curvature is larger, The larger the incident angle, the higher the reflectivity, that is, the smaller the loss. From the above, the smaller the radius of curvature, the smaller the loss. Under the premise of simplifying the system interface, the output and input must be the same. On the side, therefore, the wafer must have a certain width to accommodate the coupling lens that is output into the optical path. It is assumed that the width of the input and output interface is at least 2 cm. If a semicircle is used for rotation, the size of the wafer is one. It is 2 cm * 1 cm and has a radius of curvature of 1 cm. However, if a chord is used, its width is two centimeters, but its length is less than 1 cm, which can be calculated from its minimum radius of curvature, so that the area of the wafer is obtained. Zooming out, although the radius of curvature is not as large as a circle, as long as the loss is within the acceptable range, the signal can still be accurately interpreted. The performance and size of the chip can be optimized. Suppose the optical waveguide has sinusoidal The equation of bend is 17 1298104 x = Asin(-^-y) or y — Λsin( ^ x) or x = dcos(^~y) or 〇7Γ J; = dc〇S(yX), amplitude (A) and The wavelength (B) depends on the range of the waveguide layer and the cladding layer Δ η to determine the coefficient to reduce the loss due to bending. The relationship between the two must be experimentally known. When the value of Δ η is known, the minimum radius of curvature can be found in the literature. We can use this minimum radius of curvature to calculate the required amplitude (Α) and wavelength (Β), which is simple. The wafer area of the system interface is minimized and its signal loss is within an acceptable range. [Optical Waveguide and SPR Coupling] As described above, for the purpose of coupling, it is necessary to have the condition of 夂=&, and the waveguide can be known by the dispersion relation, and the dispersion relation of SPR can also be known, so as long as the two curves are At the same time, on the same Χώ) + ε8{ώ) graph, when the two curves intersect, the frequency of SPR can be deduced by the graphical method, and then the wavelength of the light is derived from the frequency. In theory, this wavelength produces a strong loss in the spectrum because the energy at this wavelength becomes SPW and is lost. [Measurement method of optical waveguide surface resonance sensor] 1. Intensity change measurement method The measurement structure of the light intensity change detection structure shown in Fig. 9 uses laser as the light source 2, after the first The optical element 3 is driven into the optical waveguide 4 18 1298104, and then passes through the second optical element 6 and the third optical element 7, «after reaching the spectrometer 8°, since the wavelength of the light source 2 is almost single-frequency light, and the optical waveguide 4 can be added. The wave mode of propagation is limited, so that the wave vector of the light in the optical waveguide 4, that is, the wave vector of the human light can be obtained from the dispersion relation of the waveguide. The wave direction of the surface plasma wave is determined by the dielectric system $ of the object to be tested 5 and the metal film, so when the wave vector of the light wave is the same as the wave vector of the surface money wave, the light intensity at the output end is attenuated. Moreover, the light intensity attenuation at the output end is higher than the dielectric constant of the object to be tested, and the feature can be used to sense the object to be tested located on the metal. Refer to Figure 12 for the relationship between the change in light intensity and the refractive index of the object to be tested. 1. Resonance wavelength measurement method The measurement architecture of the optical wavelength change detection structure shown in FIG. 10 uses white light as the light source 2, and the light is transmitted through the first optical element 3; 4, and then passes through the second optical element. 6. The third optical element 7 finally reaches the spectrometer 8. When the white light enters the optical waveguide 4, since the spectrum of the light source 2 is a continuous performance, that is, the light of each frequency is present, if the waveguide propagates light with the same chirp, the wave vector of each wavelength can be used by the waveguide. The dispersion relationship is determined. The wave vector of the surface plasma wave is determined by the dielectric constant of the object 5 and the metal film. Therefore, when the wave vector of the light wave of a certain wavelength is the same as the wave vector of the surface electric wave, at the output end, this The wavelength of the light intensity will be attenuated and the wavelength of the light intensity at the output will be related to the dielectric constant of the object to be tested. That is, when the object to be tested is different, the wavelength of the attenuation will be different. As long as the measurement of that wavelength produces a strong attenuation of 19 1298104, it can be used to derive the dielectric constant of the analyte on the metal. See Figure 13 for the relationship between the resonant wavelength and the refractive index. [First Embodiment] As shown in Fig. 1, it is a simplified top view of a miniaturized surface-plasma resonant optical waveguide element having two sinusoidal bending compensations according to the present invention. The optical waveguide structure 20 on the base 10 is a Y-like structure 24 having two sine wave bending compensation 22 shapes. Figure 2 is a side cross-sectional view of a miniaturized surface plasma resonant optical waveguide component with two sinusoidal bending compensations. The sinusoidal bending compensated miniaturized surface plasma resonant optical waveguide component 100 includes: a base portion 10; an optical waveguide structure 20 having a function of sine wave bending compensation and disposed above the base portion 10; a sensing film layer 30 A specific region disposed above the optical waveguide structure 20 serves as a sensing region 40. The cladding layer 50 is disposed above the component and has an opening 52 at the sensing region 40. The optical waveguide structure 20 has a light input portion 26 and a light output portion 28; the mirror member 70 is disposed at one end of the Y-like structure 24. With the above structure, the light source generator 60 is introduced from the light input portion 26 of the optical waveguide structure 20, and travels with the light path having the sine wave bending compensation 22, after passing through the sensing region 40, by the action of the mirror element 70, and finally The light output 28 of the optical waveguide structure 20 is derived to a spectrometer 80. [Second Embodiment] As shown in Fig. 3, it is a simplified top view of another preferred embodiment of the present invention. The optical waveguide structure 20 on the base 10 is shaped to have three sine waves 20 1298104 in bending compensation 22. Figure 4 is a side cross-sectional view of the embodiment at A-A'. The sinusoidal bending compensated miniaturized surface plasma resonant optical waveguide component 100 comprises: a base 10; an optical waveguide structure 20 having a function of sine wave bending compensation and disposed above the base 10; a sensing film layer 30 A specific region disposed above the optical waveguide structure 20 serves as a sensing region 40. The cladding layer 50 is disposed above the component and has an opening at the sensing region 40. The optical waveguide structure 20 has a light input portion 26 and a light output portion 2. In this embodiment, the sensing film layer 30 is composed of a gold (Au) film and a silver (Ag) film, and a gold (Au) film is deposited over the silver (Ag) film. This is due to the high activity of the silver film (which is easily oxidized by environmental influences). Therefore, in practical applications, a silver film must be applied to the surface of the wafer first, followed by a gold plating film (sequence: Au/Ag/glass). At the same time, the advantages of the two metals Ag and Au are: (1) The displacement of the SPR curve is almost the same as that of purely Au-plated (larger displacement than purely Ag-plated), and (2) the resulting signal has a noise ratio (SNR). It is higher than purely Au (between only Ag and only Au), and (3) Au plating on the surface protects the internal Ag layer from direct exposure and easy oxidation. Therefore, the surface characteristics of the metal film can be modified by the design of the multilayer film, and the sensitivity of the detection result can also be improved. In the above two embodiments, the material constituting the base 10 includes bismuth, oxidized chopped or south molecular material, and the material constituting the optical waveguide structure 20 includes a photoresist material, cerium oxide, cerium oxide containing a dopant, Or a polymer material, particularly suitable for a material having a wavelength of 400 nm (nm) to 1100 nm (nm) 21 1298104. The mirror element comprises a metal material; the sensing film layer comprises a metal material such as a gold film or a silver film. The material constituting the coating layer contains a photoresist material, cerium oxide, cerium oxide containing a dopant, or a high molecular material. Figures 5 through 8 are graphs of experimental data measured using the present invention. Among them, Figure 5 shows the SPR of different wavelengths produced by different concentrations of glycerol. Figure 6 shows the concentration versus wavelength curve. Figure 7 shows the refractive index versus wavelength curve. Solid line table theory simulation, dotted line table experimental results. It can be found that the experimental results are higher than the resonance wavelength of the theoretical value. Figure 8 shows the refractive index versus sensitivity curve. The solid line theory is simulated, and the dotted line is the experimental result. It can be found that the experimental results are higher than the sensitivity of the simulation. In view of the above, the present invention utilizes the characteristics of surface plasma resonance waves to design and develop a waveguide type surface acoustic wave sensing element which can perform high sensitivity, fast parallel detection and low cost without using labeled molecules. In order to meet the trend of miniaturization and precision of the optical mechanism, we use the incident light in the visible to near-infrared range, and use the optimal design of curvature compensation to control the loss of light energy in the waveguide under the limitation of the minimum radius of curvature. In an acceptable range, and reducing the size of the wafer and matching the plating of the surface metal film to produce characteristic wavelength absorption of surface plasma resonance, by increasing the ratio of the sensing area to the length of the optical coupling, to reduce the number of samples, It also has the purpose of high sensitivity and practical innovation. Based on the above improved advantages, the system will be more suitable for miniaturized biomedical sensing applications, with novelty and 22 1298104 progressive. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a simplified top view of a miniaturized surface-plasma resonant optical waveguide component having two sinusoidal bending compensations. Fig. 2 is a side cross-sectional view showing the miniaturized surface-plasma resonator-accommodating optical waveguide element having two sinusoidal bending compensations according to the present invention. Figure 3 is a simplified top view of another embodiment of the present invention. Figure 4 is a side cross-sectional view of Figure 3 at A-A'. Figure 5 is a graph showing the SPR of different wavelengths produced by different concentrations of glycerol. Figure 6 shows the concentration versus wavelength curve. Figure 7 is a graph showing the refractive index versus wavelength. Figure 8 shows the refractive index versus sensitivity curve. Figure 9 is a diagram showing the light intensity change detection architecture. Figure 10 is a diagram of the optical wavelength change detection architecture. Figure 11 is an explanatory diagram of the radius of curvature and loss. Figure 12 is a graph showing the relationship between the change in light intensity and the refractive index of the object to be tested. Figure 13 is a plot of resonant wavelength versus refractive index. [Main component symbol description] 2···Light source 23 1298104 3 · · • First optical element 4 · · • Optical waveguide 5 · · • Test object 6 · · • Second optical element 7 · · • Third optical element 8 · · • Spectrometer 10 • • Base 20 • • Optical waveguide structure 22 • • Sinusoidal bending compensation 24 • • Y-like structure 26 • Optical input unit 28 • Light output unit 30 • Sensing film layer 40 • • Sensing area 50 • • Overlay 52 • • Opening 60 • • Light source generator 70 • • Mirror element 80 • • Spectrometer 100 • Surface acoustic resonance sensing element 24

