TWI292621B - Flash memory device and method of manufacture field of the invention - Google Patents

Flash memory device and method of manufacture field of the invention Download PDF

Info

Publication number
TWI292621B
TWI292621B TW94125378A TW94125378A TWI292621B TW I292621 B TWI292621 B TW I292621B TW 94125378 A TW94125378 A TW 94125378A TW 94125378 A TW94125378 A TW 94125378A TW I292621 B TWI292621 B TW I292621B
Authority
TW
Taiwan
Prior art keywords
floating gates
spacers
flash memory
memory device
gates
Prior art date
Application number
TW94125378A
Other languages
Chinese (zh)
Other versions
TW200705648A (en
Inventor
Chung Zen Chen
Original Assignee
Elite Semiconductor Esmt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elite Semiconductor Esmt filed Critical Elite Semiconductor Esmt
Priority to TW94125378A priority Critical patent/TWI292621B/en
Publication of TW200705648A publication Critical patent/TW200705648A/en
Application granted granted Critical
Publication of TWI292621B publication Critical patent/TWI292621B/en

Links

Description

1292621 17067twf.doc/r 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種快閃記憶體裝置及其形成方法。 【先前技術】 反及型電性可移除可程式唯讀記憶體(electricaUy erasable programmable read only memory; EEPROM)或快閃 記憶體(FLASH memory)已漸成為硬碟的替代品,因此具有 ,南容量、低成本、減低記憶格尺寸以達小型化以及加快處 理速度的裝置是人們所追求的。 美國專利第5,050,125號揭露一種非揮發性半導體記 憶體,其每一位元線具有一串接快閃記憶體記憶格陣列(顯 示於該專利圖4所示之剖面圖),記憶格的尺寸及區域由浮 置閘的寬度及相鄰的絕緣區(圖4之X方向)與對應的控 制閘及相鄰的絕緣區(圖4之Y方向)的乘積所界定。換 言之,重疊的區域即浮置閘與控制閘。每個此專利中的記 憶格尺寸縮小的上限約為4F2到5F2,F代表在此專利製程 中藉由平版印刷技術所獲得的最小圖樣尺寸或線寬,最小 圖樣尺寸此時約為90奈米,並且在控制閘的最小寬度及相 鄰控制閘最小間距皆為1F時,假設浮置閘的最小寬度及 一個浮置閘陣列中相鄰浮置閘的最小間距皆約為1F。因 此,每個記憶格在X方向佔據至少2F的寬度,並且在γ 方向則為2F到2.5F。 增加快閃記憶體記憶格陣列的整體密度向為所求,因 此提供一種快閃記憶體,其記憶格尺寸不受限於藉由平版 1292621 17067twf.doc/r 印刷技術所得的最小線寬。 【發明内容】 記憶«置及其形成方法,此快閃記憶體褒 置^ 了使用最小線寬的選擇性微影製程的第一組浮置 中更包含形成於底材的閘極氧化層之上的多個第— ΐ置間i具有多個第二浮置閘的第二組浮置閘,其中這些 二浮置閘係連續沉積,即每個第二浮置閘沉積^ 母、·、’ 一>予置閘之間;多個間隙壁,每個間隙壁沉積 每-對相鄰的第-與第二浮置閘之間;以及多個連結這些1292621 17067twf.doc/r IX. Description of the Invention: [Technical Field] The present invention relates to a flash memory device and a method of forming the same. [Prior Art] The electrical EEPROM or flash memory has gradually become a substitute for hard disks, so Devices that are small in capacity, low in cost, and reduced in size to achieve miniaturization and speed of processing are sought after. U.S. Patent No. 5,050,125 discloses a non-volatile semiconductor memory having a series of flash memory memory arrays (shown in the cross-sectional view of FIG. 4) of each bit line, memory cell The size and area are defined by the width of the floating gate and the adjacent insulation zone (X direction of Figure 4) and the corresponding control gate and the adjacent insulation zone (Y direction of Figure 4). In other words, the overlapping areas are the floating gate and the control gate. The upper limit of the memory size reduction in each of these patents is approximately 4F2 to 5F2, and F represents the minimum pattern size or line width obtained by lithographic techniques in this patented process, and the minimum pattern size is now approximately 90 nm. And when the minimum width of the control gate and the minimum spacing of the adjacent control gates are both 1F, it is assumed that the minimum width of the floating gate and the minimum spacing of adjacent floating gates in a floating gate array are both about 1F. Therefore, each memory cell occupies at least 2F in the X direction and 2F to 2.5F in the γ direction. Increasing the overall density of the flash memory array is desirable, thus providing a flash memory whose memory cell size is not limited to the minimum line width obtained by the lithographic 1292621 17067 twf.doc/r printing technique. SUMMARY OF THE INVENTION Memory and its formation method, the first memory of the selective lithography process using the minimum line width further includes a gate oxide layer formed on the substrate. a plurality of the first plurality of floating gates having a plurality of second floating gates, wherein the two floating gates are continuously deposited, that is, each of the second floating gates is deposited, 'One> between the predetermined gates; a plurality of spacers, each spacer wall is deposited between each pair of adjacent first and second floating gates; and a plurality of connections

>于置閘的控制閘’其中這些_壁及/或第二浮置閘的寬产 小於最小線寬。 X 上述及其他本發明之特徵將可藉由以下較佳實施例及 相應圖式之詳述提供更多說明與理解。 【實施方式】 圖1揭露-半導體組合1G,此具有乡層辭導體組合 包含一底材12以組成電晶體及連接元件,並且可為矽、矽 鍺、三五族化合物底材以及其他可達成相同功效的替代材 質;一作為介電層的通道閘極氧化層14形成於底材12及 所形成裝置之間,並且可以藉由化學氣相沉積(c— vapor deposition; CVD)或熱成長程序形成,例如厚度介於 50到1〇〇埃(A)的矽氧化層;以及一第一多晶矽層16形成 於通道閘極氧化層14之上,例如藉由化學氣相沉積或旋塗 式塗蓋方式以形成。 如圖2所示,所沉積的第一多晶矽層16被圖刻以形 1292621 17067twf.doc/r ,可作為第一組浮置閘的第一組多晶矽閘18,其方法可以 疋^知的^1景々製程。在一實施例中,每個多晶石夕閘18可在 圖刻步驟運用具有一最小線寬(1F)之選擇性微影製程圖刻 而形成。> In the control gate of the gate, the width of the wall and/or the second gate is less than the minimum line width. The above and other features of the present invention will be more fully understood and understood by the following description of the preferred embodiments. [Embodiment] FIG. 1 discloses a semiconductor combination 1G, which has a substrate conductor combination comprising a substrate 12 to constitute a transistor and a connecting member, and may be a ruthenium, osmium, tri-five compound substrate and other achievable An alternative material of the same function; a channel gate oxide layer 14 as a dielectric layer is formed between the substrate 12 and the formed device, and can be formed by chemical vapor deposition (CVD) or thermal growth procedures. Forming, for example, a tantalum oxide layer having a thickness of 50 to 1 Å (A); and a first polysilicon layer 16 formed over the gate gate oxide layer 14, for example by chemical vapor deposition or spin coating Forming method to form. As shown in FIG. 2, the deposited first polysilicon layer 16 is patterned to form 1292621 17067 twf.doc/r, which can be used as the first group of polysilicon gates 18 of the first group of floating gates, and the method can be known. ^1 Jing Hao process. In one embodiment, each polycrystalline gate 18 can be formed in a patterning step using a selective lithography process having a minimum line width (1F).

圖2 ^一步揭示一間隔材料層22,其係包含沉積的氧 ,矽層或氮化矽層,以覆蓋圖刻後的第一多晶矽層16及多 晶矽閘18,並且部分填入其通道19 (係圖刻步驟中多晶矽 間18之間的區域),以產生嵌壁式通道21於通道19。 /圖3所示,在通道19中的間隔材料層22被蝕刻以 形成第一間隙壁2〇,且第一間隙壁2〇鄰接到每個多晶矽 閘18,而鄰接的第一間隙壁20由通道24區隔。等向性乾 钱刻製程可用於間隔材料層22以產生第-間隙壁2〇、每 個通逞24,特別是蝕刻通道21直到通道閘極氧化層14之 下形成通道24。當所選擇的乾蝕刻過程於間隙壁材料22 而非多晶矽材料良好反應時,通道24形成過程不需要罩 幕。通道24可以窄於最小線寬(1F),並且在一實施例中, 多晶矽閘18之間的通道19可以寬於1F,而通道24的寬 度近似於多晶矽閘18的寬度1F。 在一實施例中,間隙壁材料22包含一矽氧化物以及一 包含CHF3、(:扭^及He蝕刻化學品的乾蝕刻劑。在另一Figure 2 is a step-by-step disclosure of a spacer material layer 22 comprising a deposited layer of oxygen, tantalum or tantalum nitride to cover the first polysilicon layer 16 and the polysilicon gate 18 after engraving, and partially fill the channel thereof. 19 (the area between the polycrystalline turns 18 in the engraving step) to create a recessed channel 21 in the channel 19. / As shown in FIG. 3, the spacer material layer 22 in the channel 19 is etched to form a first spacer 2, and the first spacer 2 is adjacent to each polysilicon gate 18, and the adjacent first spacer 20 is Channel 24 is separated. An isotropic dry etching process can be used for the spacer material layer 22 to create a first spacer 2, each via 24, and particularly an etch channel 21 until the channel 24 is formed under the gate gate oxide layer 14. When the selected dry etch process is well reacted to the spacer material 22 rather than the polysilicon material, the via 24 formation process does not require a mask. Channel 24 can be narrower than the minimum line width (1F), and in one embodiment, channel 19 between polysilicon gates 18 can be wider than 1F, while channel 24 has a width that approximates width 1F of polysilicon gate 18. In one embodiment, the spacer material 22 comprises a tantalum oxide and a dry etchant comprising CHF3, (Twist and He etch chemistry. In another

實施例中,間隙壁材料22可包含氮化矽,並且在乾蝕刻過 程中使用Ar及CF4蝕刻化學品。 X 當第—多晶矽層16被圖刻以形成具有最小線寬的多 晶矽閘18時,每個具有足夠容納一個通道24與一對間隙 1292621 17067twf.doc/rIn an embodiment, the spacer material 22 may comprise tantalum nitride and the Ar and CF4 etch chemistries are used during the dry etch process. X When the first polysilicon layer 16 is patterned to form a polysilicon gate 18 having a minimum line width, each has a space sufficient to accommodate a channel 24 and a pair of gaps 1292621 17067twf.doc/r

壁的=度的通道19即被形成,而每個通道19被形成可藉 由微影製程產生大於最小線寬的寬度。如後所述,每個通 I 4係用以形成多晶石夕閘18之間的第二組多晶石夕閘18a ^圖6)。為了縮小多晶矽閘的間距,通道19可以是小於 最線覓二倍,而平板印刷技術可以精確形成通道19。在 —實施,中,每個通道24的寬度係小於或等於最小線寬, #中專於敢小線1使付與多晶石夕閘18的寬度匹配是較 全選擇。在一實施例中,使用選擇性乾蝕刻程序而非平板 f術能夠使得間隙壁2〇與通道24白勺寬度皆小於最小線 今,夕4^例來況,對於一個〇11微米的平板印刷術應用而 二伞夕曰曰石夕,閑18的寬度為〇·Π微米,通道19的寬度為0.17 ^微】道24的寬度為㈣微米,而間随2G的寬度為 你〜用钇蝕刻形成每個通道24之後,因為在形成讀 的颠刻過程中會減損或移除—部份的通道24的通 的,化層14,因此其重建是必要的。在—實施例中,一 的乳化物(例如40埃)被用以熱處理一晶圓,而氧 也在此過程—部分中獅成且覆蓋已圖刻的第」 =6。在另—實施射,濕侧程序觀以移除 、氏材表面的此種薄的氧化物,以消除在_過程 對底材12的毀損。因此,通道閘極氧化層= (例如透過重新成長)於通道24之上。 圖4係圖3所示結構之正视示意圖,亦㈣3係圖 ,l292621 17067twf.doc/r , A 3_3賴仙—錄上卿成之咖示賴。第-多晶 石夕,16被圖刻以形成一婉蜒圖樣,通道^與間隙壁 以f由多晶石夕間18所形成而延伸於此婉蜒圖樣腳位的第 羊置間界疋婉蜒圖樣,鄰接於此婉虫延圖樣的第一多晶石夕 、 層16的週邊可用於形成週邊電晶體的多晶石夕閘,例如一選Channels 19 of the wall are formed, and each channel 19 is formed to produce a width greater than the minimum line width by the lithography process. As will be described later, each of the vias is used to form a second set of polycrystalline gates 18a (Fig. 6) between the polycrystalline gates 18. In order to reduce the spacing of the polysilicon gates, the channel 19 can be twice as large as the most enthalpy, and the lithography technique can precisely form the channel 19. In the implementation, the width of each channel 24 is less than or equal to the minimum line width, and #中中为敢小线1 makes it more selective to match the width of the polycrystalline stone gate 18. In one embodiment, the use of a selective dry etching process rather than a flat f process enables the widths of the spacers 2 and 24 to be less than the minimum line, for example, for a 〇 11 micron lithography. The application is the same as the two umbrellas, the width of the idle 18 is 〇·Π micron, the width of the channel 19 is 0.17 ^ micro] the width of the channel 24 is (four) micron, and the width of the channel is 2G for you~ After each channel 24 is formed, its reconstruction is necessary because the pass layer of the portion of the channel 24 is degraded or removed during the formation of the read indentation. In the embodiment, an emulsion (e.g., 40 angstroms) is used to heat a wafer, and oxygen is also in the process - part of the lion and covering the engraved number = 6 . In another embodiment, the wet side is programmed to remove such thin oxides from the surface of the material to eliminate damage to the substrate 12 during the process. Therefore, the gate gate oxide layer = (e.g., by re-growth) above the channel 24. Figure 4 is a front view of the structure shown in Figure 3, also (4) 3 series diagram, l292621 17067twf.doc / r, A 3_3 Lai Xian - recorded on the Qing Cheng's coffee. On the first-polycrystalline stone, 16 is engraved to form a pattern, and the channel ^ and the spacer are formed by the polycrystalline stone 18 and extend over the ridge of the figure. In the 婉蜒 pattern, the first polycrystalline stone adjacent to the locust extension pattern, the periphery of the layer 16 can be used to form a polycrystalline sluice gate of the peripheral transistor, for example, a selection

擇電晶體即用於積體電路邏輯的其他雷B #如圖5戶斤示,一第二多晶石夕層i6^沉積於圖刻後的 _ 第^曰曰石夕層16上,並且填入形成於第一間隙壁20之間 的通迢24以產生具有多個分開的多晶石夕間18&的第二組浮 置閘。如前所述,在一實施例中,每個通道24希望是運用 ,影製程使其等於最小線寬且用以形成多晶㈣18,因此 每個填入對應的通道24的額外多晶矽閘18a可運用微影製 ,使其等於最小線寬,但是因為間隙壁2〇可以窄於最小線 寬,所以每個區域將有更多的多晶石夕間形成,使得記憶格 尺寸縮小以及記憶體裝置密度增加。 .如圖6所示,第二多晶矽層16a係選擇性回蝕至第一 多晶矽層16,氧化物層26也被希望能在此蝕刻程序移除, 因此,產生一個完全圖刻的多晶矽層,其係具有多個由多 曰曰石夕閘18與18a所形成的浮置閘,而氧化物層%可於此 移除私序中作為一触刻終點。在一^貫施例中,可選用一氣 態姓刻化學品Cb及HBr作用於二氧化矽(Si〇2)上的多晶 石夕;另外,可使用一化學機械研磨(chemical polishing; CMP)處理。 圖7係一正視示意圖,用以顯示具有可隔離多晶矽閘 1292621 17067twf.doc/r 18與18a的第一間隙壁2〇的完全圖刻多晶石夕層。 圖8係圖7的8_8線段在同一直線上所形成之剖面示 意圖。如圖8所示,第一間隙壁2〇以選擇性乾钮刻等方式 被移除’以提供介於多晶石夕閘18與18a的通道28,而通 運28延伸到通道閘極氧化層14。當第一間隙壁具 圖5實施例相同氧化物以作為氧化物層仏時,—氧^亥; 程序用以移除此氧化物層26與第一間隙壁2〇。 / 隙壁2〇係由氮化石夕(SiN)製成,進行一選擇性氮^絲 刻以自多晶石夕閘18與18a之間移除第一間隙壁2〇 實施例中’姓刻劑化學品可包含氣態的"及CF4。 移除第-間隙壁20之後,淺的離子植人3G被 底^ 12與通道28之下。進行離子植人係根據—習知工業 程序’例如植佈N+離子於一 p型底材12,而此犯離植 入形成一域應的金氧半場效電晶體離祕e semicon uctor field effect transistor; MOSFET)記怜林的、盾 極與沒極區域。此外,多對離子植入3。成串4=: ^2^_成的浮朗,吨供串接的金氧半ΐΓί 阳體5己丨思4,例如應用在256百萬位元組 广侧繼片之一串列陣細到32個= 憶格 圖14)充電以開啟第一間隙壁下的曰底材:二;二 條、,、文場於底材12,此條紋場效應可串接電晶體。、 1292621 17067twf.doc/r ^圖9所不’通道Μ接著藉由氧化沉積或氮化石夕沉 被填充,以復原第-間_20於離子植入3〇上,其中此 延伸的第-間隙壁20用以電性隔絕多晶石夕間18與收。 f ^16到32個串接的離子植人3G及相對應的記憶體電 日日耝提供了電晶體串,並且每對離子植入3〇及其對應的電 於:個位於底材12而用以隔離各電晶體的電晶 體次溝渠隔離(shallow trench is〇lation; STI)區域 31 (續一 =參閱® 10,其係圖7❺10-10線段所形成之剖面i意 圖)二習知該項技藝者應可理解·飞溝渠隔離區域31係形 2第-多晶;^層16形成之前,而且雖朗7只顯示兩個 心溝渠隱_ 31作域表,但是雜電 千計的淺溝渠隔離區域31。 汝圖11所示,浮置閘多晶石夕閘層(包含週邊的第一多 晶石夕層16與多晶销18與18a)被回姓至一目標厚度,以 形成具有多晶梦間18‘與18a,的多晶梦層湯。在一實施例 中,钱刻程序可以是使用氣態CL及HBr控制剩餘多晶矽 閘厚度的時職賴雜乾侧料,並且錢第一間隙 壁20突出於浮置閘多晶矽閘層之上。 ..接著,如圖12所不,介電層32 (例如一 〇N〇(〇xide/ ·—ide/oxide)層)係形成以提供覆蓋在多晶石夕閘與1如, 的每個浮置_電性隔離。介電層%通常希望在被沉積後 能夠使得通道35仍保留在各第一間隙壁20與浮置閘上。 在-實施例中,0N0間隙壁可藉由低壓化學氣相沉積(1〇w pressure Chemicai vap〇r dep〇siti〇n; LpcvD)而沉積,底部與 1292621 17067twf.doc/r 頂部的氧化物層可藉由氣態的siH2Cl2及〇2而形成,並且 2狀的氮化物層可以藉由氣態的卿C12及N2而形成, ς中,部氧化物層、氮化物層與底部氧化物層厚度分別為 數所^及4G埃’並且這祕度是由料的沉積程序參 -控侧層接著藉由沉積—第三多晶韻16c於介電The electrification crystal is the other mine B used for the integrated circuit logic. As shown in Fig. 5, a second polycrystalline stone layer i6^ is deposited on the _ 曰曰 曰曰 夕 layer 16 after the engraving, and The ports 24 formed between the first spacers 20 are filled to create a second set of floating gates having a plurality of spaced polycrystalline nights 18 & As previously mentioned, in one embodiment, each channel 24 is desirably utilized, and the shadowing process is made equal to the minimum line width and used to form polycrystalline (tetra) 18, such that each additional polysilicon gate 18a that fills the corresponding channel 24 can Use lithography to make it equal to the minimum line width, but because the spacers 2〇 can be narrower than the minimum line width, each region will have more polyliths formed at the same time, making the memory size smaller and the memory device The density increases. As shown in FIG. 6, the second polysilicon layer 16a is selectively etched back to the first polysilicon layer 16, and the oxide layer 26 is also expected to be removed by this etching process, thereby producing a complete pattern. The polycrystalline germanium layer has a plurality of floating gates formed by the polysilicon gates 18 and 18a, and the oxide layer % can be used as a touch end point in the private order. In a uniform example, a gaseous state of the chemical Cb and HBr may be used to act on the polycrystalline spine of the cerium oxide (Si〇2); in addition, a chemical mechanical polishing (CMP) may be used. deal with. Figure 7 is a front elevational view showing a fully engraved polycrystalline layer of a first spacer 2 具有 having a separable polysilicon gate 1292621 17067 twf.doc/r 18 and 18a. Fig. 8 is a cross-sectional view showing the line 8-8 of Fig. 7 formed on the same straight line. As shown in FIG. 8, the first spacer 2 is removed by selective dry buttoning or the like to provide a channel 28 between the polycrystalline gates 18 and 18a, and the transport 28 extends to the gate gate oxide layer. 14. When the first spacer has the same oxide as the oxide layer of the embodiment of Fig. 5, the procedure is to remove the oxide layer 26 and the first spacer 2〇. / The gap 2 is made of nitridde (SiN), and a selective nitrogen wire is removed to remove the first spacer 2 between the polycrystalline gates 18 and 18a. The chemical may contain gaseous " and CF4. After removal of the first-spacer 20, the shallow ion implanted 3G is underneath the channel 12. The ion implantation system is based on a conventional industrial procedure, such as planting N+ ions on a p-type substrate 12, and this is a metal oxide half-field effect transistor that forms a domain. ; MOSFET) remembers the peculiar, shield and immersion areas. In addition, multiple pairs of ions are implanted 3. In a series of 4=: ^2^_ into a sleek, ton for a series of gold-oxygen ΐΓ 阳 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 32 = Recall Figure 14) Charging to open the 曰 substrate under the first spacer: two; two,, the field is on the substrate 12, the stripe field effect can be connected in series with the transistor. 1292621 17067twf.doc/r ^ Figure 9 is not 'channel Μ is then filled by oxidative deposition or nitrite sink to restore the first - -20 on the ion implant 3 ,, where the extended first gap The wall 20 is used to electrically isolate the polycrystalline stone from the evening. f ^ 16 to 32 serially connected ion implanted 3G and corresponding memory electric corona provide a string of crystals, and each pair of ions is implanted 3 〇 and its corresponding electricity is: one is located on the substrate 12 The dielectric trench isolation (STI) region 31 for isolating the respective transistors (continued one = see о 10, which is the profile i of the line formed in Figure 7❺10-10) The skilled person should understand that the fly-ditch isolation area 31 is a 2nd-polycrystal; before the layer 16 is formed, and although the Lang 7 only shows two core trenches, the shallow trenches of thousands of meters Isolation area 31. As shown in FIG. 11, the floating gate polycrystalline stone gate layer (including the first first polycrystalline stone layer 16 and the polycrystalline pins 18 and 18a) is returned to a target thickness to form a polycrystalline dream room. 18' and 18a, the polycrystalline dream layer soup. In one embodiment, the engraving program may be a time-dependent dry side material that uses gaseous CL and HBr to control the thickness of the remaining polysilicon gate, and the first spacer wall 20 protrudes above the floating gate polysilicon gate layer. Then, as shown in FIG. 12, a dielectric layer 32 (for example, a layer of N〇(〇xide/--ide/oxide)) is formed to provide coverage for each of the polycrystalline sluice gates and the 1st. Floating _ electrical isolation. The dielectric layer % is generally expected to allow the channel 35 to remain on each of the first spacers 20 and the floating gate after being deposited. In an embodiment, the 0N0 spacer can be deposited by low pressure chemical vapor deposition (1〇w pressure Chemicai vap〇r dep〇siti〇n; LpcvD) with an oxide layer on the bottom and the top of 1292621 17067twf.doc/r It can be formed by gaseous siH2Cl2 and 〇2, and the 2-shaped nitride layer can be formed by gaseous C12 and N2. The thickness of the oxide layer, the nitride layer and the bottom oxide layer are respectively And 4G angstroms' and this secretity is determined by the deposition process of the material-controlled side layer followed by deposition - the third polycrystalline rhyme 16c for dielectric

^ 32上而形成’如圖13所示。第三多晶石夕層16c填入通 =35,並且被介電層32使其與多晶矽閘18‘與18a,隔開, 其係重複前述之多晶矽沉積步驟。 、如圖14所示,介電層32之第三多晶矽層16c接著被 f擇性贿’以提供形狀通道35的控姻卿成的字元 j 34 (如圖π所不)。在此採用一運用氣態h价或a 之選擇性乾蝕刻,並且使用〇N〇層作為蝕刻終點層。^32 is formed as shown in Fig. 13. The third polycrystalline layer 16c is filled with pass = 35 and is separated from the polysilicon gates 18' and 18a by the dielectric layer 32, which repeats the polycrystalline germanium deposition step described above. As shown in Fig. 14, the third polysilicon layer 16c of the dielectric layer 32 is then selectively etched to provide the sacred characters j 34 of the shape channel 35 (as shown in Fig. π). Here, a selective dry etching using a gaseous h-valence or a is employed, and a 〇N〇 layer is used as an etch end point layer.

一條紋場效應(fringe field effect)藉由第一間隙壁2〇 下的底材12的條紋場電容被導入,當控制閘被施加一偏壓 或其中一個浮置閘被持續充電時,底材表面可能會產生一 反轉層(inversion layer)或通道(channel),如同一個離子植 入3 0以串接相鄰的記憶格,而條紋場效應可作為提供源極 與汲極離子植入30的另一選擇。因此,藉由條紋場效應可 免去移除第一間隙壁20、植入離子植入3〇以及復原第一 間隙壁20的步驟。 此外,字元線34位於0N0層所覆蓋與用以隔開字元 線=的第一間隙壁20旁,每個第一間隙壁2〇與QNQ層 的寬度被希望是窄於微影製程所產生的最小線寬,浮置閘 12A fringe field effect is introduced by the fringe field capacitance of the substrate 12 under the first spacer 2, and when the control gate is applied with a bias or one of the floating gates is continuously charged, the substrate The surface may create an inversion layer or channel, like an ion implant 30 to concatenate adjacent memory cells, and the fringe field effect can be used to provide source and drain ion implantation 30. Another option. Therefore, the step of removing the first spacer 20, implanting the ion implantation 3, and restoring the first spacer 20 can be eliminated by the stripe field effect. In addition, the word line 34 is located next to the first spacer 20 covering the word line = and the width of each of the first spacer 2 and QNQ layers is desirably narrower than the lithography process. Minimum line width produced, floating gate 12

1292621 17067twf.doc/r 間距是第一間隙壁20的寬度,也就是大約3〇〇埃,並且 制閘之見度窄於浮置閘的寬度’大約相差〇NQ層厚产的 =倍。舉例來說,如果浮置閘寬度是〇11微米且〇N〇層 見度約0.G14微米,則控制閘大約是G U減去兩 0.014,或是0 082微米。 。 ,15此一正視示意圖顯示罩幕區域%以標示橫斷處 38 ’藉此提供了在此婉蜒圖樣巾的字元_賴立的字元 線34’而^更揭露了代表由字元線所形成的各控制間 性接觸點4G各孔洞,這些電性接觸點4()的設置是為了建 立包I1 生可移除可彳王式唯5胃^憶體之閉極控制線(未示於圖 中)與相對應字元線34的連線。 圖I6顯示藉由ΟΝΟ層32與底部多晶石夕層⑽所形 的通道42。舉例來說,通道42係藉由遮罩通道42以外 整個結構以製成’織對〇Ν〇層32的通道42位置進 選擇性侧^然後再對浮置閘多晶秒閘層勘進行選擇性 餘刻。-鮮祕金氧半場效電㈣選擇電㈣的源極或 汲極N+離子植入44被植部於通道42下的底材12,每條 字兀線34透過職的選擇電$财制電性可移除可程 式唯讀記憶體之閘極控制線(未示於圖中),如前述美 專利第5,050,125號所揭露者。 、μ 習知该項技蟄者應可理解一個完整的快閃記憶體裝置 尚可包含騎、㈣、讀寫、_及其他絲於此而近於 習知的電路’如同前述美國專利第5风125號所揭露之 電路。 1292621 17067twf.doc/r 門撕、線寬⑺為❻.11微米,並且多晶石夕 閘18與18a的線寬分別約等於 少曰y 憶格X方向的寬度約為G1H線見’則每個例示的記 认一由、★ 上。·。3微米(即第一間隙辟 ΙΓ i。若記憶格尺寸在Y方向約為2.5F,則O.U^ 因記憶格尺寸縮小而有顯著提昇,而成本亦 限定=發:=== 耗圍§視後附之申請專利範圍所界定者 ’、。又 【圖式簡單說明】 ^ °己體記憶格陣列形成之 圖1至圖16係本發明之快閃 正視不意圖與剖面示意圖。 【主要元件符號說明】 3-3、8-8 :剖面、線 10 :半導體組合 12 :底材 14 :通道閘極氧化層 16 :第一多晶矽層 16a ·弟二多晶秒層 16b ·多晶發層 16c ·弟^多晶發層 18、 18a ' 18a’ :多晶矽閘 19、 24、28、35、42 ··通道 1292621 17067twf.doc/r 20 :第一間隙壁 21 :嵌壁式通道 22 :間隔材料層 26 :氧化物層 30 :離子植入 31 :淺溝渠隔離區域 32 :介電層 34 :字元線 36 :罩幕區域 38 :橫斷處 40 :電性接觸點 44 :源極或汲極N+離子植入1292621 17067twf.doc/r The spacing is the width of the first spacer 20, that is, about 3 angstroms, and the visibility of the gate is narrower than the width of the floating gate, which is approximately = times the thickness of the NQ layer. For example, if the floating gate width is 〇11 μm and the 〇N〇 layer visibility is about 0.G14 μm, then the control gate is approximately G U minus two 0.014, or 0 082 microns. . 15, this front view shows the mask area % to mark the traverse 38 ' thereby providing the character _ 立立's character line 34 ′ in this 巾 pattern towel and ^ reveals the representative by the word line Each of the formed inter-contact contact points 4G is formed by holes, and these electrical contact points 4() are arranged to establish a closed-loop control line for the package I1 and the removable body. In the figure, the line connecting with the corresponding word line 34. Figure I6 shows the channel 42 formed by the ruthenium layer 32 and the bottom polycrystalline layer (10). For example, the channel 42 is formed by the entire structure other than the mask channel 42 to make the channel 42 of the weft layer 32 into a selective side, and then to select the floating gate polygate. Sexual moments. - Fresh secret gold oxygen half-field power (four) Select electricity (four) source or bungee N + ion implant 44 is implanted in the channel 12 under the substrate 12, each word line 34 through the job of selecting electricity A gate control line for a removable read-only memory (not shown), as disclosed in the aforementioned U.S. Patent No. 5,050,125. , μ know that the skilled person should understand that a complete flash memory device can also include riding, (four), reading and writing, _ and other similar circuits that are similar to the conventional 'like the aforementioned US Patent No. 5 The circuit disclosed by Wind No. 125. 1292621 17067twf.doc/r Door tearing, line width (7) is 11.11 microns, and the line widths of polycrystalline stone gates 18 and 18a are respectively equal to less than 曰y. The width of the X direction is about G1H line. An example of the recognition of one, ★ on. ·. 3 micron (ie, the first gap ΙΓ ΙΓ i. If the memory size is about 2.5F in the Y direction, then OU^ has a significant increase due to the size of the memory cell, and the cost is also limited = hair: === The appended claims are defined by the scope of the patent application, and [simplified description of the drawings] ^ Figure 1 to Figure 16 of the formation of the memory array are the schematic diagram of the flash front view and the cross section of the present invention. Description] 3-3, 8-8: section, line 10: semiconductor combination 12: substrate 14: channel gate oxide layer 16: first polysilicon layer 16a · second polycrystalline layer 16b · polycrystalline layer 16c · brother ^ polycrystalline layer 18, 18a ' 18a' : polycrystalline gate 19, 24, 28, 35, 42 · · channel 1292621 17067twf.doc / r 20 : first spacer 21 : recessed channel 22 : spacing Material layer 26: oxide layer 30: ion implantation 31: shallow trench isolation region 32: dielectric layer 34: word line 36: mask region 38: traverse 40: electrical contact 44: source or 汲Extreme N+ ion implantation

1515

Claims (1)

置間’並且該等控制閘係至少部分沉積於該等第一浮置閘 1292621 17067twf.doc/r 十、申請專利範圍: 1·一種快閃記憶體裝置,包含·· ^ 一第一組浮置閘,係包含形成於一底材之上的閘極 氧化層之上的一複數個第一浮置閘,該第一組浮置閘係使 用具有一最小線寬之一選擇性微影製程; 一第二組浮置閘,係包含一複數個第二浮置閘,其 =該等第一浮置閘與該等第二浮置閘係連續沉積,每一該 等第二浮置閘係沉積於每一該等第一浮置閘之間; 一複數個間隙壁,每一該等間隙壁係沉積於各相鄰 的該第一浮置閘與該第二浮置閘之間;以及 、 一複數個控制閘,係連結該等浮置閘,其中該等間 隙壁及/或該等第二浮置閘具有較該最小線寬更小的寬度。 2·如申請專利範圍第1項所述之快閃記憶體裝置,其 中至少一些該等控制閘之一寬度小於該最小線寬。 3·如申請專利範圍第2項所述之快閃記憶體裝置,其 中該等間隙壁之一高度大於該等第一浮置閘與該等第二浮 與"亥等第二浮置閘之上與該等間隙壁之間。 4·如申請專利範圍第3項所述之快閃記憶體裝置,更 包含: 一介電層,係沉積於該等控制閘與該等浮置閘之間。 5·如申請專利範圍第1項所述之快閃記憶體裝置,更 包含: 一摻雜源/汲極區,係植入該等間隙壁之下的該底 16 1292621 17067twf.doc/r 材。 6. 如申請專利範圍第1項所述之快閃記憶體裝置,其 中該等第一浮置閘彼此間間隔一小於三倍該最小線寬之距 離。 7. 如申請專利範圍第1項所述之快閃記憶體裝置,其 中該等第二浮置閘之寬度為該最小線寬,並且該等間隙壁 之寬度小於該最小線寬。 8. —種快閃記憶體裝置形成方法,包含: 利用具有一最小線寬之一選擇性微影製程圖刻形成 於一底材之上且沉積於一閘極氧化層之上的一第一多晶矽 層,以形成包含一複數個第一浮置閘之一第一組有間隙壁 的浮置閘; 沉積一間隙壁材料於該等第一浮置閘之間; 蝕刻一通道於該間隙壁材料而形成間隙壁,以鄰接 該等第一浮置閘;以及 沉積一第二多晶矽層於該底材之上與該通道以形成 包含一複數個第二浮置閘之一第二組有間隙壁的浮置閘。 9. 如申請專利範圍第8項所述之快閃記憶體裝置形成 方法,其中該等間隙壁及/或該等第二浮置閘之寬度小於該 最小線寬。 10. 如申請專利範圍第9項所述之快閃記憶體裝置形 成方法,更包含: 蝕刻該等第一浮置閘與該等第二浮置閘之一高度至 小於該等間隙壁之高度; 17 1292621 17067twf.doc/r • 形成一介電層於該等間隙壁之上以及留有各通道 於該等間隙壁之間與該等浮置閘的該等浮置閘之上; 沉積一第三多晶矽層於該底材之上,以填滿該等間 隙壁之間的該通道;以及 蝕刻該第三多晶矽層,以形成個別的多晶矽控制閘 於該等間隙壁之間與該等浮置閘。 . 11.如申請專利範圍第10項所述之快閃記憶體裝置形 成方法,其中至少一些該等控制閘之寬度小於該最小線寬。 ^ 12.如申請專利範圍第8項所述之快閃記憶體裝置形 成方法,其中該等第一浮置閘彼此間間隔一小於三倍該最 小線寬之距離。 13. 如申請專利範圍第12項所述之快閃記憶體裝置形 成方法,其中該等第二浮置閘之寬度為該最小線寬,並且 該等間隙壁之寬度小於該最小線寬。 14. 如申請專利範圍第8項所述之快閃記憶體裝置形 成方法,其中蝕刻該間隙壁材料包含一等向性乾蝕刻製程。 • 15.如申請專利範圍第8項所述之快閃記憶體裝置形 成方法,更包含: 移除該等間隙壁; 形成一摻雜源/汲極區於鄰接該等第一浮置閘與該 等第二浮置閘之該底材;以及 重建該等間隙壁。 16.如申請專利範圍第8項所述之快閃記憶體裝置形 成方法,更包含: 18 1292621 17067twf.doc/r 於該蝕刻步驟後至沉積該第二多晶矽前重建該閘極 氧化層於該等通道。 17. —種快閃記憶體裝置形成方法,包含: 形成一通道閘極氧化層於一底材之上; 沉積一第一層多晶矽; 利用具有一最小線寬之一選擇性微影製程圖刻該第 一層多晶石夕,以形成包含一複數個第一浮置閘之一第一組 有間隙壁的浮置閘,其中該等第一浮置閘彼此間間隔一小 於三倍該最小線寬之距離; 沉積一間隙壁材料層於該底材之上與該等第一浮置 閘之間; 乾蝕刻該間隙壁材料層以形成鄰接該等第一浮置閘 之一間隙壁及鄰接該間隙壁之間一對應通道,其中該對應 通道之寬度等於該最小線寬,並且該間隙壁之寬度小於該 最小線寬; 沉積一第二層多晶矽於該間隙壁間之該對應通道, 以形成包含一複數個第二浮置閘之一第二組浮置閘; 蝕刻該等第一浮置閘之高度與該等第二浮置閘之高 度至小於該間隙壁; 沉積一介電層於該間隙壁以及該等浮置閘之上,並 且留有一對應控制閘通道於該間隙壁之間; 沉積一第三層多晶矽以填滿該對應控制閘通道;以 及回蝕該第三層多晶矽。 18. 如申請專利範圍第17項所述之快閃記憶體裝置形 成方法,其中回蝕該第三層多晶矽係以一蜿蜒圖樣形成, 19And the control gates are at least partially deposited on the first floating gates 1292621 17067twf.doc/r. Patent application scope: 1. A flash memory device comprising a first group of floats The gate is a plurality of first floating gates formed on a gate oxide layer formed on a substrate, the first group of floating gates using a selective lithography process having a minimum line width A second set of floating gates includes a plurality of second floating gates, wherein the first floating gates are continuously deposited with the second floating gates, and each of the second floating gates Deposited between each of the first floating gates; a plurality of spacers, each of the spacers being deposited between each adjacent first floating gate and the second floating gate; And a plurality of control gates are coupled to the floating gates, wherein the spacers and/or the second floating gates have a width smaller than the minimum line width. 2. The flash memory device of claim 1, wherein at least some of the control gates have a width less than the minimum line width. 3. The flash memory device of claim 2, wherein the height of one of the spacers is greater than the first floating gate and the second floating gate of the second floating &"Hai Between the upper and the spacers. 4. The flash memory device of claim 3, further comprising: a dielectric layer deposited between the control gates and the floating gates. 5. The flash memory device of claim 1, further comprising: a doping source/drain region, the substrate 16 1292621 17067 twf.doc/r material implanted under the spacers . 6. The flash memory device of claim 1, wherein the first floating gates are spaced apart from each other by a distance less than three times the minimum line width. 7. The flash memory device of claim 1, wherein the width of the second floating gate is the minimum line width, and the width of the spacers is less than the minimum line width. 8. A method of forming a flash memory device, comprising: forming a first on a substrate by a selective lithography process having a minimum line width and depositing on a gate oxide layer a polysilicon layer to form a first group of floating gates including a plurality of first floating gates; depositing a spacer material between the first floating gates; etching a channel a spacer material to form a spacer to abut the first floating gates; and a second polysilicon layer on the substrate and the channel to form a plurality of second floating gates Two sets of floating gates with spacers. 9. The method of forming a flash memory device according to claim 8, wherein the width of the spacers and/or the second floating gates is less than the minimum line width. 10. The method of forming a flash memory device according to claim 9, further comprising: etching a height of one of the first floating gates and the second floating gates to be less than a height of the spacers 17 1292621 17067twf.doc/r • forming a dielectric layer over the spacers and above the floating gates with the respective channels between the spacers and the floating gates; a third polysilicon layer over the substrate to fill the channel between the spacers; and etching the third polysilicon layer to form individual polysilicon gates between the spacers With these floating gates. 11. The flash memory device forming method of claim 10, wherein at least some of the control gates have a width less than the minimum line width. The method of forming a flash memory device according to claim 8, wherein the first floating gates are spaced apart from each other by a distance less than three times the minimum line width. 13. The method of forming a flash memory device according to claim 12, wherein the width of the second floating gate is the minimum line width, and the width of the spacers is smaller than the minimum line width. 14. The flash memory device forming method of claim 8, wherein etching the spacer material comprises an isotropic dry etching process. The method of forming a flash memory device according to claim 8, further comprising: removing the spacers; forming a doping source/drain region adjacent to the first floating gates The substrates of the second floating gates; and the reconstruction of the spacers. 16. The method of forming a flash memory device according to claim 8, further comprising: 18 1292621 17067twf.doc/r re-establishing the gate oxide layer after the etching step to deposit the second polysilicon layer In these channels. 17. A method of forming a flash memory device, comprising: forming a channel gate oxide layer over a substrate; depositing a first layer of polysilicon; using a selective lithography process having a minimum line width The first layer of polycrystalline silicon is formed to form a first group of floating gates including a plurality of first floating gates, wherein the first floating gates are spaced apart from each other by less than three times a distance between the line widths; depositing a layer of spacer material between the substrate and the first floating gates; dry etching the layer of spacer material to form a spacer adjacent to the first floating gates and Adjacent to a corresponding channel between the spacers, wherein a width of the corresponding channel is equal to the minimum line width, and a width of the spacer is less than the minimum line width; depositing a second layer of polysilicon in the corresponding channel between the spacers, Forming a second set of floating gates including a plurality of second floating gates; etching the heights of the first floating gates and the heights of the second floating gates to be smaller than the spacers; depositing a dielectric Layer on the spacer and the same On opposing gates, and left and a control gate corresponding to the channel between the spacers; depositing a third polysilicon layer to fill the channel corresponding to the control gate; and etching back the third layer of polysilicon. 18. The method of forming a flash memory device according to claim 17, wherein the etch back of the third layer of polycrystalline germanium is formed in a pattern, 19
TW94125378A 2005-07-27 2005-07-27 Flash memory device and method of manufacture field of the invention TWI292621B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94125378A TWI292621B (en) 2005-07-27 2005-07-27 Flash memory device and method of manufacture field of the invention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94125378A TWI292621B (en) 2005-07-27 2005-07-27 Flash memory device and method of manufacture field of the invention

Publications (2)

Publication Number Publication Date
TW200705648A TW200705648A (en) 2007-02-01
TWI292621B true TWI292621B (en) 2008-01-11

Family

ID=45067580

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94125378A TWI292621B (en) 2005-07-27 2005-07-27 Flash memory device and method of manufacture field of the invention

Country Status (1)

Country Link
TW (1) TWI292621B (en)

Also Published As

Publication number Publication date
TW200705648A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4065414B2 (en) Self-aligned method for forming a semiconductor memory array of floating gate memory cells with buried source lines and floating gates and memory array made thereby
TW569397B (en) Dram cell arrangement with vertical MOS transistors and method for its fabrication
US7211858B2 (en) Split gate storage device including a horizontal first gate and a vertical second gate in a trench
US7186607B2 (en) Charge-trapping memory device and method for production
US7585724B2 (en) FLASH memory device and method of manufacture
TWI605573B (en) Method of forming split-gate memory cell array along with low and high voltage logic devices
KR100876957B1 (en) NOR-type non-volatile memory device and method of forming the same
EP2455967B1 (en) A method for forming a buried dielectric layer underneath a semiconductor fin
KR100638930B1 (en) Method for the production of a memory cell and structure thereof
JP2002016154A (en) Semiconductor device and manufacturing method thereof
CN111133515B (en) Method of fabricating split gate flash memory cell with erase gate
US9960046B2 (en) Methods of manufacturing semiconductor device having a blocking insulation layer
US6656794B2 (en) Method of manufacturing semiconductor device including a memory area and a logic circuit area
US6849553B2 (en) Method of manufacturing semiconductor device
JP2011029576A (en) Nonvolatile semiconductor memory device and manufacturing method thereof
TWI396251B (en) System and method for improving mesa width in a semiconductor device
US7129536B2 (en) Non-planar non-volatile memory cell with an erase gate, an array therefor, and a method of making same
JP4039944B2 (en) Method for manufacturing flash memory device
JP2003243616A (en) Manufacturing method of semiconductor device
JP7473570B2 (en) Method for forming a split-gate flash memory cell having a spacer-defined floating gate and discretely formed polysilicon gates - Patent 7323635
TWI304232B (en) Fabrication method for a semiconductor structure and corresponding semiconductor structure
US20070235836A1 (en) Method of forming a shallow trench isolation structure with reduced leakage current in a semiconductor device
JP2011066052A (en) Semiconductor device manufacturing method, and the semiconductor device
KR100655283B1 (en) Electrically Erasable Programmable Read-Only MemoryEEPROM Device And Method Of Fabricating The Same
JP2004228571A (en) Sonos type nonvolatile memory and method for manufacturing the same