TWI289885B - Method of removing a metal silicide layer on a gate electrode in a semiconductor manufacturing process and etching method - Google Patents

Method of removing a metal silicide layer on a gate electrode in a semiconductor manufacturing process and etching method Download PDF

Info

Publication number
TWI289885B
TWI289885B TW94138422A TW94138422A TWI289885B TW I289885 B TWI289885 B TW I289885B TW 94138422 A TW94138422 A TW 94138422A TW 94138422 A TW94138422 A TW 94138422A TW I289885 B TWI289885 B TW I289885B
Authority
TW
Taiwan
Prior art keywords
layer
gas
gate
metal
etching
Prior art date
Application number
TW94138422A
Other languages
Chinese (zh)
Other versions
TW200719400A (en
Inventor
Cheng-Kuen Chen
Chih-Ning Wu
Wei-Tsun Shiau
Wen-Fu Yu
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW94138422A priority Critical patent/TWI289885B/en
Publication of TW200719400A publication Critical patent/TW200719400A/en
Application granted granted Critical
Publication of TWI289885B publication Critical patent/TWI289885B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method of removing a metal silicide layer on a gate electrode in a semiconductor manufacturing process is disclosed, in which the gate electrode, a metal silicide layer, a spacer, a silicon nitride cap layer, and a dielectric layer have been formed. The method comprises performing a chemical mechanical polishing process to polish the dielectric layer using the silicon nitride cap layer as a polishing stop layer to expose the silicon nitride cap layer over the gate electrode; removing the exposed silicon nitride cap layer to expose the metal silicide layer; and performing a first etching process to remove the metal silicide layer on the gate electrode.

Description

1289885 91289885 9

I 九、發明說明: . 【發明所屬之技術領域】 本發明有關一種半導體裝置製程,特別是有關於半導體裝置製 • 程中對於自對準金屬矽化物層之餘刻移除。 【先前技術】 半導體裝置之尺寸較數十年前劇烈減少。目前,製造商已能夠 φ 製造具有0·35 、9〇nm、甚至65nm或更小之線寬之半導體裝 置。隨著尺寸縮小,半導體製造方法亦往往需要改進。 • _M0S裝置更快速之要求,既有之使用多晶石夕做為閘極之 , 方法’引起許多問題,例如,高的閘極阻抗、多晶矽的耗竭(depleti〇n ofpolysilicon)、及辦透至通道區域。因此,一種包括金屬閘極/ 高介電閘極介電層之方法被提出以減少多晶石夕耗竭效應,並且亦 能提供較低之熱預算,但是其具有缺點。 第1至5圖為已知之製造方法製造具有金屬閘極之m〇s電晶 體10之製造過程之剖面圖。請參閱第j圖,多晶石夕間極u形成 於半導體基板上,半導體基板包括树層16,及雜面源極延伸 17與淺接面汲極延伸19形成於閘極12兩側之石夕層16中,並以通 道22區|^。然後,於多晶石夕間極1:2之兩側壁上形成間隙壁%, 及於多晶石夕間極12之石夕層16中形成源極/汲極區18及2〇,且與 淺接面源極延伸17與淺接面沒極延伸19鄰接。間極12與通道^ !289885 I 禮 之間有閘極介電層14予以分隔。在間隙壁32與閘極12的側壁之 間可設置襯墊層30,其通常為二氧化矽所構成。半導體_〇8電 曰曰體元件10的裸露矽表面,包括汲極/源極區18/20表面及多晶矽 • 閘極12頂部,則形成自對準金屬矽化物層42。之後,形成一氮化 夕蓋層46覆蓋整個半導體區域,包括源極/汲極區與及淺 接面源極延伸17與淺接面汲極延伸19,多晶矽閘極12也被覆蓋。 在沈積氮化矽蓋層46之後,接著沈積介電層48,氮化矽蓋層46 • 厚度通常在約300至約1000埃(angstrom)之間,可藉由電漿加強 化學氣相沉積(PECVD)而形成。 , 其次,請參閱第2圖,藉由CMP製程對氮化矽蓋層46及介電 •層48研磨,直到多晶矽閘極12頂部露出。對閘極口進行過度研 磨,如此,多晶矽閘極12頂部可完全露出。 接著,請參閱第3 ffl,使用氯進行電衆反應性離子触刻卿) 鲁或是進行習知之應用侧化學之濕式多晶石夕餘刻,以形成開口 (即,凹槽)54。請參閱第4圖,可使障壁金屬層%形成於凹槽54 之側壁上及介電層48、氮化石夕蓋層46、間隙壁%、及概塾層3〇 之表面,及然後,沉積-金屬層58以填滿凹槽及沉積至障壁金屬 層56上。最後,請參閱第5圖,將多餘之金屬層%研磨而移除, 留下閘極的部分’形成具有金屬閘極之M〇s電晶體1〇。 上述製造方法包括金屬閘極置換製程之整合流程,此整合流程 1289885 iI. Description of the Invention: [Technical Field] The present invention relates to a semiconductor device process, and more particularly to the removal of a self-aligned metal telluride layer in a semiconductor device process. [Prior Art] The size of a semiconductor device is drastically reduced compared to several decades ago. Currently, manufacturers have been able to manufacture semiconductor devices with line widths of 0·35, 9 〇 nm, or even 65 nm or less. As the size shrinks, semiconductor manufacturing methods often need to be improved. • The _M0S device requires more speed, both using polysilicon as the gate, and the method 'causes many problems, such as high gate resistance, depletion of polysilicon, and Channel area. Therefore, a method including a metal gate/high dielectric gate dielectric layer has been proposed to reduce the polycrystalline lithotripsy effect and also to provide a lower thermal budget, but it has disadvantages. Figs. 1 to 5 are cross-sectional views showing a manufacturing process for manufacturing a m〇s electromorph 10 having a metal gate in a known manufacturing method. Referring to FIG. j, a polycrystalline stone inter-pole U is formed on a semiconductor substrate, the semiconductor substrate includes a tree layer 16, and a surface source extension 17 and a shallow junction drain extension 19 are formed on both sides of the gate 12 In the layer 16, the channel 22 is |^. Then, a spacer % is formed on the sidewalls of the polycrystalline 1:12, and source/drain regions 18 and 2 are formed in the layer 16 of the polycrystalline intertidal pole 12, and The shallow junction source extension 17 is adjacent to the shallow junction no pole extension 19. The gate 12 is separated from the channel ^ ! 289885 I by a gate dielectric layer 14 . A spacer layer 30, typically of hafnium oxide, may be disposed between the spacer 32 and the sidewall of the gate 12. Semiconductor 〇 8 Electric The exposed germanium surface of the body element 10, including the drain/source region 18/20 surface and the polysilicon 顶部 top of the gate 12, forms a self-aligned metal germanide layer 42. Thereafter, a nitriding layer 46 is formed overlying the entire semiconductor region, including the source/drain regions and the shallow source source extensions 17 and the shallow junction drain extensions 19, and the polysilicon gates 12 are also covered. After depositing the tantalum nitride cap layer 46, a dielectric layer 48 is subsequently deposited, and the tantalum nitride cap layer 46 is typically between about 300 and about 1000 angstroms thick, and can be chemically vapor deposited by plasma ( Formed by PECVD). Next, referring to FIG. 2, the tantalum nitride cap layer 46 and the dielectric layer 48 are ground by a CMP process until the top of the polysilicon gate 12 is exposed. The gate is over-grinded so that the top of the polysilicon gate 12 is completely exposed. Next, refer to the 3rd ffl, using chlorine for the electrical reactive ion etch, or performing the conventional application of the chemical wet polycrystalline slab to form an opening (i.e., the groove) 54. Referring to FIG. 4, the barrier metal layer may be formed on the sidewall of the recess 54 and the surface of the dielectric layer 48, the nitride blanket layer 46, the spacer %, and the surface layer 3, and then deposited. A metal layer 58 is filled to fill the trench and deposited onto the barrier metal layer 56. Finally, referring to Fig. 5, the excess metal layer % is ground and removed, leaving a portion of the gate forming a M〇s transistor 1〇 having a metal gate. The above manufacturing method includes an integrated process of a metal gate replacement process, and the integration process 1289885 i

I 包括下列··於電晶體建造之後進行内層介電層之化學機械研磨 (ILDCMP) ’金屬石夕化物層與多晶矽嵌塞之移除,金屬層之 沉積,以及金屬層CMP。然而,藉由CMP製程移除金屬石夕化物 層具有困難性。 元全梦化夕日日發閘極(ftjlly siliddedpolysilicon gate,FUSI gate) 因為整合製程上的相對簡單,而成為金屬閘極外之另一選擇。請 參閲第2圖,藉由CMP製程研磨閘極12上方之介電層你及氮化 矽蓋層46,直到露出多晶石夕閘極12之頂部為止。然後,請參閱第 6圖於夕日日石夕閘極12之曝露部分、氮化石夕蓋層你、間隙壁%、 概墊層30、及介電層48上沉積一金屬層5〇。金屬層%厚度通常 小於約1〇〇埃,及於若干例中,可為約至約1〇〇〇埃之間。金 屬層50亦可為多層,例如:Ti_、c〇/TiN、或c〇/Ti/TiN等等。 於具有此金屬層50之基板上進行熱處理以將多晶石夕閘轉化 成金屬石夕化物閘極52。可藉由二個步驟以進行熱處理製程,即, 第一個步驟係於約400至約60(rc下進行熱製程,第二個步驟是 於約800至約丨_。〇下進行快速熱製程。接著,將未反應之殘留 金屬移除’獲得如第7圖所示之觸8電晶體b,其具有完全矽 化間極。 於上述之FUSI金屬閘極整合製程製造方法中,經由直接之ILD CMP步驟移除NlSi多晶石夕化物及接著進行彡晶石夕之完全石夕化,以 1289885 1I includes the following: chemical mechanical polishing of the inner dielectric layer (ILDCMP) after the construction of the transistor, removal of the metallization layer and the polysilicon plug, deposition of the metal layer, and metal layer CMP. However, it is difficult to remove the metallazine layer by the CMP process. The ftjlly silidded polysilicon gate (FUSI gate) is another option for metal gates because of the relatively simple integration process. Referring to Figure 2, the dielectric layer above the gate 12 and the tantalum cap layer 46 are polished by the CMP process until the top of the polycrystalline silicon gate 12 is exposed. Then, refer to Fig. 6 to deposit a metal layer 5〇 on the exposed portion of the Shishi gate 12, the nitride layer, the spacer %, the spacer 30, and the dielectric layer 48. The metal layer % thickness is typically less than about 1 angstrom, and in some instances, may be between about 1 angstrom and about 1 angstrom. The metal layer 50 may also be a plurality of layers such as Ti_, c〇/TiN, or c〇/Ti/TiN or the like. Heat treatment is performed on the substrate having the metal layer 50 to convert the polycrystalline silicon gate into a metallization gate 52. The heat treatment process can be carried out in two steps, that is, the first step is performed at about 400 to about 60 (the thermal process is performed at rc, and the second step is performed at about 800 to about 丨. Next, the unreacted residual metal is removed to obtain the contact 8 transistor b as shown in Fig. 7, which has a fully deuterated interpole. In the above-described FUSI metal gate integration process manufacturing method, via direct ILD The CMP step removes the NlSi polycrystalline lithic compound and then performs the complete crystallization of the crystallization of the smectite, to 1288885

I 形成NiSi金屬閘極。然而,此方法亦存在以CMp製程移除金屬 . 石夕化物層之困難性。直接使用CMP製程,難以控制研磨Nisi多 晶矽化物層,故難獲得良好之均勻移除結果。 因此,仍需要一種較佳之方法以於半導體製程中移除金屬矽化 物層。 【發明内容】 馨 本發明之目的是提供一讎除半導體製程中閘極上之金屬石夕 化物層之方法,可有效及均勻的移除閘極上金屬矽化物層,以利 後續製程之進行。 ‘ 於依齡個之—具體實施例巾,亦提供-種濕式侧方法, 以有效及均勻的移除金屬矽化物層。 • 於依據本發明之另一具體實施例中,亦提供-種乾式餘刻方 法,以有效及均勻的移除金屬石夕化物層。 於本發明之移除半導體製程中閘極上之金屬石夕化物層之方法 中,閘極係位於-半導體基板上,閘極之上表面覆蓋有一金屬石夕 化物層閘極與金屬石夕化物層一起形成之各側壁上設置有一間隙 壁層氮化石夕蓋層覆蓋金屬石夕化物層、間隙壁、及半導體基板, -介電層覆蓋氮娜蓋層’本翻之移除半導體製程帽極上之 1289885I forms a NiSi metal gate. However, this method also has the difficulty of removing the metal and the ruthenium layer by the CMp process. Directly using the CMP process, it is difficult to control the grinding of the Nisi polycrystalline telluride layer, so it is difficult to obtain a good uniform removal result. Therefore, there is still a need for a preferred method for removing a metal telluride layer in a semiconductor process. SUMMARY OF THE INVENTION The object of the present invention is to provide a method for removing a metallization layer on a gate electrode in a semiconductor process, which can effectively and uniformly remove the metal germanide layer on the gate for subsequent processing. The invention also provides a wet side method for effective and uniform removal of the metal telluride layer. • In another embodiment in accordance with the invention, a dry remnant method is also provided to effectively and uniformly remove the metallurgical layer. In the method for removing a metal-lithium layer on a gate in a semiconductor process according to the present invention, the gate is on the semiconductor substrate, and the upper surface of the gate is covered with a metal-lithium gate and a metal-lithium layer. Each of the sidewalls formed together is provided with a spacer layer of a nitride layer covering the metal-lithium layer, a spacer, and a semiconductor substrate, and the dielectric layer covers the Ni-na cover layer. 1289885

I » 金屬石夕化物層之方法包括下列步驟:首先,進行—化學機械研磨 •製程’以研磨介電層,iUxlUb⑦蓋層為研磨終止層,而曝露閘 ,極上方之氮⑽蓋層;接著,移除該曝露之氮姆蓋層以曝露閘 • 極上之金屬石夕化物層;最後,進行-第-钱刻製程以移除閘極上 • 之金屬矽化物層。 依據本發明之濕式敍刻方法,包括使用—侧液對一金屬石夕化 • 物層進行濕式钕刻,侧液包括氟化氫(HF)、氟化銨_4F)、擇 自乙二醇與丙二醇所組成組群之至少一者、及水。 依據本發明之乾式侧方法,包括使用-侧紐對-金屬石夕 化物層進行乾式餘刻,姓刻氣體包括氬氣、擇自氫氣與氯氣所組 成組群中之至少一者、及一氧化碳。 習知對金屬石夕化物層之移除採用CMp方式,不易對金屬石夕化 參物層有良好之研磨結果。應用本發明之方法以移除閘極上之金屬 矽化物層時,因具有良好之蝕刻選擇性,而可獲得有效及均勻之 移除,以利後續製程,因此可用以製得較佳品質之半導體裝置。 【實施方式】 本發明係半導《置_,例如舰08、PM0S電晶體元 件或者CMOS兀件之製作,特別是其中閘極上的金屬石夕化物層之 移除方法。 1289885 :參閱第8至π圖,其顯示的是本發明較佳實施例製作具有 =屬閉極之轉體刪電晶體元件4〇的方法的剖面示意圖,其 僅或部位仍沿用相同的符號來表示。需注意的是圖式 僅以說明為目的,並未依照原尺寸作圖。 如第8圖所示’準備一半導體基底’其一般包含有石夕層Μ。前 =二導體基底可以是錄底或者是魏絕如杨, )土底。於半導體基底上定義一電極,例如-閉極12。可在石夕 層I6中形成淺接面源極延伸n以及淺接面没極延伸β,淺接面 源極延伸17與淺接面汲極延伸I9之義著-通道22。 可在通道22上形成-間極介電層14,以__ 12與通道 22。間極12通常包含有多晶赠質。·介電層14可由氧化石夕 所構成可由熱氧化法形成;或由氧化石夕/氮化梦陶複合膜構 成,可由熱氧化法及接著進行熱氮化法所形成。然而,在本發明 之另一實補巾,難介電層14村由高介料雜㈣)材料所 構成可以化學氣相沉積方法形成厚度大約為%埃至約2⑻埃 之間。-般做為高介電常數之材料可舉财Zr〇2、腿2、in〇2、、 2及Ta〇2奴後’在閘極12的側壁上形成氮化矽間隙壁32。 #、2 ”氮化石夕間隙壁32之間可另有一概塾層%,前述之概 墊層可為氧化石夕所構成。襯墊層3〇通常為L型且厚度約在3〇至 m埃之間。襯墊層30可另有一偏移間隙壁峰叫㈣,其為 该行業者所知,因此並未圖示。 1289885 如第9圖所不,在形成氮化矽間隙壁32之後,玎進一步進行 ' 一離子佈植製程,將N型摻質物種,例如砷、銻或構等植入矽層 16中’或將P型摻質物種,例如硼等植入石夕層16中,藉此形成 NMOS或PMOS元件40的源極區18以及没極區20。在完成没極 源極的摻雜後,半導體基底通常可以進行一回火(_ealing)或活化 (activation)摻質的熱製程,此步驟亦為該行業者所熟知的,不再加 以陳述。 _ 如第10圖所不,於閘極12、露出的源極區18、及露出的汲極 區20上形成-物質層,例如一金屬石夕化物層㈣tal silicide la㈣ 42。利用自動對準金屬矽化物(sdf-aligned silidde,從讓 形成金屬矽化物層;亦即在形成源極/沒極區之後,利用濺鍍或電 鍍方法,再形成一金屬層覆蓋於源極/汲極區與閘極結構上方,然 後進行一快速尚溫製程(RTP)使金屬與閘極結構、源極/汲極區中的 矽反應,形成金屬矽化物。金屬矽化物可舉例為鎳矽化合物或鈷 • 矽化合物,例如··矽化鎳(NiSi)或矽化鈷((:〇&2)。RTp溫度可在7〇〇 C至1〇〇〇 c之間。形成自對準金屬梦化物層之後,可依所需移 除或保留間隙壁32。 接著,如第11圖所示,在半導體基底上進一步沈積一層氮化 矽蓋層46,其中氮化矽蓋層46覆蓋金屬矽化物層42以及氮化矽 間隙壁32,而其厚度通常介於20〇至4〇〇埃左右。沈積氮化石夕蓋 層46的目的是在使後續的接觸洞蝕刻能有明顯的蝕刻終點,也就 12 1289885 是用來作為_停止層。亦可形献錢_拉伸 蓋層46 ’以使其下層之源極輸區形成應變結構,^進通道a :電荷遷料。在沈積—6讀,_⑽介Γ ”:魏層等’亦可為高介電材料’例如多層金屬氧化物或 疋舰礦(p_kites)。通常介電層48較氮切蓋層46厚許多。 從介電層48頂部至開極12上方之氮化石夕46之厚度A,是本發明 之方法中欲以CMP製程移除之厚度。 請參閱第12圖,其顯示第u圖中之結構經過⑽製程移除 部分之介電層48後之結構。氮化輕層46可做為⑽之研磨終 止層,再以侧方式移除氮切蓋層46。_方式可為使用一熱 磷酸溶液對該曝露之氮化矽蓋層進行濕式蝕刻^或者直接以cMp 方式移除氮化矽蓋層46。第13圖顯示將氮化矽蓋層46移除後, 露出閘極上方金屬矽化物層42之結構。 • 接著,以餘刻方式移除閘極12上方之金屬石夕化物層42。可使 用一蚀刻液對此金屬石夕化物層42進行濕式钱刻,姓刻液包括氟化 氳(HF)、氟化銨(NHJ)、以及擇自乙二醇與丙二醇所組成組群之 至少一者於水中之溶液。蝕刻液中氟化氫(HF):氟化銨(nh4f): 擇自乙二醇與丙二醇所組成組群之至少一者之重量比較佳為〇.5 至6: 15至25: 30至40。於本發明之一具體實施例中,蝕刻液包 括約3·5重量%之™、約20重量%之NH4F、及約35重量%之乙 二醇(或丙二醇),其餘為水。於25°C下,此蝕刻液對NiSi與CoSi2 13 1289885 之_速率分別為6G.5與5G.4埃/分鐘,而對氧切、多晶石夕、氮 化石夕之働m率僅分別為4.77、⑽、及丨4 w分鐘,因此且有高 選擇比,能有效移除刪與喊,留下氧化石夕、多晶石夕、氣化 石夕結構。對_σ獅㈣,制CMP __除腦與吨 層。 亦可使用乾钱刻方式移除閘極上方之金屬石夕化物層42。可使用 •—侧氣體對閘極上方之金屬石夕化物層42進行乾式餘刻’姓刻氣 體包括氬氣(Ar)、氫氣(h2)與氯氣(cl2)中之任一者、及一氧化碳 (C0)在此乾式姓刻中,推測一氧化碳與金屬石夕化物層之金屬成 分生麟發性啦物具絲基(earixmyls),例如Ni(CQ)4。fj2可移 除化學濺射產生的碳膜或沉積先驅物之轉娜成的碳膜。& 離子轟擊可增雜舰物之移除。侧纽中氬氣··氯氣·、一氧 化碳之流量比較佳為5至15 ·· 15至25 ·· 5至15,或者,氬氣··氯 _ 氣·· 一氧化碳之流量比較佳為10至2〇 ·· 2〇至3〇 ·· 5至15。 於本發明之另-频實施财,個福職體處方為c〇 ·· CI2 · Ar 為 1〇〇 seem · 200 seem ·· 1〇〇 seem ’ 使用 TCP9400 型號之 機台進行,壓力10毫托耳(mTorr),溫度75γ,5〇〇瓦特之上功率 (toppower,ΤΡ),及 50 瓦特之下功率(b〇ttomp〇wer , Βρ)。於本發 明之又另-具體實酬中,使用之侧氣體處方為CC) ·· Η2 ·· & 為100 seem: 250 seem: 150 seem,使用DRM85型號之機台進行, 壓力30毫托耳(mTorr),溫度6(rc , 1〇〇〇瓦特之功率。均能有效I » The method of the metallization layer comprises the following steps: first, performing a chemical mechanical polishing process to polish the dielectric layer, the iUxlUb7 cap layer is a polishing stop layer, and exposing the gate, the nitrogen (10) cap layer above the pole; The exposed nitrogen cap layer is removed to expose the metal-lithium layer on the gate electrode; finally, a -first-etch process is performed to remove the metal telluride layer on the gate. The wet sculpt method according to the present invention comprises wet etching a metal slab layer using a side liquid, the side liquid comprising hydrogen fluoride (HF), ammonium fluoride _4F, and ethylene glycol. At least one of the group consisting of propylene glycol and water. The dry side method according to the present invention comprises the use of a side-side pair-metal lithium layer for dry remnant, the surname gas comprising argon, at least one selected from the group consisting of hydrogen and chlorine, and carbon monoxide. It is conventional to remove the metal lithium layer by the CMp method, and it is not easy to have a good grinding result for the metallization layer. When the method of the present invention is applied to remove the metal telluride layer on the gate, since the etching selectivity is good, effective and uniform removal can be obtained for subsequent processes, so that a semiconductor of better quality can be obtained. Device. [Embodiment] The present invention is a semi-conductive ", for example, the fabrication of a ship 08, a PMOS transistor element or a CMOS device, particularly a method of removing a metal lithium layer on a gate. 1289885: Referring to FIG. 8 to FIG. 3, there is shown a cross-sectional view of a method for fabricating a turn-off transistor element 4 having a closed-cell polarity according to a preferred embodiment of the present invention, the same symbols being used only or in part. Said. It should be noted that the drawings are for illustrative purposes only and are not mapped to the original dimensions. As shown in Fig. 8, 'preparation of a semiconductor substrate' generally includes a sapphire layer. The front = two conductor base can be the bottom of the record or the Wei can be like the Yang, the soil bottom. An electrode is defined on the semiconductor substrate, for example - a closed pole 12. A shallow junction source extension n and a shallow junction no-pole extension β may be formed in the Shixi layer I6, the shallow junction source extension 17 and the shallow junction drain extension I9--the channel 22. An inter-electrode dielectric layer 14 can be formed on the channel 22, with __12 and channel 22. The interpole 12 typically contains a polycrystalline donor. The dielectric layer 14 may be formed of oxidized oxide or may be formed by a thermal oxidation method or a oxidized oxide/nitridinated composite film, and may be formed by a thermal oxidation method followed by a thermal nitridation method. However, in another embodiment of the present invention, the dielectric layer 14 is composed of a high-intermediate (tetra) material which can be formed by a chemical vapor deposition method to a thickness of from about % Å to about 2 (8 Å). As a material having a high dielectric constant, it is possible to form a tantalum nitride spacer 32 on the sidewall of the gate 12 after the Zr〇2, the leg 2, the in〇2, the 2, and the Ta〇2 slave. There may be another % layer between the # nitride and the nitride spacers 32. The cushion layer may be made of oxidized stone. The liner layer 3 is usually L-shaped and has a thickness of about 3 〇 to m. Between the angstroms, the spacer layer 30 may have an offset spacer peak (4), which is known to those skilled in the art and therefore not shown. 1289885 As shown in Fig. 9, after forming the tantalum nitride spacer 32 Further performing an 'ion implantation process, implanting N-type dopant species such as arsenic, antimony or structure into the ruthenium layer 16' or implanting a P-type dopant species such as boron into the sap layer 16 Thereby, the source region 18 of the NMOS or PMOS device 40 and the non-polar region 20 are formed. After completing the doping of the gateless source, the semiconductor substrate can usually be subjected to a tempering or activation dopant. The thermal process, which is also well known to those skilled in the art, will not be stated. _ As shown in Figure 10, a substance is formed on the gate 12, the exposed source region 18, and the exposed drain region 20. a layer, such as a metal lithium layer (four) tal silicide la (four) 42. Using automatic alignment of metal telluride (sdf-aligned silidde, from let Forming a metal telluride layer; that is, after forming the source/drain region, a metal layer is formed over the source/drain region and the gate structure by sputtering or electroplating, and then a rapid temperature is applied The process (RTP) causes the metal to react with the gate structure and the germanium in the source/drain region to form a metal telluride. The metal halide can be exemplified by a nickel ruthenium compound or a cobalt ruthenium compound, such as nickel hydride (NiSi). Or cobalt telluride ((: 〇 & 2). The RTp temperature can be between 7 〇〇 C and 1 〇〇〇 c. After forming the self-aligned metal dream layer, the spacers 32 can be removed or retained as needed. Next, as shown in FIG. 11, a tantalum nitride cap layer 46 is further deposited on the semiconductor substrate, wherein the tantalum nitride cap layer 46 covers the metal telluride layer 42 and the tantalum nitride spacer 32, and the thickness thereof is usually The thickness of the nitride layer is 46. The purpose of depositing the nitride cap layer 46 is to make the subsequent contact hole etching have a significant etching end point, that is, 12 1289885 is used as the _stop layer. Money_stretched cap layer 46' to form a strained structure in the source region of the lower layer ^Into the channel a: charge relocation. In the deposition - 6 reading, _ (10) Γ ": Wei layer, etc. can also be high dielectric materials 'such as multilayer metal oxides or p_kites. Usually dielectric layer 48 It is much thicker than the nitrogen capping layer 46. The thickness A from the top of the dielectric layer 48 to the nitride nitride 46 above the opening 12 is the thickness of the method of the present invention to be removed by the CMP process. See Figure 12, It shows the structure of the structure in Fig. u after the portion of the dielectric layer 48 is removed by the process of (10). The nitride light layer 46 can be used as the polishing stop layer of (10), and the nitrogen cut cap layer 46 is removed in a side manner. The method may be to wet etch the exposed tantalum nitride cap layer using a hot phosphoric acid solution or to remove the tantalum nitride cap layer 46 directly in a cMp manner. Figure 13 shows the structure of the metal telluride layer 42 over the gate after the tantalum nitride cap layer 46 is removed. • Next, the metallurgical layer 42 above the gate 12 is removed in a residual manner. The metal-lithium layer 42 can be wet-etched using an etching solution, and the surname includes fluorene fluoride (HF), ammonium fluoride (NHJ), and a group consisting of ethylene glycol and propylene glycol. At least one solution in water. Hydrogen fluoride (HF) in the etching solution: ammonium fluoride (nh4f): The weight of at least one selected from the group consisting of ethylene glycol and propylene glycol is preferably from 〇.5 to 6:15 to 25:30 to 40. In one embodiment of the invention, the etchant comprises about 3.5% by weight of TM, about 20% by weight of NH4F, and about 35% by weight of ethylene glycol (or propylene glycol), the balance being water. At 25 ° C, the etch rate of NiSi and CoSi2 13 1289885 is 6G.5 and 5G.4 Å/min, respectively, while the ratios of oxygen cut, polycrystalline shi, and nitrite are only It is 4.77, (10), and 丨4 w minutes, so there is a high selection ratio, which can effectively remove the deletion and shouting, leaving the oxidized stone eve, polycrystalline stone eve, gasification stone eve structure. For _σ lion (four), make CMP __ except the brain and tons of layers. The metallurgical layer 42 above the gate can also be removed using a dry money engraving. The gas can be dry-recharged using the side gas to the metal-lithium layer 42 above the gate. The gas of the surname includes any of argon (Ar), hydrogen (h2), and chlorine (cl2), and carbon monoxide ( C0) In this dry-type surrogate, it is presumed that the metal components of the carbon monoxide and the metal-lithium layer are derived from earixmyls, such as Ni(CQ)4. Fj2 removes the carbon film produced by chemical sputtering or the carbon film deposited by the precursor. & ion bombardment can increase the removal of miscellaneous items. The flow rate of argon gas, chlorine gas and carbon monoxide in the side button is preferably 5 to 15 ··15 to 25 ·· 5 to 15, or argon gas · chlorine gas · carbon monoxide flow rate is preferably 10 to 2 〇·· 2〇 to 3〇·· 5 to 15. In the other-frequency implementation of the present invention, a blessing body prescription is c〇·· CI2 · Ar is 1〇〇seem · 200 seem ·· 1〇〇seem ' using a TCP9400 model machine, pressure 10 mTorr Ear (mTorr), temperature 75 γ, power above 5 watts (toppower, ΤΡ), and power below 50 watts (b〇ttomp〇wer, Βρ). In the other specific embodiment of the present invention, the side gas prescription used is CC) ·· Η2 ·· & 100 seem: 250 seem: 150 seem, using a DRM85 model machine, pressure 30 mTorr (mTorr), temperature 6 (rc, 1 watt power) can be effective

14 1289885 移除金屬矽化物層42。 ' 上述之金屬石夕化物層42可為石夕層或多晶石夕層經由自對準金屬 魏方法製得之金屬雜物層。在使用上述之方法移除金屬石夕化 - 物層之後,所得結構如帛14圖所示。接著,可利用f知之電浆反 舰離子侧_)錢濕式Μ賴卿賴^⑼,如第15圖 所示。再於開口 60之側壁及介電層48之表面上形成—障壁層幻, φ 接著沉積一金屬層64 ’填滿開口 6〇 ’如第16圖所示。最後,將 介電層48上的金屬層64移除,獲得如第17圖所示之一具有金屬 閘極之MOS電晶體40。 若欲®造FUSI _時,可參閱第14 ®之結構,於此結構中, 金屬石夕化物層42已經使用本發明之_方法移除,曝露出多晶石夕 之閘極12。接著’請進一步參閱第18圖,於多晶石夕開極12及氣 化矽蓋層46上沉積一金屬層66,厚度可如習知之小於1〇〇〇埃或 •約500至約麵埃之間。金屬層66之材質可為例如Ni、Co、Ti、 Ti/TiN、Co/TiN、或Co/Ti/TiN等等之多層材料。對此半導體基板 進行熱處理,使多晶矽與金屬反應,形成金屬矽化物將未反應 之金屬移除,獲得一具有完全金屬多晶矽化物閘極之M〇s電晶體 70,如第19圖所示。 與習知之金屬閘極製程或完全金屬矽化物閘極製程中使用 CMP製程移除原來閘極上之金屬矽化物層相較之本發明使用蝕 15 1289885 J方式於製程中移除多晶石夕閘極上的金屬石夕化物層,因具有優異 之餘刻選擇性,而有良好之移除效果,使得金屬閘極製程或完全 金屬矽化物閘極製程可以順利進行。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 圍所做之解變化與修飾,皆顧本發明之涵蓋範圍。14 1289885 The metal telluride layer 42 is removed. The above-mentioned metal-lithium layer 42 may be a metal-grain layer obtained by a self-aligned metal method in a layer or a polycrystalline layer. After removing the metallization layer using the above method, the resulting structure is as shown in FIG. Next, you can use the plasmon anti-ship ion side _) Qian Wet Μ 卿 赖 赖 ^ (9), as shown in Figure 15. A barrier layer is formed on the sidewalls of the opening 60 and the surface of the dielectric layer 48. φ is then deposited with a metal layer 64' to fill the opening 6'' as shown in FIG. Finally, the metal layer 64 on the dielectric layer 48 is removed to obtain a MOS transistor 40 having a metal gate as shown in Fig. 17. If the FUSI _ is to be fabricated, reference is made to the structure of the 14th®, in which the metal lithium layer 42 has been removed using the method of the present invention to expose the gate 12 of the polycrystalline stone. Next, please refer to Fig. 18 to deposit a metal layer 66 on the polycrystalline sprue 12 and the vaporized capping layer 46, the thickness of which may be less than 1 〇〇〇 or about 500 to about 约 约between. The material of the metal layer 66 may be a multilayer material such as Ni, Co, Ti, Ti/TiN, Co/TiN, or Co/Ti/TiN or the like. The semiconductor substrate is heat-treated to react the polycrystalline silicon with the metal to form a metal halide to remove the unreacted metal to obtain a M?s transistor 70 having a fully metal polycrystalline telluride gate, as shown in FIG. In the conventional metal gate process or the full metal germanium gate process, the CMP process is used to remove the metal telluride layer on the original gate. The present invention uses the etch 15 1289885 J method to remove the polycrystalline stone gate in the process. The metal-lithium layer on the pole has good removal effect due to its excellent residual selectivity, so that the metal gate process or the complete metal telluride gate process can be carried out smoothly. The above description is only the preferred embodiment of the present invention, and all the changes and modifications made in the scope of the patent application of the present invention are within the scope of the present invention.

【圖式簡單說明】 電晶 體元件的方法剖面示意[Simple description of the diagram] The cross section of the method of the electromorphic component

第^至5 _示的是習知之製作具有金屬閘極之半導體M0S 圖The first to fifth _ show the semiconductor MOS diagram with the metal gate

网蚀< 平導體MOS 第6至7崎示的是習知之製作具有 晶體元件的方法剖面示意圖。 ===17崎稍是本發雜佳實施㈣作具有金屬閘極 半導體MOS元件的方法剖面示意圖。 第18圖至第19 的是本發明另—較佳實 腦開極之伟體刪元件的方法剖面示_。遣作之〜 16 1289885 【主要元件符號說明】 10、15、40、70 MOS 電晶體 . 12閘極 14閘極介電層 16砍層 17、 19淺接面源極延伸 18、 20源極/没極區 22通道 30襯墊層 32間隙壁 42金屬矽化物層 46氮化矽蓋層 48介電層 50金屬層 52金屬矽化物閘極 • 54 開口 56障壁金屬層 58金屬層 60開口 62障壁層 64金屬層 66金屬層 A厚度Mesh etch < Flat Conductor MOS Nos. 6 to 7 show a schematic cross-sectional view of a conventional method of fabricating a crystal element. ===17Saki is a schematic cross-sectional view of a method with a metal gate semiconductor MOS device. Figs. 18 to 19 are cross-sectional views showing a method for removing the components of the present invention. Dispatch ~ 16 1289885 [Main component symbol description] 10, 15, 40, 70 MOS transistor. 12 gate 14 gate dielectric layer 16 chopped layer 17, 19 shallow junction source extension 18, 20 source / Nom region 22 channel 30 liner layer 32 spacer 42 metal vaporization layer 46 tantalum nitride cap layer 48 dielectric layer 50 metal layer 52 metal germanium gate electrode 54 opening 56 barrier metal layer 58 metal layer 60 opening 62 barrier Layer 64 metal layer 66 metal layer A thickness

1717

Claims (1)

1289885 十、申請專利範圍: 1· 一種移除半導體製程中閘極上之金屬矽化物層之方法,該閘極 位於一半導體基板上,該閘極之上表面覆蓋有一金屬矽化物層, 該閘極與該金屬矽化物層一起形成之各侧壁上設置有一間隙壁, • 一層氮化矽蓋層覆蓋該金屬矽化物層、該等間隙壁、及該半導體 基板,一介電層覆蓋於該氮化矽蓋層,該移除於半導體製程中閘 極上之金屬石夕化物層之方法包括: φ 進行一化學機械研磨製程,以研磨該介電層,並以該氮化矽蓋層 為研磨終止層,而曝露該閘極上方之氮化矽蓋層; 移除該曝露之氮化矽蓋層以曝露該閘極上之金屬矽化物層;以及 • 進行一第一蝕刻製程以移除該閘極上之金屬矽化物層。 2·如申請專利範圍第1項所述之方法,其中該第一钱刻製程包括: 使用一蝕刻液對該閘極上方之金屬矽化物層進行濕式蝕刻,該蝕 刻液包括氟化氫(HF)、氟化銨(NHj)、擇自乙二醇與丙二醇所組 • 成組群之至少一者、及水。 3·如申請專利範圍第2項所述之方法,其中該蝕刻液中氟化氫 (HF) ··氟化銨(NHJ):擇自乙二醇與丙二醇所組成組群之至少一 者之重量比為0.5至6 : 15至25 : 30至40。 4·如申請專利範圍第3項所述之方法,其中該蝕刻液中氟化氫 (HF) ·氟化銨(NI^F) ··及擇自乙二醇與丙二醇所組成組群之至少 1289885 一者之重量比為3.5 : 20 : 35。 5·如申請專利範圍第丨項所述之方 使用一 _氣體糊極上方之金屬^^第―_製程包括: 則乳體包括親、擇自氫氣與贼所組成組群之至少—者 一氧化碳。 ’其中該蝕刻氣體中氬氣: 20 至 30 : 5 至 15。 6·如申請專利範圍第5項所述之方法 氫氣·· 一氧化碳之流量比為1〇至2〇 : =如申請補細第6項所叙方法,其巾該抛咖中氯氣: 氫氣·· 一氧化碳之流量比為15 : 25 : 1〇。 8·如申明專利範圍第5項所述之方法,其中該侧氣體中氯氣: 氯氣:一氧化碳之流量比為5至15 : 15至25 : 5至15。 9·如申請專利範圍第8項所述之方法,其中該侧氣體中氯氣: 氯氣:一氧化碳之流量比為10 : 20 : 1〇。 10·如申請專利範圍第1項所述之方法,其中該金屬矽化物層包括 擇自鎳梦化物與始石夕化物所組成組群之至少一者。 η·如申請專利範圍第1項所述之方法,其中,移除該曝露之氮化 矽蓋層包括: 19 1289885 使用-熱磷酸溶液對該曝露之氮化石夕蓋層進行濕式钱刻。 ' 12. 1申請專利範圍第1項所述之方法,其中,移除該曝露之氮化 矽蓋層包括: ,使魏學賊研磨方法對鱗露錢切蓋層進行補而移除。 13·如申請專利範圍第1項所述之方法,其中該介電層包括二氧化 •矽、Zr〇2、Hf02、In〇2、La〇2、或 Ta〇2。 14.如申請專利範圍第i項所述之方法,其中該閘極與該半導體基 板之間進一步設置有一閘極氧化層。 20 1 15· 一種濕式蝕刻方法,包括: 使用-钱刻液對-金屬石夕化物層進行濕式钱刻,該侧液包括氣 化氫(HF)、氟化銨(nh4f)、擇自乙二醇與丙二醇所組成組群之至 _ 少一者、及水。 16·如申請專利範圍第15項所述之濕式蝕刻方法,其中,該蝕刻 液中之氟化氫(HF):氟化銨(NH^F):擇自乙二醇與丙二醇所組成 組群中之至少一者之重量比為〇·5至6 : 15至25 : 30至40。 Π·如申請專利範圍第16項所述之濕式蝕刻方法,其中,該蝕刻 液中之氣化氫(HF):氟化銨(NHJ):擇自乙二醇與丙二醇所組成 組群中之至少一者之重量比為3.5 : 20 : 35。 1289885 18.如申請專利範圍帛15項所述之濕式姓刻方法,其中,該金屬 矽化物層包括矽化鎳或矽化鈷。 19· 一種乾式蝕刻方法,包括: 使用-侧氣體對-金射化物層進行乾式爛,該侧氣體包 括氬氣、擇自氫氣與氯氣所組成組群中之至少一者、及一氧化石山 20·如申請專利範圍第19項所述之乾式蝕刻方法,其中 氣體中氬氣·氫氣:一氧化碳之流量比為至广 該餘刻 至 15。 :20至30:5 21·如申請專利範圍第2〇項所述之乾式餘刻方法, • 氣體中氬氣:氫氣:一氧化碳之流量比為15 ··乃· “中,該蝕刻 • 10 〇 22·如申请專利範圍第19項所述之乾式钱刻方法 ❿氣體中氬氣:氣氣:一氧化碳之流量比為5至 ^中,該蝕刻 15。 15 至 25··5 至 23·如申請專利範圍第22項所述之乾式蝕刻方法, 氣體中氬氣:氣氣:一氧化碳之流量比為1〇 :如其中,該蝕刻 • 10 〇 24.如申請專利範圍第19項所述之乾式蝕刻方法, 矽化物層包括矽化鎳或矽化鈷。 其中’該金屬 211289885 X. Patent Application Range: 1. A method for removing a metal telluride layer on a gate in a semiconductor process, the gate being on a semiconductor substrate, the upper surface of the gate being covered with a metal telluride layer, the gate a sidewall is formed on each of the sidewalls formed with the metal telluride layer, a layer of tantalum nitride capping covers the metal halide layer, the spacers, and the semiconductor substrate, and a dielectric layer covers the nitrogen The enamel cap layer, the method of removing the metal lithium layer on the gate of the semiconductor process comprises: φ performing a chemical mechanical polishing process to polish the dielectric layer and terminating the yttrium nitride capping layer And exposing the tantalum nitride cap layer over the gate; removing the exposed tantalum nitride cap layer to expose the metal telluride layer on the gate; and • performing a first etching process to remove the gate electrode a metal telluride layer. 2. The method of claim 1, wherein the first etching process comprises: wet etching a metal telluride layer over the gate using an etchant, the etchant comprising hydrogen fluoride (HF) , ammonium fluoride (NHj), selected from the group consisting of ethylene glycol and propylene glycol • at least one of the group, and water. 3. The method of claim 2, wherein the etchant contains hydrogen fluoride (HF) · ammonium fluoride (NHJ): a weight ratio selected from at least one of a group consisting of ethylene glycol and propylene glycol It is 0.5 to 6: 15 to 25: 30 to 40. 4. The method of claim 3, wherein the etchant contains hydrogen fluoride (HF), ammonium fluoride (NI^F), and at least 1289885 selected from the group consisting of ethylene glycol and propylene glycol. The weight ratio is 3.5:20:35. 5. The method described in the third paragraph of the patent application uses a metal above the gas paste electrode. The process includes: The milk body includes at least one of the group consisting of hydrogen and thieves. . Wherein the etching gas is argon: 20 to 30: 5 to 15. 6. The method described in item 5 of the patent application scope is that the flow ratio of hydrogen·· carbon monoxide is 1〇 to 2〇: = If the method described in item 6 is applied, the chlorine in the coffee should be thrown in the coffee: hydrogen·· The flow ratio of carbon monoxide is 15 : 25 : 1 〇. 8. The method of claim 5, wherein the chlorine gas in the side gas: chlorine gas: carbon monoxide flow ratio is 5 to 15: 15 to 25: 5 to 15. 9. The method of claim 8, wherein the chlorine gas in the side gas: chlorine gas: carbon monoxide flow ratio is 10:20:1〇. 10. The method of claim 1, wherein the metal telluride layer comprises at least one selected from the group consisting of nickel dreaming compound and starting stone compound. The method of claim 1, wherein the removing the exposed tantalum nitride cap layer comprises: 19 1289885 wet-etching the exposed nitride layer with a hot phosphoric acid solution. The method of claim 1, wherein the removing the exposed tantalum nitride cap layer comprises: removing the scaled cash cut cap layer by the Wei Xue thief grinding method. 13. The method of claim 1, wherein the dielectric layer comprises cerium oxide, Zr 〇 2, HfO 2 , In 〇 2, La 〇 2, or Ta 〇 2 . 14. The method of claim i, wherein a gate oxide layer is further disposed between the gate and the semiconductor substrate. 20 1 15· A wet etching method comprising: wet-etching a metal-lithium layer using a money engraving solution comprising hydrogenated hydrogen (HF), ammonium fluoride (nh4f), selected from The group consisting of ethylene glycol and propylene glycol is less than one, and water. The method of wet etching according to claim 15, wherein the hydrogen fluoride (HF) in the etching solution: ammonium fluoride (NH^F): selected from the group consisting of ethylene glycol and propylene glycol The weight ratio of at least one of 〇·5 to 6: 15 to 25: 30 to 40. The wet etching method according to claim 16, wherein the vaporized hydrogen (HF) in the etching solution: ammonium fluoride (NHJ): selected from the group consisting of ethylene glycol and propylene glycol The weight ratio of at least one of them is 3.5:20:35. 1289885. The method of claim 1, wherein the metal telluride layer comprises nickel telluride or cobalt telluride. 19. A dry etching method comprising: dry-treating a gold-on-metallization layer comprising a argon gas, at least one selected from the group consisting of hydrogen and chlorine, and a rock oxide mountain 20 The dry etching method according to claim 19, wherein a flow ratio of argon gas to hydrogen gas to carbon monoxide in the gas is as wide as 15 minutes. : 20 to 30: 5 21 · The dry residual method described in the second paragraph of the patent application, • Argon gas in the gas: Hydrogen: The flow ratio of carbon monoxide is 15 · · · · · Medium, the etching • 10 〇 22. The method of dry-money engraving as described in claim 19 of the patent application ❿ Argon gas in gas: gas gas: carbon monoxide flow ratio is 5 to ^, the etching is 15. 15 to 25 · · 5 to 23 · If applied In the dry etching method described in claim 22, the flow ratio of argon gas: gas gas: carbon monoxide in the gas is 1 〇: wherein, the etching is 10 〇 24. dry etching as described in claim 19 The method, the telluride layer comprises nickel telluride or cobalt telluride. wherein the metal 21
TW94138422A 2005-11-02 2005-11-02 Method of removing a metal silicide layer on a gate electrode in a semiconductor manufacturing process and etching method TWI289885B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94138422A TWI289885B (en) 2005-11-02 2005-11-02 Method of removing a metal silicide layer on a gate electrode in a semiconductor manufacturing process and etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94138422A TWI289885B (en) 2005-11-02 2005-11-02 Method of removing a metal silicide layer on a gate electrode in a semiconductor manufacturing process and etching method

Publications (2)

Publication Number Publication Date
TW200719400A TW200719400A (en) 2007-05-16
TWI289885B true TWI289885B (en) 2007-11-11

Family

ID=39295778

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94138422A TWI289885B (en) 2005-11-02 2005-11-02 Method of removing a metal silicide layer on a gate electrode in a semiconductor manufacturing process and etching method

Country Status (1)

Country Link
TW (1) TWI289885B (en)

Also Published As

Publication number Publication date
TW200719400A (en) 2007-05-16

Similar Documents

Publication Publication Date Title
TWI321831B (en) Method for integration of silicide contacts and silicide gate metals
TWI310588B (en) A method for making a semiconductor device with a high-k gate dielectric and a metal gate electrode
TWI362753B (en)
TW201009936A (en) Semiconductor device gate structure including a gettering layer
US7544621B2 (en) Method of removing a metal silicide layer on a gate electrode in a semiconductor manufacturing process and etching method
CN106158931B (en) Semiconductor structure and its manufacturing method
US7229871B2 (en) Integrated circuit containing polysilicon gate transistors and fully silicidized metal gate transistors
TWI276160B (en) Nitridated gate dielectric layer
CN100550350C (en) Has cmos device of metal and silicide gate electrode and preparation method thereof
TW201015668A (en) Method for N/P patterning in a gate last process
TW200910526A (en) Method of manufacturing semiconductor device
TW200425411A (en) Integrating n-type and p-type metal gate transistors
TW200939399A (en) Hybrid process for forming metal gates of MOS devices
TW200531216A (en) CMOS silicide metal gate integration
JP4146859B2 (en) Manufacturing method of semiconductor device
TWI326899B (en) Method for forming fully silicided gate electrodes and unsilicided poly resistor
TW200950000A (en) Integrated circuit having long and short channel metal gate devices and method of manufacture
TWI306622B (en) Method of forming silicided gate structure field of the invention
TW200824045A (en) Method for fabricating semiconductor device
TW201011815A (en) High-k metal gate structure fabrication method including hard mask
TW200937527A (en) MOS transistors having NiPtSi contact layers and methods for fabricating the same
TW201013787A (en) Ultra-shallow junctions using atomic-layer doping
JP2011146465A (en) Semiconductor device and manufacturing method of the same
CN106257620B (en) A kind of semiconductor devices and its manufacturing method, electronic device
TW200924076A (en) Method of manufacturing semiconductor device