Claims (1)

1298104 十、申請專利範圍: 1. 一種具正弦彎曲補償之微型化表面電漿共振光波導元件 ,包含: 一基部; 一光波導結構,該結構具有弦波彎曲補償之功能,設置 於該基部上方,且具有一光輸入部與光輸出部; 一感測膜層,設置於該光波導結構上方之特定區域,成 為一感測區域;以及 一披覆層,設置於上述元件上方,且於感測區域處具有 一開口, 藉由具有弦波彎曲補償之功能之光波導結構,光自光波 導結構之光輸入部導入,以具有弦波彎曲補償之光路徑 行走,經過感測區域後,自光波導結構之光輸出部導出 〇 2. 如申請專利範圍第1項所述之具正弦彎曲補償之微型化 表面電漿共振光波導元件,更包含一光源產生器,可提 供進入光輸入部之光訊號。 3. 如申請專利範圍第1項所述之具正弦彎曲補償之微型化 表面電漿共振光波導元件,更包含一光譜器,可接收自 光輸出部導出之光訊號。 4. 如申請專利範圍第1項所述之具正弦彎曲補償之微型化 表面電漿共振光波導元件,其中構成基部之材質包含 矽、二氧化矽或高分子材料。 5. 如申請專利範圍第1項所述之具正弦彎曲補償之微型化 25 1298104 表面電漿共振光波導元件,其中構成光波導結構之材質 係包含光阻材料、二氧化矽、含摻雜物質之二氧化矽、 或南分子材料。 6. 如申請專利範圍第1項所述之具正弦彎曲補償之微型化 表面電漿共振光波導元件,其中形成光波導結構之材質 係為適合導波長400奈米(nm)〜1100奈米(nm)之材料。 7. 如申請專利範圍第1項所述之具正弦彎曲補償之微型化 表面電漿共振光波導元件,其中光波導結構係為具有兩 個弦波彎曲補償形狀之Y類似型結構。 8. 如申請專利範圍第7項所述之具正弦彎曲補償之微型化 表面電漿共振光波導元件,更包含一鏡面元件,該元件 係設置於Y類似型結構之一端。 9. 如申請專利範圍第8項所述之具正弦彎曲補償之微型化 表面電漿共振光波導元件,其中鏡面元件係包含金屬材 質。 10. 如申請專利範圍第1項所述之具正弦彎曲補償之微 型化表面電漿共振光波導元件,其中光波導結構係為具 有三個弦波彎曲補償形狀之結構。 11. 如申請專利範圍第1項所述之具正弦彎曲補償之微 型化表面電漿共振光波導元件,其中感測膜層係包含金 屬材料。 12. 如申請專利範圍第1項所述之具正弦彎曲補償之微 型化表面電漿共振光波導元件,其中感測膜層係為金(Au) 膜0 26 1298104 13. 如申請專利範圍第1項所述之具有弦波彎曲補償之 光波導表面電漿共振感測元件,其中感測膜層係為金 (Au)膜與銀(Ag)膜之組成。 14. 如申請專利範圍第13項所述之具正弦彎曲補償之微 型化表面電漿共振光波導元件,其中感測膜層之金(Au) 膜係沉積於銀(Ag)膜上方。1298104 X. Patent application scope: 1. A miniaturized surface plasma resonant optical waveguide component with sinusoidal bending compensation, comprising: a base; an optical waveguide structure having a function of sine wave bending compensation, disposed above the base And having a light input portion and a light output portion; a sensing film layer disposed in a specific region above the optical waveguide structure to become a sensing region; and a coating layer disposed above the component and having a sense The measuring area has an opening, and the optical waveguide structure having the function of sine wave bending compensation is introduced from the light input part of the optical waveguide structure, and walks with a light path with sine wave bending compensation, after passing through the sensing area, The light output portion of the optical waveguide structure is derivable. 2. The sinusoidal bending compensation miniaturized surface plasma resonant optical waveguide component according to claim 1, further comprising a light source generator for providing access to the light input portion Optical signal. 3. The miniaturized surface-plasma resonant optical waveguide component with sinusoidal bending compensation as described in claim 1 further includes a spectrometer for receiving optical signals derived from the optical output. 4. The miniaturized surface-plasma resonant optical waveguide component having sinusoidal bending compensation according to the first aspect of the patent application, wherein the material constituting the base comprises ruthenium, ruthenium dioxide or a polymer material. 5. The miniaturized 25 1298104 surface-plasma resonant optical waveguide component with sinusoidal bending compensation as described in claim 1, wherein the material constituting the optical waveguide structure comprises a photoresist material, cerium oxide, and a dopant-containing substance. The cerium oxide, or the southern molecular material. 6. The sinusoidal bending compensation miniaturized surface plasma resonant optical waveguide component according to claim 1, wherein the optical waveguide structure is formed to be suitable for a wavelength of 400 nm (nm) to 1100 nm ( Nm) material. 7. The sinusoidal bending compensated miniaturized surface plasma resonant optical waveguide component according to claim 1, wherein the optical waveguide structure is a Y-like structure having two sine wave bending compensation shapes. 8. The sinusoidal bending compensation miniaturized surface-plasma resonant optical waveguide component according to claim 7, further comprising a mirror component disposed at one end of the Y-like structure. 9. The miniaturized surface-plasma resonant optical waveguide component having sinusoidal bending compensation according to claim 8, wherein the mirror component comprises a metal material. 10. The sinusoidal bending compensated miniaturized surface plasma resonant optical waveguide component according to claim 1, wherein the optical waveguide structure is a structure having three sine wave bending compensation shapes. 11. The sinusoidal bending compensated miniaturized surface plasma resonant optical waveguide component of claim 1, wherein the sensing film layer comprises a metal material. 12. The sinusoidal bending compensated miniaturized surface plasma resonant optical waveguide component according to claim 1, wherein the sensing film layer is a gold (Au) film 0 26 1298104. The optical waveguide surface plasma resonance sensing element having sine wave bending compensation, wherein the sensing film layer is composed of a gold (Au) film and a silver (Ag) film. 14. The sinusoidal bending compensated miniaturized surface plasma resonant optical waveguide component of claim 13, wherein the gold (Au) film of the sensing film layer is deposited over the silver (Ag) film. 15. 如申請專利範圍第1項所述之具正弦彎曲補償之微 型化表面電漿共振光波導元件,其中構成披覆層之材質 係包含光阻材料、二氧化矽、含摻雜物質之二氧化矽、 或而分子材料。15. The sinusoidal bending compensated miniaturized surface plasma resonant optical waveguide component according to claim 1, wherein the material constituting the cladding layer comprises a photoresist material, cerium oxide, and a dopant-containing material. Cerium oxide, or molecular material. 2727
TW93122283A 2004-07-26 2004-07-26 Miniature surface plasmon resonance waveguide device with sinusoidal curvature compensation TWI298104B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93122283A TWI298104B (en) 2004-07-26 2004-07-26 Miniature surface plasmon resonance waveguide device with sinusoidal curvature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93122283A TWI298104B (en) 2004-07-26 2004-07-26 Miniature surface plasmon resonance waveguide device with sinusoidal curvature compensation

Publications (2)

Publication Number Publication Date
TW200604608A TW200604608A (en) 2006-02-01
TWI298104B true TWI298104B (en) 2008-06-21

Family

ID=45069289

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93122283A TWI298104B (en) 2004-07-26 2004-07-26 Miniature surface plasmon resonance waveguide device with sinusoidal curvature compensation

Country Status (1)

Country Link
TW (1) TWI298104B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045750A (en) * 2017-09-05 2019-03-22 ルネサスエレクトロニクス株式会社 Semiconductor device

Also Published As

Publication number Publication date
TW200604608A (en) 2006-02-01

Similar Documents

Publication Publication Date Title
Schuster et al. Miniaturized long-period fiber grating assisted surface plasmon resonance sensor
Slavı́k et al. Single-mode optical fiber surface plasmon resonance sensor
US8977086B2 (en) Tapered waveguide coupler and spectrometer
Homola et al. A surface plasmon resonance based integrated optical sensor
KR101257309B1 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
Brandenburg et al. Interferometric sensor for detection of surface-bound bioreactions
JP4414953B2 (en) Sample analysis using anti-resonant waveguide sensors
CN109187440B (en) Single-mode-few-mode/multi-mode fiber SPR sensor based on mode excitation
JP2002505425A (en) Waveguide structure
US7197196B2 (en) Miniature surface plasmon resonance waveguide device with sinusoidal curvature compensation
CN102985804B (en) There is the box of extensive designing for manufacturing
TW200928350A (en) A method for improving surface plasmon resonance by using conducting metal oxide as adhesive layer
CN109856087B (en) Sensing chip and preparation method, detection system and detection method thereof
TWI247886B (en) Improved linear wave-guide type surface plasmon resonance micro sensor
US20050094150A1 (en) Method and apparatus for ultra-high sensitivity optical detection of biological and chemical agents
US20110116094A1 (en) Method of Producing a Surface Plasmon Generator, a Surface Plasmon Generator and a Sensor Incorporating the Surface Plasmon Generator
Baets et al. Spectroscopy-on-chip applications of silicon photonics
US9046484B2 (en) Plasmon sensor
Li et al. Discriminating bulk and surface refractive index changes with fiber-tip leaky mode resonance
TWI298104B (en) Miniature surface plasmon resonance waveguide device with sinusoidal curvature compensation
Fontana A novel gold-coated multimode fiber sensor
JP5777277B2 (en) Optical waveguide type biochemical sensor chip
Lee et al. Waveguide-based surface plasmon resonance sensor design
Giakos et al. Exploitation of enhanced fluorescence via cross-coupling principles toward the design of an optical integrated thin-film sensor for nanotechnology and biomedical applications
Christensen et al. Optical immunoassay systems based upon evanescent wave interactions