TWI293163B - Counting signal processing method for fiber optic interferometric sensor - Google Patents

Counting signal processing method for fiber optic interferometric sensor Download PDF

Info

Publication number
TWI293163B
TWI293163B TW94138382A TW94138382A TWI293163B TW I293163 B TWI293163 B TW I293163B TW 94138382 A TW94138382 A TW 94138382A TW 94138382 A TW94138382 A TW 94138382A TW I293163 B TWI293163 B TW I293163B
Authority
TW
Taiwan
Prior art keywords
signal
counting
interferometric
value
minimum
Prior art date
Application number
TW94138382A
Other languages
Chinese (zh)
Other versions
TW200719286A (en
Inventor
Shih Chu Huang
Hermann Lin
Heng Shan Hsu
Chun Long Chang
Jiunn Song Tsay
Original Assignee
Shih Chu Huang
Hermann Lin
Heng Shan Hsu
Chun Long Chang
Jiunn Song Tsay
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shih Chu Huang, Hermann Lin, Heng Shan Hsu, Chun Long Chang, Jiunn Song Tsay filed Critical Shih Chu Huang
Priority to TW94138382A priority Critical patent/TWI293163B/en
Publication of TW200719286A publication Critical patent/TW200719286A/en
Application granted granted Critical
Publication of TWI293163B publication Critical patent/TWI293163B/en

Links

Landscapes

  • Burglar Alarm Systems (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

1293· twf.doc/m 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種干涉式光纖感應器的訊號處理 方法,且特別是有關於一種干涉式光纖感應器之計數式訊 號處理方法。 【先前技術】 單模光纖干涉式感應器(single mode fiber optic interferometric sensor ) 如馬赫-任德爾干涉儀 (Mach-Zehnder interferometer ),桑克干涉儀(Sagnac interferometer)及邁克遜干涉儀(Michelson interferometer ) 等是極為靈敏的感應器,可用來偵測聲壓、溫度等物理場 產生之感應相位訊號。其中,雙臂干涉式光纖感應器(two arms fiber optic interferometric sensor)包括馬赫任德爾干 涉儀及邁克遜干涉儀皆使用波寬較小(即同調長度大)的 分佈式回饋半導體雷射(distributed feedback laser,DFB laser)等雷射作系統之光源,以降低由兩感應光纖臂光程 差(optical path diferrence)引起的相位雜訊(phase noise )。 桑克干涉儀則使用波寬較大(即同調長度小)的超發光二 極體(superluminescent diode )等寬波帶光源作系統之光 源’以降低由感應光纖中雷利散射(Rayleigh scattering) 引起的雜訊。光源先由單模引線光纖傳輸,經光纖耦合器 分光進入感應光纖。雷射光通過長度L的感應光纖時,光 路徑的總相位為0 = knL,其中k為真空中的雷射光波數 (wave number),η為光纖纖蕊(fiber core)的折射率 I293Mwf.d〇0/m (refractive index ) 〇 承上述,g感應光纖受聲壓作用時,會引起光纖的應 、艾(strain)及折射率(refractive㈣饮)改變,雷射光在 單模光纖干涉儀中的兩個傳播路徑會形成不同的光程差。 雙臂干涉式光纖干涉儀利用兩個感應光纖臂之間的光波相 位差值,而桑克干涉儀則利用感應光纖的兩個反向傳輸的 光波相位差值,其皆可產生含有相位感應訊號的光干涉訊 號,並經PIN光二極體(pIN口匕伽伽如)接收器後,輸出 正比於干涉光強度(interferometer output signal)的電訊號。 在4知技術中,干涉式光纖感應器的輸出干涉訊號必 須用適當的訊號解調線路,來線性解調感應的相位訊號。 常用的干涉式光纖感應器的訊號解調線路,包括主動式相 位追蹤解調(active homodyne with DC phase tracking)、被動 式相位載波解調(passive homodyne demodulation using phase generated carrier)等都會增加感應器的複雜度,同時 在使用上也多了許多限制。舉例來說,有些解調需要在感 應光纖臂上加相位调制器,感應光纖臂有相位調制器便需 要使用電訊號驅動,無法符合光纖感測系統在感應端為全 被動元件結構的要求,因而限制了光纖感應器在一些特殊 場合的使用。此外,訊號解調有動態範圍及頻寬的限制, 所以在線性解調感應的相位訊號時,容易因感應相位訊號 振幅過大而飽和或頻率太高而失真,導致訊號無法線性解 調0 在某些特殊用途上只需偵測是否有較大的感應訊號即 1293 Hc/m 可,亚不需要做複雜的訊號解調。例如 應器應用在防盗保全系統時,口 福、:干以式先緘感 于洮守/、要此偵測出闖入者引起的 號之變化即可,並不—定需要線性解調感 ίϋ/且㈣人料引糾咖錢相位訊 號,通吊其振幅很大及含有高頻之分量,_,如前所述 使用線性解調線路常會有飽和或失真的問題,同時也合增 加干涉式光纖感應器的複雜度。 曰曰 【發明内容】 、…本發明的目的是提供—種干涉式_感應器之計數 式訊號,财法,其較為鮮有效,可應用在以干涉式光 纖感應1§作為感應n的防盜㈣等騎的訊號痛測。 基於上述與其他目的,本發明提出一種干涉式光纖感 應器之計數式訊號處理方法,其適於處理一干涉式光纖感 應器所輸出之一光干涉訊號(011中说丨1]^1:^汐)。此計數式訊 號處理方法包括下列步驟··首先,將光干涉訊號轉換成形 式為V〇+VlC〇S0⑴的電訊號,其中ν〇為電訊號的DC值, 而V】為電訊號的振幅。接著,在特定時間内計算電訊號的 南於弟一汁數位準S1的隶大極值(peaks of the maximum value)次數N1及低於一第二計數位準S2的最小極值(peaks of the minimum value)次數 N2。當(N1+N2 )值、N2 值或 N1值大於一臨界計數值時,則判斷干涉式光纖感應器的感 應區域(sensing area)内有引起感應的事件發生。之後,以 一警報鑑定邏輯(logic of alarm identification)來判斷引起感 應的事件(inductive event)是否為闖入者闖入,並根據判斷 1293 腦 twf.doc/m 的結果來控制一警報裝置發出一警報訊號。 在本發明^-實施例中,將光干涉訊號轉換成電訊號 的方法例如是藉由一光波接收器將光干涉訊號轉換 號。 、在本發明之一貫施例中,干涉式光纖感應器之計數 式訊號處理方法更包括每隔—段特定時間,純程式會自 ,偵測電訊_最大與最小健。#最域最小極值有改變 時,本發明所提的計數錢號處理驗,其計數結果會受到 衫響’因此系統必須作極值計數位準歸一化的補償處理,使 得計數結果不受影響。 在本發明之-實施例中,控制警報裝置發出警報訊號 ^方去包括當德較邏辩_丨起感應的事件為聞入者 闖入時,則控制警報裝置發出警報訊號。 #在本發明之—實_巾,發出警報訊號的方法為 一警報燈號及/或一警報聲響。 在本發明之一實施例中,當發出警報訊號時更包括啟 動一攝影裝置及/或一燈光裳置。 在本發明之-實施例中,上述之第一計數位準心 ^v=VlXa%,而第二計數位準叫Vq—v])+2Vix (100 — a)%,且 50<a< 100。 =發明之-實施例中,上述之第一計數位準si與 佶二J1位準S2 ’母隔—段時間隨著電訊號的最大最小極 值的變動而改變。 u 在本發明之'一貫施例中 改變第一計數位準S1與第 10 :wf.doc/m 二計數位準S2的方法包括測量每一段時間内之電訊號中 的最大極值Vmax與最小極值Vmin,之後再根據Vo^ (Vmax+Vmin)/2 ^ Vmin)/2 ^ SI = (V〇-Vi)+2ViXa% 以及S2 = (V〇 — V1)+2V1x(100 —a)%來更新第一計數位準 SI與第二計數位準S2,其中50<a< 100。 在本發明之一實施例中,測量每一段時間内之電訊號 中的最大極值Vmax與最小極值Vmin的方法,包括測量一段 較長時間(例如數十分鐘到數小時)内,因環境溫度變化 及聲響振動等因素而自然產生之電訊號中的最大極值Vmax 與最小極值vmin。 在本發明之一實施例中,測量每一段時間内之電訊號 中的隶大極值vmax與最小極值vmin的方法,包括每隔一段 較短時間(例如數秒至數十秒)内,主動對干涉式光纖感 應器之半導體雷射光源作短時間(例如5至10毫秒)低頻 弦波(例如500到1000Hz)電流調變,以產生一振幅超過 7Γ rad之相位調變訊號,使得每一弦波週期内電訊號都能達 到最大極值vmax與最小極值Vmin,進而測出每一段時間内 之電訊號中的最大極值vmax與最小極值Vmin。 在本發明之一實施例中,於測量每一段時間内之電訊 號中的最大極值Vmax與最小極值之社包括根據 的值來判斷干涉式光纖感應器是否劣化或損壞, 其中V〗,n為第η段時間内的v],%,。為原始的%。 在本發明之-實施例中,於測量每一段時間内之電訊 號中的最大極值V_與最小極值u後更包括根據每1293· twf.doc/m IX. Description of the Invention: [Technical Field] The present invention relates to a signal processing method for an interferometric optical fiber sensor, and more particularly to a counting signal of an interferometric optical fiber sensor Approach. [Prior Art] A single mode fiber optic interferometric sensor such as a Mach-Zehnder interferometer, a Sagnac interferometer, and a Michelson interferometer It is an extremely sensitive sensor that can be used to detect induced phase signals generated by physical fields such as sound pressure and temperature. Among them, the two arms fiber optic interferometric sensor includes a Mach Rendel interferometer and a Michelson interferometer, which all use a distributed feedback semiconductor laser with a small wave width (ie, a large coherence length). Laser, DFB laser) Light source of the laser system to reduce the phase noise caused by the optical path diferrence of the two sensing fiber arms. The Sanker interferometer uses a wide-band source such as a superluminescent diode with a large wave width (ie, a small coherence length) as the source of the system to reduce Rayleigh scattering caused by the inductive fiber. The noise. The light source is first transmitted by a single-mode lead fiber and split into the sensing fiber via a fiber coupler. When the laser light passes through the length L of the induction fiber, the total phase of the light path is 0 = knL, where k is the wave number in the vacuum and η is the refractive index of the fiber core I293Mwf.d 〇0/m (refractive index) According to the above, when the g-induced optical fiber is subjected to sound pressure, it will cause the fiber's strain, strain and refractive index (refractive) to change. The laser light is in the single-mode fiber interferometer. The two propagation paths form different optical path differences. The dual-arm interferometric fiber optic interferometer utilizes the phase difference of the optical waves between the two inductive fiber arms, while the Sanker interferometer utilizes the phase difference values of the two oppositely transmitted optical waves of the inductive fiber, which all produce phase-inducing signals The optical interference signal, after passing through the PIN optical diode (pIN port gamma gamma) receiver, outputs a signal proportional to the interferometer output signal. In the four-knowledge technique, the output interference signal of the interferometric fiber optic sensor must be linearly demodulated with the appropriate signal demodulation line to demodulate the induced phase signal. The signal demodulation lines of commonly used interferometric fiber sensors, including active homodyne with DC phase tracking and passive homodyne demodulation using phase generated carriers, increase the complexity of the inductor. Degrees, but also a lot of restrictions on the use. For example, some demodulation requires a phase modulator on the sensing fiber arm, and the phase fiber modulator of the sensing fiber arm needs to be driven by a signal signal, which cannot meet the requirements of the fiber sensing system as a fully passive component structure at the sensing end. Limits the use of fiber optic sensors in special applications. In addition, signal demodulation has dynamic range and bandwidth limitation. Therefore, when linearly demodulating the induced phase signal, it is easy to be distorted due to excessive amplitude of the induced phase signal and saturation or frequency is too high, resulting in the signal not being linearly demodulated. For special purposes, it is only necessary to detect whether there is a large inductive signal, that is, 1293 Hc/m, and the sub-transmission does not require complicated signal demodulation. For example, when the application is applied to the anti-theft security system, the mouth is good, the dry type is first sensed by the guardian, and the change of the number caused by the intruder is detected, and the linear demodulation feeling is not required. And (4) the person is expected to cite the money phase signal, the amplitude of it is large and contains the high frequency component, _, as described above, the linear demodulation line often has the problem of saturation or distortion, and also increases the interference fiber. The complexity of the sensor.曰曰 [Summary of the Invention], the object of the present invention is to provide an interferometric _ sensor counting signal, the financial method, which is relatively effective, can be applied to the anti-theft using interferometric fiber sensing 1 § as sensing n (4) Wait for the signal to ride. Based on the above and other objects, the present invention provides a counting signal processing method for an interferometric optical fiber sensor, which is suitable for processing an optical interference signal outputted by an interferometric optical fiber sensor (011 says 丨1]^1:^汐). The counting signal processing method includes the following steps: First, the optical interference signal is converted into a signal of V〇+VlC〇S0(1), where ν〇 is the DC value of the electrical signal, and V] is the amplitude of the electrical signal. Next, the number of peaks of the maximum value N1 of the south-six-digit number S1 of the electrical signal and the minimum extreme value of the second-level level S2 are calculated for a specific time (peaks of the Minimum value) N2. When the (N1+N2) value, the N2 value, or the N1 value is greater than a critical count value, it is judged that an event causing the induction occurs in the sensing area of the interferometric fiber sensor. Then, a logic of alarm identification is used to determine whether the inductive event is an intrusive intrusion, and an alarm device is controlled to send an alarm signal according to the result of the judgment 1293 brain twf.doc/m. . In the embodiment of the invention, the method of converting the optical interference signal into an electrical signal is, for example, converting the optical interference signal by a light wave receiver. In the consistent embodiment of the present invention, the counting signal processing method of the interferometric optical fiber sensor further includes a specific program at a specific time, and the pure program will detect the maximum and minimum health of the telecommunication. When the minimum value of the most domain has changed, the counting method of the invention is performed, and the counting result is subject to the shirting sound. Therefore, the system must perform the compensation processing of the extreme value counting level normalization, so that the counting result is not affected. influences. In the embodiment of the present invention, the control alarm device sends an alarm signal to include the alarm device to issue an alarm signal when the event is detected by the sender. # In the present invention, the method of issuing an alarm signal is an alarm light number and/or an alarm sound. In an embodiment of the invention, when the alarm signal is issued, it further includes starting a photographing device and/or a light skirt. In the embodiment of the present invention, the first counting level is ^v = VlXa%, and the second counting level is called Vq - v]) + 2Vix (100 - a)%, and 50 < a < 100 . = Inventive - In the embodiment, the first count level si and the second J1 level S2' are separated as the maximum and minimum values of the electrical signal change. u The method of changing the first count level S1 and the 10th:wf.doc/m two count level S2 in the 'conventional embodiment of the invention' includes measuring the maximum extreme value Vmax and minimum in the electrical signal per period of time The extreme value Vmin, then according to Vo^ (Vmax+Vmin)/2 ^ Vmin)/2 ^ SI = (V〇-Vi)+2ViXa% and S2 = (V〇-V1)+2V1x(100 —a)% The first count level SI and the second count level S2 are updated, where 50 < a < 100. In an embodiment of the invention, a method for measuring a maximum extremum Vmax and a minimum extremum Vmin in an electrical signal over a period of time, including measuring for a long period of time (eg, tens of minutes to hours) due to the environment The maximum extreme value Vmax and the minimum extreme value vmin in the electrical signal naturally generated by factors such as temperature change and audible vibration. In an embodiment of the present invention, a method for measuring a maximum value vmax and a minimum extreme value vmin in an electrical signal in a period of time, including active every other short period of time (eg, seconds to tens of seconds) Performing a short-time (eg, 5 to 10 millisecond) low-frequency sine wave (eg, 500 to 1000 Hz) current modulation on the semiconductor laser source of the interferometric fiber optic sensor to produce a phase modulation signal having an amplitude greater than 7 rad, such that each During the sine wave period, the electric signal can reach the maximum extremum vmax and the minimum extremum Vmin, and then the maximum extremum vmax and the minimum extremum Vmin in the electrical signal in each period are measured. In an embodiment of the present invention, the method of measuring the maximum extremum Vmax and the minimum extremum in the electrical signal in each period includes determining whether the interferometric fiber optic sensor is deteriorated or damaged according to the value, wherein V〗, n is v], %, in the nth period. For the original %. In the embodiment of the present invention, after measuring the maximum extreme value V_ and the minimum extreme value u in the electrical signal in each period of time,

1293 技 3twfdoc/m 一段時間内之vyvo的值來判斷干涉式光纖感應器之引線 光纖或感應光纖是否被剪斷。 在本發明之一實施例中,於判斷干涉式光纖感應器之 引線光纖或感應光纖是否被剪斷後更包括根據判斷的結果 來控制警報裝置發出一需維修的訊號(tamper signal)。 在本發明之一實施例中,控制警報裝置發出該警報訊 號的方法為·當Vi/V〇之比值大於一設定值時,則不啟動 警報裝置’而當Vi/Vo之比值小於此設定值時,則啟動馨 報裝置以發出需維修的訊號。 由於本發明的干涉式光纖感應器之計數式訊號處理 ▲方法,僅作干涉式賴感應II所輸出之光干涉訊號的極值 計數,不需對訊號作複雜的線性解調,可應用在具有干涉 式光纖感應器的防盜系統等的訊號偵測,以簡化干涉式^ 纖感應器的複雜度。此外,本發_干涉式域感應理器 之計數式减處方法不f在干涉式域感脑巾增加相位 所以可符合光__統在感應端為全被動元件 的要求。另外,計數位準歸—化(㈣—計數位準S1 =二計數位準S2每隔-段時間隨著電訊號 ,動而改變)的技術,可以使偵測系統維持良好㈣ 月b 0 易僅㈣、特嶋點能更明顯 明如下 ‘域,亚配合所附圖式,作詳細說 【實施方式】 12 1293· wf.doc/m 本發明的干涉式光纖感應器之計數式訊號處理方法 可應用在以干涉式光纖感應器為感測元件的光纖防盗保全 系統之訊號偵測,配合不同被覆的單模感應光纖,可佈放 在室内各種地板下或室外之圍籬上、牆頭上及泥土地面下 專位置’因此使用範圍極為廣泛。同時本發明之計數式訊 號處理方法還可和現有之防盗攝影及燈光系統等結合,提 供其觸發等功能,使得防盗保全系統更為完備有效。以下 將詳細說明本發明之計數式訊號處理方法。 圖1疋本發明一實施例之干涉式光纖感應器之計數式 訊號處理方法的步驟流程圖,而圖2是一種干涉式光纖感 應器的結構示意圖。請參照圖丨與圖2,本實施例之干涉 式光纖感應器之計數式訊號處理方法適於處理一干涉式光 纖感應器100所輸出之一光干涉訊號,而此干涉式光纖感 應器100例如是作為光纖防盗保全系統的感測元件。其 中,圖2所繪示之干涉式光纖感應器100例如是使用邁克 遜干涉儀,但本發明並不以此為限,亦即本發明亦可使用 馬赫-任德爾干涉儀、桑克干涉儀或其他適用的干涉儀。 上述之干涉式光纖感應器100包括一雷射光源110、 一光隔絕器(optical is〇lator)120、一光纖耦合器(fiber c〇=ler)130、一感應光纖臂14〇、一參考光纖臂、兩法 拉第旋轉鏡(Faraday rotator mirror,FRM) 160以及_光波接 收器(〇ptiCalreceiver)170。其中,雷射光源1〇〇所提供的干 射光經過光纖辆合器13〇後會分成兩部分,而此兩部^ 雷射光會分別傳遞至感應光纖臂140及參考光纖臂 13 doc/m 1293 ϋ 亚由連接於感應I纖们40及參考光纖f⑽末端的法 第旋轉鏡160反射至光波接收器17〇。此外,在本實施例 中,茶考光纖臂150,亦可作為另一感應光纖臂。 承上述,當感應光纖臂140受聲壓作用時,會引起光 纖的應變及折射率改變,雷射光在感應光纖臂14〇及參考 光纖臂15〇的傳播路徑會有光程差。干涉式光纖感應器· . 即藉由感應光纖臂刚及參考光纖臂ISO之間的光波相位 ’ 隸來產生含抽位絲喊触干涉喊,料實施例 • t计數式訊號處理方法即針對此光干涉訊號進行處理。以1293 Technology 3twfdoc/m The value of vyvo over a period of time is used to determine if the fiber or inductive fiber of the interferometric fiber optic sensor is clipped. In an embodiment of the invention, after determining whether the lead fiber or the sensing fiber of the interferometric fiber sensor is cut, it further comprises controlling the alarm device to issue a tamper signal according to the result of the judgment. In an embodiment of the present invention, the method for controlling the alarm device to send the alarm signal is: when the ratio of Vi/V〇 is greater than a set value, the alarm device is not activated, and when the ratio of Vi/Vo is less than the set value At this time, the Xinyi device is activated to issue a signal for maintenance. Because the counting signal processing method of the interferometric optical fiber sensor of the present invention only uses the extreme value counting of the optical interference signal output by the interferometric sensing II, it does not need complex linear demodulation of the signal, and can be applied to Signal detection of anti-theft systems such as interferometric fiber optic sensors to simplify the complexity of interferometric fiber optic sensors. In addition, the counting method of the _ interferometric domain sensor does not increase the phase in the interferometric domain sensation, so it can meet the requirements of the optical __ system at the sensing end as a fully passive component. In addition, the counting level is normalized ((4) - the counting level S1 = the second counting level S2 every other time period with the change of the electric signal, the technology can make the detection system maintain good (4) month b 0 easy Only (4), special points can be more clearly as follows: 'domain, sub-match with the drawing, for details. [Embodiment] 12 1293·wf.doc/m The counting signal processing method of the interferometric optical fiber sensor of the present invention It can be applied to the signal detection of the fiber-optic anti-theft security system with the interferometric fiber sensor as the sensing component, and can be placed on various indoor and outdoor fences and walls, and with different coated single-mode induction fibers. The special location under the mud floor is therefore extremely extensive. At the same time, the counting signal processing method of the invention can also be combined with the existing anti-theft photography and lighting system to provide functions such as triggering, so that the anti-theft security system is more complete and effective. The counting signal processing method of the present invention will be described in detail below. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing the steps of a counting type signal processing method for an interferometric optical fiber sensor according to an embodiment of the present invention, and Fig. 2 is a schematic structural view of an interference type optical fiber sensor. Referring to FIG. 2 and FIG. 2, the counting signal processing method of the interferometric optical fiber sensor of the present embodiment is adapted to process an optical interference signal outputted by an interferometric optical fiber sensor 100, and the interferometric optical fiber sensor 100 is, for example, It is a sensing component of the fiber optic security system. The interferometric fiber optic sensor 100 illustrated in FIG. 2 is, for example, a Michelson interferometer, but the invention is not limited thereto, that is, the present invention may also use a Mach-Rendel interferometer or a Sanker interferometer. Or other suitable interferometer. The interferometric optical fiber sensor 100 includes a laser light source 110, an optical isolator 120, a fiber coupler (fiber c〇=ler) 130, an inductive fiber arm 14〇, and a reference fiber. An arm, a Faraday rotator mirror (FRM) 160, and a _pwave receiver (170). The dry light provided by the laser light source 1 经过 is divided into two parts after passing through the optical fiber clutch 13 , and the two laser light are respectively transmitted to the sensing fiber arm 140 and the reference fiber arm 13 doc/m 1293 The ϋ sub is reflected by the rotating mirror 160 connected to the sensing I fiber 40 and the end of the reference fiber f (10) to the optical wave receiver 17A. In addition, in this embodiment, the tea test fiber arm 150 can also serve as another sensing fiber arm. According to the above, when the sensing fiber arm 140 is subjected to sound pressure, the strain and refractive index of the fiber are changed, and the propagation path of the laser light between the sensing fiber arm 14〇 and the reference fiber arm 15〇 has an optical path difference. Interferometric fiber optic sensor · By means of the phase of the light wave between the sensing fiber arm and the reference fiber arm ISO, the shunting interference is generated. The embodiment of the t-counting signal processing method is This optical interference signal is processed. Take

下將詳細介紹本實施例之干涉式光纖感應器之計數式訊號 處理方法。 ° I 本實施例之計數式訊號處理方法包括下列步驟:首 先,如步驟S110所示,將干涉式光纖感應器1〇〇所產生 的光干涉訊號轉換成形式為V〇+Vicos必⑴的電訊號,其中 V〇為電訊號的DC值,而V!為電訊號的振幅,且VQgVi。 之後,再由訊號解調電路180來處理此電訊號。在本實施 _ 例中是藉由光波接收器170將光干涉訊號轉換成形式為 . Vo+Vfos^⑴的電訊號。 接著,如步驟S120所示,在特定時間内計算電訊號 的高於一第一計數位準S1的最大極值次數N1及低於一第 二計數位準S2的最小極值次數N2。換言之,在本實施例 中可計算Nl、N2或是N1+N2的值。此外,由於0⑴隨著 時間而變化,每當0⑴增減而達到m7r時(m為整數),c〇s 0W便達到±1之最大最小極值。當訊號cos ¢)⑴越大,則 14 1293·一 達到±1之最大最小極值次數也越多。 為了能對光干涉訊號之最大最小極值數目作穩定的 計數,須先設定合理的計數位準。若計數位準偏離極值較 大,則有些未達極值的變動雜訊,會被計入而降低了訊號 雜訊比(signaltonoiseratio)。反之,若計數位準非常接 近極值,因闖入者等因素引起之瞬間環境變動而使光干涉 訊號變小,便可能有些極值無法達到計數位準而未被計 數,因而降低了訊號雜訊比。在本實施例中是將第一計數 位準S1與第二計數位準S2分別取在感應訊號峰對峰值的 a%及(l〇〇-a)%,其中5〇<a<1〇〇。舉例來說,&可取在 =左右。此外,第一計數位準sl = (v〇 — Vi)+2ViXa%,而 第二計數位準 S2 = (V〇 — Vi)+2ViX(1〇〇 —幻%。 承上述,本實施例之計數式訊號處理方法會連續作在 存寸疋日守間内的计數值,此最大及/或最小極值之計數值(即 N1、N2或N1+N2)即可作為區別訊號必⑴大小的依據。值 得一提的是,本實施例之計數式訊號處理方法更包括在每 ,一段時間,自動偵測電訊號的最大與最小極值,當最大與 取小極值改變時,則自動作極值計數位準歸一化的補償處 理,使得計數結果不受影響。同時系統也會自動調控光波接 收裔170之增益,以使所有干涉訊號感應靈敏度維持穩定並 抑制電路飽和。 之後,如步驟S130所示,當(N1+N2)值、N2值或 值大於一臨界計數值時,則判斷干涉式光纖感應器的感 應區域内有引起感應的事件發生。更詳細地說,為了降低 15 doc/m 1293 駄· 重S數:的機率’在訊號處理軟體中可設定幾個 ," 廷二芩數包括臨界計數值、特定時間内减岸、次 者喊^數值, ,、了作為&擇界計數值之參考。t N1、N2或(ni+n2) ΐ::= 值時’則可判斷干涉式光纖感應器100的感 ?== 的事件發生,其中,引起感應的事件 二“r二、打雷’大風或大型車輛經過等外界突發 的狀況或環境雜訊。The counting signal processing method of the interferometric optical fiber sensor of this embodiment will be described in detail below. The counting signal processing method of the present embodiment includes the following steps: First, as shown in step S110, the optical interference signal generated by the interferometric optical fiber sensor 1〇〇 is converted into a telecommunication in the form of V〇+Vicos (1). No., where V〇 is the DC value of the electrical signal, and V! is the amplitude of the electrical signal, and VQgVi. Thereafter, the signal is processed by the signal demodulation circuit 180. In the present embodiment, the optical interference signal is converted by the optical wave receiver 170 into an electrical signal of the form Vo+Vfos^(1). Next, as shown in step S120, the maximum number of times N1 of the electrical signal above a first counting level S1 and the minimum number of times N2 lower than a second counting level S2 are calculated within a specific time. In other words, the value of N1, N2 or N1+N2 can be calculated in this embodiment. In addition, since 0(1) varies with time, whenever 0(1) increases or decreases and reaches m7r (m is an integer), c〇s 0W reaches the maximum and minimum extremum of ±1. When the signal cos ¢)(1) is larger, the number of maximum and minimum extremes of 14 1293·1 is ±1. In order to make a stable count of the maximum and minimum number of optical interference signals, a reasonable counting level must be set first. If the count level deviates from the extreme value, some of the non-extremely varying noise will be counted down and the signal noise ratio (signaltonoiseratio) will be reduced. On the other hand, if the counting level is very close to the extreme value, the optical interference signal becomes smaller due to the instantaneous environmental changes caused by the intruder and the like, and some extreme values may not reach the counting level and are not counted, thereby reducing the signal noise. ratio. In this embodiment, the first counting level S1 and the second counting level S2 are respectively taken at a% and (l〇〇-a)% of the peak of the inductive signal, wherein 5〇<a<1〇 Hey. For example, & can be taken around =. In addition, the first count level sl = (v〇 - Vi) + 2ViXa%, and the second count level S2 = (V〇 - Vi) + 2ViX (1〇〇 - Magic %. According to the above, the present embodiment The counting signal processing method continuously performs the counting value in the storage day, and the maximum and/or minimum extreme value (ie, N1, N2 or N1+N2) can be used as the difference signal size (1). It is worth mentioning that the counting signal processing method of the embodiment further includes automatically detecting the maximum and minimum extreme values of the electrical signal every time and for a period of time, and automatically changing when the maximum and the small minimum value are changed. The extreme value count level normalized compensation processing makes the counting result unaffected. At the same time, the system also automatically adjusts the gain of the light wave receiving source 170 to keep all the interference signal sensing sensitivity stable and suppress the circuit saturation. As shown in S130, when the (N1+N2) value, the N2 value, or the value is greater than a critical count value, it is determined that an event causing the induction occurs in the sensing region of the interferometric fiber sensor. In more detail, in order to reduce 15 doc /m 1293 駄· Heavy S number: probability In the signal processing software, several can be set, and the number of the two lines includes the critical count value, the reduction of the shore in a specific time, the value of the second call, and the reference to the value of the demarcation count. t N1, N2 Or (ni+n2) ΐ::= when the value can be judged by the interferometric fiber optic sensor 100? == The event occurs, wherein the event causing the induction is "r2, thunder" or a large vehicle passes Waiting for unexpected situations or environmental noise.

然後,如步驟S140所示,以一警報鑑定邏輯來判斷引 起感應的事件是人者H 制一警報裝置發出—警報訊號。具體而言,=夂it 佈Γί開放環境之地面下,且感應光纖感應 Γ則可合理假設聞入者經過感應區時 至>此感應兩次以上,因此感應次數便可設定兩次戋以上。 參 如此-來,在特定時間㈣外界突發的狀況或環境雜 起的單次感應訊號,便不會造成誤報。因此,當在特定日士 間内有兩次糾上引域應醇件發生時,^報 輯會判斷有闖入者闖入,此時警報裝置會被啟動以馨 報訊號,進而通知使用者有闖入者闖入或是對闖入^ : 嚇阻的作用。其中’警報訊號例如是一警報燈號及/或一避 報聲響。此外,在-較佳實施例中,當發出警報訊號時^ 包括啟動一攝影裝置,以錄下闖入者之影像,如此 盜保全系統更為完備有效。 $ 圖3是埋在泥土 10公分深處之邁克遜干涉儀在環境 16 1293 |^twf.d〇c/m 雜訊中隨機取樣的干涉訊號波形圖,圖4與圖5是約60 公斤重的人分別以約丨公尺/秒及2公尺/秒從埋在泥土 10 公分深處之邁克遜干涉儀上方走過所產生的干涉訊號波形 圖。請參照圖3至圖5,其中圖3至圖5的橫轴為時間, 母間格為20ms,當取樣時間皆為1〇〇ms (如圖中所標示) 其(N1+N2)之計數值分別為4、46及1〇6。由圖3、'圖4 與圖5的測試結果可看出,當有闖入者時,其所引起干涉 ' 訊號之N1或N2明顯大於因環境雜訊所引起的干涉訊號^ 9 N1或犯。因此,本實施例之干涉式光纖感應器之計婁^式 訊號處理方法可以有效的偵咖闖人者所引起的感應訊 號。 ^ 圖6是本發明一實施例之計數位準歸一化的流程圖。 -請茶照圖6,一般而言,干涉式光纖感應器1〇〇輸出的干 ·、#誠大持隨著整體光路部分元件老化、佈放環境變動 等因素而變小,感應相位訊號最大最小極值也會跟著改 變’因此必須作自動補償(即計數位準歸—化),以使 • 餘果不受影響。換言之,在一實施例中,上述之第一:十 .二與第二計數位準S2,每隔一段時間隨著電訊號 的取大舁取小極值的變動而改變,其中改變第一 - S1與第二計數位準S2的方法有下列兩種: ' v第—種:由於干涉式光纖感應器1_輸出訊號具有 V〇+ViC=_形式,在沒㈣人者的情況下,環境雜訊 =溫度變化及各魏舰動等)亦會產生低頻之相位訊 0 n (t)。在寻待—段較長時間(例如數十分鐘到數小時) 17 1293磁 wf.doc/m ϊΓίΐΓ會使⑽產生足_目他號(即相位訊號 受化大於h)飄移,使得cos0n(t)達到±1之最大最小極 值二因^改㈣-計數轉S1與第二計數位秘的方法 可為測1母-段時間内因環境雜訊所產生之電訊號的最大 極值V職與最4、極值Vmin(如步驟8210所示),之後再根據 v〇 (Vmax+Vmin)/2' Vj — (Vmax - Vmin)/2 Λ s 1 = (Y〇 _ v])+2Vi xa〇/〇以及S2 = (VG - Vl)+2Vlx(丨GG — a)%來更新第_計數位 100 準si與第二計數位準S2(如步驟S22〇所示),其中5〇<a< 弟二種:由於等待環境雜訊所產生之電訊號的最大極 值Vmax與最小極值Vmin可能需花費數小時的時間。因此, 就雙臂干涉式光纖感應器而言,為了加快取得Vmax與Vmin 的時間,可將兩光纖感測臂長度設計成有固定的差值(例 如2〜10公分左右),並使用波寬極小的dfb半導體雷射 (distributed feedback laser)作光源,以在雷射的驅動電流 (driving current)力π上低頻弦波(例如 5〇〇 到 1〇〇〇 Hz) 電流調變,進而產生相位調變訊號。如此,可使得光波接 收器170接收之干涉訊號具有V〇+VlCOS[0(t)+0mC〇s〇mt] 的形式,而0mcos〇mt即為相位調變訊號。如果外加調變 電流大到足以使產的生調變訊號振幅万rad,則干涉 訊號Vo+ViCOSf 0⑴十0 mC〇S(y mt]在一個周期時間丁⑺内(Tm = 2TT/wm),一定會有Vmax與Vmin出現。在實際系統中 可以每隔一段適當時間Td (例如數秒至數十秒)對雷射作 短時間Τρ (例如5至1〇毫秒)長度的相位調變訊號,而 18 1293 觀 wf.doc/m 雙臂干涉式光纖感應器可在此短時間TP内測出感應訊號的 最大最小極值乂㈤狀與Vmin(如步驟S210所示)。如此可確保 雙臂干涉式光纖感應器,每隔一段適當時間Td便可更新一 次感應^1*5虎的隶大最小極值Vmax與Vmin。之後再根據 一(Vmax+Vmin)/2、V] — (Vmax — Vmin)/2 λ SI —(V〇 — Vi)+2ViX a%以及S2 = (V〇 — VD+aViXQOO-a)°/〇來更新第—計數位 準SI與第二計數位準S2(如步驟S220所示),其中5〇<a <100。由於τρ遠小於計數式訊號處理取樣時間(1〇〇ms 左右)。因此’經適當之軟體處理使得外加相位訊號調變, 不會影響感應訊號之計數。 b ^ 此外,感應訊號的最大最小極值Vmax與vmin亦可作 為整個干涉式光纖感測器100的效能偵測。更詳細地說, 在開始使用此干涉式光纖感測器時,可將在特定時間内所 測出之最大最小極值vmax與vmin資料存下,並根據 Vun/V!〆下文將以r表示)的值來判斷該干涉式光纖感哭 100是否故障。其中,V】,n為第n段時間内的Vi\;二5 原始的V!。 1,0 一般而言卜但當1*值降到某—特定值以下(例如 〇.5),便可初步判定整體光路之某—部分(如雷射光源 110、感應光纖臂14G、參考光纖臂15〇、傳輪光纖或光波 接收器17G等)有問題’進而控制警報裝置發出代表需維 修的訊號。如此,可讓使用者知道防盜保全系統需作進二 步測試及維修,以使整個防盜保全系統保持良好之功能。 值得注意的是,有_然警報裝置發出代表需維修的"訊 19 1293 l^twf.doc/m 唬,但防盜保全系統仍可維持在正常狀態(即計數位準歸 一化技術仍然維持正常運作),除非r值降到很小,才會 使防I保全糸統不能正常運作而失效。 、在一貫施例中,若防盜保全系統具有多個感應器,且 各感應器使用同一個雷射作為光源,則在防盜保全系統經 - 一段時間運作後,當各感應器之r值變小,且其變化值一 3 ’則可判定是雷射劣化引起。若只有某一感應器之r值 k小’其他各感應器r值並無改變,則可判定是此感應器 干涉儀光纖臂、傳輸光纖或光波接收器受環境影響或元件 劣化引起。至於是何者引起,可進一步由此感應器干涉訊 號的條紋可視度(fringe 來分辨。 承上述’干涉訊號的條紋可視度(丘inge 办) 0 S dax VmirO'Vmax+Vmin) = Vi/Vo,利用所測出之最大 • 最小極值vmax及vmin資料便可計算VIS。假設干涉式光纖 感,器開始使用時的干涉訊號之條紋可視度為vISqH,每 f特定時間純便使測出新的條紋可視度為VIS,則定 ^ 義相對條紋可視度VISW = VlSnew/VISw。如果此感應器的 - VISrel〜1’則可判定是傳輸光纖或光波接收器170引起, 如果VISrel«l ’則可判定是感應器之干涉儀的某一光纖臂 - 有較大之光損耗所引起。 • ^ 在本發明之一實施例中,於測量每一段時間内之電訊 最大極值Vmax與最小極值之後更包括根據每〆 ,日守間内之VIS來判斷干涉式光纖感應器1⑻之參考光纖 煮15〇或感應光纖臂140是否被剪斷。更詳細地說,不論 20 1293 1^3twf.d〇c/m ϋ上纖感應器、100之參考光纖臂lso或感應光纖臂 剪斷,VIS都立刻降為零。因此,當vis降為零時, :益保全纽之警報裝置會被啟動,義發$需維修的訊 7虎0 综上所述,本發明之計數式訊號處理方法至少具有下 列優點: ^由於本發明之計數核號處财法僅斜涉式光纖 二應為所輸出之光干涉訊號的極值計數,不需對訊號作複 線性胸,可應时具有干涉式賴感絲的防盜系 、、、寺的汛唬偵測,以簡化干涉式光纖感應器的複雜度。 、土古2·=於本發明之計數式訊號處理方法其計數響應速率 於貫際干涉訊雜值㈣賴率,因此賊應相位訊 儿/又有動悲範圍的限制,不會有飽和或失真的問題。 3 ·利用計數位準歸一化的技術 維持良好的功能。 可以使防盜保全系統 4·本發明可藉由干涉訊號之條紋可視度來判斷干涉式 二、哉感應裔是否被破壞,以在干涉式光纖感應器被破壞時 勢出需維修的訊號。 5.本發明的干涉式光纖感應理器之計數式訊號處方法 不需在干涉式光纖感應器中增加相位調制器,所以可符合 光纖感測系統在感應端為全被動元件的要求。 雖然本發明已以較佳實施例揭露如上,然其並非用以 本發明,任何熟習此技藝者,在不脫離本發明之精神 σ範圍内,當可作些許之更動與潤飾,因此本發明之保護 21 doc/mThen, as shown in step S140, an alarm identification logic is used to determine that the event causing the induction is an alarm device issued by the alarm device. Specifically, =夂it 布Γί under the ground of the open environment, and the induction fiber sensing 可 can reasonably assume that the sensitizer passes through the sensing area to > this induction is more than twice, so the number of sensing can be set twice or more . In this way, a single sensory signal that is in a sudden situation or a mixed environment at a specific time (4) will not cause a false alarm. Therefore, when there are two corrections in the specific day, the counter will judge that there is an intruder, and the alarm device will be activated to signal the signal, thereby notifying the user that there is an intrusion. Intrusion or intrusion into the ^ : deterrent effect. The 'alarm signal' is, for example, an alarm light and/or an avoidance sound. Moreover, in the preferred embodiment, when an alarm signal is issued, ^ includes initiating a photographing device to record an image of the intruder, so that the system is more complete and effective. $ Figure 3 is an interference signal waveform randomly sampled by a Michelson interferometer buried deep in the soil at a depth of 10 cm in the environment 16 1293 |^twf.d〇c/m. Figure 4 and Figure 5 are about 60 kg. The person walked over the Michelson interferometer buried in the depth of 10 cm of the soil at about ft. meters/second and 2 meters/second, respectively. Please refer to FIG. 3 to FIG. 5 , wherein the horizontal axis of FIG. 3 to FIG. 5 is time, the mother space is 20 ms, and the sampling time is 1 〇〇 ms (as indicated in the figure) (N1+N2) The values are 4, 46 and 1〇6, respectively. From the test results in Fig. 3 and 'Fig. 4 and Fig. 5, it can be seen that when there is an intruder, the interference caused by the signal 'N1 or N2 is significantly larger than the interference signal caused by environmental noise ^ 9 N1 or guilty. Therefore, the method of processing the interference type optical fiber sensor of the present embodiment can effectively detect the induced signal caused by the scam. Figure 6 is a flow diagram of the counting level normalization in accordance with one embodiment of the present invention. - Please refer to Figure 6. In general, the interference output of the interferometric fiber optic sensor is reduced by the factors such as aging of the components of the optical path and changes in the environment of the optical path. The induced phase signal is the largest. The minimum extremum will also change 'so it must be automatically compensated (ie, the count level is normalized) so that the remaining fruit is not affected. In other words, in an embodiment, the first: the first two and the second counting level S2 are changed at intervals with the small value of the electric signal to change, wherein the first one is changed. There are two methods for S1 and the second counting level S2: 'v first type: since the interferometric fiber sensor 1_output signal has the form V〇+ViC=_, in the case of no (four) person, the environment Noise = temperature change and Wei Wei, etc.) will also produce low frequency phase signal 0 n (t). Looking for - a long period of time (for example, tens of minutes to hours) 17 1293 magnetic wf.doc / m ϊΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ( ( ( ( ( ( ( ( ( ( ( ( cos cos cos cos cos cos cos cos cos cos cos cos The method of achieving the maximum and minimum extremum of ±1 (the fourth)-counting to S1 and the second counting position can be used to measure the maximum extremum of the electrical signal generated by the environmental noise during the mother-segment period. The most 4, the extreme value Vmin (as shown in step 8210), and then according to v 〇 (Vmax + Vmin) / 2 ' Vj - (Vmax - Vmin) / 2 Λ s 1 = (Y 〇 _ v)) + 2Vi xa 〇/〇 and S2 = (VG - Vl) + 2Vlx (丨GG - a)% to update the _th bit 100 quasi-si and the second count level S2 (as shown in step S22 )), where 5 〇 <a< Two types of brothers: It may take several hours for the maximum extreme value Vmax and the minimum extreme value Vmin of the electrical signal generated by waiting for environmental noise. Therefore, in the case of a dual-arm interferometric fiber optic sensor, in order to speed up the time of obtaining Vmax and Vmin, the lengths of the two fiber sensing arms can be designed to have a fixed difference (for example, about 2 to 10 cm), and the wave width is used. A very small dfb semiconductor feedback laser is used as a light source to modulate the current at a low-frequency sine wave (eg, 5 〇〇 to 1 〇〇〇 Hz) at a driving current π of the laser, thereby generating a phase Modulation signal. In this way, the interference signal received by the optical wave receiver 170 can be in the form of V〇+VlCOS[0(t)+0mC〇s〇mt], and 0mcos〇mt is the phase modulation signal. If the applied modulation current is large enough to cause the amplitude of the modulated signal to be 10,000 rad, the interference signal Vo+ViCOSf 0(1)10 mC〇S(y mt) is within one cycle time (7) (Tm = 2TT/wm), There must be Vmax and Vmin. In the actual system, the phase modulation signal of the laser can be made for a short time Τρ (for example, 5 to 1 〇 milliseconds) every suitable time Td (for example, several seconds to tens of seconds). 18 1293 View wf.doc/m The dual-arm interferometric fiber optic sensor can measure the maximum and minimum extremum values of the inductive signal 乂(5) and Vmin in this short time TP (as shown in step S210). The fiber optic sensor can update the minimum extreme values Vmax and Vmin of the induction ^1*5 tiger every suitable time Td. Then according to one (Vmax+Vmin)/2, V] — (Vmax — Vmin )/2 λ SI —(V〇— Vi)+2ViX a% and S2 = (V〇—VD+aViXQOO-a)°/〇 to update the first-count level SI and the second count level S2 (as in the steps S220), where 5〇<a <100. Since τρ is much smaller than the counting signal processing sampling time (about 1〇〇ms), therefore, The body processing makes the applied phase signal modulation, which does not affect the counting of the sensing signal. b ^ In addition, the maximum and minimum extreme values Vmax and vmin of the sensing signal can also be used as the performance detection of the entire interferometric fiber optic sensor 100. More specifically Said that when using this interferometric fiber optic sensor, the maximum and minimum extremum vmax and vmin data measured during a specific time can be saved, and the value according to Vun/V! To determine whether the interferometric fiber-optic cry 100 is faulty. Where V], n is Vi\ in the nth period; 2 5 original V!. 1,0 Generally speaking, when the 1* value falls below a certain value (for example, 〇.5), a certain part of the overall optical path (such as the laser source 110, the sensing fiber arm 14G, and the reference fiber) can be initially determined. The arm 15 〇, the transmission fiber or the light wave receiver 17G, etc.) has a problem 'and thus controls the alarm device to emit a signal representing maintenance. In this way, the user can know that the anti-theft security system needs to be tested and repaired in two steps, so that the entire anti-theft security system maintains a good function. It is worth noting that there is a warning device that sends out the "19 19293 l^twf.doc/m 代表", but the anti-theft security system can still be maintained in a normal state (ie, the counting level normalization technology is still maintained). Normal operation), unless the r value is reduced to a small value, the anti-I security system will not function properly and will not work. In the consistent application, if the anti-theft security system has multiple sensors, and each sensor uses the same laser as the light source, the r value of each sensor becomes smaller after the anti-theft security system is operated for a period of time. And the change value of 3 ' can be determined to be caused by laser degradation. If only the r value of a certain sensor is small, and the r values of the other sensors are not changed, it can be determined that the interferometer fiber arm, the transmission fiber or the optical wave receiver is affected by environmental influence or component deterioration. As for what is caused, the fringe of the interference signal of the sensor can be further distinguished. The fringe of the above-mentioned interference signal (the hill ine) 0 S dax VmirO'Vmax+Vmin) = Vi/Vo, The VIS can be calculated using the measured maximum and minimum extreme values vmax and vmin. Assuming the interferometric fiber optic sensation, the fringe visibility of the interfering signal when the device starts to be used is vISqH, and the frustal visibility is VIS for each f-specific time, and the relative fringe visibility VISW = VlSnew/VISw. If the sensor - VISrel ~ 1 ' can be determined to be caused by the transmission fiber or light wave receiver 170, if VISrel «l ' can be determined to be a fiber arm of the interferometer of the sensor - there is a large loss of light cause. In an embodiment of the present invention, after measuring the maximum value of the maximum value Vmax and the minimum value of the telecommunications in each period of time, the reference of the interferometric fiber optic sensor 1 (8) is determined according to the VIS in each day and the day. The fiber is cooked 15 turns or the sensing fiber arm 140 is sheared. In more detail, regardless of the 20 1293 1^3twf.d〇c/m ϋ upper fiber sensor, the 100 reference fiber arm lso or the inductive fiber arm shear, the VIS immediately drops to zero. Therefore, when vis is reduced to zero, the alarm device of Yibao Quanxin will be activated, and the alarm signal processing method of the present invention has at least the following advantages: In the counting method of the invention, only the oblique optical fiber 2 should be the extreme value of the output optical interference signal, and the complex linear chest is not required for the signal, and the anti-theft system of the interference type sensitive wire can be used in time. , Temple detection, to simplify the complexity of the interferometric fiber optic sensor. , Tugu 2·= In the counting signal processing method of the present invention, the counting response rate is based on the inter-interference interference value (four) Lay rate, so the thief should have a phase error/restriction of the range of motion, no saturation or Distortion problem. 3 • Technology that uses the normalization of the count level to maintain good function. The anti-theft security system can be implemented. 4. The present invention can determine whether the interfering type or the sensory person is damaged by the fringe visibility of the interfering signal, so that the signal to be repaired is generated when the interferometric fiber optic sensor is broken. 5. The counting signal method of the interferometric fiber optic sensor of the present invention does not need to add a phase modulator in the interferometric fiber optic sensor, so it can meet the requirements of the fiber sensing system as a fully passive component at the sensing end. Although the present invention has been disclosed in the above preferred embodiments, the present invention is not intended to be used in the present invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. Protection 21 doc/m

1293 H 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1是本發明一實施例之計數式訊號處理方法的步驟 流程圖。 圖2是一種干涉式光纖感應器的結構示意圖。 圖3是埋在泥土 10公分深處之邁克遜干涉儀在環境 雜訊中隨機取樣的干涉訊號波形圖。 圖4與圖5是約60公斤重的人分別以約1公尺/秒及 2公尺/秒從埋在泥土 10公分深處之邁克遜干涉儀上方走 過所產生的干涉訊號波形圖。 圖6是本發明一實施例之計數位準歸一化的流程圖。 【主要元件符號說明】 100 :干涉式光纖感應器 110 :雷射光源 120 :光隔絕器 130 :光纖耦合器 140 ··感應光纖臂 150 ··參考光纖臂 160 :法拉第旋轉鏡 170 :光波接收器 180 :訊號解調線路 51 :第一標準計數位準 52 :第二標準計數位準 S110:將光干涉訊號轉換成形式為Vo+Vpos 0⑴的電 22 1293 編 twf.doc/m 訊號 S120 :在特定時間内計算電訊號的高於一第一計數位 準S1的最大極值次數N1及低於一第二計數位準S2的最 小極值次數N2 S130 :當(N1+N2)值、N2值或N1值大於一臨界計 數值時,則判斷干涉式光纖感應器的感應區域内有引起感 應的事件發生 S140 :以一警報鑑定邏輯來判斷引起感應的事件是否 為闖入者闖入,並根據判斷的結果來控制一警報裝置發出 一警報訊號 23The scope of 1293 H is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing the steps of a counting signal processing method according to an embodiment of the present invention. 2 is a schematic structural view of an interferometric fiber optic sensor. Figure 3 is a waveform diagram of the interference signal randomly sampled by the Michelson interferometer buried in the soil at a depth of 10 cm. Fig. 4 and Fig. 5 are waveform diagrams of interference signals generated by a person weighing about 60 kilograms passing over a Michaelson interferometer buried deep in the soil at a depth of about 1 meter and 2 meters per second, respectively. 6 is a flow chart of counting level normalization in accordance with an embodiment of the present invention. [Main component symbol description] 100: Interferometric optical fiber sensor 110: Laser light source 120: Optical isolator 130: Fiber coupler 140 · Inductive fiber arm 150 · Reference fiber arm 160: Faraday rotating mirror 170: Light wave receiver 180: signal demodulation line 51: first standard counting level 52: second standard counting level S110: converting the optical interference signal into electricity of the form Vo+Vpos 0(1) 22 1293 twf.doc/m signal S120: at Calculating the maximum number of times of the maximum value of the signal signal S1 above the first counting level S1 and the minimum number of times of the lower level of the second counting level S2 in a specific time period N2 S130 : when (N1 + N2) value, N2 value Or when the N1 value is greater than a critical count value, it is determined that an event causing the induction occurs in the sensing region of the interferometric fiber sensor S140: an alarm identification logic is used to determine whether the event causing the induction is an intruder, and according to the judgment The result is to control an alarm device to send an alarm signal 23

Claims (1)

doc/m 1293編毗 十、申請專利範圍·· 1·-種干涉式光誠應③、之計數式訊號處理方法,適 於處理-干涉式光誠應H所輸$之_光干涉訊號,該干 涉式光纖感應器之計數式訊號處理方法包括· 將該光干涉訊號轉換成形式4 V0+Vlcos0 (t)的一電 訊號·’其中^為該電訊號的Dc值,π V1為該電訊號的 振幅, 在特定時_計算該電訊號的高於—第—計數位準 S1的最大極值次數见及低於一第二計數位帛S2的最小 極值次數N2 ; 當(N1+N2)值、N2值或N1值大於一臨界計數值時, 則判斷該干涉式光,賊魅的感魅域时引 件發生;以及 以-警報鐘定邏輯來判斷引起感應的事件是否為聞入 者闖入,並根據觸的結果來控制—警絲置發出一尊報 訊號。 。 +二,成圍第1項所述之干涉式光纖感應器之 方法,其中將該光干涉訊號轉換成該電訊 ^括藉由—光波接收◎、將該光干涉訊號轉換成該 電訊就。 斗盤j 專利範圍第2項所述之干涉式光纖感應器之 计^式錢理方法,更包括每隔-段時間,自動偵測電 訊號的最大與最小極值,當最大與最小極财改變時,則合 自動作極值計數位準歸—化的補償處理,使得計數結果不^ 24 doc/m 1293 影響,同日钱統也會自動調控該光波接收器之卿 有干涉訊Μ應錄度轉敎並_ 了域所 4. 如申請專利範圍第“所述之干 計數式訊聽理方法,其中控繼 、,應-之 號=辦該警報鑑定邏輯判斷引起感; 入者闖入時’則控制該警報|置發出該 事牛為闖 5. 如申請專婦項鱗之干料^庫哭之 計數式訊號處理方法’其中發出該警報訊號的二 出一警報燈號及/或一警報聲響。 j乃成匕秸么 ⑯ΠΓ纖1韻叙干涉式域感應器之 计數式訊越理方法,其中當發出該警報訊號時更包括啟 動一攝影裝置及/或一燈光裝置。 > 7、·如中#專利範圍第丨項所述之干涉式光纖感應器之 計數式訊魏理方法,其巾該第—計數位準si = (v。一 Vl)+2VlXa%,而該第二計數位準 S2 = (VG-V1)+2VlX⑽ — a)%,且 50<a< 1〇〇。 8·如申請專利範圍第丨項所述之干涉式光纖感應器之 计數式滅處理方法,其巾該第—計數位準S1與該第二 计數位準S2每1% —段時間隨著電訊號的最大與最小極值的 變動而改變。 9·如申請專利範圍第8項所述之干涉式光纖感應器之 計數式訊號處理方法,其中改變該第一計數位準S1與該 第二計數位準S2的方法包括: 測量每一段時間内之該電訊號中的最大極值vmax與 25 12931絲 :wf.doc/m 最小極值vmin;以及 根據 V〇= (VmaX+Vmin)/2、V】=(Vmax- Vmin)/2、SI = (V〇 一¥1)+2¥仰%以及82 = (¥0-%)+2¥]\(1〇〇 — 幻〇/()來更新 該第一計數位準SI與該第二計數位準S2,其中5〇<a< 100 〇 10·如申請專利範圍第9項所述之干涉式光纖感應器 之計數式訊號處理方法,其中測量每一段時間内之該電訊 遽中的最大極值Vmax與最小極值vmin的方法,包括測量每 一段時間内因環境溫度變化及聲響振動等因素而產生之該 電訊號中的最大極值vmax與最小極值vmin。 H·如申請專利範圍第9項所述之干涉式光纖感應器 之汁數式訊號處理方法,其中測量每一段時間内之電訊號 =的最大極值vmax與最小極值Vmin的方法,包括於每一段 ,間内對干涉式光纖感應器之雷射光源作短時間弦波電流 凋、交,以產生一振幅超過之相位調變訊號,使得每 一弦波週期内電訊號都能達到最大極值Vmax與最小極值 ’進而測出每一段時間内之電訊號中的極v 與最小極值Vmin。 ^ 12·如申请專利範圍第9項所述之干涉式光纖感應器 二]十數式汛號處理方法,其中在測量每一段時間内之該電 唬中的最大極值vmax與最小極值vmin之後更包括根據 的值來判斷該干涉式光纖感應器是否劣化或損 ^而Vi,n為第η段時間内的V〗,V】,Q為為原始的V〗。 13·如申請專利範圍第12項所述之干涉式光纖感應器 26 1293 1^3twf.doc/m 之計數式訊號處理方法,其中在測量每—段時助之該電 訊號中的最大極值Vmax與最小極值Vmin之後更包括根^ 每-段時間内之WVW值來判斷該干涉式光纖感應器之 引線光纖或感應光纖是否被剪斷。 > M.如申請專利範圍第13項所述之干涉式光纖感應器 之计數式喊處理方法,其+在判斷該干料光纖感應器 之引線光纖或感應光纖是否被剪斷後更包括根據判斷的結 果來控制該警報裝置發出一需維修的訊號。 > 15·如申請專利範圍帛14項所述之干涉式光纖感應器 之計數式訊越理方法,其巾控綱警報裝置發出該警報 汛號的方法包括當V^Vo之比值大於一設定值時,則不啟 動警報裝置H vyvo之比值小於該設定值日夺,則啟 该警報裝置以發出需維修的訊號。 27Doc/m 1293 series ten, the scope of patent application · · · · Interferometric Guangcheng should be 3, the counting signal processing method, suitable for processing - interferometric optical Cheng Ying H lost $ _ optical interference signal, The counting signal processing method of the interferometric optical fiber sensor comprises: converting the optical interference signal into a signal of the form 4 V0+Vlcos0 (t), wherein the voltage is the Dc value of the electrical signal, and π V1 is the telecommunication The amplitude of the number, at a specific time _ calculate the maximum number of times the signal is higher than the first - level S1, and the number of times the minimum value is lower than a second number of times 第二S2, N2; when (N1+N2 When the value, the N2 value, or the N1 value is greater than a critical count value, the interferometric light is judged, and the trigger occurs when the enchantment is in the fascinating field; and the alarm-determining logic is used to determine whether the event causing the sensing is scented The person breaks in and controls according to the result of the touch - the police wire sends out a report signal. . The method of interferometric optical fiber sensor according to item 1, wherein the optical interference signal is converted into the telecommunication signal by receiving the optical interference signal into the telecommunication signal. The calculation method of the interferometric optical fiber sensor described in the second paragraph of the patent scope includes the maximum and minimum extreme values of the electric signal automatically detected every other time, when the maximum and minimum are extremely rich. When the change is made, the compensation process of the extreme value counting level is automatically performed, so that the counting result is not affected by 24 doc/m 1293. On the same day, the money system will automatically adjust the interference of the light wave receiver. The degree is changed to _ _ domain 4. As described in the scope of the patent application, the dry counting method of hearing and hearing, in which the control, the number of - should be the alarm identification logic to make sense; 'The control of the alarm|The issue of the cow is 闯5. If you apply for the maternal item scales dry material ^ library crying count signal processing method 'the two alarm lights and/or one that issued the alarm signal The sound of the alarm sounds. j is a stalking 16 ΠΓ 1 1 1 叙 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉 干涉7.·中中# Patent scope item 所述The counting method of the interferometric fiber optic sensor has the first counting level si = (v. - Vl) + 2VlXa%, and the second counting level S2 = (VG - V1) + 2VlX (10) - a)%, and 50<a<1〇〇. 8. The method of counting and erasing the interferometric optical fiber sensor according to the above-mentioned claim, wherein the first counting level S1 and the first The second counting level S2 is changed every 1%-segment time with the change of the maximum and minimum extreme values of the electric signal. 9. The counting signal processing method of the interferometric optical fiber sensor according to claim 8 of the patent application scope, The method for changing the first counting level S1 and the second counting level S2 comprises: measuring a maximum extremum vmax and 25 12931 wires in the electrical signal in a period of time: wf.doc/m minimum extremum vmin ; and according to V〇= (VmaX+Vmin)/2, V]=(Vmax- Vmin)/2, SI = (V〇一¥1)+2¥仰% and 82 = (¥0-%)+2 ¥]\(1〇〇- 〇 〇 / () to update the first count level SI and the second count level S2, where 5 〇 < a < 100 〇 10 · as claimed in claim 9 Interferometric light A method for counting signal processing of a sensor, wherein a method for measuring a maximum extremum Vmax and a minimum extremum vmin in the telecommunication cymbal during each period includes measuring a change in ambient temperature and an acoustic vibration per time period The maximum extremum vmax and the minimum extremum vmin in the electrical signal. H. The juice digital signal processing method of the interferometric optical fiber sensor according to claim 9, wherein the electrical signal is measured every time period = The method of the maximum extremum vmax and the minimum extremum Vmin includes performing short-time sinusoidal currents on the laser source of the interferometric fiber optic sensor in each segment to generate a phase modulation signal with an amplitude exceeding Therefore, the electric signal can reach the maximum extremum Vmax and the minimum extremum in each sine wave period, and then the pole v and the minimum extremum Vmin in the electrical signal in each period are measured. ^12. The interferometric optical fiber sensor according to claim 9 of the invention, wherein the maximum extremum vmax and the minimum extremum vmin are measured in the electric ticks in each period of time. Then, it is further included to determine whether the interferometric fiber optic sensor is degraded or damaged, and Vi, n is V in the nth period, V], and Q is the original V. 13. The method of counting signal processing of the interferometric optical fiber sensor 26 1293 1^3twf.doc/m according to claim 12, wherein the maximum value of the electrical signal is assisted in measuring each segment After Vmax and the minimum extreme value Vmin, the WVW value of the root period is included to determine whether the lead fiber or the sensing fiber of the interferometric fiber sensor is cut. > M. The method of counting and shouting the interferometric optical fiber sensor according to claim 13 of the patent application, wherein the + after determining whether the lead fiber or the sensing fiber of the dry fiber optical fiber sensor is cut is further included The result of the judgment is to control the alarm device to issue a signal requiring maintenance. > 15. The method for counting the interference signal of the interferometric optical fiber sensor described in claim 14 is that the method for issuing the alarm nickname by the towel control alarm device includes when the ratio of V^Vo is greater than a setting When the value is not activated, the ratio of the alarm device H vyvo is less than the set value, and the alarm device is activated to issue a signal for maintenance. 27
TW94138382A 2005-11-02 2005-11-02 Counting signal processing method for fiber optic interferometric sensor TWI293163B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94138382A TWI293163B (en) 2005-11-02 2005-11-02 Counting signal processing method for fiber optic interferometric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94138382A TWI293163B (en) 2005-11-02 2005-11-02 Counting signal processing method for fiber optic interferometric sensor

Publications (2)

Publication Number Publication Date
TW200719286A TW200719286A (en) 2007-05-16
TWI293163B true TWI293163B (en) 2008-02-01

Family

ID=45067754

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94138382A TWI293163B (en) 2005-11-02 2005-11-02 Counting signal processing method for fiber optic interferometric sensor

Country Status (1)

Country Link
TW (1) TWI293163B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403988B (en) * 2009-12-28 2013-08-01 Mstar Semiconductor Inc Signal processing apparatus and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820724B (en) * 2022-05-24 2023-11-01 中華電信股份有限公司 Optical fiber perimeter intrusion detection system and intrusion detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403988B (en) * 2009-12-28 2013-08-01 Mstar Semiconductor Inc Signal processing apparatus and method thereof

Also Published As

Publication number Publication date
TW200719286A (en) 2007-05-16

Similar Documents

Publication Publication Date Title
US9702691B2 (en) Optical detection systems and methods of using the same
Allwood et al. Optical fiber sensors in physical intrusion detection systems: A review
CN106225907B (en) It is a kind of based on Φ-OTDR technique fiber-optic vibration identifying system and method
JP5226006B2 (en) Fault-tolerant distributed optical fiber intrusion detection
EP3321901B1 (en) Distributed optical fiber perimeter security system, and sound restoration system and method
CN104021645B (en) Road guardrail bump alarm method based on distributed cable sensing
US7844178B1 (en) Local area warning of optical fiber intrusion
JP2010237083A (en) Intruder detection device and intruder detection method
CN203799460U (en) Tunnel cable intrusion detection system based on optical fiber sensing
CN105788123A (en) Method for dynamically monitoring deforestation on real-time basis and system therefor
TWI293163B (en) Counting signal processing method for fiber optic interferometric sensor
GB2406376A (en) Surveillance system including serial array of fiber optic point sensors
CN109275089A (en) Smart phone watch and method for improving personal safety
Hsieh et al. Multi-zone fiber-optic intrusion detection system with active unbalanced michelson interferometer used for security of each defended zone
US7375817B2 (en) Counting signal processing method for fiber optic interferometric sensor
Kumagai et al. Fiber-optic vibration sensor for physical security system
JP2000040187A (en) Intrusion detector
Tong et al. Distributed incomplete polarization-OTDR based on polarization maintaining fiber for multi-event detection
Kumagai et al. Fiber-optic intrusion detection sensor for physical security system
CN112763050B (en) Optical fiber Michelson voice monitoring system and stable noise sound extraction method thereof
CN213634747U (en) Foreign matter intrusion monitoring device
WO2022159906A1 (en) Detection of static weight on aerial telecommunications optical fibers using das ambient data
Mohanan et al. Studies on merged Sagnac-Michelson interferometer for detecting phase sensitive events on fiber optic cables
JP2000337811A (en) Magnetic marker position detecting method and device therefor
KR100363666B1 (en) Fiber optic intrusion detection systems using an optical fiber net interwoven with a multiple of optical fibers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees