TWI292230B - Light emitting diod - Google Patents

Light emitting diod Download PDF

Info

Publication number
TWI292230B
TWI292230B TW95107984A TW95107984A TWI292230B TW I292230 B TWI292230 B TW I292230B TW 95107984 A TW95107984 A TW 95107984A TW 95107984 A TW95107984 A TW 95107984A TW I292230 B TWI292230 B TW I292230B
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
substrate
conductive layer
layer
Prior art date
Application number
TW95107984A
Other languages
Chinese (zh)
Other versions
TW200735399A (en
Inventor
Jung Min Hwang
Huey Liang Hwang
Original Assignee
Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tsing Hua filed Critical Univ Tsing Hua
Priority to TW95107984A priority Critical patent/TWI292230B/en
Publication of TW200735399A publication Critical patent/TW200735399A/en
Application granted granted Critical
Publication of TWI292230B publication Critical patent/TWI292230B/en

Links

Landscapes

  • Led Devices (AREA)

Description

1292230 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光二極體,特別是關於一種具有 粗糙表面之高亮度發光二極體。 【先前技術】 發光二極體(Light Emitting Diode,LED)係利用半導體 材料中的電子電洞結合時能量帶(Energy gap)位階之改變 所釋放出的能量發光,其具體積小、壽命長、驅動電壓低、 耗電量低、反應速率快、耐震性佳等優點,故應用的範圍 遍布為日常生活中各種顯示、照明等發光設備。 如第一圖所示,第1圖為習知發光二極體結構示意 圖。發光二極體10包含有一 p型III-V族半導體層14、一 主動層(active layer) 16及一 η型III-V族半導體層18 ° ρ 型III-V族半導體層14上方電連接一第一電極12,而η型 半導體層18下方則有一第二電極19與之電連接。一般來 說,構成Ρ型III-V族半導體層14和η型III-V族半導體 層18的半導體材料將決定發光二極體10所發出的光波 長,例如使用鎵鋁銦磷(GaAlInP)做為ρ型III-V族半導體 層14和η型III-V族半導體層18的材料時,發光二極體 1 〇會發出長波長的紅色光,而主動層16則是用來加強發 光二極體的發光效率。 1292230 請參考第2圖,第2圖為發光二極體10之光徑圖。當 施予一順向偏壓於發光二極體時,發光二極體的主動層16 上有無數個發光點會向四周送出光線,在此僅以位於主動 層16的一發光點22做為說明。當電極下的一發光點22的 光徑在一發光範圍24内時,所發出光的光線會因為第一電 極12的遮蔽而變成無效光。另外低角度的一光徑26則因 折射角度的限制,將無法射出P型III-V族半導體層14表 面或η型III-V族半導體層18表面而於p型III-V族半導 體層14内或η型III-V族半導體層18内進行全反射,因此 光徑26之光線也不會送出到晶片之外,至於射向第二電極 19的一光徑28,則會被吸收成無效光。 由此可見,發光二極體的設計不僅要能獲得希望之光 波長和效率良好的發光,如何使發出的光線損失達到最 小,也是必需考量的重點。 【發明内容】 本發明之目的在於提供一種高亮度發光二極體,以改 善習知發光二極體的發光效率。 依據本發明之申請專利範圍,其係揭露一種發光二極 體,其包含有一半導體堆疊層,該半導體堆疊層包含有至 1292230 少一 η型半導體層、一主動層及一 p型半導體層,且該η 型半導體及該Ρ型半導體層分別與一第一基板之一第一表 • 面及一第二基板電性連接,此外該第一基板另包含有一第 二表面與一第一歐姆導電層(ohmic contact layer)柄合,且 該第二表面被該第一歐姆導電層所暴露之部分為粗糙表 ^ 面,最後於該第二基板電性連接一第二歐姆導電層,使通 入該發光二極體的電流分佈均勻。 參 本發明所揭露之高亮度發光二極體,其特徵在於與第 一歐姆導電層耦合之第一基板具有粗糙表面,故可有效提 高光徑對外發散的效能,進而提升發光二極體的發光效率。 【實施方式】 請參考第3圖,第3圖為本發明發光二極體100之一 第一較佳實施例的結構示意圖。在第一較佳實施例中,發 修 光二極體100包含一第一歐姆導電層64、一第一基板50、 一半導體堆疊層40、一第二基板30及一第二歐姆導電層 62。半導體堆疊層40包含至少一 η型半導體層46、一主 動層44及一 ρ型半導體層42,而第一基板50具有一第一 “ 表面503及一第二表面501,且第一表面503連接η型半 導體層46,至於第二表面501則與第一歐姆導電層64耦 合,且第一歐姆導電層64具有一經圖案化蝕刻製程所形成 之佈局圖案,用以暴露出粗糙表面502。此外,發光二極 7 1292230 體100之第二基板30係連接p型半導體層42,且第二基 板並與第二歐姆導電層62電性連接,使發光二極體1〇〇的 電流分佈更為均勻。其中,第一基板50或第二基板30為 可透光基板,其係選自磷化鎵(GaP)、氮化鎵(GaN)、碳化 矽(SiC)、氧化鋅(ZnO)、氧化鎂(MgO)、矽(Silicon)或砷化 鎵(GaAs)基板之一,若第一基板50採用η型磷化鎵基板, 則第二基板30會採用相對應的ρ型磷化鎵基板。再者,η 型半導體46與ρ型半導體層42可以是πκν族化合物或 . II-VI族化合物,且其組合不限為二元化合物,亦可以是多 元化合物之組合,同時發光二極體100係利用多量子井 (multiple quantum well,MQW)或雙異質結構 (double-heterostmcture,DH)做為主動層44 ,用以加強發光 二極體的發光效率。 如第4圖所示,第4圖為發光二極體1〇〇的俯視圖, | 帛佳實〜例之第二歐姆導電層62具有—經圖案化钱 儿私所形成之佈局圖案,如此,主動層Μ所產生的光線 更可幸二易地穿過第二基板3〇及第二歐姆導電層Μ。此外, =合第二歐姆導電層62的圖案配置,發光二極體100另包 合有一用來接合發光二極體100接線所必需之-連接墊 63,以利電流的導入。 月,考第5圖,第5圖為發光二極體!⑻之底視圖, 1292230 如第3圖及第5圖所示第一基板5〇之第二表面5〇1與第一 歐姆導電層64耦合,且第一歐姆導電層64亦具有一經圖 案化蝕刻製程所形成之佈局圖案,用以暴露出粗糙表面 502,並使得被暴露出的粗糙表面502具有一特定形狀並構 成一特定圖案,例如為矩形之陣列圖案。然而本發明之陣 列圖案不限於矩形的排列方式,亦可為四邊形、多邊形或 六角最密堆積(Hexagonal Close Packed,hep)的排列,甚至 為不規則形狀。此外,為了增加發光二極體1〇〇的發光效 果,其底面另可设有以銘(A1)、銀(Ag)、金(Au)或其他反射 效果良好的材質所製作之一導電反射層6〇,目的在於將發 光二極體1〇〇向下的光徑反射向上,並可同時作為發光二 極體100的電極使用。 • * * . 值得注意的是,在本發明之第一較佳實施例中,被第 一歐姆導電層64所暴露之粗糙表面502分佈有複數個直徑 約介於〇·5 λ/η到5又/η的孔洞,其中人為發光二極體1〇〇 所產生的光波長,η為第一基板50的折射率。以產生波長 為624微米(nm)的發光二極體為例,被第一歐姆導電層64 所暴路之粗糙表面502即具有複數個直徑約在3〇〇〜7〇〇奈 米(nm)間的孔洞,其目的在於降低發光二極體1〇〇内部所 產生之光徑至第一基板50底部之粗糙表面5〇2的全反射效 應,增加射向發光二極體100之底面的光線對外的折射, 進而提高發光二極體100之發光效率。 1292230 , 第6圖為本發明之第一較佳實施例中第一歐姆導電層 64與第一基板5〇之第二表面5〇1在掃描式電子顯微鏡觀 察下的結果。如第6圖所示,第6圖左侧之第一歐姆導電 層64係由金的合金(Au alloy)所構成。製作發光二極體1〇〇 η 士 與以第—歐姆導電層64做為遮罩,接著利用一光輔助化 予濕蝕刻方法’在光源的協助下,蝕刻由η型磷化鎵所構 成之第—且 φ 土板50 ’並形成包含複數個孔洞的粗糙表面 /孔/同直么为佈約在3〇〇〜7〇〇奈米(nm)間。 loo H乂本發明所揭露之具有粗糙表面502的發光二極體 一驾知不具粗糙表面的發光二極體的發光效率,如第7 圖所示,去、、拿入on丄 田入20耄安培的電流時,發光二極體100的外 ==子效率較f知發光二極體高出1.5倍。在低電流時本 i之外部置子效率較習知發光二極體高至1.5倍以上, 二因為習知發光二極體在低電流時,大部分的光皆被偈 ,極下方,而本發明的結構,即使在低電流狀況下, 在電極下方的光,可以表面散射出來,使光 不侷限在電極下方,外部量子效率提升倍率較高。 ♦ I表面5G2的分佈不侷限於被第_歐姆導電層則 暴絡的部分,亦可如塗8 _ 弟8圖所不之態樣,即第一基板50之 -、面501全部為一粗輪表面,且可如前所述被第一爵 1292230 姆導電層64所暴露的粗輪表面5〇2 一般,具有複數個直徑 约在300〜700奈米(nm)間的孔洞,然後圖案化的第一歐姆 導電層64再設置並轉合於粗繞的第二表面5〇1上。而如習 去"亥項技藝者與通常知識者所熟知,粗糖表面5()2及其上 之該等孔洞可利職刻等製程加以製備,故在此不多二資 述01292230 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode, and more particularly to a high-brightness light-emitting diode having a rough surface. [Prior Art] A Light Emitting Diode (LED) is an energy luminescence that is emitted by a change in an energy gap when electron holes are combined in a semiconductor material, and has a small specific life and a long life. The driving voltage is low, the power consumption is low, the reaction rate is fast, and the shock resistance is good. Therefore, the application range is widely used for various display and illumination illuminating devices in daily life. As shown in the first figure, Fig. 1 is a schematic view showing the structure of a conventional light-emitting diode. The light-emitting diode 10 includes a p-type III-V semiconductor layer 14, an active layer 16 and an n-type III-V semiconductor layer 18 electrically connected to the p-type III-V semiconductor layer 14. The first electrode 12 has a second electrode 19 electrically connected thereto under the n-type semiconductor layer 18. In general, the semiconductor material constituting the Ρ-type III-V semiconductor layer 14 and the n-type III-V semiconductor layer 18 will determine the wavelength of light emitted by the illuminating diode 10, for example, using gallium aluminum indium phosphate (GaAlInP). When the material of the p-type III-V semiconductor layer 14 and the n-type III-V semiconductor layer 18 is used, the light-emitting diode 1 emits long-wavelength red light, and the active layer 16 serves to enhance the light-emitting diode. The luminous efficiency of the body. 1292230 Please refer to FIG. 2, and FIG. 2 is a light path diagram of the light-emitting diode 10. When a forward bias is applied to the light-emitting diode, an infinite number of light-emitting points on the active layer 16 of the light-emitting diode emit light to the periphery, and only a light-emitting point 22 located on the active layer 16 is used as Description. When the light path of a light-emitting point 22 under the electrode is within a light-emitting range 24, the light of the emitted light becomes ineffective light due to the shielding of the first electrode 12. In addition, a light path 26 of a low angle will not be able to emit the surface of the P-type III-V semiconductor layer 14 or the surface of the n-type III-V semiconductor layer 18 due to the limitation of the refractive angle to the p-type III-V semiconductor layer 14. The inner or n-type III-V semiconductor layer 18 is totally totally reflected, so that the light of the optical path 26 is not sent out of the wafer, and a light path 28 directed to the second electrode 19 is absorbed and becomes ineffective. Light. It can be seen that the design of the LED is not only to obtain the desired wavelength of light and efficient illumination, but how to minimize the loss of emitted light is also a key consideration. SUMMARY OF THE INVENTION An object of the present invention is to provide a high-intensity light-emitting diode to improve the luminous efficiency of a conventional light-emitting diode. According to the patent application scope of the present invention, a light emitting diode includes a semiconductor stacked layer including an n-type semiconductor layer, an active layer and a p-type semiconductor layer to 1292230, and The n-type semiconductor and the germanium-type semiconductor layer are electrically connected to a first surface of a first substrate and a second substrate, and the first substrate further includes a second surface and a first ohmic conductive layer. An ohmic contact layer is formed, and a portion of the second surface exposed by the first ohmic conductive layer is a rough surface, and finally a second ohmic conductive layer is electrically connected to the second substrate to enable the ohmic contact layer The current distribution of the light-emitting diode is uniform. The high-brightness light-emitting diode disclosed in the present invention is characterized in that the first substrate coupled with the first ohmic conductive layer has a rough surface, so that the light path can be effectively improved, thereby improving the light-emitting diode. effectiveness. [Embodiment] Please refer to FIG. 3, which is a schematic structural view of a first preferred embodiment of a light-emitting diode 100 of the present invention. In the first preferred embodiment, the repairing photodiode 100 includes a first ohmic conductive layer 64, a first substrate 50, a semiconductor stacked layer 40, a second substrate 30, and a second ohmic conductive layer 62. The semiconductor stack layer 40 includes at least one n-type semiconductor layer 46, an active layer 44, and a p-type semiconductor layer 42, and the first substrate 50 has a first "surface 503 and a second surface 501, and the first surface 503 is connected. The n-type semiconductor layer 46, the second surface 501 is coupled to the first ohmic conductive layer 64, and the first ohmic conductive layer 64 has a layout pattern formed by a patterned etching process for exposing the rough surface 502. The second substrate 30 of the body 100 is connected to the p-type semiconductor layer 42 , and the second substrate is electrically connected to the second ohmic conductive layer 62 to make the current distribution of the light-emitting diode 1 更为 more uniform. The first substrate 50 or the second substrate 30 is a light transmissive substrate selected from the group consisting of gallium phosphide (GaP), gallium nitride (GaN), tantalum carbide (SiC), zinc oxide (ZnO), and magnesium oxide. If one of the (MgO), Silicon or gallium arsenide (GaAs) substrates is used, if the first substrate 50 is an n-type gallium phosphide substrate, the second substrate 30 is made of a corresponding p-type gallium phosphide substrate. The n-type semiconductor 46 and the p-type semiconductor layer 42 may be a πκν compound or .I. I-VI compound, and the combination thereof is not limited to a binary compound, and may also be a combination of multi-component compounds, while the light-emitting diode 100 utilizes a multiple quantum well (MQW) or a double-heterostructure (double-heterostmcture) , DH) is used as the active layer 44 to enhance the luminous efficiency of the light-emitting diode. As shown in FIG. 4, FIG. 4 is a top view of the light-emitting diode 1〇〇, | 帛佳实~例的第二The ohmic conductive layer 62 has a layout pattern formed by the patterning of the money, so that the light generated by the active layer is more fortunately passed through the second substrate 3 and the second ohmic conductive layer. In combination with the pattern configuration of the second ohmic conductive layer 62, the light-emitting diode 100 further includes a connection pad 63 necessary for bonding the wiring of the light-emitting diode 100 to facilitate the introduction of current. Figure 5 is a bottom view of the light-emitting diode! (8), 1292230, as shown in Figures 3 and 5, the second surface 5〇1 of the first substrate 5 is coupled to the first ohmic conductive layer 64, and the first ohm is The conductive layer 64 also has a layout pattern formed by a patterned etching process. The rough surface 502 is exposed to have a specific shape and is formed into a specific pattern, for example, a rectangular array pattern. However, the array pattern of the present invention is not limited to a rectangular arrangement, and may be Hexagonal Close Packed (hep) arrangement of even squares, polygons or hexagons, even irregular shapes. In addition, in order to increase the luminous effect of the light-emitting diodes, the bottom surface of the light-emitting diodes may be provided with a seal (A1). One of the conductive reflective layers made of silver (Ag), gold (Au) or other materials with good reflection effect, the purpose is to reflect the downward diameter of the light-emitting diode 1 向上 upward, and at the same time as a light The electrode of the diode 100 is used. • * * . It is noted that in the first preferred embodiment of the present invention, the rough surface 502 exposed by the first ohmic conductive layer 64 is distributed with a plurality of diameters ranging from 〇·5 λ/η to 5 Further, a hole of η, wherein the wavelength of light generated by the artificial light-emitting diode 1 , is the refractive index of the first substrate 50. For example, in the case of a light-emitting diode having a wavelength of 624 micrometers (nm), the rough surface 502 which is violently exposed by the first ohmic conductive layer 64 has a plurality of diameters of about 3 〇〇 7 7 nanometers (nm). The purpose of the hole is to reduce the total reflection effect of the light path generated inside the light-emitting diode 1 to the rough surface 5〇2 at the bottom of the first substrate 50, and increase the light incident on the bottom surface of the light-emitting diode 100. The external refraction further increases the luminous efficiency of the light-emitting diode 100. 1292230, Fig. 6 is a view showing the results of the first ohmic conductive layer 64 and the second surface 5〇1 of the first substrate 5 in the first preferred embodiment of the present invention under scanning electron microscope observation. As shown in Fig. 6, the first ohmic conductive layer 64 on the left side of Fig. 6 is composed of an alloy of gold (Au alloy). A light-emitting diode is fabricated and a first ohmic conductive layer 64 is used as a mask, and then an optically assisted wet etching method is used to etch an n-type gallium phosphide with the aid of a light source. The first and the φ soil plate 50' and the rough surface/hole/conformity including a plurality of holes are between about 3 〇〇 and 7 〇〇 nanometers (nm). The luminous efficiency of the light-emitting diode having the rough surface 502 disclosed by the present invention is known as the light-emitting diode of the rough surface, as shown in Fig. 7, going to and into the field. When the current is ampere, the outer == sub-efficiency of the light-emitting diode 100 is 1.5 times higher than that of the light-emitting diode. At low currents, the external device efficiency of the i is higher than 1.5 times that of the conventional light-emitting diode. Second, because the conventional light-emitting diode is at a low current, most of the light is smashed, extremely below, and According to the structure of the invention, even under a low current condition, the light under the electrode can be surface-scattered so that the light is not confined below the electrode, and the external quantum efficiency is increased. ♦ The distribution of the surface 5G2 of the I surface is not limited to the portion of the _ ohmic conductive layer that is violent, or the surface of the first substrate 50, the surface 501 is a thick one. The surface of the wheel, as described above, is generally covered by the first wheel 1292230 conductive layer 64, and has a plurality of holes having a diameter of between about 300 and 700 nanometers (nm), and then patterned. The first ohmic conductive layer 64 is further disposed and transferred to the coarsely wound second surface 5〇1. As far as the acquaintances are concerned, it is well known to those skilled in the art, and the pores on the surface of the raw sugar 5()2 and the above-mentioned holes can be prepared by a process such as engraving, so there are not many two reports here.

本發明另揭露一第二較佳實施例,如第9圖所示,第 -較佳實施例提供-發光二鋪·,與第—較佳實施例 的發光二極體100相同的元件在此不再重覆敍述。其中第 一較佳實施與第一較佳實施例之主要不同之處在於第一基 板50之複數個侧壁亦可經一蝕刻等粗化製程,形成複數個 粗鍵侧壁505 ’其目的亦在於降低發光二極體2〇〇内部之 光徑至第一基板50側表面的全反射,增加對外的折射,因 而提高其發光效率。The present invention further discloses a second preferred embodiment. As shown in FIG. 9, the first preferred embodiment provides a light-emitting diode. The same components as the light-emitting diode 100 of the first preferred embodiment are provided herein. Do not repeat the narrative. The first preferred embodiment differs from the first preferred embodiment in that the plurality of sidewalls of the first substrate 50 can also be subjected to a roughening process such as etching to form a plurality of thick key sidewalls 505 ′. The total reflection of the optical path inside the light-emitting diode 2 to the side surface of the first substrate 50 is reduced, and the external refraction is increased, thereby improving the luminous efficiency.

請參考第10圖,帛10目為本發明第三較佳實施例之 發光二極體300的結構示意圖,為方便說明起見,與第一 較佳實施例相同之構件係以相同之元件符號標示。發光二 極體300包含有一第一歐姆導電層64、一第一基板50、一 半導體堆疊層40、一第二基板30、-第二歐姆導電層6 及一導電層68。其中,半導體堆疊層4〇亦包含一 ^型4 導體層46、-主動層44及—p型半導體層42,而導電^ 1292230 ^ 68係由良好的傳導材料組咸,如鋁(Al)、銀(八§)、金(八11)、 • 氧化銦錫(ιτο)、氧化鋅(Zn0)或氮化鋁(A1N)等。 如第11圖所不,第11圖為發光二極體3〇〇底視圖, 其中第二歐姆導電層66係由複數個呈陣列圖案分佈之凸 塊所構成,該陣列圖案之態樣可為一矩形陣列,但不限於 此,該陣列圖案亦可為四邊形、多邊形或六角最密堆積(hcp) 等規則或不規則形狀與排列方式。此外,於導電層68下方 鲁 ▼增置一導電反射層60,使向下的光徑反射向上,且導電 反射層60可以當作發光二極體3〇〇底部的電極使用。 請參考第12圖,第12圖為發光二極體3〇〇的俯視圖, 第基板50之第二表面501與第一歐姆導電層64電性連 接,且第一歐姆導電層64亦具有一經圖案化蝕刻製程所形 成之佈局圖案,用以暴露出粗鏠表面5〇2,並使得被暴露 • 出的粗糙表面502具有一特定形狀並構成一特定圖案,例 如為矩形之陣列圖案,而且各粗糙表面5〇2上均具有複數 個直徑約在300〜700奈米之間的孔洞。此外配合第一歐姆 導電層64的圖案配置,發光一極體另包含有一連接塾73 與第一歐姆導電層64連結,以利電流導入發光二極體3〇〇。 口月參考苐13圖,第13圖為本發明之第四較佳實施例 . 的結構示意圖,且為方便說明起見,與第三較佳實施例相 12 1292230 同之構件係以相同之元件符號標示。如第13圖與第10圖 所示,第四較佳實施與第三較佳實施例之主要不同之處在 於第一基板50之複數個側壁亦可經一蝕刻等粗化製程,形 成複數個粗糙侧壁507,其目的在於降低發光二極體4〇〇 内部之光徑至第一基板50侧表面的全反射,增加對外的折 射,以提高其發光效率。 本發明所揭露之發光二極體結構,其特點在於圖案化 _ 之歐姆導電層所暴露之基板表面均係為一粗糙表面,因此 當發光二極體内部產生的光徑射至該粗链表面時,將不受 其折射角的侷限,而更容易向外散射,提高其發光效率, 形成一高亮度發光二極體。此外,該粗糙表面上分佈的複 數個孔洞,其直徑係於該發光二極體所發出的光波長相對 應,目的在於增強光的散射能力,進而增加光線對外折射 的效果,一般來說,該等孔洞的直徑係介於直徑約介於0.5 Φ 又/n到5又/η的孔洞。 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖為習知發光二極體結構示意圖。 . 第2圖為習知發光二極體冬光徑圖。 J3 1292230 第3圖為本發明之第一較佳實施例的結構示意圖。 第4圖為本發明之第一較佳實施例之俯視圖。 第5圖為本發明之第一較佳實施例之底視圖。 第6圖為本發明之第一基板之粗糙表面的電子顯微鏡圖。 第7圖為本發明所揭露之發光二極體與習知發光二極體的發光 效率比較圖。 第8圖為本發明中第一基板與第一歐姆導電層接面之示意圖。 第9圖為本發明之第二較佳實施例的結構示意圖。 > 第10圖為本發明之第三較佳實施例的結構示意圖。 第11圖為本發明之第三較佳實施例之底視圖。 第12圖為本明之第三較佳實施例之俯視圖。 第13圖為本發明之第四較佳實施例的結構示意圖。 【主要元件符號說明】 10 - 100 > 200 > 300 ^ 400 發光二極體 12 第一電極 14 p型III-V族半導體層 16、44 主動層 18 η型III-V族半導體層 19 第二電極 22 發光點 24 發光範圍 26 〜28 光徑 30 第二基板 40 半導體堆疊層 42 P型半導體層 46 η型半導體層 50 第一基板 501 第一基板之第二表面 502 粗链表面 503 第一基板之第一表面 14 1292230 505、507粗糙側壁 60 62、66 第二歐姆導電層63、73 64 第一歐姆導電層68 導電反射層 連接墊 導電層Referring to FIG. 10, FIG. 10 is a schematic structural view of a light-emitting diode 300 according to a third preferred embodiment of the present invention. For convenience of description, the same components as those of the first preferred embodiment are given the same component symbols. Marked. The light emitting diode 300 includes a first ohmic conductive layer 64, a first substrate 50, a semiconductor stacked layer 40, a second substrate 30, a second ohmic conductive layer 6, and a conductive layer 68. The semiconductor stacked layer 4 〇 also includes a ^ 4 conductor layer 46 , an active layer 44 and a p-type semiconductor layer 42 , and the conductive layer 1292230 ^ 68 is made of a good conductive material group, such as aluminum (Al), Silver (eight §), gold (eight 11), • indium tin oxide (ιτο), zinc oxide (Zn0) or aluminum nitride (A1N). 11 is a bottom view of the LED, wherein the second ohmic conductive layer 66 is composed of a plurality of bumps distributed in an array pattern, and the pattern of the array pattern may be A rectangular array, but not limited thereto, the array pattern may also be a regular or irregular shape and arrangement such as a quadrilateral, a polygonal or a hexagonal closest packing (hcp). In addition, a conductive reflective layer 60 is disposed under the conductive layer 68 so that the downward optical path is reflected upward, and the conductive reflective layer 60 can be used as an electrode at the bottom of the light-emitting diode 3. Please refer to FIG. 12 , which is a top view of the LED 3 ,. The second surface 501 of the substrate 50 is electrically connected to the first ohmic conductive layer 64 , and the first ohmic conductive layer 64 also has a pattern. a layout pattern formed by the etching process to expose the rough surface 5〇2, and the exposed rough surface 502 has a specific shape and constitutes a specific pattern, such as a rectangular array pattern, and each roughness The surface 5〇2 has a plurality of holes having a diameter of about 300 to 700 nm. In addition, in combination with the pattern configuration of the first ohmic conductive layer 64, the light-emitting body further includes a connection port 73 connected to the first ohmic conductive layer 64 to facilitate current introduction into the light-emitting diode 3. Figure 13 is a view of the structure of the fourth preferred embodiment of the present invention, and for the sake of convenience of explanation, the same components as those of the third preferred embodiment 12 1292230 are the same components. Symbol mark. As shown in FIG. 13 and FIG. 10, the fourth preferred embodiment is different from the third preferred embodiment in that a plurality of sidewalls of the first substrate 50 can also be roughened by an etching process to form a plurality of sidewalls. The rough sidewall 507 is intended to reduce the total reflection of the light path inside the light-emitting diode 4 to the side surface of the first substrate 50, and to increase the external refraction to improve the luminous efficiency. The light emitting diode structure disclosed in the present invention is characterized in that the surface of the substrate exposed by the patterned ohmic conductive layer is a rough surface, so that light generated inside the light emitting diode is incident on the thick chain surface. When it is not limited by its refraction angle, it is easier to scatter outward and improve its luminous efficiency to form a high-brightness light-emitting diode. In addition, the plurality of holes distributed on the rough surface have a diameter corresponding to the wavelength of light emitted by the light emitting diode, and the purpose is to enhance the light scattering ability, thereby increasing the external light refraction effect. Generally, the The diameter of the holes is between holes having a diameter of about 0.5 Φ and /n to 5 Å/η. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a conventional light-emitting diode. Fig. 2 is a conventional winter light path diagram of a light-emitting diode. J3 1292230 Figure 3 is a schematic view showing the structure of the first preferred embodiment of the present invention. Figure 4 is a plan view of a first preferred embodiment of the present invention. Figure 5 is a bottom plan view of a first preferred embodiment of the present invention. Figure 6 is an electron micrograph of the rough surface of the first substrate of the present invention. Fig. 7 is a graph showing the comparison of the luminous efficiencies of the light-emitting diode and the conventional light-emitting diode disclosed in the present invention. Figure 8 is a schematic view showing the junction of the first substrate and the first ohmic conductive layer in the present invention. Figure 9 is a schematic view showing the structure of a second preferred embodiment of the present invention. > Figure 10 is a schematic view showing the structure of a third preferred embodiment of the present invention. Figure 11 is a bottom plan view of a third preferred embodiment of the present invention. Figure 12 is a plan view of a third preferred embodiment of the present invention. Figure 13 is a schematic view showing the structure of a fourth preferred embodiment of the present invention. [Description of main component symbols] 10 - 100 > 200 > 300 ^ 400 Light-emitting diode 12 First electrode 14 p-type III-V semiconductor layer 16, 44 Active layer 18 η-type III-V semiconductor layer 19 Two electrodes 22 Light-emitting points 24 Light-emitting range 26 to 28 Light path 30 Second substrate 40 Semiconductor stacked layer 42 P-type semiconductor layer 46 n-type semiconductor layer 50 First substrate 501 Second surface of the first substrate 502 Thick chain surface 503 First First surface of the substrate 14 1292230 505, 507 rough sidewall 60 62, 66 second ohmic conductive layer 63, 73 64 first ohmic conductive layer 68 conductive reflective layer connection pad conductive layer

1515

Claims (1)

K92230 月丨3日设:更)正/ 十、申請專利範圍: 1 ·種發光一極體,其包含有· 一半導體堆豐層,至少白人 Ϊ L·、# 里夕包3 — II型半導體層、一主動層 及一 P型半導體層; 一弟一基板,具有一第一矣;彳 ^ 弟表面與一弟二表面,且該第一 基板之該第一表面與該η型半導體層接合; -第-歐姆導電層’轉合於該第—基板之第二表面,且 ,第二表面被該第—歐姆導電層所暴露之部分為凹 曰+ k表面,其中s亥粗链表面包含複數個孔洞, 且該等孔洞的直徑約介於〇. 5 λ /η到5儿/η的孔 f,其中又為發光二極體所產生的光波長,η為該 第一基板的折射率; 一第二基板,與該ρ型半導體層接合;以及 一第二歐姆導電層,耦合於該第二基板。 一月长員1所述之發光一極體,其中該^^型半導體層包 含HV族化合物或H-VJ族化合物。 3·如請求項1所述之發光二極體,其中該?型半導體層包 含11][々族化合物或II-VI族化合物。 4·如凊求項1所述之發光二極體,其中該第一歐姆導電層 包含一佈局圖案。 16 ί292230 5. 如請求項1所述之發光二極體,另包含有一導電反射層 設於該發光二極體之底面。 6. 如請求項5所述之發光二極體,其中該導電反射層為一 金屬反射層。 7. 如請求項6所述之發光二極體,其中該導電反射層包含 铭(Α1)、銀(Ag)或金(Au)。 8. 如請求項5所述之發光二極體,其中該導電反射層電性 連接該第一歐姆導電層。 9. 如請求項5所述之發光二極體,其中該導電反射層電性 連接該第二歐姆導電層。 10. 如請求項9所述之發光二極體,另包含一導電層設於該 導電反射層、該第二基板與該第二歐姆導電層之間。 11. 如請求項10所述之發光二極體,該導電層係包含鋁 (A1)、銀(Ag)、金(Au)、氧化銦錫(ITO)、氧化鋅(ZnO)或 氮化鋁(A1N)。 12. 如請求項1所述之發光二極體,其中該主動層為一多量 17 1292230 子井層。 13.如請求項1所述之發光一極體,其中該主動層為雙異質、 結構。 14·如請求項1所述之發光二極體,其中該第一基板為一透 明基板。 15·如請求項1所述之發光二極體,該第一基板係選自選自 選自磷化鎵(GaP)、氮化鎵(GaN)、碳化矽(SiC)、氡化鋅 (ZnO)、氧化鎂(MgO)、矽(Silicon)或砷化鎵(GaAs)基板 16·如請求項丨所述之發光二極體,其中該第二基板為一透 明基板。 17·如請求項1所述之發光二極體,該第二基板係選自選自 選自碌化鎵(GaP)、氮化鎵(GaN)、碳化矽(SiC)、氧化鋅 (Zn〇)、氧化鎂(MgO)、矽(Silicon)或砷化鎵(GaAs)基板 之一。 18·如睛求項1所述之發光二極體,其中該等孔洞的直徑與 發光二極體所發出之光波長相對應。 19·如請求項18所述之發光二極體,其中該等孔洞的直徑 18 1292230 約為300〜700奈米(nm)。 20. 如請求項1所述之發光二極體,其中該第一基板另包含 複數個粗糙側壁。 21. 如請求項20所述之發光二極體,其中該等粗糙側壁係 利用一光輔助化學濕姓刻方法製作。 B 22.如請求項1所述之發光二極體,其中該第一基板與該第 一歐姆導電層耦合之該第二表面為一粗糙表面。 ‘ 23.如請求項1所述之發光二極體,其中該等粗糙表面係利 •用一光輔助化學濕蝕刻方法製作。K92230 March 3rd: more) 正/十, the scope of application for patents: 1 · A kind of light-emitting body, which contains a semiconductor stack, at least white Ϊ L·, # 里 包 3 - II semiconductor a first active substrate and a P-type semiconductor layer; The first ohmic conductive layer is coupled to the second surface of the first substrate, and the portion of the second surface exposed by the first ohmic conductive layer is a concave k + k surface, wherein the s a plurality of holes, the diameter of the holes being about 〇. 5 λ /η to 5 / η of the hole f, wherein the wavelength of light generated by the light-emitting diode, η is the refractive index of the first substrate a second substrate bonded to the p-type semiconductor layer; and a second ohmic conductive layer coupled to the second substrate. The light-emitting body of the first member of January 1, wherein the semiconductor layer comprises a HV group compound or an H-VJ group compound. 3. The light-emitting diode of claim 1, wherein the? The type semiconductor layer contains 11] [steroidal compound or II-VI compound. 4. The light-emitting diode of claim 1, wherein the first ohmic conductive layer comprises a layout pattern. The illuminating diode of claim 1 further comprising a conductive reflective layer disposed on a bottom surface of the light emitting diode. 6. The light-emitting diode of claim 5, wherein the conductive reflective layer is a metal reflective layer. 7. The light-emitting diode according to claim 6, wherein the conductive reflective layer comprises Ming (Α1), Silver (Ag) or Gold (Au). 8. The light emitting diode of claim 5, wherein the conductive reflective layer is electrically connected to the first ohmic conductive layer. 9. The light emitting diode of claim 5, wherein the conductive reflective layer is electrically connected to the second ohmic conductive layer. 10. The light emitting diode according to claim 9, further comprising a conductive layer disposed between the conductive reflective layer, the second substrate and the second ohmic conductive layer. 11. The light-emitting diode according to claim 10, wherein the conductive layer comprises aluminum (A1), silver (Ag), gold (Au), indium tin oxide (ITO), zinc oxide (ZnO) or aluminum nitride. (A1N). 12. The light-emitting diode of claim 1, wherein the active layer is a plurality of 17 1292230 sub-well layers. 13. The luminescent body according to claim 1, wherein the active layer is a double heterostructure. The light-emitting diode according to claim 1, wherein the first substrate is a transparent substrate. The light-emitting diode according to claim 1, wherein the first substrate is selected from the group consisting of gallium phosphide (GaP), gallium nitride (GaN), tantalum carbide (SiC), zinc telluride (ZnO), A magnesium oxide (MgO), a silicon dioxide or a gallium arsenide (GaAs) substrate. The light emitting diode according to claim 1, wherein the second substrate is a transparent substrate. The light-emitting diode according to claim 1, wherein the second substrate is selected from the group consisting of gallium halide (GaP), gallium nitride (GaN), tantalum carbide (SiC), and zinc oxide (Zn). One of magnesium oxide (MgO), silicon (GaAs) or gallium arsenide (GaAs) substrates. 18. The light-emitting diode of claim 1, wherein the diameter of the holes corresponds to a wavelength of light emitted by the light-emitting diode. 19. The light-emitting diode of claim 18, wherein the holes have a diameter of 18 1292230 of about 300 to 700 nanometers (nm). 20. The light emitting diode of claim 1, wherein the first substrate further comprises a plurality of rough sidewalls. 21. The light-emitting diode of claim 20, wherein the rough sidewalls are fabricated using a photo-assisted chemical wetness method. The light-emitting diode of claim 1, wherein the second surface of the first substrate coupled to the first ohmic conductive layer is a rough surface. </ RTI> 23. The light-emitting diode of claim 1, wherein the rough surface is made by a photo-assisted chemical wet etching method. 十一、圖式: 19XI. Schema: 19
TW95107984A 2006-03-09 2006-03-09 Light emitting diod TWI292230B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95107984A TWI292230B (en) 2006-03-09 2006-03-09 Light emitting diod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95107984A TWI292230B (en) 2006-03-09 2006-03-09 Light emitting diod

Publications (2)

Publication Number Publication Date
TW200735399A TW200735399A (en) 2007-09-16
TWI292230B true TWI292230B (en) 2008-01-01

Family

ID=45067461

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95107984A TWI292230B (en) 2006-03-09 2006-03-09 Light emitting diod

Country Status (1)

Country Link
TW (1) TWI292230B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479689B (en) * 2009-04-16 2015-04-01 Nat Univ Chung Hsing Double - sided Coarse Vertical Guided Light Emitting Diodes and Their Making Methods
KR102624112B1 (en) 2018-10-23 2024-01-12 서울바이오시스 주식회사 Flip chip type light emitting diode chip

Also Published As

Publication number Publication date
TW200735399A (en) 2007-09-16

Similar Documents

Publication Publication Date Title
KR101156146B1 (en) Highly efficient group-iii nitride based light emitting diodes via fabrication of structures on an n-face surface
US8941144B2 (en) Light-emitting device
US8039846B2 (en) Light emitting diode having a thermal conductive substrate and method of fabricating the same
US8664019B2 (en) Vertical group III-nitride light emitting device and method for manufacturing the same
US7993943B2 (en) GaN based LED with improved light extraction efficiency and method for making the same
US8552451B2 (en) Light-emitting diode with increased light extraction
TWI464914B (en) Light emitting diode
KR101469979B1 (en) group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
TW202343836A (en) Light-emitting device
TWI759289B (en) Light-emitting device
WO2011030789A1 (en) Light-emitting device
TWI816970B (en) Light-emitting device and manufacturing method thereof
WO2010050501A1 (en) Semiconductor light-emitting element, manufacturing method, and light-emitting device
CN213184332U (en) Inverted ultraviolet light-emitting diode chip
TW200532938A (en) Light emitting diode and fabrication method thereof
US20130328077A1 (en) Light-emitting element
Lee et al. InGaN-based high-power flip-chip LEDs with deep-hole-patterned sapphire substrate by laser direct beam drilling
TWI539619B (en) A light emitting diode structure, a lamp device and a method of forming a light emitting diode structure
TWI292230B (en) Light emitting diod
TWI288492B (en) Light emitting diode and the method for manufacturing the same
Wang et al. Characteristics of flip-chip InGaN-based light-emitting diodes on patterned sapphire substrates
Lee et al. Nano-roughening n-side surface of AlGaInP-based LEDs for increasing extraction efficiency
TWI509832B (en) Opto-electrical device
TW201006003A (en) A LED that can increase light extraction yield
Hsu et al. Power-enhanced ITO omni-directional reflective AlGaInP LEDs by two-dimensional wavelike surface texturing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees