TWI296725B - An imaging optical lens - Google Patents

An imaging optical lens Download PDF

Info

Publication number
TWI296725B
TWI296725B TW95130680A TW95130680A TWI296725B TW I296725 B TWI296725 B TW I296725B TW 95130680 A TW95130680 A TW 95130680A TW 95130680 A TW95130680 A TW 95130680A TW I296725 B TWI296725 B TW I296725B
Authority
TW
Taiwan
Prior art keywords
lens
optical system
imaging
imaging according
following relationship
Prior art date
Application number
TW95130680A
Other languages
Chinese (zh)
Other versions
TW200811503A (en
Inventor
Hsiang Chi Tang
Chun Shan Chen
Original Assignee
Largan Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Largan Precision Co Ltd filed Critical Largan Precision Co Ltd
Priority to TW95130680A priority Critical patent/TWI296725B/en
Publication of TW200811503A publication Critical patent/TW200811503A/en
Application granted granted Critical
Publication of TWI296725B publication Critical patent/TWI296725B/en

Links

Landscapes

  • Lenses (AREA)

Description

' 1296725 八、發明說明: ' 【發明所屬之技術領域】 本發明係一光學系統,特別9共 寸另J疋才曰一種應用於照相手機的小型 化攝像用光學系統。 【先前技術】 最近幾年來,隨著手機、}日撼人+ 城相機的興起,小型化攝影鏡頭的需求 日漸提高,而一織影鏡頭的感光元件不外乎是⑽S或CCD兩 種,由於半導體製程技術的進步,使得感光元件的晝素面積縮小, 小型化攝影綱逐漸往高晝素領域發展,,對成像品質的要 求也日益增加。 習見的高解像力手機鏡頭,多採用前置細且為四牧式的透 鏡組’其中,f用的第—鏡片及第二鏡片常以二枚玻璃球面鏡互 * &而成為Doublet,用以消除色差,但此方法有其缺點: ^ /、,過多的玻璃球面鏡配置使得系統自由度不足,造成光 學系統全長不易縮短; 其一,玻璃鏡片黏合的製程不易,造成製造上的困難。 【發明内容】 為提升光學系統的成像品質,並有效縮短鏡組體積,本發明 提(、種由四牧透鏡構成之全新的光學系統,其要旨如下: 6 :1296725 種攝像用光料統,由四牧具祕力的鏡片所構成,由物 侧至像侧依序為: 具正屈折力的第一透鏡,其前表面為凸面,後表面為凹面, 且鏡片上設置有非球面; -、負屈折力的第一透鏡,其前表面曲率半徑為⑽,滿足—〇· 〇2 [1/_] < 1/R3 < 〇·22 [l/mm]的關係,其後表面為凹面,該第二 透鏡的色散魏⑽e Number)V2 < 4G,且其絲面、後表面皆 設置有非球面; /、正屈折力的第二透鏡,其前表面為凹面,後表面為凸面, 且其前表面、後表面皆設置有非球面; 再者為第四透鏡,其前表面為凸面,後表面為凹面,該第四 透鏡的焦距為f4,整體光學祕的焦距為f,兩者滿足f/f4 < 〇· j 的關係,其前表©、後表面找置有非球面,且後表面設置有反 曲點; 另设置一光圈,位於光學系統的物體侧與第二透鏡之間,用 於控制光學系統的亮度。 在本發明攝像用光學系統中,系統的屈折力主要由具正屈折力 第-透鏡提供,而具貞顺力的第二透鏡其功能解衡及修正系統 所產生的各項像差,第二透鏡的色散係數⑽e _ber)為^, 其滿足下記關係: ^ V2 < 40 〇 7 1296725 μ前述關係可以有效修正系統產生的色差,再者,使第二透鏡的 色散係數(Abbe number) V2滿足下記關係: V2 < 25 則可更進一步修正系統產生的色差,提高攝像用光學系統的解 此外’本發明攝像用光學系統的第一透鏡採用塑膠材質,並在 $片上設置有非球®,如此使得第一透鏡在提供屈折力的同時,更 多正本身所產生的像差。而為有效修正系統產生的像散,使第一 透鏡前表面曲率半徑R1需滿足下記關係式: R1 < 2. 〇 [_]。 —弟-透鏡具有強大的正屈折力,且光圈置於接近物侧處,這使 付弟-透鏡的曲率半徑以及鏡⑽大小皆變得很小,以傳統玻璃研 磨= 去將難哺造出上述的鏡片,因此,第一透鏡鏡片採用塑膠 材質,藉由射出成型的方式製作,可以用較低廉的成本生產高精密 度的鏡L攝像用光學系統的鏡面上設置非球面,非球面可以容易 製作成球面以外的形狀,獲得較多的控制變數,用以消減像差,進 而縮減鏡片使用的數目。 猎由第-透鏡提供光學系統主要的屈折力,並將光圈置於接近 物侧處,將使得攝像用光學⑽的出崎(紐pup⑴遠離成像 8 1296725 面,因此,先線將以接近垂直入射的方式入射在感光元件上, 為像侧的Tel_tnG舰,料,在第__面非球面上 设置有反曲點,將有效__視場的猶人射感光元件上的角 度;Telecentric特性對於時下目態電子感光元件的感光能力是極 為重要的’將使得電子感光元件_絲献提高,減少祕產生 暗角的可能性。 # 、本發明攝像用光學系統中,具正屈折力的第一透鏡,其折射率 為Ni,具負屈折力的第二透鏡,其折射率為N2,兩者滿足下記關 係: "'1296725 VIII. Description of the Invention: 'Technical Fields According to the Invention The present invention relates to an optical system, and in particular to an optical system for miniaturization of a camera phone. [Prior Art] In recent years, with the rise of mobile phones, Japanese and Japanese cameras, the demand for miniaturized photographic lenses has increased, and the photosensitive elements of a photographic lens are nothing more than (10)S or CCD. Advances in semiconductor process technology have led to a reduction in the area of the pixel of the photosensitive element, and the development of the miniaturized photographic class has gradually increased to the high-quality field, and the requirements for image quality have also increased. The high-resolution mobile phone lens that I have seen is mostly a front-mounted thin and four-grain lens group. Among them, the first lens and the second lens used by f are often double-glazed with two glass spherical mirrors to become a Doublet. Color difference, but this method has its shortcomings: ^ /,, too much glass spherical mirror configuration makes the system freedom is not enough, resulting in the optical system is not easy to shorten the total length; First, the glass lens bonding process is not easy, resulting in manufacturing difficulties. SUMMARY OF THE INVENTION In order to improve the imaging quality of an optical system and effectively shorten the volume of the lens group, the present invention provides a novel optical system composed of a four-grain lens, and the gist thereof is as follows: 6: 1296725 kinds of optical materials for imaging, The lens consists of the four animal husbandry secrets, from the object side to the image side: the first lens with positive refractive power, the front surface is convex, the back surface is concave, and the lens is provided with an aspheric surface; The first lens with negative refractive power has a radius of curvature of the front surface of (10), which satisfies the relationship of -〇· 〇2 [1/_] < 1/R3 < 〇·22 [l/mm], and the rear surface thereof is Concave surface, the dispersion of the second lens is V10 < 4G, and the surface of the silk and the back surface are provided with an aspherical surface; /, the second lens of positive refractive power, the front surface is concave and the rear surface is convex And the front surface and the rear surface are all provided with an aspherical surface; further, the fourth lens has a front surface which is convex, the rear surface is concave, the fourth lens has a focal length of f4, and the overall optical secret focal length is f, two The person satisfies the relationship of f/f4 < 〇· j, and the front table ©, the back surface is found Spherical, and the rear surface is provided with inflection points; the other is provided an aperture stop, and a second lens between the object side of the optical system, for controlling the brightness of the optical system. In the optical system for imaging of the present invention, the refractive power of the system is mainly provided by a positive lens having a positive refractive power, and the second lens having a smoothing function is functionally balanced and corrects various aberrations generated by the system, and second. The chromatic dispersion coefficient (10)e _ber) of the lens is ^, which satisfies the following relationship: ^ V2 < 40 〇7 1296725 μ The aforementioned relationship can effectively correct the chromatic aberration generated by the system, and further, the dispersion coefficient (Abbe number) V2 of the second lens satisfies The following relationship: V2 < 25 can further correct the chromatic aberration generated by the system, and improve the solution of the optical system for imaging. In addition, the first lens of the optical system for imaging of the present invention is made of a plastic material, and an aspherical® is placed on the film. This allows the first lens to provide more of the aberrations generated by itself while providing the refractive power. In order to effectively correct the astigmatism generated by the system, the curvature radius R1 of the front surface of the first lens needs to satisfy the following relationship: R1 < 2. 〇 [_]. - The lens - the lens has a strong positive refractive power, and the aperture is placed close to the object side, which makes the radius of curvature of the lens - lens and the size of the mirror ( 10 ) become very small, with traditional glass grinding = will be difficult to feed The above lens, therefore, the first lens lens is made of a plastic material, and is produced by injection molding, and can produce a high-precision mirror L camera optical system with an aspheric surface on the mirror surface at a relatively low cost, and the aspheric surface can be easily The shape is made outside the spherical surface, and more control variables are obtained to reduce the aberration, thereby reducing the number of lenses used. Hunting provides the main refractive power of the optical system by the first lens, and places the aperture close to the object side, which will make the imaging optics (10) out of the shovel (new pup (1) away from the imaging 8 1296725 surface, therefore, the first line will be close to normal incidence The method is incident on the photosensitive element, and the Tel_tnG ship on the image side is provided with an inflection point on the a-plane aspheric surface, which will effectively detect the angle on the photosensitive element of the U.S. field; the Telecentric characteristic is timely The photographic ability of the lower-state electronic photosensitive element is extremely important 'will make the electronic photosensitive element _ silk increase, reducing the possibility of secret vignetting. # 、, the optical system for imaging of the present invention, the first with positive refractive power a lens having a refractive index of Ni and a second lens having a negative refractive power having a refractive index of N2, both of which satisfy the following relationship: "

Nl > L54 呢 < 1.65。 前述關係可使攝像用光學系統獲得有效的屈折力,更進一步來 看’第-透鏡折射率N1及第二透鏡折射率N2,需滿足下記關係: • N1 < 1.60 N2 > 1.59 右第一透鏡的折射率高於上述之上限值,則不容易找到適合的 光學塑膠材質與光學系祕配,而若第二透綱折射率小於上述之 下限值,則其對像差的修正將較為困難。 具正屈折力的第三透鏡,其作用如同一場鏡(Field Lens), 可以使出射瞳(Exit Pupil)更加遠離成像面,而使其折射率N3滿 9 1296725 則第三透鏡將具有適切的屈 足下記關係式:1· 54 < N3 < 1· 6時, 折力。 包,整體光學系統焦 在第三透鏡後加入第四透鏡,其焦距為 距為f,使二者滿足下記關係式: f/f4 < 0· ;1。Nl > L54 < 1.65. The foregoing relationship can obtain an effective refractive power for the imaging optical system. Further, the 'first lens refractive index N1 and the second lens refractive index N2 are required to satisfy the following relationship: • N1 < 1.60 N2 > 1.59 Right first If the refractive index of the lens is higher than the above upper limit, it is not easy to find a suitable optical plastic material and an optical system. If the second transparent refractive index is less than the above lower limit, the aberration correction will be More difficult. A third lens with positive refractive power, acting like a field Lens, allows the exit pupil to be further away from the imaging surface, while having a refractive index N3 of 9 1296725, the third lens will have an appropriate flexion The following relationship: 1 · 54 < N3 < 1 · 6, when the folding force. The package, the integral optical system coke, is added to the fourth lens after the third lens, and its focal length is f, so that the two satisfy the following relationship: f/f4 <0·;1.

若第四透鏡屈折力為正,其作用為分配第三透鏡的正屈折 力’在負第二透鏡之後置人此㈣正透鏡,其功能為抑制各種像 差的產生,使光學糸統獲得更高的解像力; 若第四透鏡職力為負’則其與第三透鏡形成—正、—負的 Telqtoo結構’此優點為可以縮短光學系統的後焦距,降低攝像 用光學系統的高度。前述第四透鏡滿足下記關係式則更為理想·· f/f4<-1·〇。 心· 本發明控制第二透鏡前表面曲率半徑肋滿足下記關係式: —〇·〇2 [1/mm] < 1/R3 < 0.22 [Ι/mm]。 使1/R3大於上述之下限值,將有利於軸外像差的修正,若使 弟二透鏡前表面為凸面,此時1/R3〉〇,則對像差的修正將更為 理想’但若1/R3高於上述之上限值,m負第二透鏡的屈折力將過 大’使得光學系統的長度過長。 ° 隨著照相手機輕薄短小的趨勢,鏡頭的體積也越來越小,即 10 1296725 仍需滿足下 使如本發鴨_片透鏡組成的光學系統’其全長 記關係式·· Η < 6·1 [咖]。 再者’献下記關係式則更為理想:Η<5.〇 [咖] 第二透鏡焦距為, 攝像用光學系統中’第一透鏡焦距為, 整體光學系統焦距為f,滿足下記關係式: 〇·8 < f/fl < 1·6If the fourth lens has a positive refractive power, it acts to distribute the positive refractive power of the third lens. After the negative second lens, the (four) positive lens is placed, and its function is to suppress the generation of various aberrations, so that the optical system can be obtained more. High resolution; if the fourth lens is negative, it forms a positive and negative Telqtoo structure with the third lens. This has the advantage of shortening the back focus of the optical system and reducing the height of the optical system for imaging. It is more desirable that the fourth lens satisfies the following relationship: f/f4 < -1 · 〇. The present invention controls the curvature radius rib of the front surface of the second lens to satisfy the following relationship: - 〇 · 〇 2 [1/mm] < 1 / R3 < 0.22 [Ι / mm]. Making 1/R3 larger than the above lower limit will be beneficial to the correction of the off-axis aberration. If the front surface of the second lens is convex, then 1/R3>〇, the correction of the aberration will be more ideal' However, if 1/R3 is higher than the above upper limit, the refractive power of the m-negative second lens will be too large 'to make the length of the optical system too long. ° With the trend of thin and light camera phones, the volume of the lens is getting smaller and smaller, that is, 10 1296725 still needs to satisfy the optical system composed of the lens of the hair duck, which has a full-length relationship. Η < 6 · 1 [Caf]. Furthermore, it is more desirable to offer a relationship: Η<5.〇[咖] The focal length of the second lens is, in the optical system for imaging, the focal length of the first lens is, and the focal length of the overall optical system is f, which satisfies the following relationship: 〇·8 < f/fl < 1·6

〇·5 < |f/f2| < 〇.8。 提高第-透躺崎力,可以有效驗光料、_長度,但若 ^屈折力太大’將使得系統產生過A的高階像差,而具負屈折力的 弟-透鏡,負屈折力來自於呈凹面的後表面,其功料修正系統產 生的像i,但若其負屈折力太大,將使得光學系統的長度過長,而 &將胃和攝像用光學系統小型化的目標相違背。藉由上述關係式所 定義的範圍,可使本㈣在光學綱的體積和像差的修正中取得 衡。 攝像用光學系統中,第二透鏡的中心厚度⑶,第三透鏡與 第四透鏡之間的鏡間距T34,滿足下記關係式: CT2 < 0. 5 [mm] T34 < 0· 2 [mm]。 此關係式可以有效修正系統的像差,並且對降低光學系統的長 度有顯著的功效。 11 1296725 再者,滿足下記關係式則更為理想: CT2 < 0·4 [mm]。 攝像用光學系統中,包含有一紅外線濾、除濾、光片(IR Cut Filter)置於第四透鏡之後,其不影響系統的焦距。 本發明攝像用光學系統中,光學系統全長為Η,整體光學系統 § 焦距為f,使二者滿足下記關係式: 0·7 [mm] < H-f < 1· 2 [mm]; 則攝像用光學系統可以在小型化的前提下維持良好的解像力。 【實施方式】 本發明第一實施例請參閱第1圖,第一實施例之像差曲線請參 閱第2圖。 • 第一實施例的主要構造為:一攝像用光學系統,由四枚具屈折 力的鏡片所構成,由物侧至像側依序為: 具正屈折力的第一透鏡(1 0),其前表面(1 1)為凸面,後 表面(1 2)為凹面; 具負屈折力的第二透鏡(2 0 ),其前表面(2 1 )為凹面, 後表面(2 2)為凹面; 具正屈折力的第三透鏡(3 0 ),其前表面(3 1 )為凹面, 後表面(3 2)為凸面; 12 1296725 再者為具正屈折力的細透鏡(4Q),其面(4丄)為 凸面,後表面(4 2)為凹面; 另設置一光圈(5 〇),位於第一透鏡(1 〇 )之前,用於控制 光學系統的亮度; 另包含有一紅外線濾除濾光片(6〇) (IRCutFilter),置 於第四透鏡(4 0)之後,其不影響系統的焦距; 一成像面(7 0 ),位於紅外線濾除濾光片(6 〇)之後; 攝像用光學系統中,第二透鏡的色散係數(Abbe仙齡) V2:26· 6 ; 前述第-透鏡(1 Q )、第二透鏡(2 Q )、第三透鏡(3 ) • 及第四透鏡(40)採用塑膠材質,藉由射出成型的方式製作鏡片, 並於第-透鏡(1 0 )、第二透鏡(2 〇 )、第三透鏡(3 〇 )及第 四透鏡(4 0 )的各鏡面上設置非球面,另外於第四透鏡(4 〇乐) 的後表面(4 2)非球面上設置有反曲點,非球面曲線的方程式表 不如下· X(YMY/R)/G+ sqrt (1-(1+1〇*(Υ/Κ)2))+Α4*γ4+Α6*γ6+ 其中: X:鏡片的截面距離 13 1296725 γ:非球面曲線上的點距離光軸的高度 k:錐面係數 Α4 Αβ .......4阳、6階、......的非球面係數。 攝像用光學系統中,第—透鏡的折射率NW 543,第二透鏡 的折射率Ν2=1·606,而第三透鏡的折射率N3=1.53〇。 _ 第一透鏡的焦距為Π,第二透鏡的焦距為f2,第四透鏡的焦 距為f4 ’整體光學糸統焦距為f,其關係為:f/fK. Μ、| f/fg | =0·79、f/f4=0· 04 〇 第一透鏡前表面曲率半徑Rl=l· 75798 [麵],第二透鏡前表面 曲率半徑為 R3 ’ 則 l/Rg^-O· 〇1 [ 1/mm]。 Φ 攝像用光學系統中,光學系統全長Η=4· 95 [麵],第二透鏡的 中心厚度CT2=0· 429 [mm],第三透鏡與第四透鏡之間的鏡間距 Τ34=0·07 [mm]。 攝像用光學系統中,光學系統全長為Η,整體光學系統焦距為 f,其關係為·· H-f=l· 1 [_]。 第一實施例詳細的結構數據如同表一所示,其非球面數據如同 14 1296725 表二所示,其中,曲率半徑、厚度及焦距的單位為mm。 、外本發明第二實施例請參閱第3 ®,第二實施例之像差曲線請參 閱弟4圖。第二實施例的主要構造為:一攝像用光學系統,同樣由 四牧具屈折力的鏡片所構成,由物侧至像侧依序為: 具正屈折力的第一透鏡(1 0),其前表面(11)為凸面,後 表面(12)為凹面; 1 具負屈折力的第二透鏡(2 〇 ),其前表面(2 !)為凸面, 後表面(2 2)為凹面; 具正屈折力的第三透鏡(3 〇 ),其前表面(3丄)為凹面, 後表面(3 2)為凸面,; 再者為具負屈折力的第四透鏡(40),其前表面(41)為 凸面,後表面(4 2)為凹面; 另設置-光圈(5 0 ),位於第—透鏡(丄〇 )之前,用於控制 • 光學系統的亮度; 另包含有-紅外線·濾光片(6 〇) (IR加,置 於第四透鏡(4 0)之後,其不影響系統的焦距; 一成像面(7 〇),位於紅外線濾除濾光片(6 〇 )之後; 第二實施例攝像用光料财,第二透_色散係數(舰 Number) V2=23. 4 ; 第-透鏡(10)、第二透鏡(2Q)、第三麵(3〇)及第 15 1296725 四透鏡(4 Ο)採用塑膠材質, _ ^ . 、猎由射出成型的方式穿作鈐口 於弟-透鏡(1〇)、第二透 '衣作‘片,並 ^ Λ ΓΛ \ ^^0)、弟二透鏡(3 〇 )另 μ 透釦(40)的各鏡面上設置 U)及罘四 又童非球面,另外於第四透鐘fJ η、 後表面(4 2 )非球面上設置右 0 )的 如同第一實施例的型式; 炎扪万秸式表示 第二實施例攝像用光學 _.543。 ,呢^,而弟三透鏡的折射率 第-貝域之第-透鏡的焦距為n,第二透鏡齡、距為^, 第四透鏡的焦距為f4,整體光學系聽距為f,其關係為: i/fl=1.50、| f/f2 | =0.84、f/f4=_139。 第二實施例第—透鏡前表面曲率半徑Rl=l. 19134 [mm],第二 透鏡前表面曲率半徑為R3,則1/R3=〇, 〇63 π/麵]。 第二貫施例攝像用光料統巾m統全長Η=4.16 [職], 第二透鏡的中心厚度CT2=0.35 [mm],第三透鏡與第四透鏡之間的 鏡間距 Τ34=0·05 [mm]。 攝像用光學系統中,光學系統全長為Η,整體光學系統焦距為 f,其關係為:H-f=〇· 744[mm]。 16 1296725 第二實施例詳細的結構數據如同表三所示,其非球面數據如同 表四所示’其中’醇半徑、厚度及焦距解位為_。 本發明第三實施例請參_ 5圖,第三實施例之像差曲線請參 閱第6圖。第三實施例的主要構造為:一攝像用光學系統,同樣由 四枚具屈折力的削所構成,由物淑_依料·· 具正屈折力的第一透鏡(1 0),其前表面(1i)為凸面,後 表面(12)為凹面; 具負屈折力的第二透鏡(2 0 ),其前表面(2 χ )為凸面, 後表面(2 2)為凹面; 具正屈折力的第三透鏡(3 0 ),其前表面(3 i )為凹面, 後表面(3 2)為凸面; 再者為具負屈折力的第四透鏡(4 〇 ),其前表面(4丄)為 凸面’後表面(4 2)為凹面; 另設置一光圈(5 0),位於第一透鏡(1 〇)之前,用於控制 光學系統的亮度; 另包含有一紅外線濾除濾光片(6 0) (IR Cut Filter),置 於第四透鏡(4 0)之後,其不影響系統的焦距; 一成像面(7 〇),位於紅外線濾除濾光片(6 〇 )之後; 第三實施例攝像用光學系統中,第二透鏡的色散係數(Abbe〇·5 < |f/f2| < 〇.8. Improve the first - lie, can effectively check the light, _ length, but if the ^ refractive power is too large will make the system produce a high-order aberration of A, and the negative refractive power of the brother-lens, the negative refractive power comes from The concave rear surface is the image i produced by the power correction system, but if the negative refractive power is too large, the length of the optical system will be too long, and the goal of miniaturizing the stomach and imaging optical system will be violated. . By the range defined by the above relational expression, this (4) can be balanced in the correction of the volume and aberration of the optical class. In the optical system for imaging, the center thickness (3) of the second lens and the mirror pitch T34 between the third lens and the fourth lens satisfy the following relationship: CT2 < 0. 5 [mm] T34 < 0· 2 [mm ]. This relationship can effectively correct the aberrations of the system and has a significant effect on reducing the length of the optical system. 11 1296725 Furthermore, it is more desirable to satisfy the following relationship: CT2 < 0·4 [mm]. The optical system for imaging includes an infrared filter, a filter, and an IR Cut Filter placed after the fourth lens, which does not affect the focal length of the system. In the optical system for imaging of the present invention, the optical system has a full length of Η, and the overall optical system § focal length is f, so that the two satisfy the following relationship: 0·7 [mm] < Hf < 1· 2 [mm]; The optical system can maintain good resolution under the premise of miniaturization. [Embodiment] Please refer to Fig. 1 for the first embodiment of the present invention, and Fig. 2 for the aberration curve of the first embodiment. The main configuration of the first embodiment is: an optical system for imaging, which is composed of four lenses having refractive power, and the object side to the image side are sequentially: a first lens (10) having a positive refractive power, The front surface (11) is a convex surface, the rear surface (12) is a concave surface; the second lens (20) having a negative refractive power, the front surface (2 1 ) is a concave surface, and the rear surface (2 2) is a concave surface a third lens (30) having a positive refractive power, the front surface (3 1 ) being a concave surface and the rear surface (3 2 ) being a convex surface; 12 1296725 being a fine lens (4Q) having a positive refractive power, The surface (4丄) is convex and the rear surface (42) is concave; another aperture (5 〇) is placed before the first lens (1 〇) to control the brightness of the optical system; Filter (6〇) (IRCutFilter), placed after the fourth lens (40), which does not affect the focal length of the system; an imaging surface (70), located after the infrared filter (6 〇); In the optical system for imaging, the second lens has a dispersion coefficient (Abbe Xianling) V2:26·6; the aforementioned first lens (1 Q ) and second lens (2 Q ) The third lens (3) and the fourth lens (40) are made of a plastic material, and the lens is formed by injection molding, and is applied to the first lens (10), the second lens (2 〇), and the third lens (3).非) and the fourth lens (40) are provided with an aspherical surface on each mirror surface, and an inflection point is provided on the aspheric surface of the rear surface (42) of the fourth lens (4 〇乐), and an aspherical curve equation table Not as follows. X(YMY/R)/G+ sqrt (1-(1+1〇*(Υ/Κ)2))+Α4*γ4+Α6*γ6+ where: X: cross-sectional distance of the lens 13 1296725 γ: non The height of the point on the spherical curve from the optical axis k: the aspherical coefficient of the cone coefficient Α4 Αβ .......4 yang, 6th order, .... In the optical system for imaging, the refractive index NW 543 of the first lens, the refractive index Ν2 = 1·606 of the second lens, and the refractive index N3 = 1.53 Å of the third lens. _ The focal length of the first lens is Π, the focal length of the second lens is f2, and the focal length of the fourth lens is f4 'The focal length of the overall optical system is f, the relationship is: f/fK. Μ, | f/fg | =0 · 79, f / f4 = 0 · 04 〇 the first lens front surface curvature radius Rl = l · 75798 [face], the second lens front surface curvature radius is R3 ' then l / Rg ^ - O · 〇 1 [ 1 / Mm]. Φ In the optical system for imaging, the total length of the optical system is 4=4·95 [face], the center thickness of the second lens is CT2=0· 429 [mm], and the mirror pitch between the third lens and the fourth lens Τ34=0· 07 [mm]. In the optical system for imaging, the total length of the optical system is Η, and the focal length of the entire optical system is f, and the relationship is H-f=l·1 [_]. The detailed structural data of the first embodiment is shown in Table 1. The aspherical data is as shown in Table 2 of 14 1296725, in which the unit of curvature radius, thickness and focal length is mm. Referring to the third embodiment of the second embodiment of the present invention, the aberration curve of the second embodiment is shown in Figure 4. The main structure of the second embodiment is: an optical system for imaging, which is also composed of a lens of a four-grazing refractive power, and the object side to the image side are sequentially: a first lens (10) having a positive refractive power, The front surface (11) is a convex surface, the rear surface (12) is a concave surface; 1 a second lens (2 〇) having a negative refractive power, the front surface (2!) is a convex surface, and the rear surface (2 2) is a concave surface; a third lens (3 〇) having a positive refractive power, the front surface (3 丄) being a concave surface, the rear surface (32) being a convex surface, and further a fourth lens (40) having a negative refractive power, preceded by The surface (41) is convex, the rear surface (42) is concave; the other is - aperture (50), located before the first lens (丄〇), used to control the brightness of the optical system; Filter (6 〇) (IR plus, after the fourth lens (40), it does not affect the focal length of the system; an imaging surface (7 〇), after the infrared filter (6 〇); The second embodiment has a second light-scattering coefficient (ship number) V2=23. 4; a first lens (10), a second lens (2Q), and a third surface. (3〇) and 15 1296725 The four-lens (4 Ο) is made of plastic material, _ ^ . , and the hunting is done by injection molding as a mouth-and-lens (1〇), and the second is a 'clothing' piece. And ^ Λ ΓΛ \ ^^0), the second lens (3 〇) and the other μ through the button (40) on each mirror surface U) and the fourth and the child aspherical surface, in addition to the fourth clock fj η, the rear surface (4 2 ) A pattern of the first embodiment in which the right 0) is disposed on the aspherical surface; and an optical _.543 for imaging of the second embodiment is shown. , ^, and the refractive index of the third lens of the third lens is the focal length of the second lens, the second lens age, the distance is ^, the focal length of the fourth lens is f4, and the overall optical system hearing distance is f, The relationship is: i/fl=1.50, |f/f2 | =0.84, f/f4=_139. In the second embodiment, the radius of curvature of the front surface of the lens is Rl = 1.19134 [mm], and the radius of curvature of the front surface of the second lens is R3, then 1/R3 = 〇, 〇 63 π / face]. In the second embodiment, the total length of the filming device is 4.1=4.16, the center thickness of the second lens is CT2=0.35 [mm], and the mirror pitch between the third lens and the fourth lens is =034=0. 05 [mm]. In the optical system for imaging, the total length of the optical system is Η, and the focal length of the entire optical system is f, and the relationship is: H-f = 〇 · 744 [mm]. 16 1296725 The detailed structural data of the second embodiment is shown in Table 3. The aspherical data is as shown in Table 4, where the 'alcohol radius, thickness and focal length are solved as _. The third embodiment of the present invention is shown in Fig. 5, and the aberration curve of the third embodiment is referred to Fig. 6. The main structure of the third embodiment is: an optical system for imaging, which is also composed of four pieces of bending force with a refractive power, and is made of a first lens (10) having a positive refractive power. The surface (1i) is a convex surface, the rear surface (12) is a concave surface; the second lens (20) having a negative refractive power, the front surface (2 χ ) is a convex surface, and the rear surface (2 2) is a concave surface; The third lens (30) of the force has a front surface (3 i ) as a concave surface and a rear surface ( 3 2 ) as a convex surface; and a fourth lens (4 〇) having a negative refractive power, a front surface thereof (4)丄) is a convex 'back surface (4 2) is concave; another aperture (50) is placed before the first lens (1 〇) to control the brightness of the optical system; another infrared filter is included (6 0) (IR Cut Filter), placed after the fourth lens (40), which does not affect the focal length of the system; an imaging surface (7 〇) after the infrared filter (6 〇); In the optical system for imaging of the third embodiment, the dispersion coefficient of the second lens (Abbe

Number) V2-23. 4 ; 17 1296725 第一透鏡(10)、第二透鏡(2Q)、第 四透鏡(4 0)採用塑膠材質,藉由 :兄(3 0)及弟 M、#Win、 &出成型的方式製作鏡片,並Number) V2-23. 4 ; 17 1296725 The first lens (10), the second lens (2Q), and the fourth lens (40) are made of plastic material, by: brother (3 0) and brother M, #Win, & forming a lens in a molded manner, and

於弟一透鏡(1 〇)、第二透鏡(2〇 I r , π X . 弟—透鏡(3 0 )及第四 祕(40)的各鏡面上謂喻,騎於第四透 2)非球面上設置有反曲點,非球面曲線的方程式表^ 如同弟一貫施例的型式; 第一透鏡的折射率 而第三透鏡的折射率 第三實施例攝像用光學系統中, Ν1=1·543,第二透鏡的折射率Ν2=ι β32, Ν3=1.543。 第三實施例第-透鏡的焦距為fl,第二透鏡的焦距為f2,第 四透鏡的焦距為f4,整體光學系統焦距為f,其關係為: 41、| f/f2 | =0· 79、f/f4=-1 〇3。 第三實施例第一透鏡前表面曲率半徑則=12893〇 [mm],第二 透鏡前表面曲率半徑為R3,則i/R3=〇· 15 [i/mm]。 第三實施例攝像用光學系統中,光學系統全長Η=4· 56 [mm], 第二透鏡的中心厚度cT2=r〇· 35 [腿],第三透鏡與第四透鏡之間的 鏡間距 T34-0· 07 [mm]。 18 1296725 第三實施例攝像用光學系統中,光學系統全長為H,整體光學 系統焦距為f,其關係為:H-f=〇. 726[mm]。 第二實施例詳細的結構數據如同表五所示,其非球面數據如同 表六所示,其中,曲率半徑、厚度及焦距的單位為麵。 —在此先行述明’表一至表六所示為攝像用光學系統實施例的不 同數值义化表’穌發明各個實施例的數值變化皆屬實驗所得,即 使使用不同數值,相同結構的產品仍應屬於本發明的保護範脅。表 七為各個實施觸應本發_關方財的數值資料。 =所述’本發明為—攝像用光學純,藉此透鏡結構、排 列方式兵鏡片配置可以有效縮小鏡 解像力;所財翻之『mm 4更㈣物得較高的 除此之外可利用性』應已毋庸置疑, ’在“錢靖揭露出㈣徵技術, 曾見於諸刊物,亦未f# 月之月'j亚未 之事實,更且料·^ 但财如上所述功效增進 、 ,、可备忽的附加功效,是故,本發明的『薪心 以及『進步性都Ρ ΛΛ·人* 新頭性』 付δ專利法規,爰依法提出 析請惠予審查並早日_專利,實感德便。專利之申請, 19 :1296725 【圖式簡单說明】 第1圖 第一實施例光學系統示意圖。 第2圖 第一實施例之像差曲線圖。 第3圖 第二實施例光學系統示意圖。 第4圖 第二實施例之像差曲線圖。 第5圖 第三實施例光學系統示意圖。 第6圖 第三實施例之像差曲線圖。 【表】 表一第一實施例結構數據。 表二第一實施例非球面數據。 表三第二實施例結構數據。 表四第二實施例非球面數據。 表五第三實施例結構數據。 表六第三實施例非球面數據。 表七本發明相關方程式的數值資料。 【主要元件符號說明】 第一透鏡(10) 前表面(11) 後表面(12) 第二透鏡(2 0) 前表面(21) 後表面(2 2) 第三透鏡(30) 前表面(31) 後表面(3 2) 20 .1296725 . 第四透鏡(4 Ο) 前表面(41) ' 後表面(4 2) 光圈(5〇) 紅外線濾除濾光片(IR Cut Filter) ( 6 0 ) 成像面(7 0) 第二透鏡的色散係數(Abbe number) V2 第一透鏡前表面曲率半徑R1 _ 第二透鏡前表面曲率半徑R3 第一透鏡焦距fl 第二透鏡焦距f2 第四透鏡焦距f4 整體光學系統焦距f 第一透鏡的折射率N1 第二透鏡的折射率N2 • 第三透鏡的折射率N3 光學系統全長Η 第二透鏡的中心厚度CT2 第三透鏡與第四透鏡之間的鏡間距Τ34 21Yu Diyi lens (1 〇), second lens (2〇I r, π X. brother - lens (30) and fourth secret (40) on each mirror surface, riding on the fourth through 2) non The inflection point is provided on the spherical surface, and the equation table of the aspherical curve is like the pattern of the conventional embodiment; the refractive index of the first lens and the refractive index of the third lens. In the optical system for imaging of the third embodiment, Ν1=1· 543, the refractive index of the second lens is =2=ιβ32, Ν3=1.543. In the third embodiment, the focal length of the first lens is fl, the focal length of the second lens is f2, the focal length of the fourth lens is f4, and the focal length of the overall optical system is f, and the relationship is: 41, |f/f2 | =0·79 , f / f4 = -1 〇 3. In the third embodiment, the radius of curvature of the front surface of the first lens is 12,893 〇 [mm], and the radius of curvature of the front surface of the second lens is R3, and i/R3 = 〇·15 [i/mm]. In the optical system for imaging of the third embodiment, the total length of the optical system is 4=4·56 [mm], the center thickness of the second lens is cT2=r〇·35 [leg], and the mirror pitch between the third lens and the fourth lens T34-0· 07 [mm]. 18 1296725 In the optical system for imaging of the third embodiment, the total length of the optical system is H, and the focal length of the entire optical system is f, and the relationship is: H-f = 726. 726 [mm]. The detailed structural data of the second embodiment is as shown in Table 5. The aspherical data is as shown in Table 6, in which the unit of curvature radius, thickness and focal length is the surface. - Firstly, the numerical values of the various embodiments of the optical system for imaging are shown in Tables 1 to 6. The numerical changes of the various embodiments of the invention are experimentally obtained. Even if different values are used, the products of the same structure are still Should belong to the protection of the present invention. Table 7 shows the numerical data of each implementation that touches the issue. = The invention is optically pure for imaging, whereby the lens structure and the arrangement of the lens arrangement can effectively reduce the mirror resolution; There should be no doubt, 'in the case of Qian Jing reveals (four) levy technology, has been seen in various publications, and has not f# month of the month 'j Yawei facts, but also expected ^ ^ wealth as mentioned above, the effectiveness of the promotion, , The additional effect can be neglected. Therefore, the "salary of the salary and the "progressiveness of the people of the present invention" are paid by the δ patent regulations. Patent application, 19: 1296725 [Simplified description of the drawings] Fig. 1 is a schematic diagram of an optical system of a first embodiment. Fig. 2 is an aberration diagram of the first embodiment. Fig. 3 is a schematic view of an optical system of a second embodiment Fig. 4 is a diagram showing aberrations of the second embodiment. Fig. 5 is a view showing an optical system of the third embodiment. Fig. 6 is a diagram showing aberrations of the third embodiment. [Table] Table 1 shows the structure data of the first embodiment. Table 2 shows the aspherical data of the first embodiment. The second embodiment is aspherical data. Table 4 is a third embodiment of the structure data. Table 6. The third embodiment of the aspherical data. Table 7 The numerical data of the relevant equation of the present invention. 】 First lens (10) Front surface (11) Rear surface (12) Second lens (2 0) Front surface (21) Rear surface (2 2) Third lens (30) Front surface (31) Rear surface (3 2) 20 .1296725 . Fourth lens (4 Ο) Front surface (41) 'Back surface (4 2) Aperture (5 〇) IR Cut Filter ( 6 0 ) Imaging surface (7 0 ) Second lens dispersion coefficient (Abbe number) V2 First lens front surface curvature radius R1 _ Second lens front surface curvature radius R3 First lens focal length fl Second lens focal length f2 Fourth lens focal length f4 Overall optical system focal length f The refractive index of one lens N1 The refractive index N2 of the second lens • The refractive index of the third lens N3 The total length of the optical system 中心 The center thickness of the second lens CT2 The mirror pitch between the third lens and the fourth lens Τ 34 21

Claims (1)

1296725 九、申請專利範圍: % \yr h 一攝像用光學系統,由四牧具屈拆力沾 V曰3%片所椹 像侧依序為: 筹成,由物側至 後表面為凹面, 一具正屈折力的第一透鏡,其前表面為凸面 且鏡片上設置有非球面; 一具負屈折力的第二透鏡,其前表面曲:玄主/一 叫卞牛徑為r3,滿足 2 [1/mm] &lt; 1/R3 &lt; 0.22 [Ι/mm]的關係,复 · ,、傻表面為凹面,該第 二透鏡的色散係數V2&lt; 40,且第二透鏡前夺而# 兄則表面、後表面皆設置 有非球面; 一具正屈折力的第三透鏡,其前表面為凹面,後表面為凸面,且 第三透鏡前表面、後表面皆設置有非球面; 一第四透鏡,其前表面為凸面,後表面為凹面,該第四透鏡的焦 距為f4,整體光學系統的焦距為f,兩者滿足f/f4 &lt; 〇·丨的關 係,其前表面、後表面皆設置有非球面,且第四透鏡的後表面設 置有反曲點;以及 一光圈,位於光學系統的物體侧與第二透鏡之間,用於控制光學 糸統的党度。 2·如申請專利範圍第1項所述之攝像用光學系統,其中,該第一透 鏡的材質為塑膠,且其前表面、後表面皆設置有非球面。 3·如申請專利範圍第2項所述之攝像用光學系統,其中,紅外線滤 22 1296725 除濾光片置於該第四透鏡之後。 4.如申請專利範圍第1項所述之攝像用光學系統,其中,該第二透 鏡的折射率為N2,第二透鏡的色散係數為V2,滿足下記關係式: . N2 &lt; 1.65 及 V2 &lt; 25 。 5.如申請專利範圍第4項所述之攝像用光學系統,其中,該第二透 鏡的折射率為N2,滿足下記關係式: N2 &gt; L59。 6.如申請專利範圍第4項所述之攝像用光學系統,其中,該第一透 鏡的折射率為N1,滿足下記關係式: N1 &gt; 1·54 〇 7. 如申請專利範圍第6項所述之攝像用光學系統,其中,該第一透 鏡的折射率為Ν1,第三透鏡的折射率為Ν3,滿足下記關係式: Ν1 &lt; 1.6 及 1·54 &lt; Ν3 &lt; 1.6。 8. 如申請專利範圍第2項所述之攝像用光學系統,其中,該光圈置 於第一透鏡之前。 23 1296725 9. 如申請專利範圍第8項所述之攝像用光學系統,其中,該第二透 鏡前表面為凸面。 10. 如申請專利範圍第9項所述之攝像用光學系統,其中,該第四 透鏡具負屈折力。 11. 如申請專利範圍第10項所述之攝像用光學系統,其中,整體光 學糸的焦距為f ’弟四透鏡的焦距為f 4 ’兩者滿足下記關係式· f/f4 &lt; -1.0。 12. 如申請專利範圍第11項所述之攝像用光學系統,其中,該第一 透鏡的前表面曲率半徑為R1,滿足下記關係式: R1 &lt; 2·0 [mm]。 13. 如申請專利範圍第1項所述之攝像用光學系統,其中,該光學 系統之被攝物成像於電子感光元件,且光學系統全長為Η,滿足 下記關係式: Η &lt; 6· 1 [mm] 〇 14. 如申請專利範圍第13項所述之攝像用光學系統,其中,整體光 學系統的焦距為f,第一透鏡的焦距為Π,第二透鏡的焦距為 f2,滿足下記關係式: 24 :1296725 以如申請細_ 14項所述之攝像用光學核,其卜 統全長為Η,第二透鏡的中心厚度為CT2 π +日日&quot; 禾―处說與弟四透鐘 曰’的鏡間距為T34,滿足下記關係式: 、 Η &lt; 5· 〇 [麵]、 。丁2 &lt; 〇· 5 [mm]及 T34 &lt; 〇. 2 [mm] 〇 γ申請專利範圍第15項所述之攝像用光學系統,其 〇先全長為Η,㈣光料統_、㈣f,喊滿足_糸 〇.7 [mm] &lt; H-f &lt; 1.2 [咖]。 曲、式. 17.如申請專利範圍第16項所 , 叫之攝像用光學系統,其中 透鏡的中心厚度SCT2,滿足下記關係式: 4一 CT2〈 0· 4 [mm]。 251296725 IX. Patent application scope: % \yr h A camera optical system consists of four grazing tools with a force of 曰 曰 曰 曰 曰 片 片 片 : : : : : : : : : : : : : , , , , , , , , , , , , a first lens having a positive refractive power, the front surface of which is convex and the lens is provided with an aspherical surface; and a second lens having a negative refractive power, the front surface of which is curved: the main body/a yak diameter is r3, which satisfies 2 [1/mm] &lt; 1/R3 &lt; 0.22 [Ι / mm] relationship, complex ·,, silly surface is concave, the second lens has a dispersion coefficient of V2 &lt; 40, and the second lens is before the # The upper surface and the rear surface of the brother are provided with an aspherical surface; a third lens having a positive refractive power, the front surface is a concave surface, the rear surface is a convex surface, and the front surface and the rear surface of the third lens are all provided with an aspheric surface; The four lens has a convex surface on the front surface and a concave surface on the rear surface. The focal length of the fourth lens is f4, and the focal length of the entire optical system is f. Both satisfy the relationship of f/f4 &lt; 〇·丨, the front surface and the rear surface thereof. The surface is provided with an aspherical surface, and the rear surface of the fourth lens is provided with an inflection point; and an aperture A second lens between the object side of the optical system of the optical system which is a party to control. 2. The optical system for imaging according to claim 1, wherein the first lens is made of plastic, and the front surface and the rear surface are provided with an aspherical surface. 3. The optical system for imaging according to claim 2, wherein the infrared filter 22 1296725 is disposed after the fourth lens. 4. The optical system for imaging according to claim 1, wherein the refractive index of the second lens is N2, and the dispersion coefficient of the second lens is V2, which satisfies the following relationship: . N2 &lt; 1.65 and V2 &lt; 25 . 5. The optical system for imaging according to claim 4, wherein the second lens has a refractive index of N2 and satisfies the following relationship: N2 &gt; L59. 6. The optical system for imaging according to claim 4, wherein the refractive index of the first lens is N1, which satisfies the following relationship: N1 &gt; 1·54 〇 7. As in claim 6 In the imaging optical system, the refractive index of the first lens is Ν1, and the refractive index of the third lens is Ν3, which satisfies the following relationship: Ν1 &lt; 1.6 and 1.54 &lt; Ν3 &lt; 1.6. 8. The optical system for imaging according to claim 2, wherein the aperture is placed before the first lens. The optical system for imaging according to claim 8, wherein the front surface of the second lens is a convex surface. 10. The optical system for imaging according to claim 9, wherein the fourth lens has a negative refractive power. 11. The optical system for imaging according to claim 10, wherein the focal length of the entire optical cymbal is f 'the focal length of the four-lens lens is f 4 ', both of which satisfy the following relationship: f/f4 &lt; -1.0 . 12. The optical system for imaging according to claim 11, wherein the radius of curvature of the front surface of the first lens is R1, which satisfies the following relationship: R1 &lt; 2·0 [mm]. 13. The optical system for imaging according to claim 1, wherein the object of the optical system is imaged on the electronic photosensitive element, and the optical system has a full length of Η, satisfying the following relationship: Η &lt; 6·1 [mm] 摄像 14. The optical system for imaging according to claim 13, wherein the focal length of the entire optical system is f, the focal length of the first lens is Π, and the focal length of the second lens is f2, which satisfies the following relationship. Formula: 24 : 1296725 The optical core for imaging as described in the application _ 14 has a full length of Η, and the center thickness of the second lens is CT2 π + day &day;镜' mirror spacing is T34, which satisfies the following relationship: , Η &lt; 5· 〇 [face], . 2 2 &lt; 〇· 5 [mm] and T34 &lt; 〇. 2 [mm] 〇γ application for the optical system for imaging according to item 15, the first full length is Η, (4) light material system _, (four) f , shouting satisfaction _糸〇.7 [mm] &lt; Hf &lt; 1.2 [Caf].曲,式. 17. As claimed in item 16 of the patent application, it is called an optical system for imaging, in which the center thickness SCT2 of the lens satisfies the following relationship: 4 - CT2 < 0 · 4 [mm]. 25
TW95130680A 2006-08-21 2006-08-21 An imaging optical lens TWI296725B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95130680A TWI296725B (en) 2006-08-21 2006-08-21 An imaging optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95130680A TWI296725B (en) 2006-08-21 2006-08-21 An imaging optical lens

Publications (2)

Publication Number Publication Date
TW200811503A TW200811503A (en) 2008-03-01
TWI296725B true TWI296725B (en) 2008-05-11

Family

ID=44767730

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95130680A TWI296725B (en) 2006-08-21 2006-08-21 An imaging optical lens

Country Status (1)

Country Link
TW (1) TWI296725B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407140B (en) * 2009-12-24 2013-09-01 Largan Precision Co Ltd Photographing lens assembly

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384254B (en) * 2008-10-16 2013-02-01 Largan Precision Co Ltd Optical lens system for taking image
TWI386702B (en) * 2008-10-24 2013-02-21 Hon Hai Prec Ind Co Ltd Imaging lens
TWI403781B (en) * 2010-04-23 2013-08-01 Largan Precision Co Ltd Photographing optical lens assembly
TWI468773B (en) * 2010-08-20 2015-01-11 Largan Precision Co Ltd Optical image-capturing lens assembly
TWI410693B (en) * 2010-11-19 2013-10-01 Largan Precision Co Ltd Image pick-up optical lens assembly
TWI440884B (en) * 2011-11-07 2014-06-11 Largan Precision Co Ltd Photographing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407140B (en) * 2009-12-24 2013-09-01 Largan Precision Co Ltd Photographing lens assembly

Also Published As

Publication number Publication date
TW200811503A (en) 2008-03-01

Similar Documents

Publication Publication Date Title
TWI379102B (en) Optical lens system for taking image
TWI395992B (en) Four-piece optical lens system for taking image
TWI361903B (en) Optical lens system for taking image
TWI332584B (en) Optical lens system for taking image
TWI404972B (en) Optical lens system for taking image
TWI384254B (en) Optical lens system for taking image
TWI395990B (en) Optical lens system for taking image
TWI401485B (en) Imaging optical lens assembly
TWI361915B (en) Optical lens system for taking image
TWI320106B (en) Image lens assembly
TWI401467B (en) Image-capturing lens assembly
TWI361913B (en) Optical lens system for taking image
TWI388878B (en) Optical lens system for taking image
TWI435135B (en) Optical lens system
TWI354820B (en) Optical lens system for taking image
TWI382199B (en) Optical lens system for taking image
TWI394979B (en) Photographing optical lens assembly
TW201222059A (en) Image pick-up optical lens assembly
TWI296725B (en) An imaging optical lens
TW200813470A (en) Optical lens assembly for taking image
TW201115180A (en) Photographing optical lens assembly
TW201232092A (en) Image capturing lens assembly
TW201250284A (en) Image capturing lens system
TW200903024A (en) Inverse telephoto with correction lenses
TW200819791A (en) Optical system for taking image