TWI294894B - Resin compound, the complex using it and the method of using it - Google Patents

Resin compound, the complex using it and the method of using it Download PDF

Info

Publication number
TWI294894B
TWI294894B TW92125555A TW92125555A TWI294894B TW I294894 B TWI294894 B TW I294894B TW 92125555 A TW92125555 A TW 92125555A TW 92125555 A TW92125555 A TW 92125555A TW I294894 B TWI294894 B TW I294894B
Authority
TW
Taiwan
Prior art keywords
resin
rubber
group
sulfur
agent
Prior art date
Application number
TW92125555A
Other languages
Chinese (zh)
Inventor
Ikuta Toru
Komada Hajime
Mutsuda Mitsuteru
Arita Hiroaki
Wakita Naoki
Original Assignee
Daicel Degussa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Degussa Ltd filed Critical Daicel Degussa Ltd
Priority to TW92125555A priority Critical patent/TWI294894B/en
Application granted granted Critical
Publication of TWI294894B publication Critical patent/TWI294894B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

1294894 玖、發明說明: 【發明所屬之技術領域】 本發明係有關一種與橡膠之黏合性優異的樹脂組成 物、該樹脂組成物與橡膠一體粘合、且作爲機械零件、汽 車零件等有用的複合體(或複合零件)及其製法。 【先前技術】 樹脂成形部與橡膠成形部黏合的方法,有使用黏合劑 與橡膠成形體黏合的方法係爲已知。然而,使用黏合劑的 方法係工程複雜、工程管理繁雜,不僅成本高、且無法製 得充分的黏合劑。 另外,提案有樹脂與橡膠直接黏合的複合體。例如於 日本特開昭5 0 - 25682號公報中揭示使聚甲醛或烯烴聚合物 等之熱塑性塑膠成分、與該熱塑性塑膠成分相溶的加硫橡 膠成份(聚丁二烯、腈等)摩擦接觸,使塑膠表面熔融且使 塑膠成分與橡膠成分接觸下凝固的橡膠-塑膠複合體之製 法。然而,該方法在複合體之黏合部位形狀受到限制,不 僅無法製得複雜形狀之熱塑性樹脂成形體與橡膠成形體的 複合體,且無法提高複合體之生產性。 有關聚亞苯醚-橡膠複合體,於日本特開昭6 1 - 204260 號公報中揭示使可含有苯乙烯系聚合物或添加劑之聚亞苯 醚系樹脂、與SBR、BR、IR、I IR等構成的合成橡膠,藉由 在加硫系存在下熱處理以製造複合體的方法。有關ABS樹 脂-橡膠複合體係在日本特開平5-3〇 1 97 3號公報中記載, 使含有ABS樹脂之成形零件、與臨界表面張力爲”〜39mN/m 1294894 之橡膠成分的未加硫橡膠片積層後,加熱黏合成一體化的 複合體製法。於特開平9 - 1 24803號公報中提案含丙烯腈之 二 熱塑性樹脂(AS、ABS樹脂等)、與含丙烯腈之橡膠加熱密接 製得複合零件。然而,此等方法爲提高熱塑性樹脂與橡膠 之黏合性時可利用雙方成分之相溶性予以複合,樹脂及橡 . 膠種類大爲受到限制,實用性狹窄。 _ 有關聚醯胺-橡膠複合體,於特開平2-150439號公報、 特開平3 - 1 3 3 6 3 1號公報、特開平3 - 1381 14號公報中提案, 於藉由使聚醯胺系樹脂與橡膠成分在加硫系存在下加硫製 0 造複合體的方法中,使用含有含羧機或酸酐基之橡膠與過 氧化物與加硫活性化劑(乙二醇二甲基丙烯酸酯、三烯丙基 異氰酸酯等)與烷氧基矽烷化合物作爲橡膠成分。特開平8 -156188號公報中提案藉由使含環氧基之樹脂零件、與含竣 基或酸酐基之橡膠零件密接、加硫以製得複合零件。此等 文獻中記載的方法中,由於爲使樹脂與橡膠黏合時利用化1294894 发明Invention Description: [Technical Field] The present invention relates to a resin composition excellent in adhesion to rubber, a resin composition integrally bonded to rubber, and a useful composite for mechanical parts, automobile parts, and the like. Body (or composite parts) and its method of manufacture. [Prior Art] A method of bonding a resin molded portion to a rubber molded portion is known in which a binder is bonded to a rubber molded body. However, the method of using the adhesive is complicated in engineering and complicated in engineering management, and it is not only costly, but also cannot produce a sufficient adhesive. In addition, a composite in which a resin and a rubber are directly bonded is proposed. For example, a thermoplastic plastic component such as polyoxymethylene or an olefin polymer or a vulcanized rubber component (polybutadiene, nitrile, etc.) which is compatible with the thermoplastic plastic component is disclosed in Japanese Laid-Open Patent Publication No. H05-25682. A method for preparing a rubber-plastic composite in which a plastic surface is melted and a plastic component is brought into contact with a rubber component to be solidified. However, this method is limited in the shape of the bonding portion of the composite, and it is not possible to obtain a composite of a thermoplastic resin molded body having a complicated shape and a rubber molded body, and the productivity of the composite cannot be improved. A polyphenylene ether-based resin which can contain a styrene-based polymer or an additive, and SBR, BR, IR, I IR are disclosed in JP-A-61-204260. A method of producing a composite by heat-treating in the presence of a sulfur-added synthetic rubber. The ABS resin-rubber composite system is described in Japanese Laid-Open Patent Publication No. Hei. 5-3, No. 1,973, which is a non-sulfurized rubber which is a molded part containing an ABS resin and a rubber component having a critical surface tension of "~39 mN/m 1294894". After the film is laminated, the composite system is heated and bonded. In JP-A-9-124803, a thermoplastic resin containing acrylonitrile (AS, ABS resin, etc.) and a rubber containing acrylonitrile are heated and bonded. Composite parts. However, in order to improve the adhesion between thermoplastic resin and rubber, these methods can be compounded by the compatibility of the two components. The types of resins and rubbers are greatly limited and the utility is narrow. _ About Polyamide-Rubber In the Japanese Patent Publication No. Hei 2-150439, Japanese Laid-Open Patent Publication No. Hei No. Hei No. Hei No. Hei No. Hei. In the method of adding sulfur to a complex in the presence of sulfur, a rubber containing a carboxyl group-containing or anhydride group and a peroxide and a vulcanization activating agent (ethylene glycol dimethacrylate, triallyl isocyanate) are used. Wait And alkoxy decane compound as a rubber component. It is proposed in the patent publication No. 8-156188 to obtain a composite part by adhering an epoxy group-containing resin component to a rubber component containing a mercapto group or an acid anhydride group, and vulcanizing it. In the methods described in these documents, the resin is utilized in order to bond the resin to the rubber.

學反應(胺基與羧基或酸酐基之鍵結反應、環氧基與羧基之 鍵結反應),使樹脂及橡膠種類大受限制,無法大幅度製得 樹脂/橡膠複合體。 有關聚酯-橡膠複合體,於製造硬質成分之熱塑性聚酯 . 與軟質成分之加硫橡膠的複合體中,使用含有橡膠與過氧 、, 化物加硫劑與二官能或多官能馬來醯亞胺與時期所需加硫 _ 活性劑之橡膠成分(特開平7- 304880號公報)、使用含有橡 膠與過氧化物加硫劑與矽烷化合物與視其所需加硫活性劑 之橡膠成分(特開平7 - 1 66043號公報)。另外’有關樹脂薄 1294894 膜與橡膠薄膜之複合薄膜,於特開平1 Ο _ 5 8 6 〇 5號公報中揭 示藉由使基材薄膜(聚酯薄膜等)、與含有多官能性甲基丙 烯酸醋之橡膠薄膜作爲黏合性改良劑的橡膠薄膜(聚矽氧烷 橡膠、乙烯丙烯系橡膠等)積層、加硫處理,製得複合片板。 此等方法提案爲提高黏合性時,在橡膠成分中添加加硫活 性劑、惟樹脂與橡膠之組合無法使受到廣幅限制的橡膠與 樹脂確實且以高黏合強度黏合、一體化。 因此’本發明之目的係提供一種沒有使用黏合劑,對 廣泛橡膠而言可使樹脂確實且堅固地黏合的樹脂組成物及 其製法。 本發明之另一目的係提供一種可安定且工業上製造對 橡膠而言樹脂堅固結合的樹脂與橡膠複合體之樹脂組成物 及其製法。 本發明之另一目的係提供一種樹脂與橡膠可確實且堅 固地直接黏合的複合體及其製法。 【發明內容】 本發明人等爲達成上述課題時,再三深入硏究的結果 發現藉由組合加硫活性劑與安定劑以達成樹脂組成物,可 顯著提高或改善對廣泛橡膠而言樹脂之黏合性,遂而完成 本發明。 換言之,本發明之樹脂組成物係以樹脂、爲提高對橡 膠而言上述樹脂之黏合性時加硫活性劑(例如具有數種之聚 合性不飽和鍵之化合物)、安定劑(例如抗氧化劑、光安定 劑)構成。上述樹脂組成物可使用作爲製造藉由未加硫橡膠 -8 ~ 1294894 加硫形成的加硫橡膠直接黏合的複合體時之樹脂材料。上 述複合體亦可以使以上述樹脂組成物構成的樹脂元件、與 以加硫橡膠構成的加硫橡膠元件直接黏合。 構成上述樹脂組成物之樹脂藉由下述式(1 )所示至少一 種選自於在一分子中平均具有2個軌道相互作用能量係數s 爲0.006以上氫原子及/或硫原子、且具有不飽和鍵之熱塑 性樹脂及具有交聯性官能基之熱固性樹脂的交聯性樹脂。 S = (CH0M0,n)2/ 丨 Ec-EHOM〇,n | +(CLlJM(),n)2/ I Ec_ELUM0,n 丨⑴ (其中 ’ E c、C H。M。. n、E H。M 〇 η、C L υ M。n、E L。M 〇 . n 皆爲藉 由半經驗分子軌道法MOPACPM3求得的値,E。係表示自由基 發生劑之自由基軌道能量(eV),CH〇M(),n係表示構成樹脂基 本單位之第η號氫原子或硫原子的最高被佔分子軌道(HOMO) 之分子軌道係數,EHQM().n係表示上述HOMO之軌道能量(eV), (^ϋΜ〇.η係表示上述第η號氫原子或硫原子之最低空分子軌 道(LUM0)的分子軌道係數,E_Q.n係表示LUM0之軌道能量 (eV)) 上述加硫活性劑亦可以爲數種具有α,β -乙烯性不飽和 鍵之化合物(例如數種具有(甲基)丙烯醯基之化合物)。上 述安定劑可以爲苯酚系抗氧化劑、胺系抗氧化劑、磷系抗 氧化劑、硫系抗氧化劑、氫醌系抗氧化劑、蝰啉系抗氧化 劑、受阻胺系光安定劑、驟冷劑等,亦可以爲自由基捕捉 功能。上述加硫活性劑及安定劑之比例對1 00重量份樹脂 而言加硫活性劑爲0 . 1〜1 0重量份、安定劑爲0 _ 〇 1〜5重 量份。而且,加硫活性劑與安定劑之比例(重量比)爲前者/ 一 9- 1294894 後者=99/1〜25 / 7 5。而且,上述樹脂組成物另可含有上述 式(1 )所示在一分子中平均具有2個以上軌道相互作用能量 係數S爲0 . 006以上之氫原子、且分子量爲1 000以下之化 合物。 於上述複合體中未加硫橡膠可以爲含有至少一種選自 於自由基發生劑(有機過氧化物、偶氮化合物、含硫之有機 化合物等)、及硫之加硫劑的組成物形成,加硫劑之比例對 100重量份未加硫橡膠而言爲1〜10重量份。 本發明包含使樹脂與加硫活性劑與安定劑捏合以製造 上述樹脂組成物之方法。此外,本發明包含 (1 )含有上述樹脂組成物與加硫劑之未加硫橡膠組成物 接觸、成形,以樹脂零件與加硫橡膠構成的橡膠零件黏合 的複合體製法中,使樹脂組成物及樹脂零件中一方之成形 樹脂材、與該成形樹脂材之接觸面上加硫劑具有活性,使 至少含有未加硫之橡膠的橡膠組成物與該預備成形體中一 方之成形橡膠材接觸成形,且使上述成形橡膠材加硫或交 聯,使樹脂零件與橡膠零件黏合的複合體製法, (2 )藉由使上述樹脂組成物與含加硫劑之未加硫橡膠捏 合、成形,製造以加硫橡膠相與樹脂相構成的複合體方法。 【發明說明】 本發明之樹脂組成物係以樹脂與加硫活性劑與安定劑 構成。上述樹脂組成物爲可高度提高或改善對橡膠而言樹 脂之黏合性時,可利用作爲製造樹脂與未加硫橡膠經加硫 的加硫橡膠直接黏合的樹脂/橡膠複合體時之樹脂材料。 [樹脂組成物] - 1 0- 1294894 [樹脂] 本發明樹脂組成物使用的樹脂,沒有特別的限制,可 使用廣泛的樹脂(熱塑性樹脂、熱固性樹脂)。 熱塑性樹脂例如聚醯胺系樹脂 '聚酯系樹脂、聚胺甲 酸酯系樹脂、聚(硫)醚系樹脂(聚縮醛系樹脂'、聚亞苯醚系 樹脂、聚硫化物系樹脂、聚醚酮系樹脂等)、聚碳酸酯系樹 脂、聚醯亞胺系樹脂、聚颯系樹脂、聚胺甲酸酯系樹脂等 之縮合系熱塑性樹脂;聚烯烴系樹脂、(甲基)丙烯酸系樹 脂、苯乙烯系樹脂、含鹵素之樹脂、乙烯系樹脂(例如聚醋 酸乙稀酯、聚乙燦醇等)等之乙燃基聚合系熱塑性樹脂;熱 塑性彈性體等。 熱固性樹脂例如苯酚樹脂、胺系樹脂、環氧樹脂、聚 矽氧烷樹脂、熱固性聚醯亞胺系樹脂、熱固性聚胺甲酸酯 系樹脂等聚縮合或加成縮合系樹脂;熱固性丙烯酸樹脂、 乙燒酯系樹脂、不飽和聚酯系樹脂、二嫌丙基酸酯樹脂 等加成聚合系樹脂。 此等樹脂(熱塑性樹脂、熱固性樹脂)可以單獨使用或 二種以上組合使用。 而且’上述樹脂亦可使用對利用於橡膠加硫的加硫劑 (例如自由基發生劑等)而言具有高活性之樹脂。使用該樹 脂時,與加硫活性劑相符合、可更爲提高對橡膠而言之樹 脂黏合性。對加硫劑而言活性樹脂例如(i)具有活性原子之 樹脂、(i i)具有交聯性基之樹脂等(以下總稱此等樹脂爲樹 脂或活性樹脂)。 -11- 1294894 (具有活性原子之樹脂) 活性原子係表示對自由基發生劑而言具有局活性之原 子(例如活性氫原子、活性硫原子)。具體而言’樹脂可視 自由基發生劑之種類而定予以選擇、例如以下述式(1)所示 具有軌道相互作用能量係數s爲一定値(例如0 · 006、較佳 者爲0 . 008 )以上之活性原子。較佳的活性原子之軌道相互 作用能量係數S爲0.006〜0.06、較佳者爲0.007〜0.05(更 佳者爲0 . 0 1〜0 . 0 4 5 )。該活性原子數係與具有活性原子之 官能基鍵結部位(末端、支鏈或主鏈等)有關,例如在樹脂 一分子中平均2個以上(約2〜10000個)、較佳者平均2.5 個以上(2.5〜5000個)、更佳者平均3個以上(3〜1000個)。 樹脂一分子中之活性原子數通常爲2〜100(較佳者爲2.5〜 50、更佳者爲3〜25、最佳者爲3〜20)。 S = (CH_,n)V 丨 Ec-EH_,n I + (CL_,n)2/ | Ec-ELUM0,n | ⑴ (其中 ’ Ec 、 CHOM〇.n 、 E HOMO.n 、 CLUM〇.n 、 E LOMQ.n 皆爲藉 由半經驗分子軌道法M0PACPM3求得的値,E。係表示自由基 發生劑之自由基軌道能量UV),CHQMQ,n係表示構成樹脂基 本單位之第η號氫原子或硫原子之最高被佔分子軌道(HOMO ) 的分子軌道係數,EHQM().n係表示上述HOMO之軌道能量(eV), CluMO.η 係表示上述第η號氫原子或硫原子之最低空分子軌 道(LUM0)的分子軌道係數,EtUMQ.n係表示LUM0之軌道能量 (eV)) 於式(1)之M0PACPM3係爲分子軌道法(M0)之一。分子 軌道法係爲使分子之電子狀態理論化的近似法之一,可分 - 1 2 - 1294894 爲Huckel法等之經驗方法、提高近似Huckel法之半經驗 方法、僅以嚴密計算求取分子軌道係數之非經驗方法等3 種方法。近年來,伴隨電腦之發達,主要的方法有半經驗 方法及非經驗方法。分子軌道法係有分子構造與其化學反 應性有關的最有力方法之一。例如有關日本科學技術文獻 資訊資料基體(]〇IS)之分子軌道法之登記件數,keyword作 爲「分子軌道法」檢測時,約有5 3 0 0 0件(期間·· 1 9 8 0年〜 2〇〇〇年 5月)。M0PACPM 3係爲上述半經驗方法之一的 NDDO(Neglect of Diatomic Differential Overlap)法之 核心方法。 M0PACPM3主要係使用以考察爲目的之有機化合物的反 應,很多文獻或書籍[「分子軌道法M0PAC手冊」(平野恆 夫、田邊和俊編、海文堂、1 99 1年)、「三訂•量子化學入 門」(米澤貞次郎他著、化學同人、1 983年)、「計算化學 手冊」(大澤映二他譯、TimClark著、九善、1985年)]等。 式(1 )之基本單位係指高分子末端、1〜3個重複單位形 成的分子構造型式。換言之,以M0PACPM3計算有關高分子 化合物時,由於構成分子之原子數過多,不易計算作爲對 象之分子。因此,亦可以高分子末端、1〜3個重複單位形 成的分子構造型式(基本單位)作爲對象進行計算°例如’ 一般而言聚對酞酸丁二酯(PBT)之分子構造(重複單位)以化 學式(CH2-CH2-CH2-CH2-0-C(=0)-C6H4-C(=0)-〇)n••表示’惟 上述式(1 )中亦可以簡單的H0-CH2-CH2-CH2-CH2-0-C(=0) -C6H4-C(=0)-0H爲基本單位予以計算。 1294894 式(1 )之軌道相互作用能量係數S稱爲反應性指數時, 有各整書籍等定義、解說,討論化學反應性時係爲一般所 使用的參數。例如「入門邊界軌道論」(72頁、山邊信一、 稻垣都士著、講談社自然科學技術、1 9 89年)中記載,軌道 相互作用能量係數S係爲以「2個軌道相互作用時,(a )能 量差愈小時愈小、(b)重疊愈大時愈大,相互作用變強」者 表示。式(1)係以諾貝爾獎得主之故福井博士於1 9 5 4年發 表的 superdelocal ozability(Sr)之主張爲基準(參照「爲 使用分子軌道法」、71頁、井本稔、化學同人、1 986年)、 與由Sr主張之式(1)相同式,於各種書籍或文獻中導出。 此處之重點係爲分子軌道法以分子構造與其化學反應 性爲基準、廣爲已知的方法。因此,以式(1 )定義的軌道相 互作用能量係數S[ 1/eV]不是單純的槪念數値,係爲具有與 爲特定材料時參數或物性値(分子量、官能基等)相同意義 之數値。 而且’自由基發生劑之自由基軌道能量Ee( eV)係以自 由基之分子構造爲基準,藉由MOP ACPM3計算者較佳,惟以 自由基發生劑之種類爲基準時可使用較爲簡便且所定之 値。例如可計算自由基發生劑爲有機過氧化物時Ee=-8eV、 爲偶氮化合物時E。= - 5 e V、爲除硫外之含硫的有機化合物時 E c = _ 6 e V 〇 軌道相互作用能量係數S爲一定値(例如〇 · 〇 〇 6 )以上之 氫原子(活性氫原子),自由基發生劑爲有機過氧化物時例 如胺(-NH2)基(例如末端胺基)、亞胺基(-NH _ )(例如主鏈或 1294894 末端亞胺基、醯胺鍵之- NH-基等)、甲基(- CH3)基、伸甲基 (-CH2 -)基(主鏈或末端伸甲基)、次甲基(- CH=)基(主鏈或 末端次甲基)等之氫原子。 而且,軌道相互作用能量係數S爲一定値(例如〇 . 〇〇6 ) 以上之硫原子(活性硫原子),自由基發生劑爲有機過氧化 物時例如硫()基、锍(-SH)基、烷硫基(甲硫基、乙硫基 等之C! _ 4烷硫基等)、磺醯基(_ SO -)等之硫原子。 上述甲基例如伸烷基鏈、環伸烷基鏈或鍵結於芳香族 環之甲基、鍵結於氧原子之甲基(甲氧基之甲基)等。伸甲 基例如形成主鏈或側鏈之直鏈狀或支鏈狀伸烷基之伸甲 基、(聚)環氧甲烷單位、(聚)環氧乙烷單位等(聚)環氧烷 基單位之伸甲基、胺基或亞胺基等之鄰接於氮原子的伸甲 基等。次甲基例如鄰接於胺基或亞胺基之α-位次甲基、例 如對胺基環烷基之胺基而言α -位次甲基等。 樹脂可以在一分子中具有數個(例如平均2個以上)之 活性原子。換言之,一般而言樹脂可以爲單一分子、亦可 以具有數種不同構造或鏈長之多數分子混合物。因此,全 部分子不需具有數個活性原子,計算有關預設的主要數個 基本單位時,一分子中平均活性氫原子之數目可以爲2以 上。例如具有重 C(=0) )η之聚合物(聚醯胺66)所含的活性氫原子之數可以 基本單位 NH2-(CH2)6-NH-C(=0)-(CH2)4-C(=0)-0H 爲基準計 算,自由基發生劑爲有機過氧化物時末端NH2- (CH2)6-NH-c(=o)-(ch2)4-c(=o)-oh爲基準,自由基發生劑爲有機過氧 化物時末端NH2基中2個氫原子爲活性氫原子(即S ^ -15- 1294894 〇 · 006 )。此時,有關聚醯胺66係在一分子中活性氫原子之 平均數Ν可藉由集合體之聚合物(聚醢胺66)的末端Ν Η 2基 與末端COOH基之比例,以下述式(2)爲基準求得。The reaction (the bonding reaction of an amine group with a carboxyl group or an acid anhydride group, and the bonding reaction of an epoxy group with a carboxyl group) limits the types of resins and rubbers, and the resin/rubber composite cannot be obtained to a large extent. For the polyester-rubber composite, in the manufacture of a thermoplastic component of a hard component and a vulcanized rubber composite of a soft component, a rubber and a peroxygen, a chemical vulcanizing agent and a difunctional or polyfunctional malaquinium are used. The rubber component of the imide and the period of the required sulfurization _ active agent (JP-A No. 7-304880), and the rubber component containing the rubber and the peroxide sulphurizing agent and the decane compound and the required sulphurizing active agent ( Japanese Patent Laid-Open No. Hei 7 - 1 66043). In addition, the composite film of the film 1294894 film and the rubber film is disclosed in Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. The rubber film of vinegar is laminated and vulcanized as a rubber film (polyoxyalkylene rubber or ethylene propylene rubber) as a binder improver to obtain a composite sheet. When these methods are proposed to increase the adhesion, a sulfur-adding active agent is added to the rubber component, but the combination of the resin and the rubber does not allow the rubber and the resin which are widely limited to be bonded and integrated with high adhesive strength. Therefore, the object of the present invention is to provide a resin composition which can reliably and firmly bond a resin to a wide range of rubber without using a binder, and a process for producing the same. Another object of the present invention is to provide a resin composition of a resin and a rubber composite which can be stably and industrially produced by which a resin is strongly bonded to a rubber and a process for producing the same. Another object of the present invention is to provide a composite in which a resin and a rubber can be directly and reliably bonded, and a process for producing the same. SUMMARY OF THE INVENTION In order to achieve the above problems, the inventors of the present invention have further intensively studied and found that by combining a sulfur-adding active agent and a stabilizer to achieve a resin composition, the adhesion of the resin to a wide range of rubbers can be remarkably improved or improved. The present invention has been completed. In other words, the resin composition of the present invention is a resin, a sulfur-adding active agent (for example, a compound having several kinds of polymerizable unsaturated bonds), a stabilizer (for example, an antioxidant, in order to improve the adhesion of the resin to the rubber). Light stabilizer). As the resin composition, a resin material which is a composite in which a vulcanized rubber formed by vulcanization of unsulfurized rubber -8 to 1294894 is directly bonded can be used. The above composite may be directly bonded to a resin member composed of the above resin composition and a vulcanized rubber member composed of a vulcanized rubber. The resin constituting the above resin composition is at least one selected from the group consisting of the following formula (1) and is selected from an average of two orbital interaction energy coefficients s in one molecule of 0.006 or more hydrogen atoms and/or sulfur atoms, and has no A crosslinkable resin of a thermoplastic resin having a saturated bond and a thermosetting resin having a crosslinkable functional group. S = (CH0M0,n)2/ 丨Ec-EHOM〇,n | +(CLlJM(),n)2/ I Ec_ELUM0,n 丨(1) (where ' E c, CH.M.. n, EH.M 〇 η, CL υ M.n, EL.M 〇. n are all obtained by the semi-empirical molecular orbital method MOPACPM3, E. It represents the radical orbital energy (eV) of the radical generator, CH〇M ( n) indicates the molecular orbital coefficient of the highest occupied molecular orbital (HOMO) of the n-th hydrogen atom or sulfur atom constituting the basic unit of the resin, and EHQM().n indicates the orbital energy (eV) of the above HOMO, (^ ϋΜ〇.η represents the molecular orbital coefficient of the lowest empty molecular orbital (LUM0) of the above-mentioned n-th hydrogen atom or sulfur atom, and E_Q.n represents the orbital energy (eV) of LUM0) The above-mentioned sulfur-adding active agent may also be a number a compound having an α,β-ethylenically unsaturated bond (for example, a plurality of compounds having a (meth) acrylonitrile group). The stabilizer may be a phenol-based antioxidant, an amine-based antioxidant, a phosphorus-based antioxidant, or sulfur. An antioxidant, a hydroquinone antioxidant, a porphyrin antioxidant, a hindered amine light stabilizer, a quenching agent, etc., or The base capturing function: the ratio of the above-mentioned sulfurizing active agent and stabilizer is 0.1 to 10 parts by weight, and the stabilizer is 0 _ 〇 1 to 5 parts by weight for 100 parts by weight of the resin. The ratio (weight ratio) of the sulfurizing active agent to the stabilizer is the former / 9 - 1294894 and the latter = 99 / 1 ~ 25 / 7.5. Further, the above resin composition may further contain one molecule represented by the above formula (1). The medium average has two or more orbital interaction energy coefficients S of 006 or more and a hydrogen atom and a molecular weight of 1 000 or less. The unsulphurized rubber in the above composite may be at least one selected from the group consisting of free radicals. The composition of the agent (organic peroxide, azo compound, sulfur-containing organic compound, etc.) and sulfur sulfurizing agent is formed, and the proportion of the sulfurizing agent is 1 to 10 by weight for 100 parts by weight of the unsulfurized rubber. The present invention comprises a method of kneading a resin with a sulfurizing active agent and a stabilizer to produce the above resin composition. Further, the present invention comprises (1) contacting the unsulfurized rubber composition containing the above resin composition and a sulfurizing agent. Forming with resin zero In the composite system method of bonding a rubber member made of a vulcanized rubber, the molding resin material of one of the resin composition and the resin component and the vulcanizing agent on the contact surface with the molding resin material are active, so that at least a composite system method in which a rubber composition of a sulfur rubber is formed in contact with one of the formed rubber materials of the preliminary molded body, and the formed rubber material is vulcanized or crosslinked to bond the resin component and the rubber component, and (2) The resin composition is kneaded and molded with an unvulcanized rubber containing a sulfurizing agent to produce a composite method comprising a vulcanized rubber phase and a resin phase. [Description of the Invention] The resin composition of the present invention is composed of a resin, a sulfurizing active agent and a stabilizer. When the resin composition is a resin which can highly improve or improve the adhesion to the rubber, it can be used as a resin material which is a resin/rubber composite which is directly bonded to a vulcanized vulcanized rubber of a non-sulfurized rubber. [Resin composition] - 1 0 - 1294894 [Resin] The resin used in the resin composition of the present invention is not particularly limited, and a wide range of resins (thermoplastic resin, thermosetting resin) can be used. The thermoplastic resin is, for example, a polyamine resin, a polyester resin, a polyurethane resin, a poly(thio)ether resin (polyacetal resin), a polyphenylene ether resin, a polysulfide resin, a polyether ketone resin, etc., a condensation-based thermoplastic resin such as a polycarbonate resin, a polyimide resin, a polyfluorene resin, or a polyurethane resin; a polyolefin resin; (meth)acrylic acid An Ethylene-based polymerizable thermoplastic resin such as a resin, a styrene resin, a halogen-containing resin, or a vinyl resin (for example, polyvinyl acetate or polyvinyl alcohol); a thermoplastic elastomer or the like. a thermosetting resin such as a phenol resin, an amine resin, an epoxy resin, a polyoxyalkylene resin, a thermosetting polyimine resin, a thermosetting polyurethane resin, or the like, a polycondensation or addition condensation resin; a thermosetting acrylic resin; An addition polymerization resin such as an ethyl ester-based resin, an unsaturated polyester resin, or a diisopropyl acrylate resin. These resins (thermoplastic resin, thermosetting resin) may be used singly or in combination of two or more. Further, the above resin may be a resin having high activity for a vulcanizing agent (e.g., a radical generator or the like) which is used for vulcanization of rubber. When the resin is used, it is compatible with the sulfurizing active agent, and the resin adhesion to the rubber can be further improved. The active resin of the vulcanizing agent is, for example, (i) a resin having an active atom, (i i) a resin having a crosslinkable group (hereinafter collectively referred to as such a resin as a resin or an active resin). -11- 1294894 (Resin having an active atom) The active atom system means an atom (i.e., an active hydrogen atom or an active sulfur atom) which is reactive with a radical generator. Specifically, the type of the resin-based radical generating agent is selected, and for example, the orbital interaction energy coefficient s is constant as shown by the following formula (1) (for example, 0·006, preferably 0. 008) The above active atoms. Preferably, the orbital interaction energy coefficient S of the active atoms is 0.006 to 0.06, preferably 0.007 to 0.05 (more preferably 0. 0 1 to 0. 0 4 5 ). The number of active atoms is related to a functional group bonding site (end, branch or main chain, etc.) having an active atom, for example, an average of 2 or more (about 2 to 10,000) in one molecule of the resin, preferably an average of 2.5. More than one (2.5 to 5000), and more preferably three or more (3 to 1000). The number of active atoms in one molecule of the resin is usually from 2 to 100 (preferably from 2.5 to 50, more preferably from 3 to 25, and most preferably from 3 to 20). S = (CH_,n)V 丨Ec-EH_,n I + (CL_,n)2/ | Ec-ELUM0,n | (1) (where ' Ec , CHOM〇.n , E HOMO.n , CLUM〇.n E LOMQ.n is the enthalpy obtained by the semi-empirical molecular orbital method M0PACPM3, E is the free radical orbital energy UV of the radical generator, and CHQMQ, n is the hydrogen of the nth constituting the basic unit of the resin. The molecular orbital coefficient of the highest occupied molecular orbital (HOMO) of an atom or a sulfur atom, EHQM().n indicates the orbital energy (eV) of the above HOMO, and CluMO.η indicates the lowest of the above-mentioned nth hydrogen atom or sulfur atom. The molecular orbital coefficient of the empty molecular orbital (LUM0), and the EtUMQ.n system indicates the orbital energy (eV) of LUM0. The M0PACPM3 system of the formula (1) is one of the molecular orbital methods (M0). The molecular orbital method is one of the approximation methods for theorizing the electronic state of a molecule. It can be divided into - 1 2 - 1294894 as an empirical method such as the Huckel method, a semi-empirical method to improve the approximate Huckel method, and a molecular orbital calculation only by rigorous calculation. Three methods, such as non-experience methods of coefficients. In recent years, with the development of computers, the main methods are semi-empirical methods and non-experience methods. The molecular orbital method is one of the most powerful methods related to molecular structure and its chemical reactivity. For example, regarding the number of registrations of the molecular orbital method of the Japanese scientific and technical literature information base (]〇IS), when the keyword is detected as the "Molecular Orbital Method", there are about 5,300 pieces (period · · 1980) ~ 2 years in May). M0PACPM 3 is the core method of the NDDO (Neglect of Diatomic Differential Overlap) method which is one of the above semi-empirical methods. M0PACPM3 mainly uses the reaction of organic compounds for the purpose of investigation, many literatures or books ["Molecular Orbital Method M0PAC Handbook" (Hirano Hirano, Tanabe Kazuo, Haeeda, 199 1st), "Three Orders" (Mizawa Yujiro, he, Chemistry, 1 983), "Handbook of Computational Chemistry" (Da Zeying, translated by Tim Clark, Jiu Shan, 1985)]. The basic unit of the formula (1) means a molecular structure of a polymer terminal and 1 to 3 repeating units. In other words, when the polymer compound is calculated by M0PACPM3, since the number of atoms constituting the molecule is too large, it is difficult to calculate the molecule as an object. Therefore, it is also possible to calculate the molecular structure type (basic unit) formed by the polymer terminal and 1 to 3 repeating units. For example, 'Molecular structure of polybutylene terephthalate (PBT) (repeating unit) It is represented by the chemical formula (CH2-CH2-CH2-CH2-0-C(=0)-C6H4-C(=0)-〇))••, but H0-CH2-CH2 can also be simply used in the above formula (1). -CH2-CH2-0-C(=0) -C6H4-C(=0)-0H is calculated as the basic unit. 1294894 When the orbital interaction energy coefficient S of the formula (1) is called the reactivity index, there are definitions and explanations for the entire book, and the chemical reactivity is generally used. For example, in the "Introduction Boundary Orbital Theory" (72 pages, Yamagata Shinichi, Inaba, and Kodansha Natural Science and Technology, 1989), the orbital interaction energy coefficient S is "in the case of two orbital interactions. (a) The smaller the energy difference is, the smaller the (b) the larger the overlap, the larger the interaction, and the stronger the interaction. Formula (1) is based on the superdelocal ozability (Sr) proposition published in 1954 by Dr. Fukui, a Nobel laureate (see "Using the Molecular Orbital Method", page 71, Imoto, and the same person, 1 986), which is the same as the formula (1) advocated by Sr, and is derived from various books or documents. The focus here is on the molecular orbital method, which is widely known based on molecular structure and chemical reactivity. Therefore, the orbital interaction energy coefficient S[1/eV] defined by the formula (1) is not a simple number of enthalpy, and has the same meaning as the parameter or physical property 分子量 (molecular weight, functional group, etc.) for a specific material. Counting. Moreover, the radical orbital energy Ee(eV) of the radical generator is based on the molecular structure of the radical, and is preferably calculated by MOP ACPM3, but it can be used simply based on the type of the radical generator. And set it. For example, Ee=-8 eV when the radical generator is an organic peroxide and E when it is an azo compound can be calculated. = - 5 e V, when it is a sulfur-containing organic compound other than sulfur, E c = _ 6 e V 〇 Orbital interaction energy coefficient S is a hydrogen atom (active hydrogen atom) of a certain enthalpy (for example, 〇· 〇〇6 ) When the radical generator is an organic peroxide, for example, an amine (-NH2) group (for example, a terminal amine group) or an imido group (-NH _ ) (for example, a main chain or a 1294894 terminal imine group, a guanamine bond) NH-based, etc., methyl (-CH3) group, methyl (-CH2) group (main chain or terminal methyl group), methine group (-CH=) group (backbone or terminal methine group) ) such as a hydrogen atom. Further, the orbital interaction energy coefficient S is a sulfur atom (active sulfur atom) of a certain enthalpy (for example, 〇. 〇〇6) or more, and a thiol (-) group, such as thiol (-SH), when the radical generator is an organic peroxide. A sulfur atom such as a thiol group (such as a C! _ 4 alkylthio group such as a methylthio group or an ethylthio group) or a sulfonyl group (_SO-). The methyl group is, for example, an alkyl chain, a cycloalkyl chain or a methyl group bonded to an aromatic ring, a methyl group bonded to an oxygen atom (methyl group of a methoxy group), or the like. a methyl group, for example, a methyl group, a (poly)oxymethane unit, a (poly)ethylene oxide unit, or the like, which forms a linear or branched alkyl group of a main chain or a side chain, or a (poly)alkylene oxide group. The unit is a methyl group, an amine group or an imine group or the like which is adjacent to a nitrogen atom. The methine group is, for example, an a-methyl group adjacent to an amino group or an imido group, for example, an α-position methine group for an amine group of an aminocycloalkyl group. The resin may have several (e.g., an average of two or more) active atoms in one molecule. In other words, in general, the resin may be a single molecule or a mixture of a plurality of molecules having several different configurations or chain lengths. Therefore, the whole part does not need to have several active atoms, and when calculating the main basic units of the preset, the number of the average active hydrogen atoms in one molecule may be 2 or more. For example, a polymer having a weight of C(=0))η (polyamide 66) may have a basic unit of NH2-(CH2)6-NH-C(=0)-(CH2)4- C(=0)-0H is the benchmark calculation. When the free radical generator is an organic peroxide, the terminal NH2-(CH2)6-NH-c(=o)-(ch2)4-c(=o)-oh is In the reference, when the radical generator is an organic peroxide, two hydrogen atoms in the terminal NH2 group are active hydrogen atoms (ie, S ^ -15 - 1294894 〇·006 ). In this case, the average number of active hydrogen atoms in one molecule of polyamine 66 can be determined by the ratio of the terminal Ν 基 2 group of the polymer of the aggregate (polyamine 66) to the terminal COOH group. (2) Find the benchmark.

N= 2x A (其中,A係表示一分子中平均末端NH2基之數) 例如,末端NH2基/末端COOH基=1 / 1 (莫耳比)時,一分 子中末端NH2基之數A=1個,一分子中活性氫原子之原子 數N = 2個。又,末端關2基/末端COOH基=1/2(莫耳比)時, 一子中末端ΝΑ基之數,A = 2/3個、一分子中活性氫原子之 數N=4/3個。 而且,以樹脂爲具有不同的活性原子數之數種樹脂構 成的混合樹脂時,混合樹脂之活性原子數可以各樹脂具有 的活性原子數之平均値表示。總之,個別求出構成混合樹 脂之各樹脂的基本單位所成的活性原子數,且各樹脂之重 量比例求取活性原子數之平均,可求得混合樹脂之活性原 子數。例如,混合樹脂係以上述N = 2個聚醯胺6 6 ( A )、與上 述N = 4/3個聚醯胺66(B)構成,(八)/(8) = 1/1(莫耳比)時, 混合樹脂一分子中之活性原子數N= 5 / 3個。而且,混合樹 脂以上述N = 2個聚醯胺66(A)、與全末端爲羧基(合計爲N = 0 個)之聚醯胺66(C)構成,A/C=3/1 (莫耳比)時混合樹脂一分 子中活性原子數N = 3 / 2個。 該具有活性原子之樹脂例如於上述例示的聚醯胺系樹 脂、聚酯系樹脂、聚縮醛系樹脂、聚伸苯醚系樹脂、熱塑 性彈性體、胺系樹脂等。 另外,可使用不具上述數種活性原子之樹脂、或使用 -16- 1294894 sa 2/8修正κ 導入有活性原子(胺基、環氧院基等)之改性樹脂。該熱塑 性樹脂例如乙烯聚合性樹脂[(甲基)丙烯酸系樹脂(聚甲基 丙烯酸甲酯、甲基丙烯酸甲酯-苯乙烯共聚物(MS樹脂)、聚 丙烯腈等)、苯乙烯系樹脂(聚苯乙烯;AS樹脂、苯乙烯-甲 基丙烯酸甲酯共聚物等之苯乙烯共聚物;HIPS、ABS樹脂等 之苯乙烯系接之共聚物等)、含鹵素單體之單獨或共聚物(聚 氯乙烯、偏二氯乙烯共聚物等)、乙烯系樹脂(聚醋酸乙烯、 聚乙燦醇等)等]、縮合系樹脂[聚碳酸酯(雙酚A型聚碳酸 酯樹脂等)、聚醯亞胺系樹脂、聚珮系樹脂、聚醚 系樹脂、 聚醚醚酮系樹脂、聚丙烯酸酯系樹脂等]。 上述乙烯聚合系樹脂例如乙烯單體與(甲基)丙烯酸、 馬來酸酐等含羧基或酸酐基之單體共聚合物,在乙烯聚合 系樹脂中導入羧基或酸酐基,視其所需使氯化亞硫醯基反 應以生成酸氯化物基,使銨、單取代胺類(單烷胺、單芳胺 等)或上述例示的二胺類反應,藉由導入胺基以生成改性樹 脂。另外,使(聚)烷二醇單(甲基)丙烯酸酯或(聚)環氧烷 醇單烷醚(甲基)丙烯酸與上述乙烯單體共聚合,藉由在乙 烯聚合系樹脂中接枝聚合,導入活性氫原子予以改性。 另外,乙烯聚合系樹脂或縮合樹脂係在樹脂中含羧基 或酸酐基之單體接枝聚合,在樹脂中導入羧基或酸酐基, 與上述相同地視其所需與氯化亞硫醯基反應以生成酸氯化 物基,使銨、單取代胺類或上述例示的二胺類反應,導入 胺基予以改性。 此外,構成本發明樹脂組成物之樹脂亦可以所定濃度 -17- 1294894 含有上述活性原子之樹脂(或改性樹脂)與其他樹脂構成。 其他熱塑性樹脂包含對應於上述改性樹脂之未改性熱塑性 樹脂、例如苯乙烯系樹脂、(甲基)丙烯酸系樹脂、含鹵素 之單體單獨或共聚物(氟系樹脂等)、乙烯系樹脂、聚碳酸 酯系樹脂、聚醯亞胺系樹脂、聚颯系樹脂、聚醚颯系樹脂、 聚醚醚酮系樹脂、聚丙烯酸酯系樹脂、液晶性聚酯樹脂等。 而且,熱固性樹脂(例如尿素樹脂、苯胺樹脂、蜜胺樹 脂、鳥糞胺樹脂等之胺系樹脂、苯酚樹脂、環氧樹脂等之 縮合系樹脂),可使用具有活性原子之硬化劑藉由交聯或硬 化以導入活性原子。硬化劑可視樹脂種類而定選擇,例如 胺系硬化劑(例如三伸乙基四胺等之脂肪族聚胺、間伸苯基 二胺、二胺基二苯基甲烷等之芳香族聚胺等)、醯胺系硬化 劑(例如聚醯胺胺等)等。 活性原子濃度小的自由基聚合等之加成聚合系樹脂(例 如不飽和聚酯、乙烯酯系樹脂、二烯丙基酞酸酯樹脂等)可 藉由與具有活性原子之單體共聚合以導入活性原子。具有 活性原子之單體例如具有環氧c2.4烷基單位之單體((聚)環 氧乙烷醇單(甲基)丙烯酸酯等(聚)環氧烷醇單(甲基)丙烯 酸酯等之(聚)環氧烷醇單(甲基)丙烯酸酯、(聚)環氧乙烷 醇單甲醚(甲基)丙烯酸酯等之(聚)環氧烷醇單院醚(甲基) 丙嫌酸酯、多官能性單體、例如(聚)環氧乙烷醇二(甲基) 丙燒酸酯等之(聚)環氧院醇二(甲基)丙烯酸酯、雙酣A環 氧院基加成物之一(甲基)丙燒酸酯等)、具有醯胺鍵之單體 (丙嫌醯胺、亞甲基·雙(甲基)丙烯醯胺、丨,^雙丙烯醯胺- 1294894 乙烷等之丙烯醯胺等。 而且,熱固性丙烯酸樹脂可使用胺系樹脂(例如蜜胺樹 脂、鳥糞胺樹脂等)作爲交聯劑交聯、導入活性原子,亦可 以藉由使熱固性丙烯酸樹脂之構成單體、與具有活性原子 之多官能聚合性單體共聚合、導入活性原子。 具有活性原子之樹脂比例對樹脂成分全體而言爲3 〇〜 100重量%、較佳者爲50〜100重量%、更佳者爲80〜100重 量% 〇 (具有交聯性基之樹脂) 具有交聯性基之樹脂(例如稱爲交聯性樹脂時)分爲具 有不飽和鍵(聚合性或交聯性不飽和鍵)之熱塑性樹脂、與 具有交聯性官能基之熱固性樹脂。交聯性樹脂亦可以具有 上述不飽和鍵及交聯性官能基。 具有不飽和鍵之熱塑性樹脂中,不飽和鍵爲藉由加硫 劑(自由基發生劑等)可活性化即可,沒有特別的限制,例 如藉由施予熱或光具有交聯性或聚合性之各種鍵(特別示聚 合性不飽和鍵)。該不飽和鍵或具有不飽和鍵之單位,可經 由鍵結基(酯鍵(- 0C(=0) -、-C(=0)0 -)、醯胺鍵(- NHCO-、-CONH -)、亞胺鍵(- NH -)、胺甲酸酯鍵(- NHC(=0)0 -)、尿素 鍵、縮二脲鍵等鍵結於熱塑性樹脂。另外,上述不飽和鍵 或其單位可以位於樹脂末端(主鏈末端)及/或側鏈,亦可以 位於樹脂主鍵’另可爲於此等兩者上。 具有不飽和鍵之基例如乙烯基、1-丙烯基、異丙烯基、 卜丁烯基、烯丙基、2 -甲基-2-丙烯基、2_ 丁烯基等之C2.6 -19 - 1294894 烯基;4-乙烯苯基、4-異丙烯基苯基等之C2.6烯基-C6.2Q芳 基;苯乙烯基等之C6_2G芳基- C2.6烯基;乙炔基、1 -丙炔基、 1 - 丁炔基、炔丙基、2-丁炔基、1 -甲基-2-丙烯基等之C2_6 炔基;亞乙烯基、甲基亞乙烯基、乙基亞乙烯基、1,2 -二 甲基亞乙烯基等之單或二1.6烷基亞乙烯基、氯化亞乙烯 基等之鹵化亞乙烯基等可具取代基之亞乙烯基;亞乙烯基; 亞乙炔基等。 具有不飽和鍵之熱塑性樹脂的具體形態例如下述(i )〜 (i v )之形態。 (i )具有反應性基(A )及不飽和鍵之聚合性化合物、與 具有對上述反應性基(A )而言反應性之反應性基的熱塑性樹 脂反應生成的樹脂 (i 1 )藉由共聚合或共縮合以導入不飽和鍵之熱塑性樹 脂 (i i i )以具有不飽和鍵之樹脂與樹脂構成的聚合物混合 物 (i v )藉由各種有機反應(例如利用乙炔之萊伯爾反應導 入乙烯基、利用乙烯鋰等之有機金屬試藥導入不飽和鍵、 藉由偶合劑反應導入不飽和鍵等)導入不飽和鍵之熱塑性樹 脂。 於此等樹脂中含較佳的不飽和鍵之樹脂有樹脂(i )、( i i ) 或(i i i )。 於上述樹脂(i )中可藉由至少使一種反應性基(A )與至 少具有一種不飽和鍵之聚合性化合物、與對上述聚合性化 -20- 1294894 合物之反應性基(A )而言具有反應性之反應性基(B)的樹脂 反應,於樹脂中導入不飽和鍵。 聚合性化合物之典型反應性基(A )例如(A 1 )羥基、(A 2 ) 殘基或其酸酐、(A3)胺基、(A4)環氧基、(A5)異氰酸酯基 等’組合聚合性化合物之反應性基(A )與樹脂之反應性基(B ) 例如下述組合所例示。而且,括弧內係表示反應性基(A )與 反應性基(B )之鍵結形式。 (A 1 )羥基: (B)羧基或其酸酐基(酯鍵)、異氰酸酯基(酯鍵) (A 2 )羧基或其酸酐基: (B)羥基(酯鍵)、胺基(醯胺鍵)、環氧基(酯鍵)、異氰 酸酯基(醯胺鍵) (A3)胺基: (B )羧基或其酸酐基(醯胺鍵)、環氧基(亞胺鍵)、異氰 酸酯基(醯胺鍵) (A4)環氧基: (B )羧基或其酸酐基(酯鍵)、胺基(亞胺鍵) (A5)異氰酸酯基: (B )羥基(酯鍵)、羧基或其酸酐基(醯胺鍵)、胺基(醯 胺鍵) 聚合性化合物例如含羥基之化合物[如烯丙醇、2 - 丁烯 • 1 -醇、3-丁烯-2-醇等之C3.6烯醇、丙炔醇等之c3 6炔醇、 2 -羥基乙基(甲基)丙烯酸酯、2 -羥基丙基(甲基)丙烯酸酯、 丁二醇單(甲基)丙烯酸酯等C2 6烷二醇單(甲基)丙烯酸 1294894 酯]、二乙二醇單(甲基)丙烯酸酯等之聚環氧烷c2_6醇單(甲 基)丙烯酸酯、4 -羥基苯乙烯、4 -羥基-α-甲基苯乙烯等之 C2-6烯基苯酚、二羥基苯乙烯、乙烯基萘醇等]、含羧基或 酸酐基之化合物[如(甲基)丙烯酸、巴豆酸、3-丁酸等之C3_6 鏈烯基羧酸、衣康酸、馬來酸、馬來酸等之C4 _ 8鏈烯基二 羧酸或其酸酐、乙烯基苯甲酸等之不飽和芳香族羧酸、肉 桂酸等]、含胺基之化合物(如烯丙胺等之C3.6鏈烯胺、4 -胺基苯乙烯、二胺基苯乙烯等)、含環氧基之化合物(如烯 丙基環氧丙醚、環氧丙基(甲基)丙烯酸酯等)、異氰酸酯基 化合物(如乙烯基異氰酸酯等)等。 此外,於上述樹脂(i )中可藉由導入反應性基(B)使樹 脂改質。於樹脂中導入反應性基(B)的方法可利用(i - 1 )使 具有反應性基(B)之單體(例如上述例示的聚合性化合物 等)、與樹脂材料(或樹脂原料之單體或寡聚物)共聚合的方 法'(i - 2 )藉由氧化反應導入羧基、鹵化法、聚合性單體之 接枝法等各種有機反應。而且,乙烯基聚合系樹脂通常大 多藉由使用具有上述反應性基(B)之單體作爲共聚合成分導 入上述反應性基(B),即使皆含有乙烯聚合系樹脂之樹脂, 可藉由具有上述反應性基之聚合性化合物的接枝反應,容 易地導入上述反應性基(B )。 於上述樹脂(i )中不飽和鍵之導入方法例如於調製縮合 系樹脂(例如聚醯胺系樹脂、聚酯系樹脂等)中使作爲部分 反應成分(共聚用單體)之具有多官能性不飽和鍵的化合物 [例如脂肪族不飽和二羧酸(馬來酸、馬來酸酐、富馬酸、 -22- 1294894 衣康酚、衣康酸酐、檸康酸、檸康酸酐、中康酸等之C4d 0 月曰肪族不飽和一羧酸等)等之不飽和多元羧酸;脂肪族不飽 和一醇(2-丁稀-丨,4_二醇等之c4 iq脂肪族不飽和二醇等) 等之不跑和多元醇等]共縮合(或共聚合)的方法。而且,於 加成聚合系樹脂(例如烯烴系樹脂等)中使作爲部分反應成 分(共聚用單體)之具有共軛不飽和鍵之單體(例如丨,3 -丁二 烯、2 -甲基_ι,3 -丁二烯、2,3-二甲基d,、丁二烯、氯化N = 2x A (wherein A represents the number of average terminal NH2 groups in one molecule). For example, when the terminal NH2 group/terminal COOH group = 1 / 1 (mole ratio), the number of terminal NH2 groups in one molecule A = One, the number of atoms of active hydrogen atoms in one molecule is N = 2. Further, when the terminal 2 base/terminal COOH group = 1/2 (mole ratio), the number of terminal thiol groups in one molecule, A = 2/3, and the number of active hydrogen atoms in one molecule N = 4/3 One. Further, when the resin is a mixed resin composed of a plurality of resins having different numbers of active atoms, the number of active atoms of the mixed resin can be expressed by the average 値 of the number of active atoms of each resin. In short, the number of active atoms formed by the basic unit of each resin constituting the mixed resin is determined individually, and the ratio of the weight of each resin is averaged to obtain the average number of active atoms, and the number of active atoms of the mixed resin can be determined. For example, the mixed resin is composed of the above N = 2 polyamine 6 6 (A) and the above N = 4/3 polyamine 66 (B), (8) / (8) = 1 / 1 (Mo In the case of the ear ratio, the number of active atoms in one molecule of the mixed resin is N = 5 / 3. Further, the mixed resin is composed of the above N = 2 polyamide 66 (A) and polyamine 66 (C) having a carboxyl group at the entire end (total of N = 0), and A/C = 3/1 (Mo In the case of the ear ratio, the number of active atoms in one molecule of the mixed resin is N = 3 / 2. The resin having an active atom is, for example, a polyamido resin, a polyester resin, a polyacetal resin, a polyphenylene ether resin, a thermoplastic elastomer or an amine resin exemplified above. Further, a resin which does not have the above-mentioned several kinds of active atoms or a modified resin in which an active atom (amine group, epoxy base, or the like) is introduced using -16-294494 sa 2/8 modified κ can be used. The thermoplastic resin is, for example, an ethylene polymerizable resin [(meth)acrylic resin (polymethyl methacrylate, methyl methacrylate-styrene copolymer (MS resin), polyacrylonitrile, etc.), styrene resin ( Polystyrene; styrene copolymer of AS resin, styrene-methyl methacrylate copolymer, styrene-bonded copolymer of HIPS, ABS resin, etc.), alone or copolymer of halogen-containing monomer ( Polyvinyl chloride, vinylidene chloride copolymer, etc.), ethylene resin (polyvinyl acetate, polyvinyl alcohol, etc.), etc., condensed resin [polycarbonate (bisphenol A type polycarbonate resin, etc.), poly A quinone imine resin, a polyfluorene-based resin, a polyether-based resin, a polyetheretherketone-based resin, a polyacrylate-based resin, or the like]. The ethylene polymerization-based resin, for example, a vinyl monomer and a monomeric copolymer having a carboxyl group or an acid anhydride group such as (meth)acrylic acid or maleic anhydride, and a carboxyl group or an acid anhydride group is introduced into the ethylene polymerization resin, and chlorine is required depending on the desired content. The sulfinyl group is reacted to form an acid chloride group, and ammonium, a monosubstituted amine (monoalkylamine, monoarylamine, etc.) or the above-exemplified diamine is reacted to form a modified resin by introducing an amine group. Further, (poly)alkylene glycol mono(meth)acrylate or (poly)alkylene oxide monoalkyl ether (meth)acrylic acid is copolymerized with the above ethylene monomer by grafting in an ethylene polymerization resin The polymerization is carried out by introducing an active hydrogen atom. Further, the ethylene polymerization resin or the condensation resin is a graft polymerization of a monomer having a carboxyl group or an acid anhydride group in the resin, and a carboxyl group or an acid anhydride group is introduced into the resin, and the desired reaction with the thionyl chloride group is carried out in the same manner as described above. The acid chloride group is formed to react ammonium, a monosubstituted amine or the above-exemplified diamine, and is introduced into an amine group to be modified. Further, the resin constituting the resin composition of the present invention may be composed of a resin (or a modified resin) containing the above-mentioned active atom in a predetermined concentration of -17 to 1294894 and another resin. The other thermoplastic resin contains an unmodified thermoplastic resin corresponding to the above-mentioned modified resin, for example, a styrene resin, a (meth)acrylic resin, a halogen-containing monomer alone or a copolymer (such as a fluorine-based resin), or a vinyl resin. A polycarbonate resin, a polyimide resin, a polyfluorene resin, a polyether oxime resin, a polyether ether ketone resin, a polyacrylate resin, a liquid crystalline polyester resin, or the like. Further, a thermosetting resin (for example, an amine resin such as urea resin, aniline resin, melamine resin or guanamine resin, or a condensed resin such as a phenol resin or an epoxy resin) can be used by using a hardener having an active atom. Join or harden to introduce active atoms. The curing agent may be selected depending on the type of the resin, for example, an amine-based curing agent (for example, an aliphatic polyamine such as tri-ethyltetramine, an aromatic polyamine such as phenyldiamine or diaminodiphenylmethane) ) a guanamine-based curing agent (for example, polyamine or the like). An addition polymerization resin (for example, an unsaturated polyester, a vinyl ester resin, a diallyl phthalate resin, etc.) such as a radical polymerization having a small active atom concentration can be copolymerized with a monomer having an active atom. Introduce active atoms. Monomer having an active atom such as a monomer having an epoxy c2.4 alkyl unit ((poly)oxiranol mono(meth)acrylate or the like (poly)alkylene oxide mono(meth)acrylate (poly)alkylene oxide mono (meth) acrylate, (poly) oxiranol monomethyl ether (meth) acrylate (poly) alkylene oxide single hospital ether (methyl) a polyacrylic acid ester, a polyfunctional monomer, a (poly) epoxy oxime di(meth) acrylate such as (poly) oxiranol di(meth)propionate, a bismuth A ring One of the oxygen-based adducts (meth)propionate, etc., a monomer having a guanamine bond (profenamine, methylene bis(methyl) acrylamide, hydrazine, bispropene Indoleamine - 1294894 Acrylamide such as ethane, etc. Further, the thermosetting acrylic resin may be crosslinked by an amine resin (for example, melamine resin or guanamine resin) as a crosslinking agent, and may be introduced into an active atom. The constituent monomer of the thermosetting acrylic resin is copolymerized with a polyfunctional polymerizable monomer having an active atom, and introduced into an active atom. The proportion of the resin of the active atom is from 3 〇 to 100% by weight, preferably from 50 to 100% by weight, more preferably from 80 to 100% by weight, based on the total amount of the resin component. 〇 (Resin having a crosslinkable group) The resin of the linking group (for example, when it is called a crosslinkable resin) is divided into a thermoplastic resin having an unsaturated bond (polymerizable or crosslinkable unsaturated bond) and a thermosetting resin having a crosslinkable functional group. Crosslinkability The resin may have the above-mentioned unsaturated bond and crosslinkable functional group. Among the thermoplastic resins having an unsaturated bond, the unsaturated bond may be activated by a sulfurizing agent (a radical generating agent or the like), and is not particularly limited. For example, by applying heat or light, various bonds (specifically, polymerizable unsaturated bonds) having crosslinkability or polymerizability. The unsaturated bond or a unit having an unsaturated bond can be via a bond group (ester bond (- 0C (=0) -, -C (=0) 0 -), guanamine bond (-NHCO-, -CONH -), imine bond (-NH -), urethane bond (- NHC (=0 ) 0 -), a urea bond, a biuret bond, etc. are bonded to the thermoplastic resin. Further, the above unsaturated bond or its unit may be At the end of the resin (end of the main chain) and/or the side chain, it may also be located on the resin primary bond 'may be on both. The group having an unsaturated bond such as a vinyl group, a 1-propenyl group, an isopropenyl group, or a C2.6 -19 - 1294894 alkenyl group of butenyl group, allyl group, 2-methyl-2-propenyl group, 2-butenyl group, etc.; C2 of 4-vinylphenyl group, 4-isopropenylphenyl group, etc. .6 alkenyl-C6.2Q aryl; C6_2G aryl-C2.6 alkenyl such as styryl; ethynyl, 1-propynyl, 1-butynyl, propargyl, 2-butynyl a C2_6 alkynyl group such as 1-methyl-2-propenyl; a mono- or di-1.6-alkyl group such as a vinylidene group, a methylvinylidene group, an ethylvinylidene group or a 1,2-dimethylvinylidene group; a vinylidene group which may have a substituent such as a vinylidene group such as a vinylidene group or a vinylidene chloride; a vinylidene group; an ethynylene group or the like. Specific examples of the thermoplastic resin having an unsaturated bond are, for example, the following forms (i) to (i v ). (i) a polymerizable compound having a reactive group (A) and an unsaturated bond, and a resin (i 1 ) formed by reacting a thermoplastic resin having a reactive group reactive with the reactive group (A) a thermoplastic resin (iii) which is copolymerized or co-condensed to introduce an unsaturated bond, and a polymer mixture (iv) composed of a resin having an unsaturated bond and a resin is introduced into a vinyl group by various organic reactions (for example, a Leber reaction using acetylene) A thermoplastic resin obtained by introducing an unsaturated bond by introducing an unsaturated bond by an organometallic reagent such as ethylene lithium or introducing an unsaturated bond by a coupling agent reaction. The resin containing a preferred unsaturated bond in the resin is resin (i), (i i ) or (i i i ). In the above resin (i), at least one reactive group (A) and a polymerizable compound having at least one unsaturated bond and a reactive group (A) for the above polymerizable-20-1294894 can be used. In the case of a resin having a reactive reactive group (B), an unsaturated bond is introduced into the resin. Typical reactive group (A) of a polymerizable compound such as (A 1 ) hydroxyl group, (A 2 ) residue or its anhydride, (A3) amine group, (A4) epoxy group, (A5) isocyanate group, etc. The reactive group (A) of the compound and the reactive group (B) of the resin are exemplified by the following combinations. Further, the brackets indicate the bonding form of the reactive group (A) and the reactive group (B). (A 1 ) Hydroxy group: (B) a carboxyl group or an anhydride group thereof (ester bond), an isocyanate group (ester bond) (A 2 ) a carboxyl group or an acid anhydride group thereof: (B) a hydroxyl group (ester bond), an amine group (melamine bond) , epoxy group (ester bond), isocyanate group (melamine bond) (A3) amine group: (B) carboxyl group or its anhydride group (melamine bond), epoxy group (imine bond), isocyanate group (醯) Amine bond) (A4) epoxy group: (B) carboxyl group or its anhydride group (ester bond), amine group (imine bond) (A5) isocyanate group: (B) hydroxyl group (ester bond), carboxyl group or its anhydride group (melamine bond), amine group (melamine bond) polymerizable compound such as a hydroxyl group-containing compound [such as allyl alcohol, 2-butene-1-alcohol, 3-buten-2-ol, etc. C6 6 alkane such as c3 6 alkynyl alcohol, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate or butane diol mono (meth) acrylate such as alcohol or propynyl alcohol Polyalkylene oxide c2_6 alcohol mono(meth)acrylate, 4-hydroxystyrene, 4-hydroxy-α, such as diol mono(meth)acrylic acid 1294894 ester], diethylene glycol mono(meth)acrylate -C2 such as methyl styrene -6-alkenylphenol, dihydroxystyrene, vinylnaphthyl alcohol, etc.], a compound containing a carboxyl group or an acid anhydride group [such as a C3_6 alkenyl carboxylic acid such as (meth)acrylic acid, crotonic acid or 3-butyric acid, a C4-8 alkenyldicarboxylic acid or an anhydride thereof such as a benic acid, a maleic acid or a maleic acid, an unsaturated aromatic carboxylic acid such as vinylbenzoic acid or the like, a cinnamic acid or the like, or an amine group-containing compound (such as a C3.6-chain enamine such as allylamine, 4-aminostyrene, diaminostyrene, etc.), an epoxy group-containing compound (such as allyl epoxidized ether, epoxypropyl (methyl)) Acrylate or the like, an isocyanate-based compound (such as a vinyl isocyanate) or the like. Further, in the above resin (i), the resin can be modified by introducing a reactive group (B). The method of introducing the reactive group (B) into the resin can use (i-1) a monomer having a reactive group (B) (for example, a polymerizable compound exemplified above), and a resin material (or a single resin material). The method of copolymerization of the bulk or oligomer ('i-2) is introduced into various organic reactions such as a carboxyl group, a halogenation method, or a grafting method of a polymerizable monomer by an oxidation reaction. In addition, many of the vinyl polymer-based resins are usually introduced into the reactive group (B) by using a monomer having the reactive group (B) as a copolymerization component, and even a resin containing an ethylene polymer resin can have The graft reaction of the above-mentioned reactive group polymerizable compound is easily introduced into the above reactive group (B). The method of introducing an unsaturated bond in the resin (i) is, for example, a polyfunctional property as a partial reaction component (comonomer) in a condensed resin (for example, a polyamine resin or a polyester resin). Compounds with unsaturated bonds [eg aliphatic unsaturated dicarboxylic acids (maleic acid, maleic anhydride, fumaric acid, -22- 1294894, itaconol, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid) Such as C4d 0 month 曰 aliphatic unsaturated monocarboxylic acid, etc., unsaturated polycarboxylic acid; aliphatic unsaturated monoalcohol (2-butyl di-anthracene, 4 diol, etc. c4 iq aliphatic unsaturated two A method of co-condensation (or copolymerization) such as alcohol or the like. Further, a monomer having a conjugated unsaturated bond (for example, anthracene, 3-butadiene, 2-methyl) as a partial reaction component (copolymer monomer) is added to an addition polymerization resin (for example, an olefin resin). Base_ι,3-butadiene, 2,3-dimethyl d, butadiene, chlorination

戊傭等可具取代基之共軛Cm鏈烷二烯等)共聚合的方法 等。 上述樹脂(i i i )可藉由使熱塑性樹脂(a )、與具有不飽 和鍵之樹脂(b )混合、構成聚合物混合物(或樹脂組成物), 在熱塑性樹脂中導入不飽和鍵。 上述熱塑性樹脂(a )沒有特別的限制,例如各種熱塑性 樹脂[例如下述熱塑性樹脂(聚醯胺系樹脂、聚酯系樹脂等) 等]。另外,熱塑性樹脂(a)可以不具有不飽和鍵之樹脂、 或具有不飽和鍵之樹脂。A method of copolymerization such as a conjugated Cm alkadiene having a substituent such as a servant or the like. The above resin (i i i ) can be introduced into a thermoplastic resin by introducing a thermoplastic resin (a) and a resin (b) having an unsaturated bond to form a polymer mixture (or a resin composition). The thermoplastic resin (a) is not particularly limited, and examples thereof include various thermoplastic resins (for example, the following thermoplastic resins (polyamide-based resin, polyester-based resin, etc.)). Further, the thermoplastic resin (a) may be a resin having no unsaturated bond or a resin having an unsaturated bond.

具有不飽和鍵之樹脂(b )例如上述樹脂(i )、( i i )或(i v ) 等之導入有不飽和鍵之熱塑性樹脂、含不飽和鍵之橡膠[例 如聚鏈烷烯(聚丁二烯、聚異戊烯、聚己烯、聚庚烯、聚辛 烯、聚(3 -甲基辛烯)、聚癸烯、聚(3 -甲基癸烯)、聚十二 烯等之聚&lt;:4.15之鏈烯等)、丁二烯-異戊烯共聚物等之C4_15 鏈二烯之共聚物、丁二烯改性聚乙烯等之橡膠改性聚烯烴 等]等。而且,上述聚C4.15鏈烯可藉由環烯烴類(例如環戊 烯、環庚烯、環辛烯、環癸烯、環十二烯等可具有取代基 -23- 1294894 之(^.^環烯烴等)之取代聚合、聚伸烯基(例如聚丁二烯等) 之部分加氫等製得。 於上述樹脂(i v )中,上述樹脂(b )之比例可在聚合物混 合物中以所定濃度導入不飽和鍵之範圍內選擇,例如對1 〇〇 重量分樹脂(a)而言樹脂(b)爲〇·5〜3〇重量份、較佳者爲2 〜1〇〇重量份、更佳者爲5〜8〇重量份。特別是使用含不飽 和鍵之橡膠(例如聚伸烯基)作爲樹脂(b )時,含有不飽和鍵 之橡膠比例在不會損害樹脂(a )性質之範圍內選擇,例如對 100重星份樹脂(a)而言含有不飽和鍵之橡膠爲〇·5〜重 里份、較佳者爲1〜30重量份、最佳者爲2〜20重量份。 不it和鍵之數目例如對樹脂一分子而言平均爲〇 . 1個 以上(例如1〜1 〇 〇 〇個)、較佳者爲平均1個以上(例如1〜1 〇 〇 個)、最佳者爲平均2個以上(例如2〜50個)。此外,不飽 和鍵之濃度例如對1 kg樹脂而言〇 · 〇〇 1〜6 · 6莫耳、較佳者 爲0.01〜4莫耳、更佳者爲〇.〇2〜2莫耳。 具有交聯性官能基之熱固性樹脂例如在交聯劑(或硬化 劑)等存在下具有具交聯性或硬化性之官能基(例如羥甲 基、烷氧基甲基、環氧基、異氰酸酯基等)的樹脂。該熱固 性樹脂例如聚縮合或加成縮合系樹脂(苯酚樹脂、胺系樹 脂、環氧樹脂、熱固性聚醯亞胺系樹脂、熱固性聚胺甲酸 酯系樹脂、聚矽氧烷樹脂等)、加成聚合系樹脂(不飽和聚 酯系樹脂、乙烯酯系樹脂、二烯丙基酞酸酯系樹脂、熱固 性丙烯酸樹脂等)之上述例示的熱固性樹脂。 此等具有活性原子或交聯性基之樹脂可以單獨使用或 一 24 - 1294894 二種以上組合使用。組合二種以上樹脂使用時,樹脂組成 物可形成聚合物合金等之複合樹脂組成物。 本發明所使用的樹脂以上述活性樹脂較佳。具體而言 樹脂以具有活性原子之樹脂、具有交聯性基之樹脂、具有 活性原子及交聯性基之樹脂較佳。使甩該具有活性原子及/ 或交聯性基之樹脂時,倂用加硫活性劑、可高度提高或改 善與廣範圍橡膠之黏合性。 於下述中係爲有關較佳的熱塑性樹脂及熱固性樹脂。 (1)聚醯胺系樹脂 聚醯胺系樹脂係具有藉由羧基與胺基聚縮合之醯胺 鍵,例如脂肪族聚醯胺系樹脂、脂環族聚醯胺系樹脂、芳 香族聚醯胺系樹脂等,通.常使用脂肪族聚醯胺系樹脂。脂 肪族聚醯胺系樹脂例如脂肪族二胺成分(四甲二胺、六甲二 胺等之c4.1()烷二胺)與脂肪族二羧酸成分(己二胺、癸二酸、 十二烷二酸等之c4.2()烷二羧酸等)之縮合物(例如聚醯胺 46、聚醯胺66、聚醯胺610、聚醯胺612、聚醯胺1010、 聚醯胺1012、聚醯胺1212等)、使用內醯胺開環聚合之內 醯胺(ε-己內醯胺、ω -月桂內醯胺等之C4.2Q內醯胺等)或胺 基羧酸(ω-胺基十一烷酸等之碳數c4_2Q胺基羧酸等)之單獨 或共聚物(例如聚醯胺6、聚醯胺1 1、聚醯胺1 2等)、此等 聚醯胺成分共聚合的共聚醯胺(例如聚醯胺6 / 1 1、聚醯胺 6 / 12、聚醯胺66 / 1 1、聚醯胺66 / 12等)等。 脂環族聚醯胺系樹脂例如使至少部分上述脂肪族二胺 成分及/或脂肪族二羧酸成分取代成脂環族二胺及/或脂環 - 25- 1294894 族二羧酸的聚醯胺。脂環族二醯胺例如上述脂肪族二羧酸 成分與脂環族二胺成分(環己二胺等之c5 8環烷二胺;雙(胺 基環己基)甲烷、2 , 2 ·•雙(胺基環己基)丙烷等之雙(胺基環 己基)鏈烷類等)之縮合物。 芳香族聚醯胺系樹脂例如使至少一種上述脂肪族二胺 成分及脂肪族二羧酸成分之成分爲具有芳香族成分的聚醯 胺。芳香族聚醯胺例如二胺成分爲具有芳香族成分之聚醯 胺[MXD - 6等之芳香族二胺(間二甲苯二胺等)與脂肪族二羧 酸之縮合物等]、二羧酸成分爲具有芳香族成分之聚醯胺[脂 肪族二胺(三甲基六甲二胺等)與芳香族二羧酸(對酞酸、異 酞酸等)之縮合物等]、二胺成分及二羧酸成分同時具有芳 香族成分之聚醯胺[聚(間伸苯基異酞酸醯胺)等之全芳香族 聚醯胺(芳族聚醯胺)等]等。 聚醯胺系樹脂另包含使用二聚酸爲二羧酸成分之聚醯 胺、使少量多官能性聚胺及/或聚羧酸成分,導入支鏈構造 之聚醯胺、改性聚醯胺(N -烷氧基甲基聚醯胺等)、改性聚 烯烴混合或接枝聚合的高耐衝擊性聚醯胺、聚醚爲軟質相 之聚醯胺彈性體。 於聚醯胺系樹脂中例如對末端胺基之氫原子、末端胺 基而言鍵結於α -位碳原子之氫原子、鍵結於鄰接醯胺鍵之一 ΝΗ-基的碳原子之氫原子(伸甲基之氫原子或次甲基之氫原 子等)、特別是末端胺基之氫原子構成活性氫原子。 於聚醯胺系樹脂中末端ΝΗ2基與末端COOH基之比例沒 有特別的限制,例如以末端基之氫原子與α -碳爲之氫原子 -26 - 1294894 構成活性氫原子時’可選自於末端胺基/末端羧基=1 ο / 90〜 100/0(莫耳比)、較佳者爲20/80〜95/5(莫耳比)、更佳者 爲2 5 / 7 5〜9 5 / 5 (莫耳比)。而且’僅以末端胺基之氫原子構 成活性氫原子時,末端胺基/末端羧基=50/50〜100/0(莫耳 比)、較佳者爲60/40〜95/5(莫耳比)、更佳者爲70/30〜 9 5 / 5 (莫耳比)。 而且,聚醯胺系樹脂作爲上述樹脂(i )導入不飽和鍵 時,例如利用殘留羧基或胺基作爲反應性基(B ),另外作爲 上述樹脂(i i )導入不飽和鍵時,可使用上述不飽和多元羧 酸(馬來酸等)等作爲部分共聚合成分。 (2 )聚酯系樹脂 聚酯系樹脂例如脂肪族聚酯系樹脂、芳香族聚酯系樹 脂。通常芳香族聚酯系樹脂例如聚伸烷基丙烯酸酯系樹脂 或飽和芳香族聚酯系樹脂。芳香族聚酯系樹脂例如包含聚 對酞酸乙二酯(PET)、聚對酞酸丁二酯(PBT)等之聚C2.4伸 烷基對酞酸酯;對應於該聚伸烷基對酞酸酯之聚C2.4伸烷 基萘酸酯(例如聚伸乙基萘酸酯等);聚(1,4 -環己基二伸甲 基對酞酸酯)(PCT ))等。聚酯系樹脂可以爲含有伸烷基丙烯 酸酯單位爲主成分(例如5 0重量%以上)之共聚酯,共聚合 成份例如乙二醇、丙二醇、丁二醇、己二醇等之C2.6烷二 醇、聚環氧C2_4烷二醇、酞酸、異酞酸等非對稱芳香族二 羧酸或其酸酐、己二酸等之脂肪族二羧酸等。另外亦可以 使用少量的聚醇及/或聚羧酸,在線狀聚酯中導入支鏈構 造。 -27- 1294894 芳香族聚酯系樹脂沒有具有所定濃度之上述活性原子 時,可使用以具有活性原子之改性化合物改性聚酯系樹脂 (例如至少具有一種選自於胺基及環氧烷基之芳香族聚酯系 樹脂)。活性原子、特別是具有活性氫原子之化合物例如聚 胺類(脂肪族二胺類、如乙二胺、三甲二胺、丙二胺、四甲 二胺、五甲二胺、六甲二胺、三甲基六甲二胺、1 , 7 -二胺 基庚烷、1,8-二胺基辛烷等之碳數2〜10之直鏈或支鏈狀 烷二胺等;脂肪族二胺類例如異佛爾酮二胺、雙(4 -胺基-3 -甲基環己基)甲烷、雙(胺基甲基)環己烷等;芳香族二胺類 例如苯二胺、二甲苯二胺、二胺基二苯基甲烷等)、聚醇類 (例如(聚)環氧乙院醇、(聚)氧化三甲二醇、(聚)環氧丙烷 醇、(聚)氧化四甲二醇等之(聚)環氧C2_4烷醇類等)等。改 性例如可利用使聚酯系樹脂與改性化合物加熱混合、且醯 胺化、酯化或酯交換反應進行。聚酯系樹脂之改性程度係 視上述化合物中活性氫原子之量而定,對1莫耳聚酯系樹 脂之官能基(經基或錢基)而言例如改性化合物〇 . 1〜2莫 耳、較佳者爲0.2〜1.5莫耳、更佳者爲0.3〜1莫耳。使 用酉旨交換反應時(聚)環氧C2.4烷醇類之使用量對100重量 份聚酯系樹脂而言爲1〜50重量份、較佳者爲5〜30重量 份。 聚酯系樹脂通常以(聚)環氧烷基單位之伸甲基的氫原 子_成活性氫原子,且改性聚酯系樹脂通常對末端胺基之 氫@子 '或末端胺基而言鍵結於α-位碳原子之氫原子、鍵 結於鄰接醯胺鍵之-ΝΗ -基的碳原子之氫原子(伸甲基之氫原 - 28- 1294894 子或次甲基之氫原子等)、特別是末端胺基之氫原子構成活 性氫原子。 此外,聚酯系樹脂作爲上述樹脂(i )導入不飽和鍵時, 例如可利用殘留的羧基或羥基作爲反應性基(B ),另外,作 爲上述樹脂(i i )導入不飽和鍵時可使用上述不飽和多元狻 酸(馬來酸等)、或上述不飽和多元醇(2 -丁烯-1,4 -二醇等) 等作爲部分共聚合成分。 (3 )聚(硫)醚系樹脂 聚(硫)醚系樹脂包含聚環氧烷基系樹脂、聚伸苯醚系 樹脂、聚硫化物系樹脂(聚硫醚系樹脂)。聚環氧烷基系樹 脂包含聚氧化甲二醇、聚環氧乙烷醇、聚環氧丙烷醇、聚 環氧乙烷-聚環氧丙烷嵌段共聚物、聚氧化四甲醇等之聚氧 化C! _4烷二醇等。較佳的聚(硫)醚系樹脂包含聚縮醛系樹 脂、聚伸苯醚系樹脂、聚硫化物系樹脂及聚醚酮系樹脂。 而且,作爲上述樹脂(i )導入不飽和鍵時,可利用殘留的羥 基、S荒基等作爲反應性基(B )。 (3a)聚縮醛系樹脂 聚縮醛系樹脂可以藉由縮醛鍵之規則重複構成的均聚 物(甲醛之單聚物)、亦可以藉由開環聚合製得的共聚物(三 噁烷與環氧乙烷及/或1,3 -二氧雜戊環之共聚物等)。而且, 聚縮醛系樹脂之末端可經密封安定化。聚縮醛系樹脂例、如 以氧化伸甲基單位之氫原子、末端密封的烷氧基(特別是甲 氧基)之氫原子、特別是氧化伸甲基單位之氫原子構成活性 氫原子。此外,聚縮醛系樹脂作爲上述樹脂(i )導入不飽和 - 2 9 - 1294894 鍵時’可利用殘留的羥基等作爲反應性基(B)。 (3 b )聚伸苯醚系樹脂 聚伸苯醚系樹脂包含以2 , 6 _二甲基伸苯基氧化物爲主 成分之各種樹脂,例如2,6 _二甲基伸苯基氧化物與苯酚類 之共聚物、使苯乙烯系樹脂混合或接枝的改性聚伸苯醚系 樹脂等。其他改性聚伸苯醚系樹脂例如聚伸苯醚/聚醯胺 系、聚伸苯醚/飽和聚酯系、聚伸苯醚/聚伸苯基硫化物系、 聚伸苯ϋ /聚烯烴系等。使苯乙烯系樹脂混合時,對丨00重 量份聚伸苯醚系樹脂而言苯乙烯系樹脂之比例例如爲2〜 150重量份、較佳者爲3〜1〇〇重量份、更佳者爲5〜50重 量份。聚伸苯醚系樹脂例如可以鍵結於苯環上甲基的氫原 子構成活性氫原子。 (3 c )聚硫化物系樹脂(聚硫醚系樹脂) 聚硫化物系樹脂只要是在聚合物鏈中具有硫基s _ )之 樹脂即可,沒有特別的限制。該樹脂例如聚伸苯基硫化物 樹脂、聚二硫化物樹脂、聚聯苯基硫化物樹脂、聚酮硫化 物樹脂、聚硫醚颯樹脂等。而且,聚硫化物系樹脂可如聚(胺 基伸苯基硫化物)之具有胺基等取代基。較佳的聚硫化物系 樹脂爲聚伸苯基硫化物樹脂。聚硫化物系樹脂以主鏈中之 硫基構成活性硫原子。 (3d)聚醚酮系樹脂 聚醒酬系樹B曰例如藉由一齒化二苯甲嗣(二氯化二苯甲 酮等)與二氫二苯甲酮聚縮合製得的聚醚酮樹脂、藉由二鹵 化二苯甲酮與氫醌聚縮合製得的聚醚醚酮樹脂等。 —30 - 1294894 (4 )聚碳酸酯系樹脂 聚碳酸酯系樹脂可以爲脂肪族聚碳酸酯系樹脂,通常 芳香族聚碳酸酯系樹脂例如藉由芳香族二羥基化合物(雙酚 A、雙酚S等之雙酚化合物等)、與膦或碳酸二酯(二苯基碳 酸酯等二芳基碳酸酯、二甲基碳酸酯等二烷基碳酸酯等)反 應製得的芳香族聚碳酸酯等。聚碳酸酯系樹脂作爲上述樹 脂(i )導入不飽和鍵時,可利用殘留的羥基等作爲反應性基 (B )。 (5 )聚醯亞胺系樹脂 聚醯亞胺系樹脂包含熱塑性聚醯亞胺系樹脂、例如使 芳香族四羧酸或其酸酐(二苯甲酮四羧酸等)、芳香族二胺 (二胺基二苯基甲烷等)反應製得的聚醯亞胺樹脂、聚醯胺 醯亞胺樹脂、聚酯醯亞胺樹脂等。聚醯亞胺系樹脂作爲上 述樹脂(i )導入不飽和鍵時,可利用殘留的羧基或酸酐基、 胺基、亞胺基等作爲反應性基(B )。 (6 )聚颯系樹脂 聚颯系樹脂例如藉由二鹵化二苯基颯(二氯二苯基颯等) 與雙酣類(雙酚A或其金屬鹽等)聚縮合製得的聚礪樹脂、 聚醚颯樹脂、聚烯丙基颯樹脂(商品名:RADEL)等。 (7)聚胺甲酸酯系樹脂 聚胺甲酸酯系樹脂可藉由二異氰酸酯類與聚醇類與視 其所需鏈伸長劑反應製得。二異氰酸酯類例如六伸甲基二 異氨酸酯' 2,2,4 -三甲基六伸甲基二異氰酸酯等之脂肪族 一異氨酸酯類、1,4 -環己烷二異氰酸酯、異佛爾酮二異氰 -31 - 1294894 酸酯等之脂環族二異氰酸酯類、伸苯基二異氰酸酯、伸甲 苯基二異氰酸酯、二苯基甲烷-4, 4’-二異氰酸酯等之芳香 族二異氰酸酯類、二甲苯基二異氰酸酯等之芳香脂肪族二 異氰酸酯類等。二異氰酸酯類可使用烷基(例如甲基)在主 鏈或環上取代的化合物。 二醇類可利用聚酯二醇(由己二酸等之C4. i 2脂肪族二 羧酸成分、乙二醇、丙二醇、丁二醇、新戊醇等之C2.12脂 肪族二醇成分、ε-己內酯等之C4_12內酯成分等所得的聚酯 二醇等)、聚醚二醇(聚乙二醇、聚丙二醇、聚環氧乙烷-聚 環氧丙烷共聚物、聚氧化四甲二醇、雙酚A -環氧烷基加成 物等)、聚酯醚二醇(使用上述聚醚二醇作爲二醇成分之聚 酯二醇)等。 另外,鏈伸長劑除乙二醇、丙二醇等之C2.1Q烷二醇外, 可使用二胺類。二胺類例如乙二胺、三甲二胺、四甲二胺、 五甲二胺、六甲二胺、三甲基六甲二胺、1,7 -二胺基庚烷、 1,8 -二胺基辛烷等碳數2〜10之直鏈或支鏈烷二胺、二乙 三胺、三乙四胺、四乙五胺、二丙三胺等之直鏈或支鏈聚 烷聚胺等;脂肪族二胺類、例如異佛爾酮二胺、雙(4 -胺基 -3 -甲基環己基)甲烷、雙(胺基甲基)環己烷等;芳香族二 胺類、例如苯二胺、二甲苯二胺、二胺基二苯基甲烷等。 聚胺甲酸酯系樹脂例如二異氰酸酯類之主鏈或鍵結於 環之院基的氫原子(特別是苯甲基位之氫原子)、聚醇類或 聚環氧烷醇之伸烷基的氫原子、鏈伸長劑之胺基的氫原子 等構成活性氫原子。 - 32 - 1294894 &amp; 沾ι修正頁 而且’聚胺甲酸酯系樹脂作爲上述樹脂(丨)導入不飽和 鍵時’例如可利用殘留的羥基、胺基、異氰酸酯基等作爲 反應性基(B),而作爲上述樹脂(i i )導入不飽和鍵時,使用 上述不飽和多元醇(2 - 丁烯-1,4 -二醇等)等作爲共聚合成分 之一部份。 (8 )聚烯烴系樹脂 聚烯烴系樹脂例如聚乙烯、聚丙烯、乙烯-丙烯共聚物、 聚(甲基戊烯-1 )等烯烴之單獨或共聚物、烯烴與共聚性單 體之共聚物(乙烯-醋酸乙烯酯共聚物、乙烯甲基)丙烯酸 共聚物、乙烯-(甲基)丙烯酸酯共聚物等)。此等之聚烯烴 系樹脂可以單獨使用或二種以上組合使用。 較佳的聚烯烴系樹脂包含丙烯含量爲50重量%以上(特 別是75〜100重量%)之聚丙烯系樹脂、例如聚丙烯、丙烯_ 乙燒共聚物、丙嫌-丁嫌共聚物、丙燦-乙燒-丁燒共聚物等。 而且,聚烯烴系樹脂以具結晶性者較佳。 聚燒烴系樹脂例如構成聚燒烴主鏈的伸甲基之氫原 子、由上述主鏈分支的甲基之氫原子等構成活性氫原子。 (9 )含鹵素之樹脂 含鹵素之樹脂例如聚氯乙烯、聚偏二氯乙烯、氯乙烯-醋酸乙烯酯共聚物、偏二氯乙烯-醋酸乙烯酯共聚物等之含 氯之乙烯系樹脂、與聚氟乙烯 '聚偏二氟乙烯、聚氯化三氟 乙條、四氟乙輝之共聚物等含氟之乙燦系樹脂等。較佳的含 氟之樹脂有含氟之乙烯系樹脂(例如聚氟乙烯、聚偏二氟乙 烯等)。 - 33- 1294894 (1 ο)苯乙烯系樹脂 苯乙烯系樹脂例如苯乙烯系單體之單獨或共聚物(聚苯 乙烯、苯乙烯-乙烯甲苯共聚物、苯乙烯-甲基苯乙烯共 聚物等)、苯乙烯系單體與共聚性單體(例如(甲基)丙烯腈 等之氰化乙烯系化合物等)之共聚物(苯乙烯-丙烯腈共聚物 (AS樹脂)、(甲基)丙烯酸酯-苯乙烯共聚物(MS樹脂等)、 苯乙燃-馬來酸酐共聚物、苯乙烯-丁二烯共聚物等苯乙烯 共聚物;丙烯腈-丁二烯 '苯乙烯共聚物(ABS樹脂)、耐衝擊 性聚苯乙烯(HIPS)、丙烯腈-丙烯酸酯-苯乙烯共聚物(AAS 樹脂)、丙烯腈-氯化聚乙烯-苯乙烯共聚物(ACS樹脂)、丙 烯腈-乙烯丙烯橡膠-苯乙烯共聚物(AES樹脂)、丙烯腈-醋 酸乙烯-苯乙烯共聚物(AXS樹脂)等之苯乙烯系接枝共聚物 等)等。 (1 1 )(甲基)丙烯酸系樹脂 (甲基)丙烯酸系樹脂例如(甲基)丙烯酸系單體之單獨 或共聚物、(甲基)丙烯酸系單體與共聚性單體之共聚物等。 (甲基)丙烯酸系單體例如(甲基)丙烯酸、(甲基)丙烯酸甲 酯 '(甲基)丙烯酸乙酯、(甲基)丙烯酸異丙酯、(甲基)丙 烯酸丁酯、(甲基)丙烯酸2 -乙基己酯等之(甲基)丙烯酸 10烷酯、甲基丙烯酸環己酯等之甲基丙烯酸。環烷酯、(甲 基)丙烯酸苯酯等之(甲基)丙烯酸C6-1Q芳酯、(甲基)丙烯 酸羥基乙酯等之(甲基)丙烯酸羥基。烷酯、(甲基)丙烯 醯胺、氰化乙烯系化合物(例如(甲基)丙烯腈等)、(甲基) 丙烯酸環氧丙酯等。共聚性單體例如醋酸乙烯、氯化乙烯 一 3 4 - 1294894 等之乙烯系單體、苯乙烯、α -甲基苯乙烯等之苯乙烯系單 體等。 (甲基)丙烯酸系樹脂作爲上述樹脂(i )導入不飽和鍵 時,可藉由使用具有反應性基(B )之單體作爲共聚合單體以 導入上述反應性基(B)。 (1 2 )熱塑性彈性體 熱塑性彈性體包含聚醯胺系彈性體(以聚醯胺爲硬質 相、以脂肪族聚醚爲軟質相之共聚物)、聚酯系彈性體(以 聚伸烷基丙烯酸酯爲硬質相、以脂肪族聚醚或脂肪族聚酯 爲軟質相之共聚物)、聚胺甲酸酯系彈性體(以短鏈醇之聚 胺甲酸酯爲硬質相、以脂肪族聚醚或脂肪族聚酯爲軟質相 之共聚物、如聚酯胺甲酸酯彈性體、聚醚胺甲酸酯彈性體 等)、聚苯乙烯系彈性體(以聚苯乙烯嵌段爲硬質相、以二 烯聚合物嵌段或其加氫嵌段爲軟質相之嵌段共聚物)、聚烯 烴系彈性體(以聚苯乙烯或聚丙烯爲硬質相、以乙烯-丙烯 橡膠或乙烯-丙烯-二烯橡膠爲軟質相之彈性體、結晶化度 不同的硬質相與軟質相構成的烯烴系彈性體等)、聚氯化乙 燦系彈性體、氟系熱塑性彈性體等。脂肪族聚醚可使用聚 醋系樹脂及聚胺甲酸酯系樹脂項中記載的(聚)環氧烷(c2 _ 4) 醇類(特別是聚環氧乙烷醇)等,脂肪族聚酯可使用聚胺甲 酸酯系樹脂項記載的聚酯二醇等。此等熱塑性彈性體可以 單獨使用或二種以上組合使用。 熱塑丨生彈性體爲嵌段共聚物時,嵌段構造沒有特別的 限制,可以爲三嵌段構造、多嵌段構造、星形嵌段構造等。 一35- 1294894 b '身正頁 較佳的熱塑性彈性體包含聚醯胺系彈性體、聚酯系彈 性體、聚胺甲酸酯系彈性體、聚苯乙烯系彈性體、聚烯烴 系彈性體。 熱塑性彈性體例如構成軟質相之環氧烷基單位的氫原 子可構成活性氫原子。 此外’乙燒聚合系樹脂[例如(甲基)丙燒酸系樹脂(聚 甲基丙烯酸甲酯、甲基丙烯酸甲酯-苯乙烯系共聚物等)及 苯乙烯系樹脂(聚苯乙烯;AS樹脂等之苯乙烯共聚物;HIPS、 ABS樹脂等苯乙烯系接枝共聚物等)],可藉由2官能以上之 多官能聚合性化合物(例如乙二醇二(甲基)丙烯酸酯、二乙 二醇二(甲基)丙烯酸酯、二丙二醇二(甲基)丙烯酸酯、三 羥甲基丙烷三(甲基)丙烯酸酯等)與構成單體共聚合交聯。 熱固性樹脂例如聚縮合或加成縮合系樹脂(苯酚樹脂、 胺系樹脂、環氧樹脂、聚矽氧烷樹脂、熱固性聚醯亞胺系 樹脂、熱固性聚胺甲酸酯系樹脂等)、加成聚合系樹脂(熱 固性丙烯酸系樹脂、乙烯酯系樹脂、不飽和聚酯系樹脂、 二烯丙基酞酸酯系樹脂等)。熱固性樹脂可以單獨使用或2 種以上組合使用。 (1 3 )苯酚樹脂 苯酚樹脂係包含酚醛淸漆樹脂、甲酚樹脂等,通常使 用酚醛淸漆樹脂。酚醛淸漆樹脂係藉由在酸觸媒存在下使 苯酚類與醛類反應製得。苯酚類例如苯酚、〇 _、m -、或對 甲酚、2, 5-、3,5 -或3,4·二甲酚、2,3, 5 -三甲基苯酚、乙 基苯酚、丙基苯酚等之(^.4烷基苯酚、二羥基苯、間苯二 一 36 - 1294894 酚、萘酚等。此等苯酚類可以單獨使用或二種以上倂用。 醛類例如甲醛、對甲醛、乙醛、丙醛等之脂肪族醛、苯并 醛、水楊醛等之芳香族醛等。此等醛類可以單獨使用或2 種以上組合使用。 (1 4 )胺系樹脂 胺系樹脂通常爲藉由含胺基之化合物與醛類(例如甲 醛、乙醛、丙醛等芳香族醛、苯基乙醛等之芳香族醛等)反 應製得。胺系樹脂有尿素樹脂(藉由尿素與醛類反應製得的 尿素樹脂等)、苯胺樹脂(藉由苯胺、萘胺、甲苯胺、二甲 苯胺、N,N -二甲基苯胺、聯苯胺等之苯胺類、與醛類反應 製得的苯胺樹脂等)、蜜胺樹脂(藉由蜜胺與醛類反應製得 的蜜胺樹脂等)、鳥糞胺樹脂(苯并鳥糞胺、乙醯基鳥糞胺、 ¥ Μ鳥糞胺等之鳥糞胺類、與醛類反應製得的鳥糞胺樹脂 等)等。 (1 5 )環氧樹脂 環氧系樹脂包含雙酚型環氧樹脂、酚醛淸漆型環氧樹 脂、胺系環氧樹脂等。 構成雙酚型環氧樹脂之雙酚例如4,4 -雙酚、2,2 -雙酚、 雙酌F、雙酚AD、雙酚Α等之環氧丙醚類。 構成酚醛淸漆型環氧樹脂之酚醛淸漆樹脂例如上述酚 ^ '凊漆樹脂項中記載的苯酚類與醛類之反應所得的酚醛淸 漆樹脂等。 構成胺系環氧樹脂之胺成分例如苯胺、甲苯胺等之芳 香族胺、二胺基苯、二甲苯二胺等芳香族二胺、胺基羥基 - 37- 1294894 苯、二胺基二苯基甲烷等。 (1 6 )聚矽氧烷樹脂 聚矽氧烷樹脂包含以式:RaSiO(4.a)/2所示單位(其中係 數a爲1 · 9〜2 · 1 )、與式:RbSiO(4.bW2所示單位(其中係數 b爲0 . 9〜1 . 1 )構成的聚矽氧烷樹脂等。其中,例如甲基、 乙基、丙基、丁基等之。烷基、3-氯化丙基、3,3,3-三 氟丙基等之鹵化烷基、乙烯基、烯丙基、丁烯基等之 C2.I()烯基、苯基、甲苯基、萘基等之C6_12芳基、環戊基、 環己基等之C3.1Q環烷基、苯甲基、苯乙基等之C6.12芳基-Cm 烷基等。 (1 7 )熱固性聚醯亞胺系樹脂 熱固性聚醯亞胺系樹脂包含上述聚醯亞胺系樹脂項中 記載的樹脂。 (1 8 )熱固性聚胺甲酸酯系樹脂 熱固性聚胺甲酸酯系樹脂包含上述聚胺甲酸酯系樹脂 項中記載的樹脂。 (1 9 )熱固性丙烯酸系樹脂 熱固性丙烯酸樹脂包含上述(甲基)丙烯酸系樹脂項中 記載的樹脂。 (20)乙烯酯系樹脂 乙烯酯系樹脂例如藉由上述環氧樹脂、與(甲基)丙烯 酸反應製得的聚合物、藉由多元苯酚類與環氧丙基(甲基) 两燒酸酯反應製得的聚合物等。 (2 1 )不飽和聚酯系樹脂 一 38- 1294894 不飽和聚酯樹脂例如於上述聚酯系樹 二羧酸或其酸酐(例如馬來酸、馬來酸酐、 二羧酸成分之不飽和聚酯等。 (22)二烯丙基酞酸酯系樹脂 二烯丙基酞酸酯系樹脂包含由二烯丙 烯丙基異酞酸酯等之二烯丙烯酞酸酯單體戶J [加硫活性劑] 本發明之樹脂組成物含有爲提高或改 脂之黏合性時的加硫活性劑。於上述複合 劑可提高樹脂與橡膠之濕潤性、均勻地黏 劑(例如自由基發生劑等)伴隨未加硫橡 聯)、使樹脂與橡膠交聯以提高樹脂/橡膠 因此,使樹脂與橡膠堅固地直接黏接或黏爸 上述加硫活性劑例如具有數個碳-碳隻 和鍵)之有機化合物[例如乙烯系單體(二Z 丙基系單體(二烯丙基酞酸酯、三烯丙烯酸 基(異)氰酸酯等)、(甲基)丙烯酸系單體等 系化合物等。使用聚酯系樹脂作爲樹脂時 非馬來醯亞胺系加硫活性劑(例如具有數個 性不飽和鍵)之有機化合物)。此等之加硫 使用或二種以上組合使用。 (甲基)丙烯酸系單體例如二官能性(弓 [乙二醇二(甲基)丙烯酸酯、丙二醇二(甲基 丁二醇二(甲基)丙烯酸酯、己二醇二(甲_ 脂中使用不飽和 富馬酸等)作爲 基鄰酞酸酯、二 ί得樹脂等。 善對橡膠而言樹 體中,力卩硫活性 合,且藉由加硫 膠之加硫(或交 間之交聯密度。 r ° E鍵(聚合性不飽 L烯基苯等)、烯 磷酸酯、三烯丙 ,]、馬來醯亞胺 ,通常大多使用 碳-碳雙鍵(聚合 活性劑可以單獨 3基)丙烯酸酯類 )丙烯酸酯、1,4 -g )丙烯酸酯、新 -39 - 1294894 戊醇一(甲基)丙烯酸酯等之C21❹烷二醇二(甲基)丙烯酸 酯;二乙二醇二(甲基)丙烯酸酯 '三乙二醇二(甲基)丙烯 I酯、聚乙二醇二(甲基)丙烯酸酯、二丙二醇二(甲基)丙 烯酸酯、三丙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基) 丙稀酸酯、聚四甲二醇二(甲基)丙烯酸酯等之聚烷二 〜(甲基)丙烯酸酯、丙三醇二(甲基)丙烯酸酯、三羥甲 基丙院二(甲基)丙烯酸酯、季戊四醇二(甲基)丙烯酸酯、 雙 A之C2 -4環氧烷基加成物之二(甲基)丙烯酸酯等]、三 官能性或多官能性(甲基)丙烯酸酯類[丙三醇]三(甲基)丙 稀酸酯 '三羥甲基乙烷三(甲基)丙烯酸酯、三羥甲基丙烷 三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、季戊四 醇四(甲基)丙烯酸酯、二季戊四醇四(甲基)丙烯酸酯、二 季戊四醇六(甲基)丙烯酸酯等]等。 具有數個馬來醯亞胺基之馬來醯亞胺化合物可藉由聚 胺與馬來酸酐反應製得。馬來醯亞胺系化合物例如芳香族 雙馬來醯亞胺(N,N,- 1,3 -伸苯基二馬來醯亞胺、N,N,- 1,4 -伸苯基二馬來醯亞胺、N,N,-3 -甲基-1,4 -伸苯基二馬來醯 亞胺、4,4’-雙(N,N’_馬來醯亞胺)二苯基甲烷、4,4,-雙 (N,Ν’ -馬來醯亞胺)二苯基颯、4,4’-雙(Ν,Ν’ -馬來醯亞胺) 二苯基醚等)、脂肪族雙馬來醯亞胺(Ν,Ν’ - 1,2 -伸乙基雙馬 來醯亞胺、Ν,Ν’-1,3 -伸丙基雙馬來醯亞胺、ν,Ν、1,4 -四 伸甲基雙馬來醯亞胺等)等。 較佳的加硫活性劑例如具有數個(例如2〜6個、特別 是3〜6個)α,β -乙烯性不飽和鍵之化合物,以具有三官能 -40 - 1294894 性或多官能性(甲基)丙烯酸酯(三羥甲基丙烷三(甲基)丙烯 酸酯等)之具有數個(甲基)丙烯醯基的化合物較佳。 加硫活性劑之使用量係視加硫活性劑、或樹脂種類等 而不同’通常可促進樹脂與橡膠黏合之量例如對100重量 份樹脂而言加硫活性劑選自於0 . 1〜1 〇重量份、較佳者爲 0.1〜5重量份、最佳者爲0.1〜3重量份。 [安定劑] 本發明之特色可倂用加硫活性劑與安定劑。上述加硫 活性劑單獨使用樹脂時、組合加硫活性劑與安定劑時,於 加熱混合過程(例如樹脂與加硫活性劑之捏合過程等)中即 使使用具有聚合性不飽和鍵之加硫活性劑,仍可抑制或阻 止凝膠(或麻點)發生。因此,在不會使上述複合體之強度 降低或損害外觀下,可使加硫活性劑活用功能,確實且堅 固地使樹脂與橡膠黏合或黏接。因此,本發明使用安定劑 可使樹脂安定化,惟以至少使加硫活性劑安定化較佳。 安定劑可使用抗氧化劑(包含耐熱加工安定劑)、光安 定劑等,亦可以爲熱聚合抑制劑(氫醌、甲基氫醌等之氫醌 類等)。 抗氧化劑例如包含苯酚系抗氧化劑、胺系抗氧化劑、 憐系抗氧化劑、硫系抗氧化劑、氫醌系抗氧化劑、喹啉系 抗氧化劑、酮胺樹脂等。而且,參考括弧內記載的商品名。 苯酚系抗氧化劑有受阻苯酚系抗氧化劑,例如單酌類、 雙酚類、多元酚類等。 單酚類例如可具取代基之單或二-支鏈c3 6烷基苯酚 -4 1 ~ 1294894 [例如2,6 -二第三丁基-對甲酚、2,6 -二第三丁基-4-乙基苯 酚等之C】.4烷基-二-支鏈_c3_6烷基苯酚;2第三丁基-4-甲 氧基苯酚、3第三丁基-4-甲氧基苯酚等之烷氧基-單或 二-支鏈C3_6烷基苯酚;硬脂基邛_( 3, 5-二第三丁基-4-羥 基苯基)丙酸酯等之C1()_2。烷基-(二-支鏈C3.6烷基-羥基苯 基)C2_6羧酸酯;2-乙基己基-(2, 6-二第三丁基-4-羥基苯甲 基硫)乙酸酯等之C3_1Q烷基-(二-支鏈C3.6烷基-羥基苯甲 基硫化)C2.6羧酸酯;二硬脂基-(3, 5-二-第3-丁基-4-羥基 苯甲基)磷酸酯等之C1Q.2Q烷基-(二-支鏈C2.6烷基-羥基苯 甲基)磷酸酯等]、具有C4.1()烷基硫基之苯酚[2, 4-二(辛基 硫)甲基-6-甲基苯酚(衣魯卡羅克斯(irganox)i520千葉機 械股份有限公司製)等]、雙酚類與(甲基)丙烯酸之單酯[例 如2-(2-羥基-3第三丁基-5-甲基苯甲基)-4-甲基-6-丁基 苯基丙烯酸酯(史米賴撒-GM住友化學工業股份有限公司 製)、2-[1-(2 -羥基-3第三丁基-5-甲基苯基)乙基]-4 -甲基 -6第三丁基苯基丙烯酸酯、2-[1-(2 -羥基-3, 5 -二第三戊基 苯基)乙基]-4, 6 -二-(第三戊基)苯基丙烯酸酯(史米賴撒― G S住友化學工業股份有限公司製)等之c!. 4伸烷基雙(單或 二·•支鏈C 3.6烷基苯基)與(甲基)丙烯酸酯之單酯等]等。 雙酚類例如2,2’-伸甲基雙(4 -甲基-6第三丁基苯酚)、 2, 2、伸甲基雙(4 -乙基-6第三丁基苯酚)、2,2,·亞乙基雙 (4,6-二第三丁基苯酚)、2,2,-亞乙基雙[4,6-二(第三戊基) 苯酚]、4,4’ -亞丁基雙(3 -甲基-6第三丁基苯酚)、4,4,·伸 甲基雙(2, 6 -一第二丁基苯酣)等之(^·6伸院基雙(單或二· 一 4 2 - 1294894 修正頁 支鏈C3.6烷基苯酚);雙[3-(3,5-二第三丁基-4-羥基苯基) 丙酸卜1,6 -己烷二醇酯、雙[3-(3第三丁基-5-甲基-4-羥基 苯基)丙酸]-三乙二醇酯(衣魯卡羅克斯(Irganox)245千葉 機械股份有限公司製)等之(單或二·支鏈C3.6烷基-羥基苯 基)(:2_6羧酸-單或四(:2.4烷二醇酯;肼撐雙(3,5-二第三丁 基-4-淫基-氫化肉桂醯基)(衣魯卡羅克斯(irganox)MD-1024千葉機械股份有限公司製)、n,N’ -三伸甲基雙(3, 5_ 二第三丁基-4-羥基-氰化肉桂醯胺)、n,N,-六伸甲基雙 (3,5 -二第三丁基-4 -羥基-肉桂醯胺)(衣魯卡羅克斯 (Irganox)1098千葉機械股份有限公司製)等之(單或二-支 鏈C3_6烷基-羥基苯基)C3_6羧酸與CQ_8烷二胺之二醯胺;3,9-雙{1,1-二甲基- 2- [ β-(3第三丁基-仁羥基-5-甲基苯基) 丙烯氧基]乙基卜2,4,8,1〇 -四氧旋轉[5.5]i——烷(史米賴 撒GA-80住友化學工業股份有限公司製)等之(單或二-支 鏈C3_6烷基-羥基苯基)C3_6羧酸與二羥基雜環式旋轉化合物 之二酯等。 多元苯酚類包含參苯酚類[例如丨,3,5 _三甲基-2,4 , 6 -參(3, 5 -二第二丁基-4-羥基苯甲基)苯(亞迪卡史塔布A〇-330旭電化工業股份有限公司製)等之參(單或二-支鏈c3_6 烷基-羥基苯甲基)C6.1()芳烴;參(2_曱基-4_羥基_5 第二丁基苯基)丁院等之參(單或二-支鏈烷基-羥基苯 基)C〗·6鏈烷;參[3-(3,5-二第三丁基-4_羥基二苯基)丙酸] 丙三醇酯等之單或二-支鏈c3.6烷基-羥基苯基C2 6羧酸與 (:3-6烷二醇之二酯,1,3,5-參(3,,5、二第三4,-羥基苯甲 一 43~ 1294894 牴2,够正頁 基)4-三哄-2,4,6-(11^311,5旧三酮(亞迪卡史塔布八0-20 旭電化工業股份有限公司製)、丨,3, 5 -參(2,,6、二甲基- 3、 經基-4’第三丁基苯甲基)·、三阱-2,4,6-(1h,3h,5h)5_ 等之參(單或二-支鏈C3.6烷基-羥基苯甲基)-S-三阱·三酮 等]、四苯酚類[例如肆[伸甲基_ 3 - ( 3,,5,-二第三丁基-4、 經基苯基)丙酸酯]甲烷(衣魯卡羅克斯(〗rgan〇x)1〇1〇千葉 •特殊•化學股份有限公司製)等之單或二-支鏈C3 6烷基-羥基苯基C3_6羧酸與c3_6鏈烷四醇之四酯;雙[3,3,-雙(4,-經基-3’第三丁基苯基)丁酸]醇酯等之二(單或二-支鏈 烷基-羥基苯基)C3.6羧酸-單至四C2_4烷二醇酯]等。 胺系抗氧化劑包含芳香族胺類、例如苯基-i -萘胺、苯 基-2-萘胺、N,N’-二苯基- l,4-苯二胺、N -苯基- N,-環己基 -1,4 -苯二胺等。 磷系抗氧化劑例如包含三異癸基磷化物、苯基二異癸 基磷化物、二苯基異癸基磷化物、三苯基磷化物、參(2,4_ 二第三丁基苯基)磷化物(亞迪卡史塔布2112旭電化工業 股份有限公司製)、參(壬基苯基)磷化物、二壬基苯基雙(壬 基苯基)磷化物、2,2 -伸甲基雙(4,6 -二第三丁基苯基)辛基 磷化物(亞迪卡史塔布HP-10旭電化工業股份有限公司 製)、4,4’ -亞丁基雙(3 -甲基-6第三丁基苯基)二十三烷基 磷化物、參(2,4 -二第三丁基苯基)磷化物、參(2第三丁基-4 -甲基苯基)磷化物、參(2 ,4-二第三戊基苯基)磷化物、參 (2第三丁基苯基)磷化物、雙(2第三丁基苯基)苯基磷化物、 參[2-(1,1-二甲基丙基)苯基]磷化物、參[2,4-(1,1-二甲 一 44 一 1294894 基丙基)苯基]磷化物、參(2-環己基苯基)磷化物、參(2第 三丁基-4 -苯基苯基)磷化物、二異癸基季戊四醇二磷化物、 環新戊烷四醯基雙(十八烷基)磷化物(亞迪卡史塔布PE對8 旭電化工業股份有限公司製)、環新戊烷四醯基雙(2,4 -二 第三丁基苯基)磷化物(亞迪卡史塔布PE對24G旭電化工 業股份有限公司製)、環新戊烷四醯基雙(2, 6·二第三丁基-4-甲基苯基)磷化物(亞迪卡史塔布PE對36旭電化工業股 份有限公司製)等之磷化物;三乙基膦、三丙基膦、三丁基 膦、三環己基膦、二苯基乙烯基膦、烯丙基二苯基膦、三 苯基膦、甲基苯基-對茴香基膦、對茴香基二苯基膦、對甲 苯基二苯基膦、二-對茴香基苯基膦、二-對甲苯基苯基膦、 三-間胺基苯基膦、三-2, 4 -二甲基苯基膦、三-2, 4, 6 -三甲 基苯基膦、三-鄰甲苯基膦、三-間甲苯基膦、三-對甲苯基 膦、三-鄰茴香基膦、三-對茴香基膦、1,4 -雙(二苯基膦基) 丁烷等之膦化合物等。 硫系抗氧化劑例如二月桂基3,3 -硫化二丙酸酯、二(十 三烷基)3,3 -硫化二丙酸酯、二棕櫚基-2,2 -硫化二乙酸酯、 二棕櫚基-3,3 -硫化二丙酸酯、月桂基硬脂基3,3 -硫化二丙 酸酯、二硬脂基3,3 -硫化二丙酸酯等之硫化二C2.4羧酸二 C10.20烷酯;3,9 -二(月桂基硫醚)-2,4,8,10 -四氧化旋轉 [5, 5]十一烷等。 氫醌系抗氧化劑例如2,5 ·二第三丁基氫醌、2,5 -二第 三戊基氫醌等,睦啉系抗氧化劑例如6 ·乙氧基-2 , 2,4 -三甲 基-1,2 -二氫喹啉等。 -45- 1294894 餘2,儀i頁 光安定劑包含受阻胺系光安定劑(HALS )、驟冷劑等。 而且,參考括號內記載之商品名。 受阻胺系光安定劑(HALS )例如可具取代基之四甲基哌 啶(例如4 -甲氧基- 2,2,6, 6 -四甲基哌啶等之院氧基-四 甲基哌卩定;4-苯氧基- 2,2,6,6 -四甲基哌π定等之C 6.1Q芳氧 基-四甲基派Π定;4·苯甲醯氧基_2,2,6, 6 -四甲基哌B定等之 C6·!。釀氧基-四甲基脈B疋,4 -甲基丙釀氧基_2, 2, 6, 6 -四甲 基哌啶(亞迪卡史塔布LA-87旭電化工業股份有限公司 製)、4 -甲基丙醯氧基-N -甲基-2,2,6,6·四甲基哌啶(亞迪 卡史塔布LA-82旭電化工業股份有限公司製)等之(甲基) 丙醯氧基-四甲基哌啶等)、可具取代基之鏈烷二酸二哌啶 酯[例如雙(2,2,6,6 -四甲基—4 -哌啶基)草酸酯、雙 (2,2,6,6-四甲基-4-哌啶基)己二酸酯、雙(2,2,6,6_四甲 基-4-哌啶基)癸二酸酯(亞迪卡史塔布lA-77旭電化工業 股份有限公司製)、雙(1,2,2,6,6 -五甲基-4 -哌啶基癸酸 酯)、雙(N -甲基-2,2,6,6-四甲基-4-哌卩定基)癸二酸酯(撒 羅魯LS_ 76 5三共股份有限公司製)等之c2 iq鏈烷二酸雙(四 甲基峨U定基)酯等、可具取代基之芳香族二羧酸二哌啶酯[例 如雙(2,2,6,6-四甲基-4-哌啶基)對酞酸酯等之Gy。芳香 族二翔酸雙(四亞甲基脈啶基)酯等]、可具取代基之二(哌 啶氧基)鏈烷[1,2 -雙(2,2,6,6 -四甲基·4 -哌啶氧基)乙烷等 之一(四甲基哌D定氧基)C i · 4鏈烷等];二(哌啶氧基羰基)羥 基苯基鏈烷[例如1-(3, 5 -二第三丁基·4_羥基苯基卜丨,卜雙 (2,2,6,6-四甲基-4-脈卩定氧基羰基)戊烷(Tinuvin 144千 一 46 - 1294894 \· -&gt;·&gt; 癢正頁 葉機械股份有限公司製)等之二(四甲基哌啶氧基幾基卜經 基苯基鏈院等] '四錢酸二至四哌Β定酯[例如1,2,3,4 - 丁燒 四羧酸肆(2,2,6,6 -四甲基-4 -哌啶基)酯(亞迪卡史塔布la -5 7旭電化工業股份有限公司製)等之四羧酸肆(四甲基哌陡 基)酯];1,2,3,4 - 丁烷四羧酸雙(2,2,6,6 ·四甲基-4 -脈U定 基)-雙(十二烷基)酯(亞迪卡史塔布LA0-67旭電化工業股 份有限公司製)、1,2,3,4· 丁烷四羧酸雙(N -甲基-2,2,6, 6、 四甲基-4-哌啶基)-雙(十三烷基)酯(亞迪卡史塔布[A- 62 旭電化工業股份有限公司製)等之四羧酸雙(四甲基哌U定 基)-雙(二焼基)酯]、Ci_4伸院基雙(四院基派哄 酮)[1,1 -伸乙基雙(3,3,3 ’,3 ’,5,5,5 ’,5,-八甲基哌啶· 2,2’-二酮)(Goodrite UV- 3034 Goodrich 股份有限公司製) 等之(^“伸烷基雙(四甲基哌畊酮)等]、高分子型HALS [例 如Ch i ma s s 〇 r b944LD (千葉•特殊•化學股份有限公司製)、 Tinuvin 622D(千葉•特殊•化學股份有限公司製)、亞迪 卡史塔布LA-63旭電化工業股份有限公司製、亞迪卡史塔 布LA0-68旭電化工業股份有限公司製]等。 驟冷劑例如鎳雙(辛基苯基)硫醚、[2,2 ’ -硫化雙(4第 三辛基苯酸酯)]-n -丁基胺鎳、鎳複合體-3, 5 -二第三丁基-4 -羥基苯甲基-磷酸單乙酸酯、鎳二丁基硫化碳酸酯、1 -苯 基-3 -甲基-4 ·十九烷基吡唑酸)鎳等之有機鎳複合體;鈷二 環己基二硫化磷酸酯等之有機鈷複合體等。 此等之安定劑可以單獨使用或2種以上組合使用。 較佳的安定劑包含苯酚系抗氧化劑、具有HALS等之自 1294894 由基捕捉功能之安定劑。而且’可組合該具有自由基捕捉 功能之安定劑與其他安定劑(例如組合苯酚系抗氧化劑與硫 系抗氧化劑等)使用。 安定劑之使用量例如對1 〇 0重量份樹脂而言爲〇 . 〇 1〜2 重量份、較佳者爲0.05〜3重量份、更佳者爲0.1〜2重量 份(例如〇 · 1〜1重量份)。而且’安定劑之添加量過多時, 可抑制因加硫活性劑產生凝膠情形者,唯恐會無法有效發 揮加硫活性劑之功能、降低對橡膠而言之黏合性。 此外,組合使用具有自由基捕捉功能之安定劑(苯酚系 抗氧化劑、HALS等)、與其他安定劑(磷系抗氧化劑、硫系 抗氧化劑等)時,此等安定劑之比例係前者/後者(重量 比)=99/1 〜20 / 80 (例如 95/5〜40 / 60 )。 而且,加硫活性劑與安定劑之比例可視加硫活性劑或 安定劑之種類、混合捏合溫度等而選擇,前者/後者(重量 比)=99/1〜2 5 / 7 5、較佳者爲98/2〜3 5 / 65、更佳者爲97/3 〜45/55 (例如 97/3 〜60/40)。 [加硫助劑] 本發明另可使用加硫助劑。加硫助劑於上述複合體中 可添加於下述未加硫橡膠,通常大多添加於樹脂組成物中。 加硫助劑可視樹脂種類等而選擇,例如上述縮合系熱 塑性樹脂脂寡聚物[例如數量平均分子量1 〇〇〇以下(例如 100〜1 0 00 )之寡聚物等]、聚胺類(例如上述(2)聚酯系樹脂 項中記載的聚胺類等)、聚醇類(例如上述(2 )聚酯系樹脂中 記載的聚醇類等)、多元羧酸或其酸酐、具有數個醛基之化 -48- 1294894 合物、環氧化合物、含氮之樹脂(胺樹脂等)、具有經 或院氧基甲基之化合物、聚異氰酸酯等。此等之加硫 可以單獨使用或2種以上組合使用。 較佳的加硫助劑於上述式(1 )所示之活性原子中在 子中平均具有2個以上活性氫原子、且分子量爲丨〇〇〇 之化合物,例如上述縮合系熱塑性樹脂之數量平均分 1 00 0以下之寡聚物(例如上述聚醯胺系樹脂之寡聚物、 聚酯系樹脂之寡聚物等)、上述聚醯胺類等。 加硫助劑之比例例如封1 0 0重量份樹脂而言0.1 重量份、較佳者爲0.5〜20重量份、更佳者爲丨〜15 而且,本發明之樹脂組成物另含有各種添加劑、 塡充劑或補強劑、著色劑、可塑劑、平滑劑、難燃劑 靜電劑等。 上述樹脂組成物之形態沒有特別的限制,可以爲 狀、粒料狀等。 本發明之樹脂組成物,如上述所述由於對橡膠而 合性優異,使用作爲構成樹脂與橡膠直接黏合的複合 樹脂材料時,可顯著提高樹脂與橡膠之黏合強度。 [複合體] 本發明之複合體可直接黏合上述樹脂組成物、與 未加硫橡膠之加硫形成的加硫橡膠。上述複合體之具 態例如以上述樹脂組成物構成的樹脂元件、與加硫橡 件直接黏合的複合體,例如(1 )以上述樹脂組成物構成 甲基 助劑 一分 以下 子量 上述 〜30 重量 例如 、抗 粉粒 言黏 體之 藉由 體形 膠元 的樹 1294894 脂零件、與以加硫橡膠構成的加硫橡膠零件直接黏合的複 合體、(2 )以上述樹脂組成物構成的樹脂相、與以加硫橡膠 構成的加硫橡膠相直接黏合的複合體(或複合分散體)。 [橡膠] 於上述複合體中爲藉由加硫形成加硫橡膠之未加硫橡 膠爲各種橡膠,例如二烯系橡膠、烯烴系橡膠、丙烯酸系 橡膠、氟系橡膠、聚矽氧烷系橡膠、胺甲酸酯系橡膠、表 氯吡啶橡膠(另使表氯吡啶單聚物C0、表氯吡啶與環氧乙烷 之共聚物ECO、烯丙基環氧丙醚共聚合的共聚物等)、氯颯 化聚乙烯、環氧丙烷橡膠(GP0 )、乙烯-醋酸乙烯共聚物 (EAM )、聚原菠烯橡膠、及此等之改性橡膠(酸改性橡膠等) 等。上述樹脂爲以氰化乙烯系化合物(例如(甲基)丙烯腈等) 構成的樹脂(例如ABS樹脂等)時,大多橡膠爲非氰化乙烯 系橡膠。此等橡膠可以單獨使用或二種以上組合使用。此 等之橡膠中通常就實用而言廣範使用二烯系橡膠、烯烴系 橡膠、丙烯酸系橡膠、氟系橡膠、聚矽氧烷橡膠、胺甲酸 酯系橡膠等。 二烯系橡膠例如非氰化乙烯系橡膠[例如天然橡膠 (NR)、異戊烯橡膠(IR)、異丁烯異戊烯橡膠(丁烯橡 膠)(IIR)、丁二烯橡膠(BR)、氯化物烯橡膠(CR)等之二烯 系單體之聚合物、苯乙烯丁二烯橡膠(SBR、例如以苯乙烯 與丁二烯之無規共聚物、苯乙烯嵌段與丁二烯嵌段構成的SB 嵌段共聚物等)、苯乙烯氯化戊烯橡膠(SCR)、苯乙烯異戊 烯橡膠(SIR)等之苯乙烯-二烯共聚合橡膠等]、氰化乙烯系 - 50- 1294894 橡膠[例如丙烯腈丁二烯橡膠(腈系橡膠)(NBR )、腈氯化丁 二烯橡膠(腈橡膠)(NCR )、腈異戊烯橡膠(N I R )、丙烯腈異 戊烯丁二烯橡膠(NBIR)等之丙烯腈-二烯共聚物橡膠等]。 二烯系橡膠包含加氫橡膠、例如加氫腈橡膠(HNBR )等。 烯烴系橡膠例如乙烯丙烯橡膠(EPM )、乙烯丙烯二烯橡 膠(EPDM等)、聚辛烯橡膠等。 丙烯酸系橡膠有以丙烯酸烷酯爲主成分之橡膠、例如 丙烯酸院酯與含氯之交聯性單體之共聚物ACM、丙烯酸烷酯 與丙烯腈之共聚物ANM、丙烯酸烷酯與含羧基及/或環氧基 之單體的共聚物、乙烯丙烯酸橡膠等。 氟系橡膠有含氟系單體的橡膠,例如氟化亞乙烯基與 全氟丙烷與視其所需四氟化乙烯之共聚物KFM、四氟化乙烯 與丙烯之共聚物、四氟化乙烯與全氟甲基乙烯醚之共聚物 FFKM 等。 聚矽氧烷橡膠(Q)係爲以式:RaSiO(4_aW2所示單位構成 的有機聚矽氧烷。其中,R例如甲基、乙基、丙基、丁基等 之Cm。烷基、3-氯化丙基、3,3,3-三氟丙基等之鹵化CV1( 烷基、乙烯基、烯丙基、丁烯基等之C2_1Q烯基、苯基、甲 苯基、萘基等之C6.12芳基、環戊基、環己基等之C3.IQ環烷 基、苯甲基、苯乙基等之C6.12芳基- 烷基等。其中,係 數a係爲1.9〜2.1。較佳的R爲甲基、苯基、烯基(乙烯基 等)、氟C ! . 6烷基。 聚砂氧院橡膠之分子構造例如一般爲直鏈狀,可部分 具有支鏈構造、可爲支鏈狀。聚矽氧烷橡膠之主鏈例如二 -5 1- 1294894 甲基聚矽氧烷鏈、甲基乙烯基聚矽氧烷鏈、甲基苯基聚矽 氧烷鏈、此等之矽氧烷單位之共聚物鏈[二甲基矽氧烷-甲 基乙烯基矽氧烷共聚物鏈、二甲基矽氧烷-甲基苯基矽氧烷 共聚物鏈、二甲基矽氧烷-甲基(3,3,3 -三氟丙基)矽氧烷共 聚物鏈、二甲基矽氧烷-甲基乙烯基矽氧烷-甲基苯基矽氧 院共聚物鏈等]構成。聚矽氧烷橡膠之兩末端例如三甲基甲 砂院基、二甲基乙烯基甲矽烷基、矽烷醇基、三Ci 2烷氧 基甲ΐ夕院基等。 聚矽氧烷橡膠(Q )例如包含甲基聚矽氧烷橡膠(Mq )、乙 烯基聚矽氧烷橡膠(VMQ )、苯基聚矽氧烷橡膠(PMQ )、苯基 乙烯基聚矽氧烷橡膠(PVMQ)、氟化聚矽氧烷橡膠(FVMQ)等。 另外’聚矽氧烷矽橡膠包含高溫加硫型HTV(High Temperature Vulcanizable)之固態橡膠、室溫加硫性 RTV(Room Temperature Vulcanizable)或低溫加硫型 LTV(Low Temperature Vulcanizable)聚矽氧烷橡膠、例如 包含液狀或漿料狀橡膠。 胺甲酸酯橡膠(U)例如包含聚酯型胺甲酸酯彈性體、聚 醚型胺甲酸酯彈性體等。 改性橡膠包含非氰化乙烯系改性橡膠(例如羧基化苯乙 烯丁二烯橡膠(X-SBR)、羧基化乙烯丙烯橡膠(x_ep(d)m))、 氰化乙烯系改性橡膠(例如殘基化腈橡膠(X _ NBR )等)具有竣 基或酸酐基之橡膠。 而且,於上述複合體(2 )中樹脂(或樹脂組成物)或橡膠 成分可使用粉粒狀形態。該樹脂(或樹脂組成物)或橡膠粉 -52- 1294894 粒體之形狀沒有特別的限制,例如無定形狀、球狀、橢圓 形狀、棒狀等。粉粒體之平均粒徑例如〇 .丨〜8〇〇 _、較佳 者爲0.5〜500μΐη、最佳者爲〇.8〜3〇〇μπι。 另外’於上述複合體(2 )中上述樹脂與上述橡膠之比例 可在具有有效複合分散體之特性範圍內適當設定,例如樹 脂相/加硫橡膠相(重量比)=90/1〇〜1〇/9〇(例如9〇/1〇〜 30 / 70 )、較佳者爲 7 5 / 2 5 〜2 5 / 7 5 (例如75/25〜50 / 50 )、最 佳者爲60/40〜40/60。 [加硫劑] 加硫劑不僅可使未加硫橡膠加硫(或交聯),且視樹脂 或加硫劑之種類可使樹脂活性化(例如使上述活性原子除 去、藉由自由基化等予以活性化、使上述交聯性樹脂之交 聯性基活性化)、提高樹脂與橡膠之黏合性,使樹脂與橡膠 黏合。加硫劑係視上述樹脂或橡膠之種類而定,可使用自 由基發生劑或硫,上述自由基發生劑例如有機過氧化物、 偶氮化合物、含硫之有機化合物等。加硫劑可以單獨使用 或二種以上組合使用。 加硫劑可添加至少一種未加硫橡膠及樹脂,亦可以添 加兩種成分。 有機過氧化物例如過氧化二醯基類(月桂醯基過氧化 物、苯甲醯基過氧化物、4 -氯化苯甲醯基過氧化物、2,4 -二氯苯甲醯基過氧化物等)、過氧化二烷基類(二第三丁基 過氧化物、2,5-二(第三丁基過氧化)-2, 5 -二甲基己烷、1,卜 雙(第三丁基過氧卜3,3 , 5 -三甲基環己烷等)、過氧化酯類 -53- 1294894 (過醋酸第三丁酯、過三甲基乙酸第三丁酯等)等。 偶氮化合物包含偶氮基異丁腈等。含硫之有機化合物 包含胺荒醯類(四甲基胺荒醯單硫化物(TMTM )、四甲基胺荒 醯二硫化物(TMTD)、四乙基胺荒醯二硫化物(TETD)、四丁 基胺荒醯二硫化物(TBTD)、二五伸甲基胺荒醯四硫化物 (DPTT )、嗎啉二硫化物、烷基苯酚二硫化物等)等。 硫例如粉末硫、沉澱硫、膠體硫、不溶性硫、高分散 性硫等。而且,硫包含一氯化硫、二氯化硫等之氯化硫。 於樹脂組成物與橡膠黏合時,可光照射時亦可利用光 聚合起始劑作爲自由基發生劑。光聚合開始劑例如二苯甲 酮或其衍生物(3, 3’-二甲基-4-甲氧基二苯甲酮、4,4 -二甲 氧基二苯甲酮等)、烷基苯酮或其衍生物(苯乙酮、二乙氧 基本乙酬、2 -經基-2-甲基-1-苯基丙院-1-酬、苯甲基二甲 基縮醛、1 -羥基環己基苯酮、2 -苯甲基-2 -二甲基胺基-1 -(嗎 啉基苯基)-丁酮等)、蒽醌或其衍生物(2 -甲基蒽醌等)、噻 噸酮或其衍生物(2 -氯化硫噻噸酮、烷基硫化噻噸酮等)、 苯因醚或其衍生物(苯因、苯因烷醚等)、膦氧化物或其衍 生物等。另外,自由基發生劑包含過硫酸鹽(過硫酸銨、過 硫酸鉀等)。 此等化合物中較佳的加硫劑爲有機過氧化物。加硫劑 以至少含有未加硫橡膠者較佳,通常大多爲未加硫橡膠。 加硫劑之比例例如對1 00重量份未加硫橡膠及/或樹脂 而言選自於0.1〜15重量份之範圍、通常爲0.1〜10重量 份、較佳者爲0 · 1〜8重量份(例如1〜7重量份)。 -54 - 1294894 [矽烷偶合劑] 本發明由於可提高樹脂與加硫橡膠之密接性時,可含 有矽烷偶合劑。矽烷偶合劑可添加至少一方未加硫橡膠(或 未加硫橡膠組成物)及樹脂(或樹脂組成物),或添加雙方成 分。 矽烷偶合劑包含具有反應性基(例如羥基、烷氧基、乙 烯基、胺基、環氧基、锍基、羧基、異氫酸酯基、(甲基) 丙烯醯基等)之化合物等。 例如烷氧基矽烷(例如三甲氧基矽烷、三乙氧基矽烷等 之三c ^ 4烷氧基矽烷、四甲氧基矽烷、四乙氧基矽烷等之 四烷氧基矽烷); 具有乙烯基之烷氧基矽烷(乙烯基三甲氧基矽烷、乙烯 基三乙氧基矽烷等之乙烯基三1.4烷氧基矽烷); 具有胺基之烷氧基矽烷(例如2 -胺基乙基三甲氧基矽 烷、2 -胺基乙基三乙氧基矽烷、3 -胺基丙基三乙氧基矽烷 等胺基C2_4烷基三Ci_4烷氧基矽烷、3-胺基丙基甲基二甲 氧基矽烷、3-胺基丙基甲基乙氧基矽烷等之胺基二C2_4烷 基二C ! _ 4院氧基砂院)·, 具有環氧基之烷氧基矽烷(例如3 -環氧丙氧基丙基三甲 氧基矽烷等之環氧丙氧基C2.4三。_4烷氧基矽烷、2-(3,4-環氧基環己基)乙基三甲氧基矽烷等之(環氧基環烷基)C2.4 烷基三C 1.4烷氧基矽烷); 具有锍基之烷氧基矽烷(例如3 -酼基丙基三甲氧基矽烷 等之锍基Q.4烷基三C^4烷氧基矽烷、3-锍基丙基甲基二 - 5 5 - 1294894 甲氧基矽烷等之锍基二Ci.4烷基二C!.4烷氧基矽烷); 具有羧基之烷氧基矽烷(例如羧基甲基三甲氧基矽烷、 羧基甲基三乙氧基矽烷、羧基乙基三甲氧基矽烷、羧基丙 基二甲氧基砂院等之竣基C!. 4院基二〔^4院氧基砂院); 具有異氰酸酯基之烷氧基矽烷(例如異氰酸酯乙基三甲 氧基矽烷、異氰酸酯乙基三乙氧基矽烷、異氰酸酯丙基三 甲氧基矽烷等之異氰酸酯Ch4烷基三烷氧基矽烷); 具有(甲基)丙烯醯基之烷氧基矽烷(例如N - ( 3 -(甲基) 丙烯醯氧基-2-羥基丙基)-3 -胺基丙基三乙氧基矽烷、3-(甲 基)丙燒醯氧基丙基一甲基甲氧基5夕院、3-(甲基)丙烯醯氧 基丙基二甲基乙氧基矽烷、3-(甲基)丙燃醯氧基丙基甲基 二乙氧基矽烷)等。 矽烷偶合劑之使用量通常可使樹脂與橡膠黏合之量, 例如對1 〇 0重量份橡膠或樹脂而言可選自於1〜1 Q重量份 矽烷偶合劑、較佳者爲2〜8重量份、更佳者爲2〜6重量 份。 [其他添加劑] 上述橡膠(或橡膠組成物)中可配合各種添加劑、例如 加硫活性劑(上述樹脂組成物項中記載的加硫活性劑等)、 塡充劑、可塑劑或軟化劑、共加硫劑(氧化鋅等之金屬氧化 物等)、抗氧化劑(抗熱老化劑、抗臭氧惡化劑、上述抗氧 化劑、上述糸外線吸收劑等)、賦予黏合劑、加工助劑、平 滑劑(硬脂酸、硬脂酸金屬鹽、石蠟等)、著色劑、發泡劑、 分散劑、難燃劑、抗靜電劑等。 一 5 6 - 1294894 而且,橡膠通常大多不含加硫活性劑(例如雙酚A之c2_3 環氧烷基加成物的二(甲基)丙烯酸酯等之雙酚系加硫活性 劑、馬來醯亞胺系加硫活性劑等)。 上述塡充劑(或補強劑)例如包含粉粒狀塡充劑或補強 劑(雲母、黏土、滑石、矽酸類、二氧化矽、碳酸鈣、碳酸 鎂、碳黑、純鐵粒等)、纖維狀塡充劑或補強劑(雷縈、耐 龍、芳族聚醯胺等之有機纖維、碳纖維、玻璃纖維等之無 機纖維)等。 橡膠爲聚矽氧烷橡膠時,作爲補強劑所添加的最爲一 般的塡充劑爲二氧化矽粉末。一般而言聚矽氧烷橡膠所使 用的二氧化矽粉末分爲以濕式製造的濕式二氧化矽、與以 乾式製造的乾式二氧化矽等二種。適合聚矽氧烷橡膠使用 的二氧化矽粉末爲乾式二氧化矽,使用乾式二氧化矽時, 可容易得到樹脂零件與橡膠零件高的黏合強度。爲濕式二 氧化矽時,二氧化矽粉末中所含的水分係爲阻害樹脂零件 與橡膠零件間之交聯物。惟即使濕式二氧化矽時不僅爲致 命的阻害橡膠零件與樹脂零件之黏合物,且視使用的樹脂 或使用的聚矽氧烷橡膠種類、加硫活性劑之種類或其使用 量、成形條件等而定可使用濕式二氧化矽。乾式二氧化矽 與濕式二氧化矽可以混合使用。 可塑劑可以賦予橡膠組合物具有可塑性者即可,沒有 特別的限制,可使用一般的軟化劑(亞油酸、油酸、蓖麻油、 棕櫚油等之植物油;石鱲、工程油、補充劑等之礦物油等)、 可塑劑(酞酸酯、脂肪族二羧酸酯、含硫之可塑劑、聚酯系 -57- 1294894 高分子可塑劑等)等。 加硫活性劑之使用量對1 0 0重量份橡膠而言例如〇〜1 0 重量份、較佳者爲0〜8重量份、最佳者爲〇〜5重量份。 塡充物之含量對1 0 0重量份橡膠而言例如〇〜3 0 0重量份、 較佳者爲0〜2 0重量份、更佳者爲0〜1 〇 〇重量份。可塑劑 或軟化劑之含量對1 0 0重量份橡膠而言例如〇〜2 0 0重量 份、較佳者爲0〜150重量份、更佳者爲〇〜120重量份。 另外,共加硫劑、抗老化劑、加工劑或平滑劑、著色劑等 之含量爲有效量即可,例如共加硫劑之含量對1 〇 〇重量份 橡膠而言爲0〜20重量份、較佳者爲0.5〜15重量份、更 佳者爲1〜10重量份。 而且,於上述複合體分散體(2)中構成複合分散體之連 續相(或基體相)可以樹脂及橡膠中任何一方形成。該複合 分散體例如有(2 a )以橡膠相構成的連續相與以樹脂相構成 的分散相形成的複合分散體、(2b )以樹脂相構成的連續相 與以橡膠相構成的分散相形成的複合分散體等。 上述(2 a )之形態可產生加硫橡膠之特性(彈性、緩衝 性、柔軟性等)、且可賦予樹脂特性(例如平滑性、耐摩擦 性等),上述(2b )之形態可產生樹脂特性(剛性、強韌性等 之機械特性等)、且可賦予加硫橡膠之特性(藉由摩擦抵抗 之防滑性、對對象材料而言之密接性等)。 而且,上述複合分散體(2 )可具有分散相獨立分散於連 續相中之海島構造,分散相之形狀可以爲粒子狀、橢圓形 狀 球狀、棒狀、纖維狀等。分散相之較佳形狀爲球狀, -58- 1294894 分散相以在連續相中均勻分散者較佳。而且,分散相之平 均粒徑爲具有形成分散相之物質特性即可,例如〇 .丨〜 ΙΟΟΟμηι、較佳者爲1〜75μπι、更佳者爲1〇〜500μιη(例如50 〜1 5 0 μηι)。此外,使用交聯或硬化粒子作爲橡膠時,上述 分散相之平均粒徑對應於交聯或硬化粒子之平均粒徑。 另外’複合分散體(2 )可以在表面上部分露出分散相粒 子的狀態下使樹脂相與橡膠相黏合。例如樹脂相爲分散相 粒子時’具有連續相之橡膠特性(例如高柔軟性及緩衝性 等)、且表面具有樹脂特性(例如低摩擦係數等)。 另外,本發明之複合體可使上述複合分散體(2)與其他 成形體(例如樹脂成形體、加硫橡膠成形體等)以接觸面黏 合的複合體。 [樹脂組成物之製法] 本發明之樹脂組成物可藉由使樹脂與加硫活性劑與安 定劑混合(特別是捏合)製造。捏合係使用一般的捏合機(例 如擠壓機、捏合機、班伯里混合機等)進行。而且,可以先 進行捏合,再藉由一般的混合機(手動混合機、滾筒混合機、 螺條混合機等)實施混合處理。 捏合溫度可視樹脂種類而定選擇,使樹脂在可熔融的 溫度下即可,例如1 20〜40CTC、較佳者爲1 30〜3 50 °C、最 佳者爲1 5 0〜3 0 0 °C。本發明由於含有安定劑時,可以爲加 硫活性劑自己交聯的捏合溫度,不會使加硫活性劑失活且 可使樹脂與加硫活性劑捏合。 [複合體之製法] 59- 1294894 複合體之製法可藉由複合體之形態(複合體(1 )、複合 體(2 ))區分。 (i )於複合體(1 )之製造中,使上述樹脂組成物(以樹脂 與加硫活性劑與安定劑構成的樹脂組成物)與含有加硫劑 (特別是自由基發生劑)之未加硫橡膠接觸、成形,製造以 上述樹脂組成物構成的樹脂零件與加硫橡膠構成的橡膠零 件黏合的複合體(1)。該複合體可藉由使成形樹脂材與成形 橡膠材接觸成形且使上述成形橡膠材加硫或交聯製造。 而且,上述成形樹脂材可以爲上述樹脂組成物,亦可 以爲預先使上述樹脂組成物成形的樹脂零件(或樹脂成形體) 等。另外,上述成形橡膠材係於與上述成形樹脂材之接觸 面中加硫劑具有活性,至少含有未加硫之橡膠,沒有特別 的限制,可以爲未加硫之橡膠組成物,亦可以爲部分經加 硫或交聯的橡膠預備成形體等。 換言之,可使上述樹脂組成物、與以未加硫橡膠與加 硫劑構成的未加硫橡膠組成物(或另含有上述加硫活性劑之 未加硫橡膠組成物)接觸成形且使上述未加硫橡膠組成物加 硫或交聯,製造使樹脂零件與橡膠零件黏合的複合體。 此外,可以僅加硫劑具有活性,使樹脂零件(或樹脂成 形體)及橡膠零件(橡膠成形體)中至少一方之零件預先成 形。例如(a )以上述樹脂組成物構成的樹脂零件與未加硫橡 膠組成物接觸,使未加硫橡膠組成物成形且加硫或交聯以 製造複合體。(b )可在橡膠組成物預備加硫或交聯成形的橡 膠預備成形體上藉由使上述樹脂組成物接觸、使樹脂組成 -60- 1294894 物成形以製造複合體,(C )可在以上述樹脂組成物構成的樹 脂零件_h藉由使橡膠組成物加硫或交聯成形的橡膠預備成 形體接觸以製造複合體。而且,上述橡膠預備成形體只要 是加硫劑至少與成形樹脂材之接觸面具有活性即可,可以 爲殘留有加硫劑之橡膠預備成形體等。 較具體而言’本發明之方法包含使上述樹脂組成物與 未加硫橡膠組成物各自成形,且在成形過程中使樹脂組成 物與未加硫橡膠組成物接觸且合流,使樹脂零件與加硫橡 膠零件黏合或黏合的方法(一階段法);使上述樹脂組成物 預先成形的樹脂零件與未加硫橡膠組成物接觸,使未加硫 橡膠組成物成形且加硫或交聯,使樹脂零件與加硫橡膠零 件黏合或黏合的方法(二階段法);使上述樹脂組成物預先 成形的樹脂零件、與未加硫橡膠組成物直至中途與成形(部 分加硫或交聯)的橡膠預備成形體接觸,使橡膠預備成形體 另加硫或交聯,使樹脂零件與加硫橡膠零件黏合或黏合的 方法(三階段法)等。 較佳方法包含一階段法及二階段法(特別是二階段 法)° 一階段法中例如可利用一般的多色成形機(多色射出 α开彡機 '多層擠壓機等),使樹脂組成物與未加硫橡膠組成 物各熔融捏合且射出或擠壓成形於所定形狀之成形模具, ί吏#加硫橡膠於成形過程或成形後藉由加硫或交聯製得複 合it (複合成形體)。而且,在樹脂組成物與未加硫橡膠組 $牧)之接觸界面範圍內,可混有樹脂組成物與未加硫橡膠 組成物。 -61- 1294894 此外,於二階段法中,樹脂零件成形時可使用一般的 成形機(射出成形機、擠壓成形機、熱壓製成形機等),於 橡膠零件成形時可使用一般的成形機(射出成形機、壓製成 形機、轉型成形機、擠壓成形機等)。例如對應於複合體形 狀之模具(或模槽)收容樹脂零件,且對該樹脂零件而言使 未加硫橡膠組成物射出或擠壓,藉由使未加硫橡膠組成物 加硫或交聯,可使加硫橡膠零件與樹脂零件黏合。而且, 複合體爲具有二次元寬幅之板狀或片板狀零件時,可以在 沒有使用上述模具(或模槽)下對樹脂零件而言積層板狀或 片板狀未加硫橡膠組成物,藉由加硫或交聯以製造複合體。 而且,使樹脂零件(或樹脂組成物)與未加硫橡膠組成物接 觸(密接等)時,爲除去未加硫橡膠組成物中之揮發性成份 或氣體成分時,可利用熱壓製成形或射出成形等適當加壓, 亦可以在減壓氣氛下加壓成形。 加硫或交聯溫度(或橡膠零件與樹脂零件之黏合溫度) 例如選自於70〜250 °C、較佳者爲100〜230。0最佳者爲150 〜220°C之範圍。橡膠/樹脂間作用的壓力例如選自於〇 . !〜 3 5 0MPa、較佳者爲1〜150MPa、最佳者爲2〜lOOMPa之範圍。 而且,於複合體之製造中至少一方選自於未加硫橡膠 及樹脂組成物之成分,可含有上述加硫助劑(例如上述聚醯 胺類等)。通常加硫助劑大多添加於樹脂組成物中。 另外,使成形有上述樹脂組成物的樹脂零件表面以可 溶解或膨潤該樹脂零件之溶劑處理(藉由塗覆、浸漬等處理) 後,可使上述樹脂零件之處理面與未加硫橡膠組成物有效 -62- 1294894 地接觸。溶劑可視樹脂零件之種類而定,可適當地選自於 烴類(己院、辛烷等之脂肪族烴、環己烷等之脂環族烴、甲 苯、二甲苯等之芳香族烴)、醇類(異丙醇、丁醇、環己醇 等之醇、四氟乙醇、六氟異丙醇等之鹵化烷醇)、苯酚類(苯 酉分、甲酣等)、有機酸類(甲酸、醋酸、三氟醋酸、三氯醋 酸等)、酯類(醋酸乙酯、醋酸丁酯等)、酮類(丙酮、甲基 乙酮、甲基異丁酮等)、醚類(二噁烷、二乙醚、四氫呋喃 等)、亞楓類(二甲基亞颯等)、醯胺類(二甲基甲醯胺、二 甲基乙醯胺等)或此等之混合溶劑。 例如樹脂爲聚醯胺樹脂時,在與橡膠零件之接觸面上 可使苯酌類(苯酚、甲酚等)、有機酸(甲酸等)、酮類(六氟 丙酮等)、醇類(六氟異丙醇等)等單獨或與一般的有機溶劑 混合、塗覆。而且,樹脂爲聚亞苯醚樹脂時,溶劑或膨潤 劑例如烴類(甲苯等)、酮類(丙酮、甲基乙酮、六氟丙酮等)、 醚類(四氫肤喃等)、醯胺類(二甲基甲醯胺等)、醇類(六氟 異丙醇等)等。 此外,以上述溶劑處理後,即使藉由洗淨、乾燥等自 樹脂零件除去溶劑,藉由使上述樹脂零件之處.理面與未加 硫橡膠組成物接觸,可使加硫橡膠零件與樹脂零件堅固地 黏合。 (11)於複合體(或複合分散體)(2)之製造中,可藉由使 上述樹脂組成物與橡膠捏合、成形予以製造。而且,上述 橡膠可以爲未加硫橡膠(尤其是含有加硫劑之未加硫橡膠) 或加硫橡膠任一種’未加硫橡膠之加硫或交聯可在適當階 一 63- 1294894 段、例如成形工程、成形後之後工程等中進行。 而且,加硫橡膠相及樹脂相中至少一方(特別是加硫橡 膠相)可以含加硫劑(特別是自由基發生劑)之組成物形成, 加硫橡膠相可以含有加硫活性劑之組成物形成。另外,加 硫劑及/或加硫活性劑可預先添加於橡膠中,亦可以在捏合 工程中添加。 更詳言之,本發明之複合體(2 )可藉由使上述樹脂組成 物與未加硫橡膠(特別是含有加硫劑之未加硫橡膠組成物) 捏合,成形爲所定形狀,使未加硫橡膠在成形過程或成形 後之後工程加硫或交聯製得。 另外,本發明之複合分散體(2 )可藉由使上述樹脂組成 物與加硫橡膠(加硫橡膠組成物)捏合,成形爲所定形狀製 得。該方法通常加硫橡膠可使用藉由預先冷凍粉碎、使用 加硫劑之聚合法等方法加硫的粉粒體形態。 捏合可使用慣用的捏合機(例如擠壓機等)進行。而且, 使熱固性樹脂或其組成物與未加硫橡膠或加硫橡膠捏合 時,通常在熱固性樹脂以非硬化狀態捏合。而且,未加硫 橡膠之捏合除分散相以加硫橡膠相形成外,通常橡膠以未 加硫狀態進行。 成形法例如擠壓成形、射出成形、流動成形等,通常 使用擠壓成形或射出成形。成形品之形狀沒有特別的限制, 可以爲板狀、片板狀、管狀等。而且’成形溫度係視使用 的原材料(例如樹脂及橡膠)而定適當設定’例如爲50〜300 T:、較佳者爲75〜2 5 0 °C、最佳者爲100〜22 5 °C(例如150 _ 6 4 - 1294894 〜2 Ο 0 〇C )。 藉由成形過程或成形後使成形品藉由加硫或交聯,可 製得複合分散體。加硫可在減壓氣氛下進行,一般而言在 常壓下進行。而且,加硫或交聯溫度例如選自於70〜2 50°C、 較佳者爲100〜230 °C、最佳者爲150〜220 °C之範圍。 而且,於複合體(2 )之製造中至少一方選自於未加硫橡 膠及樹脂組成物之成分,可含有上述加硫助劑(例如上述聚 醯胺類等)。通常加硫助劑大多添加於樹脂組成物。 本發明由於組合加硫活性劑與安定劑構成樹脂組成 物,在沒有使用黏合劑下對廣範圍橡膠而言可確實且堅固 地黏合樹脂。 此外,藉由使用上述樹脂組成物作爲樹脂材料,對橡 膠而言可安定且工業上製造樹脂確實且堅固地黏合的樹脂 與橡膠的複合體。 產業上之利用價値 如此所得的複合體係藉由加硫以顯著高強度黏合橡膠 與樹脂。因此,具有有效地熱塑性樹脂之特性與橡膠之特 性,可利用作爲各種用途,例如汽車用零件(震動吸收刷子、 彈簧板、門鎖零件、散熱台等)、防震橡膠、閥、電器插頭 等之各種零件。 【實施方式】 【實施例】 於下述中藉由實施例等更具體地說明本發明,惟本發 明不受此等實施例所限制。而且,實施例及比較例中係使 -65- 1294894 用下述之樹脂組成物及橡膠組成物。 樹脂A 1〜A 3 製造聚醯胺6 1 2 (六甲二胺與十二烷二羧酸之聚縮合物) 作爲熱塑性樹脂,且調製下述樹脂或樹脂組成物(A 1〜A3 )。 而且,M0PACPM3之計算以下述基本單位爲基準進行。The resin (b) having an unsaturated bond, for example, a thermoplastic resin into which an unsaturated bond is introduced, such as the above-mentioned resin (i), (ii) or (iv), or a rubber containing an unsaturated bond [e.g., a polyalkene (polybutylene) Polyene, polyisoprene, polyhexene, polyheptene, polyoctene, poly(3-methyloctene), polydecene, poly(3-methyldecene), polydodecene, etc. &lt;:4. (Alkene of 15 or the like), a copolymer of a C4_15 alkadiene such as a butadiene-isoprene copolymer, a rubber-modified polyolefin such as a butadiene-modified polyethylene, or the like. Moreover, the above poly C4. The 15 olefin may be substituted by a cyclic olefin (e.g., cyclopentene, cycloheptene, cyclooctene, cyclodecene, cyclododecene, etc. may have a substituent -23- 1294894 (^. It is obtained by substitution polymerization of a cycloolefin or the like, partial hydrogenation of a polyalkylene group (for example, polybutadiene, etc.). In the above resin (iv), the ratio of the above resin (b) may be selected within the range of the unsaturated bond introduced into the polymer mixture at a predetermined concentration, for example, for the resin of (a), the resin (b) It is 5 to 3 parts by weight, preferably 2 to 1 part by weight, and more preferably 5 to 8 parts by weight. In particular, when a rubber containing an unsaturated bond (for example, a poly(alkenyl) group) is used as the resin (b), the proportion of the rubber containing an unsaturated bond is selected within a range that does not impair the properties of the resin (a), for example, for 100 heavy stars. The resin containing the unsaturated bond in the resin (a) is 〇5 to cc, preferably 1 to 30 parts by weight, and most preferably 2 to 20 parts by weight. The number of no it and the number of bonds is, for example, an average of 〇 for one molecule of the resin.  One or more (for example, 1 to 1 〇 〇), preferably one or more on average (for example, 1 to 1 〇 )), and the best is an average of two or more (for example, 2 to 50). Further, the concentration of the unsaturated bond is, for example, 1 kg to 1 kg of resin, preferably 1 to 6 · 6 m, preferably 0. 01~4 Moor, the better one is 〇. 〇 2~2 Mo Er. The thermosetting resin having a crosslinkable functional group has a crosslinkable or hardenable functional group (for example, a methylol group, an alkoxymethyl group, an epoxy group, an isocyanate) in the presence of a crosslinking agent (or a hardener) or the like. Base, etc.) resin. The thermosetting resin is, for example, a polycondensation or an addition condensation resin (a phenol resin, an amine resin, an epoxy resin, a thermosetting polyimide resin, a thermosetting polyurethane resin, a polyoxyalkylene resin, etc.), plus The above-exemplified thermosetting resin is a polymerized resin (an unsaturated polyester resin, a vinyl ester resin, a diallyl phthalate resin, a thermosetting acrylic resin, or the like). These resins having an active atom or a crosslinkable group may be used singly or in combination of two or more kinds of two or more. When two or more kinds of resins are used in combination, the resin composition can form a composite resin composition such as a polymer alloy. The resin used in the present invention is preferably the above reactive resin. Specifically, the resin is preferably a resin having an active atom, a resin having a crosslinkable group, and a resin having an active atom and a crosslinkable group. When the resin having an active atom and/or a crosslinkable group is used, the sulfur-containing active agent can be used to highly improve or improve the adhesion to a wide range of rubber. Preferred thermoplastic resins and thermosetting resins are described below. (1) Polyamine-based resin Polyamine-based resin has a guanamine bond which is condensed by a carboxyl group and an amine group, and is, for example, an aliphatic polyamine-based resin, an alicyclic polyamine-based resin, or an aromatic polyfluorene. Amine resin, etc. An aliphatic polyamine-based resin is often used. An aliphatic polyamine-based resin such as an aliphatic diamine component (c4 of tetramethyldiamine or hexamethylenediamine). 1 () alkanediamine) and an aliphatic dicarboxylic acid component (hexamethylenediamine, sebacic acid, dodecanedioic acid, etc. c4. a condensate of 2 ()alkanedicarboxylic acid or the like) (for example, polyamine 46, polyamine 66, polyamine 610, polyamine 612, polyamine 1010, polyamine 1012, polyamine 1212, etc.) The indoleamine (ε-caprolactam, ω-lauric acid) and the like are used in the ring-opening polymerization of indoleamine. Separately or copolymerized with 2Q internal guanamine or the like, or aminocarboxylic acid (carbon number c4_2Q aminocarboxylic acid such as ω-aminoundecanoic acid, etc.) (for example, polyamide 6 , polyamine 1 , poly Copolyamine 1 2, etc., copolyamine copolymerized with such polyamine components (eg, polyamido 6 / 1 , polyamine 6 / 12, polyamine 66 / 1 1 , polyamine 66 / 12) and many more. An alicyclic polyamine-based resin, for example, a polyfluorene in which at least a part of the above aliphatic diamine component and/or an aliphatic dicarboxylic acid component is substituted into an alicyclic diamine and/or an alicyclic-25-294849 dicarboxylic acid amine. An alicyclic diamine such as the above aliphatic dicarboxylic acid component and an alicyclic diamine component (c5 8 cycloalkanediamine such as cyclohexanediamine; bis(aminocyclohexyl)methane, 2, 2 ·• double a condensate of a bis(aminocyclohexyl)alkane such as (aminocyclohexyl)propane. In the aromatic polyamine-based resin, for example, at least one of the above aliphatic diamine component and the aliphatic dicarboxylic acid component is a polyamine having an aromatic component. The aromatic polyamine, for example, a diamine component is a polyamine having an aromatic component [a condensate of an aromatic diamine (such as m-xylenediamine) such as MXD-6 and an aliphatic dicarboxylic acid], and a dicarboxylic acid. The acid component is a polyamine having an aromatic component [a condensate of an aliphatic diamine (such as trimethylhexaethylenediamine) and an aromatic dicarboxylic acid (such as citric acid or isodecanoic acid)], and a diamine component. And a wholly aromatic polyamine (aromatic polyamine) such as a polyamine (poly(m-phenylisophthalic acid decylamine)) having an aromatic component and the like. The polyamine-based resin further comprises a polyamine which uses a dimer acid as a dicarboxylic acid component, a small amount of a polyfunctional polyamine and/or a polycarboxylic acid component, and is introduced into a branched structure of a polyamine or a modified polyamine. (N-alkoxymethylpolyamine, etc.), modified polyolefin blended or graft polymerized high impact polyamide, polyether is a soft phase polyamine elastomer. In the polyamine-based resin, for example, a hydrogen atom bonded to an α-position carbon atom to a hydrogen atom of a terminal amino group, a terminal amine group, and a hydrogen atom bonded to a carbon atom adjacent to a sulfhydryl group. The atom (such as a hydrogen atom of a methyl group or a hydrogen atom of a methine group), particularly a hydrogen atom of a terminal amine group, constitutes an active hydrogen atom. The ratio of the terminal oxime group to the terminal COOH group in the polyamine-based resin is not particularly limited, and for example, when the hydrogen atom of the terminal group and the hydrogen atom of the α-carbon -26 - 1294894 constitute an active hydrogen atom, Terminal amine group/terminal carboxyl group = 1 ο / 90 to 100/0 (mole ratio), preferably 20/80 to 95/5 (mole ratio), more preferably 2 5 / 7 5 to 9 5 / 5 (Morbi). Further, when the hydrogen atom of the terminal amine group constitutes an active hydrogen atom, the terminal amine group/terminal carboxyl group is 50/50 to 100/0 (mole ratio), preferably 60/40 to 95/5 (mole). Better than 70/30~9 5 / 5 (Morbi). Further, when the polyamine-based resin is introduced into the unsaturated bond as the resin (i), for example, a residual carboxyl group or an amine group is used as the reactive group (B), and when the unsaturated bond is introduced as the resin (ii), the above-mentioned resin can be used. An unsaturated polycarboxylic acid (maleic acid or the like) or the like is used as a partial copolymerization component. (2) Polyester-based resin A polyester-based resin such as an aliphatic polyester-based resin or an aromatic polyester-based resin. The aromatic polyester-based resin is usually a polyalkylene acrylate resin or a saturated aromatic polyester resin. The aromatic polyester-based resin includes, for example, polyethylene C. (PET), polybutylene terephthalate (PBT), and the like. 4 alkyl phthalate; corresponding to the polyalkylene terephthalate poly C2. 4 alkyl naphthalate (e.g., polyethylene naphthalate); poly(1,4-cyclohexyldimethylparaben) (PCT)). The polyester resin may be a copolyester containing an alkylene acrylate unit as a main component (e.g., 50% by weight or more), and a copolymerization component such as ethylene glycol, propylene glycol, butylene glycol, hexanediol or the like. An asymmetric aromatic dicarboxylic acid such as a 6-alkanediol, a polyepoxy C2_4 alkanediol, a decanoic acid or an isodecanoic acid, or an acid anhydride thereof, or an aliphatic dicarboxylic acid such as adipic acid. Alternatively, a small amount of a polyhydric alcohol and/or a polycarboxylic acid may be used, and a branched structure may be introduced into the linear polyester. -27- 1294894 When the aromatic polyester-based resin does not have the above-mentioned active atom at a predetermined concentration, the modified polyester-based resin may be used as a modified compound having an active atom (for example, at least one selected from the group consisting of an amine group and an alkylene oxide) Base aromatic polyester resin). An active atom, particularly a compound having an active hydrogen atom such as a polyamine (aliphatic diamine such as ethylenediamine, trimethyldiamine, propylenediamine, tetramethylenediamine, pentaethylenediamine, hexamethyldiamine, three) a linear or branched alkyldiamine having a carbon number of 2 to 10, such as methylhexamethyldiamine, 1,7-diaminoheptane or 1,8-diaminooctane; an aliphatic diamine such as Isophorone diamine, bis(4-amino-3-methylcyclohexyl)methane, bis(aminomethyl)cyclohexane, etc.; aromatic diamines such as phenylenediamine, xylylenediamine, Diaminodiphenylmethane, etc.), polyalcohols (for example, (poly) epoxy ethene alcohol, (poly) oxidized trimethyl diol, (poly) propylene oxide alcohol, (poly) oxidized tetramethyl diol, etc. (poly) epoxy C2_4 alkanols, etc.). The modification can be carried out, for example, by heating and mixing a polyester resin and a modifying compound, and subjecting to hydrazine, esterification or transesterification. The degree of modification of the polyester resin depends on the amount of the active hydrogen atom in the above compound, and the functional group (trans group or thio group) of the 1 mol polyester resin is, for example, a modified compound oxime.  1 to 2 mo, preferably 0. 2~1. 5 Mo, better is 0. 3 to 1 mole. When using the exchange reaction (poly) epoxy C2. The amount of the 4-alkanol used is 1 to 50 parts by weight, preferably 5 to 30 parts by weight, per 100 parts by weight of the polyester resin. The polyester resin is usually a hydrogen atom of a methyl group in a (poly)alkylene oxide unit, and the modified polyester resin is usually a hydrogen atom of the terminal amine group or a terminal amine group. a hydrogen atom bonded to a carbon atom of the α-position carbon atom, a hydrogen atom bonded to a carbon atom of a -ΝΗ- group adjacent to the indoleamine bond (a hydrogen atom of a methyl group - a hydrogen atom of a 28- 1294894 or a methine group, etc.) In particular, the hydrogen atom of the terminal amine group constitutes an active hydrogen atom. Further, when the polyester resin is introduced into the unsaturated bond as the resin (i), for example, a residual carboxyl group or a hydroxyl group may be used as the reactive group (B), and when the unsaturated bond is introduced as the resin (ii), the above-mentioned resin may be used. An unsaturated polybasic acid (maleic acid or the like) or the above unsaturated polyol (2-butene-1,4-diol, etc.) or the like is used as a partial copolymerization component. (3) Poly(thio)ether-based resin The poly(thio)ether-based resin contains a polyalkylene oxide resin, a poly(phenylene ether) resin, and a polysulfide resin (polysulfide resin). The polyalkylene oxide-based resin comprises polyoxyethylene glycol, polyethylene oxide alcohol, polypropylene oxide alcohol, polyethylene oxide-polypropylene oxide block copolymer, polyoxytetramethane, etc. C! _4 alkanediol and the like. The preferred poly(thio)ether-based resin comprises a polyacetal resin, a poly(phenylene ether) resin, a polysulfide resin, and a polyetherketone resin. Further, when the unsaturated bond is introduced as the resin (i), a residual hydroxyl group, a S group or the like can be used as the reactive group (B). (3a) Polyacetal-based resin Polyacetal-based resin A homopolymer (formaldehyde monomer) which can be repeatedly formed by a acetal bond, or a copolymer which can also be obtained by ring-opening polymerization (trioxan) a copolymer of an alkane with ethylene oxide and/or a 1,3-dioxolane, etc.). Further, the end of the polyacetal resin can be sealed and stabilized. Examples of the polyacetal resin, such as a hydrogen atom of an oxidized methyl unit, a hydrogen atom of a terminally sealed alkoxy group (particularly a methoxy group), and particularly a hydrogen atom of an oxidized methyl group, constitute an active hydrogen atom. Further, when the polyacetal resin is introduced into the resin (i) as the unsaturated - 2 9 - 1294894 bond, a residual hydroxyl group or the like can be used as the reactive group (B). (3b) Poly(phenylene ether) resin The polyphenylene ether resin contains various resins containing 2,6-dimethylphenylene oxide as a main component, for example, 2,6-dimethylphenylene oxide A modified poly(phenylene ether) resin or the like which is a copolymer of a phenol or a styrene resin. Other modified poly(phenylene ether) resins such as poly(phenylene ether)/polyamidoline, poly(phenylene ether)/saturated polyester, poly(phenylene ether)/polyphenylene sulfide system, polyphenylene sulfide/polyolefin Department and so on. When the styrene resin is mixed, the ratio of the styrene resin to the 00 parts by weight of the poly(phenylene ether) resin is, for example, 2 to 150 parts by weight, preferably 3 to 1 part by weight, more preferably It is 5 to 50 parts by weight. The polyphenylene ether-based resin may, for example, be a hydrogen atom bonded to a methyl group on a benzene ring to constitute an active hydrogen atom. (3c) Polysulfide-based resin (polythioether-based resin) The polysulfide-based resin is not particularly limited as long as it has a sulfur group s_) in the polymer chain. The resin is, for example, a polyphenylene sulfide resin, a polydisulfide resin, a polyphenylene sulfide resin, a polyketone sulfide resin, a polythioether resin or the like. Further, the polysulfide-based resin may have a substituent such as an amine group of poly(aminophenylene sulfide). A preferred polysulfide-based resin is a polyphenylene sulfide resin. The polysulfide-based resin constitutes an active sulfur atom with a sulfur group in the main chain. (3d) polyether ketone resin rejuvenation tree B, for example, polyether ketone obtained by polycondensation of a toothed benzamidine (dibenzophenone dichloride, etc.) with dihydrobenzophenone A resin, a polyetheretherketone resin obtained by polycondensation of a dihalogenated benzophenone and hydroquinone, or the like. —30 — 1294894 (4) The polycarbonate resin The polycarbonate resin may be an aliphatic polycarbonate resin, and the aromatic polycarbonate resin is usually an aromatic dihydroxy compound (bisphenol A or bisphenol). An aromatic polycarbonate obtained by reacting a bisphenol compound such as S or the like with a phosphine or a carbonic acid diester (a diaryl carbonate such as diphenyl carbonate or a dialkyl carbonate such as dimethyl carbonate) Wait. When a polycarbonate resin is introduced into the resin (i) as an unsaturated bond, a residual hydroxyl group or the like can be used as the reactive group (B). (5) Polyimine-based resin The polyimine-based resin contains a thermoplastic polyimide resin, for example, an aromatic tetracarboxylic acid or an anhydride thereof (such as benzophenone tetracarboxylic acid) or an aromatic diamine ( Polyimine resin, polyamidimide resin, polyester phthalimide resin obtained by the reaction of diaminodiphenylmethane or the like. When the polyimine-based resin is introduced into the unsaturated bond as the above resin (i), a residual carboxyl group, an acid anhydride group, an amine group, an imine group or the like can be used as the reactive group (B). (6) Polyfluorene-based resin polyfluorene-based resin, for example, by polycondensation of diphenylphosphonium dichloride (dichlorodiphenylphosphonium) and polyfluorene (bisphenol A or a metal salt thereof) Resin, polyether oxime resin, polyallyl oxime resin (trade name: RADEL), and the like. (7) Polyurethane-based resin The polyurethane resin can be obtained by reacting a diisocyanate with a polyhydric alcohol and a chain extender as required. Diisocyanates such as hexamethylenediisoate as an aliphatic monoisoyl ester such as 2,2,4-trimethylhexamethylene diisocyanate, 1,4-cyclohexane diisocyanate, Aromatic compounds such as alicyclic diisocyanates such as isophorone diisocyanate-31 - 1294894 acid esters, phenyl diisocyanate, tolyl diisocyanate, diphenylmethane-4, 4'-diisocyanate, etc. An aromatic aliphatic diisocyanate such as a diisocyanate or a xylyl diisocyanate. The diisocyanate may be a compound substituted with an alkyl group (e.g., methyl group) in the main chain or ring. The diols can utilize polyester diol (C4 from adipic acid, etc.).  i 2 aliphatic dicarboxylic acid component, ethylene glycol, propylene glycol, butanediol, neopentyl alcohol, etc. C2. 12 an aliphatic diol component, a polyester diol obtained by a C4_12 lactone component such as ε-caprolactone or the like, or a polyether diol (polyethylene glycol, polypropylene glycol, polyethylene oxide-polyepoxy) A propane copolymer, a polyoxytetramethylene glycol, a bisphenol A-alkylene oxide adduct, or the like, a polyester ether diol (a polyester diol using the above polyether diol as a diol component), or the like. In addition, the chain extender in addition to ethylene glycol, propylene glycol, etc. C2. In addition to the 1Q alkanediol, diamines can be used. Diamines such as ethylenediamine, trimethyldiamine, tetramethyldiamine, pentaethylenediamine, hexamethyldiamine, trimethylhexamethyldiamine, 1,7-diaminoheptane, 1,8-diamino a linear or branched polyalkylene polyamine having a carbon number of 2 to 10 such as octane or a linear or branched alkylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dipropylenetriamine; Aliphatic diamines such as isophorone diamine, bis(4-amino-3-methylcyclohexyl)methane, bis(aminomethyl)cyclohexane, etc.; aromatic diamines such as benzene Diamine, xylene diamine, diaminodiphenylmethane, and the like. a polyurethane resin such as a main chain of a diisocyanate or a hydrogen atom bonded to a ring of a ring (especially a hydrogen atom at a benzyl group), an alkyl group of a polyalcohol or a polyalkylene oxide The hydrogen atom and the hydrogen atom of the amine group of the chain extender constitute an active hydrogen atom. - 32 - 1294894 &amp; </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; When the unsaturated bond is introduced as the resin (ii), the unsaturated polyol (2-butene-1,4-diol or the like) or the like is used as a part of the copolymerization component. (8) Polyolefin-based resin Polyolefin-based resin such as polyethylene, polypropylene, ethylene-propylene copolymer, poly(methylpentene-1) or the like, or a copolymer of an olefin and a copolymerizable monomer (ethylene-vinyl acetate copolymer, ethylene methyl) acrylic copolymer, ethylene-(meth)acrylate copolymer, etc.). These polyolefin resins may be used singly or in combination of two or more. A preferred polyolefin-based resin comprises a polypropylene-based resin having a propylene content of 50% by weight or more (particularly 75 to 100% by weight), for example, a polypropylene, a propylene-ethylene copolymer, a propylene-butyl copolymer, and a propylene. Can-Ethylene-Butyl Copolymer and the like. Further, the polyolefin resin is preferably crystalline. The polyalkylene-based resin, for example, a hydrogen atom of a methyl group which constitutes a polycondensation hydrocarbon main chain, and a hydrogen atom of a methyl group branched by the above main chain constitute an active hydrogen atom. (9) halogen-containing resin halogen-containing resin such as polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinyl acetate copolymer, vinylidene chloride-vinyl acetate copolymer, etc., chlorine-containing vinyl resin, A fluorine-containing resin such as a copolymer of polyvinyl fluoride (polyvinylidene fluoride), polytrifluoroethylene trichloride or tetrafluoroethylene. A preferred fluorine-containing resin is a fluorine-containing vinyl resin (e.g., polyvinyl fluoride, polyvinylidene fluoride, etc.). - 33- 1294894 (1) styrene resin styrene resin such as styrene monomer alone or copolymer (polystyrene, styrene-vinyltoluene copolymer, styrene-methylstyrene copolymer, etc.) a copolymer of a styrene monomer and a copolymerizable monomer (for example, a cyanide vinyl compound such as (meth)acrylonitrile) (styrene-acrylonitrile copolymer (AS resin), (meth)acrylic acid) Ester-styrene copolymer (MS resin, etc.), styrene copolymer such as styrene-maleic anhydride copolymer, styrene-butadiene copolymer; acrylonitrile-butadiene styrene copolymer (ABS resin) ), impact resistant polystyrene (HIPS), acrylonitrile-acrylate-styrene copolymer (AAS resin), acrylonitrile-chlorinated polyethylene-styrene copolymer (ACS resin), acrylonitrile-ethylene propylene rubber a styrene copolymer (AES resin), a styrene-based graft copolymer such as acrylonitrile-vinyl acetate-styrene copolymer (AXS resin), or the like. (1 1 ) (meth)acrylic resin (meth)acrylic resin, for example, a single or a copolymer of a (meth)acrylic monomer, a copolymer of a (meth)acrylic monomer and a copolymerizable monomer, or the like . (Meth)acrylic monomers such as (meth)acrylic acid, methyl (meth)acrylate 'ethyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, (A) A methacrylic acid such as 10-alkyl (meth)acrylate or cyclohexyl methacrylate such as 2-ethylhexyl acrylate. A (meth)acrylic acid hydroxyl group such as a cycloalkyl ester or a phenyl (meth)acrylate such as a C6-1Q aryl (meth)acrylate or a hydroxyethyl (meth)acrylate. An alkyl ester, a (meth) propylene phthalamide, a vinyl cyanide compound (for example, (meth) acrylonitrile), (meth) acryl acrylate, etc. The copolymerizable monomer is, for example, a vinyl monomer such as vinyl acetate or vinyl chloride, or a styrene monomer such as styrene or α-methylstyrene. When the (meth)acrylic resin is introduced into the unsaturated bond as the resin (i), the reactive group (B) can be introduced by using a monomer having a reactive group (B) as a copolymerizable monomer. (1 2 ) Thermoplastic Elastomer The thermoplastic elastomer comprises a polyamine-based elastomer (a copolymer having a polyamine as a hard phase and an aliphatic polyether as a soft phase), and a polyester-based elastomer (a polyalkylene group) Acrylate is a hard phase, a copolymer of an aliphatic polyether or an aliphatic polyester as a soft phase), a polyurethane elastomer (a polyurethane of a short-chain alcohol is a hard phase, and an aliphatic Polyether or aliphatic polyester is a soft phase copolymer, such as polyester urethane elastomer, polyether urethane elastomer, etc.), polystyrene elastomer (hard polystyrene block) Phase, a block copolymer having a diene polymer block or a hydrogenated block thereof as a soft phase), a polyolefin elastomer (a hard phase of polystyrene or polypropylene, ethylene-propylene rubber or ethylene) The propylene-diene rubber is an elastomer of a soft phase, an olefin-based elastomer composed of a hard phase and a soft phase having different degrees of crystallization, a polychlorinated ethylene elastomer, a fluorine-based thermoplastic elastomer, or the like. As the aliphatic polyether, a (poly)alkylene oxide (c 2 _ 4) alcohol (particularly, a polyethylene oxide alcohol) described in the section of the polyester resin and the polyurethane resin can be used, and the aliphatic polymer can be used. As the ester, a polyester diol described in the section of the polyurethane resin can be used. These thermoplastic elastomers may be used singly or in combination of two or more. When the thermoplastic elastomer is a block copolymer, the block structure is not particularly limited, and may be a triblock structure, a multi-block structure, a star block structure or the like. A 35- 1294894 b 'The preferred thermoplastic elastomer comprises a polyamide-based elastomer, a polyester-based elastomer, a polyurethane-based elastomer, a polystyrene-based elastomer, and a polyolefin-based elastomer. . The thermoplastic elastomer, for example, an alkylene oxide unit constituting the soft phase may constitute an active hydrogen atom. Further, 'Ethylene-fired polymer resin (for example, (meth) acrylic acid-based resin (polymethyl methacrylate, methyl methacrylate-styrene copolymer, etc.) and styrene resin (polystyrene; AS) a styrene copolymer such as a resin; a styrene-based graft copolymer such as HIPS or ABS resin; and the like, and a polyfunctional polymerizable compound having two or more functional groups (for example, ethylene glycol di(meth)acrylate, two) Ethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, etc.) are copolymerized and crosslinked with the constituent monomers. Thermosetting resin such as polycondensation or addition condensation resin (phenol resin, amine resin, epoxy resin, polyoxyalkylene resin, thermosetting polyimide resin, thermosetting polyurethane resin, etc.), addition A polymer resin (a thermosetting acrylic resin, a vinyl ester resin, an unsaturated polyester resin, a diallyl phthalate resin, or the like). The thermosetting resins may be used singly or in combination of two or more. (1 3 ) Phenol resin The phenol resin is a phenol resin resin, a cresol resin or the like, and a phenol resin resin is usually used. The phenolic enamel resin is obtained by reacting a phenol with an aldehyde in the presence of an acid catalyst. Phenols such as phenol, hydrazine, m-, or p-cresol, 2, 5-, 3,5- or 3,4-xylenol, 2,3,5-trimethylphenol, ethylphenol, C Phenolic and the like (^. 4-alkylphenol, dihydroxybenzene, m-phenylene 36- 1294894 phenol, naphthol, and the like. These phenols may be used singly or in combination of two or more. The aldehydes are, for example, formaldehyde, an aliphatic aldehyde such as formaldehyde, acetaldehyde or propionaldehyde, an aromatic aldehyde such as benzaldehyde or salicylaldehyde, or the like. These aldehydes may be used singly or in combination of two or more. (1) The amine resin amine resin is usually obtained by reacting an amine group-containing compound with an aldehyde (for example, an aromatic aldehyde such as formaldehyde, acetaldehyde or propionaldehyde, or an aromatic aldehyde such as phenylacetaldehyde). . The amine resin is a urea resin (a urea resin obtained by reacting urea with an aldehyde, etc.), an aniline resin (by aniline, naphthylamine, toluidine, xylylamine, N,N-dimethylaniline, benzidine) An aniline, an aniline resin obtained by reacting with an aldehyde, a melamine resin (a melamine resin obtained by reacting melamine with an aldehyde, etc.), a guanamine resin (benzoguanamine, B) A guanine guanamine, a guanamine such as guanamine, and a guanamine resin obtained by reacting with an aldehyde. (1 5) Epoxy resin The epoxy resin includes a bisphenol type epoxy resin, a phenolic enamel type epoxy resin, an amine epoxy resin, and the like. The bisphenol constituting the bisphenol type epoxy resin is, for example, a glycidyl ether such as 4,4-bisphenol, 2,2-bisphenol, a combination of F, bisphenol AD, or bisphenolphthalein. The phenolic enamel resin constituting the novolac type epoxy resin is, for example, a phenolic lacquer resin obtained by the reaction of a phenol and an aldehyde described in the above phenolic lacquer resin. An amine component constituting an amine-based epoxy resin, such as an aromatic amine such as aniline or toluidine, an aromatic diamine such as diaminobenzene or xylene diamine, or an amino group hydroxy-37- 1294894 benzene or diaminodiphenyl group Methane, etc. (1 6 ) Polyoxane resin The polyoxyalkylene resin contains the formula: RaSiO (4. a)/2 units (where the coefficient a is 1 · 9~2 · 1), and the formula: RbSiO (4. The unit shown by bW2 (where the coefficient b is 0.  9~1.  1) A polyoxyalkylene resin or the like. Among them, for example, a methyl group, an ethyl group, a propyl group, a butyl group or the like. a halogenated alkyl group such as an alkyl group, a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a vinyl group, an allyl group, a butenyl group or the like. I. al., alkenyl, phenyl, tolyl, naphthyl, etc. C6_12 aryl, cyclopentyl, cyclohexyl, etc. C3. C6 of 1Q cycloalkyl, benzyl, phenethyl and the like. 12 aryl-Cm alkyl group and the like. (1) Thermosetting Polyimine-Based Resin The thermosetting polyimide-based resin contains the resin described in the above polyimine-based resin. (18) Thermosetting Polyurethane Resin The thermosetting polyurethane resin includes the resin described in the above Polyurethane Resin. (19) Thermosetting Acrylic Resin The thermosetting acrylic resin contains the resin described in the above (meth)acrylic resin. (20) Vinyl Ester Resin Vinyl Ester Resin, for example, a polymer obtained by reacting the above epoxy resin with (meth)acrylic acid, and a polyvalent phenol and a glycidyl (meth) succinic acid ester The resulting polymer or the like is reacted. (2 1 ) Unsaturated Polyester Resin-38- 1294894 Unsaturated Polyester Resin, for example, in the above-mentioned polyester-based dicarboxylic acid or an anhydride thereof (for example, unsaturated polycondensation of maleic acid, maleic anhydride, and dicarboxylic acid component) (22) Diallyl phthalate resin The diallyl phthalate resin contains a diene propylene phthalate monomer such as diene propylene propyl isononate. Active Agent] The resin composition of the present invention contains a sulfurizing active agent for improving or improving the adhesion of the fat. The composite agent can improve the wettability of the resin and the rubber, and uniformly adhere the adhesive (for example, a radical generating agent). With unsulphurized rubber), the resin is crosslinked with the rubber to improve the resin/rubber. Therefore, the resin and the rubber are firmly bonded directly or the above-mentioned vulcanization active agent, for example, has a plurality of carbon-carbon only bonds. Organic compound [for example, a vinyl monomer (a di-Z-propyl monomer (diallyl phthalate, a triene acrylate (isocyanate), etc.), a (meth)acrylic monomer, etc., etc. Non-maleimide-based vulcanization activity when polyester resin is used as the resin An organic compound (e.g., an organic compound having a plurality of unsaturated bonds). These vulcanizations are used or used in combination of two or more. (Meth)acrylic monomers such as difunctional (b[ethylene glycol di(meth)acrylate, propylene glycol bis(methylbutylene glycol di(meth)acrylate, hexanediol di(methyl) In the case of unsaturated fumaric acid, etc.), it is used as a phthalic acid ester, a bismuth resin, etc. In the case of rubber, the sulphur is active in the tree, and the sulphur is added by vulcanization (or Crosslinking density: r ° E bond (polymerizable unsaturated L-alkenylbenzene, etc.), olefin phosphate, triallyl,], maleimide, usually mostly carbon-carbon double bond (polymeric active agent can C21 decanediol di(meth) acrylate such as acrylate) acrylate, 1,4 -g acrylate, neo-39 - 1294894 pentanol mono(meth) acrylate, etc. Diol di(meth)acrylate 'triethylene glycol di(meth) propylene I ester, polyethylene glycol di(meth) acrylate, dipropylene glycol di(meth) acrylate, tripropylene glycol di(a) Acrylate, polypropylene glycol di(meth) acrylate, polytetramethylene glycol di(meth)acrylate, etc. Polyalkylene di-(meth) acrylate, glycerol di(meth) acrylate, trimethylol propyl di(meth) acrylate, pentaerythritol di(meth) acrylate, double A C 2 - 4-Ethylene alkyl adduct of di(meth)acrylate, etc.], trifunctional or polyfunctional (meth) acrylate [glycerol] tris(methyl) acrylate "trishydroxyl Methyl ethane tri(meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (methyl) Acrylate, dipentaerythritol hexa(meth) acrylate, etc., etc. The maleimide compound having several maleimide groups can be obtained by reacting a polyamine with maleic anhydride. a compound such as an aromatic bismaleimide (N,N,-1,3-phenylene dimaleimide, N,N,-1,4-phenylene dimaleimide, N,N,-3 -Methyl-1,4-phenylene dimaleimide, 4,4'-bis(N,N'-maleimide)diphenylmethane, 4,4 - double (N, Ν'-maleimide) diphenyl hydrazine, 4,4'-bis (Ν, Ν'-maleimide) diphenyl ether, etc.), aliphatic double mala Imine (Ν,Ν' - 1,2-extended ethyl bismaleimide, anthracene, Ν'-1,3 - propyl bis-maleimide, ν, Ν, 1,4 - four a methyl ester or a compound having a plurality of (for example, 2 to 6, especially 3 to 6) α,β-ethylenically unsaturated bonds, A compound having a plurality of (meth)acryl fluorenyl groups having a trifunctional-40-1294894-type or polyfunctional (meth) acrylate (trimethylolpropane tri(meth)acrylate, etc.) is preferred. The amount of the sulfurizing active agent used varies depending on the sulfurizing active agent, or the type of the resin, etc. The amount of the resin to the rubber is generally promoted. For example, the sulfurizing active agent is selected from 0 for 100 parts by weight of the resin.  1 to 1 〇 by weight, preferably 0. 1 to 5 parts by weight, the best is 0. 1 to 3 parts by weight. [Stabilizer] The present invention can be characterized by the use of a sulfur-adding active agent and a stabilizer. When the above-mentioned sulfur-adding active agent is used alone, when the sulfur-adding active agent and the stabilizer are combined, even if a sulfurizing activity having a polymerizable unsaturated bond is used in a heating and mixing process (for example, a kneading process of a resin and a sulfurizing active agent) The agent still inhibits or prevents the gel (or pitting) from occurring. Therefore, the vulcanization activator can be utilized in a function that does not reduce the strength of the composite or impair the appearance, and the resin and the rubber are bonded and bonded reliably and firmly. Therefore, the present invention uses a stabilizer to stabilize the resin, but it is preferred to stabilize at least the sulfurizing active agent. The stabilizer may be an antioxidant (including a heat-resistant processing stabilizer), a photostabilizer, or the like, or may be a thermal polymerization inhibitor (hydroquinone such as hydroquinone or methylhydroquinone). The antioxidant includes, for example, a phenol-based antioxidant, an amine-based antioxidant, a pitiful antioxidant, a sulfur-based antioxidant, a hydroquinone-based antioxidant, a quinoline-based antioxidant, a ketoamine resin, or the like. Also, refer to the trade name listed in parentheses. The phenol-based antioxidant is a hindered phenol-based antioxidant, and is, for example, a single-type, a bisphenol or a polyphenol. Monophenols such as mono- or di-branched c3 6 alkylphenols 4 1 to 1294894 having a substituent [eg 2,6-di-t-butyl-p-cresol, 2,6-di-t-butyl) -4-ethylphenol, etc. C]. 4 alkyl-di-branched _c3_6 alkyl phenol; 2 alkoxy group of 3 butyl-4-methoxy phenol, 3 tert-butyl-4-methoxy phenol, etc. - single or two-branched Chain C3_6 alkylphenol; C1()_2 of stearyl 邛-(3,5-di-t-butyl-4-hydroxyphenyl)propionate. Alkyl-(di-branched C3. 6 alkyl-hydroxyphenyl) C 2_6 carboxylate; 2-ethylhexyl-(2, 6-di-t-butyl-4-hydroxybenzylsulfonyl) acetate, etc. C3_1Q alkyl-(di- Branch chain C3. 6 alkyl-hydroxybenzyl sulfide) C2. 6 carboxylic acid ester; distearyl-(3, 5-di-3-butyl-4-hydroxybenzyl) phosphate, etc. C1Q. 2Q alkyl-(di-branched C2. 6 alkyl-hydroxybenzyl methyl phosphate, etc.], with C4. 1()alkylthio-based phenol [2,4-di(octylthio)methyl-6-methylphenol (Irganox i520 Chiba Machinery Co., Ltd.), etc.], double Monoesters of phenols and (meth)acrylic acid [eg 2-(2-hydroxy-3 tert-butyl-5-methylbenzyl)-4-methyl-6-butylphenyl acrylate (history Mirais-GM Sumitomo Chemical Co., Ltd.), 2-[1-(2-hydroxy-3-tert-butyl-5-methylphenyl)ethyl]-4-methyl-6 tert-butyl Phenyl phenyl acrylate, 2-[1-(2-hydroxy-3,5-di-t-pentylphenyl)ethyl]-4,6-di-(tripentyl)phenyl acrylate (history Mireisa - GS Sumitomo Chemical Industry Co., Ltd.), etc. c!.  4 stretch alkyl double (single or two · branching C 3. a monoester of a 6-alkylphenyl group and a (meth) acrylate, etc.]. Bisphenols such as 2,2'-methyl bis(4-methyl-6-tert-butylphenol), 2, 2, methyl bis(4-ethyl-6-tert-butylphenol), 2 , 2,·Ethylene bis(4,6-di-t-butylphenol), 2,2,-ethylenebis[4,6-di(tripentyl)phenol], 4,4' - Butylene bis(3-methyl-6th-butylphenol), 4,4,·methyl bis(2,6-t-butylphenyl hydrazine), etc. (^·6 Single or two · one 4 2 - 1294894 amended page branch C3. 6-alkylphenol); bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propanoic acid 1,6-hexanediol ester, bis[3-(3 tert-butyl) -5-Methyl-4-hydroxyphenyl)propionic acid]-triethylene glycol ester (Irganox 245 Chiba Machinery Co., Ltd.), etc. (single or di-branched C3. 6-alkyl-hydroxyphenyl) (: 2-6 carboxylic acid - single or tetra (: 2. 4 alkylene glycol ester; bismuth bis(3,5-di-t-butyl-4- keto-hydrocinnamonyl) (Igganox MD-1024 Chiba Machinery Co., Ltd.) , n, N'-trisole methyl bis (3, 5_ di-t-butyl-4-hydroxy-cyanide cinnamylamine), n, N,-hexa-methyl bis (3,5 - two third Butyl-4-hydroxy-cinnamonylamine (manufactured by Irganox 1098 Chiba Machinery Co., Ltd.) (single or di-branched C3_6 alkyl-hydroxyphenyl) C3_6 carboxylic acid and CQ_8 alkylenediamine diamine; 3,9-bis{1,1-dimethyl-2- [β-(3 tert-butyl-enhydroxy-5-methylphenyl) propyleneoxy] Kib 2,4,8,1〇-four oxygen rotation [5. 5] i - alkane (Semirasa GA-80 Sumitomo Chemical Co., Ltd.), etc. (mono or di-branched C3_6 alkyl-hydroxyphenyl) C3_6 carboxylic acid and dihydroxy heterocyclic compound Diester and the like. Polyphenols contain phenols [eg hydrazine, 3,5-trimethyl-2,4,6-parade (3,5-di-second butyl-4-hydroxybenzyl)benzene (Acedica) References (single or di-branched c3_6 alkyl-hydroxybenzyl) C6. 1 () arene; ginseng (2_mercapto-4_hydroxy-5) butyl butyl) Dingyuan et al (singly or di-branched alkyl-hydroxyphenyl) C -6 alkane; a mono- or di-branched c3 such as [3-(3,5-di-t-butyl-4- hydroxydiphenyl)propionic acid] glycerol ester. 6-alkyl-hydroxyphenyl C2 6 carboxylic acid and (: 3-6 alkanediol diester, 1,3,5-para (3,5, two third 4,-hydroxybenzophenone 43~ 1294894牴2, enough for the base of the page) 4-三哄-2,4,6-(11^311,5 old triketone (Jetika Sitab 八0-20 Asahi Denki Co., Ltd.), 丨, 3, 5 - ginseng (2,6, dimethyl-3, thiol-4't-butylbenzyl), triad-2,4,6-(1h,3h,5h)5_ The ginseng (single or two-branched C3. 6-alkyl-hydroxybenzyl)-S-tritrap-trione, etc., tetraphenols [eg 肆[methyl-3-3 -(3,5,-di-tert-butyl-4, thiol) Phenyl)propionate]methane (Irono Carlos (〗 〖Rgan〇x) 1〇1〇 Chiba • Special Chemical Co., Ltd.), etc. Mono- or di-branched C3 6-alkyl-hydroxyl a tetraester of phenyl C3_6 carboxylic acid and c3_6 alkanol tetraol; bis[3,3,-bis(4,-trans-yl-3'-t-butylphenyl)butanoic acid] alcohol ester or the like (single or Di-branched alkyl-hydroxyphenyl) C3. 6 carboxylic acid - mono to tetra C 2 -4 alkylene glycol ester] and the like. The amine-based antioxidants include aromatic amines such as phenyl-i-naphthylamine, phenyl-2-naphthylamine, N,N'-diphenyl-l,4-phenylenediamine, N-phenyl-N , -cyclohexyl-1,4-phenylenediamine, and the like. The phosphorus-based antioxidant includes, for example, a triisodecylphosphide, a phenyl diisononylphosphide, a diphenylisodecylphosphide, a triphenylphosphide, and a bis(2,4-di-tert-butylphenyl) Phosphide (made by Yadika Sitab 2112 Asahi Chemical Industry Co., Ltd.), ginseng (nonylphenyl) phosphide, dinonylphenyl bis(nonylphenyl) phosphide, 2,2 - Bis(4,6-di-t-butylphenyl)octylphosphide (made by Yadika Stabham HP-10 Asahi Chemical Industry Co., Ltd.), 4,4'-butylidene double (3-A) -6-tert-butylphenyl)becatrialkylphosphide, ginseng (2,4-di-t-butylphenyl)phosphide, ginseng (2,t-butyl-4-methylphenyl) Phosphate, ginseng (2,4-di-t-pentylphenyl)phosphide, ginseng (2,t-butylphenyl)phosphide, bis(2,t-butylphenyl)phenylphosphide, ginseng 2-(1,1-dimethylpropyl)phenyl]phosphide, ginseng [2,4-(1,1-dimethyl-44-1294894-propyl)phenyl]phosphide, ginseng (2- Cyclohexylphenyl) phosphide, ginseng (2, tert-butyl-4-phenylphenyl) phosphide, diisodecyl Pentaerythritol diphosphide, cyclopentane tetradecyl bis(octadecyl) phosphide (made by Yadika Statab PE to 8 Asahi Chemical Industry Co., Ltd.), cyclopentane tetradecyl double (2) , 4 - di-t-butylphenyl) phosphide (Yadika Stabbe PE to 24G Asahi Chemical Industry Co., Ltd.), cyclopentane tetradecyl bis (2, 6.2 tert-butyl) a phosphide of -4-methylphenyl) phosphide (made by Yadika Statab PE to 36 Asahi Denki Kogyo Co., Ltd.); triethylphosphine, tripropylphosphine, tributylphosphine, tricyclic Hexylphosphine, diphenylvinylphosphine, allyldiphenylphosphine, triphenylphosphine, methylphenyl-p-anisylphosphine, p-anisyldiphenylphosphine, p-tolyldiphenylphosphine, two -p-anisylphenylphosphine, di-p-tolylphenylphosphine, tri-m-aminophenylphosphine, tris-2,4-dimethylphenylphosphine, tris-2,4,6-trimethyl Phenylphosphine, tri-o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, tri-o-anisylphosphine, tri-p-anisylphosphine, 1,4-bis(diphenylphosphino) a phosphine compound such as butane or the like. Sulfur-based antioxidants such as dilauryl 3,3-sulfurized dipropionate, di(tridecyl) 3,3-sulfurized dipropionate, dipalmityl-2,2-sulfurized diacetate, Sulfurized C2, palmityl-3,3-sulfurized dipropionate, lauryl stearyl 3,3-sulfurized dipropionate, distearyl 3,3-sulfurized dipropionate. 4 carboxylic acid two C10. 20 alkyl ester; 3,9-bis(lauryl sulfide)-2,4,8,10-tetraoxide rotation [5, 5]undecane and the like. Hydroquinone antioxidants such as 2,5 · di-t-butylhydroquinone, 2,5-di-p-pentylhydroquinone, etc., porphyrin-based antioxidants such as 6 · ethoxy-2, 2, 4 - 3 Methyl-1,2-dihydroquinoline and the like. -45- 1294894 Remaining 2, instrument i page The light stabilizer contains a hindered amine light stabilizer (HALS), a quenching agent, and the like. Also, refer to the trade name listed in parentheses. A hindered amine light stabilizer (HALS) such as a tetramethylpiperidine which may have a substituent (for example, a methoxy-tetramethyl group such as 4-methoxy-2,2,6,6-tetramethylpiperidine or the like) Piperidine; 4-phenoxy-2,2,6,6-tetramethylpiperidine, etc. C 6. 1Q aryloxy-tetramethylpyrazine; 4·benzhydryloxy-2,2,6,6-tetramethylpiperidinyl C6·! Oxyl-tetramethyl sulfonium b, 4-methylpropenyloxy-2, 2, 6, 6 -tetramethylpiperidine (made by Yadika Stab LA-87 Asahi Chemical Industry Co., Ltd. , 4-methylpropoxy-N-methyl-2,2,6,6·tetramethylpiperidine (made by Yadika Stab LA-82 Asahi Chemical Co., Ltd.), etc. Methyl)propenyloxy-tetramethylpiperidine, etc., a substitutable alkanedicarboxylic acid dipiperidine ester [eg bis(2,2,6,6-tetramethyl-4-piperidinyl) Oxalate, bis(2,2,6,6-tetramethyl-4-piperidyl)adipate, bis(2,2,6,6-tetramethyl-4-piperidinyl) Azelaic acid ester (made by Yadika Stabs lA-77 Asahi Chemical Industry Co., Ltd.), bis(1,2,2,6,6-pentamethyl-4piperidinyl phthalate), double (N-methyl-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (manufactured by Salo LS_76 5 Sankyo Co., Ltd.), etc. c2 iq alkanedioic acid a tetraalkylpyridine dicarboxylic acid dicarboxylate (such as bis(2,2,6,6-tetramethyl-4-piperidyl)-p-citric acid (tetramethylsulfonium) Gy such as ester. Aromatic diacetyl bis(tetramethylene cyridyl) ester, etc., may have a substituted bis(piperidinyloxy)alkane [1,2 - bis (2,2,6,6 -tetrayl) One of tetrakis-piperidinyloxy)ethane (tetramethylpiperidinyloxy)C i ·4 alkane, etc.]; bis(piperidinyloxycarbonyl)hydroxyphenylalkane [eg 1- (3,5-di-tert-butyl-4-ylhydroxyphenylindole, b-bis(2,2,6,6-tetramethyl-4-fluorenyloxycarbonyl)pentane (Tinuvin 144 thousand) 46 - 1294894 \· -&gt;·&gt; Itchy Zhengyeye Machinery Co., Ltd.), etc. (tetramethylpiperidinyloxypyridinyl phenyl chain, etc.] 'tetramethylene acid to four tetrahydroquinone Alkyl esters [eg 1,2,3,4-butane ruthenium tetracarboxylate (2,2,6,6-tetramethyl-4piperidinyl) ester (Yadika Stabla la -5 7 Asahi Barium tetracarboxylate (tetramethylpiperacyl) ester, etc.; 1,2,3,4-butane tetracarboxylic acid bis(2,2,6,6·tetramethyl) -4 - pulsed U-based)-bis(dodecyl)ester (made by Yadika Stab LA0-67 Asahi Chemical Industry Co., Ltd.), 1,2,3,4·butane tetracarboxylic acid double ( N-methyl-2,2 , 6,6, tetramethyl-4-piperidinyl)-bis(tridecyl)ester (Adica Statab [A-62 Asahi Denki Kogyo Co., Ltd.), etc. Tetramethylpiperidinyl)-bis(dimercapto)ester], Ci_4 院院基双(四院基派哄酮) [1,1 -Extended ethyl bis (3,3,3 ',3 ', 5,5,5 ',5,-octamethylpiperidine·2,2'-dione) (Goodrite UV-3034 Goodrich Co., Ltd.), etc. (^"alkyl bis (tetramethylpiperidine) Ketone), etc., polymer HALS [eg Ch i ma ss 〇r b944LD (Chiba • Special Chemical Co., Ltd.), Tinuvin 622D (Chiba • Special Chemical Co., Ltd.), Yadika Stab LA-63 Asahi Denki Co., Ltd., Yadika Statab LA0-68 Asahi Chemical Industry Co., Ltd.], etc. Quenching agent such as nickel bis(octylphenyl) sulfide, [2, 2 ' - sulfurized bis(4th octyl benzoate)]-n-butylamine nickel, nickel complex-3, 5-dibutylbutyl-4-hydroxybenzyl-phosphate monoacetate, nickel Dibutyl sulfide carbonate, 1-phenyl-3-methyl-4 An organic nickel complex such as a nonazapyrazole acid or a nickel; an organic cobalt complex such as a cobalt dicyclohexyl disulfide phosphate; etc. These stabilizers may be used singly or in combination of two or more. The agent contains a phenolic antioxidant, a stabilizer having a base capture function from 1294894, such as HALS. Further, the stabilizer having a radical scavenging function can be used in combination with other stabilizers (e.g., a combination of a phenolic antioxidant and a sulfur-based antioxidant). The amount of the stabilizer used is, for example, 1 〇 0 parts by weight of the resin.  〇 1~2 parts by weight, preferably 0. 05 to 3 parts by weight, more preferably 0. 1 to 2 parts by weight (for example, 〇 · 1 to 1 part by weight). Further, when the amount of the stabilizer added is too large, the gelation of the sulfur-adding active agent can be suppressed, and the function of the sulfur-adding active agent cannot be effectively performed, and the adhesion to the rubber can be lowered. In addition, when a stabilizer (a phenol-based antioxidant, HALS, etc.) having a radical scavenging function is used in combination with other stabilizers (phosphorus-based antioxidants, sulfur-based antioxidants, etc.), the ratio of these stabilizers is the former/the latter (weight ratio) = 99/1 ~ 20 / 80 (for example 95/5~40 / 60). Further, the ratio of the sulfurizing active agent to the stabilizer may be selected depending on the type of the sulfurizing active agent or the stabilizer, the mixing kneading temperature, etc., the former/the latter (weight ratio) = 99/1 to 2 5 / 7 5 , preferably It is 98/2~3 5 / 65, and the better is 97/3 ~ 45/55 (for example, 97/3 ~ 60/40). [Vulcanization aid] The present invention may additionally use a vulcanization aid. The vulcanization aid may be added to the following unvulcanized rubber in the above composite, and is usually added to the resin composition in many cases. The vulcanization aid may be selected depending on the type of the resin, for example, the above-mentioned condensed thermoplastic resin oligo oligomer [for example, an oligomer having a number average molecular weight of 1 Å or less (for example, 100 to 100 Å), or a polyamine (for example). For example, (2) a polyamine or the like described in the polyester resin, a polyalcohol (for example, a polyalcohol described in the above (2) polyester resin), a polyvalent carboxylic acid or an anhydride thereof, and a plurality thereof An aldehyde group-48- 1294894 compound, an epoxy compound, a nitrogen-containing resin (amine resin, etc.), a compound having a trans-oxymethyl group, a polyisocyanate or the like. These sulfur additions may be used singly or in combination of two or more. A preferred vulcanization aid is a compound having an average of two or more active hydrogen atoms in the active atom represented by the above formula (1) and having a molecular weight of ruthenium, for example, an average number of the above condensed thermoplastic resins. An oligomer (for example, an oligomer of the above polyamine resin, an oligomer of a polyester resin, or the like), a polyamine or the like, or the like. The proportion of the vulcanization aid is, for example, 10 parts by weight of the resin. 1 part by weight, preferably 0. 5 to 20 parts by weight, more preferably 丨 15 , and the resin composition of the present invention further contains various additives, chelating agents or reinforcing agents, coloring agents, plasticizers, smoothing agents, flame retardant electrostatic agents and the like. The form of the above resin composition is not particularly limited, and may be in the form of a pellet or a pellet. As described above, the resin composition of the present invention is excellent in adhesion to rubber, and when a composite resin material which is directly bonded to the rubber as a constituent resin is used, the adhesion strength between the resin and the rubber can be remarkably improved. [Composite] The composite of the present invention can directly bond the above-mentioned resin composition and a vulcanized rubber formed by vulcanization with an unsulfurized rubber. For example, the resin composition comprising the resin composition and the composite directly bonded to the vulcanized rubber member, for example, (1) forming the methyl auxiliary agent by the resin composition by one or more sub-quantities The weight is, for example, a tree-like 1294894 grease component which is made of a body-shaped rubber element, a composite body directly bonded to a vulcanized rubber component composed of a vulcanized rubber, and (2) a resin phase composed of the above resin composition. A composite (or composite dispersion) directly bonded to a vulcanized rubber composed of a vulcanized rubber. [Rubber] The unvulcanized rubber which forms a vulcanized rubber by vulcanization in the above composite is various rubbers, for example, a diene rubber, an olefin rubber, an acrylic rubber, a fluorine rubber, a polyoxyalkylene rubber. , a urethane rubber, an epichloropyridine rubber (an additional epichloropyridine monomer C0, a copolymer of epichloropyridine and ethylene oxide ECO, a copolymer copolymerized with allyl epoxifene, etc.) , chloroformated polyethylene, propylene oxide rubber (GP0), ethylene-vinyl acetate copolymer (EAM), polyprocarbene rubber, and modified rubber (acid-modified rubber, etc.). When the resin is a resin composed of a vinyl cyanide compound (for example, (meth)acrylonitrile) (for example, an ABS resin), the rubber is usually a non-cyanide vinyl rubber. These rubbers may be used singly or in combination of two or more. Among these rubbers, a diene rubber, an olefin rubber, an acrylic rubber, a fluorine rubber, a polyoxyalkylene rubber, a urethane rubber or the like is generally used in practical use. A diene rubber such as a non-cyanide vinyl rubber [for example, natural rubber (NR), isoprene rubber (IR), isobutylene isoamene rubber (butene rubber) (IIR), butadiene rubber (BR), chlorine a polymer of a diene monomer such as a olefinene rubber (CR), a styrene butadiene rubber (SBR, for example, a random copolymer of styrene and butadiene, a styrene block and a butadiene block) a styrene-diene copolymer rubber such as styrene chloride pentene rubber (SCR) or styrene isoprene rubber (SIR), or a vinyl cyanide-based copolymer. 1294894 Rubber [eg acrylonitrile butadiene rubber (nitrile rubber) (NBR), nitrile chlorinated butadiene rubber (nitrile rubber) (NCR), nitrile isopentene rubber (NIR), acrylonitrile isopentenyl An acrylonitrile-diene copolymer rubber such as olefin rubber (NBIR). The diene rubber includes a hydrogenated rubber, for example, a hydrogenated nitrile rubber (HNBR). The olefin-based rubber is, for example, ethylene propylene rubber (EPM), ethylene propylene diene rubber (EPDM or the like), polyoctene rubber or the like. Acrylic rubbers include rubbers containing alkyl acrylate as a main component, such as copolymer ACM of acrylate ester and chlorine-containing crosslinkable monomer, copolymer ANM of alkyl acrylate and acrylonitrile, alkyl acrylate and carboxyl group-containing / or a copolymer of a monomer of an epoxy group, an ethylene acrylic rubber or the like. The fluorine-based rubber is a rubber having a fluorine-containing monomer, for example, a copolymer of vinylidene fluoride and perfluoropropane and a tetrafluoroethylene as required, a copolymer of tetrafluoroethylene and propylene, and a tetrafluoroethylene. Copolymer FFKM with perfluoromethyl vinyl ether. The polyoxyalkylene rubber (Q) is an organopolysiloxane having a unit of the formula: RaSiO (4_aW2), wherein R is, for example, a Cm such as a methyl group, an ethyl group, a propyl group or a butyl group. - a halogenated CV1 such as a propyl chloride or a 3,3,3-trifluoropropyl group (C2_1Q alkenyl group such as an alkyl group, a vinyl group, an allyl group or a butenyl group, a phenyl group, a tolyl group, a naphthyl group or the like) C6. C3 of 12 aryl, cyclopentyl, cyclohexyl, etc. C6 of IQ cycloalkyl, benzyl, phenethyl and the like. 12 aryl-alkyl and the like. Among them, the coefficient a is 1. 9~2. 1. Preferred R is methyl, phenyl, alkenyl (vinyl, etc.), fluorine C!.  6 alkyl. The molecular structure of the polyoxo rubber is, for example, generally linear, and may have a branched structure or a branched structure. The main chain of the polyoxyalkylene rubber is, for example, a di-5 1- 1294894 methyl polyoxyalkylene chain, a methyl vinyl polyoxyalkylene chain, a methylphenyl polyoxyalkylene chain, and the like. Copolymer chain [dimethyl methoxy oxane-methyl vinyl fluorene copolymer chain, dimethyl methoxy oxane - methyl phenyl siloxane copolymer chain, dimethyl methoxy oxane - methyl (3,3,3 -trifluoropropyl)oxyl copolymer chain, dimethyloxane-methylvinyloxirane-methylphenyloxime copolymer chain, etc. Both ends of the polyoxyalkylene rubber are, for example, a trimethylaxyl group, a dimethylvinyl formyl group, a stanol group, a tri-Ci 2 alkoxy group, and the like. The polyoxyalkylene rubber (Q) includes, for example, methyl polyoxyalkylene rubber (Mq), vinyl polyoxyalkylene rubber (VMQ), phenyl polyoxyalkylene rubber (PMQ), phenyl vinyl polyoxyl Alkane rubber (PVMQ), fluorinated polyoxyalkylene rubber (FVMQ), etc. In addition, 'polyoxane oxime rubber contains high temperature vulcanizable high temperature Vulcanizable solid rubber, room temperature vulcanizable RTV (Room Temperature Vulcanizable) or low temperature vulcanizable LTV (Low Temperature Vulcanizable) polyoxyalkylene rubber For example, it contains a rubber in the form of a liquid or a slurry. The urethane rubber (U) includes, for example, a polyester urethane elastomer, a polyether urethane elastomer, and the like. The modified rubber comprises a non-cyanide-based modified rubber (for example, carboxylated styrene butadiene rubber (X-SBR), carboxylated ethylene propylene rubber (x_ep(d)m)), and vinyl cyanide-modified rubber ( For example, a residual nitrile rubber (X _ NBR ) or the like has a thiol group or an acid anhydride group. Further, in the composite (2), a resin (or resin composition) or a rubber component can be used in a powdery form. The shape of the resin (or resin composition) or rubber powder -52 to 1294894 is not particularly limited, and examples thereof include an amorphous shape, a spherical shape, an elliptical shape, and a rod shape. The average particle size of the granules is, for example, 〇. 丨~8〇〇 _, preferably 0. 5~500μΐη, the best one is 〇. 8~3〇〇μπι. Further, the ratio of the above resin to the above rubber in the above composite (2) can be appropriately set within the range of characteristics having an effective composite dispersion, for example, a resin phase/sulfur rubber phase (weight ratio) = 90/1 〇 1 〇/9〇 (eg 9〇/1〇~ 30 / 70), preferably 7 5 / 2 5 ~ 2 5 / 7 5 (eg 75/25~50 / 50), the best is 60/40 ~40/60. [Vulcanizing agent] The vulcanizing agent not only vulcanizes (or crosslinks) the unvulcanized rubber, but also activates the resin depending on the kind of the resin or the vulcanizing agent (for example, the above-mentioned active atom is removed and radicalized) The resin is activated, and the crosslinkable group of the crosslinkable resin is activated. The adhesiveness between the resin and the rubber is improved, and the resin is bonded to the rubber. The vulcanizing agent may be a type of the above-mentioned resin or rubber, and a radical generating agent or sulfur may be used, and the above-mentioned radical generating agent such as an organic peroxide, an azo compound, or a sulfur-containing organic compound may be used. The sulfur-adding agents may be used singly or in combination of two or more. The vulcanizing agent may be added with at least one unsulfurized rubber and resin, or two components may be added. Organic peroxides such as dioxonium peroxides (laurel-based peroxide, benzhydryl peroxide, 4-benzyl benzhydryl peroxide, 2,4-dichlorobenzylidene) Oxide, etc.), dialkyl peroxides (di-t-butyl peroxide, 2,5-di(t-butylperoxy)-2,5-dimethylhexane, 1, bu-double ( Tert-butylperoxybu-3,3,5-trimethylcyclohexane, etc.), peroxyester-53- 1294894 (tert-butyl peracetate, tert-butyl permethylacetate, etc.) The azo compound includes azoisobutyronitrile, etc. The sulfur-containing organic compound includes an amine scorpion (tetramethylamine sulphate monosulfide (TMTM), tetramethylamine sulphur disulfide (TMTD), Tetraethylamine deuterated disulfide (TETD), tetrabutylamine depleted disulfide (TBTD), diammonium methylamine depleted tetrasulfide (DPTT), morpholine disulfide, alkylphenol Sulfur, etc., etc. Sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, etc. Further, sulfur contains sulfur chloride such as sulfur monochloride or sulfur dichloride. versus When bonding, it is also possible to use a photopolymerization initiator as a radical generator during light irradiation. A photopolymerization initiator such as benzophenone or a derivative thereof (3,3'-dimethyl-4-methoxy group) Benzophenone, 4,4-dimethoxybenzophenone, etc., alkyl benzophenone or a derivative thereof (acetophenone, diethoxy phthalic acid, 2-hydroxymethyl-2-methyl- 1-phenylpropene-1-reparent, benzyl dimethyl acetal, 1-hydroxycyclohexyl benzophenone, 2-benzyl-2-aminomethyl-1-(morpholinylphenyl) )-butanone, etc., hydrazine or its derivatives (2-methylhydrazine, etc.), thioxanthone or its derivatives (2-thiothioxanthone chloride, alkylthioxanthone, etc.), benzene An ether or a derivative thereof (such as a benzene or a benzene alkyl ether), a phosphine oxide or a derivative thereof, etc. Further, the radical generator includes a persulfate (ammonium persulfate, potassium persulfate, etc.). The preferred vulcanizing agent is an organic peroxide. The vulcanizing agent is preferably at least containing unvulcanized rubber, usually mostly unvulcanized rubber. The proportion of the vulcanizing agent is, for example, 100 parts by weight of unsulphurized rubber. And/or resin selected from 0. 1 to 15 parts by weight, usually 0. 1 to 10 parts by weight, preferably 0. 1 to 8 parts by weight (e.g., 1 to 7 parts by weight). -54 - 1294894 [Chane coupling agent] The present invention may contain a decane coupling agent when the adhesion between the resin and the vulcanized rubber can be improved. The decane coupling agent may be added with at least one unsulfurized rubber (or unvulcanized rubber composition) and a resin (or resin composition), or both components may be added. The decane coupling agent includes a compound having a reactive group (e.g., a hydroxyl group, an alkoxy group, a vinyl group, an amine group, an epoxy group, a decyl group, a carboxyl group, an isohydroester group, a (meth) acryl group, etc.). For example, an alkoxy decane (for example, a tetra-oxyalkyl decane such as trimethoxy decane or triethoxy decane, such as tri-c- 4 alkoxy decane, tetramethoxy decane or tetraethoxy decane); Alkoxy decane (vinyl trimethoxy decane, vinyl triethoxy decane, etc. vinyl three 1. 4-alkoxydecane); alkoxydecane having an amine group (for example, 2-aminoethyltrimethoxydecane, 2-aminoethyltriethoxydecane, 3-aminopropyltriethoxylate) Amino C 2_4 alkyl di C, such as decane, such as an amine C 2_4 alkyl tri-Ci_4 alkoxy decane, 3-aminopropyl methyl dimethoxy decane, 3-aminopropyl methyl ethoxy decane _ 4 院电砂砂院··, an alkoxy decane having an epoxy group (for example, a glycidoxy C2 such as 3-glycidoxypropyltrimethoxydecane. 4 three. _4 alkoxydecane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, etc. (epoxycycloalkyl)C2. 4 alkyl triple C 1. 4 alkoxy decane); alkoxy decane having a mercapto group (for example, a fluorenyl group such as 3-mercaptopropyltrimethoxydecane). 4-alkyltri-C^4 alkoxydecane, 3-mercaptopropylmethyldi- 5 5 - 1294894 methoxy decane, etc. 4 alkyl two C!. 4 alkoxy decane); alkoxy decane having a carboxyl group (for example, carboxymethyltrimethoxydecane, carboxymethyltriethoxydecane, carboxyethyltrimethoxydecane, carboxypropyldimethoxysilane) Wait for the base C!.  4 院基二[^4院氧砂院); alkoxy decane having an isocyanate group (e.g., isocyanate ethyltrimethoxydecane, isocyanate ethyltriethoxydecane, isocyanate propyltrimethoxydecane, etc.) Isocyanate Ch4 alkyltrialkoxydecane); alkoxydecane having (meth)acrylinyl group (for example, N-(3-(methyl)propenyloxy-2-hydroxypropyl)-3-amine Propyl triethoxy decane, 3-(methyl)propenyloxypropyl monomethyl methoxy 5, 3-(methyl) propylene methoxy propyl dimethyl ethoxy Decane, 3-(methyl)propanyloxypropylmethyldiethoxydecane), and the like. The amount of the decane coupling agent used is usually such that the amount of the resin bonded to the rubber is, for example, 1 to 1 part by weight of the rubber or resin, and may be selected from 1 to 1 part by weight of the decane coupling agent, preferably 2 to 8 parts by weight. More preferably, it is 2 to 6 parts by weight. [Other Additives] The above rubber (or rubber composition) may be blended with various additives such as a sulfurizing active agent (such as a sulfurizing active agent described in the above resin composition), a chelating agent, a plasticizer or a softening agent. a vulcanizing agent (such as a metal oxide such as zinc oxide), an antioxidant (a heat-resistant aging agent, an anti-ozone deterioration agent, the above-mentioned antioxidant, the above-mentioned ruthenium absorbing agent, etc.), a binder, a processing aid, and a smoothing agent ( Stearic acid, metal stearate, paraffin, etc.), coloring agents, foaming agents, dispersing agents, flame retardants, antistatic agents, and the like. a 5 6 - 1294894 Moreover, most of the rubber does not contain a sulfur-containing active agent (for example, a bisphenol-based sulfur-adding active agent such as a di(meth)acrylate of a c2_3 alkylene oxide adduct of bisphenol A, Malay醯imine-based sulphur active agent, etc.). The above-mentioned sputum agent (or reinforcing agent) includes, for example, a powdery granule filler or a reinforcing agent (mica, clay, talc, decanoic acid, cerium oxide, calcium carbonate, magnesium carbonate, carbon black, pure iron particles, etc.), fiber A medicinal agent or a reinforcing agent (organic fiber such as Thunder, Nylon, and aromatic polyamine, inorganic fiber such as carbon fiber or glass fiber). When the rubber is a polyoxyalkylene rubber, the most general chelating agent added as a reinforcing agent is cerium oxide powder. Generally, the cerium oxide powder used in the polyoxyalkylene rubber is classified into wet cerium oxide produced by wet method and dry cerium oxide manufactured by dry type. The cerium oxide powder suitable for the polyoxyalkylene rubber is dry cerium oxide, and when the dry cerium oxide is used, the high bonding strength between the resin component and the rubber component can be easily obtained. In the case of wet ruthenium dioxide, the moisture contained in the ruthenium dioxide powder is a crosslink between the resin component and the rubber component. However, even wet cerium oxide is not only a fatal resistance to the adhesion of rubber parts and resin parts, but also depending on the resin used or the type of polyoxyalkylene rubber used, the type of sulphur active agent or its use, forming conditions. Wet ceria can be used as the case may be. Dry cerium oxide and wet cerium oxide can be used in combination. The plasticizer can be imparted to the rubber composition, and is not particularly limited, and a general softener (vegetable oil such as linoleic acid, oleic acid, castor oil, palm oil, etc.; stone enamel, engineering oil, supplement, etc.) can be used. Mineral oil, etc.), plasticizer (phthalic acid ester, aliphatic dicarboxylic acid ester, sulfur-containing plasticizer, polyester-57- 1294894 polymer plasticizer, etc.). The amount of the sulfur-containing active agent used is, for example, 〇1 to 10 parts by weight, preferably 0 to 8 parts by weight, and most preferably 〇 to 5 parts by weight, per 100 parts by weight of the rubber. The content of the ruthenium is, for example, 〇 to 300 parts by weight, preferably 0 to 20 parts by weight, more preferably 0 to 1 〇 〇 by weight, per 100 parts by weight of the rubber. The content of the plasticizer or softener is, for example, 〇 to 200 parts by weight, preferably 0 to 150 parts by weight, more preferably 〇 to 120 parts by weight, per 100 parts by weight of the rubber. In addition, the content of the co-sulfurizing agent, the anti-aging agent, the processing agent or the smoothing agent, the coloring agent and the like may be an effective amount, for example, the content of the co-sulfurizing agent is 0 to 20 parts by weight for 1 part by weight of the rubber. Preferably, it is 0. 5 to 15 parts by weight, more preferably 1 to 10 parts by weight. Further, the continuous phase (or the matrix phase) constituting the composite dispersion in the above composite dispersion (2) may be formed of either a resin or a rubber. The composite dispersion has, for example, (2a) a composite phase composed of a continuous phase composed of a rubber phase and a dispersed phase composed of a resin phase, (2b) a continuous phase composed of a resin phase, and a dispersed phase composed of a rubber phase. Composite dispersions, etc. The form of the above (2 a ) may produce characteristics (elasticity, cushioning property, flexibility, etc.) of the vulcanized rubber, and may impart properties (for example, smoothness, abrasion resistance, etc.) to the resin, and the form of the above (2b) may produce a resin. Characteristics (mechanical properties such as rigidity and toughness), and characteristics of the vulcanized rubber (slip resistance against friction, adhesion to a target material, etc.). Further, the composite dispersion (2) may have a sea-island structure in which dispersed phases are independently dispersed in a continuous phase, and the shape of the dispersed phase may be a particle shape, an elliptical shape, a rod shape, a fiber shape or the like. The preferred shape of the dispersed phase is spherical, and the -58 to 1294894 dispersed phase is preferably dispersed uniformly in the continuous phase. Further, the average particle diameter of the dispersed phase may be such that it has a property of forming a dispersed phase, for example, ruthenium. 丨~ ΙΟΟΟμηι, preferably 1 to 75 μm, and more preferably 1 to 500 μm (for example, 50 to 1 50 μm). Further, when crosslinked or hardened particles are used as the rubber, the average particle diameter of the above dispersed phase corresponds to the average particle diameter of the crosslinked or hardened particles. Further, the composite dispersion (2) can bond the resin phase to the rubber in a state where the dispersed phase particles are partially exposed on the surface. For example, when the resin phase is a dispersed phase particle, it has a rubber property of a continuous phase (e.g., high flexibility and cushioning property), and has a resin property (e.g., a low friction coefficient) on the surface. Further, the composite of the present invention can be a composite of the composite dispersion (2) and other molded bodies (e.g., a resin molded body, a vulcanized rubber molded body, etc.) bonded to a contact surface. [Method for Producing Resin Composition] The resin composition of the present invention can be produced by mixing (particularly kneading) a resin with a vulcanization active agent and a stabilizer. The kneading is carried out using a general kneading machine (e.g., an extruder, a kneader, a Banbury mixer, etc.). Further, the kneading may be carried out first, and then the mixing treatment may be carried out by a general mixer (manual mixer, tumbler mixer, ribbon blender, etc.). The kneading temperature may be selected depending on the kind of the resin, so that the resin can be at a meltable temperature, for example, 1 20 to 40 CTC, preferably 1 30 to 3 50 ° C, and most preferably 1 50 to 300 ° C. C. When the present invention contains a stabilizer, it can be a kneading temperature at which the sulfur-adding active agent crosslinks itself, does not inactivate the sulfur-adding active agent, and can knead the resin with the sulfur-containing active agent. [Method for Producing Complex] 59- 1294894 The method for producing a composite can be distinguished by the form of the composite (complex (1), composite (2)). (i) in the production of the composite (1), the resin composition (resin composition composed of a resin and a vulcanization active agent and a stabilizer) and a vulcanizing agent (particularly a radical generator) are not provided. The vulcanized rubber is contacted and molded to produce a composite (1) in which a resin component composed of the above resin composition is bonded to a rubber component composed of a vulcanized rubber. The composite can be produced by forming a molded resin material in contact with a shaped rubber material and vulcanizing or cross-linking the above-mentioned formed rubber material. Further, the molded resin material may be the above resin composition, or may be a resin component (or a resin molded body) obtained by molding the above resin composition in advance. Further, the above-mentioned molded rubber material is active in a vulcanizing agent in contact with the molded resin material, and contains at least a rubber which is not vulcanized, and is not particularly limited, and may be a non-sulfurized rubber composition or a part. A vulcanized or crosslinked rubber preparation body or the like. In other words, the resin composition may be formed in contact with an unvulcanized rubber composition composed of an unsulfurized rubber and a vulcanizing agent (or an unvulcanized rubber composition further containing the above-described vulcanizing active agent) The vulcanized rubber composition is vulcanized or crosslinked to produce a composite in which the resin part and the rubber part are bonded. Further, only the vulcanizing agent may be active, and at least one of the resin member (or the resin molded body) and the rubber member (rubber molded body) may be previously formed. For example, (a) a resin member composed of the above resin composition is brought into contact with an unsulfurized rubber composition, and an unsulfurized rubber composition is formed and vulcanized or crosslinked to produce a composite. (b) A composite body can be produced by contacting the above-mentioned resin composition on a rubber preparation molded body prepared by vulcanization or cross-linking of a rubber composition to form a composite of the resin composition -60-1294894, (C) The resin component _h composed of the above resin composition is brought into contact with a rubber preparation molded body in which the rubber composition is vulcanized or crosslinked to produce a composite. Further, the rubber-prepared molded body may be any rubber-prepared molded body in which a vulcanizing agent remains, as long as it is active at least on the contact surface with the molded resin material. More specifically, the method of the present invention comprises forming each of the above resin composition and the unsulfurized rubber composition, and bringing the resin composition into contact with the unsulfurized rubber composition during the forming process, and joining the resin parts. a method of bonding or bonding a sulfur rubber component (one-stage method); contacting a resin component previously formed of the above resin composition with an unsulfurized rubber composition, forming an unsulfurized rubber composition, and vulcanizing or crosslinking to cause a resin a method of bonding or bonding a part to a vulcanized rubber part (two-stage method); preparing a resin part previously formed of the above resin composition, and a rubber preparation of an unsulfurized rubber composition until midway and forming (partially vulcanized or crosslinked) A method in which a molded body is brought into contact with a rubber-prepared molded body by adding sulfur or cross-linking to bond or bond the resin component to the vulcanized rubber component (three-stage method). The preferred method includes a one-stage method and a two-stage method (especially a two-stage method). In the one-stage method, for example, a general multicolor molding machine (multicolor injection α-opening machine 'multilayer extruder, etc.) can be used to make the resin The composition and the unsulfurized rubber composition are each melt-kneaded and extruded or extruded into a forming mold of a predetermined shape, and the composite rubber is formed by vulcanization or cross-linking after forming or forming. Molded body). Further, a resin composition and an unsulfurized rubber composition may be mixed in the contact interface between the resin composition and the unsulfurized rubber group. -61- 1294894 In addition, in the two-stage method, a general molding machine (injection molding machine, extrusion molding machine, hot press molding machine, etc.) can be used for molding a resin part, and a general molding machine can be used for molding a rubber part. (Injection molding machine, press molding machine, transformation molding machine, extrusion molding machine, etc.). For example, a mold (or a cavity) corresponding to the shape of the composite accommodates a resin component, and the unsulphurized rubber composition is injected or extruded to the resin component by sulfurizing or crosslinking the unsulfurized rubber composition. , the vulcanized rubber parts can be bonded to the resin parts. Further, when the composite is a plate-like or sheet-like member having a wide width of a second element, it is possible to laminate a plate-like or sheet-like unsulfurized rubber composition to the resin member without using the above-described mold (or a cavity). The composite is produced by vulcanization or crosslinking. Further, when the resin component (or the resin composition) is brought into contact with the unsulfurized rubber composition (such as adhesion), the volatile component or the gas component in the unsulfurized rubber composition can be removed by hot pressing or injection. The pressure may be suitably formed by press molding or the like under pressure in a reduced pressure atmosphere. The vulcanization or crosslinking temperature (or the bonding temperature of the rubber part to the resin part) is, for example, selected from the group consisting of 70 to 250 ° C, preferably 100 to 230. The optimum is 150 to 220 ° C. The pressure acting between the rubber/resin is selected, for example, from hydrazine.  ~ 3 5 0 MPa, preferably 1 to 150 MPa, and most preferably 2 to 100 MPa. Further, at least one of the components in the production of the composite is selected from the components of the unsulfurized rubber and the resin composition, and may contain the above-mentioned vulcanization aid (for example, the above polyamine). Usually, a vulcanization aid is often added to the resin composition. Further, after the surface of the resin component on which the resin composition is formed is treated with a solvent capable of dissolving or swelling the resin component (by coating, dipping, etc.), the treated surface of the resin component may be composed of unsulfurized rubber. Effective -62- 1294894 Ground contact. The solvent may be appropriately selected from the group consisting of hydrocarbons (aliphatic hydrocarbons such as hexanol or octane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene and xylene), and the like. Alcohols (alcohols such as isopropanol, butanol or cyclohexanol, halogenated alkanols such as tetrafluoroethanol and hexafluoroisopropanol), phenols (benzoquinone, formazan, etc.), organic acids (formic acid, Acetic acid, trifluoroacetic acid, trichloroacetic acid, etc.), esters (ethyl acetate, butyl acetate, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), ethers (dioxane, Diethyl ether, tetrahydrofuran, etc.), flavonoids (dimethyl hydrazine, etc.), guanamines (dimethylformamide, dimethylacetamide, etc.) or a mixed solvent of these. For example, when the resin is a polyamide resin, benzene (phenol, cresol, etc.), organic acid (formic acid, etc.), ketones (hexafluoroacetone, etc.), alcohols (six) can be used on the contact surface with the rubber parts. Fluoroisopropanol or the like is mixed or coated alone or in combination with a general organic solvent. Further, when the resin is a polyphenylene ether resin, a solvent or a swelling agent such as a hydrocarbon (such as toluene), a ketone (such as acetone, methyl ethyl ketone or hexafluoroacetone), an ether (such as tetrahydrofuran), or a hydrazine. An amine (such as dimethylformamide) or an alcohol (such as hexafluoroisopropanol). Further, after the treatment with the above solvent, the solvent is removed from the resin part by washing, drying, etc., by making the above resin parts. The contact between the surface and the unsulfurized rubber composition allows the vulcanized rubber parts to be firmly bonded to the resin parts. (11) In the production of the composite (or composite dispersion) (2), the resin composition can be produced by kneading and molding the rubber composition. Moreover, the rubber may be an unvulcanized rubber (especially an unvulcanized rubber containing a vulcanizing agent) or a vulcanized rubber. The vulcanization or cross-linking of any 'un-vulcanized rubber may be in the appropriate step 63- 1294894, For example, it is carried out in a forming process, a post-forming process, and the like. Further, at least one of the vulcanized rubber phase and the resin phase (particularly a vulcanized rubber phase) may be formed of a composition containing a vulcanizing agent (particularly a radical generating agent), and the vulcanized rubber phase may contain a composition of a vulcanizing active agent. Object formation. Further, the sulfurizing agent and/or the sulfurizing active agent may be added to the rubber in advance or may be added in the kneading process. More specifically, the composite (2) of the present invention can be formed into a predetermined shape by kneading the above resin composition with an unsulfurized rubber (particularly, an unvulcanized rubber composition containing a sulfurizing agent). The vulcanized rubber is produced by adding sulfur or cross-linking after the forming process or after forming. Further, the composite dispersion (2) of the present invention can be obtained by kneading the above resin composition and a vulcanized rubber (sulfurized rubber composition) to form a predetermined shape. In this method, in general, the sulfur-added rubber may be in the form of a powder or granule which is vulcanized by a method such as pre-freezing and pulverization, or a polymerization method using a sulfurizing agent. Kneading can be carried out using a conventional kneader (for example, an extruder or the like). Further, when the thermosetting resin or a composition thereof is kneaded with an unsulfurized rubber or a vulcanized rubber, it is usually kneaded in a non-hardened state in the thermosetting resin. Further, the kneading of the unsulfurized rubber is carried out except that the dispersed phase is formed by the vulcanized rubber phase, and usually the rubber is carried out in an unsulfurized state. The forming method is, for example, extrusion molding, injection molding, flow molding, or the like, and extrusion molding or injection molding is usually used. The shape of the molded article is not particularly limited, and may be a plate shape, a sheet shape, a tubular shape or the like. Further, the 'forming temperature is appropriately set depending on the raw materials used (for example, resin and rubber)', for example, 50 to 300 T: preferably 75 to 250 ° C, and most preferably 100 to 22 5 ° C. (eg 150 _ 6 4 - 1294894 ~ 2 Ο 0 〇 C ). The composite dispersion can be obtained by subjecting the shaped article to vulcanization or crosslinking by a forming process or after forming. The vulcanization can be carried out under a reduced pressure atmosphere, generally under normal pressure. Further, the vulcanization or crosslinking temperature is, for example, selected from the range of 70 to 2 50 ° C, preferably 100 to 230 ° C, and most preferably 150 to 220 ° C. Further, at least one of the components of the composite (2) is selected from the group consisting of unsulphurized rubber and a resin composition, and may contain the above-mentioned vulcanization aid (e.g., the above polyamine). Usually, a vulcanization aid is often added to the resin composition. In the present invention, since the combination of the sulfur-adding active agent and the stabilizer constitutes a resin composition, the resin can be surely and firmly bonded to a wide range of rubber without using a binder. Further, by using the above resin composition as a resin material, it is possible to stabilize the rubber and industrially manufacture a composite of a resin and a rubber in which the resin is reliably and strongly bonded. Industrial use price 复合 The composite system thus obtained adheres rubber and resin with high strength by vulcanization. Therefore, it has the characteristics of an effective thermoplastic resin and the characteristics of rubber, and can be utilized as various applications, such as automotive parts (vibration absorption brushes, spring plates, door lock parts, heat sinks, etc.), anti-vibration rubber, valves, electrical plugs, and the like. Various parts. [Embodiment] [Embodiment] The present invention will be more specifically described by the following examples, but the present invention is not limited by the embodiments. Further, in the examples and the comparative examples, the following resin composition and rubber composition were used in -65 to 1294894. Resin A 1 to A 3 Polyamide 6 1 2 (polycondensation product of hexamethyldiamine and dodecanedicarboxylic acid) was produced as a thermoplastic resin, and the following resin or resin composition (A 1 to A3 ) was prepared. Moreover, the calculation of M0PACPM3 is performed based on the following basic units.

随厂(CH2) 6-NH-C ( = 0) - (CH2) 1(rC (=0) -0H 樹脂(A 1 ): A1之調製:使六甲二胺與十二烷二羧酸之鹽80重量% 水溶液在氮氣取代的壓熱鍋中、加壓(1 7 . 5kg / cm2( 1 7 1 5MPa )) 下加熱( 220°C ),使氮氣氣體與系內之水分同時以4小時排 出至系外。然後,以1小時徐徐昇溫(2 7 5 °C )使水分殘渣排 出至系外後,使壓熱鍋之內壓回復至常壓。冷卻後製得聚 醯胺612。所得聚合物之數量平均分子量(Μη)爲20000〜 2 5 000,胺基末端與羧基末端之比例大約爲丨/丨,以加硫劑 作爲自由基發生劑時軌道相互作用能量係數S爲0 . 006以 上之活性氫數目於一分子中爲4個。該聚合物單獨作爲樹 脂(A 1 )。 樹脂(A2): 樹脂(A2 )之調製:使上述樹脂(a 1 )、與下述樹脂(A3 ) 以1/1之重量比例、以2軸擠壓機捏合,製得數量平均分 子量(Μη)爲22000、胺基末端與羧基末端之比例大約爲3/7 之聚醯胺6 1 2。所得聚合物中以加硫劑作爲自由基發生劑時 之軌道相互作用能量係數S爲〇 · 〇 〇 6以上之活性氫原子於 一'分子中爲2.4個。g亥聚合作爲樹脂(Α2)。 1294894 樹脂(A 3 )= 樹脂(A 3 )之調製:在六甲二胺與十二烷二羧酸之鹽8 〇 重量%水溶液中添加所定量十二院二殘酸,在氮氣取代的壓 熱鍋中、加壓(17 . 5kg/cm2( i7i5MPa))下加熱( 220°C ),使氮 氣氣體與系內之水分同時以4小時排出至系外。然後,以1 小時徐徐昇溫(2 7 5 °C )使水分殘渣排出至系外後,使壓熱鍋 之內壓回復至常壓。冷卻後製得聚醯胺6丨2。所得聚合物之 數量平均分子量(Μη)約爲20000,胺基末端與羧基末端之比 例大約爲1 / 9,以加硫劑作爲自由基發生劑時軌道相互作用 能量係數S爲0.006以上之活性氫數目於一分子中爲0.8 個。該聚合物單獨作爲樹脂(A3 )。 樹脂(Β ) 製造聚醯胺6作爲熱塑性樹脂。而且,MOPACPM3之計 算以下述基本單位爲基準進行。 題2-(CH2) 5-C (=0) -ΝΗ- (CH2) 5-c (=0) -0Η 樹脂B之調製:使ε -己內醯胺之鹽8 0重量%水溶液、 在少量磷酸存在下在氮氣取代的壓熱鍋中加熱至25(rc〜 260C’使氣热氣體與系內之水分问時以4小時排出至系外。 然後,以1小時徐徐昇溫(27 5 °C )使水分殘渣排出至系外後, 冷卻後製得聚醯胺6。所得聚合物之數量平均分子量(Μη )爲 2 0 0 0 0〜2 5 0 0 〇,胺基末端與羧基末端之比例大約爲1 / 1,以 加硫劑作爲自由基發生劑時軌道相互作用能量係數S爲 〇 . 〇 〇 6以上之活性氫數目於一分子中爲4個。該聚合物單獨 作爲樹脂(Β )。 1294894 樹脂(c) 調製聚對酞酸丁二酯作爲熱塑性樹脂。而且,MOPACPM3 之計算以下述基本單位爲基準進行。 H〇-(CH2)4 -〇-C(=〇)With the factory (CH2) 6-NH-C ( = 0) - (CH2) 1 (rC (=0) -0H Resin (A 1 ): Modulation of A1: salt of hexamethyldiamine and dodecanedicarboxylic acid 80% by weight of the aqueous solution was heated (220 ° C) in a nitrogen-substituted autoclave under pressure (17.5 kg / cm2 (1 7 15 MPa)), so that the nitrogen gas and the moisture in the system were simultaneously discharged in 4 hours. Then, after the water residue was discharged to the outside of the system by heating for 1 hour (2 7 5 ° C), the internal pressure of the autoclave was returned to normal pressure. After cooling, polyamide 612 was obtained. The number average molecular weight (Μη) of the substance is 20,000 to 25,000, the ratio of the terminal of the amine group to the terminal of the carboxyl group is about 丨/丨, and the energy coefficient S of the orbital interaction when the sulfurizing agent is used as the radical generating agent is 0. 006 or more. The number of active hydrogens is four in one molecule. The polymer is used alone as the resin (A 1 ). Resin (A2): Modification of the resin (A2): the above resin (a 1 ), and the following resin (A3) The mixture was kneaded by a 2-axis extruder at a weight ratio of 1/1 to obtain a polyanthracene having a number average molecular weight (?η) of 22,000 and an amine terminal to carboxyl terminal ratio of about 3/7. Amine 6 1 2 . The orbital interaction energy coefficient S when the sulfur-adding agent is used as a radical generating agent in the obtained polymer is 2.4 活性·〇〇6 or more of the active hydrogen atom in a 'molecule. Resin (Α2). 1294894 Resin (A 3 ) = Resin (A 3 ) Modification: Adding the quantified 12-dose di-residue acid to an 8 〇 wt% aqueous solution of hexamethyldiamine and dodecanedicarboxylic acid salt, In a nitrogen-substituted autoclave, pressurize (17. 5kg/cm2 (i7i5MPa)) and heat (220 °C), so that the nitrogen gas and the moisture in the system are discharged to the outside of the system at the same time for 4 hours. Then, for 1 hour. After heating (2 7 5 °C), the water residue is discharged to the outside of the system, and the internal pressure of the autoclave is returned to normal pressure. After cooling, the polyamine 6丨2 is obtained. The number average molecular weight of the obtained polymer (Μη) The ratio of the amino group terminal to the carboxyl group terminal is about 1 / 9, and the number of active hydrogen having an orbital interaction energy coefficient S of 0.006 or more in the case of a sulfurizing agent as a radical generating agent is 0.8 in one molecule. This polymer is used alone as the resin (A3). Resin (Β) Manufacture of polyamine 6 as Plastic resin. Moreover, the calculation of MOPACPM3 is based on the following basic units: Problem 2-(CH2) 5-C (=0) -ΝΗ- (CH2) 5-c (=0) -0Η Modification of Resin B: 8-caprolactam salt 80% by weight aqueous solution, in the presence of a small amount of phosphoric acid in a nitrogen-substituted autoclave heated to 25 (rc ~ 260C' so that the gas hot gas and the moisture in the system is discharged in 4 hours Out of the system. Then, the water residue was discharged to the outside of the system by heating at a temperature of 1 hour (27 5 ° C), and after cooling, the polyamide 6 was obtained. The number average molecular weight (?η) of the obtained polymer is from 2,000 to 2,500 Å, and the ratio of the terminal of the amine group to the terminal of the carboxy group is about 1/3. The orbital interaction when the sulfur-adding agent acts as a radical generator The energy coefficient S is 〇. The number of active hydrogens above 〇〇6 is four in one molecule. This polymer is used alone as a resin (Β). 1294894 Resin (c) Polybutylene terephthalate is prepared as a thermoplastic resin. Moreover, the calculation of MOPACPM3 is based on the following basic units. H〇-(CH2)4 -〇-C(=〇)

C(=0)-0H 樹脂C之調製:在8 8 3 g蒸餾精製的二甲基對酞酸酯及 8 1 9g 丁二醇中加入1 . 82g醋酸鈣、3 . 64g氧化銻,具有攪 拌機、氮氣導入管、蒸餾用側管,且置於連接於真空系之 聚合管。使該聚合管藉由油浴加熱至1 8 〇它,慢慢地通過氮 氣氣體。餾出的甲醇量到達理論値時開始攪拌,徐徐地使 系內之溫度提高至2 5 0〜2 6 0 °C,同時使真空度徐徐提高到 達lOOPa以下。使生成的丁二醇各少量餾出且進行縮合反 應2〜3小時,測定適當四氯乙烷/苯酚二4〇/6〇之混合溶劑 中之相對粘度,在數量平均分子量到達丨〇 〇 〇 〇時使反應終 了。以所得聚合物中之加硫劑作爲自由基發生劑時軌道相 互作用能量係數S爲0.006以上之活性氫數目於一分子中 爲〇個。該聚合物單獨作爲樹脂(C )。 樹脂(D) 將聚苯硫醚(聚塑膠股份有限公司製,氟多隆〇22〇A9) 作爲樹脂(D )。加硫劑作爲自由基發生劑時,每1分子的活 性硫原子數爲2以上,而且,M0PACPM3之計算以下述基本 單位爲基準進行。 r * C l - C6H4- S - C6H,4-S - - C 1 樹脂(Ε ) 68 1294894 調製脂環族聚醯胺[雙(4 -胺基環己基)甲烷]、與十二 烷=殘酸之聚縮合物作爲熱塑性樹脂。而且,m〇PACPM3之 計算以下述基本單位爲基準進行。 h2n—&lt;^^-ch2—^^nh-(c=〇)-(ch2)10-c(=〇)-〇h 樹脂E之調製:除組合單體作爲雙(4 -胺基環己基)甲 烷與十二烷二羧酸外,以與上述樹脂(A 1 )相同的調製方法 製得數量平均分子量(Μη)爲20000〜2 5 000、胺基末端與羧 基末端之比例大約爲1 / 1之聚合物。以加硫劑作爲自由基 發生劑時軌道相互作用能量係數S爲0.006以上之活性氫 &gt; 數目於一分子中爲3個。該聚,合物單獨作爲樹脂(Β)。 [未加硫橡膠組成物(R )]:: 以所定比例配合下述成分,且調製未加硫橡膠組成物 (R 1 〜R 2 ) 〇 橡膠組成物(R 1 ) (i)乙烯丙烯二烯橡膠(DSM股份有限公司製「肯魯塔509 X 100」) 100重量份 (1 1 )自由基發生劑[有機過氧化物(二枯基過氧化物)] 5 . 5重量份 (i i i )塡充物(旭碳黑股份有限公司製 「N582」) 1重量份 (1 v )可塑劑(出光興產股份有限公司製 「賴亞那布工程 油N S 1 0 0」) 5重量份 (v )氧化鋅 3重量份 -69- 1294894 (V i )硬脂酸 1重量份 橡膠組成物(R2) (i )乙烯基聚矽氧烷橡膠(東雷賴烏克尼古股份有限公司 製 「聚矽氧烷膠SH851」) 100重量份 (i 1 )自由基發生劑[有機過氧化物](二枯基過氧化物) 1 . 0重量份 [試驗法] (凝膠之發生試驗) 在上述樹脂中以表1所示比例添加加硫活性劑(TR I Μ : 三羥甲基丙烷三甲基丙烯酸酯)及安定劑[Ν,Ν,-六伸甲基雙 (3,5 - 一第二丁基-4 -經基-氫化肉桂基酸胺)(衣魯卡羅克斯 (I r g a η ο X ) 1 0 9 8千葉機械股份有限公司製)],熔融捏合且 (溫度條件··樹脂Α1〜A3、樹脂Β及樹脂C在260°C、樹脂 D在3 00 °C、樹脂E在2 80°C )觀察自模具擠壓的單絲狀態, 以下述所示方法評估。 X : 在模具部會有單絲左右上下跳動情形,且以引取 機引取的單絲表面上會有粗澀的感觸,產生多數突起 △:在模具部沒有單絲跳動情形,惟在引取機引取的 單絲表面上有突起的感觸 〇:在模具部沒有單絲跳動情形,在引取機引取的單 絲表面上沒有突起的感觸 (黏合試驗) 在上述樹脂中以表1所示比例添加加硫活性劑(TR I Μ : 三甲基纖維素丙烷三甲基丙烯酸酯)及安定劑(Ν,Ν,-六伸甲 -70- 1294894 基雙(3 , 5 -二-第3 - 丁基-4 -羥基-氫化肉桂醯胺)(衣魯卡羅 克斯(I rganox) 1 09 8千葉機械股份有限公司製)),以表} 所示溫度條件( 2 3 0 °C、260 °C、290 °C、3 20 °C )熔融捏合,提 供給射出成形,作成各種熱經歷的100mmX lOOmmx 3mm之樹 脂平板。使該平板收納於具有1 0 0 m m x 1 0 0 m m x 6 m ιώ之水平模C(=0)-0H Modification of Resin C: 8.2 g of calcium acetate, 3.64 g of cerium oxide, with a blender, was added to 8 8 3 g of distilled purified dimethyl phthalate and 8 1 9 g of butanediol. A nitrogen introduction tube, a side tube for distillation, and a polymerization tube connected to a vacuum system. The polymerization tube was heated to 18 Torr by an oil bath and slowly passed through a nitrogen gas. When the amount of distilled methanol reached the theoretical enthalpy, stirring was started, and the temperature in the system was gradually increased to 205 to 260 ° C, and the degree of vacuum was gradually increased to less than 100 Pa. The produced butanediol is distilled off in a small amount and subjected to a condensation reaction for 2 to 3 hours, and the relative viscosity in a mixed solvent of tetrachloroethane/phenol bismuth/6 fluorene is measured, and the number average molecular weight is reached. When the time is up, the reaction is finished. When the sulfur-adding agent in the obtained polymer is used as the radical generating agent, the number of active hydrogens having an orbital phase interaction energy coefficient S of 0.006 or more is one in one molecule. This polymer was used alone as the resin (C). Resin (D) Polyphenylene sulfide (manufactured by Polyplastics Co., Ltd., Fluorene 22〇A9) was used as the resin (D). When the sulfurizing agent is used as a radical generating agent, the number of active sulfur atoms per molecule is 2 or more, and the calculation of M0PACPM3 is performed based on the following basic unit. r * C l - C6H4- S - C6H,4-S - - C 1 Resin (Ε ) 68 1294894 Modulation of alicyclic polydecylamine [bis(4-aminocyclohexyl)methane], with dodecane = residual The acid polycondensate is used as a thermoplastic resin. Moreover, the calculation of m〇PACPM3 is performed based on the following basic units. H2n—&lt;^^-ch2—^^nh-(c=〇)-(ch2)10-c(=〇)-〇h Modification of Resin E: In addition to the combination monomer as bis(4-aminocyclohexyl) In addition to methane and dodecanedicarboxylic acid, the number average molecular weight (?n) is 20,000 to 25,000, and the ratio of the terminal of the amine group to the terminal of the carboxyl group is about 1 / in the same preparation method as the above resin (A 1 ). 1 polymer. When the sulfur-adding agent is used as a radical generator, the orbital interaction energy coefficient S is 0.006 or more of active hydrogen &gt; the number is 3 in one molecule. This poly compound is used alone as a resin. [Unvulcanized rubber composition (R)]:: The following components are blended in a predetermined ratio, and an unsulfurized rubber composition (R 1 to R 2 ) is prepared. The rubber composition (R 1 ) (i) ethylene propylene II Ethylene rubber ("Kenruta 509 X 100" manufactured by DSM Co., Ltd.) 100 parts by weight (1 1 ) of a radical generator [organic peroxide (dicumyl peroxide)] 5. 5 parts by weight (iii)塡物物 ("N582" manufactured by Asahi Carbon Co., Ltd.) 1 part by weight (1 v ) of plasticizer ("Ryananabu Engineering Oil NS 1 0 0" manufactured by Idemitsu Kosan Co., Ltd.) 5 parts by weight (v ) zinc oxide 3 parts by weight -69 - 1294894 (V i ) 1 part by weight of stearic acid rubber composition (R2) (i) vinyl polyoxyalkylene rubber (made by East Relais Nikko Co., Ltd.)矽 烷 胶 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 851 In the resin, the sulfur-adding active agent (TR I Μ : trimethylolpropane trimethacrylate) and the stabilizer [Ν, Ν, - hexamethylene bis (3, 5 -) were added in the proportions shown in Table 1. a second butyl-4-trans-hydro-cinnamoylamine (manufactured by Irga η ο X ) 1 0 9 8 Chiba Machinery Co., Ltd.), melt-kneaded and (temperature conditions) - Resin Α 1 to A3, Resin Β and Resin C at 260 ° C, Resin D at 300 ° C, and Resin E at 280 ° C) The state of the monofilament extruded from the mold was observed and evaluated by the method shown below. X: There will be a single filament jump up and down in the mold part, and there will be a rough feeling on the surface of the monofilament drawn by the extractor, resulting in a majority of protrusions △: there is no monofilament in the mold part, but the extractor draws There is a raised sensation on the surface of the monofilament: there is no monofilament in the mold part, and there is no protrusion on the surface of the monofilament drawn by the extractor (adhesion test). Adding sulfur in the above-mentioned resin in the proportion shown in Table 1 Active agent (TR I Μ : trimethyl cellulose propane trimethacrylate) and stabilizer (Ν, Ν, - 六伸甲-70- 1294894 bis (3, 5 - di- 3 - butyl - 4-hydroxy-hydrocinnacinamine (Irganox 1 09 8 Chiba Machinery Co., Ltd.)), according to the temperature conditions shown in Table} (2 30 °C, 260 °C, 190 ° C, 3 20 ° C) melt-kneaded, supplied to the injection molding, to make a variety of thermal experience of 100mmX lOOmmx 3mm resin plate. The plate is housed in a horizontal mold having a diameter of 1 0 0 m m x 1 0 0 m x 6 m ι

槽之壓製成形用橡膠模具,在其上部放置以表1所示組合 得上述未加硫橡膠組成物,在1 7 0 °C下加熱壓縮1 〇分鐘, 使橡膠與加硫且使樹脂平板與橡膠黏合。而且,於上述黏 合時使樹脂平板之1 / 3面積部分以鋁合金覆蓋,確保抓穩 處。如此所得的樹脂/橡膠複合體構成的平板切成上述寬度 3 0mm,作爲試驗片。使該試驗片之抓穩處固定於上下格子, 使用萬能拉伸試驗機、以拉伸速度5 0mm /分拉伸,進行1 8 〇 °C剝離試驗,以下述方法評估。The rubber mold for press forming of the groove was placed on the upper portion thereof to obtain the above-mentioned unsulfurized rubber composition as shown in Table 1, and the mixture was heated and compressed at 170 ° C for 1 minute to make the rubber and vulcanized and the resin plate was Rubber bonding. Further, in the above bonding, the 1/3 area of the resin flat plate is covered with an aluminum alloy to secure the grip. The flat plate composed of the resin/rubber composite thus obtained was cut into the above-mentioned width of 30 mm to prepare a test piece. The grasping position of the test piece was fixed to the upper and lower lattices, and the tensile test was performed at a tensile speed of 50 mm/min using a universal tensile tester, and a peel test of 18 ° C was performed, and evaluated by the following method.

A :在剝離面全面上有橡膠層之凝聚破壞情形 B :伴隨剝離面之7 〇 %爲橡膠層的凝聚破壞情形,在橡 膠/樹脂間會有30%之界面剝離 C :伴隨剝離面之5 0%爲橡膠層的凝聚破壞情形,在橡 膠/樹脂間會有5 0%之界面剝離 D :伴隨剝離面有大部分界面剝離情形,不具充份的黏 強度。 結果如表1所示。而且,於表1中記載沒有在樹脂中 添加加硫活性劑。 由表1可知,由於實施例在樹脂中添加加硫活性劑與 安定劑’可使加硫活性劑具有有效功能,使樹脂與橡膠堅 -7 1- 1294894 固地黏合。 -72- 1294894 — 73丨 膽 室 μ—^ Ο 比較例8 ! 實施例9 比較例7 實施例8 比較例6 實施例7 比較例5 實施例6 比較例4 實施例5 比較例3 比較例2 實施例4 實施例3 實施例2 實施例1 比較例ιΠ m σ ο ο ο txi tx) &gt; LO &gt; OJ &gt; &gt; to &gt; H—* &gt; &gt; &gt; Η—1 &gt; Η—* &gt; Η—» 樹脂 樹脂組成物 OJ 2以上 1 2以上1 ο ο -Ρ- 0.8 0.8 2.4 4^· 4^ 1活性原子1 〇〇 L〇 ο LO ο UO L〇 O LO LO 〇〇 UJ LO 重量份 加硫活性劑 〇 o Ο ο Ο ο ο ο 0.5 o o Lyn 〇 1—» &gt;~ι 0.5 Ο 1» Ο 重量份 安定齊[J 86/14 1 86/14 1 86/14 1 86/14 1 86/14 1 86/14 1 23/77 38/62 75/25 86/14 97/3 1 重量比 加硫活性劑/安定劑 〇 X 〇 〇 〇 〇 〇 X 〇 〇 〇 X 〇 〇 〇 〇 0 X 凝膠發生試驗 1 b〇 c〇 Pd to to ι&gt;〇 Pd 1~^ μ—a )~i t—1 Ρ〇 ι—^ 橡膠組成物 i ] 樹脂/橡膠複合體 1 1 1 σ &gt; σ &gt; &gt; o σ &gt; &gt; ϋ ο &gt; &gt; &gt; &gt; 230〇C 樹脂之捏合溫度 &gt; σ 1 σ &gt; ϋ &gt; &gt; o o &gt; Dd σ ο &gt; &gt; &gt; Dd 260〇C &gt; σ &gt; ο &gt; ο &gt; tx&gt; o o &gt; 〇 ο ο ϋϋ &gt; W bd 290〇C tx) σ Dd σ W ο dd tx) o o tx) 〇 σ ο W ω ω td 320〇C 嫌一A: There is agglomeration failure of the rubber layer on the entire peeling surface B: 7% of the peeling surface is the agglomeration damage of the rubber layer, and there is a 30% interface peeling between the rubber/resin C: 5 with the peeling surface 0% is the agglomeration failure of the rubber layer, and there is a 50% interface peeling between the rubber/resin. D: There is a large amount of interfacial peeling on the peeling surface, and there is no sufficient adhesive strength. The results are shown in Table 1. Further, it is described in Table 1 that no sulfurizing active agent is added to the resin. As can be seen from Table 1, since the sulfur-adding active agent and the stabilizer are added to the resin in the examples, the sulfur-adding active agent has an effective function, and the resin is firmly bonded to the rubber -7 1- 1294894. -72- 1294894 - 73丨胆室μ—^ Ο Comparative Example 8 ! Example 9 Comparative Example 7 Example 8 Comparative Example 6 Example 7 Comparative Example 5 Example 6 Comparative Example 4 Example 5 Comparative Example 3 Comparative Example 2 Embodiment 4 Embodiment 3 Embodiment 2 Embodiment 1 Comparative example ιΠ m σ ο ο ο txi tx) &gt; LO &gt; OJ &gt;&gt; to &gt; H_* &gt;&gt;&gt; Η-1 &gt; Η—* &gt; Η—» Resin resin composition OJ 2 or more 1 2 or more 1 ο ο -Ρ- 0.8 0.8 2.4 4^· 4^ 1 Active atom 1 〇〇L〇ο LO ο UO L〇O LO LO 〇 〇UJ LO parts by weight sulphur active agent 〇o Ο ο Ο ο ο ο 0.5 oo Lyn 〇1—» &gt;~ι 0.5 Ο 1» 重量 Weight parts stability [J 86/14 1 86/14 1 86/14 1 86/14 1 86/14 1 86/14 1 23/77 38/62 75/25 86/14 97/3 1 Weight ratio sulfur addition active agent / stabilizer 〇X 〇〇〇〇〇X 〇〇〇X 〇〇〇〇0 X Gelation test 1 b〇c〇Pd to to ι&gt;〇Pd 1~^ μ-a )~it-1 Ρ〇ι—^ Rubber composition i ] Resin/rubber composite 1 1 1 σ &gt; σ &gt;&gt; o σ &gt;&gt; ϋ ο &gt;&gt;&gt;&gt; 230 〇C resin kneading temperature &gt; σ 1 σ &gt; ϋ &gt;&gt; oo &gt; Dd σ ο &gt;&gt;&gt; Dd 260〇C &gt; σ &gt; ο &gt; ο &gt;tx&gt; Oo &gt; 〇ο ο ϋϋ &gt; W bd 290〇C tx) σ Dd σ W ο dd tx) oo tx) 〇σ ο W ω ω td 320〇C

Claims (1)

1294894 第92125555號「樹脂組成物、使用其之複合體及其使用方法」 專利案 ' (2007年2月8日修正) 拾、申請專利範圍: 1 . 一種樹脂組成物,其特徵係由樹脂、提高橡膠與樹脂之黏 合性用之加硫活性劑、與安定劑而構成’其中加硫活性劑 &lt; 爲具有數個(甲基)丙烯醯基之化合物’安定劑具有自由基 捕捉功能,加硫活性劑與安定劑之比例(重量比)係前者/ 後者=99/ 1 〜25 / 7 5。 · 2 . —種複合體,其特徵爲使如申請專利範圍第1項之樹脂組 成物與藉由未加硫橡膠加硫形成的加硫橡膠直接黏合者。 3 .如申請專利範圍第2項之複合體,其中使以如申請專利範 圍第1項之樹脂組成物構成的樹脂元件,與加硫橡膠元件 直接黏合。 4 .如申請專利範圍第1項之樹脂組成物,其中樹脂係在一分 子中至少平均具有2個下述式(1 )所示軌道相互作用能量 係數S爲0.006以上之氫原子及/或硫原子, 鲁 S = (CΗΟΜΟιη) V | Ec&quot;EHOMOtn I +(CLUMOin)V I Ec~E!LUM〇tn I (1) (其中,E。、CHOMO,n、E_0,n、CLUMO.n、ELliMO,n 皆爲藉由半經 驗分子軌道法MOPACPM3求得之値,Ed系表示自由基發生 · 劑之自由基軌道能量(eV),CHQM〇,n係表示構成樹脂基本單 位之第η個氫原子或硫原子的最高被佔分子軌道(HOMO)之 分子軌道係數,Εηομο,π係表示上述HOMO之軌道能量(eV ) ,CLUM〇,n係表示第η個氫原子或硫原子的最低空分子軌道 -卜 1294894 (LUMO)之分子軌道係數,Ειιηιο,η係表示上述LUMO之軌道能 量(e V ))。 5 ·如申請專利範圍第1項之樹脂組成物,其中樹脂爲至少一 種選自於聚醯胺系樹脂、聚酯系樹脂、聚(硫)醚系樹脂、 聚碳酸酯系樹脂、聚醯亞胺系樹脂、聚颯系樹脂、聚胺甲 酸酯系樹脂、聚烯烴系樹脂、含鹵素之乙烯系樹脂、苯乙 烯系樹脂、(甲基)丙烯酸系樹脂、熱塑性彈性體、苯酚樹 脂、胺系樹脂、環氧樹脂、熱固性聚醯亞胺系樹脂、熱固 性聚胺甲酸酯系樹脂、聚矽氧烷樹脂、不飽和聚酯系樹脂 、乙烯酯系樹脂、二烯丙基酞酸酯系樹脂、及熱固性丙烯 酸系樹脂。 6 .如申請專利範圍第1項之樹脂組成物,其中樹脂爲至少一 種選自於具有不飽和鍵之熱塑性樹脂及具有交聯性官能 基之熱固性樹脂之交聯性樹脂。 7 .如申請專利範圍第1項之樹脂組成物,其中安定劑爲至少 一種選自於苯酚系抗氧化劑及受阻胺系光安定劑。 8 .如申請專利範圍第1項之樹脂組成物,其中加硫活性劑之 比例對1 00重量份樹脂而言爲0 . 1〜1 〇重量份,安定劑之 比例對1 00重量份樹脂而言爲0 . 0 1〜5重量份。 9 ·如申請專利範圍第1項之樹脂組成物,其中對1 00重量份 樹脂而言含有加硫活性劑0 . 1〜5重量份、安定劑〇 · 〇5〜8 重量份,且加硫活性劑與安定劑之比例(重量比)係前者/ 後者=98/2 〜3 5 / 6 5。 1 0 .如申請專利範圍第2項之複合體,其中橡膠爲至少一種 -2- 1294894 選自於二烯系橡膠、烯烴系橡膠、丙烯酸系橡膠、氟系橡 膠、聚矽氧烷系橡膠、及胺甲酸酯系橡膠。 1 1 ·如申請專利範圍第2項之複合體,其中未加硫橡膠係以 含有至少一種選自於自由基發生劑及硫之加硫劑形成。 1 2 ·如申請專利範圍第n項之複合體,其中自由基發生劑爲 至少一種選自於有機過氧化物、偶氮化合物、及含硫之有 機化合物。 1 3 ·如申請專利範圍第π項之複合體,其中加硫劑之比例對 100重量份未加硫橡膠而言爲1〜10重量份。 1 4 ·如申請專利範圍第1項之樹脂組成物,其中另含有如申 請專利範圍第3項之在一分子中平均具有2個以上軌道相 互作用能量係數S爲0.006以上之氫原子、且分子量爲 1 000以下之化合物。 1 5 · —種製造如申請專利範圍第丨項之樹脂組成物之方法, 其特徵爲使樹脂與加硫活性劑及安定劑捏合。 1 6 . —種複合體之製法,其係於使如申請專利範圍第1項之 樹脂組成物與含有加硫劑之未加硫橡膠組成物接觸成形 ’且以樹脂零件與加硫橡膠構成的橡膠零件黏合的複合體 中,其特徵爲樹脂組成物及樹脂零件中之一方的成形樹脂 材、與該成形樹脂材之接觸面中加硫劑具有活性,含未加 硫橡膠之橡膠組成物及其預備成形體中之一方的成形橡 膠材接觸成形,且使該成形橡膠加硫或交聯以使樹脂零件 與橡膠零件黏合者。 1 7 . —種製造由加硫橡膠相與樹脂相所構成之複合體之方法 -3- 1294894 ,其特徵爲藉由使如申請專利範圍第1項之樹脂組成物、 與含加硫劑之未加硫橡膠捏合、成形。1294894 No. 92125555 "Resin composition, composite using the same, and method of using the same" Patent case (corrected on February 8, 2007) Pickup, patent application scope: 1. A resin composition characterized by a resin, a sulfur-adding active agent for improving the adhesion between rubber and resin, and a stabilizer to form 'the sulfur-adding active agent&lt; is a compound having several (meth)acryl fluorenyl groups. The stabilizer has a free radical trapping function. The ratio (weight ratio) of the sulfur active agent to the stabilizer is the former / the latter = 99 / 1 ~ 25 / 7 5 . 2. A composite body characterized in that a resin composition as claimed in claim 1 is directly bonded to a vulcanized rubber formed by vulcanization of an unvulcanized rubber. 3. A composite according to claim 2, wherein the resin member composed of the resin composition as in the first aspect of the patent application is directly bonded to the vulcanized rubber member. 4. The resin composition according to claim 1, wherein the resin has at least two hydrogen atoms and/or sulfur having an orbital interaction energy coefficient S of 0.006 or more represented by the following formula (1) in one molecule. Atom, Lu S = (CΗΟΜΟιη) V | Ec&quot;EHOMOtn I +(CLUMOin)VI Ec~E!LUM〇tn I (1) (where E., CHOMO, n, E_0, n, CLUMO.n, ELliMO, n is obtained by the semi-empirical molecular orbital method MOPACPM3, Ed is the radical generating orbital energy (eV) of the radical generating agent, CHQM〇, and n is the nth hydrogen atom constituting the basic unit of the resin or The molecular orbital coefficient of the highest occupied molecular orbital (HOMO) of the sulfur atom, Εηομο, π represents the orbital energy (eV) of the above HOMO, CLUM〇, and n represents the lowest empty molecular orbital of the nth hydrogen atom or sulfur atom - The molecular orbital coefficient of 11294894 (LUMO), Ειιηιο, η represents the orbital energy (e V ) of the above LUMO). 5. The resin composition according to claim 1, wherein the resin is at least one selected from the group consisting of polyamine resins, polyester resins, poly(thio)ether resins, polycarbonate resins, and polyphthalamides. Amine resin, polyfluorene resin, polyurethane resin, polyolefin resin, halogen-containing vinyl resin, styrene resin, (meth)acrylic resin, thermoplastic elastomer, phenol resin, amine Resin, epoxy resin, thermosetting polyimide resin, thermosetting polyurethane resin, polyoxyalkylene resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate Resin and thermosetting acrylic resin. 6. The resin composition of claim 1, wherein the resin is at least one crosslinkable resin selected from the group consisting of a thermoplastic resin having an unsaturated bond and a thermosetting resin having a crosslinkable functional group. 7. The resin composition of claim 1, wherein the stabilizer is at least one selected from the group consisting of a phenolic antioxidant and a hindered amine light stabilizer. 8. The resin composition of claim 1, wherein the proportion of the sulfur-adding active agent is 0.1 to 1 part by weight of the resin, and the ratio of the stabilizer is to 100 parts by weight of the resin. It is 0. 0 1~5 parts by weight. 9) The resin composition of claim 1, wherein the oxidizing active agent is contained in an amount of 0.1 to 5 parts by weight, the stabilizer 〇· 〇 5 to 8 parts by weight, and sulfur is added to 100 parts by weight of the resin. The ratio of the active agent to the stabilizer (weight ratio) is the former / the latter = 98/2 ~ 3 5 / 6 5 . 1 0. The composite of claim 2, wherein the rubber is at least one of -2- 1294894 selected from the group consisting of diene rubber, olefin rubber, acrylic rubber, fluorine rubber, polyoxyalkylene rubber, And urethane rubber. A composite according to claim 2, wherein the unvulcanized rubber is formed by containing at least one sulfurizing agent selected from the group consisting of a radical generating agent and sulfur. 1 2 The composite of claim n, wherein the radical generator is at least one selected from the group consisting of organic peroxides, azo compounds, and sulfur-containing organic compounds. 1 3 . The composite of claim π, wherein the proportion of the sulfur-adding agent is 1 to 10 parts by weight based on 100 parts by weight of the unsulfurized rubber. 1 4 The resin composition according to claim 1 of the patent application, which further comprises, in the third aspect of the patent application, having two or more hydrogen atoms having an orbital interaction energy coefficient S of 0.006 or more in one molecule, and a molecular weight It is a compound of less than 1,000. A method of producing a resin composition as claimed in the ninth aspect of the invention, characterized in that the resin is kneaded with a vulcanization active agent and a stabilizer. a method for producing a composite body which is formed by contacting a resin composition of the first aspect of the patent application with an unvulcanized rubber composition containing a sulfurizing agent, and comprising a resin part and a vulcanized rubber. In the composite in which the rubber component is bonded, the molded resin material which is one of the resin composition and the resin component, and the sulfur-containing agent in the contact surface with the molded resin material are active, and the rubber composition containing the unsulfurized rubber and The formed rubber material in one of the preliminary molded bodies is contact-molded, and the formed rubber is vulcanized or crosslinked to bond the resin member to the rubber member. A method of producing a composite of a vulcanized rubber phase and a resin phase -3- 1294894, which is characterized in that the resin composition of the first aspect of the patent application and the sulphur-containing agent are used. The unsulphurized rubber is kneaded and formed. 一 4-a 4-
TW92125555A 2003-09-17 2003-09-17 Resin compound, the complex using it and the method of using it TWI294894B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92125555A TWI294894B (en) 2003-09-17 2003-09-17 Resin compound, the complex using it and the method of using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92125555A TWI294894B (en) 2003-09-17 2003-09-17 Resin compound, the complex using it and the method of using it

Publications (1)

Publication Number Publication Date
TWI294894B true TWI294894B (en) 2008-03-21

Family

ID=45068288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92125555A TWI294894B (en) 2003-09-17 2003-09-17 Resin compound, the complex using it and the method of using it

Country Status (1)

Country Link
TW (1) TWI294894B (en)

Similar Documents

Publication Publication Date Title
US8029910B2 (en) Resin composition and composite using the composition and production process thereof
JP4502569B2 (en) Rubber reinforcement structure
JP5205507B2 (en) Composite and production method thereof
WO2004007617A1 (en) Composite dispersion and process for producing the same
TWI305539B (en)
JP3967958B2 (en) Composite dispersion and method for producing the same
TW200404878A (en) Composite and process for producing the same
JP7181727B2 (en) Composite compact and manufacturing method thereof
JP2003320618A (en) Composite and manufacturing method therefor
TWI294894B (en) Resin compound, the complex using it and the method of using it
JP3986825B2 (en) Composite and production method thereof
WO2002098985A1 (en) Composite dispersion and process for production thereof
JP2006233227A (en) Composite dispersion and process for production thereof
JP2004136594A (en) Multi-layered molded body
JP4452292B2 (en) Composite and production method thereof
JP3736089B2 (en) Composite molded body
TWI261600B (en) Modified block copolymer
JP2002284902A (en) Compound material and method for producing the same
JP2022191333A (en) Composite molded body and production method therefor
KR20050018991A (en) Composite and Process for Producing the Same
KR20050018993A (en) Composite Dispersion and Process for Producing the Same

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent