TWI293618B - A removable system on a mother substrate - Google Patents

A removable system on a mother substrate Download PDF

Info

Publication number
TWI293618B
TWI293618B TW93134092A TW93134092A TWI293618B TW I293618 B TWI293618 B TW I293618B TW 93134092 A TW93134092 A TW 93134092A TW 93134092 A TW93134092 A TW 93134092A TW I293618 B TWI293618 B TW I293618B
Authority
TW
Taiwan
Prior art keywords
sacrificial layer
substrate
layer
covering
sacrificial
Prior art date
Application number
TW93134092A
Other languages
Chinese (zh)
Other versions
TW200523205A (en
Inventor
Stephen J Fonash
Handong Li
Youngchul Lee
Joseph D Cuiffi
Daniel J Hayes
Original Assignee
Penn State Res Found
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penn State Res Found filed Critical Penn State Res Found
Publication of TW200523205A publication Critical patent/TW200523205A/en
Application granted granted Critical
Publication of TWI293618B publication Critical patent/TWI293618B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]

Description

1293618 九、發明說明: 【發明所屬戈^技術領域】 政府權利 美國政府依No. S33615-98-l_5164 DARPA授權享有本發 5 明的權利。 優先權主張 本申請案依35 U.S.C. § 119條款,請求2002年1月11曰提 出之No. 60/347,850,60/348,259,60/348,258及2002年9月 4 日提 出之Ν〇·60/408,235等各暫時申請案的權益,該各前案的内容 10 併此附送。 發明領域 本發明係有關於使用犧牲層在一母基材上製造各系統, 再由該母基材上分離該等系統的技術。更具體而言,本發明 係有關以高溫處理來穩定犧牲層及製造高性能基材的技術。 15 【先前技術】 發明背景 目前針對在絕緣基材及耐用且重量輕又可撓的基材,例 如金屬、陶瓷、玻璃及塑膠薄片上來製成之微電子、光電子、 光生伏打、生物系統、光學系統、及微機電系統等,乃具有 2〇 可觀且逐增的需求。針對该專系統被設在甚大基材上例如顯 示之用途,亦有極大需求。在該等基材上來製造高性能系統 係非常富有挑戰性’因為該等基材會具有難以接受的表面粗 度,並會在製造流程中時常呈現熱及機械的不穩定性。此外, 在該等系統要製設於大基材的情況下,其刻製工具極為昂貴 1293618 或根本不存在。且,直接在非習用基材上來製設高品質的微 電子、光電子、生物系統、光生伏打、光學系統、及微機電 系統等’將會受到該基材本身所能承受的最高處理溫度之限 制。由於此等限制,令其事實上不可能達到如同在一般習用 5 基材如石夕晶圓上可見的性能。 企圖解決此問題的許多研究曾使用母基材及分離層來構 建元件和系統,嗣再將之由母基材分離而佈設於一永久基材 上。有許多的團隊曾致力於分離技術的研發,但都在其之可 利用性上有所限制。 10 Shimoda及Inoue等人(見T· Shimoda,S. Inoue之“Surface free technology laser annealing (SUFTLA),,,International Electron Device Meeting (IEDM) Tech. Dig., 2289-2292 (1999) 曾在一物理性分離研究中使用一a-Si:H來作為犧牲(釋離) 層。但該方法不能使用於400°C以上溫度的製程中(因為氫會 15 從a-Si:H中逸出)。該方法亦需要有透明的母基材以供雷射束 射入0 而 T.J. Rinke 等人(見 T.J· Rinke,R.B. Bergmann,及 J.H. Werner 等人 “Quasi-monocrystalline Silicon for Thin Film1293618 IX. Invention Description: [Inventions belong to Ge ^Technical Fields] Government Rights The US Government is entitled to the rights of this document in accordance with No. S33615-98-l_5164 DARPA. PRIORITY CLAIM This application claims pursuant to 35 USC § 119, No. 60/347,850, 60/348,259, 60/348,258, filed on January 4, 2002 and Ν〇60/408,235, dated September 4, 2002 For the rights and interests of each temporary application, the content of each of the previous cases 10 is attached. FIELD OF THE INVENTION The present invention relates to techniques for fabricating systems on a mother substrate using a sacrificial layer and separating the systems from the parent substrate. More specifically, the present invention relates to techniques for stabilizing a sacrificial layer and manufacturing a high performance substrate by high temperature processing. 15 [Prior Art] Background of the Invention Microelectronics, optoelectronics, photovoltaics, biological systems, and the like, which are currently fabricated on insulating substrates and durable, lightweight and flexible substrates such as metals, ceramics, glass and plastic sheets, Optical systems, and MEMS, etc., have a considerable and increasing demand. There is also a great need for the use of the system on a very large substrate, such as display. The manufacture of high performance systems on such substrates is very challenging' because these substrates can have unacceptable surface roughness and often exhibit thermal and mechanical instability during the manufacturing process. Moreover, in the case where such systems are to be fabricated on large substrates, the engraving tool is extremely expensive 1293618 or does not exist at all. Moreover, the manufacture of high-quality microelectronics, optoelectronics, biological systems, photovoltaics, optical systems, and MEMS directly on non-practical substrates will be subject to the highest processing temperatures that the substrate itself can withstand. limit. Due to these limitations, it is virtually impossible to achieve performance as seen on a conventional 5 substrate such as a stone wafer. Many studies attempting to solve this problem have used the parent substrate and the separation layer to construct the components and systems, which are then separated from the parent substrate and placed on a permanent substrate. There are many teams that have worked on the development of separation technologies, but they all have limitations in their availability. 10 Shimoda and Inoue et al. (see T. Shimoda, S. Inoue, “Surface free technology laser annealing (SUFTLA),,, International Electron Device Meeting (IEDM) Tech. Dig., 2289-2292 (1999) A-Si:H was used as a sacrificial (release) layer in the separation study. However, this method cannot be used in processes at temperatures above 400 °C (because hydrogen 15 will escape from a-Si:H). The method also requires a transparent mother substrate for the laser beam to enter 0 and TJ Rinke et al. (see TJ Rinke, RB Bergmann, and JH Werner et al. "Quasi-monocrystalline Silicon for Thin Film".

Devices” Appl· Phys· A 68 ρρ· 705〜707 (1999))則有另一種分 20 離方法。該方法係使用電化學蝕刻的矽來作為分離層,但其 僅能使用矽來作為母基材,且該母基材在需要用來造成該分 離層的電化學蝕刻步驟中會被部份地損耗。 以往亦曾有許多的團隊使用矽晶圓作為母基材而針對該 所謂的SOI技術來進行可觀的研究。該等研究内容乃各依其 1293618 特性而被稱為 SIMOX,Bonding/thinning,或Smart-cut。但其 尺寸及材料皆具有單晶矽晶圓的限制(例請參見MRS Bulletin 的 “Material Research Society” Volume 23, Number 12, 1998年 12月)。 5 Asano及Kinoshita亦曾研究一種分離方法來將TFTs設在 一塑膠基材上。但此方法需要使用玻璃作為母基材,然後將 該玻璃蝕刻(溶解)除掉以便釋離。由於其使用低溫玻璃,故 «亥方法會受限於可供處理的溫度範圍;且當然,該等母板不 能再使用。 1〇 其它的分離技術亦包括分離層的機械式分離,如以下各 專利前案所揭:No. 5,811,348、6,486,041、6,214,701、 6,225,192、6,159,824、5,854,123等美國專利,及〇£ 198 41 430Devices” Appl· Phys· A 68 ρρ· 705~707 (1999)) has another method of separating 20 degrees. This method uses electrochemically etched tantalum as the separation layer, but it can only use germanium as the mother substrate. And the mother substrate is partially lost in the electrochemical etching step required to cause the separation layer. In the past, many teams used silicon wafers as the mother substrate for the so-called SOI technology. To conduct considerable research. These studies are called SIMOX, Bonding/thinning, or Smart-cut according to their 1293618 characteristics. However, their size and materials are limited by single crystal germanium wafers (see MRS for examples). Bulletin's "Material Research Society" Volume 23, Number 12, December 1998) 5 Asano and Kinoshita have also studied a separation method to place TFTs on a plastic substrate. However, this method requires the use of glass as the parent substrate. The glass is then etched (dissolved) to remove it. Since it uses low temperature glass, the method is limited to the temperature range available for processing; and of course, the motherboards can no longer be used. Other separation techniques also include mechanical separation of the separation layers, as disclosed in the following patents: Nos. 5,811,348, 6,486,041, 6,214,701, 6,225,192, 6,159,824, 5,854,123, etc., and 〇£ 198 41 430

Al、DE 00993 029 A3、EP 0 797 258等各專利案。藉一分離 層的剝落來釋離則揭露於No· 6,372,608美國專利中。 15 儘管曾有過這麼多對分離層的研發成果,但迄今針對能 在非一般基材上來輕易地製成該等系統及裝置的技術仍舊有 其需要。本發明乃專門為回應滿足上述在非傳統基材上來製 造尚性能糸統的需求’而提供下述的方法:使用一穩定化的 犧牲層在一“母”基材上之構建層中製設所需的系統,將該系 20統由母基材釋離,並同時控制任何在該製造/釋離程序中所產 生的應力。本發明可供大面積、高品質的系統被製設在可承 受咼溫的母板上,例如熔凝的二氧化矽、石英或矽片,然後 再移轉至非傳統性的,甚至不能承受高溫的基材上。該移轉 的系統亦可被包封來改善堅固性、機械應力阻抗性、及環境 1293618 穩定性。若最後定位係在一撓性基材上,該最終結構的系統 則可被設在或靠近中立彎曲平面上,俾使該最終結構的任何 撓曲所產生的機械應力能減到最小。若在極大的最終基材之 情況下,則所有的刻製問題將可用併組方式來克服。於本發 5 明的另一變化例中,其最終基材亦可在分離之前被設置在該 系統上,而來免除前述移轉至該最終基材上的步驟。 【發明内容】 發明概要 本發明係有關在一母基材上製設一可移除系統的方法。 10 該方法係在一母基板上沈積一高表面體積比的犧牲層,並藉 a)除掉該犧牲層内和其上的揮發性化學物,及/或b)修正該層 的表面,而來穩定化談犧牲層,再以一覆蓋介質來覆設於該 犧牲層上,嗣於該覆蓋介質上製成一系統,及提供貫孔來接 近該犧牲層。較好是,該高表面材料係為一柱狀孔隙膜,微 15 球或奈米微粒。在製成該系統之後,本發明的方法亦可敷設 一頂層於該系統上來形成一包封系統。在本發明之一方法 中,該系統的曝露表面亦可被處理而來加強一頂層對該系統 表面的接合。本發明的方法亦包含由該母基材除掉該犧牲層 來釋開該系統的步驟。 20 在另一實施例中,本發明的方法亦包括,在該製造步驟 之時或者之後,但在敷設頂層之前,並在提供任何頂部貫孔 之前,進行以下各步驟:選擇性地除掉該系統和覆蓋層的一 部份來形成空隙區以圍限一島塊陣列,其係由元件、結構、 或系統與覆蓋層區塊等所組成,及以一犧牲材料來選擇性地 1293618 填滿該圍限島塊的空隙區域。在該等方法中,該犧牲材料及 高表面體積比的犧牲層皆會被除去,俾使該系統能由母基材 釋離。 本發明亦有關一種在母基材上製造一犧牲釋離層的方 5 法。在本方法中,一高表面體積比的犧牲層會被沈積在一母 基材上,且該犧牲層會被藉:a)除掉該犧牲層中或其上的揮 發性化學物,及/或b)修正該層的表面,而來穩定化。該方法 亦包括以一覆蓋介質來覆蓋在該犧牲層上。 在另一實施例中,本發明的方法亦包括以下步驟:在釋 10 離的系統之該覆蓋材料側敷設一膜層來形成一種結構,其中 該系統係大致位於一橈曲應力減少的中立平面中。 本發明亦有關於由上述方法所製成的系統。 圖式簡單說明 第1圖示出以一適當的塗層技術在一硬層且平滑表面的 15 母基材上沈積一犧牲層; 第2圖示出在犧牲層上覆設一覆蓋層; 第3圖示出在該覆蓋層上製成一功能系統; 第4圖示出蝕刻出包圍該等功能系統構件的溝槽深入至 該第一犧牲層,並藉習知技術例如頂面削除(lift-off)法來以第 20 二犧牲材料填滿該等溝槽; 第5a(截面)圖及5b(頂視)圖乃示出一聚合物層的覆設及 貫孔的形成; 第6a(截面)圖及6b(頂視)圖乃示出第二犧牲材料被去除; 第7圖示出該犧牲層被去除而在一聚合物基材上製成一 1293618 系統如第8圖所示; 第8a圖為本發明之分離系統的一例; 第8b圖示出一實際的分離系統。在本例中,TFTs元件係 具有一撓性的塑膠最終基材; 5 第9圖示出本發明用來製成一“智慧電路板”的應用,其含 有例如光學、光電子及電子元件等各種構件; 第10(a)圖示出一凹溝圖案設在一硬質且光滑的基板(母 基板)上,例如石夕片、石英、溶凝的二氧化石夕、金屬、片材, 或玻璃板上, 10 第10(b)圖示出犧牲層的沈積,其最好係以一不均一的薄 膜塗層來形成; 第10(c)圖示出完成的犧牲層,並示出該凹溝圖案變成封 閉的微通道結構; 第10(d)圖示出一覆蓋材料的沈積,其可保護該犧牲層及 15 系統元件,以免遭受在釋離處理時底下之釋離層產生的化學 反應所影響; 第10(e)圖示出在該母基材上之通道結構的覆蓋層上來 製成習知的系統元件; 第10(f)圖示出使用旋塗法、CVD法、喷塗法、或任何其 20 它適當的技術,來沈積或塗設一聚合物(塑膠)膜; 第10(g)圖示出該系統包括該塑膠膜的釋離(分開),其係 將適當的化學或反應氣體供入經由該等微通道犧牲地溶解該 釋離層而來完成; 第11 a圖為一種被沈積的分離層材料之實例,其能符合表 10 1293618 一的所有要件,該層為一沈積的柱孔矽材料。此材料會被用 來作為製成第8b圖之分離系統的分離層; 第lib圖為一沈積分離層的實例,其係由共價結合於基材 的二氧化矽奈米微粒所形成; 5 第12圖示出本發明使用微粒來作為犧牲層的方法; 第13a與13b圖示出使用微粒來作為犧牲層的方法,其中 該母基材含有通道式貫孔以接近該犧牲層; 第14圖示出所沈積的柱狀孔隙網路矽; 第15圖為該薄膜在覆蓋及高溫處理後的狀況,示出該薄 10 膜仍保有其某些結構質地和多孔性。 【實施方式3 較佳實施例之詳細說明 本發明係有關高性能系統的製造,該等系統包括單一裝 置或7L件,或多數裝置或元件的組合,例如電晶體、二極體、 15電子元件、化學元件、生物元件、生化元件、流體元件、微 機電元件、感測器、燃料電池、光電子元件、光生伏打電池、 光學結構的微f子元件、顯示H、或電路㈣、統等等。該等 化學元件、生物元件、生化元件乃包括但不限於電抗器。使 用本發明的方法,該等系統亦可被製設於非習用基材上例如 20撓性的,非平面的,或非常大面積的基材等。本發明的方法 主要疋在一母基材上製造或構建該系統,然後釋開含有該所 要系統的料層。該系統係可在釋離之後被移轉至最終基材, 或者該最終基材亦可在該系統釋離之前被以某種方法例如黏 接、沈積或旋塗等來附設在該系統上。本發明的方法亦可被 1293618 用來製造一單系統或多系統。本發明係利用犧牲膜來由一硬 質的“母”基材上分離該系統,該母基材最好可以再使用。分 離層的使用及製造元件和系統等之技術,曾被揭於已公開的 美國專利申請案2002/0020053 A1中,該案内容併此附送。本 5 發明係使用一高表面體積比的犧牲層,並藉穩定化及/或蔽護 該犧牲層而來改良目前既知的方法。本發明亦揭露一種手段 可藉後續的包封而來進一步加強系統的機械及環境耐用性。 本發明的方法具有以下優點:(1)使該最終基材能完全隔 絕於該系統製程中的熱處理,及幾乎所有的處理歷程,(2)能 10 夠使用任何的最終基材,包括塑膠、金屬及玻璃薄片等,(3) 能藉著形成包圍系統構件的應力消釋區域,並同時或順序地 由該母基板釋離該系統,而來減少機械應力問題,(4)若需要 較大的最終基材,則可拼鋪組合,(5)容許該系統在分離之後 移轉至一最終基材,或容許該最終基材在該糸統分離之前先 15 被附設,(6)能夠在移轉時或之後來進一步包封以加強機械及 環境耐用性,(7)容許吸熱器或作動流散熱器被内建在該系統 /最終基材中’及(8)容許該糸統被設在靠近最終基材的應力中 立平面處,以減少任何基材撓曲的作用。 本發明係有關在一母基材上來製成可移除系統的方法。 20 概括而言,本發明的方法包含以下步驟: 在一母基材上沈積一高表面體積比的犧牲層; 藉1)除掉在該犧牲層中及其上的揮發性化學物,及/或2) 修正該層的表面,而來穩定化該犧牲層; 以一覆蓋介質來覆蓋該犧牲層的表面; 12 1293618 在該覆蓋介質上來製成一系統;及 製成貫孔來接近該犧牲層。 本發明的方法亦包括除掉該犧牲層而由母基材釋開該系 統的步驟。本發明之方法的其它態樣將說明如下。亦如後所 5 述,該系統嗣可被附設於任何種類的基材。 本發明的另一實施例係有關在一母基板上製設一犧牲釋 離層的方法。該方法係在一母基材上沈積一高表面體積比的 犧牲層,並藉a)除掉在該犧牲層中及其上的揮發性化學物, 及/或b)修正該層表面,而來穩定化該犧牲層。至於其它實施 10 例的方法,亦得以一覆蓋介質來覆設在該犧牲層上。 該“母”基材能在製造過程中對該等元件提供機械及溫度 穩定性。此基材應具有機械穩定性以供執持移送,及在高溫 下的溫度穩定性,和匹配該等元件所用材料的膨脹係數。任 何習知的硬質光滑基材皆可被選擇作為母基材,只要具有光 15 滑表面及微電子製程的適配性。該母基材的材料選擇包括但 不限於半導體(如矽晶圓或薄片),玻璃包括特製玻璃(如 Corning 1737等),熔凝的二氧化矽,石英,陶瓷(如氧化鋁), 及金屬(如鋼)等。此母基材係最好能供再使用,且在其表面 上可設有或不設置一覆蓋層。該母基材亦可在每次使用時再 20 重新覆層。 本發明的方法係使用穩定化的高表面體積比的犧牲層, 其可容許高溫處理一若需要該等處理時一以供製成所述的系 統。一系統或在一系統内之特定元件的製造,係可使用該領 域中的習知技術來完成。該犧牲層係存在於母基材與該系統 13 1293618 之間。構建在母基材上的結構會罩覆該功能系統。該等功能 系統係由所須之構成各系統、元件、裝置和互接物的材料組 合而來製成(例如沈積及蝕刻)。當需要該系統製造之高溫處 理的完整調適性時,該犧牲層應具有以下表一所列之一或多 5 種特性: <表一:犧牲層要件> △能承受高處理溫度(T< 1200°C)。 △當高溫處理時不會擴散至一太大程度。 △當高溫處理時不會負面地化學反應至任何可觀程度。 10 △能承受處理的化學物或能與處理化學物相容而被保護。 △在去除時不會產生太多的氣體生成物。 △在處理時不會造成太大的應力問題。 △能被不會影響該系統結構的化學/物理攻擊來除去。此亦 可藉選擇化學攻擊的接近路徑之位置,或阻隔層的設計,或 15 其某些組合而來達成。 △能容許攻擊化學物之橫向傳輸來形成較均整的分離。 △具有高表面體積比的結構俾加強傳輸及去除能力。 △若具有高表面體積比之結構,此特徵必須在處理進行中 能夠維持。 20 △能夠被沈積而使母基板可輕易再使用。 該犧牲層係使用一高表面積對體積比的材料來製成。在 一實施例中,該犧牲層係為一柱狀孔隙膜。一般該柱狀孔隙 膜係為一半導體材料。較好是,該柱狀孔隙膜係為由矽、二 氧化矽、鍺、氧化鍺、矽合金如SiGe、SiGeC等所製成的薄 14 1293618 膜。該薄膜亦可包含氫、氣、或氟。美國專利No. 6,399,177B1 乙案中有揭露該等薄膜的沈積技術,併此附送提供參考。一 柱狀孔隙石夕膜並不像一般習用的多孔石夕,在沈積時並不用電 化學蝕刻’其具有規則一致且可控制的柱狀孔隙結構,而矽 5 會滲入該等孔隙中。柱狀孔隙網路矽犧牲層曾被揭於已公開 的美國專利申請案No· 2002/ 0020053 A1中。使用低溫的電漿 沈積製法可使材料被製設在各種的基材上。由於犧牲層柱狀 孔隙網路矽會具有較快的蝕刻速率,即使蝕刻係經由較小尺 寸的濕蝕刻劑通孔來進行時。該柱狀孔隙網路矽膜的開孔區 10 域可在去除該犧牲層時,容許蝕刻劑和反應生成物的快速流 通,且該快速的犧牲層蝕刻會提升整體製程的可靠性。此外, 其較快的蝕刻速率能在薄覆蓋層内造成細微結構。其它有關 使用具有柱狀孔隙矽網路的犧牲層之例子,曾被揭於:“A novel fabrication technology for Si TFTs on flexible 15 substrates55, Y. Lee, S. Bae and S. Fonash, ECS Extended Abstracts,Electrochemical Society meeting, Oct·,2000, pg 791; “Flexible display enabling technology’’,S. Wagner, S· Fonash,T. Jackson and J. Sturm,Cockpit Displays VIII: 20 Displays for Defense Applications,Proc. SPIE Vol· 4362, p226-244, Sep·,2001;Al, DE 00993 029 A3, EP 0 797 258 and other patents. Dissociation by the peeling of a separate layer is disclosed in U.S. Patent No. 6,372,608. 15 Although there have been so many research and developments on separation layers, there is still a need for technologies that can easily make such systems and devices on non-general substrates. The present invention is directed to providing a method for producing a performance layer on a non-conventional substrate by using a stabilized sacrificial layer in a build layer on a "mother" substrate. The desired system is to release the system from the parent substrate and simultaneously control any stresses generated during the manufacturing/release process. The invention can be used for large-area, high-quality systems on a motherboard that can withstand temperature, such as fused ceria, quartz or sputum, and then transferred to non-traditional or even unbearable On a high temperature substrate. The transferred system can also be encapsulated to improve robustness, mechanical stress resistance, and environmental 1293618 stability. If the final positioning is on a flexible substrate, the system of the final structure can be placed on or near the neutral bending plane to minimize the mechanical stresses generated by any deflection of the final structure. In the case of a very large final substrate, all engraving problems can be overcome in a combined manner. In another variation of the present invention, the final substrate may also be disposed on the system prior to separation to eliminate the aforementioned step of transferring to the final substrate. SUMMARY OF THE INVENTION The present invention is directed to a method of making a removable system on a parent substrate. 10 the method of depositing a high surface-to-volume ratio sacrificial layer on a mother substrate by a) removing volatile chemicals in and on the sacrificial layer, and/or b) modifying the surface of the layer. To stabilize the sacrificial layer, and then cover the sacrificial layer with a covering medium, form a system on the covering medium, and provide a through hole to access the sacrificial layer. Preferably, the high surface material is a columnar pore film, micro 15 spheres or nanoparticles. After the system is formed, the method of the present invention can also be applied to the system to form an encapsulation system. In one method of the invention, the exposed surface of the system can also be treated to enhance the bonding of a top layer to the surface of the system. The method of the present invention also includes the step of removing the sacrificial layer from the parent substrate to release the system. In another embodiment, the method of the present invention also includes the following steps: at or after the manufacturing step, but prior to applying the top layer, and prior to providing any top through holes: selectively removing the The system and a portion of the cover layer form a void region to enclose an array of island blocks consisting of components, structures, or systems and overlay blocks, and is selectively filled with a sacrificial material 1293618 The void area of the fence island block. In such methods, the sacrificial material and the sacrificial layer of high surface to volume ratio are removed to allow the system to be released from the parent substrate. The invention also relates to a method of making a sacrificial release layer on a parent substrate. In the method, a high surface-to-volume ratio sacrificial layer is deposited on a mother substrate, and the sacrificial layer is borrowed: a) removing volatile chemicals in or on the sacrificial layer, and/ Or b) correct the surface of the layer to stabilize it. The method also includes overlying the sacrificial layer with a blanket dielectric. In another embodiment, the method of the present invention also includes the steps of: laying a film on the side of the covering material of the system for releasing 10 to form a structure, wherein the system is substantially in a neutral plane with reduced tortuous stress in. The invention also relates to a system made by the above method. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a sacrificial layer deposited on a hard substrate and a smooth surface of a 15 mother substrate by a suitable coating technique; Figure 2 shows a coating layer overlying the sacrificial layer; 3 illustrates the creation of a functional system on the cover layer; FIG. 4 illustrates the etching of the trenches surrounding the functional system components deep into the first sacrificial layer, and by conventional techniques such as top surface removal (lift) The -off method fills the trenches with the 20th sacrificial material; the 5a (cross-sectional) and 5b (top) views show the coating of a polymer layer and the formation of through-holes; 6a ( The cross-sectional view and the 6b (top view) view show that the second sacrificial material is removed; FIG. 7 shows that the sacrificial layer is removed and a 1293618 system is formed on a polymer substrate as shown in FIG. 8; Figure 8a is an example of a separation system of the present invention; Figure 8b shows an actual separation system. In this example, the TFTs element has a flexible plastic final substrate; 5 Figure 9 illustrates an application of the present invention for making a "smart circuit board" containing various optical, optoelectronic, and electronic components, for example. Member 10; (a) shows a groove pattern on a hard and smooth substrate (mother substrate), such as stone tablets, quartz, dissolved silica dioxide, metal, sheet, or glass On the board, 10, Figure 10(b) shows the deposition of the sacrificial layer, which is preferably formed with a non-uniform thin film coating; Figure 10(c) shows the completed sacrificial layer and shows the recess The groove pattern becomes a closed microchannel structure; Figure 10(d) shows a deposition of a cover material that protects the sacrificial layer and the 15 system components from chemical reactions occurring under the release layer during release treatment Influenced; Figure 10(e) shows a conventional system component on a cover layer of a channel structure on the mother substrate; and Figure 10(f) shows a spin coating method, a CVD method, and a spray coating. Method, or any of its 20 appropriate techniques, to deposit or coat a polymer (plastic) film; 10(g) illustrates that the system includes the release (separation) of the plastic film, which is accomplished by feeding a suitable chemical or reactive gas through the microchannels to sacrificially dissolve the release layer; The figure is an example of a deposited separation layer material that meets all of the requirements of Table 10 1293618, which is a deposited column aperture material. This material will be used as a separation layer for the separation system of Figure 8b; the lib diagram is an example of a deposition separation layer formed by cerium oxide nanoparticles covalently bonded to a substrate; Figure 12 shows a method of using the microparticles as a sacrificial layer in the present invention; FIGS. 13a and 13b illustrate a method of using microparticles as a sacrificial layer, wherein the mother substrate contains a channel-type through-hole to access the sacrificial layer; The figure shows the columnar pore network 沉积 deposited; Fig. 15 shows the condition of the film after covering and high temperature treatment, showing that the thin film still retains some of its structural texture and porosity. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to the manufacture of high performance systems comprising a single device or a 7L device, or a combination of a plurality of devices or components, such as a transistor, a diode, a 15 electronic component. , chemical components, biological components, biochemical components, fluid components, microelectromechanical components, sensors, fuel cells, optoelectronic components, photovoltaic cells, micro-f sub-components of optical structures, display H, or circuits (4), etc. . Such chemical, biological, and biochemical elements include, but are not limited to, reactors. Using the method of the present invention, such systems can also be fabricated on non-practical substrates such as 20 flexible, non-planar, or very large area substrates. The method of the present invention primarily produces or builds the system on a parent substrate and then releases the layer containing the desired system. The system can be transferred to the final substrate after release, or the final substrate can be attached to the system by some means such as bonding, deposition or spin coating prior to release of the system. The method of the present invention can also be used by 1293618 to make a single system or multiple systems. The present invention utilizes a sacrificial film to separate the system from a rigid "mother" substrate which is preferably reusable. The use of the separation layer and the fabrication of components and systems, etc., have been disclosed in the published U.S. Patent Application Serial No. 2002/0020053 A1, the disclosure of which is hereby incorporated. The present invention uses a high surface-to-volume ratio sacrificial layer and stabilizes the currently known method by stabilizing and/or shielding the sacrificial layer. The present invention also discloses a means for further enhancing the mechanical and environmental durability of the system by subsequent encapsulation. The method of the present invention has the following advantages: (1) allowing the final substrate to be completely isolated from the heat treatment in the system process, and almost all processing steps, and (2) capable of using any of the final substrates, including plastics, Metal and glass flakes, etc., (3) can reduce the mechanical stress problem by forming a stress release region surrounding the system component and simultaneously or sequentially releasing the mother substrate from the system, (4) if a larger The final substrate can be tiled together, (5) allowing the system to be transferred to a final substrate after separation, or allowing the final substrate to be attached 15 prior to separation of the system, (6) being able to move Further encapsulation at turn or later to enhance mechanical and environmental durability, (7) allow heat sinks or actuating heat sinks to be built into the system/final substrate' and (8) allow the system to be located Near the stress-neutral plane of the final substrate to reduce the effects of any substrate deflection. The present invention relates to a method of making a removable system on a mother substrate. 20 In summary, the method of the present invention comprises the steps of: depositing a high surface-to-volume ratio sacrificial layer on a mother substrate; 1) removing volatile chemicals in and on the sacrificial layer, and/ Or 2) modifying the surface of the layer to stabilize the sacrificial layer; covering the surface of the sacrificial layer with a covering medium; 12 1293618 to form a system on the covering medium; and forming a through hole to approach the sacrifice Floor. The method of the present invention also includes the step of removing the sacrificial layer to release the system from the parent substrate. Other aspects of the method of the present invention will be described below. As will be described later, the system can be attached to any type of substrate. Another embodiment of the invention is directed to a method of making a sacrificial release layer on a mother substrate. The method deposits a high surface-to-volume ratio sacrificial layer on a mother substrate by a) removing volatile chemicals in and on the sacrificial layer, and/or b) modifying the surface of the layer. To stabilize the sacrificial layer. As for other methods of implementing 10 cases, a covering medium is also applied to the sacrificial layer. The "mother" substrate provides mechanical and temperature stability to the components during the manufacturing process. The substrate should have mechanical stability for holding the transfer, temperature stability at elevated temperatures, and the coefficient of expansion of the materials used to match the components. Any of the conventional hard smooth substrates can be selected as the mother substrate as long as they have a light-slip surface and a microelectronic process. The material selection of the mother substrate includes, but is not limited to, semiconductors (such as germanium wafers or sheets), glass includes special glass (such as Corning 1737, etc.), fused ceria, quartz, ceramic (such as alumina), and metal. (such as steel) and so on. The mother substrate is preferably reusable and may or may not be provided with a cover layer on its surface. The master substrate can also be recoated 20 times each time it is used. The method of the present invention utilizes a stabilized high surface to volume ratio sacrificial layer that permits high temperature processing as soon as such processing is required to make the system. The manufacture of a system or a particular component within a system can be accomplished using conventional techniques in the art. The sacrificial layer is present between the parent substrate and the system 13 1293618. The structure built on the mother substrate covers the functional system. These functional systems are made up of a combination of materials (e.g., deposition and etching) that are required to form the various systems, components, devices, and interconnects. When the complete adaptation of the high temperature process of the system fabrication is required, the sacrificial layer should have one or more of the following five characteristics: <Table 1: Sacrificial Layer Requirements> △ can withstand high processing temperatures (T<lt ; 1200 ° C). △ It does not spread to a too large extent when processed at high temperatures. △ There is no negative chemical reaction to any appreciable degree when processed at high temperatures. 10 △ Chemicals that can withstand treatment or are compatible with the treatment chemicals. △ No too much gas product is produced when it is removed. △ does not cause too much stress problems during processing. △ can be removed by chemical/physical attacks that do not affect the structure of the system. This can also be achieved by selecting the location of the approach path to the chemical attack, or the design of the barrier layer, or some combination thereof. △ allows lateral transmission of attacking chemicals to form a more uniform separation. △ Structure with high surface to volume ratio enhances transmission and removal. △ If the structure has a high surface to volume ratio, this feature must be maintained while the process is in progress. 20 △ can be deposited to make the mother substrate easy to reuse. The sacrificial layer is made using a high surface area to volume ratio material. In one embodiment, the sacrificial layer is a columnar pore film. Typically, the columnar pore film is a semiconductor material. Preferably, the columnar pore film is a thin 14 1293618 film made of ruthenium, ruthenium dioxide, osmium, iridium oxide, ruthenium alloy such as SiGe, SiGeC or the like. The film may also contain hydrogen, gas, or fluorine. The deposition techniques for such films are disclosed in U.S. Patent No. 6,399,177 B1, the disclosure of which is incorporated herein by reference. A columnar pore stone is not like the conventional porous stone, and it does not electrochemically etch when deposited. It has a uniform and controllable columnar pore structure, and 矽 5 will penetrate into the pores. The columnar pore network 矽 sacrificial layer has been disclosed in the published U.S. Patent Application Serial No. 2002/0020053 A1. The low temperature plasma deposition process allows the material to be fabricated on a variety of substrates. Since the sacrificial layer columnar pore network will have a faster etch rate, even if the etching is performed via a relatively small size wet etchant via. The open region 10 of the columnar pore network ruthenium film allows rapid flow of the etchant and the reaction product when the sacrificial layer is removed, and the rapid sacrificial layer etching improves the reliability of the overall process. In addition, its faster etch rate creates fine structures in the thin overlay. Other examples of the use of sacrificial layers with a columnar aperture network have been disclosed: "A novel fabrication technology for Si TFTs on flexible 15 substrates55, Y. Lee, S. Bae and S. Fonash, ECS Extended Abstracts, Electrochemical Society meeting, Oct., 2000, pg 791; "Flexible display enabling technology'', S. Wagner, S. Fonash, T. Jackson and J. Sturm, Cockpit Displays VIII: 20 Displays for Defense Applications, Proc. SPIE Vol · 4362, p226-244, Sep·, 2001;

“Enabling technologies for plastic display’’,J. Sturm,H. Gleskova,T. Jackson,S. Fonash,and S. Wagner, Cockpit Displays IX: Displays for Defense Applications, Proc. SPIE 15 1293618"Enabling technologies for plastic display", J. Sturm, H. Gleskova, T. Jackson, S. Fonash, and S. Wagner, Cockpit Displays IX: Displays for Defense Applications, Proc. SPIE 15 1293618

Vol. 4712, p222-236, August,2002;及 “Transfer approach toward fabricating poly-Si TFTs on plastic substrates^ H. Li, Y. Lee and S. Fonash, ECS Extended Abstracts,Electrochemical Society meeting, Oct_,2002,pg 5 647; 等各文獻中,該等資料亦併此附送。 第11a圖示出一分離層材料的特定實例,其能符合表一的 所有要件。該層係為一沈積的柱狀孔隙矽材料。如所示,其 具有較大的表面積/克,而伸展的孔隙區域將可加強側向的傳 10輸及快速的化學反應。第lib圖示出另一例的高表面體積比之 犧牲層。在此例中係使用奈米顆粒(如Si*si〇2微球),其亦可 滿足表一的要件’且功能如同犧牲層,而被概略地示出。該 等微球或奈米顆粒必須接近相同的尺寸,以防止覆蓋層變 形。或者’不同尺寸的微球亦可被用於同一犧牲層來造成一 15更密紫的膜層’或較不粗糙的表面。該等可能被使用的奈米 球體、微粒、或分子係可由許多材料來形成,包括二氧化矽 微粒、矽微粒、半導體微粒、絕緣體微粒、聚合物微粒、自 行組合的分子或任何其它球形、多邊形或不規則形狀的奈米 或微尺寸的結構。當被製成於一單層或疊層結構時,該等材 20料應具有一高表面對體積比。該等微粒、母基板或兩者亦可 被以不同的表面化學處理或連結基來官能化,而使該等微粒 可藉共價鍵、靜電吸力、氫鍵連接、Wander Walls(凡得瓦) 作用力、分子識別性(如維生素-抗生素作用)等來連結及/或圖 案化於該表面上。 16 1293618 為在本發明的方法中,特別是在以高溫來製造系統或元 件時,能使用一高表面對體積比的犧牲層,故該犧牲層須被 穩定化。具有高表面自由能之高表面積的微尺寸及奈米結構 的薄膜,將會使其表面原子在薄膜的塊體熔點以下之溫度即 5 變成活動易遷移的。此將會導致該薄膜在低溫,通常指製造 溫度以下,即會由於燒結而密實化。此密實化在當以化學攻 擊來除掉該薄膜時將會是不利的。且,許多沈積膜具有各類 物質,其會在高溫時由該薄膜逸出,例如在矽中的氫。為穩 定化該犧牲層而使氣體、液體或固體等不會在元件處理時逸 10 出,故該等物質必須在覆蓋該犧牲層之前來被除去,以防止 例如污染或起泡等不良作用。故,本發明之一重要概念係, 要在沈積該覆蓋層之前,或之中,或者之後,來穩定化該犧 牲層。 該犧牲層亦可藉其表面的化學處理而來穩定化,例如在 15 氣體環境中,或在酸液或鹼液中來氧化或氮化。該表面亦可 於一退火步驟或退火及化學反應的組合步驟中來被穩定化。 為除掉高溫處理時可能會由該犧牲層釋出的雜質,亦可進行 一化學處理來反應及/或除掉表面雜質,或來將它們由該材料 中濾除。一退火步驟亦可被執行來除掉該等雜質,且同樣地 20 其亦可搭配一化學處理來進行。 穩定化該犧牲層之一具體實施例,係對一可承受高溫處 理之作為犧牲層的柱孔網路沈積矽進行熱處理。若沒有穩定 化步驟,該薄膜會在後續的處理中可觀地密質化,而會消除 該等在化學攻擊時可供有效除去該薄膜的連續孔隙網路。該 17 1293618 薄膜亦會在600°C以上的溫度時大量地釋出氫,而造成覆蓋層 及系統或元件等之起泡或破裂。一種穩定化該犧牲層的方法 係在一氮環境中來進行退火。於該母基材上沈積該柱孔網路 矽犧牲層之後,會在一以氮淨化的爐中以550°C來退火6小 5 時。在該爐中殘留的氧及該薄膜表面上的水,會將其輕微地 氧化而使該表面穩定化。退火的時間和溫度係可依該爐及薄 膜的條件而改變。以此方式的退火亦能由該犧牲層中釋出其 在沈積時所含入之表面及内部的氫。在被以此方法來穩定化 之後,該犧牲層的結構仍接近相同於原來沈積膜,但已被修 10 正而使其在高溫的變化能減至最小,而仍保有足供有效分離 所需的結構和成分。第14圖示出被沈積的柱孔網路矽。在經 退火穩定化步驟之後其結構幾乎不變。第15圖示出該薄膜經 覆蓋及高溫處理後的狀態,其大致仍保持原有的結構和多孔 性。假使該薄膜未被穩定化,則其將會顯得十分密實而僅含 15 有較少的細孔。 另一種穩定化該柱孔網路矽犧牲層的方法係為過氧化氫 處理。當在過氧化氫液中處理時,其表面處及接近該表面的 氫將會反應而形成水,且該表面會被輕微地氧化。此將會造 成與退火處理類似的穩定特性。其處理時間和溫度亦視該柱 20 孔網路材料的性質而定。由該高表面體積比的犧牲層來除掉 揮發物亦可在減壓或真空中來完成。 本發明的方法亦包含以一覆蓋介質來覆蓋該犧牲層。該 覆蓋介質會形成該系統或其内的元件被構建的表面,並可用 來穩定化該犧牲層。該覆蓋介質亦可提供該犧牲層的附加保 18 1293618 護,蔽護其免受後續該系統之製造所用的化學物等之影響。 故,該覆蓋介質不能在後續的處理時,特別是在該系統的製 造時,過分地劣化。該覆蓋介質會以最小的孔隙填補率來遍 佈於犧牲層上,而造成機械财用性和官能性的化學阻隔層。 5 該覆蓋層材料可包括陶究、金屬、氧化物、氮化物、半導體、 絕緣體、及其組合物等。較佳的覆蓋介質為Si02&Si3N4,其 亦可於疊膜結構中一起被使用。 在撓性基材上來製造薄膜系統或元件時,應力問題係非 常普遍,而會在系統釋離之後造成“捲曲”。本發明的方法亦 10 為解決該問題。應力釋放係可在一變化製法中來達成,其係 使用一第二犧牲材料來提供通達該犧牲層(其可為相同或不 同之材料)的路徑,並形成該等系統構件的應力釋放區。在此 實施例中,本發明的方法乃包括在製造步驟之時或者之後, 但在覆設頂層之前及釋分之前,進行以下的步驟:選擇性地 15 除去該系統及覆蓋層的一部份,來形成界限島塊陣列的空隙 區,該等島塊係由裝置、元件、結構或系統及覆蓋層的區塊 等所組成;並以一犧牲材料來選擇性地填滿該界限島塊的空 隙區。該犧牲材料係可為任何犧牲材料,而不一定要相同於 該犧牲層,雖然其最好亦為一如前所述之高表面對體積比的 20 材料。在本發明的方法中,被製成的系統係藉除去該犧牲材 料及該犧牲層而來由該母基材釋離。此係可在一同時除掉該 犧牲材料和犧牲層兩者之單一步驟中,或以各別去除的分開 步驟來完成。最好是,該犧牲材料可被除掉來形成接近該犧 牲層的途徑。在除去之後,覆蓋材料會保留島狀結構。該等 19 1293618 空隙區將可對最終的系統提供應力釋放效果,並亦能作為操作 時的散熱區。 本發明的方法可供進行高溫處理,因此在釋離及製成最 終基材之前,乃可進行高品質的系統構件製造或連接。高品 5 質的構件可被連接於該系統中;或其在該系統内的製造,係 可利用本發明來完成,因為不會有任何固存的處理溫度限制 和應力問題。使用於如下所述之製程中的第一犧牲材料,係 可為任何能夠承受高溫,而與該製程化學性相容的材料。其 材料之例係為Si及Si02。若使用時,如在第1〜8圖之例中, 10 該第二犧牲材料乃可為任何容易除去的材料,例如Si或其它 的半導體、陶兗、金屬、有機物、聚合物或其組合物等。除 掉該等犧牲材料的手段,則可為化學、物理的方法,或其某 些組合方式。 在該系統製成之後,本發明的方法亦包括在該系統上覆 15 設一聚合物、玻璃、金屬、陶瓷、氧化物、氮化物、絕絕體、 導電體、半導體、有機物、塑膠、或其組合的頂層,而來形 成一包封系統的步驟。此頂層亦可為該系統的永久頂層,或 亦可被用來將該系統黏接於另一基材上。 為能在釋離之前有效地將一頂層黏接於所製成的系統, 20 在該領域中習知的表面化學處理及黏接技術乃可被使用。此 係可在該系統本身的曝露表面上,或在一罩蓋該系統的頂層 上來進行。該處理與黏接技術可包括使用表面化學性修正劑 例如會與有機連結基來反應的矽烷,來共價地化學鍵結連 接。黏劑亦可被使用,例如環氧基物或樹脂,或不完全固化 20 1293618 地旋塗之介電質、玻璃或聚合物等。本發明之一特定實施例 係使用一種旋塗的介電質,例如苯環丁烷(BCB),其在被塗 覆於塑膠之前不會完全固化。該未固化的BCB具有溶劑及活 性的有機物基,而有助於黏附一塑膠膜。以BCB來結合一沈 5 積的塑膠膜例如paralyne的系統會有許多引人的特性,因為該 BCB具有透光及介電性質,而該paralyne具有透光及機械和化 學阻抗性質。因此,在一較佳實施例中,一聚合物層會被佈 設在該系統上來形成一包封系統,並調整該聚合物頂層的曝 露表面來加強連結。又一層聚合物、玻璃、金屬或陶瓷嗣可 10 被敷設於該調整的聚合物表面上,或於另一基材上,此係可 在該系統由母基材釋離之前或者之後來進行。 本發明之技術的另一特點係其在釋離程序的可調變性。 具言之,其可容該等犧牲層的去除利用垂直的或水平的或者 兩種兼具的微尺寸或奈米通道網路來輸送犧牲層的去除劑。 15 本發明的方法乃設有貫孔等來供接近及除掉該犧牲層或犧牲 材料。因此,該方法亦包括造成貫孔等深達該犧牲層,或至 少達到該犧牲材料。該等貫孔的位置、尺寸及數目乃可使用 微影技術來界定,並以反應離子蝕刻劑或在該領域中習知的 其它手段來造成貫孔。該等貫孔係可設在母基材中,而在該 20 母基材平面中形成某種網路的組合,或穿過該母基材的厚度 來達到犧牲層。該等貫孔會被設成貫穿該頂層’系統或系統 區,覆蓋層及母基材等。第1〜8圖係示出去除劑經由一垂向 通道來達到犧牲層的狀況,而第10圖示出一流程之例,其中 去除劑係經由一水平通道系統來接近該犧牲層。第13b圖則示 21 1293618 出去除劑通過母基材及一水平佈設的通道網路來進入。 該等貫孔會形如用來除去該犧牲層之化學劑(如酸、鹼或 有機溶劑)的管道。該化學劑會流經此等管道且向下滲透至犧 牲層頂部’並濕化該犧牲層,而化學性地攻擊該犧牲層材料。 5在一驗證該等貫孔管道的 實驗中,一金屬犧牲層會被蒸鍍’ 且一 10〜5从m的聚合物層會被旋塗在Coming 1737的玻璃 上。在該等貫孔被以微影術來界定,且各孔被以反應離子蝕 刻來製成之後,該樣品會被浸入一酸液中。該酸液會經由該 等貫孔管道進入至犧牲層的頂面,而來蝕刻該犧牲層,並側 10向地擴展。當該酸液侧向移動並蝕刻該犧牲層時,該聚合物 覆層會被分開。隨著此分開程序的進一步發展,其分開的面 積逐漸增大。如第5、12、13圖所示,供化學劑接近該犧牲層 的貝孔等可被設在母基材中,如前所述該母基材係可再使用 的。藉著去除該犧牲層,則在該疊膜上的元件結構和電路等, 15 將可由該母基材釋離。 如前所述,依據本發明之方法所製成的系統,在由該母 基材釋離之後,乃可被佈設於另一基材上。本發明的方法將 特別適用於製造供佈設於撓性或非平面基材上的系統。該等 基材乃可為暫時性基材或亦可為永久性基材。 20 當一系統被釋離並移轉至最終基材,或該系統被覆設最 終基材且與母基材分開之後,則可進行另外的包封步驟。例 如’若該系統的構件被中夾於該最終基材與另一適當選擇的 材料之間’並位於或接近於彎曲的中立平面處時,則作用在 該等系統構件上的應力將會減少。本發明的技術乃獨特地容 22 1293618 許南品質且應力消減的糸統構件以此方式來被中爽,而更為 增強它們的調適性和耐用性。因此,本發明的方法亦可包括 在該系統的覆蓋材料側敷設一料層的步驟,而來形成使該系 統大致位在一彎曲應力減少之中立平面内的結構。 5 如上所述,於此所揭之本發明乃包含一種概念和製造技 術,其可應用於製造各種系統及各種系統的元件,包括但不 限於電晶體、二極體、電子元件、化學元件、生物元件、生 化元件、流體元件、微機電元件、感測器、燃料電池、光電 子元件、光生伏打電池、光學結構物、微電子元件、顯示器、 10 或電路板系統等等。該等化學元件、生物元件、生化元件包 括但不限於電抗器。該等系統亦可被製設在小面積或大面積 的基材上,及甚至在撓性基材上。該等系統亦可被併排“組合” 製設在大面積基材上,來造成一單系統或多系統。且,本發 明亦可用來製造多層的三維結構。這些亦可包括基板上的微 15 燃料電池,光生伏打電池,或化學電抗器元件。第9圖示出本 發明之一概念性用途,即用來製成一 “智慧電路板”,其包含 有各種構件例如光學、光電子、及電子元件等。某些該等元 件可被直接製設,而有些則可在該系統被設在母基材上後才 來連接。該系統乃可在釋離之後被移轉至最終基材(即本例的 20 “基板”),或該“基板”層亦可在該系統釋離之前被附設於該系 統上。 (流程範例) (1)主要使用垂向之去除劑通路的製程範例 第1〜8圖示出使用垂向通路來進行去除處理的流程範 23 1293618 5 10 15 20 例。第1圖示出一犧牲(第一釋離)層沈積在一光滑的“母,,基材 上,例如玻璃、石英、熔凝的二氧化矽、金屬片、矽、或任 何其它平坦表面的材料等。被沈積在該母基材之後,該犧牲 層會被以一種前述的製程例如退火來穩定化。若有需要,則 一或多數的中間層亦可被設在此犧牲層底下。第2圖示出一覆 蓋層的沈積。該覆蓋層上會被製設該等系統元件(見第3圖)。 其即為第一層“構建層”。所有的沈積步驟乃可藉各種手段來 完成,包括旋塗法,物理沈積,化學沈積,及化學反應等。 此覆蓋層亦會保護該犧牲層,假使該高表面體積比的材料係 如第11圖所示者。舉例而言,當高多孔性的柱孔矽(見第丨丨圖) 被用作為關牲層時,則_二氧切層以及該祕料猶微 氧化,或僅疋該柱孔矽的稍微氧化,將會保存該高表面體積 比之犧牲材料的結構。此種薄膜的進_步穩定化乃可包括經 由一退火或化學程序來除掉表面及塊體内的氫。 第3圖不出在製造時該系統的元件結構。第4圖示出一可 擇步驟· k成包®該等元件結構的凹槽區域(例如以乾餘刻、 濕餘刻、或雷㈣财),及沈積_如圖所示之犧牲材料(第 二釋離層)來填滿該等凹槽。此材料可與第一犧牲層的物質相 同或者不同,且其可以替代(如第4圖所示)-部份的第-犧牲 曰或亦可未予取代(未示出)。包含第4圖所示的步驟,乃可 冓建夺對該等系統疋件提供完全的,或至少部份的機械、 “、、、及電之_能力,如由祕圖可推知者。 不管是否含括第4圖所示的步驟,更多的構建層亦可被設 第5圖所示,例如,在第5圖中,乃示出-聚合物層沈積或 24 1293618 黏接在該等系統元件結構上。該各層亦可在數個製層步驟中 來形成,且該系統的電互接物或其它結構物亦可被設在該等 構建層中,並可經由通孔(未示出)來連接於其它的系統元 件。一或全部的該等構建層將會形成最終基材,或形成“承載” 5 層而可容該系統定位在其最終基材上。惟在任何情況下,此 承載或最終層皆可為一箔膜或塑膠且為可撓的。垂向貫孔等 可藉某些製程步驟例如蝕刻或熔削來製設在該等構建層中, 如第5圖所示。於第5b圖中可見,該等貫孔可供通達至該第一 及第二犧牲層一當設有該層時。 10 使用該等垂向貫孔,該第二犧牲材料當有存在時,亦可 藉氣化(由貫孔以氣體逸出)、溶解(溶劑由貫孔進入)、或餘刻 (蝕刻劑由貫孔進入)等來被除去。此第二犧牲層的去除係可 被首先完成(如第6a及6b圖所示),然後再除去第一犧牲層(以 相同或其它手段);或者它們亦可在同一步驟來被除去(未示 15 出)。惟在上述兩種狀況中,該第一犧牲層皆為由母基材分離 的關鍵,且其必須被以氣化、溶解、或蝕刻來除去。此係設 在第7圖的底部。第8圖則示出第7圖的處理之後的最終結果。 該等覆蓋層島塊係可以(如所示)或亦可不被保留(未示出)。在 此時,第8圖的結構乃可如前所述被黏接於其它基材上;或亦 20 可進一步處理而以更多材料來包覆底部,以增進機械強度及/ 或環境耐用性;或者兩者皆被進行;且其亦可至少以該等構 建層的頂部作為最終基材而來使用。假使有更多材料沈積或 黏接於底部,則可將該等系統元件置設在或靠近最後製成結 構的中立平面上。 25 1293618 此流程之顯而易知的變化亦可被使用,包括那些穿過母 基材(未示出)來接近該犧牲層(或該等犧牲層,假使第4圖的隔 離方式被使用時)的垂向通孔等。請注意第8b圖的系統是使用 具有第4圖之步驟的流程所製成者。以此方式所製成的電晶體 5 會在撓性基材上顯現絕佳的性能。 (2)主要使用水平之去除劑通路的製程範例 一主要呈水平排列佈局的微尺寸或奈米通道網路亦可被 使用於本發明的方法中。使用微尺寸或奈米通道來供傳輸去 除劑及接近犧牲層的通路乃可減少去除犧牲層(如蝕刻、溶 10 解、氣化等)所需的時間。流體的去除劑可被泵經該等通道, 或可藉毛細作用來流動。一水平通道陣列,如第10圖所示, 將能供去除劑在許多位置來攻擊該犧牲層,而大大地縮短去 除所需的時間。新鮮的反應劑、反應生成物等,或兩者皆可 在該等通道内傳輸來進一步加速其製程。以此方法可減少曝 15 露於去除劑的時間,亦能使該製程設計者有更多的材料選擇 性。 在本例中,如前所述,於製造過程中該母基材能對該等 元件提供機械與溫度穩定性。此基材必須具有機械穩定性以 供執持移送,及在高溫的溫度穩定性,並具有與所擇材料相 20 容的膨脹係數。該母基材的材料選擇包括但不限於半導體(如 矽晶圓或薄片)、玻璃、熔凝的二氧化矽、石英、陶瓷(如氧 化铭)、及金屬(如鋼)等。 在此分離變化例中之微尺寸或奈米通道乃可使用多種方 法來形成,包括:犧牲層處理,表面微加工,塊體微加工, 26 1293618 覆層技術,及其組合等。該等微尺寸或奈米通道可為該母基 材的永久構造,或亦可在犧牲層蝕刻或後續的製程中被除 去。在某些情況下,如後所詳述,該等通道網路亦可為該母 基材的一部份,而在當沈積犧牲層時,即會完成封閉該等通 5 道的步驟。 本發明使用通道來促進分離之一實施例,其特徵即在使 用一種封閉覆蓋通道結構的製造方法。該結構係使用不均一 薄膜沈積製程,將一高縱橫比的溝槽圖案形成於一硬質、光 滑且南溫的基材上而來完成。此係不於弟10(a)〜(c)圖中。苐 10 10(d)至(g)圖則示出後續的系統製程,以及本發明於前所述的 分離程序。在第10(b)及(c)圖中所示的不均一薄膜沈積,將能 以一物理氣相沈積製程例如蒸發法及錢射法而來輕易地完 成。又,相對較均一的沈積技術,例如化學氣相沈積(CVD) 或電漿強化的化學氣相沈積(PECVD)等,亦可經選擇適當的 15 處理參數(如源氣體溫度、源氣體流率、基材溫度、處理壓力) 來被使用。舉例而言,一較高的處理壓力將可被使用於CVD 製程中,俾可增加靠近溝槽開口處之沈積物的散射可能性(減 少平均自由路),此將會使在開口附近比在溝槽的底部或側壁 上產生更多的沈積膜。藉控制其它的適當處理參數亦可達到 20 類似的結果。 在該覆蓋層封閉該等溝槽紋路的開口之後,該層或後續 料層的沈積將可被用來平坦化該基材表面。若有必要,化學 機械拋光處理(CMP)亦可被用來平坦化。在第10(c)圖中,該 平坦的覆蓋層沈積已被完成,且此層在完成系統製造後將會 27 1293618 被用來作為該犧牲釋離層。 在第10(d)圖中,一覆蓋材料會被沈積在該犧牲層上。此 覆蓋材料會被作為一阻隔層來隔絕化學處理步驟。此阻隔層 的材料、厚度及相關性質將會被選擇成,能在系統製造及分 5 離程序之後保留下來。此覆蓋層亦可藉改變該犧牲層的頂部 (例如熱氧化')而來形成。 當完成該等元件製造時,如第10⑴圖所示,一或多數最 終的構建層(如塑膠、玻璃等)將會被沈積或覆設。其即會形 成該系統釋離後,將之帶至某一新最終基材的支撐及轉送媒 10 體。惟其亦可為該最終基材。在釋離步驟時,該通道網路會 曝露於適當的化學物、氣體、及其它的去除劑,或它們的組 合物中,而來選擇性地除掉該犧牲釋離層。當一化學劑被用 來溶解或蝕刻該釋離層時,該等微流體結構將會因強烈的毛 細作用,而可形成化學劑的快速供應機構。當反應氣體或電 15 漿被用來作為去除劑時,該等微通道結構亦可被用來作為反 應劑的快速氣體供應路徑。在任何情況下,其釋離時間及對 該等元件之任何可能傷害皆會減至最少。第10(g)圖係示出一 已分離的系統以及該母基材一其可再使用。 前述由上封閉通道的覆蓋方法將可形成開放通道以供除 20 掉犧牲層。或者亦可將該犧牲層構建在該通道網路中,且兩 者皆穿過該母基材。在母基材中的通道可被以一削除(lift-off) 的方式來填滿犧牲材料,且該犧牲材料的沈積嗣可被持續來 覆蓋整個母基材,或一微粒法亦可被使用。示出使用於該等 通道中之微粒者係僅可見於第12圖及第13a和13b圖中。其中 28 1293618 一犧牲層去除劑會清除該等通道,而它們較大的截面則可被 用來供去除劑加速達到其餘(微粒或非微粒)的犧牲層。在第 13a圖中該通道清除步驟係被示出在其流程的早先階段,此更 可印證在有必要時其流程的可調變性。在第13a圖中,該去除 5 劑將會前進達到在側向部份的通道(未示出),並後續達到整 個表面的犧牲層。在第13b圖中,該去除劑會藉由設在母基材 中的垂向通孔來前進達到該等通道,如所示,然後達到整個 表面的犧牲層。 第12A圖示出一單層或多層的奈米或微球體被以塗層來 10 設在一基材上。該塗層可包括自行組合劑(分子),空間組合 物,或場輔助組合物。該奈米或微球體層的平坦化(第12B圖) 係可藉在玻璃上旋轉(SOG),可重流氧化物,或任何其它適 當材料和方法來完成。第12C圖示出在該平坦化表面上製成 一系統。第12D圖示出在完成系統的製造之後,覆設或沈積 15 載體或最終基材。第12E及F圖示出一貫孔結構的形成,其會 由該結構的兩側(即E或F圖)來深入至該球體層,而形成一管 道可供去除劑進入來除掉該球體層。第12G圖示出在除去該 球體層之後,該系統已經由該母基材分開。 第13a-A及B圖乃示出使用前述第12a-A至D圖的方法來 20 形成通道結構。第13a_C圖示出使用適當的方法在該通道結構 上來製成系統。一移轉層例如塑膠或聚合物膜可被沈積或覆 設在所製成的系統上。第13a-D及E圖示出當該系統製成後, 該通道結構已與一化學劑接觸,其將會例如藉毛細作用來流 經該等通道,並攻擊在該通道結構與元件之間的釋離層。此 29 1293618 將會使該系統(圖中的上半部)與該母基材分開(釋離)。 第13b_A圖示出使用第12A至C圖所述之方法,除了元件 製造步驟以外,來形成該通道結構而填滿微尺寸或奈米微 球。在第13b-B圖中一元件會被製設在該結構上。第13b-C圖 5 示出由該結構的底部或頂部深入填滿微球之通道結構的貫孔 會被形成。第13b-D及E圖示出使用該通道結構及貫孔等而來 除去該釋離層和微球。此將可使該頂部(元件部)與母基材分 離。 L圖式簡單說明3 10 第1圖示出以一適當的塗層技術在一硬層且平滑表面的 母基材上沈積一犧牲層; 第2圖示出在犧牲層上覆設一覆蓋層; 第3圖示出在該覆蓋層上製成一功能系統; 第4圖示出蝕刻出包圍該等功能系統構件的溝槽深入至 15 該第一犧牲層,並藉習知技術例如頂面削除(lift-off)法來以第 二犧牲材料填滿該等溝槽; 第5a(截面)圖及5b(頂視)圖乃示出一聚合物層的覆設及 貫孔的形成; 第6a(截面)圖及6b(頂視)圖乃示出第二犧牲材料被去除; 20 第7圖示出該犧牲層被去除而在一聚合物基材上製成一 系統如第8圖所示; 第8a圖為本發明之分離系統的一例; 第8b圖示出一實際的分離系統。在本例中,TFTs元件係 具有一撓性的塑膠最終基材; 30 1293618 第9圖示出本發明用來製成一“智慧電路板”的應用,其含 有例如光學、光電子及電子元件等各種構件; 第10(a)圖示出一凹溝圖案設在一硬質且光滑的基板(母 基板)上,例如石夕片、石英、溶凝的二氧化石夕、金屬、片材, 5 或玻璃板上; 第10(b)圖示出犧牲層的沈積,其最好係以一不均一的薄 膜塗層來形成; 第10(c)圖示出完成的犧牲層,並示出該凹溝圖案變成封 閉的微通道結構; 10 第10(d)圖示出一覆蓋材料的沈積,其可保護該犧牲層及 系統元件,以免遭受在釋離處理時底下之釋離層產生的化學 反應所影響; 第10(e)圖示出在該母基材上之通道結構的覆蓋層上來 製成習知的系統元件; 15 第10(f)圖示出使用旋塗法、CVD法、喷塗法、或任何其 它適當的技術,來沈積或塗設一聚合物(塑膠)膜; 第10(g)圖示出該系統包括該塑膠膜的釋離(分開),其係 將適當的化學或反應氣體供入經由該等微通道犧牲地溶解該 釋離層而來完成; 20 第11a圖為一種被沈積的分離層材料之實例,其能符合表 一的所有要件,該層為一沈積的柱孔石夕材料。此材料會被用 來作為製成第8b圖之分離系統的分離層; 第lib圖為一沈積分離層的實例,其係由共價結合於基材 的二氧化石夕奈米微粒所形成; 31 1293618 第12圖示出本發明使用微粒來作為犧牲層的方法; 第13a與13b圖示出使用微粒來作為犧牲層的方法,其中 該母基材含有通道式貫孔以接近該犧牲層; 第14圖示出所沈積的柱狀孔隙網路矽; 5 第15圖為該薄膜在覆蓋及高溫處理後的狀況,示出該薄 膜仍保有其某些結構質地和多孔性。 【主要元件符號說明】 (無)Vol. 4712, p222-236, August, 2002; and "Transfer approach toward fabricating poly-Si TFTs on plastic substrates^ H. Li, Y. Lee and S. Fonash, ECS Extended Abstracts, Electrochemical Society meeting, Oct_, 2002, Pg 5 647; et al., the same is also included in the literature. Figure 11a shows a specific example of a separate layer material that meets all the requirements of Table 1. This layer is a deposited columnar pore. Material. As shown, it has a larger surface area per gram, while the extended pore area will enhance lateral transmission and rapid chemical reaction. Figure lib shows another example of a high surface-to-volume ratio of the sacrificial layer. In this case, nanoparticle (such as Si*si〇2 microspheres) is used, which also satisfies the requirements of Table 1 and functions as a sacrificial layer, which is shown diagrammatically. The microspheres or nanoparticles The particles must be close to the same size to prevent deformation of the cover layer. Or 'differently sized microspheres can also be used for the same sacrificial layer to create a 15 more violet layer' or a less rough surface. Nanospheres, particles used , or molecular systems may be formed from a variety of materials, including cerium oxide particles, cerium particles, semiconductor particles, insulator particles, polymer particles, self-assembled molecules, or any other spherical, polygonal or irregularly shaped nano or micro-sized Structures. When fabricated in a single layer or laminate structure, the materials 20 should have a high surface to volume ratio. The particles, mother substrate or both may also be chemically treated or bonded to different surfaces. Functionalization, such that the particles can be linked and/or patterned by covalent bonds, electrostatic attraction, hydrogen bonding, Wander Walls force, molecular recognition (eg, vitamin-antibiotic action) On the surface. 16 1293618 In order to use a high surface to volume ratio sacrificial layer in the method of the present invention, particularly when manufacturing systems or components at high temperatures, the sacrificial layer must be stabilized. The high surface area of the high surface area of the micro-sized and nano-structured film will cause its surface atoms to become active and easily migrated at temperatures below the melting point of the bulk of the film. This can result in the film being low temperature, usually below the manufacturing temperature, which is densified by sintering. This densification will be disadvantageous when the film is removed by chemical attack. Moreover, many deposited films have various substances. It will escape from the film at high temperatures, such as hydrogen in helium. To stabilize the sacrificial layer so that gases, liquids, or solids do not escape during component processing, such materials must be covered. The sacrificial layer is previously removed to prevent undesirable effects such as contamination or foaming. Therefore, an important concept of the present invention is to stabilize the sacrificial layer before, during, or after deposition of the cover layer. The sacrificial layer can also be stabilized by chemical treatment of its surface, for example, in a 15 atmosphere, or in an acid or lye to oxidize or nitride. The surface may also be stabilized in an annealing step or a combined step of annealing and chemical reaction. To remove impurities that may be released from the sacrificial layer during high temperature processing, a chemical treatment may be performed to react and/or remove surface impurities or to filter them out of the material. An annealing step can also be performed to remove the impurities, and likewise 20 can be carried out in conjunction with a chemical treatment. One embodiment of stabilizing the sacrificial layer is to heat treat a columnar network deposition crucible as a sacrificial layer that can withstand high temperature processing. Without a stabilizing step, the film will be appreciably densified in subsequent processing, eliminating the need for a continuous pore network that effectively removes the film during chemical attack. The 17 1293618 film also releases a large amount of hydrogen at temperatures above 600 ° C, causing blistering or cracking of the cover layer and systems or components. A method of stabilizing the sacrificial layer is to anneal in a nitrogen environment. After depositing the column network 矽 sacrificial layer on the mother substrate, it is annealed at 550 ° C for 6 hours in a nitrogen purged furnace. The oxygen remaining in the furnace and the water on the surface of the film will be slightly oxidized to stabilize the surface. The time and temperature of the annealing can vary depending on the conditions of the furnace and the film. Annealing in this manner also releases hydrogen from the sacrificial layer on the surface and inside it is deposited. After being stabilized by this method, the structure of the sacrificial layer is still nearly the same as the original deposited film, but it has been repaired to minimize the change in high temperature, while still maintaining sufficient for effective separation. Structure and composition. Figure 14 shows the column network 被 deposited. The structure is almost unchanged after the annealing stabilization step. Fig. 15 shows the state of the film after being covered and subjected to high temperature treatment, which substantially maintains the original structure and porosity. If the film is not stabilized, it will appear very dense and contain only 15 fewer pores. Another method of stabilizing the column network 矽 sacrificial layer is hydrogen peroxide treatment. When treated in a hydrogen peroxide solution, hydrogen at and near the surface will react to form water, and the surface will be slightly oxidized. This will result in similar stability characteristics to the annealing process. The processing time and temperature are also dependent on the nature of the column's 20-well network material. Removal of volatiles from the sacrificial layer of high surface to volume ratio can also be accomplished under reduced pressure or in a vacuum. The method of the present invention also includes covering the sacrificial layer with a covering medium. The cover medium forms the surface on which the system or components within it are constructed and can be used to stabilize the sacrificial layer. The cover medium may also provide additional protection of the sacrificial layer to protect it from chemicals or the like used in the subsequent manufacture of the system. Therefore, the covering medium cannot be excessively deteriorated in subsequent processing, particularly in the manufacture of the system. The overlay dielectric is spread over the sacrificial layer with minimal void fill ratio, resulting in a mechanical barrier to mechanical and functional properties. 5 The cover material may include ceramics, metals, oxides, nitrides, semiconductors, insulators, combinations thereof, and the like. A preferred covering medium is SiO 2 & Si 3 N 4 , which may also be used together in a laminated structure. Stress problems are very common when manufacturing thin film systems or components on flexible substrates, and can cause "curling" after system release. The method of the present invention is also directed to solving this problem. The stress relief system can be achieved in a variation process that uses a second sacrificial material to provide access to the sacrificial layer (which can be the same or different materials) and to form stress relief regions of the system components. In this embodiment, the method of the present invention includes the following steps, at or after the manufacturing step, but before and after the top layer is applied: selectively removing the system and a portion of the cover layer Forming a void region of the array of boundary island blocks, the island blocks being composed of devices, components, structures or systems, and blocks of the cover layer; and selectively filling the boundary island block with a sacrificial material Void area. The sacrificial material can be any sacrificial material, not necessarily the same as the sacrificial layer, although it is preferably also a high surface to volume ratio of 20 materials as previously described. In the method of the present invention, the system is prepared to be released from the parent substrate by removing the sacrificial material and the sacrificial layer. This can be done in a single step of simultaneously removing both the sacrificial material and the sacrificial layer, or in separate steps of separate removal. Preferably, the sacrificial material can be removed to form a pathway proximate to the sacrificial layer. After removal, the cover material retains the island structure. These 19 1293618 void areas will provide stress relief for the final system and can also serve as a heat sink for operation. The method of the present invention is available for high temperature processing so that high quality system component fabrication or joining can be performed prior to release and fabrication of the final substrate. High quality components can be attached to the system; or their manufacture within the system can be accomplished using the present invention because there are no stored processing temperature limitations and stress issues. The first sacrificial material used in the process described below can be any material that is capable of withstanding high temperatures and is chemically compatible with the process. Examples of the materials are Si and SiO 2 . If used, as in the examples of Figures 1-8, 10 the second sacrificial material can be any easily removable material such as Si or other semiconductors, ceramics, metals, organics, polymers or combinations thereof. Wait. The means for removing the sacrificial material may be a chemical, physical method, or some combination thereof. After the system is fabricated, the method of the present invention also includes coating a polymer, glass, metal, ceramic, oxide, nitride, extrudate, electrical conductor, semiconductor, organic, plastic, or The top layer of the combination forms the step of forming an enveloping system. The top layer can also be a permanent top layer of the system or can be used to bond the system to another substrate. In order to effectively bond a top layer to the finished system prior to release, 20 surface chemical processing and bonding techniques conventional in the art can be used. This can be done on the exposed surface of the system itself, or on the top layer of the system. The processing and bonding techniques can include covalently chemical bonding using a surface chemistry modifier such as decane that will react with the organic linker. Adhesives may also be used, such as epoxy or resin, or incompletely cured 20 1293618 spin-coated dielectrics, glasses or polymers. A particular embodiment of the invention utilizes a spin-on dielectric, such as phenylcyclobutane (BCB), which does not fully cure prior to being applied to the plastic. The uncured BCB has a solvent and an active organic base to aid in adhesion to a plastic film. The system of combining BCB with a plastic film such as paralyne has many attractive characteristics because the BCB has light transmission and dielectric properties, and the paralyne has light transmission and mechanical and chemical resistance properties. Thus, in a preferred embodiment, a polymer layer is disposed on the system to form an encapsulation system and the exposed surface of the polymer top layer is reinforced to strengthen the bond. A further layer of polymer, glass, metal or ceramic crucible 10 may be applied to the surface of the conditioned polymer or to another substrate, either before or after the system is released from the parent substrate. Another feature of the technique of the present invention is its variability in the release procedure. In other words, it can accommodate the removal of the sacrificial layer by using a vertical or horizontal or both micro-sized or nanochannel network to transport the sacrificial layer remover. The method of the present invention is provided with a through hole or the like for accessing and removing the sacrificial layer or the sacrificial material. Therefore, the method also includes causing the via holes to be as deep as the sacrificial layer, or at least to reach the sacrificial material. The location, size and number of the vias can be defined using lithographic techniques and the vias are created by reactive ion etchants or other means known in the art. The through holes may be provided in the mother substrate, and a combination of certain networks may be formed in the plane of the 20 mother substrates, or the thickness of the mother substrate may be passed to reach the sacrificial layer. The through holes are formed through the top layer system or system area, the cover layer, the mother substrate, and the like. Figs. 1 to 8 show the state in which the remover reaches the sacrificial layer via a vertical passage, and Fig. 10 shows an example of a flow in which the remover is brought close to the sacrificial layer via a horizontal passage system. Figure 13b shows 21 1293618 The remover enters through the parent substrate and a horizontally laid channel network. The through holes may be shaped like a pipe for removing a chemical agent (e.g., an acid, a base or an organic solvent) of the sacrificial layer. The chemical will flow through the tubes and penetrate down to the top of the sacrificial layer' and wet the sacrificial layer to chemically attack the sacrificial layer material. 5 In an experiment to verify the vias, a metal sacrificial layer was vapor deposited' and a 10 to 5 polymer layer from m was spin coated onto the glass of the Coming 1737. After the through holes are defined by lithography and the holes are made by reactive ion etching, the sample is immersed in an acid solution. The acid solution enters the top surface of the sacrificial layer via the via holes to etch the sacrificial layer and expand sideways. When the acid liquid moves laterally and etches the sacrificial layer, the polymer coating is separated. As this separate procedure progresses, its separate area gradually increases. As shown in Figures 5, 12 and 13, a pore or the like for supplying a chemical agent to the sacrificial layer may be provided in the mother substrate, which may be reused as described above. By removing the sacrificial layer, the element structure and circuitry, etc., on the laminate will be released from the parent substrate. As previously mentioned, the system made in accordance with the method of the present invention can be disposed on another substrate after being released from the parent substrate. The method of the present invention will be particularly useful in the manufacture of systems for placement on flexible or non-planar substrates. The substrates may be temporary substrates or may be permanent substrates. 20 When a system is released and transferred to the final substrate, or the system is overlaid on the final substrate and separated from the parent substrate, an additional encapsulation step can be performed. For example, if the components of the system are sandwiched between the final substrate and another suitably selected material and are at or near the curved neutral plane, the stress acting on the system components will be reduced. . The technology of the present invention is uniquely accommodating 22 1293618. The quality and stress reduction of the sturdy components are neutralized in this way, and their adaptability and durability are further enhanced. Accordingly, the method of the present invention may also include the step of laying a layer of material on the side of the cover material of the system to form a structure that substantially positions the system in a neutral plane of reduced bending stress. 5 As described above, the invention disclosed herein encompasses a concept and manufacturing technique that can be applied to the fabrication of various systems and components of various systems including, but not limited to, transistors, diodes, electronic components, chemical components, Biological components, biochemical components, fluid components, microelectromechanical components, sensors, fuel cells, optoelectronic components, photovoltaic cells, optical structures, microelectronic components, displays, 10 or circuit board systems, and the like. Such chemical, biological, and biochemical components include, but are not limited to, reactors. These systems can also be fabricated on small or large areas of substrates, and even on flexible substrates. These systems can also be "combined" side by side on a large area substrate to create a single system or multiple systems. Moreover, the invention can also be used to fabricate multilayer three-dimensional structures. These may also include micro 15 fuel cells, photovoltaic cells, or chemical reactor components on the substrate. Figure 9 illustrates a conceptual use of the present invention to create a "smart circuit board" that includes various components such as optical, optoelectronic, and electronic components. Some of these components can be fabricated directly, while others can be connected after the system is placed on the parent substrate. The system can be transferred to the final substrate (i.e., the 20 "substrate" of this example) after release, or the "substrate" layer can be attached to the system prior to release of the system. (Example of Process) (1) Process example in which a vertical remover path is mainly used. Figs. 1 to 8 show a flow chart in which a vertical path is used for removal processing. 23 1293618 5 10 15 20 Examples. Figure 1 shows a sacrificial (first release) layer deposited on a smooth "mother, substrate, such as glass, quartz, fused ceria, metal flakes, tantalum, or any other flat surface. After being deposited on the mother substrate, the sacrificial layer is stabilized by a process such as annealing as described above. If necessary, one or more intermediate layers may also be disposed under the sacrificial layer. Figure 2 shows the deposition of a cover layer on which the system components are to be fabricated (see Figure 3). This is the first layer of "construction layer". All deposition steps can be done by various means. Finished, including spin coating, physical deposition, chemical deposition, and chemical reactions, etc. This coating also protects the sacrificial layer, provided that the material with a high surface to volume ratio is as shown in Figure 11. For example, when When the highly porous column pores (see Figure 被) are used as the gate layer, the _dioxotomy layer and the secret material are slightly oxidized, or only a slight oxidation of the column pores will be preserved. The high surface volume ratio of the structure of the sacrificial material. The step stabilization may include removing the hydrogen in the surface and the block via an annealing or chemical process. Figure 3 shows the element structure of the system at the time of manufacture. Figure 4 shows an alternative step. The groove area of the component structure (for example, dry residue, wet residue, or thunder), and the sacrificial material (second release layer) as shown in the figure to fill the concave The material may be the same as or different from the material of the first sacrificial layer, and it may be substituted (as shown in FIG. 4) - a portion of the first - sacrificial crucible or may be unsubstituted (not shown). The steps shown in Figure 4 provide for the ability to provide complete, or at least partial, mechanical, ",, and electrical" capabilities to such system components, as may be inferred from the secret map. Regardless of whether or not the steps shown in Fig. 4 are included, more build layers can be provided as shown in Fig. 5. For example, in Fig. 5, it is shown that - polymer layer deposition or 24 1293618 is bonded to the And other system components. The layers may also be formed in a plurality of layering steps, and electrical interconnects or other structures of the system may also be disposed in the build layers and may be connected via vias (not shown) Other system components. One or all of these build layers will form the final substrate or form a "bearing" 5 layer to allow the system to be positioned on its final substrate. In any case, the carrier or final layer can be a foil or plastic and flexible. Vertical through holes and the like can be formed in the build layers by certain process steps such as etching or melting, as shown in Fig. 5. As can be seen in Figure 5b, the through holes are accessible to the first and second sacrificial layers as soon as the layer is provided. 10 using the vertical through holes, the second sacrificial material may also be gasified (escaped by gas through the through holes), dissolved (solvent enters through the through holes), or left in the presence of the etchant (the etchant is The through hole enters) and the like to be removed. The removal of the second sacrificial layer can be done first (as shown in Figures 6a and 6b), and then the first sacrificial layer is removed (by the same or other means); or they can be removed in the same step (not Show 15 out). However, in both of the above conditions, the first sacrificial layer is the key to separation from the parent substrate and must be removed by gasification, dissolution, or etching. This is located at the bottom of Figure 7. Fig. 8 shows the final result after the processing of Fig. 7. The overlay island blocks may or may not be retained (as shown). At this time, the structure of Fig. 8 can be adhered to other substrates as described above; or 20 can be further processed to cover the bottom with more materials to improve mechanical strength and/or environmental durability. Or both; and it can also be used at least as the final substrate of the top of the build layers. If more material is deposited or bonded to the bottom, the system components can be placed on or near the neutral plane of the resulting structure. 25 1293618 A well-known change to this process can also be used, including those that pass through a parent substrate (not shown) to access the sacrificial layer (or such sacrificial layers, provided that the isolation of Figure 4 is used) ) Vertical through holes, etc. Please note that the system of Figure 8b is made using the process with the steps in Figure 4. The transistor 5 produced in this manner exhibits excellent performance on a flexible substrate. (2) Process Example of Mainly Using Horizontal Remover Pathways A micro-sized or nanochannel network, which is mainly arranged in a horizontal arrangement, can also be used in the method of the present invention. The use of micro-sized or nanochannels for transporting the remover and access to the sacrificial layer reduces the time required to remove the sacrificial layer (e.g., etching, solution, gasification, etc.). The fluid remover can be pumped through the channels or can be flowed by capillary action. A horizontal channel array, as shown in Figure 10, will allow the remover to attack the sacrificial layer at many locations, greatly reducing the time required to remove. Fresh reactants, reaction products, etc., or both, can be transported within the channels to further accelerate the process. This method can reduce the exposure time of the remover, and also allows the process designer to have more material selectivity. In this example, the parent substrate provides mechanical and temperature stability to the components during the manufacturing process as previously described. The substrate must be mechanically stable for handling transfer, temperature stability at elevated temperatures, and have a coefficient of expansion comparable to the material selected. Materials for the parent substrate include, but are not limited to, semiconductors (e.g., germanium wafers or wafers), glass, fused cerium oxide, quartz, ceramics (e.g., oxidized), and metals (e.g., steel). The micro-sized or nanochannels in this separation variant can be formed using a variety of methods including: sacrificial layer processing, surface micromachining, bulk micromachining, 26 1293618 cladding techniques, combinations thereof, and the like. The micro-sized or nanochannels may be permanent structures of the parent substrate or may be removed during sacrificial layer etching or subsequent processing. In some cases, as will be detailed later, the channel networks may also be part of the parent substrate, and when the sacrificial layer is deposited, the steps of closing the channels are completed. The present invention uses a channel to facilitate separation of one embodiment, which is characterized by the use of a closed cover channel structure. The structure is accomplished by forming a high aspect ratio trench pattern on a hard, smooth, and south temperature substrate using a non-uniform thin film deposition process. This is not in the figure of 10 (a) ~ (c). The 苐 10 10(d) to (g) diagrams show subsequent system processes, as well as the separation procedure previously described herein. The uneven film deposition shown in Figures 10(b) and (c) can be easily accomplished by a physical vapor deposition process such as evaporation and money shooting. Also, relatively uniform deposition techniques, such as chemical vapor deposition (CVD) or plasma enhanced chemical vapor deposition (PECVD), may also select appropriate 15 processing parameters (eg, source gas temperature, source gas flow rate). , substrate temperature, processing pressure) are used. For example, a higher processing pressure can be used in the CVD process, which increases the likelihood of scattering near the opening in the trench (reducing the mean free path), which will result in a nearer opening More deposited film is created on the bottom or sidewall of the trench. Similar results can be achieved by controlling other appropriate processing parameters. After the cover layer closes the openings of the trench lines, the deposition of the layer or subsequent layers can be used to planarize the surface of the substrate. Chemical mechanical polishing (CMP) can also be used to planarize if necessary. In Figure 10(c), the flat overlay deposition has been completed and this layer will be used as the sacrificial release layer after completion of the system fabrication 27 1293618. In the 10th (d) diagram, a covering material is deposited on the sacrificial layer. This covering material is used as a barrier to isolate the chemical processing steps. The material, thickness and related properties of this barrier layer will be selected to survive the system fabrication and separation process. This cover layer can also be formed by changing the top of the sacrificial layer (e.g., thermal oxidation '). When the fabrication of such components is completed, as shown in Figure 10(1), one or more of the final build layers (e.g., plastic, glass, etc.) will be deposited or overlaid. It will form the support and transfer medium 10 after the system is released and brought to a new final substrate. However, it can also be the final substrate. During the release step, the channel network is exposed to appropriate chemicals, gases, and other removers, or combinations thereof, to selectively remove the sacrificial release layer. When a chemical agent is used to dissolve or etch the release layer, the microfluidic structure will form a rapid supply mechanism for the chemical agent due to the strong capillary action. When a reactive gas or an electric slurry is used as a remover, the microchannel structures can also be used as a fast gas supply path for the reactants. In any case, the release time and any possible damage to such components will be minimized. Figure 10(g) shows a separate system and the parent substrate as it can be reused. The aforementioned covering method by the upper closed channel will form an open channel for removing the sacrificial layer. Alternatively, the sacrificial layer can be built into the channel network and both pass through the parent substrate. The channel in the mother substrate can be filled with a sacrificial material in a lift-off manner, and the deposition of the sacrificial material can be continued to cover the entire mother substrate, or a particle method can also be used. . The figures showing the particles used in the channels are only visible in Figures 12 and 13a and 13b. Where 28 1293618 a sacrificial layer remover removes the channels and their larger cross section can be used to accelerate the removal agent to the remaining (particulate or non-particulate) sacrificial layer. The channel clearing step is shown in Figure 13a in the early stages of its flow, which further confirms the variability of its flow when necessary. In Figure 13a, the removal of the agent will advance to the channel in the lateral portion (not shown) and subsequently reach the sacrificial layer over the entire surface. In Figure 13b, the remover is advanced through the vertical vias provided in the mother substrate to the channels, as shown, and then to the sacrificial layer of the entire surface. Fig. 12A shows that a single or multi-layered nano or microsphere is coated on a substrate. The coating may comprise a self-assembling agent (molecular), a spatial composition, or a field-assisted composition. The planarization of the nano or microsphere layer (Fig. 12B) can be accomplished by rotating on glass (SOG), reflowable oxide, or any other suitable material and method. Figure 12C shows a system fabricated on the planarized surface. Figure 12D shows the overlay or deposition of the carrier or final substrate after the fabrication of the system is completed. Figures 12E and F show the formation of a consistent pore structure that will penetrate deep into the sphere layer from both sides of the structure (i.e., E or F map) to form a conduit for the remover to enter to remove the sphere layer. . Figure 12G shows that after removal of the sphere layer, the system has been separated by the parent substrate. Figures 13a-A and B show the formation of channel structures using the methods of Figures 12a-A through D above. Figures 13a-C illustrate the fabrication of a system on the channel structure using an appropriate method. A transfer layer such as a plastic or polymer film can be deposited or applied to the resulting system. Figures 13a-D and E show that when the system is made, the channel structure has been in contact with a chemical agent that will flow through the channels, for example by capillary action, and attack between the channel structure and the component. Release layer. This 29 1293618 will separate the system (the upper half of the figure) from the parent substrate (release). Fig. 13b_A illustrates the method of forming the channel structure to fill the micro-sized or nano-microspheres in addition to the component fabrication steps, using the method described in Figs. 12A-C. In Figure 13b-B a component will be fabricated on the structure. Fig. 13b-C Fig. 5 shows that a through hole in which the channel structure of the microsphere is deeply filled by the bottom or top of the structure is formed. Figs. 13b-D and E show the use of the channel structure, the through holes, and the like to remove the release layer and the microspheres. This will separate the top (element portion) from the parent substrate. BRIEF DESCRIPTION OF THE DRAWINGS 3 10 Figure 1 shows a sacrificial layer deposited on a hard and smooth surface of a mother substrate by a suitable coating technique; Figure 2 shows a coating over the sacrificial layer. Figure 3 illustrates the fabrication of a functional system on the cover layer; Figure 4 illustrates the etching of the trenches surrounding the functional system components into the first sacrificial layer, and by conventional techniques such as top surface a lift-off method to fill the trenches with a second sacrificial material; a 5a (cross-sectional) view and a 5b (top view) view showing the formation of a polymer layer and the formation of through-holes; 6a (cross-sectional) view and 6b (top view) view showing that the second sacrificial material is removed; 20 Figure 7 shows that the sacrificial layer is removed and a system is fabricated on a polymer substrate as shown in Fig. 8. Figure 8a is an example of a separation system of the present invention; Figure 8b shows an actual separation system. In this example, the TFTs component has a flexible plastic final substrate; 30 1293618 Figure 9 illustrates an application of the present invention for making a "smart circuit board" containing, for example, optical, optoelectronic, and electronic components. Various members; Figure 10 (a) shows a groove pattern on a hard and smooth substrate (mother substrate), such as Shi Xi tablets, quartz, dissolved sulfur dioxide, metal, sheet, 5 Or glass plate; Figure 10(b) shows the deposition of the sacrificial layer, which is preferably formed by a non-uniform thin film coating; Figure 10(c) shows the completed sacrificial layer and shows The groove pattern becomes a closed microchannel structure; 10 Figure 10(d) shows the deposition of a cover material that protects the sacrificial layer and system components from the chemistry generated by the release layer at the time of release treatment Effect of the reaction; Figure 10(e) shows the conventional system components on the cover layer of the channel structure on the mother substrate; 15 Figure 10(f) shows the use of spin coating, CVD, Spraying or coating a polymer (plastic) by spraying or any other suitable technique Figure 10(g) illustrates that the system includes the release (separation) of the plastic film by supplying a suitable chemical or reactive gas through the sacrificial dissolution of the release layer via the microchannels; Figure 11a is an example of a deposited separation layer material that meets all of the requirements of Table 1, which is a deposited pillar-hole material. This material will be used as a separation layer for the separation system of Figure 8b; the lib diagram is an example of a deposition separation layer formed by the SiO2 particles covalently bonded to the substrate; 31 1293618 Figure 12 illustrates a method of using microparticles as a sacrificial layer in the present invention; FIGS. 13a and 13b illustrate a method of using microparticles as a sacrificial layer, wherein the mother substrate contains channel vias to access the sacrificial layer; Figure 14 shows the deposited columnar pore network 矽; 5 Figure 15 shows the film after covering and high temperature treatment, showing that the film still retains some of its structural texture and porosity. [Main component symbol description] (none)

Claims (1)

_拾、申請專利範圍 'ί 第093 134092號專利申請案申請專利範圍修正參考本 94年4月 1· 一種母基材上的可移除系統,其藉由包含以下步驟之方 法所製設: 在一母基材上沈積一高表面積對體積比的犧牲層; 藉著a)除掉該犧牲層中及其上的揮發化學物質,及 /或b)修正該層的表面,而來穩定化該犧牲層; 以一覆蓋介質來覆蓋該犧牲層; 在該覆蓋介質上來製造一系統; 形成貫孔來通達該犧牲層;及 除去該犧牲層來釋開該系統。 2.如申請專利範圍第!項之母基材上的可移除系統,其中 該高表面體積比的材料係為一柱狀孔隙膜或微球等。 3·如申請專鄉圍第2項之母基材上的可移除系統,其中 該柱狀孔隙膜係選自於由下列材料所構成的組群:石夕、 氧化石夕、錯、氧化鍺、及可選擇地含有氯、氯、或氣的 秒合金。 (如申請專利範圍第!項之母基材上的可移除系統,其中 該穩定化步驟包含由該犧牲層除去氣,藉部份氧化及/ 或氮化來修正該犧㈣表面;而該覆蓋步驟包含將—包 含有Si〇2及Si3N4之疊膜結構的覆蓋介質覆設在該犧: 層上。 統,其更 有機物、 如申請專利範圍第]項之母基材上的可移除系 包含在該製造步驟之後’來將一聚合物、玻璃、、 5. 〜〜乂..... …如.、,π . . 拾、申請專利範圍 塑膠、半導體 '石英、氧化物、氮化物、絕緣體、導體、 金屬、或陶莞頂層佈設於該系統上來形成一包封系統的 步驟。 6.如申請專利範圍第5項之母基材上的可移除系統,其中 通達该犧牲層的貫孔等係被設成貫穿該頂層、系統、覆 盍層、及/或母基材。 7·如申請專利範圍第1項之母基材上的可移除系統,其中 5亥母基材含有貫孔等可通達該犧牲層。 8.如申請專利範圍第7項之母基材上的可移除系統,其中 在母基材内的貫孔等會在該基材平面中形成—網路,或 貫穿該基材的厚度。 9·如申請專利範圍第i項之母基材上的可移除系統,其在 該製造步驟之後’更包含調整該系統的曝露表面以加強 頂層對該系統表面的連接之步驟。 10·如申請專利範圍第i項之母基材上的可移除系統,其在 遠製造步驟之後,更包含以下步驟: 在該系統上敷設一聚合物層來形成一包封系統; 調整該聚合物頂層的曝露表面以加強連接;及 於該經調整的聚合物表面上覆設聚合物、玻璃、有 钱物、塑膠、半V體、石英、氧化物、氮化物、絕緣體、 導體、金屬或陶竟頂層。 u·—種母基材上的可移除系統,其藉由包含以下步驟之方 法所製設: 在一母基材上沈積一高表面積對體積比的犧牲層; 日修 —圍 藉著a)除掉該犧牲層中及其上的揮發化學㈣,及 /或b)修正該層的表面,而來穩定化該犧牲層; 以一覆蓋介質來覆蓋該犧牲層; 在該覆蓋介質上來製造一系統; 形成貫孔來通達該犧牲層; 除去5亥犧牲層來釋開該系統;及 將該系統黏接於一永久基材,_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Depositing a high surface area to volume ratio sacrificial layer on a mother substrate; stabilizing by a) removing volatile chemicals in and on the sacrificial layer, and/or b) modifying the surface of the layer The sacrificial layer; covering the sacrificial layer with a covering medium; fabricating a system on the covering medium; forming a through hole to reach the sacrificial layer; and removing the sacrificial layer to release the system. 2. A removable system on a parent substrate of the scope of the patent application, wherein the high surface to volume ratio material is a columnar pore film or microsphere or the like. 3. A removable system on a parent substrate of claim 2, wherein the columnar pore film is selected from the group consisting of: Shi Xi, oxidized stone, wrong, oxidized秒, and optionally a second alloy containing chlorine, chlorine, or gas. (Removable system on a parent substrate of claim 2, wherein the stabilizing step comprises removing gas from the sacrificial layer, and modifying the sacrificial surface by partial oxidation and/or nitridation; The covering step comprises covering the covering medium containing the laminated structure of Si〇2 and Si3N4 on the sacrificial layer, which is more organic, removable on the mother substrate as in the scope of the patent application. Is included in the manufacturing step 'to a polymer, glass, 5. ~ ~ 乂 ..... such as.,, π . . pick up, patent pending range of plastic, semiconductor 'quartz, oxide, nitrogen a step of depositing a layer of a compound, insulator, conductor, metal, or pottery on the system to form an encapsulation system. 6. A removable system on a parent substrate of claim 5, wherein the sacrificial layer is accessible The through hole or the like is disposed through the top layer, the system, the cover layer, and/or the mother substrate. 7. A removable system on the mother substrate of claim 1 of the patent application, wherein 5 The material contains a through hole and the like to reach the sacrificial layer. A removable system on a parent substrate of item 7, wherein a through hole or the like in the mother substrate is formed in the plane of the substrate - a network, or a thickness penetrating the substrate. A removable system on the parent substrate of the item i, which after the manufacturing step, further comprises the step of adjusting the exposed surface of the system to enhance the connection of the top layer to the surface of the system. The removable system on the mother substrate, after the far manufacturing step, further comprises the steps of: laying a polymer layer on the system to form an encapsulation system; adjusting the exposed surface of the polymer top layer to strengthen Connecting; and coating the polymer surface, the polymer, the glass, the rich, the plastic, the semi-V body, the quartz, the oxide, the nitride, the insulator, the conductor, the metal or the ceramic top layer on the surface of the adjusted polymer. a removable system on a mother substrate, which is prepared by a method comprising the steps of: depositing a high surface area to volume ratio sacrificial layer on a mother substrate; In and on the sacrificial layer Volatilizing chemistry (d), and/or b) modifying the surface of the layer to stabilize the sacrificial layer; covering the sacrificial layer with a covering medium; fabricating a system on the covering medium; forming a through hole to achieve the sacrifice Layer; removing the 5 kel sacrificial layer to release the system; and bonding the system to a permanent substrate, 其中該永久基材係為撓性的。 2.如申凊專利粑圍第11項之母基材上的可移除系統,其中 該高表面體積比的材料係為—柱狀孔隙膜或微球等1 13·▲如申請專利範圍第12項之母基材上的可移除系統,其中 違柱狀孔隙膜係選自於由下列材料所構成的組群:石夕、 氧化石夕、鍺、氧化鍺、及可選擇地含有氫、氣、或氣的 砂合金。 14·如申請專利範圍第u項之母基材上的可移除系統,其中Wherein the permanent substrate is flexible. 2. The removable system on the mother substrate of claim 11 wherein the high surface-to-volume ratio material is - columnar pore film or microsphere, etc. 1 13 · ▲ as claimed in the patent scope A removable system on a 12-mother substrate, wherein the column-like pore film is selected from the group consisting of: shixi, oxidized stone, cerium, lanthanum oxide, and optionally hydrogen. Sand, gas, or gas. 14. A removable system on a parent substrate as claimed in claim U, wherein 該穩定化步驟包含由該犧牲層除去氫,藉部份氧化及/ 或氮化來修正該犧牲層表面;而該覆蓋步驟包含將一包 S有Si〇2及SisN4之疊膜結構的覆蓋介質覆設在該犧牲 層上。 15·如申請專利範圍第U項之母基材上的可移除系統,其更 包含在該製造步驟之後,來將一聚合物、玻璃、有機物、 塑膠、半導體、石英、氧化物、氮化物、絕緣體、導體、 金屬、或陶瓷頂層佈設於該系統上來形成一包封系統的 步驟。 3 10 15 20 修邊)正f換_諝蓴範圍 •如申請專利範圍第15項之母基材上的可移除系統,其中 ,達該犧牲層的貫孔等係被設成貫穿該頂層、系統、覆 蓋層、及/或母基材。 17.,申請專利範圍第η項之母基材上的可移除系統,其中 该母基材含有貫孔等可通達該犧牲層。 申吻專利範圍第17項之母基材上的可移除系統,其中 在母基材内的貫孔等會在該基材平面中形成_網路,或 貫穿該基材的厚度。 士申租專利圍第11項之母基材上的可移除系統,其在 該製造步驟之後,[包含調整㈣統的曝露表面以二強 頂層對該系統表面的連接之步驟。 20.如申請專利範圍第u項之母基材上的可移㈣統其在 該製造步驟之後,更包含以下步驟: 在該系統上敷設一聚合物層來形成一包封系統; 調整該聚合物頂層的曝露表面以加強連接;及 於該經調整的聚合物表面上覆設聚合物、玻璃、有 機物、塑膠、半導體、石英、氧化物、氮化物、絕緣體、 導體、金屬或陶瓷頂層。 21 ·種製设一可移除系統的方法,包含以下步驟:The stabilizing step comprises removing hydrogen from the sacrificial layer and modifying the surface of the sacrificial layer by partial oxidation and/or nitridation; and the covering step comprises covering the substrate with a laminated structure of Si〇2 and SisN4. Overlaid on the sacrificial layer. 15. A removable system on a parent substrate of claim U, further comprising, after the manufacturing step, a polymer, glass, organic, plastic, semiconductor, quartz, oxide, nitride The step of placing an insulator, conductor, metal, or ceramic top layer on the system to form an encapsulation system. 3 10 15 20 edging) positive f _ 谞莼 range • a removable system on the mother substrate of claim 15 wherein the through hole of the sacrificial layer is disposed through the top layer , system, cover layer, and/or mother substrate. 17. A removable system on a parent substrate of claim n, wherein the parent substrate has a through hole or the like accessible to the sacrificial layer. A removable system on a parent substrate of claim 17 wherein a through hole or the like in the mother substrate forms a network in the plane of the substrate or a thickness throughout the substrate. The removable system on the parent substrate of Clause 11 of the patent, after the manufacturing step, [includes the step of adjusting the (4) exposed surface with the connection of the second strong top layer to the surface of the system. 20. The movable substrate on the parent substrate of claim U, after the manufacturing step, further comprising the steps of: laying a polymer layer on the system to form an encapsulation system; adjusting the polymerization The exposed surface of the top layer of the article is reinforced to bond; and the surface of the conditioned polymer is coated with a polymer, glass, organic, plastic, semiconductor, quartz, oxide, nitride, insulator, conductor, metal or ceramic top layer. 21 · A method of manufacturing a removable system, comprising the following steps: 在一母基材上形成一高表面積對體積比的犧牲層; 穩定化該犧牲層; 在4犧牲層上形成一覆蓋介質; 在該覆蓋介質上來製造一元件; 在該覆蓋介質中形成孔來通達該犧牲層;及 4 1293618 ^ s 々许P月办修(¾正替換頁I j 、申請專利|g匱 除去該犧牲層來釋開該系統。 22·如申請專利範圍第以項之方法,其中該穩定化步驟包 合除掉該犧牲層中及其上的揮發化學物質。 23·如申請專利範圍第21項之方法,其中該穩定化步驟包 5 含藉部份氧化及/或氮化過程來修正該犧牲層表面。 24·如申請專利範圍第21項之方法,其中該高表面積對體 積比的犧牲層包含柱狀孔隙膜、奈米球體、微球與分子 其中至少一種。 25·如申請專利範圍第21項之方法,其中該元件係選自於 10 由下列所構成的組群:電晶體、二極體、電子元件、化 學兀件、生物元件、生化元件、流體元件、微機電元件、 感測器、燃料電池、光電元件、光生伏打電池、光學構 件、微電子元件、顯示器、電路板系統及其組合物。 26·如申凊專利範圍第21項之方法,其更包含以一覆蓋介 15 質來覆設在該犧牲層上。Forming a high surface area to volume ratio sacrificial layer on a mother substrate; stabilizing the sacrificial layer; forming a covering medium on the 4 sacrificial layer; fabricating an element on the covering medium; forming a hole in the covering medium Access to the sacrificial layer; and 4 1293618 ^ s P P P P ( ( ( ( ( ( ( P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P And wherein the stabilizing step comprises removing the volatile chemical substance in the sacrificial layer and thereon. The method of claim 21, wherein the stabilizing step package 5 comprises partial oxidation and/or nitrogen The method of claim 21, wherein the high surface area to volume ratio sacrificial layer comprises at least one of a columnar pore film, a nanosphere, a microsphere, and a molecule. The method of claim 21, wherein the component is selected from the group consisting of: a transistor, a diode, an electronic component, a chemical component, a biological component, a biochemical component, a fluid element , microelectromechanical components, sensors, fuel cells, optoelectronic components, photovoltaic cells, optical components, microelectronic components, displays, circuit board systems, and combinations thereof. 26. The method of claim 21 And further comprising covering the sacrificial layer with a covering material.
TW93134092A 2000-01-13 2003-02-19 A removable system on a mother substrate TWI293618B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34072300A 2000-01-13 2000-01-13
US40823502P 2002-09-04 2002-09-04

Publications (2)

Publication Number Publication Date
TW200523205A TW200523205A (en) 2005-07-16
TWI293618B true TWI293618B (en) 2008-02-21

Family

ID=45067911

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93134092A TWI293618B (en) 2000-01-13 2003-02-19 A removable system on a mother substrate

Country Status (1)

Country Link
TW (1) TWI293618B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007048604A1 (en) * 2007-10-10 2009-04-16 Robert Bosch Gmbh Composite of at least two semiconductor substrates and manufacturing method
CN115284696B (en) * 2022-08-11 2023-07-25 业成科技(成都)有限公司 Composite optical film structure and method for manufacturing the same

Also Published As

Publication number Publication date
TW200523205A (en) 2005-07-16

Similar Documents

Publication Publication Date Title
US7309620B2 (en) Use of sacrificial layers in the manufacture of high performance systems on tailored substrates
CN111916342B (en) Wafer bonding method and structure thereof
KR20230163554A (en) Direct coupling and separation of carriers
TWI505347B (en) Multiple bonding layers for thin-wafer handling
US7948051B2 (en) Nonlithographic method to produce self-aligned mask, articles produced by same and compositions for same
US9111981B2 (en) Method for reversibly mounting a device wafer to a carrier substrate
US6991995B2 (en) Method of producing a semiconductor structure having at least one support substrate and an ultrathin layer
US8771929B2 (en) Tone inversion of self-assembled self-aligned structures
US20070207592A1 (en) Wafer bonding of damascene-patterned metal/adhesive redistribution layers
CN1533359A (en) Thin films and producton methods thereof
US10121762B2 (en) Wafer bonding structure and wafer bonding method
US7273820B2 (en) Method for fabricating semiconductor device
US10854494B2 (en) Method for producing an interface intended to assemble temporarily a microelectronic support and a manipulation handle, and temporary assembly interface
KR20070034535A (en) Delivery method of plates
JP2010508167A (en) Manufacturing method of micromachine device
JP5753263B2 (en) Enhanced method for densifying silicon oxide layers
EP1796159A2 (en) Method for manufacturing a semiconductor device by using a dual damascene process
TWI293618B (en) A removable system on a mother substrate
TWI239051B (en) Method for preparing a removable system on a mother substrate, method for preparing a sacrificial release layer on a mother substrate, and systems prepared thereby
KR20150070178A (en) Method for bonding by means of molecular adhesion
KR20230074056A (en) Transfer method of single crystalline thin layer and method of manufacturing semiconductor device using the same
Yun Semiconductor wafer bonding and ion-cut layer transfer
JP2009532836A (en) Method for protecting a cavity opened in the surface of a microstructure element