TWI296859B - Photovoltaic device, photovoltaic element and substrate and manufacturing method thereof - Google Patents

Photovoltaic device, photovoltaic element and substrate and manufacturing method thereof Download PDF

Info

Publication number
TWI296859B
TWI296859B TW95102948A TW95102948A TWI296859B TW I296859 B TWI296859 B TW I296859B TW 95102948 A TW95102948 A TW 95102948A TW 95102948 A TW95102948 A TW 95102948A TW I296859 B TWI296859 B TW I296859B
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
substrate
photoelectric conversion
layer
manufacturing
Prior art date
Application number
TW95102948A
Other languages
Chinese (zh)
Other versions
TW200729527A (en
Inventor
Ming Hsiung Lai
Chum Sam Hong
Jyh Chung Wen
Kuo Chiang Hsu
Original Assignee
Neo Solar Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neo Solar Power Corp filed Critical Neo Solar Power Corp
Priority to TW95102948A priority Critical patent/TWI296859B/en
Publication of TW200729527A publication Critical patent/TW200729527A/en
Application granted granted Critical
Publication of TWI296859B publication Critical patent/TWI296859B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

1296859 九、發明說明·· 【發明所屬之技術領域】 本發明係關於一種光電轉換裝置、光電轉換元件及其 基板與製造方法,特別關於一種具有矽純度大於等於95% 之矽基板的光電轉換裝置、光電轉換元件及其基板與製造 . 方法。 【先前技術】 隨著地球能源資源逐漸地短缺,開發新能源已成為敎 技業以及產業矚目的焦點之一,替代性能源產品例如太陽 電池即成為開發的標的之一。太陽電池係為一種利用光伏 特效應(photovoltaic effect)將光能轉換成電能的光電轉換 元件,即利用p-n二極體吸收光能量後產生自由電子與電 洞’在-一極體接面附近的内建電場驅使下,使自由電 子向η型半導體移動,而自由電洞向p型半導體移動,進 馨-而產生電流,最後經由電極將電流引出形成可供利用之電 :‘能。 “ 請參照圖1所示,習知之一種薄膜太陽電池丨的基本 結構主要係包含一基板10、一 ρ-η半導體11、一抗反射層 12以及一金屬電極對13。其中,基板10為太陽電池1之 基底,ρ-η半導體11係設置於基板10上,作為將光能轉 換為電能之作用區,抗反射層12則設置於太陽電池1之 入光面,用以降低入射光的反射,而金屬電極對13係可 用於與一外界電路連接。 !296859 -v族一^ 太陽電池使用的材料可區分切材料、m 產品,其中梦基板係由裁切半導體業用之 成==’而由於使用高純度切材料使得太陽電池之 之限制^難二料,在裁㈣晶片的過程中因製程技術 〈限制而難化基板之厚度,同時 以上之材料損耗,因而更加提高了太陽電池之製造= 承上所述’為降低太陽電池之成本是以有薄膜太陽電 開發,其係於低成本之基板例如玻璃、塑膠、陶瓷、 墨與金屬專上低溫成長一層約數私m的石夕薄匕 轉換為電能之作用區,然而,上_與例如 屬基板之間畴在著晶格匹配度、薄難覆性與膨服係數 差異等問題,而容易造成剝離現象。 有鑑於此,如何提供一種光電轉換元件之各層間具有 良好匹配度的光電轉換裝置、光電轉換元件及其基板與製 造方法實為當今業者的重要課题之一。 【發明内容】 有鑑於上述課題’本發明之目的為提供一種具有梦純 度大於等於95%之梦基板的光電轉換裝置、光電轉換元件 及其基板與製造方法。 緣是,為達上述目的,依據本發明之一種光電轉換裝 置包含一光學轉換元件以及一電極對。其中,光學轉換元 7 1296859 件包含一矽基板、一第一丰導體層及一第二半導體層,矽 基板中矽之純度係大於等於95%,第一半導體層係設置於 矽基板之上,第二半導體層係設置於第一半導體層上;電 極對係包括一第一電極與一第二電極,第一電極係與第一 半導體層相連結,第二電極係與第二半導體層相連結。 • 為達上述目的,依據本發明之一種光電轉換元件包含 ,一矽基板、一第一半導體層及一第二半導體層。其中,矽 _ 基板中矽之純度係大於等於95%,第一半導體層係設置於 矽基板之上,第二半導體層係設置於第一半導體層上。 為達上述目的,依據本發明之一種光電轉換元件用之 基板包含一矽基材,矽基材中矽之的純度係大於等於95%。 為達上述目的,依據本發明之一種光電轉換元件之製 造方法,係包含下列步驟:提供一石夕基板,其石夕之純度係 大於等於95%、於矽基板之上形成一第一半導體層及於第 一半導體層上形成一第二半導體層。 ® 為達上述目的,依據本發明之一種光電轉換裝置之製 ‘:造方法,其係包含下列步驟:提供一石夕基板,其石夕之純度 :係大於特95%、时基板之上形成—第一半導體層、於 帛-半導體層上形成一第二半導體層及設置一第 一電極 與-第-電極分別連結第—半導體層與第二半導體層。 承上所述,因依據本發明之一種光電轉換裝置、光電 轉換元件及其基板與製造方法係利时之純度大於等於 95%的梦基板組配光學轉換元件,其中第一半導體層與第 二+導體祕依序設置於⑪基板上,由於㈣基板取代習 8 1296859 知之例如玻璃或是金羼基板,而與第一半導體層具有良好 的晶格匹配度,改善習知基板與第一半導體層間易剝離的 現象,進而提高光電轉換裝置之光電轉換效率與使用壽 命0 〆 【實施方式】 以下將參照相關圖式,說明依據本發明較佳實施例之 ^ 一種光電轉換裝置、光電轉換元件及其基板與製造方法, 其中相同的元件將以相同的參照符號加以說明。 第一實施例 請參照圖2所示,依據本發明第一實施例之一種光電 轉換裝置2係包括一光電轉換元件20及一電極對21。光 電轉換元件20係包括一矽基板201、一第一半導體層202 及一第二半導體層203。 其中,矽基板201中矽之純度係大於等於95%,在本 _ - 實施例中,矽之純度範圍可為95%至99.99999%,且矽基 板201之厚度範圍係為250// m至300# m。 - 如圖2所示,第一半導體層202係設置於矽基板201 之上,在本實施例中,第一半導體層202之厚度範圍係為 20/zm至150//m,且其之材質的粉徑範圍係為其厚度的 0.01倍至0.3倍,即粉徑範圍係界於〇.2em至45# m之 間。 另外,第二半導體層203係設置於第一半導體層202 上,以形成一接面,詳細來說,在本實施例中,第一半導 1296859 體層202係可為一 p型半導體,而第二半 一 η型半導體(如圖2所示)。當然,第—體層203係為 可為- η型半導體,而第二半導體層2〇3 ^導體層202亦 體,以形成- p-η接面,作為光能轉換為型半導 其中Ρ型半導體之摻質例如可以是此之作用區。 (gallium)等,而η型半導體之摻暂(b〇r〇n)與鎵 (phosphorus)、石申(arsenic)等,以嫉 & 疋 % 擴政法或離子措[Technical Field] The present invention relates to a photoelectric conversion device, a photoelectric conversion element, a substrate and a manufacturing method thereof, and more particularly to a photoelectric conversion device having a germanium substrate having a germanium purity of 95% or more. , photoelectric conversion elements and their substrates and manufacturing methods. [Prior Art] With the gradual shortage of the earth's energy resources, the development of new energy sources has become one of the focuses of the technology industry and the industry, and alternative energy products such as solar cells have become one of the development targets. A solar cell is a photoelectric conversion element that converts light energy into electrical energy by utilizing a photovoltaic effect, that is, using a pn diode to absorb light energy to generate free electrons and a hole near the junction of the - pole body. Driven by the built-in electric field, the free electrons move toward the n-type semiconductor, and the free hole moves toward the p-type semiconductor to generate a current, and finally the current is drawn through the electrode to form an available electricity: 'energy. Referring to FIG. 1, a basic structure of a conventional thin film solar cell is mainly composed of a substrate 10, a p-n semiconductor 11, an anti-reflection layer 12, and a metal electrode pair 13. The substrate 10 is a sun. The substrate of the battery 1 is provided on the substrate 10 as an active region for converting light energy into electrical energy. The anti-reflection layer 12 is disposed on the light incident surface of the solar cell 1 to reduce reflection of incident light. The metal electrode pair 13 can be used to connect with an external circuit. !296859 -v family one ^ The material used in the solar cell can distinguish between the cutting material and the m product, wherein the dream substrate is used by the cutting semiconductor industry ==' However, due to the use of high-purity cutting materials, the limitation of solar cells is difficult. In the process of cutting (four) wafers, the thickness of the substrate is difficult due to the limitation of the process technology, and the above materials are lost, thereby further improving the solar cell. Manufacturing = According to the above, in order to reduce the cost of solar cells, it is developed by thin-film solar power, which is based on low-cost substrates such as glass, plastic, ceramics, ink and metal. The number of private m's Shi Xi thin 匕 is converted into the active area of electric energy. However, the domain between the upper _ and the genus substrate is in the lattice matching degree, the thinness of the hard cover and the difference in the expansion coefficient, and the peeling phenomenon is likely to occur. In view of the above, it is one of the important subjects of the present invention to provide a photoelectric conversion device, a photoelectric conversion element, a substrate, and a manufacturing method thereof with good matching between layers of a photoelectric conversion element. The object of the present invention is to provide a photoelectric conversion device, a photoelectric conversion element, a substrate thereof, and a manufacturing method thereof having a dream substrate having a dream purity of 95% or more. The reason is that, in order to achieve the above object, a photoelectric conversion device according to the present invention An optical conversion element and an electrode pair are included, wherein the optical conversion element 7 1296859 comprises a substrate, a first conductive layer and a second semiconductor layer, wherein the purity of the germanium in the germanium substrate is greater than or equal to 95%, first The semiconductor layer is disposed on the germanium substrate, the second semiconductor layer is disposed on the first semiconductor layer; and the electrode pair includes a first electrode a second electrode, the first electrode is coupled to the first semiconductor layer, and the second electrode is coupled to the second semiconductor layer. • To achieve the above object, a photoelectric conversion element according to the present invention comprises a substrate, a a first semiconductor layer and a second semiconductor layer, wherein the germanium in the substrate has a purity of 95% or more, the first semiconductor layer is disposed on the germanium substrate, and the second semiconductor layer is disposed on the first semiconductor layer In order to achieve the above object, a substrate for a photoelectric conversion element according to the present invention comprises a substrate having a purity of 95% or more in the substrate, in order to achieve the above object, a photoelectric conversion element according to the present invention. The manufacturing method comprises the steps of: providing a stone substrate having a purity of 95% or more, forming a first semiconductor layer on the germanium substrate and forming a second semiconductor layer on the first semiconductor layer. In order to achieve the above object, a method for fabricating a photoelectric conversion device according to the present invention comprises the steps of: providing a stone substrate having a purity of more than 95% and forming a substrate thereon. a first semiconductor layer, a second semiconductor layer formed on the germanium-semiconductor layer, and a first electrode and a first electrode are connected to the first semiconductor layer and the second semiconductor layer, respectively. According to the present invention, a photoelectric conversion device, a photoelectric conversion element, a substrate thereof, and a manufacturing method thereof are in accordance with the present invention, and a dream substrate assembly optical conversion element having a purity of 95% or more, wherein the first semiconductor layer and the second semiconductor layer The conductors are sequentially disposed on the 11 substrate, and the (4) substrate is replaced by the first semiconductor layer, for example, by replacing the glass or the metal substrate, for example, to improve the lattice matching between the conventional substrate and the first semiconductor layer. The phenomenon of easy peeling, thereby improving the photoelectric conversion efficiency and the service life of the photoelectric conversion device. [Embodiment] Hereinafter, a photoelectric conversion device, a photoelectric conversion element, and a photoelectric conversion device thereof according to a preferred embodiment of the present invention will be described with reference to the related drawings. The same components will be described with the same reference numerals. First Embodiment Referring to Fig. 2, a photoelectric conversion device 2 according to a first embodiment of the present invention includes a photoelectric conversion element 20 and an electrode pair 21. The photoelectric conversion element 20 includes a germanium substrate 201, a first semiconductor layer 202, and a second semiconductor layer 203. The purity of the germanium in the germanium substrate 201 is 95% or more. In the present embodiment, the purity of the germanium may range from 95% to 99.99999%, and the thickness of the germanium substrate 201 ranges from 250//m to 300. # m. - As shown in FIG. 2, the first semiconductor layer 202 is disposed on the germanium substrate 201. In the embodiment, the thickness of the first semiconductor layer 202 ranges from 20/zm to 150/m, and the material thereof is The range of the powder diameter is 0.01 to 0.3 times its thickness, that is, the range of the powder diameter is between 〇.2em and 45# m. In addition, the second semiconductor layer 203 is disposed on the first semiconductor layer 202 to form a junction. In detail, in the embodiment, the first semiconductor layer 1296859 may be a p-type semiconductor. Two half-n-type semiconductor (as shown in Figure 2). Of course, the first body layer 203 can be an -n-type semiconductor, and the second semiconductor layer 2〇3^the conductor layer 202 is also formed to form a -p-n junction, which is converted into a light semi-conducting type. The dopant of the semiconductor can be, for example, the active region. (gallium), etc., while the n-type semiconductor is temporarily mixed (b〇r〇n) with gallium (phosphorus), arsenic, etc., with 嫉 & 疋 % expansion method or ion method

入法進行摻雜。 X雕于植 如圖3所示,本實施例之光電轉換萝 、、夏2更包含一阻 隔層22’係設置於矽基板201與第一半導體層2〇2之間、 以防止矽基板201内之金屬雜質擴散而污染二半導J層 202與第二半導體層203形成之光能轉換為電能之作; 區。在本實施例中,阻隔層22之厚度範圍係為^"瓜至 5〇ym,其之材質係可選自氧化矽、氮化矽或碳化矽等矽 化合物。 _ 承上所述,阻隔層22係為一多孔結構,其係具有複 ) 數各穿孔,以提供光電轉換裝置2之電荷傳導路徑,其中 阻隔層22之穿孔的孔隙度係為20%至70%,孔隙度之大 小係可藉由例如材質之粉末粒徑作以調整。在本實施例 中’阻隔層22之材質的粒徑範圍係可為阻隔層22之厚度 的〇·3倍至〇·7倍,即粒徑範圍可界於3//m至35/zm之 間。 另外,在本實施例中,第一導電層202之晶粒大小(6) 與阻隔層22之穿孔的孔隙度(v )關係係符合5 = 1296859 n(v )1/3,其中 η=0·3〜1.5。 再請參照圖3,電極對21係包括一第一電極211與一 第二電極212,第一電極211係與第一半導體層202相連 接,第二電極212係與第二半導體層203相連接,如圖2 所示,在本實施例中,第一電極211與第二電極212係可 - 以網印方式設置於光電轉換元件20之相對兩侧。 、 另外,再請參照圖3,本實施例之光電轉換裝置2更 ^ 可包含一抗反射層23,設置於第二半導體層203之上,更 詳細說係可以例如但不限定為物理氣相沉積法(physical vapor deposition )與化學氣相沉積法(physical vapor deposition)等方式堆積於第二半導體層203之上,即於光 電轉換裝置2之入光面批覆抗反射層23,以降低入射光線 之反射,進而提高光電轉換裝置2之光電轉換效率。其中, 抗反射層23之材質係包含氮化矽。 承上所述,本實施例之光電轉換裝置2利用;6夕之純度 •,範圍為95%至99.99999%之矽基板201組配,是以相較於 •習知之薄膜型太陽電池來說,具有與該第一半導體層2〇2 良好之匹配度,且由於採用低純度之矽材料為美搞,县 —相較於採用業用矽晶片為基板之太陽電池更^有降低成 本以及材料易取得之優點。 請參照圖4所示’依據本發明第二實施例之一種光電 轉換元件30包含一石夕基板3〇1、一第-半導體層皿及— 第二半導體層3〇3。 11 1296859 其中,矽基板301中矽之純度係大於等於95%,於本 實施例中,矽之純度範圍可為95%至99.99999%。而第一 半導體層302與第二半導體層303係依序設置於矽基板 • 301之上。 本實施例之光電轉換元件30更可包含一阻隔層32與 一抗反射層33。 由於本實施例之光電轉換元件3〇的矽基板301、第一 半導體層302、第二半導體層303、阻隔層32與抗反射層 _ 33之設置關係、結構特徵、材料特性與功能特徵係如第一 實施例相同元件所述,故不在此贅述。 _三實施例 請參照圖5所示,依據本發明第三實施例之一種光電 轉換元件用之基板41 ’係包含一發基材。 其中’石夕基材係可為矽粉或矽塊經由鑄造而形成本實 施例之基板41,矽基材中矽之的純度係大於等於95%。於 9 本實施例中,石夕之純度範圍可為95%至99.99999%。 ·: 本實施例之基板41更包含一阻隔層42,設置於矽基 材之上。 而由於本實施例之基板41的矽基材及阻隔層42係如 第一實施例之石夕基板201與阻隔層22的應用,且其之結 構特徵、材料特性與功能特徵皆如第一實施例所述,故不 再贅述。 第四實施例 請參照圖6所示,依據本發明第四實施例之-種光電 1296859 提供一矽基板, 轉換裝置之製造方法,係包括下列步 其矽之純度係大於等於95%(S1)、於矽基板之上形成一第 -半導體層(S2)、於第一半導體層上形成一第二半導體層 (S3)及設置-第-電極與一第二電極分別連結第一 ^ 層與第二半導體層(S4)0 首先,石夕基板之製得可將石夕材料真空缚造成石夕晶塊, 之後再以例如線切割(wire saw)之方式將矽晶塊切割成而 成。其中’賴料可為低純度料料,其純度範圍係為 95%·99.99999%,且石夕材料之型態可為矽粉或石夕塊,以 厚度範圍係為250_至300_之石夕基板。 ’ 在乂驟S2之别,本實施例之製造方法更包含在石夕基 阻隔層SU,其係以熱喷塗技術將阻隔層之 歹1 _化⑪、氮切或碳切等魏合物於 板f且阻隔層之厚度範圍係為心m至鄭m。另外, =供装置之電荷傳輸路徑’阻隔層係為-多孔 :=1,於此係利用控制阻隔層材質之粉末 =3 !度、壓力與距離等參數,來調整阻隔 阻崎材f之粉末粒縣說’阻隔層之材 、;W絲係、為其厚度的0.3倍至0.7倍,即粒徑範圍 可界35 “瓜之間,俾使阻隔層之孔隙度落於20% 至70%的範圍。 -半2層阻隔層之作業後,亦以熱喷塗技術將第 9 ^成;阻隔層上,為得到最佳之界面結合性 質於此刀別形成第一半導體層與阻隔層之熱喷塗系統 13 1296859 係設置於同一製程環境中。本實施例之第一半導體層的材 質係可為純度範圍界於99.999999%至99.999999999%之矽 或掺入例如硼之矽粉體形成P型半導體層(如圖2所 示),當然,p型半導體層僅為舉例,並不以此為 限制。 • 如上所述,在本實施例中,利用控制第二半導體層之 〜 材質的粉末粒徑、熱喷塗系統之操作溫度、壓力與時間等 0 參數’調整第一半導體層之厚度,其中第一半導體層之 厚度範圍係為20// m至150// m,於此,第一半導體層之 材質的粉徑範圍係為第一半導體之厚度的〇.〇1倍至0.3 倍’即粉徑範圍係界於0.2// m至45 /z m之間。 於步驟S2之後,本實施例之製造方法更包含一再結 晶程序S21,以使第一半導體層之晶粒更大,增加電子的 傳輸效率,在本實施例中,再結晶程序係包含以雷射(laser) 或快速退火爐(Rapid Thermal Annealing,RTA)瞬間加熱 _,第一半導體層至一溫度,再冷卻第一半導體層,其中溫度 範圍係為1000°C至1500°c,於此,阻隔層之孔隙係可提 供再結晶過程中之晶種,以使組織更緻密,其中第一導電 層之晶粒大小(5 )與該阻隔層之穿孔的孔隙度(v )關係係 符合(5=n〇)1/3,其中 η=0·3〜1.5。 於步驟S3,第二半導體層係可以例如擴散法或離子 植入法形成於第一半導體層上,形成一接面以作為 光電轉換作用區。在本實施例中,第二半導體層之材質係 可為掺入例如磷之矽粉體形成η型半導體層(如圖2所 1296859 示),當然,η型半導體層僅為舉例,並不限於此。 - 於步驟S3之後,本實施例之製造方法更包含於第二 半導體層之上形成一抗反射層S31,其係可以例如但不限 定為物理氣相沉積法(physical vapor deposition)與化學氣 相沉積法(physical vapor deposition)等方式堆積於第二半 、 導體層之上。其中抗反射層之材質係包含氮化矽。 、 於步驟S4,第一電極或第二電極係以例如網印方式分 φ 別設置連結於第一半導體層與第二半導體層。 篇五實施你丨 請參照圖7所示,依據本發明第五實施例之一種光電 轉換元件之製造方法,其係包含下列步驟:提供一矽基 板’其矽之純度係大於等於95% (S1,)、於矽基板之上形成 一第一半導體層(S2,)及於第一半導體層上形成一第二半 導體層(S3,)。 在本實施例中,如上所述,於步驟S2,之前,更包含 _ 在發基板之上形成一阻隔層S11,,於步驟S2,之後,更包 : 含—再結晶程序S21,,以及在步驟S3,之後,更包含於第 • 二半導體層之上形成一抗反射層S31,。 由於本實施例之該些步驟SI,、Sll,、S2,、S21,、S3, 及S31’皆如第四實施例之相同步驟所述,故不在此贅述。 综上所述,依據本發明較佳實施例之一種光電轉換裝 置、光電轉換元件及其基板與製造方法係利用矽之純度大 於等於95%的矽基板組配光學轉換元件,其中第一半導體 層與第二半導體層係依序設置於矽基板上,由於以矽基板 15 1296859 取代習知之例如玻璃或是金屬基板,而與第一半導體層具 有良好的晶格匹配度,改善習知基板與第一半導體層間易 剝離的現象,進而提高光電轉換裝置之光電轉換效率與使 用壽命。 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 圖1為一顯示習知之一種太陽電池的示意圖; 圖2與圖3為顯示依據本發明第一實施例之一種光學 轉換裝置的一組示意圖; 圖4為一顯示依據本發明第二實施例之一種光學轉換 元件的不意圖, 圖5為一顯示依據本發明第三實施例之一種光學轉換 元件用之基板的示意圖; 圖6為一顯示依據本發明第四實施例之一種光電轉換 裝置之製造方法的流程示意圖;以及 圖7為一顯示依據本發明第五實施例之一種光電轉換 元件之製造方法的流程示意圖。 元件符號說明: 、太陽電池 基板 10 1296859 11 p-n半導體 12 抗反射層 13 金屬電極對 2 光電轉換裝置 20 光電轉換元件 . 201 矽基板 202 第一半導體層 _ 203 • 第二半導體層 21 電極對 211 第一電極 212 第二電極 22 阻隔層 23 抗反射層 30 光電轉換元件 301 矽基板 » 302 第一半導體層 303 第二半導體層 32 阻隔層 33 抗反射層 41 基板 42 阻隔層 S卜sn、S2、S21、S3、S31、S4 本發明第四實施 例之一種光電轉換裝置之製造方法的流程 SI,、Sll,、S2’、S21,、S3’、S31’ 本發明第五實 17 1296859 施例之一種光電轉換元件之製造方法的流程 18Doping is carried out by the method. As shown in FIG. 3, the photoelectric conversion of the present embodiment, Xia 2 further includes a barrier layer 22' disposed between the germanium substrate 201 and the first semiconductor layer 2〇2 to prevent the germanium substrate 201. The metal impurities in the diffusion diffuse and contaminate the light energy formed by the second semiconductor J layer 202 and the second semiconductor layer 203 into electrical energy; In the present embodiment, the thickness of the barrier layer 22 is in the range of <> melon to 5 〇 ym, and the material thereof may be selected from ruthenium compounds such as ruthenium oxide, ruthenium nitride or ruthenium carbide. As described above, the barrier layer 22 is a porous structure having a plurality of perforations to provide a charge conduction path of the photoelectric conversion device 2, wherein the porosity of the perforation of the barrier layer 22 is 20% to 70%, the size of the porosity can be adjusted by, for example, the particle size of the material. In the present embodiment, the particle size range of the material of the barrier layer 22 may be 〇·3 times to 〇·7 times the thickness of the barrier layer 22, that is, the particle size range may be limited to 3//m to 35/zm. between. In addition, in the present embodiment, the relationship between the grain size (6) of the first conductive layer 202 and the porosity (v) of the perforation of the barrier layer 22 is in accordance with 5 = 1296859 n(v) 1/3, where η=0 · 3~1.5. Referring to FIG. 3, the electrode pair 21 includes a first electrode 211 and a second electrode 212. The first electrode 211 is connected to the first semiconductor layer 202, and the second electrode 212 is connected to the second semiconductor layer 203. As shown in FIG. 2, in the embodiment, the first electrode 211 and the second electrode 212 are disposed on the opposite sides of the photoelectric conversion element 20 in a screen printing manner. In addition, referring to FIG. 3, the photoelectric conversion device 2 of the present embodiment may further include an anti-reflection layer 23 disposed on the second semiconductor layer 203, and more specifically, for example, but not limited to, a physical gas phase. Depositing on the second semiconductor layer 203 by means of physical vapor deposition and physical vapor deposition, that is, coating the antireflection layer 23 on the light incident surface of the photoelectric conversion device 2 to reduce incident light. The reflection further increases the photoelectric conversion efficiency of the photoelectric conversion device 2. The material of the anti-reflection layer 23 includes tantalum nitride. As described above, the photoelectric conversion device 2 of the present embodiment utilizes the purity of the 6th, and ranges from 95% to 99.99999% of the substrate 201, which is compared with the conventional thin film type solar cell. It has a good matching degree with the first semiconductor layer 2〇2, and since the low-purity germanium material is used for beauty, the county has a lower cost and a lighter material than the solar cell using the industrial germanium wafer as the substrate. The advantages obtained. Referring to Fig. 4, a photoelectric conversion element 30 according to a second embodiment of the present invention comprises a lithography substrate 3, a first semiconductor wafer, and a second semiconductor layer 3?. 11 1296859 wherein the purity of the crucible in the crucible substrate 301 is 95% or more. In the present embodiment, the purity of the crucible may range from 95% to 99.99999%. The first semiconductor layer 302 and the second semiconductor layer 303 are sequentially disposed on the germanium substrate 301. The photoelectric conversion element 30 of the present embodiment may further include a barrier layer 32 and an anti-reflection layer 33. The arrangement relationship, structural features, material properties, and functional characteristics of the ytterbium substrate 301, the first semiconductor layer 302, the second semiconductor layer 303, the barrier layer 32, and the anti-reflective layer _33 of the photoelectric conversion element 3A of the present embodiment are as follows. The first embodiment is described by the same elements and will not be described here. - Three Embodiments Referring to Fig. 5, a substrate 41' for a photoelectric conversion element according to a third embodiment of the present invention comprises a hair substrate. Wherein, the stone substrate may be a tantalum powder or a tantalum block to form the substrate 41 of the present embodiment by casting, and the purity of the tantalum in the tantalum substrate is 95% or more. In the present embodiment, the purity of Shi Xi may range from 95% to 99.99999%. The substrate 41 of this embodiment further includes a barrier layer 42 disposed on the ruthenium substrate. The ruthenium substrate and the barrier layer 42 of the substrate 41 of the present embodiment are applied to the slab substrate 201 and the barrier layer 22 of the first embodiment, and the structural features, material properties and functional features thereof are as described in the first embodiment. As described in the example, it will not be described again. Fourth Embodiment Referring to FIG. 6, a photoelectric device 1296859 according to a fourth embodiment of the present invention provides a substrate, and a method for manufacturing the conversion device includes the following steps: the purity is greater than or equal to 95% (S1) Forming a first semiconductor layer (S2) on the germanium substrate, forming a second semiconductor layer (S3) on the first semiconductor layer, and providing a first electrode and a second electrode respectively connecting the first layer and the second layer Second semiconductor layer (S4) 0 First, the Shixi substrate is prepared by vacuum-bonding the Shixia material to a stone block, and then cutting the germanium block by, for example, wire sawing. Among them, the material can be a low-purity material with a purity range of 95%·99.99999%, and the type of the stone material can be a powder or a stone block, and the thickness ranges from 250 to 300.夕 substrate. In the step S2, the manufacturing method of the present embodiment is further included in the Shi Xiji barrier layer SU, which is a thermal composite technique for the barrier layer to be 歹1_11, nitrogen cut or carbon cut. The plate f and the thickness of the barrier layer are in the range of m to Zheng m. In addition, the charge transport path of the device is 'the barrier layer is -porous: =1. Here, the powder of the barrier layer material is used to control the powder of the barrier material f. Grain County said 'the material of the barrier layer; the W wire system is 0.3 times to 0.7 times its thickness, that is, the particle size range can be bound to 35" between the melons, so that the porosity of the barrier layer falls between 20% and 70%. Scope - After the operation of the half-layer barrier layer, the thermal spray technique is also used to form the ninth layer; on the barrier layer, the first semiconductor layer and the barrier layer are formed for the optimum interface bonding property. The thermal spraying system 13 1296859 is disposed in the same process environment. The material of the first semiconductor layer of the embodiment may be a purity range of 99.999999% to 99.999999999% or a powder of, for example, boron is formed to form a P type. The semiconductor layer (shown in FIG. 2), of course, the p-type semiconductor layer is merely an example and is not limited thereto. • As described above, in the present embodiment, powder particles for controlling the material of the second semiconductor layer are used. Diameter, thermal spray system operating temperature, pressure and time, etc. The number 'adjusts the thickness of the first semiconductor layer, wherein the thickness of the first semiconductor layer ranges from 20/m to 150/m. Here, the diameter of the material of the first semiconductor layer ranges from the thickness of the first semiconductor. The 粉.〇1 times to 0.3 times', that is, the powder diameter range is between 0.2//m and 45/zm. After the step S2, the manufacturing method of the embodiment further includes a recrystallization program S21 to make the first The crystal grains of the semiconductor layer are larger, and the electron transfer efficiency is increased. In this embodiment, the recrystallization process includes instantaneous heating by a laser or Rapid Thermal Annealing (RTA), the first semiconductor layer. At a temperature, the first semiconductor layer is further cooled, wherein the temperature ranges from 1000 ° C to 1500 ° C. Here, the pore layer of the barrier layer can provide a seed crystal during the recrystallization process to make the tissue denser, wherein The grain size (5) of a conductive layer and the porosity (v) of the perforation of the barrier layer are in accordance with (5=n〇)1/3, wherein η=0·3~1.5. In step S3, the second The semiconductor layer can be formed on the first semiconductor layer by, for example, diffusion or ion implantation. Forming a junction to serve as a photoelectric conversion active region. In this embodiment, the material of the second semiconductor layer may be formed by doping a powder of, for example, phosphorus, to form an n-type semiconductor layer (as shown in FIG. 2, 1296859), of course, The n-type semiconductor layer is merely an example, and is not limited thereto. - After the step S3, the manufacturing method of the embodiment further includes forming an anti-reflection layer S31 on the second semiconductor layer, which may be, for example but not limited to, physics. It is deposited on the second half and the conductor layer by means of physical vapor deposition and physical vapor deposition. The material of the anti-reflection layer contains tantalum nitride. In step S4, the first electrode or the second electrode is connected to the first semiconductor layer and the second semiconductor layer by, for example, a screen printing method. [Embodiment 5] Please refer to FIG. 7 , a manufacturing method of a photoelectric conversion element according to a fifth embodiment of the present invention, which comprises the steps of: providing a germanium substrate with a purity of 95% or more (S1) And forming a first semiconductor layer (S2) on the germanium substrate and forming a second semiconductor layer (S3) on the first semiconductor layer. In this embodiment, as described above, before step S2, further comprising _ forming a barrier layer S11 over the substrate, in step S2, and thereafter, further comprising: a recrystallization process S21, and Step S3, after that, further comprises forming an anti-reflection layer S31 on the second semiconductor layer. Since the steps SI, S11, S2, S21, S3, and S31' of the embodiment are as described in the same steps of the fourth embodiment, they are not described herein. In summary, a photoelectric conversion device, a photoelectric conversion element, a substrate thereof, and a manufacturing method according to a preferred embodiment of the present invention utilize a germanium substrate assembly optical conversion element having a purity of 95% or more, wherein the first semiconductor layer And the second semiconductor layer is sequentially disposed on the germanium substrate, and the conventional substrate and the first semiconductor layer have a good lattice matching degree because the germanium substrate 15 1296859 is replaced by a conventional glass or metal substrate, for example, A phenomenon in which the semiconductor layers are easily peeled off, thereby improving the photoelectric conversion efficiency and the service life of the photoelectric conversion device. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the present invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a conventional solar cell; FIG. 2 and FIG. 3 are a set of schematic views showing an optical conversion device according to a first embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5 is a schematic view showing a substrate for an optical conversion element according to a third embodiment of the present invention; FIG. 6 is a view showing a fourth embodiment of the present invention; A schematic flowchart of a method of manufacturing a photoelectric conversion device; and FIG. 7 is a flow chart showing a method of manufacturing a photoelectric conversion element according to a fifth embodiment of the present invention. DESCRIPTION OF REFERENCE NUMERALS: solar cell substrate 10 1296859 11 pn semiconductor 12 anti-reflection layer 13 metal electrode pair 2 photoelectric conversion device 20 photoelectric conversion element 201 矽 substrate 202 first semiconductor layer 203 203 second semiconductor layer 21 electrode pair 211 One electrode 212 second electrode 22 barrier layer 23 anti-reflection layer 30 photoelectric conversion element 301 矽 substrate » 302 first semiconductor layer 303 second semiconductor layer 32 barrier layer 33 anti-reflection layer 41 substrate 42 barrier layer S bs, S2, S21 S3, S31, S4 A flow of a method for manufacturing a photoelectric conversion device according to a fourth embodiment of the present invention, S11, S2', S21, S3', S31', and a fifth embodiment of the present invention Flow 18 of a method of manufacturing a photoelectric conversion element

Claims (1)

1296859 97年I月]4日補充修正修正頁 nTBinnnr 麵,,「,.搬儿 4r, , _ 9啤’月/疒輯侵)正替換頁卒 十、申請專利範圍: 1、一種光電轉換裝置,包含: 一光學轉換元件,其係包含一矽基板、一阻隔層、一 第一半導體層及一第二半導體層,該矽基板中矽之 純度係大於等於㈣,該第一半導體層係設置於該 矽基板之上,且該阻隔層設置於該矽基板與該第一1296859 In the month of January, 1997, the supplementary correction page nTBinnnr face, ",. moving 4r, , _ 9 beer 'month / 疒 侵 invasion) is replacing the page 10, the scope of patent application: 1, a photoelectric conversion device The method includes: an optical conversion element comprising a germanium substrate, a barrier layer, a first semiconductor layer and a second semiconductor layer, wherein the germanium has a purity of greater than or equal to (4), the first semiconductor layer is disposed Above the germanium substrate, and the barrier layer is disposed on the germanium substrate and the first 半導體層之間,該第二半導體層係設置於該第—半 導體層上;以及 -電極對,其係包括―第—電極與—第二電極,該第 -電極係與該第-半導體層相連結,該第二電極係 與6亥弟一半導體層相連結。 7 2、 如申請專利範圍第丨項所述之光電轉換裝置,其中該 矽基板之厚度範圍係為25〇//m至3〇〇//m。 ^ 3、 如申請專利範圍第丨項所述之光電轉換裝置,其中該 阻隔層之材質係選自氧化矽、氮化矽或碳化矽。 4、 如申請專利範圍第1項所述之光電轉換裝置,其中該 阻隔層之厚度範圍係為10//m至50/zm。 ^ 5、 如申請專利範圍第1項所述之光電轉換裝置,其中該 阻隔層係為一多孔結構,其係具有複數個穿孔。 6、 如申請專利範圍第5項所述之光電轉換裝置,其中該 阻隔層之穿孔的孔隙度係為20%至70%。 7、 如申請專利範圍第5項所述之光電轉換裝置,其中該 阻隔層之材質的粒徑範圍係為該阻隔層之厚度的〇 3 倍至0.7倍。 ^ 19 ^296859 8、 如申請真剎狄闰外 97年1月丨4曰補充修正修正頁 第it :弟5項所述之光電轉換裝置,其中該 隙产广晶粒大小(職阻隔層之穿孔的孔 又ν )關係係符合下列方程式: h心)1/3,nms。 9、 亡申請專利範圍第i項所述之光電轉換裝置,其中該 弟—半導體層之厚度範圍係為·瓜至15〇_。 =請專利範圍第1項所述之光電轉換裝置,其中該Between the semiconductor layers, the second semiconductor layer is disposed on the first semiconductor layer; and the electrode pair includes a first electrode and a second electrode, and the first electrode is opposite to the first semiconductor layer The second electrode is connected to the semiconductor layer. The photoelectric conversion device of claim 2, wherein the thickness of the substrate is in the range of 25 Å/m to 3 Å/m. The photoelectric conversion device of claim 2, wherein the material of the barrier layer is selected from the group consisting of ruthenium oxide, tantalum nitride or tantalum carbide. 4. The photoelectric conversion device of claim 1, wherein the barrier layer has a thickness ranging from 10/m to 50/zm. The photoelectric conversion device of claim 1, wherein the barrier layer is a porous structure having a plurality of perforations. 6. The photoelectric conversion device of claim 5, wherein the perforation of the barrier layer has a porosity of from 20% to 70%. 7. The photoelectric conversion device of claim 5, wherein the material of the barrier layer has a particle size ranging from 〇3 to 0.7 times the thickness of the barrier layer. ^ 19 ^296859 8, such as the application of the real brake Di 闰 97 97 97 97 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 曰 : : : : : : : : : : : : 弟 弟 弟 弟 弟 弟 弟 弟The perforated hole ν) relationship is in accordance with the following equation: h heart) 1/3, nms. 9. The photoelectric conversion device of claim i, wherein the thickness of the semiconductor layer is from melon to 15 〇. = The photoelectric conversion device of the first aspect of the patent, wherein 第一半導體層之材質的粉徑範圍料該第—半導體 層之厚度的〇·〇1倍至〇·3倍。 11 =申請專利範圍第丨項所述之光電轉換裝置,其中該 第迅極與5亥第一電極係設置於該光電轉換元件之 .相對兩侧' ' 12、如申請專利範圍第i項所述之光電轉換裝置,其中該 光電轉換元件更包含—抗反射層,其係設置於該第二 半導體層之上。 13如申明專利範圍第12項所述之光電轉換裝置,其中 該抗反射層之材質係包含氮化矽。 14、 如申請專利範圍第1項所述之光電轉換裝置,其中該 矽基板中矽之純度範圍係為95%_99.99999%。 15、 一種光電轉換元件,包含: 一石夕基板’該發基板中;5夕之純度係大於等於95〇/〇 ; 一阻隔層,其係設置於該矽基板上; 一第一半導體層,其係設置於該阻隔層上;以及 一第二半導體層,其係談置於該第一半導體層上。 20 1296859 97年1月14日補充修正修正頁 16、 如中請專利範圍第15項所述之光電轉換元件,其中 該石夕基板之厚度範圍係為:刈“㈤至3〇〇//m。 17、 如ΐ請專利範圍第15項所述之光電轉換元件,其中 該阻隔層之材質係選自氧化矽、氮化矽或碳化矽。 18、 如申請專利範圍第15項所述之光電轉換元件,其中 該阻隔層之厚度範圍係為1〇//111至5〇//m。 /、 如申明專利範圍第15項所述之光電轉換元件,其中 该阻隔層係為一多孔結構,其係具有複數個穿孔。 如申明專利範圍第19項所述之光電轉換元件,其中 &quot;亥阻1^層之穿孔的孔隙度係為20%至70%。 21、如申請專利範圍第19項所述之光電轉換元件,其中 &quot;亥阻隔層之材質的粒徑範圍係為該阻隔層之厚度的 〇·3倍至〇·7倍。 ^ 如申印專利範圍第19項所述之光電轉換元件,其中 &quot;亥第半導體層之晶粒大小(占)與該阻隔層之穿孔的 孔隙度(2^)關係係符合下列方程式: “詞1’3,η=〇·3〜15。 23、 如=請專利範圍第丨5項所述之光電轉換元件,其中 該第一半導體層之厚度範爵係為2〇//111至15〇#历。 24、 2請專利_第15項所述之光電轉換元件,其中 該第一半導體層之材質的粉徑範圍係 體層之厚度的0.01倍至。.3倍。 弟+V 25、 =中請專利範圍帛.15項所述之光電轉換元件,更包 含一抗反射層,其係設置於該第二半導體層之上。 21 !296859 97年1月14日補充修正修正頁 26、七由 · 97年11月14曰補充 ^申請專利範圍第25項所述之光電轉換元件 D、-抗反射層之材質係包含氮化矽。 =申請專利範圍第15項所述之光電轉換元件 28、^板中矽之純度範圍係為95%_99.99999%。 一種光電轉換元件用之基板,包含·· 矽基材,該矽基材中矽之的純度係大於等於95% · 以及 ’ Μ 一咀隔層,其係設置於該矽基材上。 如申請專利範圍第28項所述之基板,其中該矽基本 之厚度範圍係為250 // m至300 // m。 如申請專鄕目第28項所狀基板,其巾該阻隔力 之材貝係選自氧化矽、氮化矽或碳化石夕。 如申請專目第28項所述之基板,其巾該随隔^ 之厚度範圍係為l〇/zm至50/zm。 同丨 =請專利範圍第28項所述之基板,其中該阻隔^ ’、、、、多孔結構,其係具有複數個穿孔。 =請專利範_ 32賴述之基板,其巾心且⑻ 牙孔的孔隙度係為20%至70%。 4、如申請專利範圍第3 2項所述之基板,其^ s 1材質的粉徑範固係為該阻隔層之厚度的0.3倍至: ^申請專利範®第28項所述之基板,其巾該 中矽之純度範圍係為95%-99.99999%。 4 —種光電轉換元件之製造方法,其係包含下歹㉘驟 其中 該石夕 30 31 32 33 35 22 36 1296859 97年1月14日補充修正修正頁 提供一矽基板,其矽之純度係大於等於95% ; 於該矽基板上形成一阻隔層; 於該阻隔層上形成一第一半導體層;以及 於該第一半導體層上形成一第二半導體層。 37、 如申請專利範圍第36項所述之製造方法,其中該石夕 基板係將矽材料真空鑄造成矽晶塊,並經由切割而 成。 38、 如申請專利範圍第36項所述之製造方法,其中該矽 基板之厚度範圍係為250// m至300 β m。 39、 如申請專利範圍第36項所述之製造方法,其中該矽 基板中矽之純度範圍係為95%_99.99999%。 40、 如申請專利範圍第36項所述之製造方法,其中該阻 隔層係以熱喷塗技術形成於該紗基板上。 41、 如申請專利範圍第36項所述之製造方法,其中該阻 隔層之材質係選自氧化矽、氮化矽或碳化矽。 42、 如申請專利範圍第36項所述之製造方法,其中該阻 隔層之厚度範圍係為10//Π1至50/zm。 43、 如申請專利範圍第36項所述之製造方法,其中該阻 隔層之材質的粒徑範圍係為該阻隔層之厚度的0.3倍 至0.7倍。 44、 如申請專利範圍第36項所述之製造方法,其中該阻 隔層之孔隙度範圍係為20%至70%。 45、 如申請專利範圍第36項所述之製造方法,其中該第 一半導體層係以熱喷塗技術形成於該矽基板之上。 23 !296859 45 97年1月14曰補充修正修正頁 二申請專利範圍S 36工頁所述之製造方法,其中該第 〇 —半導體層之厚度範圍係為,㈣至請㈣。 ^申請專利範圍第36項所述之製造方法,其中該第 -半導體層之材質的粉徑範圍係為該第 之厚度的0.01倍至0.3倍。 曰 ^申4專利範圍第36項所述之製造方法,其中於該 第-半導體層形成之後更包含—再結晶程序。 、:申曰請專利範圍第48項所述之製造方法,其中該再 、‘晶程序係包含瞬間加熱該第一半導體層至一溫 度,及冷卻該第一半導體層。 如申請專利範圍第49項所述之製造方法,其中該溫 度範圍係為1〇〇〇。(3至15〇(rc。 如申請專利範圍第36項所述之製造方法,其中該半導體層之晶粒大小⑷與該阻隔層之穿孔的孔隙 度ο)關係係符合下列方程式: 5 二心)1' η=0·3〜1.5。 如申—請專利範圍第36項所述之製造方法,更包含於 §玄第二半導體層之上形成一抗反射層。 、 如申請專利範圍第52項所述之製造方法,其中 反射層之材質係包含氮化矽。 ^ =光電轉換裝置之製造方法,其係包含下列步驟: Μ、一石夕基板,其石夕之純度係大於等於95%; 於該矽基板占形成一阻隔層; 50 51 52 53 於該阻隔層上形成一第一半導 體層 24 54 1296859 97年1月14日補充修正修正頁 於該第一半導體層上形成一第二半導體層;以及 設置一第一電極與一第二電極分別連結該第一半導 體層與該第二半導體層。 55、 如申請專利範圍第54項所述之製造方法,其中該矽 * 基板係將矽材料真空鑄造成矽晶塊,並經由切割而 成。 56、 如申請專利範圍第54項所述之製造方法,其中該矽 基板之厚度範圍係為250//m至300//m。 _ 57、如申請專利範圍第54項所述之製造方法,其中該矽 基板中矽之純度範圍係為95%-99.99999%。 58、 如申請專利範圍第54項所述之製造方法,其中該阻 隔層係以熱喷塗技術形成於該矽基板上。 59、 如申請專利範圍第54項所述之製造方法,其中該阻 隔層之材質係選自氧化矽、氮化矽或碳化矽。 60、 如申請專利範圍第54項所述之製造方法,其中該阻 血 隔層之厚度範圍係為10/zm至50//m。 ^ 61、如申請專利範圍第54項所述之製造方法,其中該阻 . 隔層之材質的粉徑範圍係為該阻隔層之厚度的0.3倍 Λ \ 至0.7倍。 62、 如申請專利範圍第54項所述之製造方法,其中該阻 隔層之孔隙度範圍係為20%至70%。 63、 如申請專利範圍第54項所述之製造.方法,其中該第 一半導體層係以熱喷塗技術形成於該矽基板之上。 64、 如申請專利範圍第54項所述之製造方法,其中該第 25 仫观59 一半導體層之厚度範圍得 97年1月μ日補充修正修正頁 65、如申喑真系為20“m至l50//m。 -半導L 54項所述之製造方法,其中該第 之厚度的_倍至〇·3倍。⑷弟-丰導體層 如申凊專利範圍第54項 筮少、首 、斤处之製造方法,其中於兮 弟一 +導體層形成之後更包含 ,、中於遠 67、如由往*』丨μ 丹、、、口日日矛王序。 。專利範圍第66項所 結晶程序係包含瞬間加執 丨思、中及再 68 度,及冷卻該第-半導體層4 —+導體層至一溫 69 =請專利範圍第67項所述之製造方法,、、田 度軏圍係為1000。〇至15〇(rc。 、 皿 ==專利範圍第54項所述之製造方法,其中該第 70 度㈤關係係符合下歹J程)式、:亥阻隔層之牙孔的孔隙 5 )1/3, n=〇.3〜L5。 更包含於 其中該抗 其中該第 71 如申請專利範圍第54項所述之製造方法 該第二半導職之均成—歧 72 如申請專利範圍第70項所述之製造方 反射層之材質係包含氮化石夕。 如申請專利範圍第54項所述之製造方法 一電極或該第二電極係以網印方式形成。 26The material of the first semiconductor layer has a powder diameter ranging from 1 to 3 times the thickness of the first semiconductor layer. 11: The photoelectric conversion device of claim 2, wherein the first electrode and the 5th first electrode are disposed on opposite sides of the photoelectric conversion element ''12, as claimed in item i of the patent application scope In the photoelectric conversion device, the photoelectric conversion element further includes an anti-reflection layer disposed on the second semiconductor layer. The photoelectric conversion device according to claim 12, wherein the material of the anti-reflection layer comprises tantalum nitride. 14. The photoelectric conversion device of claim 1, wherein the purity of the crucible in the crucible substrate is 95% to 99.99999%. 15. A photoelectric conversion element comprising: a lithographic substrate in the substrate; a purity of 5 大于 or more; a barrier layer disposed on the ruthenium substrate; a first semiconductor layer; And disposed on the barrier layer; and a second semiconductor layer disposed on the first semiconductor layer. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The photoelectric conversion element according to claim 15, wherein the material of the barrier layer is selected from the group consisting of ruthenium oxide, tantalum nitride or tantalum carbide. 18. The photoelectric method according to claim 15 The conversion element, wherein the barrier layer has a thickness ranging from 1 〇//111 to 5 〇//m. The photoelectric conversion element according to claim 15, wherein the barrier layer is a porous structure. The photoelectric conversion element according to claim 19, wherein the porosity of the perforation of the layer is 20% to 70%. The photoelectric conversion element according to item 19, wherein the material of the "hi-blocking layer" has a particle size ranging from 〇·3 times to 〇·7 times the thickness of the barrier layer. ^ As described in claim 19 of the patent scope Photoelectric conversion element, wherein the grain size of the semiconductor layer Accounting) the porosity of the perforated barrier layers (2 ^) meet the following relation equation-based: "Words 1'3, η = 3~15-square. The photoelectric conversion element according to Item 5, wherein the first semiconductor layer has a thickness of 2 〇//111 to 15 〇# calendar. The photoelectric conversion element according to Item 15, wherein the material of the first semiconductor layer has a powder diameter ranging from 0.01 times the thickness of the system layer. .3 times. The photoelectric conversion element of the above-mentioned patent range 帛.15, further includes an anti-reflection layer disposed on the second semiconductor layer. 21 !296859 Supplementary Amendment Amendment Page 26 of January 14, 1997, VII, · November, 2014, 曰 ^ ^ 申请 申请 申请 申请 申请 申请 申请 申请 申请 申请 申请 申请 申请 申请 申请 光电 光电 光电 光电 光电 光电 光电 光电 光电Hey. = The photoelectric conversion element according to item 15 of the patent application scope has a purity range of 95% _99.99999%. A substrate for a photoelectric conversion element comprising: a ruthenium substrate having a purity of 95% or more in the ruthenium substrate, and a 咀 咀 a barrier layer provided on the ruthenium substrate. The substrate of claim 28, wherein the crucible has a thickness ranging from 250 // m to 300 // m. For the application of the substrate of the special item No. 28, the material of the barrier material is selected from the group consisting of ruthenium oxide, tantalum nitride or carbon carbide. For the substrate according to item 28 of the special item, the thickness of the towel may range from 1 〇/zm to 50/zm. The substrate of claim 28, wherein the barrier is a porous structure having a plurality of perforations. = Please refer to the patent _32 substrate, its core and (8) the porosity of the dental hole is 20% to 70%. 4. The substrate according to claim 3, wherein the powder diameter of the material of the s 1 material is 0.3 times the thickness of the barrier layer to: ^ The substrate of the patent application No. 28, The purity of the middle of the towel is 95%-99.99999%. (4) A method for manufacturing a photoelectric conversion element, comprising: a step of 28, wherein the stone is provided by a supplementary correction sheet, and the purity of the crucible is greater than Equal to 95%; forming a barrier layer on the germanium substrate; forming a first semiconductor layer on the barrier layer; and forming a second semiconductor layer on the first semiconductor layer. The manufacturing method according to claim 36, wherein the stone substrate is vacuum casted into a germanium block and formed by cutting. 38. The method of manufacture of claim 36, wherein the thickness of the ruthenium substrate ranges from 250//m to 300 β m. 39. The method of claim 36, wherein the purity of the crucible in the crucible substrate is 95% to 99.99999%. 40. The method of manufacture of claim 36, wherein the barrier layer is formed on the substrate of the yarn by thermal spraying. The manufacturing method according to claim 36, wherein the material of the barrier layer is selected from the group consisting of cerium oxide, cerium nitride or cerium carbide. The manufacturing method according to claim 36, wherein the barrier layer has a thickness ranging from 10//Π1 to 50/zm. The manufacturing method according to claim 36, wherein the material of the barrier layer has a particle diameter ranging from 0.3 times to 0.7 times the thickness of the barrier layer. 44. The method of manufacture of claim 36, wherein the barrier layer has a porosity ranging from 20% to 70%. 45. The method of manufacturing of claim 36, wherein the first semiconductor layer is formed on the germanium substrate by thermal spraying techniques. 23 !296859 45 January 14, 1997 Supplementary Amendment Amendment Page 2 The manufacturing method described in the patent application S 36, wherein the thickness range of the semiconductor layer is (4) to (4). The manufacturing method according to claim 36, wherein the material of the first-semiconductor layer has a powder diameter ranging from 0.01 times to 0.3 times the thickness of the first portion. The manufacturing method of claim 36, wherein the forming of the first semiconductor layer further comprises a recrystallization procedure. The manufacturing method of claim 48, wherein the re-sequence includes sequentially heating the first semiconductor layer to a temperature and cooling the first semiconductor layer. The manufacturing method according to claim 49, wherein the temperature range is 1 Torr. (3 to 15 〇 (rc. The manufacturing method according to claim 36, wherein the grain size of the semiconductor layer (4) and the porosity of the perforated layer of the barrier layer ο) is in accordance with the following equation: 5 ) 1' η=0·3~1.5. The manufacturing method described in claim 36, further comprising forming an anti-reflection layer on the second semiconductor layer. The manufacturing method according to claim 52, wherein the material of the reflective layer comprises tantalum nitride. ^ = manufacturing method of photoelectric conversion device, comprising the following steps: Μ, a stone substrate, the purity of the stone is greater than or equal to 95%; forming a barrier layer on the substrate; 50 51 52 53 in the barrier layer Forming a first semiconductor layer 24 54 1296859 A supplemental correction page of January 14, 1997 forms a second semiconductor layer on the first semiconductor layer; and a first electrode and a second electrode are respectively coupled to the first semiconductor layer a semiconductor layer and the second semiconductor layer. 55. The method of manufacture of claim 54, wherein the substrate is vacuum cast into a germanium block and formed by cutting. The manufacturing method according to claim 54, wherein the thickness of the ruthenium substrate ranges from 250/m to 300/m. The manufacturing method according to claim 54, wherein the purity of the ruthenium in the ruthenium substrate ranges from 95% to 99.99999%. 58. The method of manufacture of claim 54, wherein the barrier layer is formed on the tantalum substrate by thermal spraying techniques. The manufacturing method according to claim 54, wherein the material of the barrier layer is selected from the group consisting of cerium oxide, cerium nitride or cerium carbide. 60. The method of manufacture of claim 54, wherein the barrier layer has a thickness ranging from 10/zm to 50/m. The manufacturing method according to claim 54, wherein the material of the barrier layer has a powder diameter ranging from 0.3 times to 0.7 times the thickness of the barrier layer. 62. The method of manufacture of claim 54, wherein the barrier layer has a porosity ranging from 20% to 70%. 63. The method of manufacture of claim 54, wherein the first semiconductor layer is formed on the germanium substrate by thermal spraying techniques. 64. The manufacturing method according to claim 54, wherein the thickness of the semiconductor layer of the 25th view 59 is obtained from the January 19th supplementary correction page 65, and if the application is 20"m The method of manufacturing the semiconductor of the above-mentioned, wherein the thickness of the first thickness is _ times to 〇·3 times. (4) The conductor layer of the dian-feng is as small as the 54th item of the patent scope of the application. The manufacturing method of the jinji, which is further included after the formation of the conductor layer of the 兮弟一+, 中中远67, as the * 丨 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The crystallization process includes an instant addition, a neutralization, a further 68 degrees, and cooling of the first-semiconductor layer 4 - a conductor layer to a temperature 69 = the manufacturing method described in the 67th patent range,軏 为 1000 rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc The pores of the pores 5)1/3, n=〇.3~L5 are further included in the resistance, wherein the 71st is as in the 54th article of the patent application scope. The manufacturing method of the second half of the guide is as follows: the material of the manufacturing reflective layer according to claim 70 of the patent application scope includes the nitride nitride. The manufacturing method described in claim 54 The electrode or the second electrode is formed by screen printing.
TW95102948A 2006-01-25 2006-01-25 Photovoltaic device, photovoltaic element and substrate and manufacturing method thereof TWI296859B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95102948A TWI296859B (en) 2006-01-25 2006-01-25 Photovoltaic device, photovoltaic element and substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95102948A TWI296859B (en) 2006-01-25 2006-01-25 Photovoltaic device, photovoltaic element and substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200729527A TW200729527A (en) 2007-08-01
TWI296859B true TWI296859B (en) 2008-05-11

Family

ID=45068896

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95102948A TWI296859B (en) 2006-01-25 2006-01-25 Photovoltaic device, photovoltaic element and substrate and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI296859B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478360B (en) * 2008-04-25 2015-03-21 Semiconductor Energy Lab Method for manufacturing photoelectric conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090293954A1 (en) * 2008-05-30 2009-12-03 Semiconductor Energy Laboratory Co., Ltd. Photoelectric Conversion Device And Method For Manufacturing The Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478360B (en) * 2008-04-25 2015-03-21 Semiconductor Energy Lab Method for manufacturing photoelectric conversion device

Also Published As

Publication number Publication date
TW200729527A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
TWI423462B (en) Method of manufacturing back electrode of silicon bulk solar cell
US9257284B2 (en) Silicon heterojunction solar cells
US8809097B1 (en) Passivated emitter rear locally patterned epitaxial solar cell
JP2008053731A (en) Nano-wire in thin film silicon solar cell
JP2009164544A (en) Passivation layer structure of solar cell, and fabricating method thereof
US8110419B2 (en) Process of manufacturing photovoltaic device
TW200937502A (en) Method for making solar cells having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation in a furnace having doped sources
TW200937645A (en) Solar module with solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
Tao et al. 730 mV implied Voc enabled by tunnel oxide passivated contact with PECVD grown and crystallized n+ polycrystalline Si
TW201007958A (en) Photovoltaic cell comprising a thin lamina having a rear junction and method of making
TWI509826B (en) Back-contact solar cell and manufacturing method thereof
US20140014169A1 (en) Nanostring mats, multi-junction devices, and methods for making same
TW200952051A (en) Backside electrode layer and fabricating method thereof
TWI296859B (en) Photovoltaic device, photovoltaic element and substrate and manufacturing method thereof
TWI376813B (en) Solar cell with backside passivation
JP2006222272A (en) Photosensor
KR20100094224A (en) Solar cell and fabrication method thereof
KR101484620B1 (en) Silicon solar cell
JP5669228B2 (en) Multi-junction solar cell and manufacturing method thereof
TW200910430A (en) Diamond-like carbon electronic devices and methods of manufacture
JP5224470B2 (en) Photoelectric conversion member
US8148189B2 (en) Formed ceramic receiver element adhered to a semiconductor lamina
TW201222639A (en) Method for producing a semiconductor device and a semiconductor device
TWI469377B (en) Solar cell and fabricating method thereof
TW201143107A (en) CuInSe (CIS) thin film solar cell and method for making the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees