TWI294183B - - Google Patents

Download PDF

Info

Publication number
TWI294183B
TWI294183B TW94129432A TW94129432A TWI294183B TW I294183 B TWI294183 B TW I294183B TW 94129432 A TW94129432 A TW 94129432A TW 94129432 A TW94129432 A TW 94129432A TW I294183 B TWI294183 B TW I294183B
Authority
TW
Taiwan
Prior art keywords
nanowire
channel
gate
polycrystalline
substrate
Prior art date
Application number
TW94129432A
Other languages
Chinese (zh)
Other versions
TW200709413A (en
Inventor
Cheng Che Lee
Horng Chih Lin
Chun Jung Su
Yun Shyong Yang
Tiao Yuan Huang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW094129432A priority Critical patent/TW200709413A/en
Publication of TW200709413A publication Critical patent/TW200709413A/en
Application granted granted Critical
Publication of TWI294183B publication Critical patent/TWI294183B/zh

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

1294183 : n 九、發明說明: 【發明所屬之技術領域】 本發明係關於奈米線場效電晶體(FET )裝置及製造, 特別是作爲奈米線生物感測與調控元件及其應用。 【先前技術】 生物感測元件(b i 〇 - s e n s 〇 r )係指元件中含有一固定化 的生物性或生化性成分,其中藉與待分析物形成交互作用, 在選用適當之感測兀件或稱轉換器(transducer)下而產生 與該待分析物數量上或活性上呈對應比例關係之效果;感測 元件依其感測機構(m e c h a n i s m )及感測物質區分之,至今 已陸續發展出如光學式、質量量測式、電化學式、半導體式、 場效電晶體式等多種。然而,隨著半導體製程的成熟發展及 生醫臨床分析的大量需求,其中之場效電晶體式因其感測機 構特別具備可微小化、均一化、且大量製備等特性,而成爲 最具開發潛力的生物感測方式之一。 有關過去十年中之場效電晶體生物感測元件(利用離子 選擇性(ion-selective)及酵素固定化(enzyme immobilized)) 已被開發,然而近年來奈米技術的蓬勃發展,配合著奈米結 構及性質的掌握,例如奈米具有高的表面積/體積比,在某 一管徑範圍內奈米線及奈米管具有一維的高電導性,以及將 奈米線或奈米管應用於場效電晶體的閘極材料時將可獲得 到高靈敏度的場效電晶體感測元件等,例如 Yi Cui, Qingqiao Wei,Hongkun Park,Charles Μ· Lieber等人所發表 之文獻,“Nanowire Nanosensors for Highly Sensitive and 、12941.831294183 : n IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to nanowire field effect transistor (FET) devices and fabrication, particularly as nanowire biosensing and regulation elements and applications thereof. [Prior Art] A biosensing element (bi 〇- sens 〇r ) means that the element contains an immobilized biological or biochemical component, in which an interaction with the analyte is used, and an appropriate sensing element is selected. Or a transducer (reducer) produces an effect proportional to the quantity or activity of the analyte; the sensing element is differentiated according to its sensing mechanism and sensing substance, and has been developed one after another. Such as optical, mass measurement, electrochemical, semiconductor, field effect transistor and many other. However, with the mature development of semiconductor manufacturing processes and the large demand for clinical analysis of biomedical doctors, the field-effect transistor type has become the most developed because its sensing mechanism has special characteristics such as miniaturization, homogenization, and large-scale preparation. One of the potential biosensing methods. Field-effect transistor biosensing elements (using ion-selective and enzyme immobilized) have been developed over the past decade, but in recent years nanotechnology has flourished with Nai Mastery of structure and properties of rice, such as nanometer with high surface area to volume ratio, nanowire and nanotubes have one-dimensional high electrical conductivity in a certain diameter range, and application of nanowire or nanotube High-sensitivity field-effect transistor sensing elements can be obtained for the gate material of field-effect transistors, such as those published by Yi Cui, Qingqiao Wei, Hongkun Park, Charles Μ Lieber et al., "Nanowire Nanosensors" For Highly Sensitive and , 12941.83

Selective Detection of Biological and Chemical Species” (SCIENCE VOL 293 1 7 August,2001 ),已將奈米技術應 用於生物感測元件而使前述效果更爲顯著。不過類似上述所 指出的技術尙有待解決之問題,包括:無法有效對奈米線〈或 奈米碳管〉作定位操控及數量控制,且所製元件之電性及再 現性並不理想。Selective Detection of Biological and Chemical Species" (SCIENCE VOL 293 1 7 August, 2001), the nanotechnology has been applied to biosensing elements to make the aforementioned effects more significant. However, similar to the above-mentioned techniques, problems to be solved Including: unable to effectively position and control the nanowire <or carbon nanotube>, and the electrical and reproducibility of the fabricated components is not ideal.

專手[J 前案,如 us· Patent 6,780,584 (Aug 24, 2004), “Electronic systems and component devices for macroscopic and microscopic molecular biological reactions, analyses a n d d i a g η o s t i c s ”揭示利用超距力,例如離心力、電場、磁場 來操控生物分子的分布、移動、結合、脫除、甚至間接地控 制生化反應的進行。另外,如Ronald G· Sosnowski,Eugene Tu,Experts [Jqqian, such as us. Patent 6,780,584 (Aug 24, 2004), "Electronic systems and component devices for macroscopic and microscopic molecular biological reactions, analyses anddiag η ostics" reveal the use of over-range forces, such as centrifugal force, electric field, magnetic field To control the distribution, movement, binding, removal, and even indirect control of biochemical reactions. In addition, such as Ronald G. Sosnowski, Eugene Tu,

William F. Butler, James P. OXonnell, and Michael J. Heller 等所發表之文獻,“Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control”( Proc· Natl. Acad. Sci. USA Vol. 94,pp. 1 119-1 123, February 1997,Biochemistry.)係揭示利用電場加速 Target DNA 與 Capture Probe 的雜合(hybridization)速率,並提高 Single Base Pair Mismatch 的鑑別效率;又如 R. Hirsh,Ε· Katz, I· Willner,( J. Am. Chem. Soc. 2000,122,12053-12054 )利用 磁場控制輔媒所固定化的磁性粒子移動、聚集,改變輔媒在 酵素周圍的局部濃度,進而啓動或停止酵素的催化反應。儘 管如此,若要將這些操控生物分子的技術微型化並結合奈米 製程,其需要能與半導體積體電路製程相容,那麼以目前的 -6- 1294183 工程技術要微型化可調控磁場顯然是較爲困難的,因爲這些 牽涉到移動磁性物質的機械動作或提供瞬間大電流的改 變。因此,直接測量生物分子與電子元件介面之間所傳遞的 電訊號,以及由電訊號操控生化反應的技術開發,一直都是 生物電子硏究領域的重要核心課題。 關於奈米線電晶體之製造技術主要分爲由上而下 (Top-down )與由下而上(Bottom-up):兩大類;(1)由 上而下包括微影触刻(photolithography )、電子束微影 ’ (e-beam lithography)以及未來的奈米餓痕(nanoimprint lithography )等。其中微影蝕刻常需搭配熱流(thermal flow)、化學微縮(chemical shrink)或邊襯圖樣化(spacer patterning )等方式來間接完成奈米線結構;電子束繪圖 (E-beam writing)的解析度高且可直接產生出奈米級結 構,但有著速度慢、生產率低和電荷累積效應之缺點;如果 使用深紫外線微影(deep ultraviolet lithography,DUV)和 未來的遠紫外線微影(extreme ultraviolet lithography, I EUV )設備直接來曝光奈米級線寬,則其價格相當的昂貴。 因此就現況而言,利用由上而下的方式,雖可任意產生奈米 線形狀和定位,但其製程技術門檻和設備成本價格相當高’ 致爲其量產化之最大阻礙;(2 )由下而上,包括雷射削切 催化成長法(laser ablation catalyst growth)、無催化氧化 輔助成長法(oxide-assisted catalyst-free method)和溶液浸 泡法(solution techniques )等方式。其中雷射削切催化成 長法首推由哈佛大學C· M· Lieber團隊所硏發出的雷射催化 .1294L83 金屬介質氣固液成長法(laser-catalytic metal-mediated vapor-liquid-solid,VLS)(詳見其發表之文獻’ “Direct Ultra sensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors95 (Nano Lett. Vol. 4 PP. 51,2004),係利用金屬粒子的媒介來成長奈米線,並發 現奈米線的直徑會與金屬粒子的大小成正比,進而可控制奈 米線的尺寸;其奈米線的排列和組合是利用電場、微流道 • (micro fluidic channel)或壓縮法(compression process)來完 ® 成的。其中電場法是藉由兩電極與奈米線極性彼此作用力而 規範出排列方向,但受限於兩電極若太近會因靜電力干擾而 無法縮放(scalable),並且仍需利用電子束來產生電極; 微流道法,常用 PDMS 聚雙甲基矽氧烷 (poly-dimethylsiloxane) mold來排列奈米線,可形成積層 (layer-by-layer )組合,進而可完成較複雜的排列形式,但 此法會因微流道的尺寸而限制奈米線的排列;壓縮法主要是 利用LB法(Langmuir-Blodgett method)來組合大面積非等 I 向性排列的奈米線,但僅侷限於單層之奈米線。然而,這些 方法的排列方式再現性不高,並且奈米線尺寸大小之控制、 金屬污染、奈米線雜質摻雜以及如何與電極形成良好的歐姆 接觸(Ohmic contact)等,皆是由下而上(bottom-up)法 急需解決的課題。 【發明內容】 本發明首要目的在於提供新穎的砍奈米線場效電晶體 裝置及其製造方法。 1294183 關於本發明之裝置及其製作,係利用以一般製作氧化層 邊襯(oxide spacer)之槪念,來形成多晶矽邊襯(P〇ly-Si spacer),故可藉由閘極高度和蝕刻時間,來控制此邊襯之直 徑至20奈米以下,巧妙地將之作成多晶矽奈米線通道 (poly-SiNW channel),並於製作奈米線之同時,定義出汲極 和源極,完成一多晶矽奈米線場效電晶體(poly-Si NW FETs) 〇 本發明之矽奈米線場效電晶體裝置,包括:一基板,於 &gt; 該基板表面形成之一層熱氧化物(thermal oxide),或其它 可供絕緣的介電材質(dielectrics),及於該熱氧化物層表面 成長之多晶矽閘極元件;其中,多晶矽閘極元件因含有直徑 約20奈米之邊襯而形成多晶矽奈米線通道,其奈米線通道 係自我對準汲極與源極而形成的,關於多晶矽奈米線通道之 形成’係由定義汲極和源極之同一道光罩及製程,由非等向 性乾蝕刻(如第2圖所示)來形成多晶矽奈米線通道,亦即, 在定義汲極和源極時,以自我對準產生矽奈米線通道。 b 本發明之矽奈米線場效電晶體裝置之製造方法,如第2 圖所示,步驟爲:(1)提供一基板,包括矽晶圓;(2 )在該 基板上沉積一層氧化層以作爲遮蓋氧化物(buried oxide ); (3 )沉積多晶矽並使形成閘極;(4)以化學氣相沉積法沉積介 電層當作閘極介電層;(5)沉積多晶矽;(6)以乾蝕刻法產生 多晶矽奈米線通道,並同時形成汲極和源極。 本發明之新穎多晶矽奈米線電晶體製作方法,相較於目 前一般奈米線製備方式,主要優點在於利用現有之標準製程 -9- I294J83 設備,以簡易製程步驟而可達到:(1)可直接控制奈米線直 徑和長度;(2)可以精準產生奈米線位置;(3)同時自我對準 形成汲極和源極;(4)無金屬污染;(5)再現性高。 本發明之另一目的在於構築一高靈敏度之奈米生物感 測元件,其提供改善多晶矽導電特性不如單晶矽之問題。本 發明奈米生物感測元件之製作,係利用金屬誘發側向結晶 (MILC)和準分子雷射退火(ELA)兩種方式,將非晶矽再結晶 化,改善結晶特性,使其晶粒變大;由於奈米線尺寸小,若 晶粒足夠大,在奈米線中便可視爲準單晶矽 (quasi-single-crystal Si),因此其電導特性將大幅地提升。 爲能構築出一種高靈敏度之奈米感測元件,除了藉由改 善材料本身性質,以提高感測靈敏度,本發明進一步提出利 用側閘(side-gate)來當作Vth控制的新槪念,依工業規格 或客戶需求之感測範圍,改變側閘的施加偏壓來調整多晶矽 奈米線通道的Vth,進而調變感測靈敏度。此一槪念最大之 優點在於製作出來的感測元件,不論其Vth大小,皆可利用 側閘極來調整其感測靈敏度。 &gt; 本發明之生物分子感測元件,包括一基板,於該基板表 面形成之一層熱氧化物(thermal oxide ),及於該熱氧化物 層表面成長之多晶矽閘極元件;其中多晶矽閘極元件因含有 直徑約20奈米之邊襯而形成多晶矽奈米線通道,再將生物 感測分子固定化在此多晶矽的奈米線表面,利用生物系統配 對原理(如 antigen - antibody,biotin - avidin,substrate -receptor 或 enzyme),達到高專一性與局靈敏度的生物分 子感測。 -10- 1294183 例如第4圖所示之奈米線電晶體生物分子感測元件,對 於利用生物素(biotin)-卵白素(avidin)的生物分子配對系 統而言,將生物素選擇性地固定化在奈米線上,可用以偵測 溶液中卵白素的含量。本發明之生物分子感測系統其中之感 測元件,係在奈米級之局部區域中,選擇性地固定一特定之 生物分子而形成感測機構,該感測元件之製造則是前述矽奈 米線場效電晶體裝置之進一步應用。 生物素是生物體內重要的酵素輔酶(cofactor),可協助 1 蛋白質、脂肪、醣類之代謝,及DNA、RNA構造單元之合 成;卵白素是一個分子量約60kDa的蛋白質,對於生物素 有良好的專一性,所形成的生物素-卵白素錯合物 (a vi din-biotin complex),其結合常數(Ka)可高達 1015M-1, 十分穩定不易解離,故利用生物素-卵白素專一配對系統以 提升奈米線電晶體生物分子感測系統的性能獲得確認,其原 理可應用在類似的組合,以製造更多種類之高靈敏度的生物 分子感測元件,該相似的組合例如:抗體-抗原、蛋白質一受 1 質(例如:生長激素、神經傳導物質等),及蛋白質-細胞(例 如:癌細胞、病毒等),其能運用至各種臨床醫學上的診斷 步驟。 本發明之生物分子感測元件,可解決習知奈米技術應用 於生物感測元件之問題,包括無法有效對奈米線〈或奈米碳 管〉作定位操控及數量控制,致所製元件之電性及再現性不 佳,及影響該生物分子感測系統之靈敏度與選擇性等。 本發明之生物調控元件爲該生物感測元件之進一步應 -11- 1294183 r. ι 用,係藉著前述矽奈米線場效電晶體裝置之製造方法’利用 電場來調控酵素活性,第3圖所示爲其元件的佈局圖;此元 件可用以調控並分析生物分子的活性與結構的關聯性’也可 * 改變在奈米尺度範圍內的金屬離子濃度,進而調控酵素的活 性,如第4圖所示。其原理乃將奈米線元件佈局在局部增強 電場中,利用電場改變已固定化於奈米線上的酵素之構形, 或改變在奈米尺度範圍內的金屬離子濃度。這樣的調控機制 將具有直接、溫和、且有效率的特點,這構想的具體實踐, • 將直接對醫檢與生化工程帶來革命性的進步;且又因爲場效 調控酵素活性的資訊,可以提供硏究有關「序列」突變對「構 形」及「活性」的微觀分析與模型建構,對於硏究生化蛋白 質工程有重大的幫助。 藉由本發明之該生物分子感測與調控元件亦可用以形 成一種生物分子感測系統,如第5圖所示,其整合高靈敏度 生物感測元件與高效率的生化調控系統,而成爲一仿生系 統。該仿生系統之製作方式,首先,分開製作奈米電子元件 ^ 及通道;奈米元件的表面先以連結物(linker )分子,例如 APTMS,將連結物接到該奈米元件之表面,此時表面會有 -NH2官能基,在預期不接連結物的地方以高分子保護,將 連結物分子選擇性地接到作用的區域;而在通道的製作方 面,將以PDMS爲基板而製得流體通道,然後再以電漿處理 改變表面的特性,再與電子元件接合,製得雛形之系統,接 著以前述系統爲基礎,於37°C下進行流體中生物分子的反 應、固著、偵測、沖洗 '再固著、偵測等循環步驟;最後, 1294183 飧 * 在一個即時電偵測訊號的模式下,確認分子間作用的機制並 改進該系統。 【實施方式】 本發明揭示如下列之實施例,但不受該實施例所侷限。 依據本發明揭示所獲之奈米線生物感測與調控元件,至少包 括如第6圖中所示的三種實施態樣·· &lt;實施態樣一 &gt; 第一介電層之沉積步驟—,於ASM/LB45之爐管中, 控制爐內溫度在980 °C下,使矽晶圓上沉積一層厚度約 ΙΟΟΟΑ〜10000人之濕氧化層(Wet Oxide )當作埋藏氧化層 (Buried Oxide ) 〇 第二介電層之沉積步驟一,同樣於ASM/LB45之爐管 中,控制爐內溫度在980°C下,在該埋藏氧化層上沉積一層 厚度約 1000人之濕氧化層(Wet Oxide);或者,於ASM/LB45 之爐管中,控制爐內溫度在7 80°C下,以低壓化學氣相沉積 法(LPCVD),沉積氣體採Si3N4 ,沉積厚度約1000A。 階段定義步驟―,採用TEL Clean Track MK-8進行光 阻劑塗覆及顯影,及G-線步進機(ASM PAS 250 0/10 G-line Stepper)進行曝光微影之步驟。 階段蝕刻步驟—,採 TEL model TE-5000,以 CHF3,CF4, Αγ,〇2爲反應氣體,控制壓力在0.1 Torr至Ι.ΟΤογγ之間, 且設備輸出功率&lt; 1000 W。 通道及源極/汲極之沉積步驟一,於AS M/LB 45之爐管 中,控制爐內溫度在 620 °C下,以低壓化學氣相沉積法 1294183 4 » (LPCVD ),沉積多晶石夕 poly-Si約 500人〜ΙΟΟΟΑ;或在 550 °C 下沉積非晶石夕(amorphous Si)約 50〇A 〜ΙΟΟΟΑ 。 源極/汲極之離子植佈步驟一,(1 )製作η型電晶體, 採 Varian Ε220型植佈機,Ρ+-能量爲10〜15KeV, 劑量 爲lxlO15 cnT2 ; ( 2 )製作p型電晶體,採 Varian E220型 植佈機,BF2+—能量爲10〜20KeV,劑量爲1 x 1 0 15 c πΓ 2 。 通道定義步驟―,採用TEL Clean Track ΜΚ-8進行光 阻劑塗覆及顯影,及 G-( ASM PAS 2500/10 G-line Stepper) 或Canon FPA 3 000 i5 I-線步進機進行曝光微影之步驟。 通道触刻步驟—,採LAM TCP 9400SE蝕刻機定義出 500A〜ΙΟΟΟΑ之深度,係以Cl2,02,HBr,SF6爲反應氣體, 控制壓力在5〜20 mTorr,晶片溫度約65°C,且設備輸出功 率,源功率:200〜400W,偏壓:0〜200W。 非晶矽通道之再結晶步驟一,包括非晶矽通道和汲極與 源極,分別以下列三種方式進行: (1 )採ASM/LB45爐管系統,於氮氣氛圍、600 °C下 進行固態再結晶約24小時;或 (2) 於500°C〜7 5 0°C下,進行金屬誘發側向結晶(Metal Induced Lateral Crystallization),使用之退火方式可爲: (I) ASM/LB45 爐管系統;(II) RTA HEATPULSE 610 快速退 火爐;或 (3) 採 Exitech LPX210i Excimer Laser 進行準分子雷 射退火。William F. Butler, James P. OXonnell, and Michael J. Heller et al., "Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control" (Proc· Natl. Acad. Sci. USA Vol. 94, pp. 1 119-1 123, February 1997, Biochemistry.) Reveals the use of electric fields to accelerate the hybridization rate of Target DNA and Capture Probe, and improves the identification efficiency of Single Base Pair Mismatch; as well as R. Hirsh, Ε· Katz, I. Willner, (J. Am. Chem. Soc. 2000, 122, 12053-12054) uses magnetic fields to control the movement and aggregation of magnetic particles immobilized by the auxiliary medium, and changes the local concentration of the auxiliary medium around the enzyme. In turn, the catalytic reaction of the enzyme is started or stopped. However, in order to miniaturize these biomolecule technology and combine it with the nanometer process, it needs to be compatible with the semiconductor integrated circuit process. It is more difficult because these involve the mechanical action of moving the magnetic material or providing a change in the instantaneous large current. Therefore, the direct measurement of the electrical signals transmitted between biomolecules and electronic component interfaces, as well as the development of technologies for the manipulation of biochemical reactions by electrical signals, has always been an important core issue in the field of bioelectronics research. The manufacturing technology of nanowire transistor is mainly divided into top-down and bottom-up: two categories; (1) top-down including photolithography , e-beam lithography and future nanoimprint lithography. Among them, the lithography etching often needs to be combined with thermal flow, chemical shrink or spacer patterning to indirectly complete the nanowire structure; the resolution of the electron beam mapping (E-beam writing) High and can directly produce nano-scale structure, but has the disadvantages of slow speed, low productivity and charge accumulation effect; if deep ultraviolet lithography (DUV) and future extreme ultraviolet lithography (extreme ultraviolet lithography, I EUV ) The device directly exposes the nanometer line width, which is quite expensive. Therefore, as far as the current situation is concerned, although the shape and positioning of the nanowire can be arbitrarily generated by the top-down method, the process technology threshold and equipment cost are relatively high, which is the biggest obstacle to mass production; (2) From the bottom up, including laser ablation catalyst growth, oxide-assisted catalyst-free method and solution techniques. Among them, the laser cutting catalytic growth method is the first laser-catalytic metal-mediated vapor-liquid-solid (VLS) method developed by the team of C. M. Lieber of Harvard University. (See the published article 'Direct Ultra sensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors 95 (Nano Lett. Vol. 4 PP. 51, 2004), which uses the medium of metal particles to grow the nanowire, and It is found that the diameter of the nanowire is proportional to the size of the metal particles, which in turn can control the size of the nanowire; the arrangement and combination of the nanowires utilizes an electric field, a microfluid channel, or a compression method (compression). The electric field method is to regulate the alignment direction by the polarity of the two electrodes and the nanowire polarity, but it is limited that if the two electrodes are too close, they may not be scalable due to electrostatic interference. And still need to use the electron beam to produce the electrode; micro flow method, commonly used PDMS poly-dimethylsiloxane mold to arrange the nanowire, can form The layer-by-layer combination can complete a more complicated arrangement, but this method restricts the arrangement of the nanowires due to the size of the microchannel; the compression method mainly uses the LB method (Langmuir-Blodgett method) To combine large-area non-equal I-aligned nanowires, but only limited to single-layer nanowires. However, the arrangement of these methods is not highly reproducible, and the size of the nanowires is controlled, metal contamination, The impurity doping of the nanowire and how to form a good ohmic contact with the electrode are all problems that need to be solved by the bottom-up method. SUMMARY OF THE INVENTION The primary object of the present invention is to provide novel Chopping nanowire field effect transistor device and method of manufacturing the same. 1294183 The device of the present invention and its fabrication are formed by using a common oxide layer spacer to form a polycrystalline germanium edge liner (P〇ly -Si spacer), so the diameter of the lining can be controlled to less than 20 nm by the gate height and etching time, and it can be made into a poly-SiNW channel. At the same time of the rice noodle, the bungee and the source are defined, and a polycrystalline silicon field effect transistor (poly-Si NW FETs) is completed. The nanowire field effect transistor device of the present invention comprises: a substrate, &gt; the surface of the substrate forms a layer of thermal oxide, or other dielectric materials for insulation, and a polysilicon gate element grown on the surface of the thermal oxide layer; wherein the polysilicon gate element A polycrystalline germanium line channel is formed by a side lining having a diameter of about 20 nm, and the nanowire channel is formed by self-aligning the drain and the source, and the formation of the polycrystalline silicon nanochannel is defined by the definition of the bungee The same mask and process as the source, formed by a non-isotropic dry etching (as shown in Figure 2) to form a polycrystalline nanowire channel, that is, self-aligned when defining the drain and source矽 Nano line channel. The manufacturing method of the nanowire field effect transistor device of the present invention, as shown in FIG. 2, the steps are: (1) providing a substrate including a germanium wafer; and (2) depositing an oxide layer on the substrate. As a buried oxide; (3) depositing polycrystalline germanium and forming a gate; (4) depositing a dielectric layer by chemical vapor deposition as a gate dielectric layer; (5) depositing polycrystalline germanium; The polycrystalline germanium line channel is produced by dry etching, and the drain and the source are simultaneously formed. The novel polycrystalline germanium nanowire transistor manufacturing method of the invention has the main advantage that compared with the current general nanowire preparation method, the existing standard process-9-I294J83 device can be used to achieve the following simple process steps: (1) Direct control of the diameter and length of the nanowire; (2) accurate position of the nanowire; (3) self-alignment to form the drain and source; (4) no metal contamination; (5) high reproducibility. Another object of the present invention is to construct a highly sensitive nano-biosensor element which provides a problem of improving the conductivity characteristics of polycrystalline germanium other than single crystal germanium. The nano biosensor element of the present invention is produced by recrystallizing amorphous germanium by metal induced lateral crystallization (MILC) and excimer laser annealing (ELA) to improve crystallinity and crystallize the crystal grain. It becomes larger; because the size of the nanowire is small, if the crystal grain is large enough, it can be regarded as quasi-single-crystal Si in the nanowire, so its electrical conductivity characteristics will be greatly improved. In order to construct a high sensitivity nano sensing element, in addition to improving the sensing sensitivity by improving the nature of the material itself, the present invention further proposes to use a side-gate as a new mourning for Vth control. According to the sensing range of industrial specifications or customer requirements, the bias voltage of the side gate is changed to adjust the Vth of the polycrystalline silicon nanowire channel, thereby modulating the sensing sensitivity. The biggest advantage of this commemoration is that the sensing element produced can adjust its sensing sensitivity by using the side gate regardless of its Vth size. &gt; The biomolecule sensing device of the present invention comprises a substrate, a layer of thermal oxide formed on the surface of the substrate, and a polysilicon gate element grown on the surface of the thermal oxide layer; wherein the polysilicon gate element The polycrystalline nanowire channel is formed by a side liner having a diameter of about 20 nm, and the biosensing molecule is immobilized on the surface of the nanowire of the polycrystalline silicon, using the biological system pairing principle (eg, antigen-antibody, biotin-avidin, Substrate -receptor or enzyme) for biomolecular sensing with high specificity and local sensitivity. -10- 1294183 For example, the nanowire transistor biomolecule sensing element shown in Fig. 4 selectively immobilizes biotin for a biomolecule pairing system using biotin-avidin (avidin) It can be used on the nanowire to detect the amount of avidin in the solution. In the biomolecule sensing system of the present invention, the sensing element is in a local region of the nanometer, selectively fixing a specific biomolecule to form a sensing mechanism, and the sensing component is manufactured by the aforementioned Further application of the rice noodle field effect transistor device. Biotin is an important enzyme cofactor in the body, which can assist in the metabolism of 1 protein, fat and sugar, and the synthesis of DNA and RNA building blocks. Avidin is a protein with a molecular weight of about 60kDa, which is good for biotin. Specificity, the formation of a vi din-biotin complex, its binding constant (Ka) can be as high as 1015M-1, very stable and difficult to dissociate, so the use of biotin-inobumin specific pairing system It has been confirmed by improving the performance of the nanowire transistor biomolecule sensing system, the principle of which can be applied in a similar combination to produce a more variety of highly sensitive biomolecule sensing elements, such as antibody-antigen Proteins can be used in a variety of clinical diagnostic steps, such as growth hormones, neurotransmitters, and protein-cells (eg, cancer cells, viruses, etc.). The biomolecule sensing component of the invention can solve the problem that the conventional nanotechnology is applied to the biosensing component, including the inability to effectively perform positioning and quantity control on the nanowire <or carbon nanotube>, and the component is manufactured. Poor electrical and reproducibility, and affect the sensitivity and selectivity of the biomolecule sensing system. The biological regulation element of the present invention is further used for the biosensing element, and the method for producing the enzyme activity by using the electric field to regulate the activity of the enzyme by the method of manufacturing the above-mentioned nanowire line field effect transistor device, the third The figure shows the layout of its components; this component can be used to regulate and analyze the correlation between the activity and structure of biomolecules'. It can also change the concentration of metal ions in the nanometer scale, thereby regulating the activity of enzymes, such as Figure 4 shows. The principle is to arrange the nanowire elements in a locally enhanced electric field, using an electric field to change the configuration of the enzyme that has been immobilized on the nanowire, or to change the concentration of metal ions in the nanometer scale. Such a regulatory mechanism will be direct, gentle, and efficient. The specific practice of this concept will directly bring revolutionary progress to medical and biochemical engineering; and because of the information on the regulation of enzyme activity in field effects, Providing insight into the microscopic analysis and model construction of "sequence" mutations on "configuration" and "activity" is of great help to the study of biochemical protein engineering. The biomolecule sensing and control element of the present invention can also be used to form a biomolecule sensing system, as shown in FIG. 5, which integrates a high-sensitivity biosensing element with a highly efficient biochemical control system to become a bionic system. The production method of the biomimetic system firstly forms a nanoelectronic component and a channel separately; the surface of the nano component is first connected to the surface of the nano component by a linker molecule such as APTMS. The surface will have a -NH2 functional group, which is protected by a polymer in the place where the linker is not expected, and the linker molecule is selectively connected to the active region; and in the fabrication of the channel, the fluid is prepared by using PDMS as a substrate. The channel is then treated with plasma to change the characteristics of the surface, and then joined with the electronic components to produce a prototype system. Then, based on the above system, the reaction, fixation, and detection of biomolecules in the fluid are performed at 37 ° C. , flushing 're-fixing, detecting and other cycle steps; finally, 1294183 飧* In a mode of instant detection signal, confirm the mechanism of intermolecular interaction and improve the system. [Embodiment] The present invention discloses the following examples, but is not limited by the examples. According to the present invention, the obtained nanowire biological sensing and regulating element includes at least three embodiments as shown in FIG. 6 and the first dielectric layer deposition step. In the furnace tube of ASM/LB45, the furnace temperature is controlled at 980 °C, and a wet oxide layer (Wet Oxide) with a thickness of about 10,000 to 10,000 is deposited on the silicon wafer as a buried oxide layer (Buried Oxide). Step 2 of depositing the second dielectric layer, also in the furnace tube of ASM/LB45, controlling the temperature in the furnace at 980 ° C, depositing a wet oxide layer of about 1000 people on the buried oxide layer (Wet Oxide Or; in the furnace tube of ASM/LB45, the temperature in the furnace is controlled at 780 ° C, and the deposition gas is Si3N4 by low pressure chemical vapor deposition (LPCVD), and the deposition thickness is about 1000A. Stage definition steps—Steps for photoresist coating and development with TEL Clean Track MK-8 and exposure lithography with G-line stepper (ASM PAS 250 0/10 G-line Stepper). Stage etching step - TEL model TE-5000 with CHF3, CF4, Αγ, 〇2 as the reaction gas, control pressure between 0.1 Torr and Ι.ΟΤογγ, and equipment output power &lt; 1000 W. Channel and source/drain deposition steps 1. In the furnace tube of AS M/LB 45, the temperature in the furnace is controlled at 620 °C, and low-temperature chemical vapor deposition method 1294183 4 » (LPCVD), deposition of polycrystalline Shixi poly-Si is about 500 people ~ ΙΟΟΟΑ; or deposited at 550 ° C amorphous Si (amorphous Si) about 50 〇 A ~ ΙΟΟΟΑ. Source/drainage ion implantation step one, (1) making η-type transistor, adopting Varian Ε220 type planting machine, Ρ+-energy is 10~15KeV, dose is lxlO15 cnT2; (2) making p-type electricity Crystal, using Varian E220 planting machine, BF2+ - energy is 10~20KeV, the dose is 1 x 1 0 15 c πΓ 2 . Channel definition step - using TEL Clean Track ΜΚ-8 for photoresist coating and development, and G-( ASM PAS 2500/10 G-line Stepper) or Canon FPA 3 000 i5 I-line stepper for exposure micro The steps of the shadow. Channel tracing step—The LAM TCP 9400SE etching machine defines a depth of 500A~ΙΟΟΟΑ, with Cl2, 02, HBr, SF6 as the reaction gas, the control pressure is 5~20 mTorr, the wafer temperature is about 65°C, and the device Output power, source power: 200~400W, bias: 0~200W. Step 1 of the recrystallization of the amorphous germanium channel, including the amorphous germanium channel and the drain and source, are carried out in the following three ways: (1) ASM/LB45 furnace tube system is adopted, and the solid state is performed under a nitrogen atmosphere at 600 °C. Recrystallization for about 24 hours; or (2) Metal Induced Lateral Crystallization at 500 ° C ~ 75 ° ° C, the annealing method can be used: (I) ASM / LB45 furnace tube System; (II) RTA HEATPULSE 610 rapid annealing furnace; or (3) Excimer laser annealing with Exitech LPX210i Excimer Laser.

保護層沉積步驟—,採ASM/LB45爐管系統,於700°C -14- 1294183 下,進行低壓化學氣相沉積(LPCVD TEOS )厚度約 500〜2000A 。 接觸電洞定義步驟一,採用TEL Clean Track MK-8進 行光阻劑塗覆及顯影,及G- ( ASM PAS 2500/10 G-line Stepper)或Canon FPA 3000 i5 I-線步進機進行曝光微影之 步驟。 接觸電洞開通步驟一,以B.O.E.蝕刻TEOS約 10〜20 秒,或TEL model TE-5 000進行,其操作條件爲:(1 )反 1 應氣體·· CHF3,CF4,Ar,02 ; (2)壓力:0.1 Tori*〈pressure &lt;1.0 Torr ; (3)功率:&lt;l〇〇〇W。 &lt;實施態樣二&gt; 第一介電層之沉積步驟一,於ASM/LB45之爐管中, 控制爐內溫度在 980 °C下,使矽晶圓上沉積一層厚度約 ΙΟΟΟΑ〜10000人之濕氧化層(Wet Oxide)當作埋藏氧化層 (Buried Oxide )。 上閘極之沉積步驟一,於 ASM A-400 Vertical Furnace &gt; System之爐管中,沉積η型多晶矽於埋層氧化層上當作上 鬧極,形成現址(I η - s i t u) Ρ + —摻雜多晶石夕約1 〇 〇 〇 A 〇 上閘極之定義步驟—,採用TEL Clean Track MK-8進 行光阻劑塗覆及顯影,及G-線步進機(ASM PAS 2500/1 0 G-line Stepper)或 Canon FPA 3000 i5+ I-線步進機進行曝光 微影之步驟。 上閘極之鈾刻步驟一,採LAM TCP 9400SE 蝕刻機進 行閘極蝕刻,Cl2, 02, HBr,SF6爲反應氣體,控制壓力在5〜20 1294183 mTorr之間,·晶片溫度約65°C,源功率約200〜400W,偏 壓約0〜200W。 閘極氧化層之沉積步驟一,於 ASM/LB45 Furnace System之爐管中,控制爐內溫度在700°C下,以LPCVD TEOS 法沉積一層厚度約1〇〇〜5 00A之閘極氧化層或其他種類介電 層。 通道及源極/汲極之沉積步驟—,於ASM/LB45之爐管 中,控制爐內溫度在620 °C下,以低壓化學氣相沉積法 (LPCVD ),沉積多晶矽 poly-Si約 500人〜1000人;或在 550 °C 下沉積非晶石夕(amorphous Si)約 50〇A 〜ΙΟΟΟΑ 。 源極/汲極之離子植佈步驟—,(1 )製作η型電晶體, 採 Varian Ε220型植佈機,Ρ+—能量爲10〜15KeV, 劑量 爲lxlO15 cm_2 ; ( 2 )製作p型電晶體,採 Varian E2 20型 植佈機,BF2+-能量爲10〜20KeV,劑量爲lxlO15 cm·2 。 通道定義步驟―,採用TEL Clean Track MK-8進行光 阻劑塗覆及顯影,及 G-( ASM PAS 2500/10 G-line Stepper) 或Canon FP A 3 000 i 5 I-線步進機進行曝光微影之步驟。 通道蝕刻步驟一,採LAM TCP 9400SE蝕刻機定義出 500人〜1 000A之深度,係以Cl2,02,HBr,SF6爲反應氣體, 控制壓力在5〜20 mTorr,晶片溫度約65°C,且設備輸出功 率,源功率:200〜400W,偏壓·· 〇〜200W。 非晶砂通道之再結晶步驟-,包括非晶砂通道和汲極與 源極,分別以下列三種方式進行: (1 )採ASM/LB45爐管系統,於氮氣氛圍、600°c下 1294183 進行固態再結晶約24小時;或 (2 )於500°C〜7 50°C下,進行金屬誘發側向結晶(Metal Induced Lateral Crystallization),使用之退火方式可爲: (I) ASM/LB45 爐管系統;(II) RTA HEATPULSE 610 快速退 火爐;或 (3)採 Exitech LPX210i Excimer Laser 進行準分子雷 射退火。 保S蒦層沉積步驟一,採A S M / L B 4 5爐管系統,於7 0 0 I °C下,進行低壓化學氣相沉積(LPCVD TE0S )厚度約 500〜2000A 。 接觸電洞定義步驟一,採用TEL Clean Track MK-8進 行光阻劑塗覆及顯影,及 G- ( ASM PAS 2500/10 G-line Stepper)或Canon FPA 3000 i5 L·線步進機進行曝光微影之 步驟。 接觸電洞開通步驟一,以B.O.E.蝕刻TEOS約 10〜20 秒,或TEL model TE-5 000進行,其操作條件爲:(1 )反 •應氣體:CHF3,CF4,Ar,〇2 ; ( 2)壓力:0.1 Torr&lt;pressure &lt;1.0 Torr ; (3)功率:&lt; 1000W。 &lt;實施態樣三&gt; 第一介電層之沉積步驟一,於ASM/LB45之爐管中, 控制爐內溫度在980 °C下,使矽晶圓上沉積一層厚度約 1000人〜ΙΟΟΟΟΑ之濕氧化層(Wet Oxide )當作埋藏氧化層 (Buried Oxide ) 〇 第二介電層之沉積步驟一,同樣於ASM/LB45之爐管 -17- 1294183 中,控制爐內溫度在980 °C下,在該埋藏氧化層上沉積一層 厚度約 1〇〇〇人之濕氧化層(Wet Oxide);或者,於ASM/LB45 之爐管中,控制爐內溫度在780°C下,以低壓化學氣相沉積 法(LPCVD),沉積氣體採Si3N4 ,沉積厚度約1000A。 階段定義步驟一,採用TEL Clean Track MK-8進行光 阻劑塗覆及顯影,及G-線步進機(ASM PAS 2500/10 G-line Stepper)或Canon FPA 3000 i5 I-線步進機進行曝光微影。 階段蝕刻步驟一,採 TEL model TE-5000,以 CHF3,CF4, 1 Ar,〇2爲反應氣體,控制壓力在0.1 Torr至1.0 Torr之間, 且設備輸出功率&lt; 1000 W。 通道及源極/汲極之沉積步驟—,於ASM/LB45之爐管 中,控制爐內溫度在 620 °C下,以低壓化學氣相沉積法 (LPCVD ),沉積多晶矽 poly-Si 約 500A〜1000人;或在 550 °C 下沉積非晶石夕(amorphous Si)約 50〇A 〜ΙΟΟΟΑ 。 源極/汲極之離子植佈步驟一,(1 )製作η型電晶體, 採 Varian Ε220型植佈機,Ρ+—能量爲10〜15KeV, 劑量 I 爲lxlO15 cm·2 ; ( 2)製作p型電晶體,採 Varian E220型 植佈機,BF2+-能量爲10〜20KeV,劑量爲1 x 1 〇 15 cπΓ2 。 通道定義步驟―,採用TEL Clean Track ΜΚ-8進行光 阻劑塗覆及顯影,及 G-( ASM PAS 250 0/10 G-line Stepper) 或Canon FPA 3000 i5 I-線步進機進行曝光微影之步驟。 通道蝕刻步驟—,採LAM TCP 9400SE蝕刻機定義出 500人〜1000入之深度,係以Cl2,02,HBr, SF6爲反應氣體, 控制壓力在5〜20 mTorr,晶片溫度約65°C,且設備輸出功 12941,83 率,源功率:200〜4OOW,偏壓:0〜200W。 非晶矽通道之再結晶步驟一,包括非晶矽通道和汲極與 源極,分別以下列三種方式進行: (1 )採ASM/LB4 5爐管系統,於氮氣氛圍、600°C下 進行固態再結晶約24小時;或 (2) 於500°C〜7 50°C下,進行金屬誘發側向結晶(Metal Induced Lateral Crystallization),使用之退火方式可爲: (I) ASM/LB45 爐管系統;(II) RTA HEATPULSE 6 10 快速退 ®火爐;或 (3) 採 Exitech LPX210i Excimer Laser 進行準分子雷 射退火。 第二介電層之去除定義步驟一,採用TEL Clean Track MK-8進行光阻劑塗覆及顯影,及G- ( ASM PAS 2500/10 G-line Stepper)或 Canon FPA 3000 i5 I-線步進機進行曝光 微影之步驟。 第二介電層之蝕刻步驟—,採TEL model TE-5000蝕 ^ 刻,係以CHF3,CF4,Ar,02爲反應氣體,壓力約0.1 Torr 至1.0 Torr ,且設備功率&lt; 1 〇〇〇 W。 保護層沉積步驟—,採ASM/LB45爐管系統,於700 °C下,進行低壓化學氣相沉積(LPCVD TEOS )厚度約 500〜2000A 。 接觸電洞定義步驟—,採用TEL Clean Track MK-8進 行光阻劑塗覆及顯影,及G- ( ASM PAS 2500/1 0 G-line Stepper)或Canon FPA 3000 i5 I-線步進機進行曝光微影之 1294183 * ι 步驟。 接觸電洞開通步驟—,以Β·〇·Ε·蝕刻TEOS約 10〜20 秒,或TEL model TE-5 000進行,其操作條件爲:(1 )反 應氣體:CHF3,CF4, Ar,02 ; ( 2 )壓力:0·1 Torr &lt; pressure &lt; 1.0 T or r ; (3)功率:&lt; 1000W。 本發明已參考較佳具體實施例而敘述。熟悉此技藝者在 讀取此揭示後可了解不背離如上述或以下申請專利範圍之 本發明之範圍及精神之變化或修改。 【圖式簡單說明】 第1圖 係本發明之多晶矽奈米線場效電晶體之俯視圖 (a)、斜視圖(b)。 第2圖 係本發明之多晶砂奈米線製備過程之剖面示意 圖;該剖面係相對於第1 (a)圖中之A--B方向。 第3圖 係矽奈米線場效電晶體生物分子感測及活性調控 元件之光罩佈局示意圖。 第4圖 爲電場調控酵素活性示意圖,其中綠色分子表示已 被固定化於下電擊的酵素,當電場改變酵素的結 構,從而改變其生化活性,達到調控的目的。 第5圖 係本發明之仿生系統示意圖;(a)圖顯示仿生系統取 代(b y p a s s) 了一段有缺陷的生〇化調控機能;(b)圖 表示一仿生系統之動態感測與調控的配置。 第6圖 係根據本發明實施之三種態樣。 【主要元件符號說明】 0 1 閘極 02、04 汲極 -20- 1254183 03、05 源極 06 NW通道 07 基板 08 熱氧化層 09 CVD氧化層 10 多晶矽(蝕刻步驟) 11 階段高度(奈米線路) 12 金屬層 13 接觸層 14 多晶5夕層 15 n +或p +層 16 負載窗框 17 局部增強電場 18 人工感測元件 19 人工調控元件 20 生物反應物入口 21 1號奈米反應器 22 1號奈米感測元件 23 2號奈米反應益 24 2號奈米感測元件 25 生物產物出口 26 1號生物活性調控元件 27 2號生物活性調控元件 28 調控系統 2 1 1294183 29 下 閘 極 30 第 一 介 電 層 3 1 第 二 介 電 層 32 FET 奈 米 線路 33 生 物 接 受 器 34 上 閘 極 35 介 電 層The protective layer deposition step—using the ASM/LB45 furnace tube system, is performed at 700 ° C -14 - 1294183 for low pressure chemical vapor deposition (LPCVD TEOS) thickness of about 500~2000A. Contact hole definition step one, TEL Clean Track MK-8 for photoresist coating and development, and G- (ASM PAS 2500/10 G-line Stepper) or Canon FPA 3000 i5 I-line stepper for exposure The step of lithography. Contact hole opening step 1 is performed by BOE etching TEOS for about 10~20 seconds, or TEL model TE-5 000, and the operating conditions are: (1) reverse 1 gas · CHF3, CF4, Ar, 02; (2 Pressure: 0.1 Tori* <pressure &lt; 1.0 Torr; (3) Power: &lt; l〇〇〇W. &lt;Embodiment 2&gt; First dielectric layer deposition step one, in the furnace tube of ASM/LB45, the temperature in the furnace is controlled at 980 ° C, so that a thickness of about 10,000 people is deposited on the germanium wafer. The wet oxide layer (Wet Oxide) acts as a buried oxide layer (Buried Oxide). In the deposition step of the upper gate, in the furnace tube of ASM A-400 Vertical Furnace &gt; System, the n-type polysilicon is deposited on the buried oxide layer as the upper pole, forming the current site (I η - situ) Ρ + — Doped polycrystalline stone 1 about 1 〇〇〇 A 〇 upper gate definition step - TEL Clean Track MK-8 for photoresist coating and development, and G-line stepper (ASM PAS 2500/1 0 G-line Stepper) or Canon FPA 3000 i5+ I-line stepper for exposure lithography. Step 1 of the upper gate uranium engraving, LAM TCP 9400SE etching machine for gate etching, Cl2, 02, HBr, SF6 for the reaction gas, control pressure between 5~20 1294183 mTorr, · wafer temperature about 65 ° C, The source power is about 200 to 400 W, and the bias voltage is about 0 to 200 W. Step 1 of depositing the gate oxide layer, in the furnace tube of ASM/LB45 Furnace System, controlling the temperature of the furnace at 700 ° C, depositing a gate oxide layer with a thickness of about 1 〇〇 5 00 A by LPCVD TEOS method or Other types of dielectric layers. Channel and source/drain deposition steps—In the furnace tube of ASM/LB45, the furnace temperature is controlled at 620 °C, and polycrystalline silicon polysilicon is deposited by low pressure chemical vapor deposition (LPCVD). ~1000 people; or deposit amorphous silicon at about 550 °C about 50 〇A ~ ΙΟΟΟΑ. Source/drainage ion implantation step—(1) η-type transistor is fabricated, Varian Ε220 type planter is used, Ρ+-energy is 10~15KeV, dose is lxlO15 cm_2; (2) p-type electricity is made Crystal, using Varian E2 20 planter, BF2+-energy is 10~20KeV, the dose is lxlO15 cm·2. Channel definition step - with TEL Clean Track MK-8 for photoresist coating and development, and G-( ASM PAS 2500/10 G-line Stepper) or Canon FP A 3 000 i 5 I-line stepper The step of exposing lithography. Channel etching step 1, the LAM TCP 9400SE etching machine defines a depth of 500 to 1 000 A, with Cl2, 02, HBr, SF6 as the reaction gas, the control pressure is 5-20 mTorr, the wafer temperature is about 65 ° C, and Equipment output power, source power: 200~400W, bias ·· 〇~200W. The recrystallization step of the amorphous sand channel - including the amorphous sand channel and the drain and source, is performed in the following three ways: (1) The ASM/LB45 furnace tube system is used in a nitrogen atmosphere at 1,392,183 at 600 °C. Recrystallization in solid state for about 24 hours; or (2) Metal Induced Lateral Crystallization at 500 ° C to 7 50 ° C. The annealing method can be: (I) ASM/LB45 furnace tube System; (II) RTA HEATPULSE 610 rapid annealing furnace; or (3) excimer laser annealing with Exitech LPX210i Excimer Laser. In the first step of the deposition of the S layer, the A S M / L B 4 5 furnace tube system was used, and at a temperature of 700 ° C, a low pressure chemical vapor deposition (LPCVD TE0S) thickness of about 500 to 2000 A was performed. Contact hole definition step one, TEL Clean Track MK-8 for photoresist coating and development, and G- (ASM PAS 2500/10 G-line Stepper) or Canon FPA 3000 i5 L· line stepper for exposure The step of lithography. Contact hole opening step 1 is performed by BOE etching TEOS for about 10~20 seconds, or TEL model TE-5 000, and the operating conditions are: (1) counter gas: CHF3, CF4, Ar, 〇2; (2 Pressure: 0.1 Torr &lt; pressure &lt; 1.0 Torr; (3) Power: &lt; 1000 W. &lt;Example 3] The first dielectric layer is deposited in step 1. In the furnace tube of ASM/LB45, the temperature in the furnace is controlled at 980 ° C to deposit a layer of about 1000 people on the crucible wafer. The wet oxide layer (Wet Oxide) is used as the deposition step of the buried dielectric layer (Buried Oxide) and the second dielectric layer. Also in the furnace tube of ASN/LB45-17-1294183, the temperature in the furnace is controlled at 980 °C. Next, a wet oxide layer (Wet Oxide) having a thickness of about 1 沉积 is deposited on the buried oxide layer; or, in the furnace tube of ASM/LB45, the temperature in the furnace is controlled at 780 ° C to low pressure chemistry. Gas phase deposition (LPCVD), the deposition gas is Si3N4, and the deposition thickness is about 1000A. Stage definition step one, photoresist coating and development with TEL Clean Track MK-8, and G-line stepper (ASM PAS 2500/10 G-line Stepper) or Canon FPA 3000 i5 I-line stepper Perform exposure lithography. Step etch step one, using TEL model TE-5000, with CHF3, CF4, 1 Ar, 〇2 as the reaction gas, the control pressure is between 0.1 Torr and 1.0 Torr, and the output power of the device is &lt; 1000 W. Channel and source/drain deposition steps—In the furnace tube of ASM/LB45, the furnace temperature is controlled at 620 °C, and the polycrystalline silicon poly-Si is deposited by low pressure chemical vapor deposition (LPCVD). 1000 people; or deposit amorphous silicon at 50 °A ~ ΙΟΟΟΑ at 550 °C. Source/drainage ion implantation step one, (1) making η-type transistor, adopting Varian Ε220 type planting machine, Ρ+-energy is 10~15KeV, dose I is lxlO15 cm·2; (2) P-type transistor, using Varian E220 planting machine, BF2+-energy is 10~20KeV, the dose is 1 x 1 〇15 cπΓ2. Channel definition steps - photoresist coating and development with TEL Clean Track ΜΚ-8, and G-( ASM PAS 250 0/10 G-line Stepper) or Canon FPA 3000 i5 I-line stepper for exposure micro The steps of the shadow. Channel etching step—The LAM TCP 9400SE etching machine defines a depth of 500 to 1000, with Cl2, 02, HBr, and SF6 as the reaction gases, the control pressure is 5 to 20 mTorr, and the wafer temperature is about 65 °C. Equipment output power 12941, 83 rate, source power: 200~4OOW, bias: 0~200W. The recrystallization step 1 of the amorphous germanium channel, including the amorphous germanium channel and the drain and source, is performed in the following three ways: (1) ASM/LB4 5 furnace tube system is used, and the atmosphere is performed at 600 ° C in a nitrogen atmosphere. Recrystallization in solid state for about 24 hours; or (2) Metal Induced Lateral Crystallization at 500 ° C to 7 50 ° C. The annealing method can be used as follows: (I) ASM/LB45 furnace tube System; (II) RTA HEATPULSE 6 10 Fast Retreat® Furnace; or (3) Excimer laser annealing with Exitech LPX210i Excimer Laser. The second dielectric layer is removed by the first step, using TEL Clean Track MK-8 for photoresist coating and development, and G- ( ASM PAS 2500/10 G-line Stepper) or Canon FPA 3000 i5 I-line Steps to enter the machine for exposure lithography. The etching step of the second dielectric layer—using TEL model TE-5000 etching, using CHF3, CF4, Ar, 02 as the reaction gas, the pressure is about 0.1 Torr to 1.0 Torr, and the power of the device is &lt; 1 〇〇〇 W. The protective layer deposition step—using ASM/LB45 furnace tube system, at 700 °C, low pressure chemical vapor deposition (LPCVD TEOS) thickness of about 500~2000A. Contact hole definition steps—coating and developing photoresist with TEL Clean Track MK-8, and G- ( ASM PAS 2500/1 0 G-line Stepper) or Canon FPA 3000 i5 I-line stepper Exposure lithography 1941183 * ι steps. The contact hole opening step—by Β·〇·Ε·etching TEOS for about 10 to 20 seconds, or TEL model TE-5 000, the operating conditions are: (1) reaction gas: CHF3, CF4, Ar, 02; (2) Pressure: 0·1 Torr &lt; pressure &lt; 1.0 T or r ; (3) Power: &lt; 1000 W. The invention has been described with reference to the preferred embodiments. Variations or modifications of the scope and spirit of the invention as described above or in the following claims are apparent to those skilled in the art. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view (a) and a perspective view (b) of a polycrystalline silicon nano field field effect transistor of the present invention. Fig. 2 is a schematic cross-sectional view showing the preparation process of the polycrystalline nanowire of the present invention; the cross section is relative to the A--B direction in Fig. 1(a). Figure 3 Schematic diagram of the mask layout of the biomolecule sensing and activity control elements of the nanowire field effect transistor. Figure 4 is a schematic diagram of the activity of an electric field-regulated enzyme. The green molecule indicates the enzyme that has been immobilized on the electric shock. When the electric field changes the structure of the enzyme, it changes its biochemical activity and achieves the purpose of regulation. Figure 5 is a schematic diagram of a biomimetic system of the present invention; (a) shows a biomimetic system substitution (b y p a s s) for a defective biochemical regulation function; (b) a diagram showing the configuration of dynamic sensing and regulation of a biomimetic system. Figure 6 is a diagram showing three aspects of implementation in accordance with the present invention. [Main component symbol description] 0 1 Gate 02, 04 Bungee-20- 1254183 03, 05 Source 06 NW channel 07 Substrate 08 Thermal oxide layer 09 CVD oxide layer 10 Polysilicon (etching step) 11 Stage height (nano line) 12 metal layer 13 contact layer 14 polycrystalline 5 layer 15 n + or p + layer 16 load sash 17 local enhanced electric field 18 artificial sensing element 19 artificial regulation element 20 biological reactant inlet 21 1 nano reactor 22 No. 1 nano-sensing element 23 No. 2 nano-reaction benefit 24 No. 2 nanometer sensing element 25 biological product outlet 26 No. 1 biological activity control element 27 No. 2 biological activity control element 28 regulation system 2 1 1294183 29 lower gate 30 first dielectric layer 3 1 second dielectric layer 32 FET nano line 33 bioreceiver 34 upper gate 35 dielectric layer

Claims (1)

1294183 ♦ 4 十、申請專利範圍: 1 · 一種矽奈米線場效電晶體裝置,包括:一基板,於該基 板表面形成之一層熱氧化物,及於該熱氧化物層表面成 長之多晶矽閘極元件;其特徵在於多晶矽閘極元件因含 有奈米之邊襯而形成多晶矽奈米線通道,且此奈米線通 道係自我對準汲極與源極而形成的。 2.如申請專利範圍第1項之場效電晶體裝置,其中多晶矽 奈米線通道直徑可達20奈米。 ® 、, 3 · —種矽奈米線場效電晶體裝置之製造方法,步驟包括:(1) 提供一基板,包括矽晶圓;(2 )在該基板上沉積一層氧 化層以作爲遮蓋氧化物;(3)成長多晶矽並使形成閘極; (4)以化學沉積法沉積介電層當作閘極介電層;(5)沉積多 晶矽;(6)以乾蝕刻法產生多晶矽奈米線通道,並同時形 成汲極和源極。 4. 一種高靈敏度之奈米生物感測元件,利用金屬誘發側向 結晶(MILC)和準分子雷射退火(ELA)兩種方式,將非晶矽 ® 再結晶化,改善結晶特性,使其晶粒變大;其中大的晶 粒在奈米線中可視爲準單晶矽(quasi-single_crystal Si) 狀態,而使其電導特性大幅地提升。 5. 如申請專利範圍第4項之奈米生物感測元件,更包括利 用側閘(side-gate )來當作Vth的控制;其中改變側閘的 施加偏壓以調整多晶矽奈米線通道的Vth,進而調變感測 靈敏度。 6. 一種高靈敏度之奈米生物感測元件,其包括一基板’於 -23- 1294183 該基板表面形成之一層熱氧化物(thermal oxide ),及於 該熱氧化物層表‘面成長之多晶矽閘極元件;其中多晶矽 閘極元件因含有直徑約20奈米之邊襯而形成多晶矽奈米 線通道,而生物感測分子被固定化在此多晶矽的奈米線 表面,利用生物系統配對原理,達到高專一性與高靈敏 度的生物分子感測。 7. —種生物調控元件,係藉著如申請專利範圍第3項之矽 奈米線場效電晶體裝置之製造方法,利用電場來調控酵 P 素活性,並分析生物分子的活性與結構的關聯性,或改 變在奈米尺度範圍內的金屬離子濃度,進而調控酵素的 活性。 8. —種生化調控系統之製造方法,其係整合高靈敏度生物 感測元件與高效率的生化調控系統,包括: -通道的製作步驟;將以PDMS爲基板而製得流體通道, 然後再以電漿處理改變表面的特性; -奈米電子元件之製作步驟;將連結物接到該奈米元件 | 之表面,該表面有了 -NH2官能基,在預期不接連結物 的地方則以高分子保護著,將連結物分子選擇性地接 到作用的區域; -通道與奈米電子元件之接合步驟; -該接合通道與奈米電子元件之反應步驟;於37t下進 行流體中生物分子的反應、固著、偵測、沖洗、再固 著、偵測等循環;及 -在一個即時電偵測訊號的模式下,進行分子間作用的 機制並改進該系統之步驟。 -24-1294183 ♦ 4 X. Patent application scope: 1 · A nanowire field effect transistor device comprising: a substrate, a layer of thermal oxide formed on the surface of the substrate, and a polycrystalline gate grown on the surface of the thermal oxide layer A pole element; characterized in that the polysilicon gate element forms a polycrystalline nanowire channel by containing a nanoside liner, and the nanowire channel is formed by self-aligning the drain and the source. 2. The field effect transistor device of claim 1, wherein the polycrystalline silicon nanowire channel has a diameter of up to 20 nm. ® , , 3 · - A method for manufacturing a nanowire field effect transistor device, the steps comprising: (1) providing a substrate including a germanium wafer; and (2) depositing an oxide layer on the substrate for mask oxidation (3) growing polycrystalline germanium and forming a gate; (4) depositing a dielectric layer as a gate dielectric layer by chemical deposition; (5) depositing polycrystalline germanium; (6) producing polycrystalline germanium wire by dry etching Channels and simultaneously form bungee and source. 4. A highly sensitive nano-biosensing element that recrystallizes amorphous yttrium® by means of metal-induced lateral crystallization (MILC) and excimer laser annealing (ELA) to improve crystallization characteristics. The grain size becomes large; in which the large crystal grain can be regarded as a quasi-single_crystal Si state in the nanowire, and its conductivity characteristic is greatly improved. 5. The nano biosensor element of claim 4, which also includes the use of a side-gate as a control of Vth; wherein the bias of the side gate is changed to adjust the channel of the polycrystalline silicon nanowire Vth, which in turn modulates the sensitivity of the sensing. 6. A high-sensitivity nano-biosensing element comprising a substrate '23- 1294183' on the surface of the substrate to form a layer of thermal oxide, and a polycrystalline germanium grown on the surface of the thermal oxide layer a gate element; wherein the polysilicon gate element forms a polycrystalline nanowire channel by containing a side liner having a diameter of about 20 nm, and the biosensing molecule is immobilized on the surface of the nanowire of the polycrystalline silicon, using the biological system pairing principle, Achieve high specificity and high sensitivity biomolecular sensing. 7. A biological control element, which utilizes an electric field to regulate the activity of the fermented P and analyzes the activity and structure of the biomolecule by the method of manufacturing the nanowire field effect transistor device as claimed in the third paragraph of the patent application. Correlation, or change the concentration of metal ions in the nanometer scale, thereby regulating the activity of the enzyme. 8. A method for manufacturing a biochemical control system, which integrates a high-sensitivity biosensing element and a highly efficient biochemical control system, including: - a channel fabrication step; a PDMS substrate is used to prepare a fluid channel, and then The plasma treatment changes the characteristics of the surface; - the manufacturing step of the nanoelectronic component; the connection of the linker to the surface of the nano component|, the surface has a -NH2 functional group, and is high in the place where the joint is not expected to be connected Molecular protection, selective attachment of the linker molecule to the active region; - bonding step of the channel to the nanoelectronic component; - reaction step of the bonding channel with the nanoelectronic component; performing biomolecule in the fluid at 37t Reaction, fixation, detection, rinsing, re-fixing, detection, etc.; and - the mechanism of intermolecular interaction and the steps to improve the system in a mode of instant electrical detection. -twenty four-
TW094129432A 2005-08-29 2005-08-29 Nano-Wire FET and Nano-Wire biosensor/regulator, and manufacturing method thereof TW200709413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW094129432A TW200709413A (en) 2005-08-29 2005-08-29 Nano-Wire FET and Nano-Wire biosensor/regulator, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094129432A TW200709413A (en) 2005-08-29 2005-08-29 Nano-Wire FET and Nano-Wire biosensor/regulator, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200709413A TW200709413A (en) 2007-03-01
TWI294183B true TWI294183B (en) 2008-03-01

Family

ID=45068084

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094129432A TW200709413A (en) 2005-08-29 2005-08-29 Nano-Wire FET and Nano-Wire biosensor/regulator, and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW200709413A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407567B (en) * 2009-12-09 2013-09-01
TWI493659B (en) * 2010-04-13 2015-07-21 Ibm Nanowire circuits in matched devices
US10381495B2 (en) 2015-08-04 2019-08-13 National Chiao Tung University Photodetecting device and method of using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI637903B (en) * 2016-10-19 2018-10-11 神鉦生技股份有限公司 Biological sensing system
CN110018207A (en) * 2019-05-10 2019-07-16 北方工业大学 biomolecule detection method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407567B (en) * 2009-12-09 2013-09-01
TWI493659B (en) * 2010-04-13 2015-07-21 Ibm Nanowire circuits in matched devices
US10381495B2 (en) 2015-08-04 2019-08-13 National Chiao Tung University Photodetecting device and method of using the same
US10770600B2 (en) 2015-08-04 2020-09-08 National Chiao Tung University Method of using the photodetecting device

Also Published As

Publication number Publication date
TW200709413A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
Li et al. Advances in nanowire transistor‐based biosensors
US8486287B2 (en) Methods for fabrication of positional and compositionally controlled nanostructures on substrate
US7238594B2 (en) Controlled nanowire growth in permanent, integrated nano-templates and methods of fabricating sensor and transducer structures
Hsiao et al. Novel poly-silicon nanowire field effect transistor for biosensing application
Wu et al. Synthesis and electrical and mechanical properties of silicon and germanium nanowires
Tong et al. Novel top-down wafer-scale fabrication of single crystal silicon nanowires
TWI294183B (en)
US12025582B2 (en) Floating gate semiconductor nanostructure-based biosensor and method for manufacturing same
KR101058369B1 (en) Biosensor using nano dot and its manufacturing method
JP2004085392A (en) Fet chemical sensor using carbon element linear structure
KR100980738B1 (en) Method of manufacturing semiconductor nanowire sensor devices and semiconductor nanowire sensor devices manufactured by the method
Hazut et al. Parallel p–n junctions across nanowires by one-step ex situ doping
JP2010511888A (en) Biosensor and manufacturing method thereof
US7927887B2 (en) Method of fabricating a dielectric-modulated field effect transistor comprising a biomolecules layer formed in a space where a sacrificial layer has been removed
Kim et al. Multiplexed silicon nanowire tunnel FET-based biosensors with optimized multi-sensing currents
US20120289029A1 (en) Method of controlling amount of adsorbed carbon nanotubes and method of fabricating carbon nanotube device
Adam et al. Novel approaches in fabrication and integration of nanowire for micro/nano systems
CN107328838A (en) A kind of electronic biosensor and preparation method based on bigrid single-electronic transistor
Lee et al. Well controlled assembly of silicon nanowires by nanowire transfer method
Ramadan et al. Fully controllable silicon nanowire fabricated using optical lithography and orientation dependent oxidation
Kumar et al. Scalable fabrication and electrical contact formation process for vertically oriented silicon nanopillars in trenches
Yu et al. Nanogap Array Fabrication Using Doubly Clamped Freestanding Silicon Nanowires and Angle Evaporations
Yau IC Compatible Wafer Level Fabrication of Silicon Nanowire Field Effect Transistors for Biosensing Applications
Zhang et al. Advances in nanodevices and nanofabrication: selected publications from Symposium of Nanodevices and Nanofabrication in ICMAT2011
Kiani et al. Carbon Materials Based Ion Sensitive Field Effect Transistor (ISFET): The Emerging Potentials of Nanostructured Carbon-Based ISFET with High Sensitivity