TWI291630B - Bio-expression system and the method of the same - Google Patents
Bio-expression system and the method of the same Download PDFInfo
- Publication number
- TWI291630B TWI291630B TW94113324A TW94113324A TWI291630B TW I291630 B TWI291630 B TW I291630B TW 94113324 A TW94113324 A TW 94113324A TW 94113324 A TW94113324 A TW 94113324A TW I291630 B TWI291630 B TW I291630B
- Authority
- TW
- Taiwan
- Prior art keywords
- model
- average
- biological
- individual
- sample
- Prior art date
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Processing Or Creating Images (AREA)
Abstract
Description
1291630 九、發明說明: 【發明所屬之技術領域】 μt發明係有關於—生物表現系統,且特別是有關於呈 土或蛋白質)表現之高解析度細胞網路(cellular network^))影像。 【先前技術】 ^基因分析與行為分析已被發展應用於識別基因之功 旎:舉例而言,有很多方法致力於開發疾病模型,例如生 產可繁殖的轉殖基因(transgenic)動物模型(例如:轉殖基 因老鼠與其它具有特殊基因特性之動物)。然而,實際上, 以轉殖基因哺乳動物執行基因/錢分析之主要障礙在於 動物之生命週期太長(lGng life span)。在實驗室中飼養耗費 的時間太長(至少數年)’以致於無法準確追蹤動物因異常 基因所發展成之疾病。因為科學家缺乏快速且容易之途徑 在^子層級觸及並準確的識別致病源(path〇genesis),以致 终多在疾病治療的研究大概都遭到延誤。H兄之補救方 法係利用一些短命(自出生到成熟只需數天)昆蟲中的相關 系統作為模型。舉例而言,果蠅(Drosophilamelanogaster) 大腦已經用於研究阿茲海默症疾病。請參考K Iijima於 2004 年 ’ proc· Natl· Acad· Sci· USA 期刊,第 1〇1 卷第 6629 至6628頁所提出之文獻“A Drosophila m〇del of heimer s disease, dissecting the pathological roles of A 42 and A 40 。同理,如果可以在一果蠅模型中成功建立 基因、細胞結構與疾病之間的良好相關性,則未來許多疾 1291630 ~ 病之早期偵測與治療之研究可能會變得更有效益。許多更 、 精確的疾病新治療(特別是與基因有關聯的疾病)方法,對 不但在科學上,而且在公眾健康上都有利益。 雖然在某些電腦醫療診斷系統中有所應用,但是截至 目前為止,並無任何研究或應用顯示,於生物技術中利用 電腦輔助系統在真實環境中檢視至細胞層次。要觀察全體 結構至最精細等級,需要採用新技術輔助,無法藉由傳統 光學技術偵測。最近,三維重建技術已經發展至可以允許 參重建細胞之三維影像,藉由此工具可了解細胞精細結構。 然而,以此種技術所觀者,係著重在人工環境下(在體外) 而非真正的實體(在體内)所培養之單細胞或少數細胞。此 二種環境間的差異在神經科學領域中更顯得重要。神經在 體内實際上是三維分佈,但是其在細胞培養中卻是放置在 二維的情況下。二維環境不太可能模擬在體内的三維神經 網路。目前有些許方法正在設法觀察三維環境之神經系 Φ統。然而,這些方法受限於光學系統之穿透深度,其難以利 用可見光看透比50微米(micron meter)更深的深度。下列 資料嘗試用於重建個體野生種果蠅(individual wild type Drosophila)幼體與成體大腦之方法,請參考以下網址: http://flybrain.neurobio.arizona.edu/Flybrain/html/cont rib/2000/rein/index.html. 在同類的研究中,果蠅變成大腦研究中之主要模型系 統之一。果蠅大腦(大約600x250x150微米)包含大約 200,000個神經元。在此十分小的大腦中,果蠅展現了一 1291630 個驚人複雜的全套功能(repertoire),例如:定位、求偶、 學4與e己憶。整個大腦從頭解剖、切片,並且利用螢光標 記以便於檢視。然而,在此種方式以及所有先前之方法中, 由於組織解剖切片造成之組織傷害以及受到可觀測可視深 度(depth of View)之限制,因此不可能重組整個果蠅大腦之 神經網路。是故,本發明提供一完整與新穎解析方法以克 服此障礙。 此外,虛Μ貫境技術目前已經進展到可實施與可應用 修之1¾ #又。在工業上已經廣泛地應用此虛擬實境技術。一已 知之應用係訓練與研究之應用。虛擬實境訓練應用可以提 供使用者發展重要技術與經驗,而不會使他們負擔在實地 訓練之花費或危險。虛擬實境使得使用者身歷電腦虛擬產 生之裱境中。使用者之動作係藉由電腦轉化為虛擬環境 (Virtual environment : VE)之輸入。虛擬環境系統可以模擬 自然產生的感覺,使得使用者可以透過虛擬環境遨遊 春(navigate),彷彿置身於真實世界之中。然而,虛擬實境系 統從未用來探究一生物組織中高解析度(在數微米之範圍 下)之細胞網路。 目前所需要之方法在於結合高解析度生物結構資料 庫(例如神經網路)、生物組織之基因(或蛋白質)表現系統, 與虛擬實體之視覺呈現(visual demonstration)。此一系統為 一模組型態(modular),得以允許擴充多種基因(蛋白質)型 態表現之研究(expansion),使得解剖結構與功能(或功能障 礙)之關聯達至分子層級。依照此方法,基因、細胞網路與 1291630 生物功能之間的相互關係,可以在最逼真的環境中檢查與 處理(examined and manipulated)。當有詳細細胞網路與基 因資料時,便可能達到生物功能模擬的地步。 【發明内容】 鑒於上述之觀點,本發明之目的在於揭露一生物表現 之系統及其方法。 本發明之目的在於揭露一種三維細胞網路之呈現系 統。上述生物表現系統包含高解析度細胞網路(參考之後所 提及之細胞網路)資料庫、虛擬實體投射系統,其可以高解 析呈現基因(或蛋白質)表現與在全體組織中的完整細胞網 路若有茜求,第二人可以透過網路而連結生物表現系統 與資料庫。 μ ' 本發明之再一目的在於正常或異常條件下發現與記載 基因表現。本發明亦提供—技術用以取得更廣泛生物軟組1291630 IX. Description of the invention: [Technical field to which the invention pertains] The μt invention relates to a biological expression system, and in particular to a high-resolution cellular network image of soil or protein expression. [Prior Art] Gene analysis and behavioral analysis have been developed to recognize the merits of genes: for example, there are many ways to develop disease models, such as the production of fertile transgenic animal models (eg: Transgenic mice and other animals with special genetic characteristics). However, in practice, the main obstacle to performing gene/money analysis in transgenic mammals is that the animal's life cycle is too long (lGng life span). It takes too long to spend in the laboratory (at least a few years), so that it is impossible to accurately track the disease caused by abnormal genes in animals. Because scientists lack a quick and easy way to reach and accurately identify path〇genesis at the sub-level, so that most research on disease treatment is delayed. The H brother's remedy method uses a number of short-lived (only a few days from birth to maturity) insects as a model. For example, the Drosophilamelanogaster brain has been used to study Alzheimer's disease. Please refer to the document "A Drosophila m〇del of heimer s disease, dissecting the pathological roles of A" by K Iijima, 2004, proc. Natl. Acad. Sci. USA Journal, Vol. 1, pp. 6629-6628. 42 and A 40. Similarly, if a good correlation between genes, cell structure and disease can be successfully established in a Drosophila model, many studies of early detection and treatment of 1291630~ disease may become More effective. Many new and more precise treatments for diseases (especially those associated with genes) are of interest not only in science but also in public health. Although in some computer medical diagnostic systems Application, but so far, no research or application has shown that in computer technology, computer-aided systems are used to examine the cell level in the real environment. To observe the entire structure to the finest level, new technologies are needed to assist Traditional optical technology detection. Recently, 3D reconstruction technology has been developed to allow for the reconstruction of three-dimensional images of cells, thereby Tools can understand the fine structure of cells. However, the ones that are viewed by this technology focus on single cells or a few cells cultured in an artificial environment (in vitro) rather than a real entity (in vivo). The difference between the two is more important in the field of neuroscience. The nerve is actually three-dimensionally distributed in the body, but it is placed in two-dimensional conditions in cell culture. The two-dimensional environment is unlikely to simulate three-dimensional in vivo. Neural networks. There are currently some methods that are trying to observe the neurological system of the three-dimensional environment. However, these methods are limited by the penetration depth of the optical system, and it is difficult to see through the deeper depth of the micron meter using visible light. For information on methods for reconstructing individual wild type Drosophila larvae and adult brains, please refer to the following website: http://flybrain.neurobio.arizona.edu/Flybrain/html/cont rib/2000/ Rein/index.html. In the same kind of research, Drosophila became one of the main model systems in brain research. Drosophila brain (about 600x250x150 microns) contains large 200,000 neurons. In this very small brain, the fruit fly exhibits a 1,291,630 amazingly complex repertoire, such as: positioning, courtship, learning 4 and e-remembrance. The whole brain is dissected, sliced, and Fluorescent markers are used for easy viewing. However, in this and all previous methods, it is not possible to reorganize the entire fruit fly due to tissue damage caused by tissue dissection and limited by the observable depth of view. The neural network of the brain. Therefore, the present invention provides a complete and novel analytical method to overcome this obstacle. In addition, imaginary technology has now evolved to be implementable and applicable. This virtual reality technology has been widely used in the industry. A known application is the application of training and research. Virtual reality training applications can provide users with the development of important technologies and experiences without burdening them with the cost or risk of training on the ground. Virtual reality allows users to experience the virtual reality of computer production. The user's actions are converted into virtual environment (VE) input by the computer. The virtual environment system can simulate the feeling of nature, allowing users to navigate through the virtual environment as if they were in the real world. However, virtual reality systems have never been used to explore cellular networks of high resolution (in the range of a few microns) in a biological tissue. The current approach is to combine a high-resolution biological structure database (such as a neural network), a genetic (or protein) representation system of biological tissue, and a visual representation of a virtual entity. This system is a modular type that allows expansion of the expansion of multiple gene (protein) expressions, linking anatomical structures to functional (or dysfunction) to molecular levels. According to this method, the relationship between genes, cellular networks and 1291630 biological functions can be examined and manipulated in the most realistic environment. When detailed cellular network and genetic data are available, it is possible to achieve the level of biological function simulation. SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to disclose a biological representation system and method thereof. It is an object of the present invention to disclose a rendering system for a three-dimensional cellular network. The above biological expression system comprises a high-resolution cellular network (refer to the cell network mentioned later) database, a virtual entity projection system, which can express gene (or protein) representation and complete cell network in the whole tissue with high resolution. If there is a pleading for the road, the second person can connect to the biological performance system and database through the Internet. μ ' A further object of the present invention is to discover and document gene expression under normal or abnormal conditions. The invention also provides - technology for obtaining a wider range of biosoft groups
ysoft bi〇l〇gical tissues)的高解析影像,例如哺乳動物大 腦。 次很據本發明’生物表現系統包含一處理系統用於虑 貝料’ -二維影像產生模組嵌入於上述處理系統,豆牛 組二維個體模型截面饋入上述處理系統,上述三維影僧 組回應二維個體模型截面輸人,以進行個體模型建構逾 型平均計算,結果從-組個體模型產生―平均模型/、 料庫’可以分類為-基因(或蛋白質)表現次資料庫、一 ^網路次資料庫與精細結構次:#料庫,其+上述資料肩 口至處理系統以至少儲存平均模型;—立體投射系統表 1291630 上述處理系統用以顯示一三維影像以供主動或被動虛擬實 體應用,而在上述處理系統之輸入指令下於細胞網路内呈 現基因(或蛋白質)表現或精細生物結構。 上述模型平均程序包含二階段不同等級(levels)之平 均階段(stages)。上述系統更包含標準生物地理索引次資料 庫,其可以在不同個體資料之間校正與比較。在一實施例 中,生物網路係依照基因(或蛋白質)表現、個體成長、發 育、疾病或某些經驗衍生的程序來分類。細胞網路次資料 庫可在細胞本體(entities)之間建立具功能意義的連結以反 映某種功能(或功能障礙)。 本發明揭露一種藉由生物表現系統做呈現所用之方 法包§ •輸入個體模型截面(secti〇ns)至上述生物表現系 統之一處理系統,以處理資料;透過上述處理系統而利用 甘八入生物表現系統之一平均模型產生模組,其中平均模 i產生模組回應個體模型截面之輸入,以進行個體模型建 泰構與模型平均計算,進而由所有資料產生一細胞結構的平 均杈型。一粗略級(c〇arse level)模型,由引入平均模型產 生权組之系統來執行。上述程序首先分割每一個個體模型 成為數個重要部分。藉由上述平均模型產生模組,從個體 模型之每一個重要部分之相對應主軸中決定一骨架,並且 建立一局部(local)座標系統提供給每一個個體模型。之後 執行平移與旋轉,將每一個局部座標導入一全區域(global) 座仏系統。在考慮所有個體模型之所有主軸之後,可計算 得出一平均骨架。 11 1291630 然後,以建立於上述平均模型產生模組之内之三維曲 k 计算法(3D field-based warping algorithm),可以重塑 (remodeled)原始模型。然後,建構似平均模型。 接下來’藉由運用-三維填人演算法(3D seed. algorithm),以轉換中空體成為實體。最後,決定所有似平 均核型之幾何巾間點,以作為上述平均模型之最佳輪庵 (contour) 〇 【實施方式】 I _參考圖示與下列之說明,其中之目的只是為了說明 本發明之最佳實施例,而非用以限制本發明之範圍。本發 明提供細胞網路資料庫與系統於生物組織之基因表現,一 較=例子係為果绳大腦之基因表現。本表現系統為一模組 型恝(modular),且可以擴展至具不同功能型態之多種基 因。 呈現基因表現之系統 | 請參考圖一,本發明之生物表現系統1Q包含一計算處 理系統100,其係用於處理與計算某些指令下之資料與資 訊。此生物表現系統收集與呈現生物特性。在一實施例中, 上述糸統可以用來分析與定義一涉及任何科學研究、醫學 相關診斷或技(藝)術展覽之神經網路(neural circuit)。根據 習知技術可知,利用具有進階中央處理器(cpu)2高效能 電腦可以達成上述目標。一平均模型產生模組2〇〇嵌入 (embedded)於上述處理系統1〇〇中,以利於轉換輸入之二 維影像資料,例如一組個體模型截面(secti〇ns)轉換成三維 12 1291630 影像。在一較佳實施例中,可以引進一商業應用產品或軟 體如AMIRA(3 · 1版’美國Mercury電腦系統公司出品)來 達到上述目的。在習知三維繪圖技術中,影像資料可以藉 由導入平均模型產生模組2〇〇中之處理系統10〇來計算, 以產生重建的三維立體影像。 首先,藉由樣品備製系統500與影像資料產生系統4〇〇 來備製輸入資料。上述樣品備製系統5〇〇可以用來產生標 的樣品(target sample)提供給生物表現系統1〇。在一實施 例中,果蠅大腦(成熟的大腦約6〇〇χ25〇χ15〇微米)係用來 說明。如熟知該項技藝者可知,上述果蠅之大腦組織只是 用於說明本發明,而非用以限制本發明之範圍。果繩大腦 之整體組織(tissue)可以利用已知的方法得到,接著藉由增 加光的透明度至大約〇15毫米(mm)或更深,該技術可以參 考下列文獻,例如參考本發明發明者之—所發明之技術· 參考美國第6472216 B1號專利,其中請日係為2002年10 月29專利名稱為Aque〇us ”。 上述參考貧料陳述於此係做為參考之用。注入螢光標示 § 〇Γ labelmg)分? ’以利於標示標的樣品之預定部 :刀枯㈣叫找功能的某些神經元。這些程序可以藉由習 知技術之基因工程來完成。 φ , 、"產生系統系統400包含一配備有複數個 右斤雷射掃描顯微鏡。在此程序間,雷射光掃瞄且 有標示之樣品以活化螢光分子。根據-預定High-resolution images of ysoft bi〇l〇gical tissues), such as the mammalian brain. According to the present invention, the 'biological performance system includes a processing system for the shell material' - the two-dimensional image generation module is embedded in the processing system, and the two-dimensional individual model section of the bean cattle group is fed into the processing system, and the three-dimensional image is The group responds to the cross-section input of the two-dimensional individual model, and performs the over-type averaging calculation of the individual model. The results are generated from the individual model of the group--the average model/, the database can be classified into the gene (or protein) performance secondary database, one ^Network sub-database and fine structure times: #料库, + the above data shoulder to the processing system to store at least the average model; - Stereo projection system table 1291630 The above processing system is used to display a 3D image for active or passive virtual Entity applications, while presenting gene (or protein) representations or fine biological structures within the cellular network under the input instructions of the processing system described above. The above model averaging procedure consists of two stages of different levels of stages. The above system also includes a standard biogeographic index sub-database that can be calibrated and compared between different individual data. In one embodiment, the biological network is classified according to gene (or protein) expression, individual growth, development, disease, or certain empirically derived procedures. Cell network sub-databases can create functional links between cell entities to reflect a function (or dysfunction). The invention discloses a method for presenting by a biological expression system, including: inputting an individual model cross section (secti〇ns) to one of the above biological performance systems to process data; and utilizing the above-mentioned processing system An average model generation module of the performance system, wherein the average mode i generates a module to respond to the input of the individual model cross section, to perform the individual model building and the model average calculation, and then generate an average structure of the cell structure from all the data. A c〇arse level model is implemented by a system that introduces an average model generation right group. The above procedure first divides each individual model into several important parts. By using the above average model generation module, a skeleton is determined from the corresponding major axes of each important part of the individual model, and a local coordinate system is established for each individual model. Then perform a translation and rotation to import each local coordinate into a global coordinate system. After considering all the principals of all individual models, an average skeleton can be calculated. 11 1291630 Then, the original model can be remodeled with a 3D field-based warping algorithm built into the above average model generation module. Then, construct an average model. Next, the hollow body is transformed into a solid by using a 3D seed. algorithm. Finally, all the geometrical points of the average karyotype are determined as the best continuation of the above average model. [Implementation] I _ reference diagram and the following description, the purpose of which is only to illustrate the present invention. The preferred embodiment is not intended to limit the scope of the invention. The present invention provides a cellular network database and a gene expression system for a biological tissue, and a comparison example is a gene expression of a fruit rope brain. This performance system is a modular module and can be extended to a variety of genes with different functional types. System for Presenting Gene Expressions | Referring to Figure 1, the biological performance system 1Q of the present invention includes a computing processing system 100 for processing and computing data and information under certain instructions. This biological performance system collects and presents biological properties. In one embodiment, the above-described system can be used to analyze and define a neural circuit involving any scientific research, medical related diagnostics, or art exhibits. According to the prior art, the above object can be achieved by using a high-performance computer with an advanced central processing unit (CPU). An averaging model generation module 2 is embedded in the processing system 1 , to facilitate conversion of the input 2D image data, such as a set of individual model sections (secti〇ns) into 3D 12 1291630 images. In a preferred embodiment, a commercial application product or software such as AMIRA (3·1 Edition, manufactured by Mercury Computer Systems, USA) can be introduced to achieve the above objectives. In the conventional three-dimensional drawing technique, image data can be calculated by introducing a processing system 10〇 in the average model generating module 2 to generate a reconstructed three-dimensional image. First, the input data is prepared by the sample preparation system 500 and the image data generating system 4〇〇. The above sample preparation system 5 can be used to generate a target sample for supply to the biological performance system. In one embodiment, the Drosophila brain (a mature brain of about 6〇〇χ25〇χ15〇 microns) is used to illustrate. As will be appreciated by those skilled in the art, the above-described brain tissue of Drosophila is intended to illustrate the invention and is not intended to limit the scope of the invention. The whole tissue of the fruit rope brain can be obtained by a known method, and then by increasing the transparency of the light to about 毫米15 mm (mm) or more, the technique can be referred to the following documents, for example, referring to the inventors of the present invention - Invented technology · Refer to US Patent No. 6472216 B1, in which the Japanese name is October 29, 2002, and the patent name is Aque〇us." The above reference poor materials are stated here for reference. Inject fluorescent signs § 〇Γ labelmg) 分? 'In order to facilitate the labeling of the predetermined part of the sample: knife (4) is called some of the functions of the function. These procedures can be accomplished by genetic engineering of the prior art. φ , , " production system The 400 includes a scanning microscope equipped with a plurality of right-handed lasers. During this procedure, the laser is scanned and labeled to activate the fluorescent molecules.
13 S 1291630 樣品不同深度之橫切面(cr〇ss-section)可以完全地(或部分 地)以雷射掃描。因此,掃描影像資料包含不同深度之複數 個表面影像。相同橫切面之不同部分影像,可以藉由電腦 軟體(例如AMIRA)之輔助以重建其完整性。隨後,所產生 之影像資料饋入(fed)至上述處理系統1〇〇以利於後續處理 程序。如前所述,上述平均模型產生模組2〇〇耦合至處理 系統100,以處理輸入資料而產生三維影像或一平均模型。 上述產生之平均模型或三維影像資料可儲存在資料庫 600中。上述資料庫可以包含複數個次資料庫,例如生物 表現次資料庫610、細胞網路次資料庫62〇與生物精細結 構次資料庫630。熟知該項技藝者可知,上述較佳實施例 只是用於說明本發明,而非限制本發明之範圍。 上述生物表現次資料庫610包含生物特性之資料,例 如基因(或蛋白質)表現。資料庫61〇也包含標準生物地理 索引(bio_ge〇graphic index)次資料庫,其可以在不同個體之 修間校準(calibration)與比較。} 白質)表現、個體成長、發育、 來分類。 所有資料可以藉由基因(或蛋 、疾病或某些經驗衍生的程序13 S 1291630 Cross-sections (cr〇ss-sections) of different depths of the sample can be scanned completely (or partially) with a laser. Therefore, the scanned image data contains a plurality of surface images of different depths. Different parts of the same cross-section can be reconstructed with the aid of a computer software such as AMIRA. The resulting image data is then fed to the processing system 1 described above to facilitate subsequent processing. As previously described, the average model generation module 2 is coupled to the processing system 100 to process the input data to produce a three dimensional image or an average model. The resulting average model or 3D image data may be stored in the database 600. The above database may include a plurality of secondary databases, such as a biological performance secondary database 610, a cellular network secondary database 62, and a biological fine structure secondary database 630. It is to be understood by those skilled in the art that the preferred embodiments described herein are intended to illustrate the invention and not to limit the scope of the invention. The biological performance secondary database 610 contains information on biological characteristics, such as gene (or protein) expression. The database 61〇 also contains a standard biogeography index (bio_ge〇graphic index) sub-database that can be calibrated and compared between different individuals. } White matter) performance, individual growth, development, and classification. All data can be derived from genes (or eggs, diseases or some empirically derived procedures)
^^(dysfunctions)) ^ ^ ^ ^ M ^ 0 言^在神經元中暫時抑制動力蛋白(dynamin)的功能,阻^^(dysfunctions)) ^ ^ ^ ^ M ^ 0 言^ temporarily inhibits the function of dynamin in neurons, blocking
14 129163014 1291630
Encodes a Phospholipase-A2 and Define a Neural Circuit 、 Involved in Anesthesia-Resistant Memory” ,源自 2004 年 2月17日出版第14卷第263-272頁之Current Biology, 其係由江安世(Ann-ShynChiang)先生所著。此篇文獻揭露 於此一併做為參考。上述精細結構次資料庫630包含生物 精細結構之貨料。 一較佳實施例係建構果蠅大腦資料庫。果蠅大腦之基 因表現可以藉由熟悉習知技術之人員所了解之 • Gal4/UAS-GFP技術來呈現。圖六係說明一產生三維果蠅 大腦之例子,在此一併作為參考。圖中顯示一神經元分布 之三維影像,本圖顯示一個成年雄果繩腦中表現radish基 因的許多神經細胞分佈在全腦組織中的影像。綠色部分即 是用綠螢光蛋白所標示radish基因表現之處。圖中細胞本 體(中到大的綠點)和其間的連結神經纖維清晰可見。較大 之點(spots)為具有大約10微米寬度之神經元,而最小的點 φ (dots)被認為是突觸(synapses),其大小約略在微米範圍。 棕色部分為蕈狀體(mushroom body)。蕈狀體係根據上述處 理系統中之平均模型模組之演算法來建構。所有細胞可以 藉由三維影像產生技術而置於所計算出的標準大腦框架 (wireframe)中。圖七顯示根據其蕈狀體(紫色)所建構之一 標準果蠅大腦模型,橘色為表現GH146基因神經元之位 置。黃色部分為視葉(optical lobe),其係視覺訊號之收集 處。藍色部分稱為中央複合體(central complex)。在圖八 中’數個表現不同基因的細胞網路於一大腦中,其係顯示 (:s 15 1291630 為GiH46(綠色)、tim (標色)與2 與果蠅之生物時鐘有關。 (系色)。上述基因 從圖六至圖八,生物纟士 到。生物網路影像可以儲&構景^可以藉由本發明而得 -電腦可讀儲存媒體以儲存— ::::體中。本發明揭露 由利用-雷射掃描顯微鏡:掃 以活化樣品中之螢光分子而吝:/、有私不(丨abel)之樣品 f有複數個雷射光源;在掃描過程 品係藉由雷射光來掃描,並 ^ 深度之橫切面,社果得到=依據一預定序列而掃描不同 之掃描影像資料了㈣同深度之複數個表面影像 ..u. 仏刀面之不同部分之影像可以組合 —Μ)成為其整體。三維之物體可以藉由電腦軟體例如 舰⑽之使用來加以重建。本發明於掃描樣品之前更包含 下列步,.預備樣品並且注入潛在產生營光之分子於樣品 :,並藉由基因工程來標示一標的樣品(吨以眶_)之預 疋。卩刀後將上述樣品之光透明度增加至大約〇 1 5毫 米(mm)或更深。 凊參考圖二’所示為本發明自一群初始個體模型建立 平均模型(三維圖集:3D atlas)之流程。如圖二所示,此方 法包含二個主要步驟,即個體模型建構與不同層級(levels) 之二種模型平均程序。第一步驟是對每一個體資料組建構 二維框架模型(wireframe model;)。 個體模型 在對原始資料組執行二維分割(segmentation)、輪廓擷Encodes a Phospholipase-A2 and Define a Neural Circuit, Involved in Anesthesia-Resistant Memory", from Current Biology, Vol. 14, pp. 263-272, published February 17, 2004, by Ann-ShynChiang This document is hereby incorporated by reference. The above-mentioned fine structure sub-database 630 contains biologically fine structured materials. A preferred embodiment constructs a Drosophila brain database. Gene expression of the Drosophila brain It can be represented by Gal4/UAS-GFP technology, which is known to those skilled in the art. Figure 6 illustrates an example of generating a three-dimensional fruit fly brain, which is hereby incorporated by reference. Three-dimensional image, this figure shows an image of many nerve cells showing the radish gene in the brain of the adult male fruit in the whole brain tissue. The green part is the expression of the radish gene indicated by green fluorescent protein. The medium to large green dots and the connecting nerve fibers in between are clearly visible. The larger spots are neurons with a width of about 10 microns, and the smallest points. Φ (dots) is considered to be synapses, and its size is approximately in the micrometer range. The brown part is the mushroom body. The braided system is constructed according to the algorithm of the average model module in the above processing system. All cells can be placed in the calculated standard brainframe by 3D image generation techniques. Figure 7 shows a standard Drosophila brain model constructed according to its scorpion (purple), orange for GH146 The location of the gene neuron. The yellow part is the optical lobe, which is the collection of visual signals. The blue part is called the central complex. In Figure 8, there are several cell networks that display different genes. In a brain, the line shows (: s 15 1291630 for GiH46 (green), tim (color) and 2 for the biological clock of Drosophila. (Line color). The above genes are from Figure 6 to Figure 8, biological The gentleman arrives. The bio-network image can be stored and constructed by the present invention - a computer readable storage medium for storage - :::: body. The invention is disclosed by the use - laser scanning microscope: sweeping The fluorescent molecules in the sample are 吝:/, the sample that has a private (不abel) has a plurality of laser light sources; the scanning process is scanned by laser light, and the cross-section of the depth is Get = scan different scanning image data according to a predetermined sequence. (4) Multiple surface images of the same depth.. u. The images of different parts of the rake face can be combined - Μ) as a whole. Three-dimensional objects can be reconstructed by the use of computer software such as ships (10). The present invention further comprises the steps of: preparing a sample and injecting a molecule that potentially produces camp light into the sample prior to scanning the sample: and genetically engineering to predict the target sample (tons to 眶_). The light transparency of the above sample was increased to about 〇 15 mm (mm) or more after the file. Referring to Figure 2, the flow of the average model (3D atlas) from a group of initial individual models is shown in the present invention. As shown in Figure 2, this method consists of two main steps, the individual model construction and the two model averaging procedures at different levels. The first step is to construct a two-dimensional framework model (wireframe model;) for each individual data set. Individual model Performs two-dimensional segmentation and contouring on the original data set.
16 1291630 取(contour extraction)與輪靡對應分析之後,應用表面模型 重建運算法可得到代表個體之框架模型(wireframe model)。上述可以藉由電腦軟體如AMIRA之輔助來達成。 主軸選取與主轴 第二步驟是粗略級(coarse level)模型平均。利用使用 者介面執行一切割步驟,將每一個體模型切割成數個重要 部分(次模型)。對於每一個體模型,可以揀選一組主軸以 作為上述模型之骨架(skeleton)。於此步驟中,將個體模型 ®饋入(fed into)上述處理系統,並且在上述使用者之輸入指 令下,系統可以處理上述切割程序。每一個體框架模型 (wireframe model)係利用手動分割成為數個重要部位,然 後每一個次模型之相對應主軸可以藉由PCA之技術得 到,該技術係由Ian T Jolliffe所揭露,其内容係刊載於1986 年紐約,Springer-Verlag 戶斤揭示之” Principal Component Analysis” 。藉由計算下列樣品變異矩陣(covariance matrix) ^之本徵值(eigenvalues)與相對應的本徵向量 (eigenvectors),主軸之方向可以藉由下述而決定:16 1291630 After the contour analysis and the rim analysis, the surface model reconstruction algorithm can be used to obtain a wireframe model representing the individual. The above can be achieved by the assistance of computer software such as AMIRA. Spindle selection and spindle The second step is the coarse level model averaging. Each individual model is cut into several important parts (sub-models) by performing a cutting step using the user interface. For each individual model, a set of spindles can be picked to serve as a skeleton for the above model. In this step, the individual model ® is fed into the processing system described above, and the system can process the cutting program under the input command of the user. Each individual wireframe model is manually segmented into several important parts, and then the corresponding main axis of each sub-model can be obtained by the technique of PCA, which is disclosed by Ian T Jolliffe and its content is published. In 1986 in New York, Springer-Verlag revealed the "Principal Component Analysis". By calculating the eigenvalues of the following sample variation matrix (covariance matrix) and the corresponding eigenvectors, the direction of the principal axis can be determined by:
τ 其中m為在次模型上之頂點(vertices)數目,X為上述 頂點之位置向量,且// X為X之樣品平均。主軸之方向D 為具有最小本徵值S之本徵向量。次模型之主轴為次模型 中具有最小旋轉慣性之旋轉軸,其可以表示為具有參數t 之一參數線段: 17 1291630 v(;)-A + I^D ^ ^ <Γ<^ 其中A為主轴上之一點,设疋為//x。邊界,tmin與 tmax,可以藉由所有次模型頂點至主軸之投射(pr〇j ecti〇n) 來決定。對於每一個個體模型而言,所選取出的一組主軸 可以視為該個體之模型骨架。 主軸平均 請參考圖二,藉由上述處理系統或電腦執行計算決定 主軸之後。在執行平均程序之前,先行執行每一個個體模 型之登錄(registration)。每一個個體模型可從其本身主軸 二相關位置建立—局部座標系統、然後,每—個個體模型 猎由計算系統來平移與旋轉。在運用某些平移與旋轉之 後,記錄各個根據全體座標軸線(global axis)所訂之原始局 部座標系統,上述參數線段可以利用下述來計算:D α 其中,Μ為主軸之中點,以及τ where m is the number of vertices on the secondary model, X is the position vector of the above vertices, and // X is the sample average of X. The direction D of the main axis is the eigenvector with the smallest eigenvalue S. The major axis of the secondary model is the rotational axis with the smallest rotational inertia in the secondary model, which can be represented as a parameter line segment with one of the parameters t: 17 1291630 v(;)-A + I^D ^ ^ <Γ<^ where A is One point on the spindle, set to / to / / x. The boundaries, tmin and tmax, can be determined by the projection of all sub-model vertices to the main axis (pr〇j ecti〇n). For each individual model, the selected set of spindles can be considered as the model skeleton for that individual. Spindle average Refer to Figure 2, after the spindle is determined by the above processing system or computer. The registration of each individual model is performed prior to the execution of the averaging procedure. Each individual model can be built from its own principal axis two correlation locations—the local coordinate system, and then each individual model is translated and rotated by the computing system. After applying some translation and rotation, the original local coordinate system according to the global axis is recorded. The above parameter line segment can be calculated by using D α where Μ is the midpoint of the main axis, and
主軸之平均 處理系統實 平均程序可以藉由計算中點之平均位置、 向與平均長度& ’其係在電腦或本發明之 結果’平均主軸可以表示為:The average processing of the spindle averaging program can be expressed as: by calculating the average position of the midpoint, the average length &', the result of the computer or the invention, the average spindle can be expressed as:
18 1291630 v ( I) .= μ.Μ + ’ * μΒ,.’画 s I s I腿 where μΜ =18 1291630 v ( I) .= μ.Μ + ’ * μΒ,.’ draw s I s I leg where μΜ =
其中n為個體模型之數目。在處理系統完成計算次模 型之平均主軸後,藉由處理系統產生原始資料組之平均骨 架,並且儲存在處理系統100之記憶體或圖一之資料庫600 ®之内。圖三顯示蕈狀體(mushroom body)之框架模型 (wireframe model)。圖四係顯示與圖三相同模型之主軸與 框架。圖五顯示一組主軸之局部座標系統。 三維曲變(Three Dimension Field-Based Warping) 在原始資料組之平均骨架產生之後,接著下一個程序 係藉由本發明之處理系統100對儲存的三維個體骨架資料 組進行形變。基於J. Gomes等人所揭露之field-based 0 warping 演算法,該文獻標題為” Warping and Morphing of Graphical Objects” ,其由 Morgan Kaufman 出版商於 1999 年於舊金山出版,在處理系統100所執行之計算可以對每 一個個體模型形變至其相對之假平均(pseudo-average)模 型。藉由電腦所處理之比對功能係定義為: r r(p):=p + ^J7-,Δρ|=%(ρ)-p \ i 19 1291630 其中P為一個體模型上頂點之位置向量,並且r為一 組骨架中之主軸之數值。概⑻是曲變後P之位置。W⑻ 在第K個主軸之權重定義為:Where n is the number of individual models. After the processing system has completed calculating the average major axis of the sub-model, the processing system generates an average skeleton of the original data set and stores it in the memory of the processing system 100 or in the database 600 of Figure 1. Figure 3 shows the wireframe model of the mushroom body. Figure 4 shows the main shaft and frame of the same model as Figure 3. Figure 5 shows a partial coordinate system for a set of spindles. Three Dimension Field-Based Warping After the average skeleton of the original data set is generated, the next program then deforms the stored three-dimensional individual skeleton data set by the processing system 100 of the present invention. Based on the field-based 0 warping algorithm disclosed by J. Gomes et al., entitled "Warping and Morphing of Graphical Objects", published by the Morgan Kaufman publisher in San Francisco in 1999, executed by the processing system 100. The calculation can be transformed for each individual model to its relative pseudo-average model. The comparison function processed by the computer is defined as: rr(p):=p + ^J7-, Δρ|=%(ρ)-p \ i 19 1291630 where P is the position vector of the vertex on a volume model, And r is the value of the major axis in a set of skeletons. (8) is the position of P after the change. The weight of W(8) in the Kth main axis is defined as:
Ka + ^J 其中lk為主軸之長度,且其重要性可以藉由常數c調 整權重。仙係從?點到主軸之距離。常數a代表主軸之依 附(adhere),並且常數b可以視為主軸強弱(strength)之 密集度。 最終等級模型平均 似平均模型可以藉由上述處理系統100依據上述模型 產5。然後’根據一般平均骨架記錄似平均模型。最終平 句模3L可以藉由上述處理系統⑽上之似平均模型之幾何 中間點而得到。對框架模型而言,t—e patches可藉由 取樣而轉換成為立體體積像素(v〇iumetrie 叫。採用三 維填充决算法將此中空體轉換成-實體(solid object)。每 偾:似:均模型將產生一實體’以標示其所有之立體體積 U β從1至N之像素值之堆疊體積,可藉N個似平均模 型^疊加而成。幾何中間點係位於像素值為N/2之處。 旦幾何中間點藉由上述處理系統1〇〇與三 細確定,則可以建立最後平均模型。 產生糸、、先 虛擬實境設備示例 全色彩三維立體神經元圖示可以藉由設備之操作而觀 20 1291630 • 察。為了展現神經非常精細的延展(extension),數個設備 ^ 提供於資料產生系統400。一 Zeiss LSM 510共焦(confocal) 顯微鏡裝備有四個雷射光源,其包含一氬雷射(發射於波長 364nm)、一氬氪雷射(波長458、488或514nm)與兩個氦氖 雷射(波長543與633nm)。此系統可以允許同時偵測四個 螢光訊號與一傳送影像。Zeiss LSM 510 ΜΕΤΑ共焦雙光子 顯微鏡系統(Zeiss LSM 510 META confocal two-photon microscope system)裝備有四個雷射光源,其包含一個氣氪 _雷射(波長458、488或5 14nm)、兩個氦氖雷射(波長543 與633nm),以及一個提供給非線性光學顯微鏡(雙光子 (2-photon))之同調(Coherent)Mira千萬億分之一秒 (femtosecond)T-藍寶石(T-Sapphire)雷射,其可以在 700-lOOOnrn單一光學設定調整(set tuning)。這是設計應用 於厚活體(thick living)組織之螢光訊號之體内(vivo)觀 察。Zeiss LSM 510 ΜΕΤΑ共焦雙光子顯微鏡系統裝備有三 _個雷射光源,其包含一氬氪雷射(波長458、488或514nm) 與兩個氦氖雷射(波長543與633nm)。此系統具有三個光 子倍增器(photomultiplier)與一個ΜΕΤΑ偵測器,以允許同 時收集全光譜螢光訊號。該系統沒有穿透光偵測器。該系 統具有一應用於影像拼輯(image montage)的自動平台掃描 器(automated stage scanner)與紅外光之光學系統。為了立 體影像呈現,一立體影像投射系統300耦合上述處理系統 100。上述處理系統100在輸入指令之下可以進入(access) 資料庫’並且傳送影像至一顯示卡(video card)以呈現多樣 21 1291630 的圖示輸出(例如NVIDIA Quadro4-980或更佳的)。在處理 系統100中之中央處理器(CPU)可以是一(或更多)32位元 (bits)或64位元(或更高階)單元,其具有足夠記憶體提供給 影像資料處理。上述多樣的輸出影像係個別地饋入(fed into)多個放映機,以使得前或背投影之立體的呈現與操作 可以被實施。上述程序可以藉由商業軟體(例如amira ν·3·1)與硬體(例如三維滑鼠)來控制。一已知技術之特別眼 鏡(glasses)可以提供用來產生虛擬三維影像。其係一眾所 ►皆知之習知技術,故在此不贅述。 本务明以較佳實施例說明如上,然其並非用以限定4 發明所主張之專利權利範圍。其專利保護範圍當視後附$ :睛專利範圍及其等同領域而定。凡熟悉此領域之技袭 均眉2麟本專利精神或範圍内,所作之更動或潤飾: =於本㈣所揭示精神頂完成之等效m料,卫 應匕含在下述之申請專利範圍内。 【圖式簡單說明】 藉由麥考下列詳細敛述,上述觀點以及本 優點將可以更換祕Θ之诸夕 示,可以容易二 藉由下面的描述以及附加圖 J 乂合易了解本發明之精神。其中·· 第一圖係顯示依據本發明之系統圖。 第二圖係顯示依據本發明之流程圖。 第三圖係顯示蕈狀體之框架模型。 :3係顯:圖三之相同模型之主軸與線架構。 回係顯不一組主軸之局部座標系統。 < s 22 1291630 第六圖係顯示在果蠅大腦中所產生之三維次結構與 經網路之一例子。 ^ 第七圖係顯示具有某些主要次結構之果蠅大腦 模型。 g 第八圖係顯示在果蠅大腦中之神經網路内之某些 之分布。 土 【主要元件符號說明】 ίο生物表現系統 100處理系統 200平均模型產生模組 300立體影像投射系統 400影像資料產生系統 500樣品備製系統 600資料庫 61〇生物表現次資料庫 620細胞網路次資料庫 630生物精細結構次資料庫 23Ka + ^J where lk is the length of the major axis, and its importance can be adjusted by the constant c. Is the fairy from? The distance from the point to the main axis. The constant a represents the dependence of the main axis, and the constant b can be regarded as the strength of the main axis strength. The final level model average average model can be produced by the above described processing system 100 in accordance with the above model. Then, the average model is recorded according to the general average skeleton. The final syllabic modal 3L can be obtained by the geometric intermediate point of the averaging model on the processing system (10) described above. For the frame model, t-e patches can be converted into stereoscopic volume pixels by sampling. The three-dimensional filling algorithm is used to convert this hollow body into a solid object. The model will generate a solid 'to indicate the stacking volume of all its solid volume U β from 1 to N pixel values, which can be superimposed by N like-average models ^. The geometric intermediate point is located at a pixel value of N/2 Once the geometric intermediate point is determined by the above processing system 1 and 3, the final average model can be established. The generated virtual reality device example full color three-dimensional neuron icon can be operated by the device. View 20 1291630 • In order to demonstrate a very fine extension of the nerve, several devices are provided in the data generation system 400. A Zeiss LSM 510 confocal microscope is equipped with four laser sources, including one Argon laser (emitting at 364 nm), an argon-helium laser (wavelength 458, 488 or 514 nm) and two xenon lasers (wavelengths 543 and 633 nm). This system allows simultaneous detection of four fluorescent lights. The Zeiss LSM 510 META confocal two-photon microscope system is equipped with four laser sources, which contain a gas 氪 laser (wavelength 458, 488 or 5 14 nm), two xenon lasers (wavelengths 543 and 633 nm), and a coherent Mira that is supplied to a nonlinear optical microscope (2-photon) (femtosecond) T-Sapphire lasers, which can be set-tuned at 700-100 Onrn. This is a vivo observation of fluorescent signals designed for use in thick living tissue. The Zeiss LSM 510 ΜΕΤΑ confocal two-photon microscope system is equipped with three laser sources, including an argon-helium laser (wavelength 458, 488 or 514 nm) and two xenon lasers (wavelengths 543 and 633 nm). Three photomultipliers and a ΜΕΤΑ detector to allow simultaneous collection of full-spectrum fluorescent signals. The system does not have a penetrating light detector. The system has an image collage (image montage) An automated stage scanner and an infrared optical system. A stereoscopic image projection system 300 is coupled to the processing system 100 for stereoscopic image presentation. The processing system 100 described above can access the database ' under the input command and transmit the image to a video card to present a graphical output of the various 21 1291630 (e.g., NVIDIA Quadro 4-980 or better). The central processing unit (CPU) in processing system 100 can be one (or more) 32-bit or 64-bit (or higher order) units with sufficient memory for image data processing. The various output images described above are individually fed into a plurality of projectors such that stereoscopic presentation and operation of the front or rear projection can be implemented. The above procedure can be controlled by commercial software (such as amira ν·3.1) and hardware (such as three-dimensional mouse). A special lens of a known technique can be provided for generating a virtual three dimensional image. It is a well-known technique known to all, so it is not described here. The present invention has been described above in terms of preferred embodiments, but it is not intended to limit the scope of patent rights claimed by the invention. The scope of patent protection depends on the scope of the patent: and the scope of the equivalent. Those who are familiar with the technical attack in this field are all in the spirit or scope of the patent, and the changes or refinements made: = the equivalent m material completed in the spirit of the (4), Wei Yingxi is included in the following patent application scope. . [Simple description of the drawing] By the following detailed description of the McCaw test, the above viewpoints and the advantages will be able to replace the tips of the secrets, and it is easy to understand the spirit of the present invention by the following description and additional drawings. . Wherein the first figure shows a system diagram in accordance with the present invention. The second figure shows a flow chart in accordance with the present invention. The third figure shows the frame model of the scorpion. : 3 shows: The main axis and line architecture of the same model in Figure 3. The system shows a local coordinate system of a set of spindles. < s 22 1291630 The sixth figure shows an example of a three-dimensional substructure and a network generated in the brain of Drosophila. ^ The seventh figure shows the Drosophila brain model with some major substructures. g Figure 8 shows some of the distribution within the neural network in the Drosophila brain. Soil [main component symbol description] ίο biological performance system 100 processing system 200 average model generation module 300 stereoscopic image projection system 400 image data generation system 500 sample preparation system 600 database 61 〇 biological performance secondary database 620 cell network times Database 630 Biological Fine Structure Sub-Database 23
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94113324A TWI291630B (en) | 2005-04-26 | 2005-04-26 | Bio-expression system and the method of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94113324A TWI291630B (en) | 2005-04-26 | 2005-04-26 | Bio-expression system and the method of the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200638225A TW200638225A (en) | 2006-11-01 |
TWI291630B true TWI291630B (en) | 2007-12-21 |
Family
ID=39461233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94113324A TWI291630B (en) | 2005-04-26 | 2005-04-26 | Bio-expression system and the method of the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI291630B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI750686B (en) * | 2019-06-04 | 2021-12-21 | 捷絡生物科技股份有限公司 | Three dimensional histopathology imaging method and system thereof |
TWI753448B (en) * | 2019-06-04 | 2022-01-21 | 捷絡生物科技股份有限公司 | Method for analyzing tissue specimens |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI381283B (en) * | 2008-08-18 | 2013-01-01 | Nat Univ Tsing Hua | Bio-expression system with module for creating the standard drosophila brain model and its coordinate system |
TWI406181B (en) * | 2009-05-11 | 2013-08-21 | Nat Univ Tsing Hua | A method for searching and constructing 3d image database |
US20160085916A1 (en) * | 2014-09-24 | 2016-03-24 | Ned M. Smith | Privacy preserving genome sequence management |
-
2005
- 2005-04-26 TW TW94113324A patent/TWI291630B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI750686B (en) * | 2019-06-04 | 2021-12-21 | 捷絡生物科技股份有限公司 | Three dimensional histopathology imaging method and system thereof |
TWI753448B (en) * | 2019-06-04 | 2022-01-21 | 捷絡生物科技股份有限公司 | Method for analyzing tissue specimens |
US11521317B2 (en) | 2019-06-04 | 2022-12-06 | JelloX Biotech Inc. | Method for analyzing tissue specimens |
Also Published As
Publication number | Publication date |
---|---|
TW200638225A (en) | 2006-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bates et al. | The natverse, a versatile toolbox for combining and analysing neuroanatomical data | |
Lösel et al. | Introducing Biomedisa as an open-source online platform for biomedical image segmentation | |
Lautenschlager | Reconstructing the past: methods and techniques for the digital restoration of fossils | |
Weber | Another link between archaeology and anthropology: virtual anthropology | |
Sigal et al. | Mesh-morphing algorithms for specimen-specific finite element modeling | |
CN101339670B (en) | Computer auxiliary three-dimensional craniofacial rejuvenation method | |
Lasserre et al. | A neuron membrane mesh representation for visualization of electrophysiological simulations | |
Lanteri et al. | A new practical approach for 3D documentation in ultraviolet fluorescence and infrared reflectography of polychromatic sculptures as fundamental step in restoration | |
Vidal‐García et al. | ShapeRotator: an R tool for standardized rigid rotations of articulated three‐dimensional structures with application for geometric morphometrics | |
Xie et al. | Reconstruction of single tree with leaves based on terrestrial LiDAR point cloud data | |
White et al. | The suitability of 3D data: 3D digitisation of human remains | |
Torres‐Tamayo et al. | Assessing thoraco‐pelvic covariation in Homo sapiens and Pan troglodytes: A 3D geometric morphometric approach | |
Attardi et al. | 3D facial reconstruction and visualization of ancient Egyptian mummies using spiral CT data soft tissue reconstruction and texture application | |
TWI291630B (en) | Bio-expression system and the method of the same | |
Biggs et al. | Using freely-available 3D software to reconstruct traumatic bone injuries detected with post mortem computed tomography | |
Abate et al. | FACES: 3D FAcial reConstruction from anciEnt Skulls using content based image retrieval | |
Legland et al. | Synchrotron Based X-ray Microtomography Reveals Cellular Morphological Features of Developing Wheat Grain | |
Huang et al. | Evaluating the point cloud of individual trees generated from images based on Neural Radiance fields (NeRF) method | |
Santi et al. | Development of the mouse cochlea database (MCD) | |
Cofran et al. | Virtually estimated endocranial volumes of the Krapina Neandertals | |
Reissig et al. | Artefacts in volume data generated with high resolution episcopic microscopy (HREM) | |
US8315809B2 (en) | Bio-expression system with module for creating the standard Drosophila brain model and its coordinate system | |
US7742878B2 (en) | Bio-expression system and the method of the same | |
TWI381283B (en) | Bio-expression system with module for creating the standard drosophila brain model and its coordinate system | |
Teo et al. | An automated 3D modeling pipeline for constructing 3D models of MONOGENEAN HARDPART using machine learning techniques |